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Zusammenfassung

Die Poroelastizitdt zahlt zu einer Disziplin in den Materialwissenschaften und
beschreibt die Wechselwirkung zwischen einer Materialverschiebung und dem
Porendruck. Daher ist dieser Zusammenhang {iberall dort interessant, wo ein
pordses Medium und eine Fliissigkeit eine Rolle spielen und einen gegenseiti-
gen Effekt aufeinander haben. Dies ist in vielen Anwendungen der Fall und wir
konzentrieren uns auf die Geothermie. Das ist ein wichtiger Aspekt beim Re-
servoirmanagement, den man berticksichtigen sollte, denn der Austausch von
Wasser in einem Reservoir mehrere Kilometer unterhalb der Erdoberfliche hat
einen Einfluss auf das umgebende Gestein und umgekehrt.

Die zugrundeliegenden physikalischen Prozesse konnen mit Hilfe von partiellen
Differentialgleichungen beschrieben werden, den sogenannten quasistatischen
Gleichungen der Poroelastizitat (QEP).

Unser Ziel ist eine Multiskalenzerlegung der Komponenten Verschiebung und
Porendruck. Dies ermoglicht es uns, zugrundeliegende Strukturen in den ver-
schiedenen Zerlegungsskalen zu sehen, die im Gesamtbild nicht gesehen werden
konnen. Wir mochten Trennflachen herausarbeiten und aus den Daten mehr De-
tails erhalten.

Zunichst beginnen wir im allgemeineren Kontext der Thermoporoelastizitit, die
die Poroelastizitdt mit thermischen Effekten verbindet. Nach der Herleitung der
Fundamentalldsungen reduzieren wir das Ganze zur Poroelastizitdt. Wir kon-
struieren physikalisch begriindete Skalierungsfunktionen mit der Hilfe einer
Mollifier-Regularisierung der entsprechenden Fundamentallosungen. Hierbei ha-
ben wir einen genaueren Blick darauf, dass die Skalierungsfunktionen die not-
wendigen theoretischen Eigenschaften einer approximativen Identitit erfiillen.
Des Weiteren zeigen wir numerische Experimente mit synthetischen Daten, die
die Anwendbarkeit unserer konstruierten Funktionen unterstreichen.



Abstract

Poroelasticity is part of material research discipline and describes the interaction
between solids deformation and the pore pressure. Therefore, this is anywhere
interesting where a porous medium and a fluid come into play and have an ef-
fect on each other. This is the case in many applications and we want to focus
on geothermics. It is important to consider this aspect in reservoir management
since the replacement of the water in the reservoir some kilometers below the
Earth’s surface has an effect on the surrounding material and vice versa.

The underlying physical processes can be described by partial differential equa-
tions, called the quasistatic equations of poroelasticity (QEP).

Our aim is to do a multiscale decomposition of the components given by dis-
placement and pore pressure. This enables us to see underlying structures in the
different decomposition scales that cannot be seen in the whole data. We want to
detect interfaces and extract more details of the data.

First, we start in a more general setting, that is thermoporoelasticity which relates
poroelasticity to thermal effects. After the derivation of fundamental solutions,
we reduce the setting to poroelasticity. We construct physically motivated scal-
ing functions with the help of a mollifier regularization of the appropriate fun-
damental solutions. Here we have a closer look that the scaling functions fulfill
the necessary theoretical requirements of an approximate identity. Further, we
present numerical experiments with synthetic data, which show the applicability
of our constructed functions.
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1. Introduction

1.1. Poroelasticity in a geothermal background

To understand why poroelasticity is important in geothermal research, we have to
explain what is meant by poroelasticity. Briefly speaking, it is part of the material
research discipline and describes the interaction between the solids deformation
and the pore pressure of a fluid. This theory is an extension of the classical elastic-
ity theory and goes back to Biot in the 1930s. These processes play an important
role in geothermics, since aquifers can essentially be described as poroelastic (see
for example [83, 147] for considerations of poroelasticity in reservoirs). Addition-
ally, the consideration of thermal effects can be taken into account which is then
called thermoporoelasticity. We can think of several influences of the components
solids deformation, pore pressure and temperature: Changes in the pore pressure
or extraction of fluid can cause a deformation of the solid right up to formation of
fissures (which can cause land subsidence and seismic events) and temperature
increase or decrease. Solid deformation influences the pore pressure and surely
the temperature since compressing a material increases the temperature. Temper-
ature variation can cause solid deformation and have effects on the pore pressure,
for example by increasing the temperature, the fluid expands. One more aspect to
mention is the influence of the reinjected fluid which is colder than the extracted
fluid. It is important to consider these things when talking about reservoir man-
agement which can be in the drilling and in the exploitation phase. Up to now
the reservoir management has a subordinate role in Germany in the operational
phase but can be more and more important with essentially longer operational
phases (see [30]).

Still, there are many more aspects and physical processes to consider in a geother-
mal project. The Geomathematics Group at the University of Kaiserslautern sug-
gested a model (graphic illustration given in [10]) to show the different tasks in
the field of geothermal energy, which bases on the four mainstays potential meth-
ods, seismic exploration, transport processes and stress field. Since there is many
literature given to these four aspects, we want to give a few examples to show
how many various scientists from different disciplines are concerned with these
topics (in particular geothermics).

For potential methods (where the focus is here broader) we refer for example to
the literature given by [57,63,65,69,76,92,114,117-119,121,131,138,141] and in
the case of seismics to [36, 53,55, 95,100, 122].
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Under the aspect of transport processes (see for example [38]), the topics fluid
flow [7,14,125,132], heat flow [29,109, 126,129, 143], transport of chemical mate-
rial [12,56,145] and transport of tracers [84, 130, 153] are summarized.

The topic of stress field contains poroelasticity [9,28, 32,33, 80, 99, 148], thermoe-
lasticity [3,8,13,42,96,102, 124,139, 155], fracture mechanics [4, 87,127,133, 157],
seismic waves [2,31,51, 146, 154] and microseismicity [47,54, 113, 134].

We focus on the topic poroelasticity where our aim is to construct physically rel-
evant wavelets by applying a mollifier technique. In general, mollifiers are aux-
iliary functions that are smooth. The convolution of a non-smooth function with
mollifiers generates a sequence of smooth functions which act as approximations
of the non-smooth function. The beginnings of mollifiers can be dated back to
Friedrichs in 1944 (see [79]). In the general theory of inverse problems, molli-
fiers can be found in [48,49, 106, 107] in connection with operator solutions. In
this case the problem is assumed to be too ill-posed to be solved with known
regularization methods. More applications of mollifiers are given by [52] for the
construction of mollified finite element approximants, [91] for spherical decon-
volutions, [98] for optimization problems, [137] for the Laplace transform, [136]
for vector tomography, [149] for the solution of nonlinear systems of differential
equations and [144] for the recovery of piecewise analytic functions. These pa-
pers depict some of the topics where mollifiers occur and do not raise a claim to
be complete.

The theory of wavelets begins, to be precise, with the work of Haar (see [89])
and the Haar wavelets can be seen as the most simple wavelets. In general, there
are many approaches to construct wavelets which we want to recover here in
short. The similarity between all approaches is the construction of wavelets as
basis functions for multiscale analysis. The main topics of wavelets are for ex-
ample covered by [35,43,108,110]. Besides the Haar wavelet as a wavelet on
the real line, we can mention for example the Daubechies wavelet (see [43]) and
the Meyer wavelet (see [115]). For wavelets on the sphere, there exist several
possibilities for the construction. One ansatz to mention here is the tensor prod-
uct ansatz [40] and another one as a more abstract ansatz with a group-theoretic
approach is given in [5, 6]. Moreover, [93,104,123,128,142,151] consider certain
kernel wavelets. Another approach are the frequency reflected wavelets, for ex-
ample given in [64,74,78,152]. The constructions based on potential theoretic
concepts, for example layer potentials, are presented in [62, 67, 82]. Some wavelet
methods come from boundary integral equations [68,90,101]. In [105,116] the
construction under the aspect of localization has been done.

A survey on several multiresolution analyses can be found in [37].

More concepts about wavelets are considered in [39, 41,45, 46, 70, 85, 88, 150].

For a more detailed literary overview about wavelets, we refer for example to [73]
or [117]. The former contains also a classification regarding the geomathematical
applications.

The key idea of the new approach (see for example [61] whose idea goes to back to
[75]) is the construction of mollifier wavelets which have geophysical relevance
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due to the connection to the differential equation and their fundamental solu-
tion. They should generate the decomposition of geophysical quantities. In the
case of the gravitational potential, the potential wavelets use the density as input
data to reconstruct the gravitational potential as the target data. Other wavelets
(called source wavelets) for the decomposition of the gravitational potential or
the density can be obtained by application of the associated operator on the po-
tential wavelets. Outgoing from the usage in geothermal energy, the benefits of
a wavelet approximation should be checked for signals with a relevance for the
geothermal exploration.

Since this new approach of a multiscale mollifier technique was discussed for
many other physical issues, we want to give an overview about the existing liter-
ature which concentrates on the multiscale mollifier technique, which we want
to apply to poroelasticity. We group the existing literature by its application,
that means gravimetry, magnetometry and seismics. We start with the case of
gravimetry: In [59,60,119] (see also the references therein) the mollifier method
has been elaborated and realized. For a similar technique in the case of migration
results via the Helmholtz equation, we refer to [11,27]. More discussions about
the new approach are given in [21] for the acoustic wave equation, in [22] for the
static Cauchy-Navier equation and [23] for the elasto-oscillatory Cauchy-Navier
equation. For the application in magnetometry, the reader is referred to the most
recent publications [24, 59].

In this thesis, we introduce the aspect of decorrelation in poroelasticity by apply-
ing a multiscale mollifier technique that means we transfer this method to the
aspect of the stress field in geothermal reservoirs. Our starting points are the
quasi-static equations of poroelasticity (QEP) (here in homogeneous form) given

by

_Atp

o Val(Varw) - Viu+aV,p =0, (1.1)

Oy (copp + (V- u)) — Vip = 0. (1.2)

They interrelate the dependencies between the main components displacement
u and pore pressure p in a chosen porous medium defined by the material con-
stants A, 11, o, co. We construct in a first step scaling functions by mollifying the
fundamental solution tensor belonging to the QEP with a scaling parameter. Sec-
ondly, we generate the corresponding wavelets by subtracting two consecutive
scaling functions. After the application of the poroelastic differential operator on
them, we get our desired scaling functions and wavelets that are necessary for
the decorrelation of our data.
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These scaling functions are given in the tensor ®,, and fulfill the property of an
approximate identity which is a convolution with the given vector-valued data f

Jim, i @ (z—y) fly) dy = [(2). (1.3)
This is the main theoretical result in our thesis and the foundation for the con-
volution with the data. The scaling functions can be understood as the low-pass
filters and their localization can be controlled with the scale parameter. This leads
us to an approximation of the data at that given point. The wavelets are the band-
pass filters and provide us with the necessary detail information. With the help of
this outcome, we can show the decomposition ability of our functions with some
synthetic test data.

1.2. Layout of the Work

The main goal of this thesis is to construct physically motivated source scal-
ing functions and wavelets to do a decorrelation of poroelastic data. This work
consists of three parts which discuss the mathematical basics, the physical back-
ground and the multiscale decorrelation in poroelasticity. In Part I, we introduce
the general background and concepts which form the basis of this thesis. We start
with the introduction of the necessary notation and special functions and function
spaces we need, here especially the exponential integral, the Gauss error func-
tion and integrals, where the exponential function is linked with polynomials,
are very important for us. Afterwards, we have a short overview on constrained
optimization problems. We continue with classical partial differential equations
and take a closer look at the Dirac distribution. The general concept of scaling
functions and wavelets will be presented before we go over to the basic theory of
lattices and lattice point summation formulas.

Part II deals with the physical background and the derivation of the partial dif-
ferential equations and their fundamental solutions. The main physical laws are
presented to gain the partial differential equations in thermoporoelasticity. With
the help of a decomposition scheme, the fundamental solutions are derived very
shortly. To come back to an easier setting, we want to neglect the thermal ef-
fects and reduce the equations to the quasistatic equations of poroelasticity (QEP).
With the appropriate fundamental solutions, we conclude this part.

Based on the fundamental solutions in poroelasticity from the previous part, we
construct in Part III mollifier regularizations for them, because they have singu-
larities. This is done with the help of a Taylor expansion up to order 1. Applying
the poroelastic differential operator on the modified fundamental solutions, we
get our desired source scaling functions and wavelets. To fulfill the theoretical
properties of an approximate identity, we have to do little modifications on some
of the functions. This part completes with the numerical experiments. Therefore,
we have to think about suitable cubature formulas with the help of the lattice
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point summation formulas. Then we present the convolution pictures and addi-
tionally a relative root mean square error to show the ability of the constructed
source scaling functions and wavelets.






Part 1.

Mathematical Basics






2. Preliminaries

In the following, we introduce the required basic notations, which we use through-
out this thesis.

2.1. Notation

We denote the non-negative integers by N, the integers by Z, the real numbers by
R and the complex numbers by C. Please note that N, in our case, includes the
zero. For every real number z, the floor function |-] is the largest integer n with
n < z. The n-dimensional real vector space is defined as

Rx---xR=R", e N\ {0}. 2.1

. n € N\ {0} (2.1)
n-times

We define the inner product z - y of two elements z = (x1,29,...,7,)" € R",

y=(y1,y2,...,yn)" €R"as
Toy=Y Ty (2.2)
i=1

and the induced norm ||z|| is

|zl = V& -z = fo (2.3)

The closed ball B}(x) with center z € R" and radius r > 0 is the following set
By(z) = {y € R"||z —y| <7}, (2.4)

Furthermore, the sphere S”!(z) in R" with radius r and center = € R" is defined
by
St (@) ={y e R"[|lz =yl =7} (2.5)

For brevity, we write B, () instead of B?(z) and S"!(z) instead of S} ' (z) through-
out this thesis. Every point  # 0 € R" has a representation in polar coordinates
with a uniquely determined &, that means

v=r& r=lall=y/ai++ad £eST >0 (2:6)
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In the following, we want to define the gradient, the divergence and the Laplace
operator of a function. Therefore, we need an open subset of R" called B, whose
boundary is denoted by B and B = 9B U B is the closure. If B is open and
connected, it is called a region. We call a bounded region regular, if 9B is an
orientable piecewise smooth Lipschitzian manifold of dimension n — 1 (see [58]).
For a regular region B the volume of B is given by

vol(B) = ||B|| ::/B dz. (2.7)

Especially in the case of a ball B?(x) and a sphere S} ! (), we have for the volume
of the ball and the area of the sphere the following (see for example [120])

1B ()| = mr”, (2.8)
11 ()| = 2L, 2.9)
IS7™ (@)l = 2 @

where I' represents the Gamma function given by the following definition (see
for example [65]).

Definition 2.1.1. The function x — I'(z), x > 0 defined by

['(x) = /OOO e " dt (2.10)

is called the Gamma function.

For the following definitions, we assume that we have a region B in R". The
gradient of a differentiable scalar function F' : B — R at z € B (notation: V,F(x))
is given by

V.F(x) = <8F (2),... a—F(m))T. 2.11)

Oz, "0z,

Let f = (f1,..., )T be a vectorial function, which is differentiable in z € B. We
define the divergence div,(f) by

0
8:102-

div, (f)(z) =V, - f(z) = Z fil). (2.12)

Please note that for a tensor-valued function f, the divergence is defined row-
wise, that means

(Vo )i = (Z %fj) , (213)

i

10



2.2. Special Functions and Function Spaces

where f; is the j-th row of f. If we now assume that F' is twice differentiable in
x € B, we can define the Laplace operator A of F'in R" at x € B by

A F(x) =ViF(z) =V, V,F(r) =Y ——F(2). (2.14)

In the case of vectorial and tensorial functions, we apply the Laplace operator
componentwise. Furthermore, we have to define the Kronecker Delta by

1 —
5nm = { ’ " m’ (215)
0, n#m,

for n,m € N. Please note that we use boldfaced letters for tensors of order 2 and
higher.

2.2. Special Functions and Function Spaces

In this section, we want to introduce the function spaces (see for example [64, 117])
we need throughout this thesis and the well-known exponential integral (see also
[1,86,94]). The exponential integral is necessary on the one hand for the funda-
mental solutions for thermoporoelasticity and on the other hand for our theory of
decorrelation. We start with the exponential integral and go over to some more
special functions and specific integrals that we need.

Definition 2.2.1. The exponential integral is defined as the following integral

) o0 e—t x et
Ei(x) = —/ -+ dt = / n dt, x>0 (2.16)

T —00

and has to be understood in the sense of the Cauchy principal value. Furthermore, we
have the following characterization as an alternative

00 k
xr
Ei(z) = | R 2.17
i(x) =C+ n|x|+k§1k_l€!, Vo e R\ {0} (2.17)
with C as the Euler constant. Hence we have
Ei(—t)-t* - 0fort — Ofork > 1, (2.18)

since x - In|z| — 0 (x — 0), which we need later for some limit considerations.
Closely related is the following function

e8] G_t o e—a:t

11



2. Preliminaries

Please note that for positive values of z, we may extend (2.19) in the sense that
—E;(z) = Ei(—z). We also define

Eo(z) = / et dt = em . x> 0. (2.20)
1

The following relation between E; (x) and Ey(x) holds true (see [86])
Ei(z) = —Ep(x). (2.21)
Furthermore, we need the error function (also called Gauss error function).

Definition 2.2.2. The error function is defined by

2 [T
erf(x) == — / e T dr. (2.22)
VT Jo
Please note that we use the error function for real arguments.

For the proof of the theory of the decorrelation, there are some integrals related
to the exponential function, that we use several times.

Lemma 2.2.3. The following integrals are helpful for us (see [86]):

21 72
72 7°Ei <—402t> 72
— dt =——+""—2+1t- — 2.2
/ exp ( 40275) ic, e ( 402t> (2:23)
72 1 72
— -—dt=—-Ei| — 2.24
/eXp ( 40275) / ' < 40215) 224)
7_2 1 402 exp <—4T022t>
/exp (_402t) 2 dt = = (2.25)
/ ( -2 ) 1 Ny 4C5 exp <—%> (4Cot + 72) 226
exp | — c—dt = )
405t t3 tr4
/ -2 1 oy 4CYy exp < 42;) (320312 + 8CytT? + 14) 027
FP\Tao) T 1276 '

12



2.2. Special Functions and Function Spaces

Proof. We can easily verify these integrals by differentiation (see also
Definition 2.2.1), that means

. 72
a T2E1 <_402t>

7_2
— | — 7 4t —
Ji T eXp( 402t>
7_2
7_2 exp (-m) ,7_2 + 7_2 + ; 7_2 7_2
— . . X — . ex — [,
16, T — 2 age T TP\ P\ T4ct ) acye
,7_2 7_2 ,7_2
- . . |
eXp( 402t)( 1yt +402t)
,7_2
_ _ 22
exp( w) | (228)
0 72 Y (_%) 72 72 1
9( mi(_ _ . _ _ - 2.29
1 ( 1 ( 4C2t>) —ﬁzt 402t2 €xXp ( 402t) + ( )

0 [4C, o T2 40, o T2 T2 72 1
JE— —— X J— P — J— PR J— Pyppe—
ot \ 72 P 4C5t T2 *P A4C5t ) 4C5t? exp A4C,t ) 127

1

13
0 (40, 72 ,  8Cyt? 7t
ot (7 P (_402t> <3202 T e

40 2 2 2 4
e (— T ).T—<32C§+8Cﬂ +T—)
-

40, o T2 8C, T2 n 274 n 76 8C,r2 27
= — X —_ —_— N —_—
76 P 4C5t t2 t3 4C5t4 t2 t3
72 1
— — R 2.
P ( 402t) # 232)

O

We use these integrals mostly in combination with the particular interval [0, 7.
Therefore, we have a look at the integrals again with these interval boundaries.
Please note that in our case the constant C; is a combination of positive material
parameters and always > 0.

13



2. Preliminaries

Remark 2.2.4. For the case of an integral fOT we obtain for the previous integrals with
CQ >0

T ,7_2 ,7_2 ,7_2 ,7_2
_ — ' Ei(- T _
/0 eXp( 402t> =55 1( 402T)+ eXp( 402T>

7.2 7_2 7_2
— i —Fil = —
bi%l+ |:4CQ ' ( 402()) * beXp ( 402b):|

7_2 7_2 7_2
— T gi(- Texp - 2.33
40, 1( 4C2T) i eXp( 4C2T> ’ (2.33)
T 7_2 1 ,7_2 7_2 7_2
- S dt=—FEi - lim Ei( — — Ei-
/0 eXp( 40275) i 1< 4C2T) T 1( 4(]2()) 1( 402T>’
(2.34)
T 72 1 4C5 exp <—%)
_ L= 2.
/0 exp ( 40215) » dt = , (2.35)
T 2 1 e 4C5 exp < 452”[) (72 +4C,T) )36
/0 PN Taot) BT Tr ’ (2:36)

(2.37)

T 2 1 4C4 exp (—%) (320372 + 8C,TT% + 74)
e (i) |

Now we go over to the function spaces and start with the definition of a compact
support.

Definition 2.2.5. We assume that we have an open set B C R"™ and a given function
F : B — R. We say the function F' has compact support if there is a compact set G C B
such that

supp(F) = {z € B|F(z) # 0} C G. (2.38)

Assume that we have an open subset X C R™. The class C*)(X) denotes the set
of all functions, which are k-times continuously differentiable for £ > 0. The case
k = —1 denotes the piecewise continuous functions. For £ = 0 we simply write
C(X) instead of C(¥(X). Furthermore, we set

C)(X) = [ CW(X), (2.39)
where the intersection is taken for all finite k. Especially ¥ (X) denotes the
space of all u € CF(k)(X) with compact support. Furthermore, assume that we

have aregion Bin R". Then we define the space £”(53) by all measurable functions
F : B — R, that satisfy

/ |F'(z)|]P de < 400, 1<p < +o00. (2.40)
B

14



2.2. Special Functions and Function Spaces

In analogy the space N'?(B) is

NP(B) = {F : B — R measurable

/ |F(2)||” dz = 0} , 1 <p<+4oo. (2.41)
B

With these definitions and the concept of equivalence classes, we can define
LP(B) = L7(B) /oo (242)

which is together with the norm

p
1Pl = (/wr|wﬂ C 1<p<oo (2.43)

a normed space. Note that for 1 < ¢ < p < 400 it holds true that L?(B) C L¢(B),
if B is bounded. For the case p = 2, we have the function space L?(B) with the
inner product (-, -); » (5, defined by

(F,G)12(p) = / F(z)G(z)dz, F,G¢cL*B), (2.44)
B
which is a Hilbert space. For a continuous function F' € C(B), we define
| Flloe = | Flcm) = sup |F(x)]. (2.45)

Since C(B) is a pre-Hilbert space with the topology (-, );2 ), we have for every
F € C(B) the following estimate for the norm

[ E ey < VB TFlles)- (2.46)

With this, we get that L?(B) is the completion of C(B) with respect to || - ||12(5),
that means

L3(B) = O(B) @ (2.47)

A last very important point to define, is the convolution of two functions, which
we will use later and plays an important role in this thesis.

Definition 2.2.6. Let a measurable set D C R™ and & € L*(D x D), F € L*(D) be
given. We define the convolution of ® and F (characterized by ) by

(P F)(r) = /D(ID(x, y)F(y)dy, =z € D. (2.48)

We can show that the convolution is always defined in L?(D) by the use of the
Cauchy-Schwarz inequality

M*mam—L(A¢mwﬂw@fdx
SALMWN@LHW@M

= ||q)’|i2(DxD)||F||i2(D)~ (2.49)
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2.3. Theoretical Aspects of Constrained Optimization
Problems
The following aspects of constrained optimization problems are briefly summa-

rized and are obtained from [81]. We consider an optimization problem of the
following form

find min f(x) (2.50)
under the constraints ¢;(z) <0, i=1,...,m, (2.51)
hi(z) =0, j=1,...,p, (2.52)

where the objective function f : R" — R and the functions describing the con-
straints g; : R — R and ; : R* — R are assumed to be continuously differen-
tiable. For solving this optimization problem, the following Lagrange function
plays an important role.

Definition 2.3.1. The Lagrange function L of a constrained optimization problem is a
mapping L : R™ x R™ x RP — R given by

p
L(x, A, 1) )+ Z Nigi(x) + ) pihy(). (2.53)
j=1
With the help of the Lagrange function, we want to define the so called Karush-

Kuhn-Tucker conditions (KKT conditions).

Definition 2.3.2. We consider the optimization problem (2.50)-(2.52) with continuously
differentiable functions f, g and h.

(i) We call the conditions

Vo L(x, A ) =0, (2.54)
h(z) =0, (2.55)
A>0, g(z) <0, ATg(z) =0 (2.56)

the KKT conditions of the optimization problem. Here
V.L(z, )\, 1) )+ Z A\iVgi(x) + ZMW (2.57)

is the gradient of the Lagrange function L concerning the x-variable.

(ii) Each vector (x*,\*, u*) € R™ x R™ x RP, which fulfills the KKT conditions, is
called a Karush-Kuhn-Tucker point (KKT point) of the optimization problem. We
call the components of \* and p* the Lagrange multipliers.
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In a last step, we have to establish a connection between local minima of the
optimization problem (2.50)-(2.52) and the corresponding KKT conditions given
in (2.54)-(2.56). Therefore, we want to have a look at the KKT conditions under
the Abadie constraint qualification (Abadie CQ). We first define the constraint
qualification of Abadie.

Definition 2.3.3. Let the optimization problem (2.50)-(2.52) be given. An admissi-
ble point x of the optimization problem satisfies the constraint qualification of Abadie

if Tx(x) = Tin(z) holds true.
Here we have the tangential cone of X C R" in z given by
Tx(x) ={deR" | I{xx} C X Ftx } 0: 2y > zand (xy — x)/tx, — d}  (2.58)

with sequences {7y} C X and {t;} C R. Furthermore, we have the linearized
tangential cone of X in x defined by

Tin(z) = {d € R" | Vgi(z)"d <0 (i € I(z)),Vhj(z)"d=0(j=1,...,p)}, (259)
with the set of the active inequality restrictions in x
I(z) ={ie{l,...,m}|gi(zx) =0} (2.60)
and the admissible set X given by
X ={zeR"g(z)<0(i=1,...,m),hj(x) =0 =1,...,p)}. (2.61)

With this definition, we can go over to this important theorem for the interrelation
of KKT points and local minima.

Theorem 2.3.4. Assume that we have a local minimum x* of the optimization problem
(2.50)-(2.52) given which fulfills Abadie CQ. In that case there exist Lagrange multipliers
A€ R™and p* € RP such that the triple (z*, \*, i*) is a KKT point of (2.50)-(2.52).

There are some more constraint qualifications, especially for non-linear restric-
tions, namely the constraint qualification of Mangasarian-Fromovitz (MFCQ) or
linear independence (LICQ). For details see [81].
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3. Differential Equations

This chapter deals with a general introduction into partial differential equations
(PDEs). After the introduction of the classification of PDEs, we continue with
some known PDEs, where we can see similarities to the later introduced equa-
tions of poroelasticity. We end up with a short introduction of fundamental solu-
tions and present the fundamental solutions of the known PDEs from above. We
are mainly guided by [50, 94, 103].

3.1. Basics

Our aim in this section is to give an overview of the classification of partial differ-
ential equations corresponding the order and the properties ellipticity, parabolic-
ity and hyperbolicity. Assume we have an open subset U of R" and an element
x = (21,29,...,2,). The following equation is called a partial differential equa-
tion (PDE) of order k for u(z) in U:

F (Dku(z), D tu(z), ..., Du(z), u(x), x) =0, xz€U, (3.1)

where we use the usual multi-index notation (here v € Nj)

121 Un lv|
pr= 2 9 0 v| = Zuz (3.2)

dzy " Oxvn Qx(te .- Qavn’

Here |v| is the order of the derivative and we denote the set of all derivatives
of the function u of order k by (D*u)(z) = {(D")(z): |v| = k}. The mapping
F:R"xR"'x.--xR*"xRxU — Risknownand u : U — R is unknown. The
PDE is of order k that means there is at least one derivative with order £ and none
with higher order. Since we only handle with linear PDEs, we can write (3.1) in
the following way:

Z a,(z)D"u(x) = f(x), veN" (3.3)

wI<k

The PDE is called homogeneous if f = 0. In the following, we present the three
main categories of partial differential operators and start with the elliptic one.
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3. Differential Equations

Definition 3.1.1 (Elliptic PDE). Assume we have an open and bounded subset U C R",
u: U — Rand L a second-order linear operator of the form

n

Lu = Z aij ()0, 0y, u(z) + Zb x)0z,u(x,t) + c(x)u(x). (3.4)

1,j=1

The operator L is said to be uniformly elliptic if there exists a constant M > 0 such that

Z a;;(2)&&; > M| (3.5)

2,j=1
for almost every x € U and all £ € R".

The following two classes have also a time dependency and we continue with the
second class, the parabolic PDEs.

Definition 3.1.2 (Parabolic PDE). We have an open and bounded subset U C R",
u:U x [0,T] — Rand L a second-order linear operator with the form

n

Lu = Z aij(7,1)0, 05, u(w, t) + Z bi(x,t)0,,u(x, t) + c(z, t)u(x,t) — Owu(z,t).

ij=1 i=1

(3.6)

The operator L is said to be uniformly elliptic if there exists a constant M > 0 such that

n

> aya, )6 > M| (3.7)

ij=1
forall (x,t) € U x [0,T] and all £ € R™.
The last case to consider the case of the hyperbolic PDE.

Definition 3.1.3 (Hyperbolic PDE). We have an open and bounded subset U C R",
u:U x [0,T] — Rand L a second-order linear operator with the form

Lu—Zamxtf) Oz, u(z, 1) +Zb (z,)0p,u(x,t) + c(z, )u(z,t) — Ofu(x,t).

2,j=1 =1
(3.8)
The operator L is said to be uniformly elliptic if there exists a constant M > 0 such that
D> a 0)E& > Mg (3.9)
ij=1

forall (x,t) € U x [0,T] and all £ € R™.

The difference between the last two cases is only the fact that we have the second
derivative with respect to the time in the hyperbolic case. Note that not every

partial differential equation can be dedicated to one of the three classes above
clearly.
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3.2. Some Known Classic Differential Equations

In this section, we want to present some basic known partial differential equa-
tions and their belonging to one of the three classes defined above. At first we
have a look at Laplace’s equation defined by

Au(z) = Viu(z) = Z 02 u(z) = 0. (3.10)

This is a linear, elliptic second-order partial differential equation. The next one to
consider is the heat (or diffusion equation), which is known as

Owu(z,t) — Au(x,t) = 0. (3.11)

Here we have a linear, parabolic differential equation of second order. The next
interesting one for us is a system of partial differential equations, the equilibrium
equations of linear elasticity (also Cauchy-Navier equations), which are given by

pAu(x) + A+ p)V(V - u(z)) = 0. (3.12)

Please note here that u is a vector-valued function and A and y are the so-called
Lamé constants, which are material constants. We deal here with a linear ellip-
tic partial differential equation. The last PDEs to mention here, are the Stokes
equations (please note here, that they are a simplification of the Navier-Stokes
equations), which are given by

—puVu(x) + Vp(z) = 0, (3.13)
V-ou=0. (3.14)

In the next chapter we will see several similarities between these basic PDEs and
the governing equations of thermoporoelasticity and certainly poroelasticity.

3.3. Fundamental Solutions

Since we need the fundamental solutions for the construction of our desired func-
tions for the decorrelation, this section presents the definition of a fundamental
solution and shows the fundamental solutions for the four PDEs defined above
(Laplace, heat, equilibrium and Stokes equations). First we have to define what a
distribution and the Dirac measure are. Furthermore, we present some properties
of them (see also [94,97,103]).

Definition 3.3.1. Assume, we have an open set X in R". We call a linear form v in X

on C[()OO) (X) a distribution if for every compact set K C X there are constants C' and k
such that

u(@) < C Y swp |60, ¢ € CF(K). (315)

v|<k zeK
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3. Differential Equations
We denote the set of all distributions in the open set X in R" by D'(X). Let us
continue with the Dirac measure.

Definition 3.3.2. The Dirac distribution (or Dirac functional, Dirac measure, Delta
distribution) 6, at a € R" is a mapping defined as

5. : Co(R) = R (3.16)
(0a, ®) = 0a(9) = ¢(a), (3.17)

that means the Dirac measure o, of a function ¢ is the evaluation of ¢ at the point a.

Furthermore, we need more properties of distributions especially of the Delta
distribution for our convolutions later. The following features are useful for us.

Remark 3.3.3. For an open set X in R", ¢ € C(X) and u € D'(X), we have

Furthermore, we have especially for the Dirac distribution

The following properties can be seen in the sense of an extension of the result
above (formally speaking)

(=d',1) = <5, %1> = (4,0) =0, (3.20)
(=o' ) = <5, %x> =(0,1) = 1. (3.21)

With this definition and properties, we can go on to the definition of a fundamen-
tal solution.

Definition 3.3.4. We have a differential operator P =, a,, 0" with constant coefficients
and a distribution E € D'(R"). We call E a fundamental solution of P if PE = .

Furthermore, we have to explain what we understand as a regular distribution,
which is a subset of the set of distributions.

Definition 3.3.5. We say that a distribution w is reqular, if it is generated by a locally
integrable function f, that means there exists a representation in the following way

ur(@) = | JO0(0)dt forall 6 € CR(RY). (3.22)

So regular distributions can be represented by functions. Distributions that are
not regular are called singular. The Delta distribution is an example for a singular
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distribution, because there does not exist a locally integrable function that fulfills
(3.22) (for the proof see [97]).

In a next step, we want to show the fundamental solutions of the four differential
equations mentioned above. Let us start with Laplace’s equation. The fundamen-
tal solution is given by

: L n>2,

1

u(x) = {gln Il =2 (3.23)
— (n=2)wn [lz["2

where w,, = 27"/2T (g)fl, which is the area of the surface of the n-dimensional

unit sphere and I' is the Gamma function given in Definition 2.1.1. For more

properties of the Gamma function or other representations like the functional

equation see [65]. Continuing with the heat equation, we obtain

1 Bk
———e 2, zeR" t>0
u(z,t) = { (4mt)n/2 (3.24)

0, z € R, t < 0.

The next one is the tensor-valued fundamental solution of the equilibrium equa-
tion (also Cauchy-Navier equation)

A+ A3 ;T .
4##(2:—1—)\) |:( )\—Hil) hl(HxH)(szk + ”ngi| y = 2

uin(r) = A ’ (3.25)
K A+3u . ;T o
87 u(2u+N) [z [( >\+u> Oif; + Wﬁ} ) n=3.

At last, we have the fundamental solutions for the Stokes equations. They are
also tensor- and vector-valued and given by

1 T,
() = ——— (6, + ”), (3.26)
i) = el ( e

X
p(z) = —47r||:v||2' (3.27)

With the definition and properties of distributions, we now have to come back
to convolutions, especially we have to say something about convolutions with
distributions. In general for v € D'(R") and ¢ € C(R") their convolution is
defined by

(ux ¢)(x) = u(p(z —)) (3.28)

that means w is acting on ¢(x — y) as a function on y. Furthermore, it holds true
that the convolution u * ¢ € C*>(R") fulfills the following with respect to the
derivatives

0% (u* @) = (0%u) * ¢ = ux* (0%¢). (3.29)
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With this property and Remark 3.3.3, we can have a look at distributions of the
form ¢(z)d; or ¢(x)d; with a distributional time dependent part (in our case the
Delta distribution) and set the convolution of these (scaling) functions with the
data given by f (assumed to be differentiable with respect to t) as

@ f)i= [ a0 @) b= [ de—nf 0 630)

0 0
031 = (00 57 = [ ote =0 5r00) o 331)
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4. Multiscale Approach

This chapter deals with the definition of scaling functions and their wavelets.
Furthermore, we define operators and spaces. A similar multiscale approach as
stated here, was proposed in [75]. See also [21,25] and the references therein.

4.1. Scaling Functions and Wavelets

In this section, we introduce the (scale discrete) scaling and wavelet functions,
which build the basis for a multiscale approach. We start with the definition and
the properties of a scaling function.

Definition 4.1.1. We assume that we have a regular region B in R". Furthermore,
{7j};jen, Tj > 0, is a strictly monotonically decreasing null sequence, that means

lim 7; = 0. 4.1)

j—o0

The sequence {®, }jen, -, : R — C s called a scaling function if
lim [ & (z—y) F(y) dy = a(2) F(x) (4.2)
Jj—=oo

holds true for all x € Band all F € C(B).

Especially, we notice that
lim [ & (z—y)dy=alz) (4.3)
Jj—=oo I
holds true for all = € B by inserting F'(z) = 1. Here o(z) denotes the solid angle,
which can in general be defined in the following way (see [63]).
Definition 4.1.2. We have a region G C R3. The solid angle o(x) can be defined by

0
o) = [ S-Gaille -yl dy (44
oB OVy
where G(A; ||x — y||) is the fundamental solution of the Laplace operator A in R? given
by (see also (3.23) for the fundamental solution in the case of a unit sphere)

Lin(le—yl), n=2.

2-n)lIS™=H” -

(4.5)

and v, denotes the unit normal vector in y pointing into the space R\ B.
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In a 3-dimensional cube B = (—1,1)3, the solid angle a(z) correlates with the
position of z in the cube that means

( 0, if z is not an element of the cube B or of the boundary 95,

1
87
1
49
1
27
| 1, if z is in the open cube B.

if x is one of the eight corner points of 95,
if x is on one of the four edges of 0B but is not a corner point,
if z is on one of the six faces of 953 but not on a corner or edge,

(4.6)

If we now assume that we have = € B, then a(z) = 1 and we obtain for the
convolution integral in the limit

lim [ @ (z—y)F(y) dy = F(). (4.7)

)7 /B
Please note that in our case the scale discrete scaling function @ is a tensor with
® : R* — R¥* and the data function F is then vector-valued and approximated
by f : B x R — R®. Therefore, we have to extend this definition of a scaling
function also due to the time and therefore modify the definition to the following
(cf. [21] for a one dimensional time-variate case or [22] for a multidimensional
case without a time component).

Definition 4.1.3. Suppose that B is a reqular region in R®, f : B x R — R3 continuous
and {7;},en, 7; > 0 is a strictly monotonically decreasing sequence with

lim 7; = 0. (4.8)

Jj—00

The sequence {®-. }jen, ®;, : R® — R**® is called a scaling function if

Jj—00

lim B/ R/ B, (v —y.t—0)f(y.0) A0 dy = f(z,?) (4.9)

holds true for all x € Band t € R.

Please note that we now assume z € B instead of z € B, which means that we
can set a(x) = 1.

Remark 4.1.4. A possible sequence for 7; can, for example, be 7; = 277. This is the
sequence which we will use later.

In the following, we will use the tensor-valued varieties of the definition that
means our scaling functions and wavelets are tensor-valued and the data function
f is vector-valued. Please notice that they can always be replaced by a scalar-
valued scaling function and data function instead. With the help of the scaling
function, we can define the wavelet function.
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4.1. Scaling Functions and Wavelets

Definition 4.1.5. Assume that we have a scaling function {®, } jen. Then we can define
the wavelet function { ¥, }jen, ., : R® — R**3 gs the following

U, =®, —® (4.10)

Tj—1°

With this definition of the wavelet function, we can write a scaling function &,
for j € N as the following sum of wavelets.

Lemma 4.1.6. Let j, J € Nwith j < J arbitrary. Then any ®., of {®,, };en can be
represented as

J
o, =®, + > V.. (4.11)
I=j+1

With this representation of ®,,, we can write the following convolution of a func-
tion f € C(B,R?) in this way.

Theorem 4.1.7. Our assumptions are as follows: We have a strictly monotonically de-
creasing sequence {T;}jen, the scaling function {®,, }jen and the corresponding wavelet
{®..}jen. Furthermore, f € C(B,R®) with a reqular region Band j > jo with j, jo € N.
We get for all = € B

fro(2) = /B . (—y)f(y) dy

= [en - X [ ee-prma @12

I=jo+1
and
f(z) = lim fr,(2)
= jlggo : @, (r—y)f(y)dy
= /B @, (v —y)fy) dy + l:;i; /B U (v —y)f(y) dy. (4.13)

The convolution of a function f against the kernel @, as represented in (4.12)
shows us the decomposition of the approximation of a function f into a low-pass
part, which is the convolution of f against @, and several band-pass parts,
which we get by the convolution of f with the wavelets ¥, [ = jo+1,...,7.

Remark 4.1.8. Please note that in numerical uses, we will only calculate the convolution
of the data with the scaling functions and obtain the convolution of the data with the
wavelet by subtracting the convolution of two consecutive scaling functions.
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4. Multiscale Approach

With this, we obtain the multiscale representation.

Corollary 4.1.9. Again let {®. };cn be a scaling function and {¥,, };en the wavelet
belonging to it. The multiscale representation is then given by

/B<I>m (x —y)f(y) dy + ; /B U (z—y)fly) dy = f(x) (4.14)

and holds true for all z € Band f € C(B,R?).

4.2. Scale and Detail Spaces

We can define operators Pg, in relation to the scaling function and R¢, concern-
ing the wavelet function as follows (see [77,78])

Pa. [f] = / B, (—y)fly)dy, feCBR, (4.15)
Ra,, [f / U (- y)dy, f€C(B,RY. (4.16)

Since the operator Pq>T is in connection with ®.. and R\p with ¥, they can be
understood as the so called low-pass filter and band -pass- “filter. With the help of
these operators, we can define scale-spaces Vg, and detail-spaces W, .

Definition 4.2.1. We define the scale-spaces Ve, and the detail-spaces We., by

Vs, =Ps, [C(B)] = {Ps,[f]|f € C(B,R%)}, (4.17)
Ws, =Ra, [C(B)] = {Re, [f]|f € C(B,R*)}. (4.18)

By writing
,P<I’T].+1 [f] = Pq)‘rj [f] + Rq’-rHl [Lﬂa j € Na (419)

we can conclude (see also Definition 4.1.5)

Vo =Va, +Wa,_ . (4.20)
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5. Cubature on Lattice Points

We introduce the most important results that we need for the calculation of our
convolution integrals, that means volume integrals over regular regions. There-
fore we want to adopt suitable cubature formulas which we obtain from [58].
More precisely, we are interested in the Poisson summation formula in the for-
mulation of Gaufi-Weierstrafs summability. We show here a very compressed
version of [58] referring to the condensed version given in [21]. For more infor-
mation about integration and cubature methods from a geomathematical point of
view see also [66].

5.1. Lattices

At the beginning it is important to define a lattice A in RY, its fundamental cell and
the appropriate inverse lattice. With this, we go afterwards over to the so-called
A-periodic functions and their function spaces.

Definition 5.1.1. We have the space R and the basis g1, . .., g,. We call the set A of all
points obtained by

g:nlgl+"'+nnga nl,..-,anZ, (51)

a lattice in R? regarding the basis g1, . . ., g,. Furthermore, the half-open parallelotope F )
consists of the points v € R given by
1

1
r=tg1+ - +1.9q ~3 <t < > (5.2)

i =1,...,qand is named the fundamental cell F of the lattice A.

In Figure 5.1 an example of a lattice with basis ¢, g2 in R? and its fundamental
cell F, is shown. Proceeding from this definition, we have for example that the
unit vectors e, . . ., ¢, form a basis of Z9.

The volume of a fundamental cell can be obtained by linear algebra in the follow-
ing way (see for example [44])

7l = [ o= e (0 ) 63)

In the case that we have A = Z9, we get that the volume of the fundamental cell
is given by ||Fa|| = 1. Furthermore, we have the following properties.
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5. Cubature on Lattice Points
g1g20

G / /

Figure 5.1.: Example of a lattice in R? and its corresponding fundamental cell Fj.
Remark 5.1.2. For each g € A and Fx + {g} = {y+ gly € Fa}, we obtain for the
volume

IFall = 1Fa + {g3l- (5:4)

With the property (Fx +{g}) N (Fa +{g'}) =0 for g # ¢ and g, ¢' € A, we can write
the space R? as

R = |J (Fa+1{o}) = (Fa—{g}). (5.5)
geA geA
For the definition of the inverse lattice, we have a look at the vectors hy, ..., h,,
which should satisfy
h; - g = 0y, (5.6)
where §;; is the Kronecker Delta (see (2.15)). The existence of the vectors A4, ..., h,
is given due to the linear independency of the vectors ¢4, ..., g,-
The vectors hy, . . ., hy, can be obtained with the following considerations and com-

putations. We define the scalars 7;; with the help of the inner product of the
vectors ¢y, ..., g, by

We are interested in getting the scalars 7"/ by solving the linear equation system
q ..
ZV”W — . (5.8)
i=1

With this we can calculate the vectors h;, j =1, ..., ¢ with the help of the vectors
gk, k=1,...,qby

s}

jkgk. (59)
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5.1. Lattices

They satisty the equations

q
hj - gi = Zv g 9i =Y i = 0y, (5.10)
k=1
fori,j =1,...,¢q which is the property we wanted. Moreover, we get
q q
bty = 3 3
k=1 =1
=> 7D 7w
=1 k=1
= A7t (5.11)

With these preliminary considerations, we want to define the inverse lattice A™'.

Definition 5.1.3. The inverse (or dual) lattice A=* of A is the lattice with basis hy, . . . , b,
with the properties given in (5.6).

Furthermore, the following properties between the lattice and the inverse lattice
hold true

A=A (5.12)
and
[ F3 ] = 17l (5.13)

In the last part of this section, we define A-periodic functions and their function
spaces.

Definition 5.1.4. Let a lattice A C R? be given. We call a function ® : R? — C
A-periodic, if

O(z 4+ g) = O(x) (5.14)
holds true for all x € R? and all g € A.
We want to give an example for a A-periodic function.

Lemma 5.1.5. Now assume that h is an element of the inverse lattice A=*. The functions
®, : R? — C defined by

1

Oy (z) = exp (2mih - x), x € RY (5.15)

(| Fall

are A-periodic.
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5. Cubature on Lattice Points

Furthermore, we can define the following spaces in connection with A-periodic
functions.

Definition 5.1.6. The space C(Ak) (R?) denotes the set of all functions F € C®)(R?) with
0 < k < oo that are A-periodic. By L} (RY) we denote the space of all F' : R? — C that
are A\ — periodic and Lebesgue-measurable on F) with

Pl = ([ F@P a2) <00 15p< 516
FA
Furthermore, we define the null space Ny (R?) by

NP(RY) = {F € 7 (RY)

/ |F(x)]" de = 0} 1 <p< oo (5.17)
Fa

With the concept of equivalence classes and the two definitions above, we can define the
space L (R?) by

LA (RY) = L4(RY), g (5.18)

Furthermore, we have that C(Ak) (R?) C L (R?) holds true and that L3 (R?) is the
completion of Cg\k) (R?) with respect to the norm || - [| 3 (rs), that means

H'”L%(Rq)

LA(RY) = C{(R) (5.19)

We see that the system {®,},_,-. from above is orthonormal with respect to the
LA (R?)-inner product for h, ' € A~

(@0 By = [ Bl Be) do = b (5.20)
Fa

We continue with the Laplace operator A, and the eigenvalue X of the lattice A.

Definition 5.1.7. If we have a non-trivial solution U of the given differential equation
(Ay + N)U(x) = 0, that satisfies the condition U(x + g) = U(x) forall g € A and all
x € RY, we call X an eigenvalue of the lattice A with respect to the Laplace operator A,
We say that U is the eigenfunction of the lattice A regarding the eigenvalue X\ and the
operator A,.

We get the following connection of the definition to the function ®;, from above.

Lemma 5.1.8. The function ®,(z) (see Lemma 5.1.5) is called an eigenfunction of the
lattice A regarding the Laplace operator A, and the eigenvalue A(h) = 47> ||h|>.
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5.2. Lattice Point Summation Formulas

The functions ®,, are the only eigenfunctions of the lattice and the scalars A" (h)
are the only eigenvalues of A with respect to the lattice A. We get that the system
{®1,},ca_1 is closed and complete in the pre-Hilbert space (C (R%), ||- L2 (me)) and
also in the Hilbert space (L3 (R?), || - || 2 rs))- Furthermore, we get for ' € L} (R?)
the following

. A _
lim || F — > F{(h)®y =0, (5.21)
lR][<N
heA! L2 (RY)

where we have the respective Fourier coefficients £ (h) given by
F(h) = / F(z)®(z) dz, he A (5.22)
Fa

That means each F' € L3 (RY) can be represented by its Fourier series.

5.2. Lattice Point Summation Formulas

In this section, we have some preparations left on our way to the Poisson sum-
mation formula in Gauf3-Weierstrafs summability. In order to do this, we need the
Poisson summation formula and the Theta function.

Please note that we write > | e instead of limy_, ) _j4<n foOr reasons of brevity.
geA
We start with the introduction of two new spaces.

Definition 5.2.1. We have m € N, ¢ > 0 and A € R given. The spaces CPP™ (A, RY)
and CP§2m) (e, \,RY) are defined as below

(i) The space of all functions H € C®™ (RY) with the asymptotic relations

(Ap + N H(x) = o ()™, ]l = oo, (5.23)
Hvr(Aw + )\)kH(a:)H =0 (Hle_q) . x|l = oo, (5.24)

fork=0,...,m— 1is denoted by CP’™ (X, RY).
(ii) By CP$™ (e, A, RY), the space of all functions H € C™)(R?) fulfilling
(Ba+ X" H(@) = O (Jlall ), fall = o0 (5.25)

is denoted.

The next theorem is the Poisson summation formula and obtained from [58] and
is required for our desired summation formula.
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5. Cubature on Lattice Points

Theorem 5.2.2. Let a lattice A in the space R? be given. Let us assume that for ¢ > 0
and \ € R the function F € C®™(R?), m > 4, fulfills the property that it is a member

of class CP™ (X, R9) N CPY™ (e, A, RY), then the following holds true

. 1
ius > Flo)- I Zh) O/x” oy F@) () de

llgll<N (A+M)N
geA heA—?

1 _
= > / F(2)®,(z) da. (5.26)
AV H.FAH (AN (h)#£0 rcRa

heA—t

Moreover, if we have that the sum

Z / ey F@)00(2) do (5.27)

(A+)N zERY
heA™ 1

converges for N — oo, we are able to conclude that

1
2P0 = g / 7 dz

geA (A+)\
heA 1
1 -
= > / F(2)®y(z) da. (5.28)
VIFA (A2 (h)20 7 R
heA—1!

Now we come to the last component that we need for the development of the
Poisson summation formula in Gaufs-Weierstraf$ summability, which is the Theta
function in R of degree 0 and its functional equation. Please note here that the
Theta function of degree 0 is sufficient here for us. For a representation of the
Theta function of degree n, see [58].

Definition 5.2.3. Let arbitrary points x,y € R? and an arbitrary lattice A be given. We

call 9@ (5 -, s A) with o € C and real part R(c) > 0 given by
9901, 0) = 3 22N =) oy (5.29)
Y Y Y geA \/E Y

the Theta function of degree 0 and dimension q.

The Theta function is an example for a function that fulfills the property to be a

member of class CP*™ (), R?) N CP™ (e, A, R). We continue with the functional
equation.
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5.2. Lattice Point Summation Formulas

Theorem 5.2.4. The Theta function 99 (-; z,y; A) is for all values o € C with real part
R(o) > 0 holomorphic and fulfills the following functional equation

9Dy, s A)

a 1
exp(2miz - y)o " 29@ (—; —y, T A_1> forall z,y € RY.
o
(5.30)

RN

Starting with the functional equation, we can deduce the summation formula.
This is done by multiplying the functional equation of the Theta function with
a function F € C(B) and application of the Poisson summation formula (see
Theorem 5.2.2). We do not show the derivation of the formula in detail. For a

detailed proof, see [58]. The result is given in the next theorem.

Theorem 5.2.5. Assume that B is a reqular region in R? and F' € C(B). For all x € R?
and all T € R with 7 > 0, the series

> exp(-rh?) | F)@i) dy @0 (531)

heA—1 B

converges. Furthermore, we have for all x € R? the summation formula

> alg+a)F(g+a)=lim Y exp(—rnh?) / Fly)n(y) dy Bu(z).  (5.32)
g+zeB 7>0 peA—? B
geA
We want to simplify the theorem by setting + = 0 and separate the term belonging
to h = 0 and get the following.

Corollary 5.2.6. For an arbitrary lattice A in R?, a reqular region B C R and a function

F € C(B), we get

1
> a(g)F(g) = A /F(y) dy
gGE A B
geA
+ 1 lim Z exp(—7m2h?) / F(y)exp(—2mih - y) dy. (5.33)
I7all 728 4z B
heA~1

Now let us have a look at the second term on the right-hand side, that means the
second line of the equation above. In the limit, this term vanishes, if the mesh
size and also the area of the fundarilental cell tend to zero due to the Riemann

integrability of the function F' € C(B). With this knowledge, we can deduce the
following cubature formula

/B F(y) dy ~ | F'S" olg) Flg). (5.34)
gé?
geA
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5. Cubature on Lattice Points

There are some things left to say: This summation formula will only give good
results if the support of the integrand is large enough, that means covers enough
data points. Since our source scaling functions have a shrinking support for the
limit 7 — 0+, it is necessary to do a little modification of the summation formula
that we get good results also for the case with a small support. This is done
analogously to the modification in [21]. For further details see Section 9.1.
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6. Thermoporoelasticity

In this chapter, we want to give a short overview of the term thermoporoelasticity
and what is meant by this. We continue with the derivation of the governing
equations of thermoporoelasticity before we derive the fundamental solutions.
We are guided by [33].

6.1. Overview

We start with a short description of what is meant by poroelasticity. This term
describes the connection between a solid and the pore pressure for example in a
geothermal reservoir and its interaction on each other. That means for example
solid deformation can change the pore pressure and also a variation in the pore
pressure has an effect on the solid. In this case the temperature is assumed to
be constant. Thermoporoelasticity connects poroelasticity with thermal effects.
Since thermal effects play an important role in geothermal reservoirs, it is neces-
sary to have a look at poroelastic effects that are linked with thermal ones. The
temperature can change for example by deformation of the solid itself but also
by heat conduction, for example by injecting a colder fluid than extracted before.
Furthermore, deformation of the solid can cause temperature changes. For the
description of the thermoporoelastic behavior of such a setting, several material
constants for the solid and fluid are necessary. For an overview (listed in the or-
der as they appear in the derivation of the equations below) of the symbol and
the corresponding quantity, see Table 6.1. Please note that there are many more
material constants that we do not explain here in detail, because they can be ex-
pressed with the ones above. There exist relations between the thermoporoelastic
constants. An important one for the Biot-Willis constant « is

(-5, o

Another one is the connection to the well-known Lamé constants, where we have
2
=G, A:K—gG. (6.2)

For further relations between the constants and the other constants, that exist,
we refer to [33]. For the derivation of the partial differential equations in ther-
moporoelasticity, we need 9 of these constants, which can for example be the fol-
lowing {G, K, M, «, ag, Be, ma, &, k7 }. For the theory of poroelasticity later, only 4
constants are necessary, for example {G, K, o, B}.
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6. Thermoporoelasticity

Symbol Quantity

G shear modulus

K drained bulk modulus

g drained thermoelastic effective stress coefficient
K bulk modulus of the solid

Q Biot-Willis constant

K permeability coefficient

M Biot modulus

Be coefficient for volumetric thermal expansion

for variation in fluid content at constant frame volume

KT thermal conductivity
mq drained thermoelastic constitutive constant

B Skempton pore pressure coefficient

Ba drained coefficient of volumetric thermal expansion

for porous medium frame

Table 6.1.: Table with the main material constants for thermoporoelasticity.

6.2. Physical Background and Mathematical
Derivation of the Equations

In this section the main idea and the most important physical laws for the deriva-
tion of the partial differential equations for the thermally coupled model of ther-
moporoelasticity are shown. Later the simplification to the uncoupled model is
presented.

The first constitutive equations and a consistent theory for the three-dimensional
linear poroelasticity without thermal effects go back to Biot (see [15-17,20]) and
furthermore for thermoelasticity see [19].

In thermoporoelasticity, we have a look at a combination of both. In general,
there exist three models, the complete, the coupled and the uncoupled model.
The detailed derivation for the three models can be found in [33] and also for
the uncoupled model see [139]. We show here briefly the way to get the govern-
ing equations of the thermally coupled model and afterwards to the uncoupled
model. For that reason, the Navier equation, the fluid diffusion equation and the
thermal diffusion equation are used. Note that in the following the displacement
u, the pore pressure p and the temperature 7" are the unknown variables. It is
possible to express the equations with the set of unknown variables displacement,
pore pressure and temperature {u, p, 7'} in equations with the unknown variables
stress-strain-tensor, variation in fluid content and entropy {c;;,(, s}, which de-
pend on {u, p, T'}. In some cases it is easier to switch between the variables. It is
also possible to have combinations of these six as unknown variables, that means
one can choose, if u or 0;; for the displacement component, p or ¢ for the pressure
component and 7 or s for the temperature component.
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6.2. Physical Background and Mathematical Derivation of the Equations

Beginning with the variables u, p and T', the variables o;;, ( and s are defined in
the following way:

2G
Oij = (K — ?> 5@']'6 + QGQU — Oé(sij - adéiij (63)
p
= = —B.T 4
¢=ac+ -~ BT, (64)

Here e, is the infinitesimal or total (Cauchy) strain tensor which is given by

1
N Oz " 3:1%) T2 (0w, s + On,u;) (6.6)

and e the total volumetric strain

3 3
e= Z € = Z@iul =V -u. (6.7)
i=1 i=1

We see that e and ¢;; depend on the variable u. The following notation is used for
a better readability

0
There are three main physical laws that lead us to the partial diferential equations
and that we have a look at successively. We start with the force equilibrium equa-
tion.
Navier-type equation/Force equilibrium equation
For an isotropic material, the stress-strain relation in general can with the help of
the shear and drained bulk modulus be written as
2G

Oi5 = 2Geij -+ <K — ?) 51']‘6. (69)
Taking into account the pressure and the temperature, the stress-strain-temperature
relation is given by

2G
Oij = 2Geij + (K — ?) 5,']'6 — deéijT — CY(Sijp, (610)

where 0;; is the Cauchy stress tensor in the porous medium. The static equilib-
rium equation is written as

3
> 015 =0, (6.11)
j=1
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6. Thermoporoelasticity

since there are no body forces and inertia effect. Also the thermal effect has no
influence on the force equilibrium. Putting (6.10) in (6.11) and considering (6.6)
yields

(K — ?) ; 5Z~j8$je + 2G ; 8%.8”' — ; 5Z-j8xjp — Q4 ; 5Uaij =0

2G 1 3 3
= (K — ?) V(V . U) + 2G§ (; a:pjxjui + Zaxzzju]) - avP —aaVI'=0

Jj=1

@(K_§) V(Y ) + G (V2 + V(V ) — aVp— agVT =0

& (K + g) V(V-u)+ GV*u —aVp — agVT = 0, (6.12)

which is the first equation of thermoporoelasticity. We continue with the equation
for the main equation that concerns the behavior of the fluid.

Fluid diffusion equation

For the derivation of the fluid diffusion equation, first the fluid mass balance
equation

o¢ B

and Darcy’s law (which describes the flow of a fluid through a porous medium)
q=—kVp (6.14)

are combined to get

aC 2
> . 1

" kVp =20 (6.15)
In this case, ¢ is the specific flux and ( the variation in fluid content. The variable

¢ in the equation above can be eliminated with the help of (6.4) to obtain

Op 2 Oe orT
E — KMV P = —OéMa—f—ﬁeME (616)

This is a pore pressure diffusion equation and the second equation, which can
also be written as
Ip

5% kMV?p = —aM

AV -u) aT
S BM 6.17)

We continue with the last equation, which effects the thermal behavior.
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6.2. Physical Background and Mathematical Derivation of the Equations

Thermal diffusion equation

The thermal diffusion equation is based on the thermal energy balance and also
Fourier’s law. The linearized version of the thermal energy conservation equation
is

0s
T +V-a=0, (6.18)

where s is the entropy, q the so-called heat flux vector and 7 the reference abso-
lute temperature. Together with Fourier’s law (which describes the rate of heat
transfer in a material), the heat flux vector can be replaced by

q=—krVT (6.19)
and the following equation is obtained

— — —=V*Tr=0. (6.20)

By substituting s = aqe — Bep + mqT (see (6.5)), the diffusion equation for temper-
ature is obtained

Oe JOp oIl kr_,
- _p=x VT =0. 21
kTt

Dividing this equation by mg, setting T = KT and replacing e, the third gov-
erning equation of thermoporoelasticity is obtained:
or 2 IV u) B Op

bl 2 Eabaat iy 22
ot rr VT mq Ot +md8t (6.22)

The equations (6.12), (6.17) and (6.22) are the governing equations for the coupled
model in thermoporoelasticity. The unknown variables are v, p and T'. The set of
9 independent material constants consists of {G, K, M, o, aq, Be, md, K, k1}. Now
we have a look at the derivation of the uncoupled equations, which is done by
the following considerations. In the coupled equations there exists a poroelastic
and a thermoelastic coupling. Poroelastic coupling means that pore pressure can
generate solid deformation and solid deformation can cause pore pressure (called
the Skempton effect). This poroelastic coupling can be ignored (see [156]) if

aB < 1 (6.23)

holds true. Based on the materials given in [33], this condition is not satisfied and
therefore the poroelastic coupling cannot be ignored. The thermoelastic coupling
on the contrary can be disregarded if

2
KB o, (6.24)

mq
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6. Thermoporoelasticity

For the materials deep sea clay, rock salt, Berea sandstone and Westerly granite
given in [33] this coupling coefficient is 1.7 x 107¢, 4.6 x 1072, 2.7 x 10~° and
1.8 x 107. That means in most cases the thermoelastic coupling is weak and
can be ignored. This uncoupling of the thermoelastic effect is achieved by taking
mg — oo and the thermal diffusion equation (6.22) reduces to

oT
YT ke V2T = 0. (6.25)

In this case the constant my is not longer necessary and the independent mate-
rial constants reduce to 8. The governing equations for the uncoupled model in
thermoporoelasticity are

(K + %) V(V -u) + GV?u = aVp + agVT (6.26)
Jop 2 OV - u) or
T KMV p = —aM 5 + B M T (6.27)
oT
Frie ke V2T = 0. (6.28)

The temperature equation (6.28) is a homogeneous heat equation for 7" and can
be solved independently from the other two. The equation for the pore pressure
(6.27) is an inhomogeneous heat equation, where its right-hand side depends on u
and 7'. Equation (6.26) (for ) is an inhomogeneous Navier-type equation, which
is subjected on p and 7.

6.3. Fundamental Solutions

Fundamental solutions for the partial differential equations in porothermoelastic-
ity are derived in [33] for the coupled equations, where this subsection is guided
by it. The idea is to show the main concept and strategy how such fundamental
solutions can be constructed. We write down the fundamental solutions for the
unknown u, p and 7 in detail in contrast to [33], where not all components are
presented explicitly. For the determination of the fundamental solutions first sin-
gular forcing terms for displacement, pore pressure and temperature are needed.
In this case F; is the concentrated force, y the fluid source and =7 the heat source.
Another possible way to get fundamental solutions is the integral transform tech-
nique (see [140]).
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6.3. Fundamental Solutions

With these forces the equilibrium equations (6.11), the fluid mass balance (6.13)
and the thermal energy balance (6.18) can be rewritten as

Z i = —Fi, (6.29)
o
a—i + Z 4ii =7, (6.30)
i=1
Js i
Tog, + 2 i = V7 (6.31)

Note that we now switch here from the unknown variables {u,p, T} to {u,(, s}
in the equations derived before that means we now express {u,p, 7'} from the
equations above in terms of {u, (, s} and obtain (see [33] for a detailed derivation)

GZU’L]] + <Kb + ) Zujjl abMCz - m_usz - _Ea (632)

8( 9 g 2 3Mapk
ot VeV 3Kb+4GZ”+%

(6.33)

0s Sm ok
E—cbv s—McbﬁhV2<— d T ZF“-FVT

(6.34)

Some new obtained constants here are combinations of the well-known constants
from above and are introduced as an abbreviation here for the sake of readability.
The relations between the new and the old constants can be found very detailed
in [33]. In this setting (6.32) depends on all unknowns but (6.33) and (6.34) are
independent of v and uncoupled from the Navier equation that means can be
solved independently from (6.32). This is easier for the derivation of the fun-
damental solutions. We can get back to p and 7" with the help of the following
formulas (see [33] for details)

p=M (- Zd Be s) , (6.35)

u

T= L (s ane + mhil), (6.36)
m

u

which are obtained by rearrangement of (6.4) and (6.5).

6.3.1. Biot Decomposition

We have a look at the fundamental solutions in the two-dimensional case. For the
derivation of the fundamental solutions, a variable decomposition, which was
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6. Thermoporoelasticity

tirst suggested by Biot (see [18]) in poroelasticity, is applied to further decouple
the equations (6.32)-(6.34). This decomposition holds true for all different types
of forcing terms and is very important for us to calculate the u; in the different
cases

M u
wp = u? + ”chb,i + m”—pr (6.37)

Here ® and V are potentials fulfilling

¢ =V, (6.38)
s = V20, (6.39)

The main idea is to solve the equations first for the unknown {u, ¥, ®}. Then we
obtain u;, ¢ and s with the help of (6.37), (6.38) and (6.39). In the end we can use
(6.35) and (6.36) for the determination of p and T or use directly the following
equations for p and 7" in dependency on the defined potentials (obtained from
[33])

J - B M
= V20 + V2P 4
BhM 2 1 2 T
T = V<o + —V“U 41
where
1z
g1k = %r_; (6.42)

and the new constants depend on the well-known constants and are introduced
for a better readability. In the following, we will consider several scenarios of
source functions to obtain the components of the fundamental solution matrix as
it is done in [33]

6.3.2. Continuous Heat Source

We start with the heat source, that means ~; is represented as a point heat source
located at =, which corresponds to the following singular forcing distribution

yr=0H(t—71); v=F =0, (6.43)

46



6.3. Fundamental Solutions

In this case the corresponding fundamental solutions and quantities have the su-
perscript -™*¢ and the potentials ® and ¥ are given by (see [33])

B 1 M27,2 1 M2T2
(I)hsc — g Zt M (2,2 4)E 1
2 Tomacy (13 — pl) |2 P 4t S(er TADE 4t

1 i L9 pi5r?

—~texp - - AHE

2eXp( ) tgler HADE (T )]
(6.44)

\IJ}fsc _ _@(I)hsc’ (645)
Py

1 1 pir? 1 pir?
phse — texp | -2 — — (2 + WE < L
2 2nToence (1 — p3) [QM? P ( 4t ) 8yt (i AT

1 pzr L5 pir
¢ - . 4)E, (-
(6.46)

whse = gl gl (6.47)

The detailed derivation for ¢ and ¥ can be found in [33], where also a Laplace
transform is used. We obtain for p and 7T (see also [33])

2,.2 2,.2
hsc Bg T HaT
t) = — Ey|— ) —-E 6.48
P ArTomaSecence(pi — p3) [ 1( At ) 1< 4t )]’ (649
. 2 - M _ 2,.2
Ty ) = © i (ma ﬁgﬁg) Map, (W >
A ToceccomaSu (13 — p3) 4t

_ Ccﬂ%(md - Mﬁgﬁh) — My (M%Tz)
ArTocecomaSy(p2 — p2) '\ 4t )

(6.49)
We calculate the displacement, which obtained with the relations (see (6.37))

nbM T
S, + —V,, 6.50
c itnah (6:50)

W’ =0, (6.51)

0

resulting from the decomposition and the assumptions in (6.43). To get the funda-
mental solution u;, the derivative with respect to z; of E;(-) has to be determined.
This is (see the properties of the exponential integral in (2.21) and (2.20))

0 g (1 _ g (Hr7 | pe
or; "\ 4t AT ot

_ —pir; At exp Wi
2t pir? 4t

—2; wir?
=2 &P (— ) (6.52)
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6. Thermoporoelasticity

For a better readability, we summarize the fractions of constants in front of ¢ and
U in two new constants given by

Be
Ky = , 6.53
L 2 Tomacy (12 — 1) (6.53)

1
Ky = (6.54)

2nTochee(ui — p3)°

and first calculate the derivative of the term of ®™ equipped with p; and use
(6.52)

9 |1 pir? Loy pir?
Stexp () - 2 aE, (T
o, {2 eXp( )~ DB g
2

Lo i pir?
b g+ a0 % exp (1
2 2.2 2,.2 2,.2
il Wir 1 Wir 1 Wi 4t
= _Tl exp <_le_t) — in,u%El let ) + le exp (— it ) (,ul + =
2 2.2 2,.2
X by uir z;t uir
=— E — : 6.55
4 1< At >+ o p< At ) (6.55)

The term provided with 1, and the derivative of U5 can be derived in analogy
due to the similarity of both terms. We get for u!*

hsc (6. 50) nbM hsc T hsc
. —— @ —
i ¢ % TG
nbM a hsc Tl a hsc
= —d —
G Ox; muG ox;

645),647) MM O N O h h
AN, b _@ sC o @ sSC \I; SC
G Ox; + m,G Ox; ﬂg 2

(6.55) <77bM ERRLZUN >K1 {_ i1} E, (Nl

G BemaG
=+ xllu2 El (lu2

u x; 2y2 xit
[ (). (
m 24

- )] . (6.56)
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6.3. Fundamental Solutions

6.3.3. Continuous Fluid Source

For the continuous fluid source the following assumptions have to be made in
analogy to the continuous heat source before

v =0,H(t—7); v = Fi =0. (6.57)

Due to the symmetry between ¢ and s in (6.33) and (6.34), we obtain (see [33])

M 1 2,.2 1 2,.2
pre = Mbn {—texp (—“lr ) — ~(uPr? + 4)E, (—’W )

2mee(pud — pd) |2 4t 8 4t
1 par Lo 9 par
- = - = 4)E .
2texp( n + 8(u27’ + 46)E;4 n ,  (6.58)
1
PP = ——— P 6.59

1 1 pir? 1 pir?
(I)fsc — ¢ M Y 4\E 1
* 0 2mepe(pi — 3) [QM? eXp( at > A NT

1 par Lo par
— —t - — D
243 exp( w )t 83 (hizr™ + 4k 4t ’

(6.60)
O = O + B (6.61)
M By, 11272 J2r?
Tfsc —__ - 2 2 E 1 _E 2 6.62
4mSpepce (i = 112) { ! ( 4t Y\ ’ (6.62)
fsc _ CbH%(md - Mﬁgﬁh) - de /,L%TQ
P AmepcemaSe(p2 — p2) -\ 4t
_ cottalma = MBihh) —mapy (s (6.63)
2,2 ) .
dmepcemaSc(pi — 1) 4t

where we can also see the symmetry between ¢ and s compared to (6.48), (6.49)
and (6.44)-(6.47). Please note that these fundamental solutions only differ from
those corresponding to the continuous heat source by substituting the following:
D < VU, ¢p <+ ce, By < Br, Mg ﬁ, Sy ++ S. and omitting 7,. The case hsc deals
with the heat source and needs therefore a reference temperature. We define the
following constants

_ . MB
2me(pi — pi3)

1
K4 =
2menco(pf — 13)

(6.65)
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6. Thermoporoelasticity

and determine the displacement vector with the help of the considerations in the
case of the continuous heat source

3 M 3 u o
ube = gt o Th g

! G m,G
nbM 8 fsc Th a fsc
= C ey M Ty
G 0x; + myG 0z,

= () o [0 (1) e ()
g () oo ()]
A () s e ()
+E (%) - Tié exp (—%)} . (6.66)

The following interrelations are obtained

K
\I]fsc _ fi’q)hsc7 (667)
1 1 K
(I)fsc - \ijSC - . _3(1)hSC 6.68
1 M, Mp, K, 7 ( )
K
q)gsc _ F;L\Ilgsc‘ (669)

With this, the fundamental solutions with superscript -*¢ can be expressed with
those with -1sc.,

6.3.4. Continuous Fluid and Heat Dipole

We obtain the dipole solution (a solution of source and sink pushed together) by
differentiating the source solution with a negative sign, that means

(I)?pc _ —(I)E-SC, \IJ?PC — _\IJESC, (670)
o= —ofc = gt (6.71)

This is necessary for the last case of the continuous force.

6.3.5. Continuous Force

The last case to consider is the continuous force given by the last combination

Fiy, = 00 H(t — 7);7 =y = 0. (6.72)
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6.3. Fundamental Solutions

In this case the following fundamental solutions terms can in a first step be affili-
ated to some known from the continuous heat source (hsc) and continuous fluid
source (fsc) and in a second step the terms of - attributed to terms in " (see
(6.67),(6.68),(6.69)). Note that in the derivation of these fundamental solutions
many derivatives and Laplace operators have to be applied and therefore, we try
to reduce the terms to a minimum of different functions (here we reduce to ®"
and W5). It holds true:

e = _Ubg/[ K q)ipc _ Wl;ng (I)zpc
(6.70),(6.71) MM K NuMaKT

N G my G
668 MK Ky oy (nbMﬁ . ( ~1 ) K nudeT> ohse
G K, % G MpB,) Ki m.G ok

fsc hsc
Q)+ D)

sc b K3 TuMmakT hsc
_ . Ph L A o, 6.73
G K, ** ( GB K1 m,G ) * (679
Fe MME e TMART o hpe
v, =~ U — TG P
6.70),(6.71) MbME _roc  MMART  1ge
fal} 7} v
G kT m,G "
668) MK Ky ghse | TaMakiT
G K " muG
(6.45),(6.47) (UbM k Kz nymakT md) Pphse ThaMmakT
- 'K, m.G 8. et myG

hsc
\117 3

. (6.74)

For a better readability for the calculation of the components p™¢, T%¢ and u*¢, we
define again constants

mk K3  numgkT mMk Ky

Krei=——1—"—. = Kg = C— 7

b GB K1 myG 0 G Ky (6.75)
mMr Kz nymakT mq NuMgkT
K = f— - —— K = 7
and get

¢ = K50 + Ko Wb, (6.77)
U = K;0%¢ + KgUhs. (6.78)
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6. Thermoporoelasticity

It is obtained (see (6.55))
(2r " i
1" A2 M
4t ) + rz &P ( At )
; )

s (1) [
12r
M2E1< o7 )
vxlplzlsc KQ —lEl ,U + exp
T2 4 At 7’2,ul 4t
r

Lo (s t pr?
“E - - .
T3 1( at ) 2 P\

With (which is a fundamental solution in elasticity and given by [33])

MH—

1 1 1z
0 itk
Uik 167G(1 — ) 7 [ 2 ( )ik
we obtain the fundamental solution by
Fec 0 oM T+ Fec
Fe _ 0 ; v;c.
Uk, Uk, G ki + muG ki

(6.79)

(6.80)

(6.81)

(6.82)

To obtain p;, and T}, we use (6.40), (6.41) and (6.42). For the determination of the
complete fundamental solutions, we have to apply the differential operator and
the Laplacian on ®;° and ¥}° respectively on (6.79) and (6.80). First we consider
the derivative with respect to z; and z, for the following part with y; of (6.79).

The other cases are obtained due to symmetry.

0 —u?flel ity l’_lt exp pr?
or, | 4 At At
2 2,.2
H1 H1 iz 2x AT
- g, Rt —
1 (4t)+ 4 rzeXp( 4t>
r? Tt 22 2
M1 +_ exp M AT
At At 2t
2 2
K1 T MY T
=_Ng _
1 1(4t)+2r26Xp( 475)

2,..2 2,.2 2,..2
BV WY G
4t 4¢

272

:_/ﬁE pir’ +t(x%—x?) exp it
4P\ 4t rd 4t )
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6.3. Fundamental Solutions

O [—pfa:, (pir*\ | it pir?
E b _
0 { i o\ ) TP T
= 'u%l‘l . @exp —M%TQ — 2$1$2t exp —M%TQ
4 r? 4t r 4t

nt (Y (e
* 72 exp( 4t 2t

i@ ( pir? 21129t ( u%ﬂ) U317y < u%ﬂ)
= exp | — exp | — — exp | —

2r2 4t rt 4t 2r2 4t
211 x5t pir?
= a oXP (— ) (6.84)

We get

2 2,.2 t 2 .2 2,.2
(6.79)1’1 — Kl |:—&E1 (lulr ) + (xQ 'Tl) eXp (_MH‘ )

4 4t rd 4t
2 2,.2 2 2 2,.2
Mo Hir t(zy — 1) HaT
Fag . . 6.85
i 1(4t) i eXp( A )| (6:85)
r 2 t 2,.2 2 t 2,.2
(6.79),, = K1 | -2 exp (_Mi: >+ D12 oxp [ —H2E )} (6.86)
’ T T

2 t 2,.2 2 t 2,.2
6.79),, = K1 | — =220 oxp (—W )+ P12 xp _Mjlt )} (6.87)
’ T

- 2 2.9 " 2 2 9 9
(6.79),, = Ky |—1E, <u1r ) et (_w )

2 2,.2 2 2 2,.2
Ha M\ t(xy — x3) _ HaT
+ 1 Eq ( ym ) i exp( ym )] ) (6.88)

We obtain in general

2 2,.2 2¢ ‘ 9 9
(679)“c =K [_ﬂEl (H1T ) S+ t(r ik QIZZEk) exp (_,ulr )

4 4t 4 4t
2 2,.2 2 2,.2
Ha HaT o t(r 0, — 2x;7) T
+ 4 E1 ( A ) 5zk A exp A . (689)

Please note that we only have here the term of (6.79) with the j;-factor in front
because the other one is the same with different signs.
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6. Thermoporoelasticity

Furthermore, we have some of the second derivatives required for the Laplacian.
We get

2 2,.2 3 2 2,.2

1y 27 uir 227 — 6x175 T
6.79), = K; |—— — tw —— —
(679,11 = K [4 2 eXp< At )+ o P\ Ty

P Sl N O U W G
4 4t 2t
2 2,.2 3 2 2,.2
_ H1T1 AT 2wy — 61115 AT
=K [ 52 OXP (— m > +1t G exp (— ym >

2,.2 2 _ .2 2
— exp (_Nﬂ" > (23 xl)x1p“1:|

4t 2r4
2 2, 2 2,2 3 2 2,2
_ piw (21 + x3) T 2x7 — 6125 T
= K, [ " exp m +1 ]; exp m
exp i\ (23 = af)apd
4t 2r4
_ g, [MAn@e 420 —ahday)
2r4 4t
223 — 61123 wir?
+ tr—ﬁ exp | — =~
2 2, .2 2.2 3 2 2.2
_ 171 (321 + x3) AT 2ry — 62175 AT
=K, [ i exp |~ +tTexp "
(6.90)
and
2xitrt — 2ot - 212 - 214 pir?
(679, = K [— - exp (=7
_ 2x1x9t exp _/@7"2 . _M%Ig
r4 4t 2t
[ 2xy7? — 8wy23 pir? piw s pir?
=K | e =T T e
[ 223 + 22122 — 8y 22 pir? pizyrs pir?
=K, _—t G exp (== + el T
[ 227 — 6aya) pir?\ | pimas pir?
=K, __tT exp | == + e TR (6.91)

The corresponding second derivatives of the second component are derived due
to the symmetry. Furthermore, second derivatives of (6.80) are the same as (6.79)
divided by the factor 7 for the first term and divided by p3 for the second term.
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6.3. Fundamental Solutions

We get for the Laplacian for the first component and the term with yi

V2(6.79)"* = (6.90) + (6.91)

B o T1(32% + 23 + 13) p3r?
= Ky " exp | —
21 (322 + 223 pir?
= Kl,ufllr—42) exp (— éllt . (6.92)

All in all, we obtain for the thermoporoelastic components u, p and 7" with the
help of (6.92) and together with (6.40), (6.41), (6.42), (6.77) and (6.78)

M
I 91k

1
ng: §V2®£C+ ﬁg Vqugc‘f—

¢ mdSc

1
= o V7 (KGO0 + KeWa}) + mi V7 (K700 + KaWay)
mM 1
G 27 r?
1 1 M1
c dPc c dPc
1 2 2,.2 2 2,.2
— <§K5 + migS K7) lek(xz + 27‘2) {% exp (_Méllt ) — %exp (_uit )]
1 Be 2 oy | 1 H%TQ 1 M%TQ
+ (EKG + mdScKS) Koxg(zy + 2r%) T—46Xp Tel e ﬁexp T
7’/bM 11
— 9
+ZL’k G o 7“2 (6 3)
and
re _ M oo pe 1 oy pe T
/8 M SC SC 1 SC SC
_ g—bVQ (K5®'s¢ + KoUb%) + S—bv2 (K705 + KsWi)
T 1 T
+ myG 2w 12
M 1 M 1 . 1z
- <6g K5 + S—K7) VQ(I)T}CSC + (ﬁg Ko + S—Ks) V2\I/}21f,§ + W?G%T_];
b b b b u
BuM 1 2 | oo |1 mr*\ s psr?
= < Sb K5+S—bK7 K1$k<$k+27" ) ﬁexp —T —ﬁexp _4_t
B M 1 1 pir? 1 pir?
+ ( S Kg + S—ng Koxy(x} + 2r%) Fexp — éllt — ﬁexp — it
e 1 1
+ xg muG o 7"2' (694)
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6. Thermoporoelasticity

Furthermore, we obtain with (6.82), (6.81), (6.77), (6.78) and (6.89)

c ,r]bM c T c
1 1 rx;xk
- = 3 — 4m)0u |
167G(1 —w,) 1 [ 72 * o)
T]bM hsc hsc T hsc hsc
+ K5 (95°) , + Ks (V35%) ;) + K7 (), + Ks (955) |
G ) K RAN'S muG K )
1 1 rx;xk
- - 3 4,6, }
167G(1 —w,) 1 [ 72 * o)

77 M 7711 sc 77 M 7711 sc
+ (—bG Ks + mqu) (@5°), + ( bG Ko + muGKg) (wh)

B 1 1 [x,xk
S 16nG(1— )7 L r2

M u 2 22 (0% — 25
+(nb Ks+ — K7)K1 [—ﬂEl (“1r>6i 4 Wur” — 2z,z)

+ (3 - 41/b)5ik}

G myG 4 m 5
X exp (—%) + %%El (%:2) 5o — t(r25ik7j42xixk) exp (—MZQ)]
+ (%GM K + WZIUG Kg) Ky {—iEl (%’2) 5 1 t(éikrizl—u;xixk)
X exp (_Mz:2> + %LEl (Mif) 5 t<r25ﬂ;,4_u%2xixk) exp (—MZQ)} |
(6.95)

All in all, the fundamental solutions can be written as a fundamental solution
tensor given by

Fc Fc Fc Fc
uyy  uyy pic 14 uFe pre  TFe
ik k k
ch ch ch TFc e T ; ;
_ 21 22 2 2 _ SC sc sc
G('I’ t) - ufsc ufsc pfsc Tfsc - (ukz ) p T : (696)
ﬁ 13 h h ( uhsc) T phsc Thsc
ulsc U2SC p sc  Thsc A

56



7. Non-dimensionalization and
reduction to poroelasticity

In this section, the dimensionless form of the governing equations of thermo-
poroelasticity are derived. Then, with these equations, we go over to the quasi-
static equations of poroelasticity, where we also depict the appropriate funda-
mental solutions. We need these fundamental solutions afterwards for the con-
struction of the scaling functions and wavelets for the decorrelation process.

7.1. Equations of Thermoporoelasticity in
Dimensionless Form

The governing equations from the section above for the coupled case are given

by

G
<K + §> V(V -u) + GV?*u — aVp — agVT =0, (7.1)
Jp 9 IV -u) or
9 KMV p + oM 5 Be M 5 0, (7.2)
oT 5 agd(V-u) B, Op
5 keV=T + T T 0. (7.3)

For the non-dimensionalization we define u( and ¢, as a characteristic length- and
timescale and define

ot
F=—, f=—, (7.4)
Zo to
i== p=2 T=7.8, (7.5)
o K

Please note that the entities marked with a * are dimensionless and xg, x and S,
are necessary constants to non-dimensionalize u, p and 7. We start by inserting
(7.4) and (7.5) in (7.1) and get

GOV + (K + g) G (Ve -it) — al Vip - g Vil = 0 ‘ (: ﬂ)
z3 3 ) xt T Beo T
K+¢ _
& Cv2a 4 (T?ij (Vs - ii) — aVp — ;‘ZWT —0. (76
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7. Non-dimensionalization and reduction to poroelasticity

Following the same way for (7.2) and (7.3) and choosing ¢, = %, we obtain

%% - HMwﬂgvfp + @M%W . ﬁeM%—?ﬁelto ~0 ‘ : tMO
v @%%—vgmaW—%—?:o, (7.7)

i%—wivgf+%%%— EZ-%% ~0 ’ o3,
@%?—:—Z@T#O‘;fea(v@?m —fij%:@. (7.8)

In the following, we omit the - for the sake of readability. From here on we always
use the dimensionless quantities. Furthermore, we replace G and K by the more
known Lamé constants A and y by the following rule: G = pand K = A\ + % L.
Furthermore, we can write 1/M =: ¢, as a specific storage coefficient (see [10]).
We obtain the equations for thermoporoelasticity in dimensionless form:

)\—l—,u (6%}

Viu+—-V, (V- -u) —aVp— -V, T =0 (7.9)
H ﬁe,u
dp 5 0(Vy-u) oI
Cofi, Vip+« ey T 0 (7.10)
T  Kr_, agfe 0 (Vy-u)  B2uop
- T — ¢ - —0. 711
at  ku Vol mq ot mg Ot 0 ( )

7.2. Governing Equations in Poroelasticity

Now we want to reduce the partial differential equations in thermoporoelasticity
in dimensionless form to the case of poroelasticity. For this, we have to consider
the equations (7.9)-(7.11) with a constant temperature. That means specifically
that for a constant temperature 7', the gradient V, T, the Laplacian V2T and the
time derivative 07'/0t are zero and can be omitted. We obtain the dimensionless
equations in poroelasticity by

A
—%vx(m 1) — Viu+aVyp =0, (7.12)

Oi(copp + (V- u)) — Vip = 0. (7.13)
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7.3. Fundamental Solutions in Poroelasticity

For the third equation (7.11), the following is left after setting the gradient and
time derivative of 7" to zero
ag O(V-u)  Bepdp

T i (7.14)

This equation is trivially true, because in the thermal uncoupled case, we men-
tioned that for this case the material constant m, goes to infinity. With this as-
sumption the terms on the left-hand side go to zero. That means for poroelasticity,
the equations (7.12) and (7.13) are the governing equations, called the quasistatic
equations of poroelasticity (briefly QEP). In Figure 7.1, the QEP are compared
with the known differential equations from Section 3.2 (see also [72]), where we
can see several similarities.

Stokes equations Heat equation
—uViu+vVp=0 0p—Vip=0
V-u=0

AN i

Quasistatic equations of poroelasticity

A+
- T“V(V-u)—V2u+an=0

d¢(coup + aV -u) — V2p =0

| |

Cauchy-Navier equation

uV2u+ A+ wV(V-u) =0

Figure 7.1.: Connection between the QEP and other known differential equations.

7.3. Fundamental Solutions in Poroelasticity

The QEP in dimensionless form are given by (see the considerations from above
and [10])

—“T“vgc(vw W)~ Viu+aVap = f, (7.15)

i (copp + (Vs -w)) — Vap = h, (7.16)
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7. Non-dimensionalization and reduction to poroelasticity

where we first have a look at the QEP in the inhomogeneous case following the
way of [10]. Here f is the volume force and h results from the mass transport.
With the help of the QEP, we define the poroelastic differential operator in the
following way

— MUy (V- u) — Viu + onxp) 717)

pe _
L¥(u, p) ( E?t(co,up +a(V,-u)) —Vip

which we will use later for the construction of the source scaling functions. Please
note that we only show here the basic idea of the derivation of the fundamental
solutions again. A detailed proof for the dimensionless case can be found in [10]
and cf. [34] for the non-dimensionless case. For the derivation of the fundamental
solutions it is convenient to rearrange the QEP and express them in terms of the
displacement v and the volumetric dimensionless fluid content change ¢, which
depends on v and p, and is given by

¢ = copup + a(V, - u). (7.18)

This is similar to the derivation of the fundamental solutions in thermoporoelas-
ticity. This trick has the advantage that the second equation in ¢ is now uncoupled
from v and leads us to the following

2
(A +p) +a Vo(Ve-u) — Viu=f— &vxc, (7.19)
Copt Copl
2
0,¢ — AR e « V. f4+h  (7.20)

cop( A+ 2p) + pa? "7 co(A 4 2p) + ?

That means we can solve (7.19) and (7.20) for u and (. In a next step, we can
determine p from v and ¢ by using the connection in (7.18). For the sake of read-
ability there are the following abbreviations for some material constants which
result from the determination of the fundamental solutions (see [10])

Q A4 2p

= Cy = 7.21

co(A+ 2u) + a?’ 27 cop(N + 2p) + pa?’ 721)
co(A + 3p) + o? co(A +p) +

Cy = . Oy = . 7.22

T T PRy ) M e p e T 722

Cli

Remark 7.3.1. Please note that Cy,Cy, Cs, Cy > 0 holds true for the constants because
they consist of positive material constants. This is helpful for us later for the theoretical
part.

Remark 7.3.2. For the graphic representation of the fundamental solutions and their reg-
ularized versions and wavelets, we use material constants from Berea sandstone (which
are also used in [10]) which are given by

A=4x10°, p=6x10°, «a=0.867, cou=0.461. (7.23)
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7.3. Fundamental Solutions in Poroelasticity

With the help of a so-called Biot decomposition, the fundamental solutions can
be calculated (see [10, 33]). They are on the plane R? given by

pSi(z,t) = LeXp <— HIHQ> , (7.24)
47t 405t
WS (a,t) = O %&”2 (1 —exp (—%)) , (7.25)
PP, t) = Clm& . 0102% (4Ci‘;t)2 exp (-%) , (7.26)
uy(z,t) = 03% (—51%- In(||z||) + @%) 5
A 2
g (- o) (=0 (i)
—1—46%2txixk exp (—%)} : (7.27)

In the following, we consider the QEP from (7.12) and (7.13) with vanishing right-
hand sides, that means f = 0, h = 0. Please note that we first go back to the
equations with unknown u and ¢ again for the homogeneous QEP for the deter-
mination of the fundamental solutions. With this assumption, (7.19) and (7.20) in
v and ¢ simplify to

)\ 2
AW g v — e (7.28)
Cott Cott

;¢ — CyV2¢ = 0. (7.29)

We have the homogeneous heat equation (7.29) for ( and an inhomogeneous
Cauchy-Navier equation (7.28) for u. With the help of a Biot decomposition again,
we get the alternative fundamental solution tensor G*'* (for now in u and () for
(7.28) and (7.29) by

CN
Galt(l’»t) = (Zsl(ggj){it GHeat()(x’t)) . (7.30)

That means the fundamental solutions in G** belonging to u and ¢ are an interme-
diate step to our fundamental solution tensor for (7.12) and (7.13) with f = h = 0.
Getting back to the origin variables u and p means calculating then p from ¢ and
u (see (7.18) and [10]) and our fundamental solution tensor G in v and p reads

_ (u(@)0r ()0
G(z,t) = (uSi(Q:,t) pSi(x,t)) (7.31)
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7. Non-dimensionalization and reduction to poroelasticity

with the following entries

poi(x,t) = 1 exp (—M) , (7.32)
4t 4C5t

u(x,t) = Clm (1 — exp (—ﬂ?ﬁ)) , (7.33)

() = Clm’ (7.34)

o) = Cug (~dutn(lel) + G ). (7.35)

That means our differential operator (7.17) applied to the fundamental solution
tensor yields the following

LP*(G) = 16,6, (7.36)

where [ is the identity matrix. Please note here that the application of the differ-
ential operator is applied row-wise like in the case of the divergence (see (2.13)).
These fundamental solutions are on the one hand necessary for the method of
fundamental solutions (briefly MFS, for more information about the MFS in poroe-
lasticity see [10]) to approximate given data for v and p and on the other hand for
the decorrelation of u and p at which we are aiming. Please note the similarity
of some of them by comparison with the fundamental solutions for more known
partial differential equations given in Section 3.3.
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Part II1.

Multiscale Decorrelation for
Poroelasticity
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8. Regularized Fundamental
Solutions

This chapter starts with a short overview of the concept of decorrelation for the
Laplace case and the construction of the relevant source scaling functions appro-
priate for the multiscale mollifier approach. The idea and the realization for this
are given in [61] with more details. Furthermore, in [71] the method was worked
out theoretically for gravimetry and the numerical realization was done in [21]
and [26]. For more information see the mentioned literature in the introduction.
With this knowledge, we go over to the construction of the appropriate functions
in poroelasticity and present some theoretical results.

8.1. Laplace and Generalization

We now start with the Laplace equation and explain the approach of the mol-
lifier fundamental solution and the corresponding potential and source scaling
functions. The development of these two types of scaling functions is physically
motivated and takes the Newton integral equation as a starting point. We have a
body B and its gravitational potential V in its exterior R? \ B is given by

Viz) =~ / G(A: |z - yl)oly) dy, = € B3\ B. 8.1)

Here v is the gravitational constant and p is the density function. Since the de-
scription here is very short, please see for example [21, 25,61] for further details
to this approach. For more general information on the Newton integral equa-
tion, we refer for example to [61,63] and the references therein. Please note that
we have a look at the 3-dimensional case whereas our fundamental solutions for
poroelasticity below are 2-dimensional in the spatial part. The fundamental so-
lution of the Laplace equation is in the 3-dimensional case given by (here we
replaced ||z|| by r)
G(A; = 8.2

( ) T) - E ( . )
In the next step, we want to avoid the singularity of the fundamental solution in
r = 0 by applying a Taylor expansion for r in the zero point. This is also called a
regularization or a mollification that means using these two phrases implies the
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8. Regularized Fundamental Solutions

same procedure. First we set r = \/u and get for the expansion up to the linear
term

11 1
Vu o Vo 248

Replacing u by ||z||? and ug by 72 leads us to

(u—ug) + O ((u—1up)®) asu— up. (8.3)

Ll L —). (8.4)

llz] 7 213

With this, we define our regularized fundamental solution as a mollification of G
piecewise in the following way

1

G (As|fz) = § D
—L (=5l =), =l <

T 273

]l = 7,

(8.5)

We use for ||z|| > 7 the fundamental solution itself and for ||z|| < 7 the modified
variety of it. This function G is also called the "potential scaling function". For
the Laplace case in Figure 8.1 the fundamental solution G(A;r) and G, (A;||z]|)
for selected values of 7 are shown. We see that the difference between the funda-

0
01 ~—
021 \\/
0.3f ‘
{ /
i I
i ]
04r | !
1 1
1 1
1 1
05 1 il 1
-2 -1 0 1 2

Figure 8.1.: The Laplace fundamental solution G(A;r) (dashed black) and its po-
tential scaling function G-(A; ||z||) for 7 = 1 (red), 7 = 0.5 (blue) and
7 = 0.25 (green).

mental solution and the potential scaling function gets smaller with decreasing
parameter 7.

Remark 8.1.1. Please note that in [21,25,61] the Taylor mollification was done up to
order n but this is not necessary here because we only want to show the main idea of the
mollification.
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8.1. Laplace and Generalization

In a next step, we apply the Laplace operator on G,. The result is the so-called
"source scaling function" @, and is given by

—AG = A~ (2
v =G =a (1 (L e - )

16
4 273
3

43

(8.6)

for ||z|| < 7. In the case ||z|| > 7, the application of the Laplace operator is the
application on the fundamental solution itself and results in zero, because outside
of the zero point, the fundamental solution is harmonic. Therefore the source
scaling function has compact support. The source scaling function for selected
parameters of 7 can be seen in Figure 8.2. Due to the construction, we have a

15F

10t

Figure 8.2.: The source scaling function @ (||z||) in the Laplace case for 7 = 1 (red),
7 = 0.5 (blue) and 7 = 0.25 (green).

shrinking support of the source scaling function for a decreasing parameter 7.
With the potential and source scaling functions, we can define the "7-Newton
potential functions" by

Vi(z) = / G (A 1z — yl)o(y) dy ®.7)

and the "7-Newton contrast functions" given by

pr(z) = / &, (|l — yll)ply) dy. (8.8)
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8. Regularized Fundamental Solutions

The second convolution integral will later be the interesting one for us, because
our aim in poroelasticity is to do a decorrelation of given data. Now we go over
to a more general statement, which will be helpful for us later. We pursue the fol-
lowing ansatz for a more arbitrary function, where we can show that the mollifi-
cation is in CV). First we start with a radially symmetric function. We want to reg-
ularize the radially symmetric function f(||z||) with the help of a one-dimensional
Taylor expansion up to the first order conform to the same principle as for the
Laplace case. Please note our designations: We name the Taylor modified func-
tion itself with the index reg (for example f..,) whereas the index 7 denotes the
composite function, that means the fundamental solution itself for ||z| > 7 and
the Taylor modified variety for ||z|| < 7 (for example f;). We have a look at a
radially symmetric function in general and obtain by a Taylor expansion in u for

f(u) for [lz] <7

) = 5(/) + 50V

(u— up). (8.9)

U=uqn
The substitutions u = ||z||* and vy = 72 yield

Freg(u) = f(7) + (a%f(ﬁ)) -

— 0+ (Fv- o)

= £+ Pl = 7). (5.10)

(l[* = 7%)

(l[l* = 72)

u=r2

We call the composite function f; the Taylor mollification of f, that means

Ry FACID =] > 7,
fr(x) {f<7>+f’<f)%(\lx|!2—72), 2l < - (8.11)

We want to show the C(V) property of our function f,.

Lemma 8.1.2. The Taylor mollification for the radially symmetric continuously differen-
tiable function f(||x||) given by

flzl), 2] >,
(7)) = 8.12
(@) {ﬂﬂ+fv&ﬂMP—ﬂ» Jall < . (812

fulfills the property CV.
Proof. 1t is easy to see that f, is continuous at the transition point for ||z| = 7

if we insert this. We now want to show the same property for the gradient. We
consider the gradient of f and f,., and compare them for ||z| = 7:
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8.2. Mollification of the Fundamental Solution Tensor

T

Vo f(lzll) = f(ll) - Tl (8.13)
N
va:freg(x) = f (T); (814)
We can now see that they are equal if we insert 7 = ||z|| in V,, fieg. O

With this we go over to the more general function F', which is not radially sym-
metric any more. We write ' in the following way F'(z) = f(||z||)g(z1)h(z2) and
only regularize the f-function. With the help of the regularization from above,
we get
Foo) o { F DR, el > 7 .15
Freg([[2])g(z1)h(z2),  [l2]| < 7.

We can show here again the CV)- property in the following theorem.

Theorem 8.1.3. Let f, g and h be continuously differentiable functions. The requlariza-
tion for the function F(x) = f(||z|])g(x1)h(x2) given by
Py o { T DghGe), el >, .16
Freg(lzlDg (1) h(a2), [l <7,

is in CW,

Proof. The continuously differentiability of F’. is given by the lemma above, be-
cause here we have a product of C-functions. O

After this short introduction of the approach of mollified fundamental solutions,
we go over to the QEP. Our aim is to apply the technique above to the fundamen-
tal solutions of the QEP and construct potential and source scaling functions in
an analogous way. In the case of poroelasticity, we have a fundamental solution
tensor and additionally some time dependent functions. Our main aim here is
the decomposition of poroelastic data into their components via the application
of low-pass and band-pass filter.

8.2. Mollification of the Fundamental Solution Tensor

In this section, we want to adopt the approach from the Laplace equation to our
application poroelasticity and its appropriate fundamental solutions. For the de-
velopment process of the physically relevant functions, we have a look at Fig-
ure 8.3 (scheme adopted from [21]) which is more detailed with the intermediate
steps than the introduction for the Laplace case. In this overview, we can see
the construction of the potential and source scaling functions resulting from the
mollification of the fundamental solution (tensor) on the left-hand-side. On the
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8. Regularized Fundamental Solutions

Mollification
c®

potential scaling function potential wavelet

subtraction of —
! A G application of]
consecutive — Wav,t; Lpe
scaling functions

source wavelet

application of]
Lre

!

& subtraction of
Tj consecutive

— _|scaling functions
source scaling function

normed source wavelet

Figure 8.3.: Flowchart showing the process of obtaining the relevant scaling func-
tions and wavelets in the case of poroelasticity. The left-hand side
indicates the design of the scaling functions and the right-hand side
the construction of the corresponding wavelets.

right-hand side, the resulting potential and normed source wavelets are shown.
Depending on the application, one uses the potential scaling function in combi-
nation with the potential wavelet or the source scaling functions together with
the normed source wavelets for the decorrelation. In our case, the latter combi-
nation is interesting for the multiscale decomposition of poroelastic data with the
background that we want to uncover structures in the data that cannot be seen
in the whole picture. For our decorrelation, we need the fundamental solutions,
more precisely the fundamental solution tensor, from Section 7.3 and especially
since the fundamental solutions have singularities, we want to mollify them (cf.
for example [21] for Laplace’s, Helmholtz" and d’Alembert’s equation, [25] for
Laplace’s equation and [22] for the Cauchy-Navier equation and the references
therein). In the following, we will have a look at each fundamental solution sep-
arately because they are too different in their form to consider them together. We
use the same notation as before and name the Taylor modified function itself with
the index reg (for example p?freg) and the index 7 denotes the composite function,
that means the fundamental solution itself for ||z|| > 7 and the Taylor modified
variety for ||z| < 7 (for example pf*,, see also (8.5) and Lemma 8.1.2 for the no-
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8.2. Mollification of the Fundamental Solution Tensor

tation). We follow the same principle as in the Laplace case and start with the
fundamental solution p™'.

8.2.1. p°t

The fundamental solution
X
lle]

poi(r) =C (8.17)

has a singularity for z = (0, 0) (see also Figure 8.4), because the norm ||z||? appears
in the denominator.

1 -
15
05 10
5
<Y 0 0
-5
0.5 0
15
1
1 05 0 05 1

Figure 8.4.: The first component of the fundamental solution p>* with its singular-
ity in the zero point.

For the regularization, we write p>' as a gradient in the following way
x 1
—— =V, (In (||=||*)) . (8.18)

Then we do a Taylor mollification of In (||z||*) and afterwards apply the gradient
to it. Please note that we want to regularize p*' up to the linear Taylor term,
that means we have to regularize the In-function above up to the quadratic term
because of the application of the gradient then. With a Taylor expansion in u (we
write || z||* = u) we get

1 1 1 1
§1nu =35 <lnu0 + u—o(u —up) — 2—u(2)(u - u0)2> + O ((u—u)?)
1 u w? w1
=— |1 ——1l-—+—=-= — up)?
2<nu0+uo 2u(2)+u0 2)+O((u up)?)
1 2u 3 wu?
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8. Regularized Fundamental Solutions

Replacing uo by 72 and u by r? respectively ||z||?, we obtain for the regularized
fundamental solution

G 1 20l 3 _ |l
St e 2 2l 2 i
Preg(®) = 5 5Va (lnT e B (8.20)

We call 7 here the regularization parameter (see also Section 8.1). Now we apply
the gradient to the regularized function and get

1 2|z|2 3 =" 1/2-2¢ 2|z|* 22
V(= (e 220 2 ) 2 -
(2 <m TR T o 2\ 24

—2 (3 _ ||$||2> | (8.21)

We obtain the regularized fundamental solution as a combination of the funda-
mental solution itself and the modified variety of it, that means

Ci z
st 37 Tl lzlf = 7,
x) = 8.22
o {%%(2—@—!2), ol < 7 622

Note that in the way we regularized the fundamental solution, the gradient of
phs, and p°* correspond to each other at the transition for every (zi,z,) with
|z|| = 7 (see Theorem 8.1.3 for the general case) and therefore p>* € C. We
choose {7;}en as a positive, monotonically decreasing sequence with the prop-
erty lim; ,., 7; = 0. We will choose 7; = 277 (see also Definition 4.1.3 and Re-
mark 4.1.4). Figure 8.5 shows the first component of the regularized fundamental
solution for different parameters 7;.

1 1 1
0.05 0.1 0.2

05 05 05

-0.5 -0.5 0.5
-0.05 -0.1 -0.2

-1 -1 -1

-1 0 1 -1 0 1 -

X, X,

1 0 1

X

(@j=0 (b)j=1 (@j=2

Figure 8.5.: The first component of the regularized fundamental solution p%t for
selected parameters j.

The regularized fundamental solution approaches to the fundamental solution
for increasing j.
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8.2. Mollification of the Fundamental Solution Tensor

The “7;-fundamental wavelet function ” for p3* is constructed in the following
way

p\S]:;]av,Tj = pﬂs'Jt - p7s';_1‘ (8'23)

In Figure 8.6 the corresponding wavelets of the first component are shown.

1 0.1 1 0.2 1 04

0.5 0.05 0.5 0.1 0.5 0.2
‘. SRR |l TR

-05 -0.05 -0.5 -0.1 -0.5 -0.2
1 -0.1 1 -0.2 -1 -0.4

-1 0 1 -1 0 1 -1 0 1

X1 X1 X1
(@j=1 (b)j =2 (©j=3

Figure 8.6.: The wavelets for the first component of piy,,.
J-

for selected parameters

73

Due to the construction of the wavelets, they have compact support. We can show
that the regularized fundamental solution converges weakly to the fundamental
solution for 7 — 0+ (see Theorem 8.2.2 below). But first we want to have a look
at the functions L(z) = W and N(z) = —In ||z|| and their Taylor mollifications,
which we obtain by the same principle as in the case of Lemma 8.1.2 and p°* and
are given by

1 1 1 2 u
PO S R . 8.24
U uo u%(u uO) uo uga ( )
1 u 1
—ln\/ﬂ%—ln\/uo—Q—uo(u—uO):—ln\/u0—2—u0+§. (825)

We replace again u by ||z||? and ug by 72 and get for the Taylor mollification (that
means the composite function)

L (z) = i Izl == 8.26
—1 >
_lnT_F—i_E’ HQIZ’H < T.

We can show some properties of the functions above in the following lemma,
which helps us for the theoretical results in this section.

Lemma 8.2.1. For the mollifications of L(x) = —— and N(x) = — In ||x|| given above,

RE]

it holds true that (L — L, )(x) > 0and (N — N,)(x) > 0 forall x € R?\ {0}.
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8. Regularized Fundamental Solutions

[l

T4

Proof. We have alook at the term (L—L,)(x) = o — % + - for ||z|| < 7 because
for ||z|| > 7 the difference is zero. Due to the radially symmetry of the difference
of the functions, we derive them with respect to ||z| = r and get

8 2 27“ |
Z(L-L)a)=—=+=20
(‘3r( )() r3 * T4
2 2r
< i
& r=r. (8.28)
We obtain the following estimate
2 2 2 2
7“<T<:>27’4<27'4<:>—3>—Z<:>——3+—Z<0. (8.29)
r T r T

That means we have that (L — L, )(x) is a monotonically decreasing function with
respect to r = ||z|| and a zero value at ||z|| = 7, which yields (L — L;)(z) > 0.

Now we have a look at the term (N — N,)(z) = —In||z|| + In7T + l=l® _ 1 also for

272

||z|| < T because otherwise it is zero due to the construction. We differentiate this
term also for ||z|| = r with respect to r and get

(9 1 T o
“(N—-N — T4 =
87’( -)(@) r + T2 0
& r? =72
& r=T. (8.30)

An estimation gives us the following result

r T 1 1
T<T < =<
T 2 T 7
1
& - -+ 5 <0 (8.31)
rooT
With the same arguments as above, we get (N — N,)(z) > 0. O

After this preparatory work, we can state the following theorem now.

Theorem 8.2.2. We assume that B3 is a regular region in R* and f : B — R? is contin-
uous. Let x € B, then we get

lim
T—0
7>0

/ Pz —y) =i (z — ) fily) dy| =0, i=1,2. (8.32)
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8.2. Mollification of the Fundamental Solution Tensor

Proof. First we observe that due to the construction, the support of the difference
of functions is B, (x) for sufficiently small 7. We use the triangle inequality, drag
the f-component outside of the integral with its maximum and obtain

/ ()N E(p§t<x_y) — (e —y) fily) d

< max fz !/ —y) —pii(z —y)|dy
yEB, (

< max [0) / \p )|y, i=12 (8.33)
Yy

Because of the symmetry of the functlons, we only consider the first quadrant of
the y-domain and show the proof for the first component of the difference pf*—p{",
by using polar coordinates. Due to Lemma 8.2.1, we can drop out the absolute

value.
3 St St
tim /Bf(o) P (v) — i ()| dy

7>0 7 y1,y2>0

C 2
_ G / iy oy Yl dy
T om 70 JB (0) vz =2 72

oy [ (T e (s ) g,
2W’F+0

:—hm/ / (cosgp—?r cos<p+r cos<p) de dr
21 70 T2 T4

2 4
:ﬁhm (1—2— r)dr
0

4

2m 720 T
:ﬁllm (7’—27—4—17—5)
2m 70 372 57t
=0, (8.34)
which finishes the proof. O

The theorem above was transferred from the concept of the Laplace equation.
In the case of the Laplace equation, such an analogous theorem has a physical
background and interpretation. In our case this theorem can be shown but has
no direct physical interpretability and benefit at the moment. We continue with
the second spatial-dependent function, which is a tensor with four entries and
certain symmetry relations.

8.2.2. u®N

Similar to the fundamental solution p>, we have the problem with the singularity
for z = (0,0) (see also Figure 8.7).
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1 0.6
0.5 .
0.4
<\ 0 <
0.2
-0.5 -0.
-1 0 -
-1 0 1
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(@) ufl (b) ufy’

-0.02

Figure 8.7.: Two of the four components of the fundamental solution tensor u“~
with its singularity in the zero point.

Because of the symmetry of the components of u®Y, we only show here two of the
four components. For the mollification of the fundamental solutions we consider
the main components In ||z|| and W (see Lemma 8.2.1) and obtain the regular-
ized fundamental solution with a Taylor expansion up to the first order for the
particular components of the tensor u“~N by

CsC e szl =7
ufp () = ——aywy § 1o ” 2” o (8.35)
! 2 2 B e <
$2
ulN () = £ (~n(lel) + Cugils) . el 2 7 (8.36)
BT Y o () ol 4 1 o2 (2 lal? '
e (—In(r) -5 +2+Cup (5 - )), =l <7

We do not consider here the z;x;-term because for the regularization above the
gradient is again equal at the transition for a point (x1, z3) with ||z|| = 7, which
was shown in general in Theorem 8.1.3.

Figures 8.8 and 8.9 show the regularized fundamental solutions u{, and u{y,
separated from each other.

1 1 1 02
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0.5 0.5 0.1 0.5 0.15
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0.05
0.02
-0.5 -0.5 -0.5 0.05
1 0 1 0 1 0
-1 0 1 -1 0 1 -1 0 1
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@@j=0 (b)j=1 (@©j=2

Figure 8.8.: The regularized fundamental solution u?ﬂj forseveral parameters j.

76



8.2. Mollification of the Fundamental Solution Tensor

1 1
0.02 0.02 0.02
0.5 0.5
0 <0 0 <o 0
-0.5 -0.5
-0.02 -0.02 -0.02
1 1
-1 0 1 -1 0 1
% X4

(b)j=1 (©j=2

Figure 8.9.: The regularized fundamental solution u%\ij for selected parameters j.

In analogy to the case of p°® and p', we can see that the regularized fundamental
solution approaches to the fundamental solution with decreasing 7.
The respective “7;-fundamental wavelet function” is constructed by

USCI:IW&V,TJ‘ = USC{\IFJ - ug’u‘l,\i'jfl' (8'37)
In Figures 8.10 and 8.11 the corresponding wavelets for each component are
shown separately and we see the compact and shrinking support for increasing

J
1 0.08 1 0.08 1 0.08
0.5 0.06 0.5 0.06 0.5 0.06
<0 004 <N 0 004 <N 0 0.04
0.5 0.02 0.5 0.02 05 0.02
-1 0 -1 0 -1 0
-1 0 1 -1 0 1 -1 0 1
X1 X1 X1

@j=1 (b)j =2 (@©j=3

Figure 8.10.: The wavelet for uf}\y,, ,, for selected parameters j.

Now let us state the following theorem in analogy to the Laplace equation like
we did it for the regularized fundamental solution above.

Theorem 8.2.3. We have the same assumptions as above, that means B is a regular
region in R? and f : B — R? is continuous. Let x € B, then we get

lim
T—0
7>0

/B (u (z —y) —ugh(z —y)) fily) dy| =0 (8.38)

forallik =1,2.
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Figure 8.11.: The wavelet for u%) ... ,, for several parameters j.

Proof. We show this theorem for two of the four components of u“~ and u&N
because of their symmetry property. Using again the triangle inequality, the com-
pact support B, (z) of the difference of the functions for sufficiently small 7 and
the maximum of the data f like above, we obtain

LA(WBW$%%—w—U$Kw—w)ﬁ@MM

< max _|fi(y)| @W?@ ugs (y)| dy, ik =1,2. (8.39)

yE€B, (z)NB

Now we have a look at the components separately and use polar coordinates.
Please note that due to Lemma 8.2.1, we can drop out the absolute value in the
integral, since C3, Cy are positive as a combination of positive material constants
(see Remark 7.3.1). We obtain for the difference

lim (ui (y) — ui (v) dy
00

C 2 2 2
i [ S (nlyl o DD (210 g
B (0) 2m

ol 27 2 2

(8.40)

Splitting the integral in two separate terms, we get
2 2 2
limC’4/ ( ylz—yf (—Q—Hy! )) dy
720" Jo o) Tyl 27 7
27 2
_C'4lirr[1)/ / (cos © — 12 cos @( ))rdrdgp
T—

>0

1
—C4hm(2 3 27r—— 27 - / ———dr)

>0
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8.2. Mollification of the Fundamental Solution Tensor

_ 1, 1t 17
= Gy <§T T (ﬁ‘éﬁ))
7>0
= 0. (8.41)

The part with the In-function and its regularization is left:

1
lim —In|ly||+1In7+ ||y||2 —d
726 /B-(0) 212 2
T 2T 7"2 1
:lim// —Inr+Int+ — — = | rdpdr
=0 Jo Jo 272 2
>0
) r3 1
= lim | 27 —Inr-r+In7-r+ — — —rdr
T7—0 0 27‘2 2
7>0
1 1 1 1N\
:PL%QW (_Zr (2lnr—1)+ 27" ln7+12r__1742)
7>0 0
1 1 1 74 1
:%__i_i%)??‘r (—ZT (2lnT—1)+ 57 lnT+Z2T__Z7_2)

=0. (8.42)
Please note that due to 1'Hospital’s rule, it holds true that

Inb 1/b 1
2 — lim — —p? =
%H% b*-Inb = %H% 1/ })H% Gy %H% 2b 0. (8.43)
b>0 b> b>0

At last, we consider the function u{},. Due to the symmetry, we only consider
the function for ¥,y > 0 and get subsequently with polar coordinates

71—1£>I(1) /IB (0) (ulcQN(y) UICQNT(y>) dy

7>0 " 91 ,92>0
— lim 0304/ Y1Y2 — 3 - lyll? dy
e o Ty AT
03(]4 ”/2 r? cosgosmgp ) ' 2 2
-r—ricospsing | - — — | -rdpdr
T—>0 2 7—2 7-4
CsC T 2 3 5
= lim = — /) sin ¢ cos ¢ dep - /iT—-%-+fzdr
= 2 \Jo ™o

CCsC, (1 (1, 1., 1,
~ I on (5'(57 3T T

= 0. (8.44)
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8. Regularized Fundamental Solutions

With this theorem, we have the same situation as with the analogous theorem for
p°%: We do not have a practical benefit of it at the moment. Now we come to the
last part of the fundamental solutions, which is location- and time-dependent.
This is more challenging, because we have to check, if a spatial Taylor mollifi-
cation is sufficient or additionally some Taylor expansion in the time-domain is
necessary. Beforehand let us say: We tested several possibilities for the regular-
ization of p° and «°' and the one which we present here is the best-working for
us.

8.2.3. p

The fundamental solution p® depends on the space and the time and has a sin-
gularity for the time ¢ = 0 combined with the point = (0, 0). Figure 8.12 shows
the fundamental solution for two fixed times for the space and Figure 8.13 for
two fixed points over time. (7.32) shows us that the fundamental solution is not
defined respectively gets singular if ¢ = 0 and z = (0,0). We can show with a
concrete sequence for x and ¢ that the limit does not exist for = (0,0) and ¢ = 0.
We use the sequences =¥ = (1/k,1/k) and t* = 1/k. We get by inserting this in p®!

.1 = .k 1
T P (‘4%) = Jim o~ exp (_QCzk) = o (8.45)

Therefore it is necessary to mollify it. We have the possibilities to do this regard-
ing the space, the time or as a combination of both. Due to the fact that we want
to keep the regularization as simple as possible, we do this with respect to the
space, that means for a fixed ¢, we do a Taylor expansion for ||z|| like in the cases
above. This is also the most practicable ansatz. A pure regularization in time did
not yield the necessary theoretical results. A combination of both is too compli-
cated and we could not prove the necessary theoretical results. Furthermore, the
last-mentioned variety is not necessary to achieve our theoretical results for the
decorrelation. Definition 4.1.3 shows our required theoretical properties.

1 1
0.075
0.5 0.6 0.5
0.07
<0 0.4 <o
0.065
-0.5 0.2 -0.5 0.06
A 1 0.055
-1 0 1 -
X1

(@t=0.1 (byt=1

Figure 8.12.: The fundamental solution p® in space for two fixed times.
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8.2. Mollification of the Fundamental Solution Tensor

0.15 1.2
1

0.1 0.8
0.6

0.05 0.4
0.2

0O 1 2 3 4 5 00 1 2 3 4 5
t t
(a) = = (0.8,0.8) (b) z = (0.2,0.2)

Figure 8.13.: The fundamental solution p® for two different fixed points over
time.

As above, we make a Taylor expansion with respect to ||z|| with the parameter 7
similar to the cases above. Replacing ||z||? by u and deriving p® with respect to u,
we get

0 0 1 u -1 u
TS ut) = 2 exp | — = _exp- 8.46
gt D = gu T eXp( 402t) 1670512 eXp( 40215) (8.46)

and the following Taylor expansion for ||z|| < T

PO (u,t) = p(ug, t) + aﬁupsj(uo, £)(u — ug) + O ((u — up)?)

LY S ICON Y
47rteXp( 402t) 167Cht? eXp( 402t) (u =) + O ((u—w)’)

= g (‘430215) {1 el “0)} O ((u—w)?). (8.47)

Replacing u = ||z||* and ug = 72, we obtain for ||z|| < 7 up to the linear term, the
identity

: 1 72 1
Si — _ _ 2 _ 2
preg(m,t) = exXp < 402t> [1 0ot (||x|| T )] ) (8.48)

With this we can define our mollified fundamental solution in the following way

[E3]
4Cot

1
47t

2
e (—5) [1— 2 Ul = )] el < 7.

€xXp | — ) ||JI|| ZT

pi(x,t) = (8.49)

Figure 8.14 shows the regularized fundamental solution pi(x,t) for fixed posi-
tions in space respectively fixed times. Especially the case for x = (0,0) can be
presented since p! is no longer singular for this point (see the mentioned figure).
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8. Regularized Fundamental Solutions

In the following, we can prove that the limit for z = (0, 0) and ¢t = 0 exists in gen-
eral which we can see with the help of the consideration below. For this purpose,
we have a look at the regularized part of the function and multiply the terms out
to sort them in another way (terms with and without ||z||). We can see that we
get terms only with ¢-dependency and terms with ¢- and ||z||-dependency that are
separated. It follows

1 72 1
li li t)= lim 1 — 2_ 2
ti%irnxlugop ( ) ti0+ ||z||I£l>0 (47rt Xp( 4C5t 402t(||x” T ﬂ)
2
-

=11
~ Do | amt CP\ T aog 402
2

Cfim m ||
dm Tecme P\ 1y ) i,
Ly (8.50)

|
.

72
= li
ti%i ||x||—>0 [47rt ( 4C5t ) 40275)]
~ lim lim —
tirgi ||$1H%0 47t eXp ( 402t) 02
-2

with the usual limit theorems since 1/t-exp(—72/(4Cst)) and 1/t*-exp(—72/(4Cst))
tend to O for ¢ — 0+. Please note here that the order of the limits does not make a
difference here.

1 ‘ 1.2 15
0.075 1

0.5
0.8

10.07
0.6

0.065
0.4 0.5

0.06
0.2

- 0.055 0 0
-1 0 1 0 1 2 3 4 5 0 1 2 3 4 5
X t t

@t=1,j=1. (b) x = (0.2,0.2), j = 1. () x = (0,0),j = 3.

Figure 8.14.: The regularized fundamental solution p ! for a fixed time in space
respectively for two different fixed spat1a1 points over the time and
selected parameters j.

The respective wavelet function is defined in analogy to the other wavelets. The
“1,-fundamental wavelet function” is given by

(8.51)

1 — R
pWa,V,Tj T preg,rj preg,ijl'

Figure 8.15 shows the corresponding wavelet functions.
For the theoretical part, we can show the following theorem.
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8.2. Mollification of the Fundamental Solution Tensor

%107

%10 0.4

[+

0.3

0.2

IS

0.1

N

@t=1j=1. (b) x = (0.2,0.2), j = 1. (©z=(0,0),j=1.

Figure 8.15.: The wavelet function p\s,iVavyTj for a fixed time in space respectively for
two fixed spatial points over time for j = 1.

Theorem 8.2.4. We assume that B is a regular region in R?and f : BxR — Ris
continuous and bounded. Let x € B and t € R, then we get

lim
T7—0
>0

/t_T/zg(pSi(I_yvt—9)—pﬁi(as—y,t—@) fly.0)dydo| =0,  (852)

where T' > 0 is the length of our considered time interval.

Proof. We have similar steps as in the proofs above. In a first step, we use the tri-
angle inequality and drag the f-component outside of the integral with its supre-
mum. Please observe that, due to the construction, the spatial support for a fixed
t of the difference of functions is B, (x) for sufficiently small 7. We obtain

t
/ / (P @yt —0)—pl(z—y,t—0)) fly,0) dy db
t—T JB,(z)NB

T
< s |f0) /0 / w0 2w ol (8.53)

yEB, (x)NB,OER

Note that we assumed that f is bounded. We can show that p® —p5' > 0 holds true
by showing that this difference is monotonically decreasing for ||z|| = r, where
we assume that ¢ > 0 holds true:

9 /s s 01 —r? —72 1, )
o TP 00 = [exp (402t) —er (m b Ter Al
_ b —r —2r\ _ —7° -1,
= it | P 4C5t 405t P 4Cst ACyt r
1 (-2 2 _p?
(i) oo ()~ ()] <0 o0
H/_/ v

 Ant
~—~ -
>0 <0 >0 (for r<7)
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8. Regularized Fundamental Solutions

That means the difference is monotonically decreasing for ||z|| = r and together
with the evaluation at ||z| = 7 which has the value 0, we get that the differ-
ence of the functions is non-negative for all ¢ > 0 because our consideration and
estimation was independent of ¢. It holds true that p¥' € CW(R? x R) due to
the considerations in Theorem 8.1.3. That means we consider the integral above
without the absolute value and get with polar coordinates (see also

Remark 2.2.4 for the time integrals)

T 1 —||z||? 1 —72 1
e DTeral By 1= ——(|[z]* = 7%)| dzdt
/ /B (o)t eXp( 40yt ) dmt P (402t> [ ol =7 )} v
2T T —T2 r _7_2 1
- 1- 2—7?)| drdedt
/ / ] 47rt P (402t> At P <402t) [ 4C’2t<r T )} ray
_ / / AV —7? o N r7? dr dt
=2 o dnt P\ acyt ant CP\acyt ) T T a0yt T acyt| ¢
I —7? 1 —72\ [1 T =
— . —C C,— — 19 dat
R (402t) T2 g e (4@:&) {27 1605t 8Cgt}

T*Ei ( 4C2T> —72
= T\ "/ T
G2 AC, =P (402 )

o 72 72 4 4Cyexp (—%)
o _402T) 130, 72

— 0 (as7 — 0+), (8.55)
where we considered (2.18) and which completes the proof. 0

We can now go over to the last function of the fundamental solution tensor.

8.2.4. 5

The fundamental solution v has a singularity for x = (0,0) and for ¢t = 0 (see
also Figure 8.16). We can show this by using the sequences =" = (1/k,1/k) and
t* = 1/k? and get

C k 2/ B
:cor‘lgt.;él

We mollify it in the same way as p°' only for the spatial component and do not
consider the z-part like in the case of u“~
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8.2. Mollification of the Fundamental Solution Tensor

1
0.02

0.5
0.01

<0 0

-0.01

-0.5
-0.02

4

-1 -0.5 0 0.5 1
%

Figure 8.16.: The first component of the fundamental solution «® for the time
point ¢ = 0.05.

Replacing ||z||* = u and applying a Taylor expansion up to the linear term in w,
we obtain

ﬁﬁ i 1l—exp| — o
2 Uo P 4C5t
-1 1 1 " . ”
' <uo T ity P <_402t) TP (_40215)) (u— “tﬂ] - (857)

Substituting u = ||z||? and uy = 72 for ||z|| < 7, the mollified function reads

= —_— — — —eX _
regit 2 |12 72 P 405t

. —1 . 1 1 T2 L 1 72 ( ”2 2)
— - ex — — eX — T — T .
T4 7'2 402t P 402t 7'4 P 402t

(8.58)

All in all, we get for our mollified fundamental solution

Gz (1—exp (- lc”t)) Jall > 7
ud(z,t) = Gip [}2 — S exp ( 1ot ) + (72 151 €XP (—%) (8.59)
L4l exp( M)) (|lz]]? — 72 } ||| < .

Figure 8.17 shows u})

g+ N space for a fixed time and for fixed points during the
time interval.

We can show that the limit in x = (0,0) and ¢ = 0 exists for our regularized
fundamental solution with the usual limit theorems.
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1 0.05 0.05
0.01
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0
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<Y 0 0
0.05 002
05 0.005 -0
0.01
-0.01
-1
-1 0 1
X

-0.1 0
0 1 2 3 4 5 0 1 2 3 4 5

t t

@t=1,j=1. (b) z = (0.8,0.8), j = 1. ©z=(02,02),j=1.

Figure 8.17.: The first component of the regularized fundamental solution u ! for
a fixed time in space respectively for two fixed spatial points over
the time for j = 1.

First, we rearrange the terms of u}'_ for a better clarity (we only consider the part
of the function for ||z|| < 7)

lim lim us1 (z,1)
=0+ [J]| =0

= lim lim ﬁx {i (1—exp (— T2 ))
t—=0+ ||z]|—»0 27 T2 405t
2 2

(e () S () )) -]
= lim lim ﬁxl {i (1 — exp (— i ))

t—0+ |jz]|—0 27 T2 4Cst

1 72 1 72
(e (i)~ (oo () 1)
1

C
+ lim lim —1x1||x||2(
t—0+ ||z|| =0 27 T

:ﬁ lim =

7y - lim =
27 ||z —0 t—0+
2

n 1 T 1 T2 1
4Ct TP\ Tacyt) T 2 \ TP\ Ty
Cy 1 1 72 1 72
1 2. lim [ ——— — - — —1
o i (anfl2]f) - i <724 ot eXp( 402t) T (eXp( 40215) ))

Ch 2 O 1
_%.0.7__24_%.0.(_;)

_0 (8.60)

since exp(—72/(4Cyt)) and 1/t - exp(—72/(4C4t)) tend to 0 for t — 0+. This can
be done analogously for the second component. Furthermore, our regularized
fundamental solution v is of class C(V(R?) due to Theorem 8.1.3. In analogy
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8.2. Mollification of the Fundamental Solution Tensor
to the cases above, we can define the “7;-fundamental wavelet function” in the
following way

Si .. Si Si
uWav,Tj T u'rj - uTj,l‘ (861)

Figure 8.18 shows three different states of time and domain of the wavelet.
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"4 05 0 05 1 0 1 2 3 4 5
4 05 0 05 1 x t

(@t=1, j=1 b)t=1, j=3. (c)z =(0.2,0.2) for j = 1.

Figure 8.18.: The wavelet function for u}' for two fixed times over the space re-
spectively for one fixed point over the time for j = 1.

For the theoretical part, we consider again the following difference of the funda-
mental solution and its mollification.

Theorem 8.2.5. We assume that B is a regular region in R* and f : BxR — R?is
continuous and bounded. Let x € Band t € R, then we get

lim
T—0
7>0

/ / Si(e — ot —0) — S (a — gyt —6)) fi(y,6) dydB| =0, i=1,2,
(8.62)
where T' > 0 is the length of our considered time interval.

Proof. The steps are the same as for the pSi-part. In a first step, we use the triangle
inequality and drag the f-component outside of the integral with its supremum.
Due to the construction, we have here that the support of the spatial component

of the difference of functions is B,(x) with the same arguments as above. We
obtain

S —yt—0)—uf (x—y,t—0)) fi(y,0) dy df

7_

< sup | fi(y,0 |/ / ‘uS‘ (y,0) — u” y, 0 !dy de. (8.63)

yEB, (x)NB,OER

Please note that we show the next steps of this theorem without loss of generality
for the first component of the difference. The second component is obtained due
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8. Regularized Fundamental Solutions

to symmetric aspects. First, we consider the difference of uj' — uj', without the
factor £tz for ||z|| < 7 and get

1 1— _M 1 1— _ 7’
BE P\ T a0yt 72 P\ T a0yt
1 1 T2 1 72
+ <§@ exp < e t) + — ( Xp <_4Cgt) — 1)) (7'2 — HxH2) (8.64)

We have a look at the two lines separately and show that the first one is non-
negative and the second one is non-positive. Let us start our considerations with
the second line. The term (72 — ||z||?) is positive since we have the case ||z| < T.
For the first term, we do the following conversions

1 1 72 n 1 72 1
— ex — — | ex — —
7'2 402t P 402 4 P 402t

72 exp ( 1 t> + 405t exp <_47C-'22t) — 405
4CQtT4 .

(8.65)

Due to the fact that 7,¢,C; > 0 holds true, the denominator is non-negative and
we have to take a closer look at the numerator, which we differentiate with respect
tor

2rexp | — T +72exp [ — r — 2T +4C5texp | — r — 2T
P\ " acyt P\ T acy ACt 2P T ACyt

T2 273
= exp (_40215) : (_40215) <0, (8.66)

that means the numerator of (8.65) is monotonically deceasing with respect to 7
and we can estimate it with its maximum for 7 = 0. Inserting this yields

7_2 7_2
72 exp (—4 02t> +4C,t exp (—4 Czt) — 405t <0+ 4Cot —4Cot =0.  (8.67)

Thus (8.65) is non-positive and therefore the second line of (8.64), too. We take a
look at the first line of (8.64), set ¢ := 4Cst for the sake of readability and show

that the function
1 r?
- (1 — exp (—402t>) (8.68)

is monotonically decreasing. We consider the derivative with respect to r and get
2 r? 1 2r
——=(l—exp| —— + —exp| ——
r3 c 2 c) ¢
2 2 2
=— {—c + cexp (_r_) +r?exp (—T—)} , (8.69)
cr c c
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8.2. Mollification of the Fundamental Solution Tensor

from which we want to show that it is negative. The first factor is positive and we
have a closer look at the term in the brackets. We want to detect the maximum of
it and derive it again with respect to r and get

(2) (2 ren(Z) o) (2)
SWESNED) -

Possible roots are r = 0 or ¢ = 0, whereas we want to consider the case ¢ = 0
later separately. For the case r = 0, we can see directly from (8.70) that we have
a conversion from positive to negative sign around » = 0 which means that we
have a maximum for r = 0. We can estimate the squared brackets in (8.69) by

2 2
—c+ cexp (—T—) +r?exp (—T—) <—c+c+0=0 (8.71)
c c

and obtain that (8.69) is non-positive and therefore the function in (8.68) is mono-
tonically decreasing and furthermore, the difference in the first line of (8.64) is
non-negative. The case ¢ = 0 reflects the case ¢ = 0 and results in the function
1/r? instead of (8.68), which is also monotonically decreasing.

Now we consider the absolute value of the difference as given in the original
integral above and estimate with the triangle inequality. We can drop out the
absolute value for the first term (except for the term z,) since we showed that
the first term is positive. For the second term, we can omit the absolute value
by changing the sign in front of the term since the term in the absolute value is
negative

‘u§i(x7 t) - u?jT('I? t)|

<ﬁ| | L 1 —ex —M _ 1 1 —ex —7—2
= o7 22 P\ " ucy 72 P\ 10yt
(& 1 1 72 1 72 9 9
~1 - — - — -1 —
gl <T2 4Cyt eXp( 40275) T (eXp< 4C2t) )) [7° =l

<GS (i B O O Y
T NTEE PN Tyt 72 P\ 710yt

Cy 1 1 T2 1 T2 9 9
- - _ il _ 1 _
2 121l (72 40yt eXp< 402t> = (eXp< 402t) ) (7 = ll=I)

(8.72)
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8. Regularized Fundamental Solutions

That means we consider the integral above without the absolute value and get
with polar coordinates for the case z; > 0:

2n/ / W( Xp(‘lc"t»

7_2
(e ()
1 72 1 1 72 9 9
B (7 (1 S (‘4@&)) Tac e P (‘4@)) kel )] ot

01

cos pdp

/ [5(-e(2)
T
_ (_% (1 _ exp( 40215)) n %%ﬂexp <_4702t)) (! — r2r )] dr dt.

(8.73)

For the first integral, we get

/2
/ cos p dp = 2. (8.74)

—7/2

We have a look at the second line of the integral separately later. Now we come
to the third and fourth line of the integral, which is integrated with respect to r
and evaluated (see also Remark 2.2.4)

Tt (T
[ =5 (o ()
+ (i <1 — exp (—T—2>) — iLexp <— 72 >) 37'5 dt
7'4 402t ’7'2 402t 402t 15

21 72
(o () g
R 1 A N VA o _
3" 40, P ( 402T)
2E1< a ) 2
1 402T T
|\ "/ 7 —
e 40, P ( 4C’2T>
_ii —Fil - T 3 5
’7'2 402 4C2T 15
— 0 (1t — 0+) (8.75)
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8.2. Mollification of the Fundamental Solution Tensor

with the considerations from (2.18). Now we have the second line of the integral
in (8.73) above left, which is

T T T‘2
1— _
/ / exp( 1Cat ) dr dt

:/ T——\/‘\/@erf(m> dt.

Here the first part with 7 is also convergent to 0 for 7 — 0+. Let us have a look at
the second part, which is given by

(8.76)

[ et () @
r*Bi(~ ) 2
:g T( °E s —l\—/:exp< 2T>) o \/merf<\/ﬁ)
— 0 (1 — 0+4) (8.77)

with the help of (2.18). We can verify this primitive function easily by deriving
(see also Definition 2.2.1 and (2.22))

72Ei(— )
T < SC4C2t> +texp ( 4Tgt

N

¥l
[GCR I\

). it ()

210 T 72 o 72 —4C5t T2 te 72
— — | — — eXx — . . 3¢ —
3 |7 \ac, TP\ Tacy 72 40,12 P\ 7100
72 72 T 4Cy T
t — C— 4C5t erf t f| ——=
* eXp< 402> 4C’2t2> Tvatkater <\h402t) o (\/—40215)
72 T -4C5
/4 N
+1 CQ eXp ( 4CQt) < 2(402t>3/2>‘|
20T _ 7'2 o 72 Yo _ 72 . 72 o B 72
T3\ a0 TP\ Tacy ) TP\ Tacst ) T acs P\ T acy

4C5t erf (\/T2> Cst erf (m) — ﬁexp <_4C’2t>]
2 T 1
= gerf (\/4—727) (\/40215 + 5\/40275)
= 1/ 402t erf (\/4—T2t) . (878)

This finishes the proof for v and for all regularized fundamental solutions. [
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8. Regularized Fundamental Solutions

8.2.5. Summary

The fundamental solutions u®N, p™, p* and «% have been regularized with re-
spect to their spatial component ||z||. Regularization with respect to the time was
for 5 and p® not useful due to the necessary theoretical properties for our decor-
relation, that means the theoretical properties of the source scaling functions that
we will construct in the next section. We need the properties of an approximate
identity (see Definition 4.1.3). Thus the regularized fundamental solutions are
an intermediate step to our desired source scaling functions. Since we did the
construction with the Taylor expansion with the constant and linear term, our
regularized functions are C) due to Theorem 8.1.3. In the next section, we want
to continue with the construction of our source scaling functions and wavelets,
where we need our deduced mollified fundamental solutions.
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8.3. Source Scaling Functions and Wavelets

8.3. Source Scaling Functions and Wavelets

Before we go over to the construction of the source scaling functions, we have to
recall the connection between the fundamental solutions ans the poroelastic dif-
ferential operator LP°. If we understand the fundamental solutions of the QEP as
a fundamental solution tensor, we can apply the poroelastic differential operator
to the given tensor

U%N ()0 U?QN ()0 P§t(x)5t
G(z,t) = [ uSN(x)d, uSN(x)d; p5t(x)d, (8.79)
ua,t)  uy(z,t)  pPia,t)

in the following way and get (see (7.17))
LP°G = 10,0y, (8.80)

where [ is the identity matrix. This is the way how the fundamental solutions
were constructed (see [10,34] and the references therein). For the construction of
the source scaling functions, we apply the differential operator LP* now on G-,
which is the tensor containing the regularized fundamental solutions, that means

uipe(2)d ufr (2)dr Py ()0,
G:(z,t) = U%ﬁ(@&t U%tlf(z)(st pgj}(@@t : (8.81)
uf(2,t) S (at) P t)

More precisely, we apply the differential operator on each row of G, (see (2.13)).
The resulting tensor of the source scaling functions is denoted by

P ()0 Pror(x)d Prg,(2)0) + Py ()0
(DT(J], t) = @21,7@)(2 @2277(.1’)5,5 @%377(1’)5; + @%377(1’)5,5 (882)
(I>31,T (35, 75) q)32,r($, t) q)33,7'<377 t)

and we can figure out the several components. For our notation we have to say:
With @, -, we denote the source scaling functions without the Delta distribution
(if they contain such one) and (®-),, denotes the whole entry of the tensor, that
means in the case of the first two rows the entry including the Delta distribution.
For the third row, it is therefore ®;;,, = (®,),.. Please remember here how we
constructed our regularized fundamental solutions: For ||z| > 7 we use the fun-
damental solutions themselves and for ||z|| < 7, we use a Taylor mollification of
the fundamental solutions. If we now apply the differential operator on G-, we
only have support of the source scaling functions for ||z|| < 7 for the spatial part
because outside it is zero. Thus our derivations for the source scaling functions
in the following have to be seen for the case ||z| < 7. We start with the first row
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8. Regularized Fundamental Solutions

and calculate the several components that we need for the source scaling function
tensor

((1)11,77 Dy ., ‘1313,7) = L (U%Nw U%pr?r)
At U%N ?N '
—T”Vx <v$ ' <uCNT>) - V2 <u IT> + ava;p%;
12,7 12,7
S ugle 2. St '
O COMPLtT +a Ve[ ox — Vari,
Uto 7

For ®y; . and @5, we need for ||z|| < 7 the following partial derivatives

Oy [ 2 2 2 2
0., = 3 [_% Oy 2 (ﬁ [Ed] ) YOy (—%)} . (8.84)

(8.83)

or | 2r2 T
Oay Uiy = % [—g% +Cy-af- (—%)] , (8.85)
o 8 (L ey (4 5))
0 w?INT = % {—iz +Cy- 23 (—%)] ) (8.87)
Oy DpyulN, = O;f‘* ( WQ) (8.88)
0u5p, = S [ ( 2 ”x”2> T o (_2_)] , (8.89)
OMU%NT = 0304 [wl ( 2 HxH2> + 217 (—%)} : (8.90)
0,2ull, = C;’f“ ( 6:”1:”2) (8.91)
D2l = 237(:4 ( 6“”“) (8.92)
O, Dy ufn = Cgf“ <§ - 3”2 ) . (8.93)

With these preliminary considerations, we can assemble the several components
of our source scaling functions and obtain

Cl 9 _ 322 +a:2
Vzp%; = 2 7_2 ( 29E1902 ! (894)
7-2
C 2 1222 + 222 + 222 4
2. on _ U3 1 2 1
vt g (o ()
Cy [(—2+4C 1422 + 222
= 2—; (T4 + Cy - (—% ) (8.95)
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8.3. Source Scaling Functions and Wavelets

C5C4 6
Viufy, = -, (8.96)
eN 0 Oy, O,y
[ Y11y _ (Gx2urn; + 12,7
Ve (Vm (U%\IT)) B (81’28961“1 +8 2“12 T>
Gy (1 6 _ 15aj+hed
- 2”< TG ( ! >> . (8.97)
C3Cy (_ 10901962)
2m T4

Summarizing the components above, we get

A+ upC 1 6 1522 + a2
)

7-2

w2 T
Cg —2+ 4C4 141’% + 21‘% Cl 3$% + I%
- e N et Siied'1 it ) Wt S
Cor ( T2 +C ( T4 * Yon T2 T2 ’
(8.98)
P ( ) N _)\ + 12 0304 _10$1£L‘2 n 0304 61’11‘2 _ ﬁ?l’ﬂlfg
12,0 = i 27 T4 7T T4 2 74
A
= .2714.’132 ( + K 50304 + 60304 — aC’l) . (899)
T L

For @3, we have to consider that the fundamental solutions u®N and p®' are
not time-dependent but the whole entries in the fundamental solution tensor be-
longing to u“N and p°* are equipped with §,. Since the third equation contains a
derivative with respect to ¢, we have to observe this. We get for the Laplacian of

St
pl,T

T 17'_

Vep

(8.100)

T4

and together with the derivatives above for the two components of @13 -

2 -1 2
B, (1) = {coucl o (2_ [E ) L aGs (m1(604 ) 50,0 ||ﬁ| )] ,

27 T2 T2 s T2
(8.101)
41‘101
Pl (1) = —— (8.102)

The first component is the part which has a d; in the whole entry and the second
one is equipped with §;, if we consider the whole entry of the source scaling
function tensor. Please note here that it is necessary to do a little modification
of ®7, _ to ensure that the property of an approximate identity holds true (see
Definition 4.1.3). From now on, we will change the 7* in the denominator to
73, which is a part of the regularization and necessary to obtain the theoretical
requirements.
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8. Regularized Fundamental Solutions

We continue with the second row of ®.. In this case the calculations are similar
to those above, because of the symmetry. We get

_ ype(, CN _CN St
((1)21,7'7 CI>22,T,CI>23,T) =LP (u2177—7u22777p2,7')

At ugy o (ST S '
M T u t
— Ve [ Ve LON - Vi LN )T aVupy;

22,17 22,1

= uCN ’
0, (cwp%? +a (Vx : (U%INT) )) - Vi,
22,1

(8.103)
Furthermore, we have in analogy to above for ||z| < 7
St Cl 1 _2967.123:2
pr2,7— - %ﬁ 9 _ 3I%—;—1}% ) (8104)
v2ugy = -Gl fnr (8.105)
’ ™ T
& 2 1423 + 273 — 4
2 oN _ L3 2 2
Vilgy, = G (_ﬁ +Cy - <— po )) , (8.106)
wuCN )) % (_1Ox}lx2)
Va (Voo lull ) ) = ) T s | - 8.107
( (UZCQI\L' %(—T—12+C4 (%_5 1‘7"—'415 2>> ( )

We can see that @, , is exactly the same as ®15, and Py, . is the same as ¢y, ,
with changed roles of z; and z5. The same holds true for ®,3, compared with
®y5 , (for both upper indices 1 and 2). Therefore, we do not write them down
here separately but rather at the end of our calculations to have all source scaling
functions at a look. Please note that we do the modification in the denominator
of ®3; _ in the same way as for ®7; . Let us continue with the third row. Here the
functions are space and time dependent and we do not have to take care about
the Delta distribution.

(@31,77 P35 7, CI)33,7) = LP* (Uiim Ug,impgi)
Si Si T
_ A Y)Y w2 (Y Si
9, couns V. . Uljr _y2psi
t oMpPr +a i uSI =Pr
2,7

(8.108)
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8.3. Source Scaling Functions and Wavelets

For the calculation of the several components regarding the first row of the differ-
ential operator, we can reduce therefore the relevant components for the deriva-
tive to the

NEE RN (@t a3)\ _ (8
Si 2
e\ ) 2 8 g () (L _T 11
vm (vx <u§,17'>> B 27 8 ($2) ( T4 T exp ( 402t) 402t 72

L1 _T (8.110)
T4 P 4C5t ’ '
2 24 g2 8x
o2 (@il ) _ 2 (wl(% +5'32)) _ ( 1) 7 8.111
v (aczHIII2 v \@2(a? + 23) 8 ( :
O T 1 72 1 1
2,8 = 2L g (1) (= — —
Viul = o 8 <x2> ( - —|—exp< 402t> AC,1 72
1 T2
— — 112
+T4 eXp ( 40275)) ’ ® )
. 1 72 1 2x
Si_ & - A R B 1
Vapr = dmt P ( 4C'2t> ( 402?5) <2$2)
2
T T 1
- _ — S— 8.113
(l‘g) exp ( 402t> 87T02t2 ( )

In this case the z||z||-term is the only relevant term that remains if we consider
derivatives of the second order. Now we can put together these derivatives to get
the first two entries ®3; » and ®3, , of the last row of the source scaling function
tensor, which are

(3157185 () Chool-5) e
(1)32,7' M 2w ) T4 402t 402t T2
1 T2 ) o 72
+; P (_402t)) B <1’2) 8027Tt2 P <_402t>

) (—\ —21)8C (—4C2t2 +trlexp (—%) + 405t% exp (—4822t)>
- ( ) 8Cout?>t4m

X2

4 T2
<x1> QuT " eXp <—402t>

T2 8Cout?r4m

A 72 aput® + 8C1 (A + 2u)tT?
= — X —_

T2 P 4C5t 8Cout?>14

320106\ + 21)t2 (1~ exp (7757 ))

* 8Cout?>t4

(8.114)
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8. Regularized Fundamental Solutions

The last function to figure out is ®33 .. For the Laplacian of pf! .., we can use the
gradient from above and apply the divergence onto it. The several components
that we need are given by

V2P = div ((8.113))
-1 2
- _exp (_ T ) , (8.115)

1
4C5t?

L L (e T
i — T
CAntz T 160y 16Cy 3T

(lx[l* = 72)

1
szl = )+ fog= el = )

2

2
cexp () e o) - (e = )
405t 4mt?  16Cyt3m 64C3t4T ’

(8.116)
: C 1
S = et > O
1o ([ oo (5)
-1 1 T 1 ,
+(r4 +402teXp( 402t> P p( 4Ct))(!\wH T)}
-1 1 1 1
2 — — — —
et [ s (i) e (i) )
_af (. ) 1
n s 7'2 P 40225 402t2 402t2 P 402 7'2
2

n 1 T 72 1 + 1 72 72
eX —_ ‘ — —_— X - —
402t P 402t 402t2 ’7'2 P 402t 402t2

2|z ]|* = 7)]
B Cl T2 1 1 2 2
= —exp (_40275) {—402752 + T6C20 2||x]|* —77)] . (8.117)
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8.3. Source Scaling Functions and Wavelets

We put together the derivatives for the last component of our tensor ®,. Fur-
thermore, the derived function can be a bit simplified by inserting the material
constants for Berea sandstone given in (7.21) which is done in the next step and
leads us to

o T Ll =) = = () =)
> = copexp | — - x| —7°) — || =7
337 = QRSP Ty Art? " 160,37 64C2t4
OéCl 7'2 1 1 2 2
- - —_ _ 2 _
T eXp( 402t> { 10, T ecz el =7

n 72 1
eX — —
P 402t 402t27T

=—1

=1
. 72 ,—C’gco,u — Cio rC’gcop + Cloz
= X —_
P\ 10y 4Cy7t? 16C3t3

2fz)* = %)

1
402t27T

copT?
64C2t4 7

(l[l* = 72) +

72\ 4t@2|lx]” — 7%) + copr?(7* — [|=]?)
—exp (- . 8.118
P ( 40225) 64C2t ' (8.118)

We want to summarize the components of ®, at a glance. Here we can see better
the several symmetry relations of the source scaling function, for example @4, ,
and ®q; ;, P13, and Py3 - and at last @3, - and P3, ;. The source scaling functions
are given by

4

A+ C 1 6 1522 + Ha2
o) = ARG (L (8 1))

2 27 T
Cs (=2 +4C, 1422 + 23 C) 1 3z} + a3
_ﬁ( 72 +C4.(_ T4 T 2 72 ’
(8.119)
T1T2 A + %
1o, () = T 5C3Cy + 6C3Cy — aCl |, (8.120)
couCi T z|]? aCs ((11(60C4 — 1 z||?
oL, (r) = { S (2— ”TD )+ o ( 1 = )—504-:c1-HT—JL| :
(8.121)
4x,C
Bl (1) = —5 (8.122)
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A
By, (1) = 9;1422 (% - 5C5C + 6C5Cy — ozC'l) , (8.123)
A Cs 1 6  15x3 + 5x3
) AN cclct: Y B i B it
27(7) woo2m ( T2 Gl (7’2 T4
Cs (—2+4C, 1423 + 222 Cy 1 323 + 23
27T< Ttean () ) et (- ),
(8.124)
o awC m () ) oG (w60 -1 el
.r(¥) = [ 2r 12 (2 T2 * 2 T2 5C4 -2 T4 ’
(8.125)
4o C'
(1) = —— (8.126)
72 aut + 8C (N + 2u)tT?
O3y, (2,t) = — -
3L (-T ) T eXP( 402t> 802#1527'471'
3201 Co(A + 20)t2 (1= exp (757 )
- : (8.127)
8Cout?r4m
oy (1) = —yexp [ — 72 autt + 8CT (N + 2u)tr?
2,m\ N 2 P 402t 802[Lt2747T
3201 G (1 + 2002 (1= exp (35;) )
+ , (8.128)
8Cyut?rim
72\ 8|z||*t — 4t + cour? (7 — ||z||?)
P t) = — . .
s (1) = exp ( 402t) 64C2t4 (8.129)

The existence of the limit ||z|| — 0 and ¢ — 0+ for ®3;,, P32, and P33, can be
obtained with the same considerations as for the existence of the limits for p®!
and the components of u5'. After the theoretical calculations, we want to show
some plots of the source scaling functions. Figure 8.19 shows the source scaling
functions for the component ®,; , for several parameters j. We can see that the
support gets smaller for larger j. Since the shrinking support is a character of all
source scaling functions, Figure 8.20 shows @, ;, 1, . and ®3, _ together only for
one parameter, namely for j = 1.

Please note that the source scaling function @, , is the same as ®;5 .. Due to the
symmetry, ®,, ; is the same as source scaling function ®;, , reflected at the line
given by x; = x5. Furthermore, ®,3. and ®y3 , are similar, because ®,3, is the
same as ;3 also reflected at the line 1 = z,. This holds true for the function
parts with upper index 1 and 2. Therefore, we do not show the components of
®,3 , additionally. Figure 8.21 shows the source scaling functions for the compo-
nent ®3; ,, where we have a spatial and time dependency to show.
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Figure 8.19.: The source scaling function ®;, , for several parameters j.
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Figure 8.21.: The source scaling function ®3,  for a fixed time over the space re-
spectively for a fixed point over time for selected parameters j.

Since ®3, . does not differ from ®3; , evaluated at the point (0.2,0.2) due to the
symmetry, this source scaling function is not shown here. Figure 8.22 shows
the source scaling functions for the component @33, for selected parameters j

in space and time.
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Figure 8.22.: The source scaling function ®s3 , for two fixed times in space respec-
tively for a fixed point in space over the time for selected parameters
J-

The wavelets (we state them as ¥, ;) can be defined like above in the following
way

\Pik,rj = cI)ik,Tj - q)ik,Tj,1 . (8130)

Some chosen wavelets are shown in the following figures to give a representative
overview. Figure 8.23 shows the source wavelet for the component ¥, for several

7.
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Figure 8.23.: The source wavelet function V¥, , for selected parameters j.

In this figure, we can see the behavior of the wavelets for increasing j. They are
also getting smaller support for greater j. Therefore, we show in Figure 8.24 some
of the wavelet functions together for j = 1.

Please note that the source wavelet U, is the same as U5, and also the symmetry
of U3, and V3, is the same as in the case of the source scaling functions and these
functions are not depicted separately. Because of the symmetry of ¥; and Wy,
the latter is not shown here.
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Figure 8.24.: The source wavelet functions ¥y, ,, ¥
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Figure 8.25.: The source wavelet function W3, . for two fixed times over space re-
spectively for a fixed point in space over the time for selected pa-
rameters ;.

Due to the symmetric aspects of V3, and V35, we only show V3, in Figure 8.25 for
some space or time points and selected parameters j.

Figure 8.26 shows the source wavelet for the component V33 . with the same pa-
rameters for space and time as W3, . above.

Please note that the source scaling functions and corresponding wavelets all have
compact support in space due to the construction. Remember how the mollified
fundamental solutions were constructed: We used the fundamental solution for
|lz|| > 7 and the mollification for ||z|| < 7. This has the consequence that the
result of the application of the differential operator for ||z|| > 7 vanishes. We get
compact support for the spatial variable for our source scaling functions.
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Figure 8.26.: The source wavelet function W33 . for two fixed times over space re-

spectively for a fixed point in space over the time for selected pa-
rameters j.
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8.4. Theoretical Aspects of the Decorrelation

For our source scaling functions, we want to show an important theorem, which
provides the basis for our decorrelation. Here, we have to note that the space
and time dependent source scaling functions ®s; ,, ®3,, and P33, have to be
equipped with the Haar scaling function in time. This is necessary to achieve a
compact support of the functions in space and time and to yield the theoretical
results. We need the Haar saling function (see [117]) in time that has its support
on the interval [0, #,], that means ¢(t/t;), which we will denote by

]-7 OStStm

8.131
0, t>t. ( )

That means, we modify the mentioned scaling functions by @, (z,t) = ®(z,1) -
¢1,(t) and omit the new, because we are only interested in these modified func-
tions. Furthermore, we want to interconnect the parameter ¢, with 7 in the fol-
lowing way: ¢ty = T" - 7, where T is the end point of our considered time interval.
Before we go over to our main theoretical results and the corresponding theorem,
we have a look at the following, which is also necessary for the proof of our main
theorem.

Theorem 8.4.1. We define the volume integral of the source scaling function tensor ®.,
in the following way

Va. ::/ /@T(y, 6) dé dy, (8.132)
r2 JR

that means we want to calculate the volume integral of the several parts of the tensor ®..
Our source scaling functions satisfy

(Vo) =Va,)yp=1 Tl_if& (V. )33 = Cacop, (8.133)
(V@’T)lz = (V‘I’T)m = (V<1>T>13 = (Vér)zg =0, (8.134)
(Va,)33=(Va,)s =0. (8.135)

Proof. For the proof, we first need the volume integral Vs, . over the several parts
of ®. We have three types of functions, namely entries of ®, equipped with the
Delta distribution ¢,, equipped with the derivative of the Delta distribution 0,
and the spatial and time dependent functions from the last row. We start with the
entry (®,),, and use property (3.21) from Remark 3.3.3.
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8. Regularized Fundamental Solutions

That means the time integral together with the delta distribution reduces to one
and only the spatial integral with compact support is left. We obtain with polar
coordinates

A pCs (1 6 1522+ bal
1% - AR Lo, (2 o 2T ot
(Va. ) /BT(O) u o ( -2 + Oy <72 A

SO (G (M) G, sty

27 T2 T4 27 72 T2
[T A+ puCs (60— 1 o 1572 cos? ¢ + 5r?sin?
= —_ 2— 2 . 7"' —_— 4 . 4 . /r'
o Jo poo2m T T
Cs (—2+4Cy .. 1472 cos? p + 2r? sin? ¢ .
Cor T2 S T4 "
Cy 1 3 2 2 2 «in?2
+azts (2 g 208 *OTJ; T ‘pr> dy dr. (8.136)

With [ cos? p dp = [ sin® p dp = 7, we have

_%(4031_2_2'2%%72_04'176%';174)
+2—?<%.2w.%#_%&r4>
:_)‘:_“.%(604—1—504)—%(404—2—404)4—&701
Z—HTM-%(C4—1)+03+O‘701. (8.137)

Inserting the constants C;, C5 and C, from (7.21) and (7.22) leads us to

At oA +3p)+a [ (M +p) +a’
po AN +2p) +0?)  [eo(A+3p) + 2
co(A + 3u) + a? a?

2(co(A +2p) + ) 2(co(A +2p) +a?)

A peoA+p) +a® —coA+3p) —a® | co(A+3p) + 207
I 4(co(A+ 2p) + a?) 2(co(A + 2p) + 0?)
_ (A=) - (—2cop) + 2pe0(A + 3p) + 4pa®

Ap(co(A +20) + a?)

Apco + 8cop® + Apa
— Ap(eo(M +2p) +a?)
=1 (8.138)

<V<I>r)11 =
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Due to the symmetry of ®y; , and ®,, ;, the volume integral (V' s_),, is the same
as (Vg,),,. Furthermore, for (®,),,, we get with the same argument for the Delta
distribution as above, the integral over the spatial part

/ By (z) da = / By (z) da

B B (0)
A
= / x14$2 < u -5C3C + 6C5Cy —0401) dz
i L
B (0)
2 T
1 /A
= iz ( AnL - 5C3Cy + 6C3Cy — OéC1> //7'3 sin(y) cos(p) dr dep
i U
0 0
=0. (8.139)

Also due to the symmetry, we have (Vg ),; = 0. For the components (®),,, we
have to distinguish two cases (remember the part equipped with 4, and the other
one with 4;). For the case with J;, we can apply the same argument as above and
get for the remaining integral over the spatial part with polar coordinates

4.17101 401
/ T = / / r? cos p dy dr
B (0) T2

For the second part with §;, we have again a look at Remark 3.3.3 and (3.20) and
get that this integral is zero. We get due to the similarity of (®,),, and (®-),,,
that the volume integrals of the two parts of (®),, are also zero with the same
considerations as in the case of (®),,.

So the last row of @ is left, where we now have a look at. We get for (®),, with
some symmetric properties based on the factor x; the opportunity to separate the
spatial from the time integral.

to
//@31’Tdtd$:—/ I dx
B-(0)
B 0

y /to 72 aputt + 8C1 (A + 2u)tr?
exp | —
0 P 402t 8C2,Mt27'47'l'

(8.140)

3201 Co(A + 21)12 (1= exp (757 )

dt
8Cout?>14w

+
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8. Regularized Fundamental Solutions

2m
// rcos(p)r de dr

/ . 72 aut® + 8C1 (A + 2u)tT
x
0 P 402t 802#7527'4

3201 Cy(A + 2p)t? (1 — exp <402t>)
8Cout?r4m &

/to 72 autt + 8C1 (A + 2u)tr?
=0- exp | —
0 402t 802Mt2T47T

+

32C,Co (X + 2u)t? <1 — exp <4T22t>> Ny

* 8Coyut?rim

= 0. (8.141)

We also get (V s, ), = 0 due to the symmetry. Furthermore, we need the follow-
ing integrals over B, (0) for (V. ),

2 T 1 .
z||? dz = r?.rdrde=2r--rt| = z74, 8.142
0
B, (0) o Jo 4 2
2

/ 1de =n7°. (8.143)
B, (0)

With this, let us now have a look at (®;),,. Please remember Remark 2.2.4 for the
time integral.

to
// @33’7— dt dx
BJO0
72\ &2l = 7) + conr* (77 — [|2]]*)
/ / P ( 405t ) 64C3t4m o dt

/ 72\ 4t (77 — 77t) + cour(wrt — ;7’47T)
= exp dt
0 4Gt 64C3t4T

1 courS [™ 72 1
— T
64C2 2 /0 P\ Ta0yt )

1 cour® 4C5 exp ( oot ) (32C2t2 4 8Cytor? + 74)
- 64C2 2 376

(8.144)
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8.4. Theoretical Aspects of the Decorrelation

Now we have to take into account the coupling between 7 and t,. We obtain for a
constant 7' > 0 (which is the length of our considered time interval) and ¢, = T'r

. 1 cop 2
A, Vaw, = greg g 4021320
= CQCOIU (8145)
that means the volume integral converges to a constant for ¢ — 0+. O

Remark 8.4.2. In the case of Berea sandstone, we obtain for the limit of the volume
integral of ®ss , the following (see [135])

Cseopr = 0.6205. (8.146)

For a better comparison of the convolution results later, it is better to modify P33 ,
in such a way that the volume integral is 1. Therefore, we define the new function
®35% with the help of the volume integral in the following way

b
(V‘i"r>33

Please note that this is necessary on the one hand to prove Theorem 8.4.4 and
on the other hand for a better comparison of the decorrelation for different j.
In the further considerations we omit the "new" for the sake of readability but
consider always the newly defined function. For the decorrelation of given data
for u and p, we have to show that our constructed source scaling functions fulfill
the properties of scaling functions in the sense of Definition 4.1.3.

Before we go over to this theorem, we have to prove another lemma, which we
need for the main theorem.

new __
(1)33,7' -

Ds5.. (8.147)

Lemma 8.4.3. The positive part of ®1, . achieves its maximum at (7,0) or (—,0).

Proof. We can rearrange @1, ; in the following way

A+ puC C C
Oy = (—ﬂ—?’—( Cy—1) - —3—(404 —2)+ E—)

o 2w T2 27 T 2 T2
)\+M03'O4 03~O4 OéCl
2
—_— -15 <14 — -3
. ( po 2Tt * 274 274
)\+/L03'C4 03'04 C(Cl
2
LI .5 L9
e ( wo 2mrt * 24 274
=: Do+ 21Dy + 23 D. (8.148)

We write Dy = %do, Dy = Z;d; and D, = d, and have a closer look at dy, d;
and d, and want to show that dy < 0 and d;, d2 > 0 holds true by inserting the
constants (see (7.21) and (7.22)):
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8. Regularized Fundamental Solutions

A+ 1 Cy Cs aCh
dy=———(6Cy — 1) — —=(4Cy — 2) + —
0 i 277( ! ) 27T< ! )+ 7T
GG (AT g ) G (A o) oG
27 7 2 W T
1 o+ +a® —6A-10p 1 (A +3p)+a®  A+3p
© 27 2(co(A + 2p) + a?) L 21 2(co( X + 2p) + o2) 1
1 o?

* meo( A+ 2u) + o2
_ 1 (o + ) + ) (=6 = 10p) + (co(A +3p) + a®) (A + 3p) +4a’p

o 211(co(A + 2p) + o2)
_ 1 —5epA® — 10coAu — cop? — 5Aa® — 3pa’ <0 (8.149)
27 2p(co(A + 2p) + a?)

With the same steps, we get for d; and d

1 /15X +2
2 7
_ 1 (oA +p) +0®) - 15N + 29uco(A + p) + 23pa’ -
27 2p(co( A +2p) + a2)
1 [BA+7
dgz—( +M'CgC4—Oécl)
27 7
_ 1 (oA +p) +0®) - BA+ (A + ) - T+ Spa
27 21(co(N + 2p) + o?)

dl C4 — 3(1/01)

0, (8.150)

> 0. (8.151)

Please note that also d; > ds holds true. That means we want to find the max-
imum of the function ®,;,(x) = Dy + 21Dy + 23D, under the given constraint
g(x) = 2} + 23 — 72 < 0. We want to do this by determining the Karush-Kuhn-
Tucker points. Therefore, we have to minimize F'(r) = —®;;, under the con-
straint above. We get the following equations

VF(z) +uVg(z) =0 (8.152)

& 201Dy +u2x =0 (8.153)
—2x9D5 +u2xy =0 (8.154)

and u(zi+ a3 —713) =0 (8.155)
and u>0 (8.156)
and g(z) <0. (8.157)

That means we have from the first equation z; = 0 V « = D; and from the
second equation 5 = 0 V u = D,. Combining the conditions and inserting them
in (8.155)-(8.157), we get
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8.4. Theoretical Aspects of the Decorrelation

a) z1 =0 A x5 = 0: With (8.155), we get u = 0 and (8.156) and (8.157) are fulfilled.
We get the point (0,0, 0).

b) 71 =0 A u = Dy: With (8.155) u(23—72) = 0 and therefore u = 0 (contradiction
tou = D,) or o = £7. (8.156) and (8.157) are fulfilled. We have the points
(0, :l:T, Dg)

c) 3 =0 A u= D;: With (8.155), we get u(z? — 7%) = 0 and therefore u = 0
(contradiction to u = D;) or x; = +7. (8.156) and (8.157) are fulfilled and we
have the points (7,0, Dy).

We insert the KKT-points in the functions F' and @4, , and get

F(0,0) = =Do, F(0,£7) = =Dy —7°D5, F(£7,0)=~Dy—7°Dy, (8.158)
(PII’T(O’ O) - DO’ (1)1177'(07 :i:T) = Do+ TQDQ; (DII,T(:l:Tv O) =Dy + TQDl.
(8.159)

Since D; > Dy > 0, the function achieves its maximum at the points (7, 0) and
(—7,0). More precisely: The side condition describes a compact disc and the
function @4, , is continuous, that means we have the existence of minimum and
maximum. Therefore, one of the KKT-points yields a maximum. l

After this preparatory work, we can state the following theorem for our calcu-
lated source scaling function tensor ®, from (8.82).

Theorem 8.4.4. Let B be a reqular region in R? and f : B x R — R3 continuously
differentiable. Then

lim // —y,t —0)f(y,0) d0 dy = f(x,t) (8.160)

T—0
>0 B R

holds true for all z € B, t € R and our constructed ®. is a scaling function in the sense
of Definition 4.1.3.

Proof. In detail we have to show (see the deduced source scaling functions above)

hm//‘bnrﬂf— V)61 f1(y,0) + Pro-(x — y)d f2(y, 0)

T>OB R

(<I>13T( y)o; + q)lzw( ?J)5t) f3(y,0) A0 dy = fi(z, 1), (8.161)
lim / /Cbzl T Y)6:f1(y, 0) + Poo - (x — y)d: f2(y, 0)

7—0
>0 B R

(CD%J ‘r( )6/ + (1)23 T( y)dt) f3(y7 9) d¢ dy = fQ(:C7 t)? (8162)
hm / /<I>31 A=y, t—0)fi(y,0) + Paa (x —y,t —0)fa(y,0)

+ Dy (= y,t—0) fo(y, 0) A8 dy = fu(x,t). (8.163)
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8. Regularized Fundamental Solutions

Together with Remark 3.3.3, the equations above simplify to the following that
has to be shown

lim / 1o (2 — ) Fo(y:1) + Pror(z — 1) ol )

T>0 B

- ¢%3T($ - )2f3(ya t) + cI>137( y)fs(y,t) dy = fi(x, 1), (8.164)

hm/@g“ z—y)f1(y,t) + Pao(x — y) fa(y, t)

7>0 B

- (I)%S T(x - y)%fd<y’ ) + cI>23 T( y)f?)(yvt) dy = fQ(x>t>7 (8165)

lim//q)ng —y,t—Q)ﬁ(y,Q)+q)32,7($—y7t—‘9)f2(y’9>

T—0
7>0 B R

+ (1)33,T(x - yvt - 6)f3(y7 9) dy do = f3<l’, t) (8166)

We start with the several parts of (8.161) and are guided by the technique in [22].
We have = € B and B is open. Then there exists a 7y such that BN B, (z) = B, ()
for all 0 < 7 < 79. We can write the equation for the approximate identity with
time dependence and the compact support of the functions as

/ / oyt —6)f(y,6) A6 dy

t
B (xz) Jt—to

< /T x)/t o )ij (@ —y,t —0)f;(y,0) do dy)

=123
(8.167)
We split (®,),; into its positive and negative parts, that means we have
P t P, )ii(x,t) >
(@T);’—(l‘,t) — ( )'L](l‘ )7 ( T)'U (J;? ) = 0 ’ (8.168)
J 0, (@T)U(.’L’,t) <0
P t P, )ii(x, 1) <
(@)= (2, 1) = 4 Bl 8 (Pr)i(@, ) <O (8.169)
J 0, (@T)U<.’L',t) >0
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8.4. Theoretical Aspects of the Decorrelation

Then we have

/M) /t—to (®7);; (z —y,t = 0)f;(y,0) db dy
- /]Br(x) /t—to ((I)T)ij (@ —y,t —0)f;(y,0) df dy

i /ET(I) /t—to (®r)i; (@ —y,t = 0)[;(y,0) do dy.
(8.170)

Due to the continuity of f and the integrability of (<I>T);.; and (®;),;; and the fact
that the positive and negative part do not change their sign in B, (z) x [t — to, ],
we want to apply the mean value theorem of integration. Here we have to distin-
guish two cases, the parts of ¢, with ¢, or J; and the spatial and time dependent
functions. We start with the first case, that means we apply the mean value the-
orem only for the spatial part and consider (8.164) and (8.165). The mean value
theorem guarantees the existence of &, &, € B, (z) such that

[ tua—nhna =& [ o -y
Br(z)

B-(z)

+ fj(&,t)/ P (v —y)dy, 1=1,2, =123

B (z)
(8.171)
Remembering Theorem 8.4.1, we have
[B " oF (z—y)dy + / ( O (x —y) dy = b (8.172)
We can rearrange this equation to
[ ene—wa=i- [ & @-ya (8.173)
B, (z) B (z)

Furthermore, substituting this equation into (8.171), we get
| B i) dy
B, (x)
— BE 0y + (60~ flent) [ O -y G174

B (z)

In a last step, we have to estimate

/ @;}Ax —y,t—0)dy<C (8.175)
B (z)
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8. Regularized Fundamental Solutions

for a positive constant C' independent of 7. With this we get

lim (bij,T<x - y)f] (y7 t) dy = 5ijfj(x7 t) (8176)

730 /B ()

since {1, &, € B, (z) and f; is continuous. This shows our theorem for the functions
with d;-part, because the difference (f;(&1,t) — fi(&2,t)) shrinks to 0 for 7 — 0+,
because for 7 — 0+ it holds true that &, &, — z. Together with the boundedness
of the integral over the positive part, the second term in (8.174) gets 0 and the
first term gets f;(x,t)d;;. This goes in analogy for the parts with ¢; but in this case
we have the derivative with respect to ¢ for f; instead of f;. The same technique
can be applied for the spatial and time dependent functions from the last row of
®,, which we will also depict here. Since the beginning of the proof was worded
in general terms, we do not have to reproduce this part for the spatial and time
dependent functions again. We continue with the application of the mean value
theorem, which we now apply for the spatial and time integral.

This guarantees the existence of (£1,71), (£2,72) € B, (z) x [0, %], such that

/ " /t_t (®:),; (v = y,t = 0) fi(y,6) A9 dy
— . t + x _ _
= fi(&,m) /T(I) /t_to (‘I’T)ij (x —y,t —0)do dy

t
S [ [ @) a-ve-oaa
B, (z) Jt—to
(8.177)
Remembering Theorem 8.4.1 and (8.147), we have

t t
[ [ @ie-ve-naays [ [ @)e-pi-nddy =,
r(z) Jt—to - (z) Jt—tg
(8.178)

We can rearrange this equation to

t t
/ / (q)f);j(:c—y,t—Q)deyzdij—/ / (®.)7 (x— y,t — 0) 49 dy,
B, (x) Jt—to BT(LB) t—to
(8.179)

Moreover, substituting this equation into (8.177), we get

/ ()/tt (®-);; (x —y,t —0)f;(y,0) df dy

= [i(&,m2)0i5 + (f3(&.m) — f5(& 772))/ " /tt (®,); (x —y,t —0) df dy.
R (8.180)
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In a last step, we have to estimate again

t
/ ( )/ (@) (z—y,t—0)dody <C (8.181)
r(x t—to

for a positive constant C' independent of 7. With this we get

T—0
7>0

lim /B y /t (@) et = 00 (0,6) d dy = by . (8.182)

since (£1,m),(&2,m2) € B (x) x [t —to, ], f; is continuous and we have the coupling
between 7 and ¢, that means ¢, goes to zero likewise as 7. Together with (8.167),
we get

iy /B /R &.(z—yt—0)f(y,0)d0 dy — f(z.1). (8.183)

That means, we are left to show that the positive part of each source scaling func-
tion is restricted by a positive constant C' independent of 7. We show this for each
function separately. Let us start with the source scaling functions with J, and 9,
dependency and take Remark 3.3.3 into account. That means we start with ®; ,
because we do not have to consider the §; any more and want to show that the
positive part is limited by a constant. We estimate

/ (P11,)" (z —y) dy < max |(P1,)" (x—y)| / 1 dy (8.184)
() y€B () B (z)
2

From Lemma 8.4.3 we know that ®;; , achieves its maximum at (+7,0) and we
insert it and get

A C 6C, — 1 1572
(I)ll,‘r(:l:Ta 0) = _TMQ_; (<j_—2) - C(4 p )
G (02 U\ el (2 37
2 T2 o 21 \ 72 T4
=O(r %) asT—=0+. (8.185)

Hence it follows that the integral over the positive part can be estimated by a
constant. We continue with the positive part of @1, .

/ (Bro) " (z —y) dy = / (@2)* () dy (8.186)
B () +(0)
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and get for the constants

-9+ 06—«
wooom T

/\ + 1% 0304 0304 ﬁ
v

C3Cy )\+u _a_Cl
e T

11
( 5)\+ u_a01>

A+u +a? A+ 1lp a? )
co(A +2u) + a?) p Co(A +2p) + o
(8.187)

1
™
1
™
> 0.

Due to the fact that the combination of constants above is > 0 and the symmetry,
we get for @y, , (for the part with y;, ¥, > 0) and the usage of polar coordinates.

/BT(O) (@12,7)+ (y) dy

y1,y2>0

A w/2  pT
_ (5 +MC’3C4'4 n 60364'4 _ 0401) / / (r2sin g cos ) - r dr dg
0 0

W TT T Tl
A + 1% 0304 0304 0401 11 4
= (5 P +6 i 7m_4) 547 (8.188)

which implies that the positive part can also be estimated by a constant. Let us
continue with the two components of ®;3 ;. We can show that the function @1,
without the z; is > 0. We show that the combination of constants is > 0 and have

2 2

27 T2 T2 21 712
C()[,Lcl 1 ’7'2 0603 1 7—2
" Ton 12 <2 T2> T or 2 015t
1
= 9.2 (conCy + aC3(Cy — 1))
1 . oY . co(A +3p) +o* co()\+u)+a2_1
T orr2 \7° co(A +2p) + a2 2(co(A+2p) +02) \co(A+3p) +a?

1 . o' o colt
2772 Ouco()\ + 2p) + a? co(A+2u) +a?
—0. (8.189)
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With this knowledge, let us continue and have a look at the integral

Cicopt lylI>\ | aCs (11 (6Cs — 1) ]2
Ul ) W —5CYy - d
/ +(0) 27 T2 T2 + 2 T2 ke T4 Y

y1,y2>0

:CONCl / /rcosgo 2—— -rdrde
2w T2

v/2 6Cy — 1 2
E/ / (TCOS¢<24 )—5C4rcosg0-r—>-rd7"d<,0
2 Jo 0

-
copCy 1 (2 5, 17° aCs 170
— _ —_ _ —_— _— —_—— — 1 —_ —_——
27 72 (3T 572) T on 3 2 (6C4 ) =G 574
— 0 (1 — 0+4), (8.190)

that means the integral can also be estimated by a constant. Due to the symmetry
it is for &7, , sufficient to have a look at the part with y;,y, > 0

43/101 4C1
/T(O) - / /T cos  dr dp
4C,

y1,y2>0

N TF
4C
== (8.191)
3
This integral is also bounded. Now we have a look at the positive part of @, .. If
we have a look at the function without the y;-term, we see that the remaining part
contains no y-dependent term. Therefore, the sign of this term is independent of
the spatial variable. We consider an arbitrary time interval and a half circle with
polar coordinates and also Remark 2.2.4. We can separate the spatial and the time
integral to obtain

T pta pr/2
/ / / @3177— dg@ dt dr
0 t1 77‘(‘/2
T to w/2
= / / / —r?cos g dy
0 t1 —7/2

72 aputt +8C (X + 2u)tr?
X exp | — )
402t 8C2/Lt T

3201 Co(A + 21)t2 (1 exp (757 )

dtd
8Cout?r4m "

+
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T2 ,7_2
S0 . 4C5 exp (__402t2) 4C5 exp (——4C2t1 )
—_—— . &MT —_
3 8Courim T2 72

as 2 . 72
—8C1 (A +2u)T (El (_402152) —Fi (_402751))
72 i 72 ) 72
s (2 () -3 (o)
-2 -2
+ (tg exp (_402t2> — tl exp <_402t1>) - (tQ - tl)):| . (8192)

For the limit 7 — 0+, it is obvious that the first three lines vanish. We only have
to look at the last line more precisely and get

t2 T2 tl 7'2
f2 - 1) _ _1 8.193
T (exp( 402152) ) T (eXp( 402751) ) ( )

-~

—0 (1—0+) —0 (1—0+)

=2

due to L'Hospital’s rule

72 72 —27
. exp ( 402t1> 1 . exp ( 4C2t1> ) 4C%t,
lim = lim

T—0+ T T—0+ 1

~ 0. (8.194)

Please note that we have a quadratic term for ¢ in the numerator, that means we
have a maximum of 3 intervals, where the function is only positive or negative.
For @33 ;, our aim is to estimate the function for the space-dependent part with its
maximum. Therefore, we have a look at the derivative with respect to ||z|* and
get for the numerator (because the numerator is sufficient to get the roots of the
derivative)

1 2
8t — cout? >0, 8> geout, (8.195)
<0, t < iegur?
3 3 oOMT".

We start with the first case t > %Co p7?, that means the function is monotonically
increasing for ||z|| and achieves its maximum at the boundary for ||z|| = 7. Insert-
ing this maximum into the numerator of the function (here it is sufficient to have
a look at the numerator for the sign of the function) leads us to 4¢72 which is posi-
tive and the maximum therefore too. In the second case we have a monotonically
decreasing function and its maximum in the point (0, 0). We have to check for the
case t < 1/8cout? that the numerator of the function is actually positive again.
This can be done by insertion of (0, 0) in the numerator and a simple estimate:

1 1
—4t7? + COMT4 > —§Co/ﬁ4 + CO,UT4 = 500/”4 > 0. (8.196)

118



8.4. Theoretical Aspects of the Decorrelation

We can now go over to the estimation of the integrals for both cases and split the
integral over the positive part of ®33, into two cases (remember Remark 2.2.4).
We start with the second case and the following integral, where the maximum is
estimated by ||z|| = 0 and get (do not forget the area of B, (0) multiplied with the
integral)

1/8cout? 2 —At 2 4
9 T TS+ CouT
e — dt
o /0 Xp< 46’2t) 64C2t4n

4C2 exp (—402(17—;””_2)> (7-2 +4 (%00/17'2) CQ)

8

=72 | —47?
64C3 (gcopt?) T

2

4C5 exp (—402(7—)> <32022 (é00MT2)2 +8C% (§coput?) T2 + 7'4>

1
5copT?

+cout?
(%Colu7'2>2 76 . 64C2

(8.197)

where the integral converges to a constant for 7 — 0+ and is therefore bounded.
We continue with the integral in the first case given by ¢ > 1/8 cou7r? and the
maximum for ||z| = 7.

5 to 7_2 th
e — dt
o /é oz P ( 402t) 16C2thr
7_2
-2 , 4C exp (—4C2t0) (72 + 4t Cy)
pr— . 7— .
16022 onT4

1Coexp (e ) (74 4 (o) )

(o) 7
(8.198)

where this integral is also bounded for 7 — 0+. Please note that ¢, is linked with
7 by a constant 7" in the way that t, = 7" - 7 holds true. In our case 7 is the length
of our considered time interval. O

This finishes our proof. We showed that our constructed source scaling functions
tulfill the property of a scaling function and the approximate identity. This the-
oretical result builds the basis for our upcoming numerical part. We can now go
over to the numerical details of the decorrelation.
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9. Numerical Experiments

In this section, we want to introduce suitable cubature formulas for our source
scaling functions and show the numerical results. For the cubature formulas, we
implement the numerical method from [21].

9.1. Cubature Formulas for Scaling Functions

Our next step is now, to have a look at the situation of our given data. This is the
following: We have given data sets on a fixed grid. That implies for increasing
7 the support of the source scaling function gets smaller and the Poisson sum-
mation formula gets less points to evaluate. This goes on up to the point that
the source scaling function covers only one point for increasing j. The problem
is that the soure scaling function has to cover a sufficient number of integration
nodes for good convolution results. Therefore, it is necessary to modify the Pois-
son summation formula. We do this in the same way as it was done in [21], that
means we introduce a particular weight, which is multiplied to the summation
formula and is related to the source scaling functions.

We start with the procedure of a decomposition at a scale j, and have the data
given on a lattice A, that means we calculate the convolution integrals with ®;,
on a coarse grid A, C A. This grid A, has to be chosen such that there are enough
data points and integration nodes such that the integration method (which is in
our case the Poisson summation formula) yields good results. In this case it is not
necessarily required that we use the whole lattice A for the convolution. This has
the advantage that the convolution integral can be calculated faster than with the
whole lattice A. Proceeding with this principle, we can use a lattice A;, for the
convolution @, and so on with the property that the grids are nested like this

AJOCAJICADCCAJ71CA]:A (91)

With this we have for a convolution ®,, against the data the associated grid A and
it is desired that the error of the numerical integration is small. For this purpose
it is very important that the support of the respective source scaling function
covers enough integration nodes. But here is another thing to mention if we are
at step J, where we use the originally given lattice A = A;: If we want to do a
convolution for j > J, we are confronted with the problem that we do not have
more integration nodes as in the case for J, since we used in this case the whole
lattice. If we now increase j > J, we come to the point again that the support of
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9. Numerical Experiments

the source scaling function tends to a single point and therefore our summation
formula results in infinity or zero. This is dependent on the single point itself,
if it is a node of the numerical integration method or not. One solution for this
problem would be to interpolate the given data and get nodes on lattices like

A:AJCA]+1CAJ+2C.... (92)

But this would also increase the computational effort because of the additional
task to compute the interpolation. Due to these reasons, we want to introduce
cubature formulas that are suited for our singular integrals. For the construction,
we follow the same way as it was done in [21], that means we equip the original
summation formula (5.34) with an additional weight on the right-hand side. This
weight is connected with the source scaling function due to the construction. For
a short overview, we first show the choice of the additional weight for the Laplace
case. Here the weight is chosen such that

Jis ®-(lz —yl) dy
IFall 32 alg)®-(lz —gll)

gEANB

wh (T ) = (9.3)

Due to the construction, the weight reflects how precisely the integral of @, is
approximated by the Poisson summation formula. If we now define

I(x) = / &, (| — yll) dy 9.4)

with I(z) = 1 for the case B, () C B, we see the following property of the weight:

(

> 1, shows that the approximation of /(z) by Corollary 5.2.6
is too small,

Wb (r: 7) =1, shows that the approximation of /(x) by Corollary 5.2.6

is exact,

<1, shows that the approximation of /(x) by Corollary 5.2.6

| is too large.

(9.5)

That means the weight provides information about the quality of the approxi-
mation. With the help of the Poisson summation formula, it is shown that the
modified cubature formula

(r;2) |Fall D alg)®-(le = gl)e(g) (9.6)

gEANB

tends to a(z)p(x) in the limit 7 — 0+, which is in the Laplace case also the result
in the limit 7 — 0+ of the convolution integral (see Definition 4.1.1) given by

/B o, (|l - yll)p(y) dy. ©.7)
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9.1. Cubature Formulas for Scaling Functions

That means summarizing the results, we get

lim | wh(r;2) [Fall Y al@)®:(llz —glDole) | = a(@)p(z)

>0 geANB

With these preliminary considerations, we want to switch over to our source scal-
ing functions in the case of poroelasticity. Please note here that we have a source
scaling function tensor (in contrast to [21], where there is a single source scaling
function). Due to the construction and the properties of the source scaling func-
tion tensor (see Theorem 8.4.1), it is only for the diagonal elements possible to
compute such specific weights in analogy to the weight in the Laplace case. For
the functions on the minor diagonal, we use the same weights as for the main
diagonal. For the functions ®;; , and ®4, ,, we introduce the following weights in
analogy to [21]

f% () q)ll,‘r(x - y) dy

w(r:2) = T ’ (9.9)
TOTIRT Y el g)
gEANB ()
x o ,T(m - y) dy
w? (T 1) = f%T( ) _*2 : (9.10)
IFa.ll 2 alg)®xuq (r—g)
9ENNB ()
where we used the abbreviation 9B,(x) = B.(z) N B to consider the compact

support of the source scaling functions. For the weights belonging to ®3; ., we
have the drawback that the function tends to zero for (z,t) — (0,0). Therefore,
we have to define the auxiliary function

®33,T<x7 t)7 t Z g,

9.11
Oss - (2,0), t<o, ( )

(1)2))3’7_(1‘715) = {

where o is sufficiently small enough. For an estimation, how small this ¢ should
be, we have a short look at ®3; -(z, o)

. (9.12)

2 ] 25 _ Agr? 20,2 2
br,0) = e ) Moo =207 o)

4Ch0 64C2047

Neither the expression with the exponential function nor the denominator can
get zero.
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9. Numerical Experiments

Let us have a look at the numerator more precisely and solve the equation with
respect to ||z|

8||z||%0 — 407 + cour? — copt?||z||* =0
& ||2||*(80 — cout?) = 407 — cout?

4072 — coutt

& |l2l* = (9.13)

80 — cout? ’
where the denominator is unlike zero for o # fcour®. The numerator gets zero
for o = %lco/m-Q, that means if we, for example, take care that 0 < %co/n? holds
true, because o should be chosen sufficiently small, both requirements are ful-
filled. Therefore it seems useful to couple the parameter o with the parameter
7, that means o should decrease with decreasing 7. With this we can state the
weight belonging to the function ®.. Furthermore, we have to introduce the
originally solid angle a(z) now with respect to domain and time as a combina-
tion. That means, we understand the space and the time as a three-dimensional
space and define a(z,t) as the following (in the setting of a rectangular prism
B x[0,T] = (—1,1)* x [0, T] for our numerical setting, where T is the end point of
our considered time interval)

0, if x is not an element of the cube B or the boundary 08
and ¢ is not an element of the closed interval [0, 77,
, if x is one of the four corner points of 03 and ¢t € {0,7'}
(o t) =4 if « i.s on one of the four edges o'f OBandt e {0,T} 9.14)
or x is one of the four corner points of 0B and t € (0,7),
5, if z isin the open square Band ¢t € {0, T}
or x is on one of the four edges of 0B and ¢t € (0,7,

1, if zisin the opensquare Bandt € (0,7).
With this definition, we go over and set the last weight as

w3<7_‘ " t) L f%T(m) f‘zto () CI)33=7'(:E -y, t— 0) do dy (9 15)
o [P, MIFa > > ag,s)Phs (x—g,t —s) ’

gEALNDB 7 (x) sEALNTy (1)

where we used the abbreviation T;,(t) = [0,7] N [t — t,t]. Here, A, is a lattice
in R? referring to the spatial component and A; is a lattice in R regarding the
time component. Especially for the construction in the time-dependent case of
w?(7; x, t), we refer to the d’Alembert case in [21]. These weights reflect also how
precisely the integrals of ®q;,, ®2, and P33, are approximated by the classi-
cal Poisson summation formula. For a more detailed comparison of the classical
Poisson summation formula to its modified version in the Laplace, Helmholtz
and d’Alembert case, we refer to [21]. In this thesis the behavior of both sum-
mation formulas is shown for some numerical examples (test functions for the
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9.1. Cubature Formulas for Scaling Functions

data functions that are convolved). More precisely, the exact solution, the corre-
sponding approximation and the relative error are shown for some n € N. Now
we want to show that our constructed weights and the corresponding summa-
tion formulas also fulfill the necessary results to approximate our convolution
integrals like in (9.8) in the following theorem.

Theorem 9.1.1. Let a reqular region BB in R? be given. We have o(x) as the solid angle
in x subtended by the boundary OB or o(x,t) for the time dependent case as defined
above. Furthermore, we have fixed lattices A, in R* and A, in R with the respective
fundamental cells Fr, and Fy,. Let v € A,NB,t € A,N[0,T] and B,(z) =B, (z)NB
and T, (t) == [0, T) N[t — to,t] and f : B x [0, T] — R be continuously differentiable.
We obtain

w! (752) || Fa, | Z a(9)®jir(x — g)fi(g,1)

gEAZNB - ()
= / ( )(I)ji,T('T —y) fily,t) dy + (wj(T;x) - 1) / ( )(I)jiﬂ'(x —y)fi(y,t) dy
+(z Br(x
i)l Y exp(-er (1) [ ol )iyt exp(-2rihy) dy,
e>0 hzeAgl %7—(1‘)
a0
forj=1,2,i=1,2,3 (9.16)

and for the case with the additional time component

wrsa, ) |Fa I Fal Y Y. alg, ) (x — g, —9)filg,s)

9EALNB (z) SEA T4 ()

() Tt

T (Wm0 —1/ / &, ( — y,t — ) [(y,0) 40 dy
(@) STy (1)
/ / 327’ - yat - 0) - (PBi,T(:L‘ - yat - 9)) fz(y70> de dy
Teo
+w? (73 2, 1) hm Z Z exp(—em?(||he|” + h2))

€>O he€AZ Y hieA[?t

hz;éO ht#()
/ / 317’ y7t_9)fl(y79) exp(—27m(hx y+ht 6)) dg dy7
Br(z) J T (1)
fori=1,2,3, (9.17)
where we have
Ps; , =1,2
R A (9.18)
’ <I>g377, 1 =3,
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and the introduced weights w' (7; x), w*(7; x) and w?(7; z, t) from (9.9),(9.10) and (9.15).
Additionally, we obtain

W (752) | Fa, | 2 gensrm, (o) e @(9) @i (= 9) filg, 1)

i [ Il S gen ) St 00) i — 9) filg, 1)
= w (152, ) | Fa, L Fal deAln% (x )ZseAtﬂ‘ItO(t) Z§:1
a(g,s)®y; - (z —g.t — ) fig, 5)

= llino/ / —y, t—0)f(y,0) do dy, (9.19)

7>0

that means

lim (wj(T; x) — 1) / i (v —y) fiy,t) dy + w!(7; x)
7—0 B, (z)

7>0

<l 3 exp(-en (W) | Biale ) ilust) expl-2rih- ) dy
e—0
>0 pen;t Br(z)
ha 0
_0 (9.20)

and

g(( mt—l/ / (=, — 0)[(3,0) 40 dy
7>0

/ / 3@7’ _y,t_e) _(I)SS,T(:E—yvt_e)) fl(yﬁe) d¢ dy
(@) T4,
+wi(r; 2, t) hm Z Z exp(—em? (||, H + k)

6>0 he€Azt hpen;t
ha#0 ht;ﬁO

/ /E ¥, (o y,t—mfi(y,e)exp(—?mm-y+ht-9>>dedy)

(9.21)

Proof. For the proof, we have a look at each convolution integral separately. We
start with the convolution integrals given by (8.164) and the convolution ®; , * f;.
We apply the same technique for the proof as given in [21].
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9.1. Cubature Formulas for Scaling Functions

With the help of the defined weight w'(7; ) and the Poisson summation formula
(see Theorem 5.2.5 and the resulting Corollary 5.2.6), we find

w'(riz) [Fall Y. alg)®us(z—g)fi(g,t)

gEANB ()

= wi(r;2) / Bz — 9) fuly. ) dy + w' ()
B-(z)

xlim 3 exp(—en? ||h]?) / iy (2 — 1) (9, 1) exp(—2rih - ) dy
8538 thA;I sB7'(77)

ha0

:/‘ P11 .(z—y)fily,t) dy
B-(x)

Hima) = 1) [ el - )it dy

7'(37

+w1(r;x)li_r>r(1) E exp(—57r2||h|]2)
5>0hx6A;1
ha0

X / Oy (2 —y) fi(y, t) exp(—27mih - y) dy. (9.22)
Br(x)

For the limit relation, we consider the following: Because z € A, N B, we find a
7o such that {glg € A, NB,(x)} = {z} forall 0 < 7 < 75. We insert this and the
weight into the modified cubature formula and get

wma) [ Fall D alg)®usle —9)filg. 1)

9ENNB ()
f% (z) Py .(z—y)dy
= — a(x)®q1-(0) fi(x, t). 9.23
O‘(x)(bll,r<0) ( ) 11, ( )fl( ) ( )
Now taking the limit 7 — 0+, we obtain
lmut(ma) |Foll Y al@)®ua—g)filo.t) = A1), 029

7>0 gEALNB ()

For the second and third term on the right-hand side of (9.22), it follows from the
limit relation above and the fact that the first term on the right-hand side tends to
fi(x,t) for 7 — 0+ that this part tends to zero in the limit 7 — 0+, that means
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lig | (w'(riz) = 1) [ @il = o) hilot) dy

7>0 Br(z)

(o) lim 3 exp(—en? 1))
E>0hz€A;1
hz#0

X / Oy - (x —y) fi(y,t) exp(—27ih - y) dy)
B (z)

= 0. (9.25)

If we now follow the same procedure for the remaining convolution integrals
in (8.164), that means for the functions ®1, ., ®{, . and ®j,  with the modified
weight w!(7; ), we can do the same steps as before and obtain instead of (9.23),
for example for @5 -,

w'(ma) |Fal Y] alg) i@ — g)fa(g.t)

gEANB ()
(1)11’7— xr — d
- f%T(z(x>q)1(1 (0§J> ya(x)q)12,'r<0)f2<xﬂt)' (9'26)

Since ®15,(0) = 0 and also ®j;,(0) = @3, (0) = 0, we get altogether for the
convolution integrals of (8.164) the result fi(z,t) in the limit, which is also the
tirst line of the convolution integral

flot) = iy /B /R B, (z — y,t — 0)f(y,6) A6 dy. 9.27)

The same thoughts and steps can be applied to the second line of our convolution
integrals (see (8.165)) with the weight w?(7; ). For the third line (see (8.166)), the
technique is the same with the weight w*(7; z,t) but we want to show it more
detailed here again because of the time dependency. We have a look at the third
convolution integral ®s3 , * fs.
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9.1. Cubature Formulas for Scaling Functions

With the help of the Poisson summation formula and the defined weight w?(7; z, t),
we get for the auxiliary function @3, , defined above

wEe) IFulIFal 3 3 el )@ (e = 9.t = 9)fulo.s)

gEANB () SEA: NTtg (t)

—wriat) [ @yt 0)(.0) 0 dy
Br () J Teg (1)
+w?(T; 2, 1) lim Z Z exp(—em?(||ha|® + h2))

5>0h €At heeA]!
ha#0 hﬁéo

/ / iy (v =y, t — 0) f3(y, 0) exp(—2mi(h, - y + hy - 0)) dO dy
Tto

-/ / B (1 — y, — 0) f5(y,0) 40 dy
@) T (1)
- (w? mt—l/ / Bl (2 — y, 1 — 0)f(y,0) A0 dy
T
+w?(T; 2, 1) hm Z Z exp(—em?(||he|” + B2))

€>0 he€A; " heeAT!
ha 0 hy£0

/ / Bl (1 — . — 0) (1, 0) exp(~2mi(y -y + By - 6)) d6 .
" (9.28)

Proceeding, we get

W, ) | FallIFal ) Y. g, 9P (z—g.t—5)fs(g.5)

gEAZNB () s€EANT (1)

_ / / Dy — y,t — 0) f3(y,0) A0 dy
() Kto(t)
- (w? mt—l/ / B — g, — 0) f5(y,0) 40 dy
T

/ / qDéST _y7t_0) —‘P33,r($—y,t—9)) fg(y70) do dy
r(x) STy
' (T;x,t hm Z Z eXp(—57T2(Hth2+hf))

€>0h €At heeA!
ha#0 hﬁéO
/ / iy (x =y, t — 0) fs(y, ) exp(—2mi(hy - y + hy - 0)) df dy.
() J Ty

(9.29)
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9. Numerical Experiments
For the limit relation, we consider again the following: Because x € A, N B and
t € Ay [0,7T], we find a 7y such that

{g < ALE A EBT("L‘)7 s € At N gto( )|(I)33 T( —g,t— S) 7é 0} = {(:Evt)} (930)

forall 0 < 7 < 7p. We insert the weight and get

W ) [Fal1Fal Y Y alg ) (w = g.t = 5)fs(g,5)

GEALNB () sEANTy, (t)

f%f(x) ffzt @33 7— - Y, t— 0) d@dy
(w t)%,T(O,O)

oz, 1)@, (0,0) fa(z, 1), (9.31)

Now taking the limit 7 — 04, we obtain

lim | w*(752,8) | Fa |l |1 Fa D Y. alg.s)Py. (v —g.t—5)fs(g,9)

T—0
7>0 gEAZNB () s€EANT (1)

= f3(x,1). (9.32)
The last four lines of (9.29) tend to zero for 7 — 0+ due to the limit relation proven

above and the fact that the first line tends to f5(z,t) for 7 — 0+, that means we
have

lim | (w?(;2,t) — 1) / / QL (x—y,t—0)f3(y,0) do dy
=0 B(0) ST (t)

>0

/ / ®/33T _y7t_0) —¢33,T($—y,t—9)) f3(y,9) de dy
T,
+w (T;x,t hm Z Z eXp(—57T2(Hth2+hf))

s>0h €At heen!
ha#0 hﬁﬁo

/ o /I iy (2 —y,t —0) fs(y,0) exp(—2mi(hy -y + he - 0)) df dy)
(9.33)

If we now follow the same procedure for the remaining convolution integrals
in (8.166), that means for the functions ®3; ; and @3, , with the modified weight
w?(7;2,t), we can do the same steps as before and obtain instead of (9.31), for
example for @3 -,

wS(T;xat) HFAZH H‘FAtH Z Z Oé(g, S)(p?)l,‘r(x - gat - S)f1<g7 S)

gEALNDB () sEA: N%t, ()

f% (z) f‘:‘:t (I)SST - yat - 9) dedy
(96 £)®33,-(0,0)

a<x7t)q)31,7<070)f1(x7t)' (934)
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Since @3, -(0,0) = 0 and also ®3,.-(0,0) = 0, we get altogether for the convolution
integrals of (8.166) the result f;(z,t) in the limit 7 — 0+, which is also the third
line of the convolution integral

T—0
>0

= hm/ / —y,t—0)f(y,0)do dy. (9.35)

O]

Summarizing, we can say that the constructed weights together with the mod-
ified cubature formulas correspond to the right-hand side of the approximate
identity given in Theorem 8.4.4 in the limit 7 — 0+. In other words, we can
rewrite Theorem 9.1.1 as a cubature formula in the following way.

Corollary 9.1.2. Under the assumptions of Theorem 9.1.1, we have the cubature formu-
las

/% Bl =)y = I Y el ke i),

9EALNB, ()
fori=1,2,3 (9.36)
| im0 P Y alg)fue - A0,
B (@) gEALNB (2)
fori=1,2,3 (9.37)

t
/ / By — yt — 0)fi(y.0) A6 dy
T(:E) t—to
) 1FulF Y S alg, )@ (@ -yt — 0)fi(y,6),

gEALNDB () sEAtﬁTtO( )

fori=1,2,3 (9.38)

Please note that we have to use the auxiliary function in (9.38) instead of ®33 . on the
right-hand side. The cubature formulas also hold true for the cases ®}, . and ®, ., where
we have the derivative of the data with respect to the time instead of the data itself at the
time .

9.2. Test Datasets

We introduce the data sets that we want to decompose with the help of our source
scaling functions and the appropriate cubature formulas from Section 9.1. We
have to draw on synthetic data, which we generate with the help of the funda-
mental solutions.

This is done in the following way: We take the fundamental solutions «* and p*
and shift them such that the singularity is outside of our considered area (this
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is also done in [10] for testing the method of fundamental solutions). Then we
evaluate these fundamental solutions on a fixed grid and take them (in analogy
to [10]) as our given input data. In our case this means that we take the square
[—1,1]?, the time interval [0, 5] and shift the fundamental solutions by (2, 2) in the
space and —1 in the domain. More precisely, we evaluate u5 (v, — 2,75 — 2, + 1)
and p¥(xy —2, 29 —2,t+1) for N = 100 points in the spatial direction and M = 200
points in the time direction. For the last scale j = 6, we use N = 200 points as an
exception.

In Figure 9.1 the plots of the generated datasets for u;, u, and p for the fixed point
of time ¢t = 1 are shown. We see that we have very smooth data in contrast to the
used data in [21-23, 61]. Unfortunately, we do not have access to real data or data

models in poroelasticity.
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(a) Component u;, t =1 (b) Component uz, t =1 (c) Component p, t =1

Figure 9.1.: Data sets for the displacement component and the pore pressure
given for the multiscale modeling for the fixed time ¢ = 1.

One thing is to mention here about the image section of the data before we go
over to the convolution results.

Remark 9.2.1. Since we have some boundary effects in our convolutions (see further
considerations in Remark 9.3.3 and Figure 9.14), we cut off a fixed part of the boundary in
the spatial component because these boundary effects should not superimpose the overall
structure of the convolutions. This is also done here in the case of the given data for a
better comparability between the data and the convolutions in the next section.

In the following, we summarize the data set consisting of u,, u; and p sometimes
by the data vector f that means f = (uy,ug, p)T.

9.3. Pictures

In this section, we show the decomposition ability of our source scaling function
tensor {®,;}, y and the corresponding wavelet tensor {¥.;},_ by showing the
decorrelation for several parameters 7; of the data. We choose the monotonically
decreasing sequence 7; = 277. For a better clarity, we show the convolutions for a
time cut that means the spatial part for a fixed time.
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Remark 9.3.1. Please note that we do not use the o-distinction (see (9.11)) for @33 , be-
cause our numerical tests show that o can be chosen arbitrarily small. For the numerical
tests we do not let the support of ®ss . shrink so small that it shrinks to a single point
because this is not useful for a numerical integration. It is necessary that a sufficient
number of points is covered by the source scaling function.

The convolutions and numerical tests are implemented in Matlab (see [111] and
[112]) and the computations are performed on the OMNI cluster (University of
Siegen). We have a look at the convolution results of the data u; and u, together
because due to the symmetry of the data, the fundamental solutions and the con-
structed source scaling functions, they behave very similarly. Please remember
here that we have the situation of a source scaling function tensor (see Section 8.3).
First we have a look at the convolutions of (8.164) respectively (8.165) together
that means the several components of the convolution are added in the pictures
for a better comparability with the input data. Later, we show the several com-
ponents of (8.164) as an example individually for some parameters.

Figures 9.2-9.7 show the multiscale approximation of the data u, respectively u,
by convolution of the source scaling function (tensor) {CIDTJ. }J.GN (scale-space) and

the source wavelet (tensor) {\Iij }j oy (detail-space) with the data. Here we use
the parameters j = 0,...,6 for the source scaling function (results depicted in
the left column of the mentioned figures) and j = 1, ..., 6 for the source wavelet
function (resulting pictures in the right column of the figures). Remembering the
definition of the wavelet function, we obtain the convolution of the source scaling
function at scale j if we add the convolution at scale j — 1 and the appropriate
wavelet convolution at scale j. In our case the last two mentioned components
are shown in one row that means the pictures of one row have to be added to
obtain the convolution in the next row on the left-hand side. For example Fig-
ure 9.2a and Figure 9.2b are added to obtain Figure 9.2c.

Especially in Figure 9.2 and 9.5 we can see that the main difference of two convo-
lutions happens near to the boundary (see Figures 9.2b, 9.2d and 9.2f for «; and
Figures 9.5b, 9.5d and 9.5f for ;). The convolutions with the source scaling func-
tion tensor for j = 0 (see Figure 9.2a for u; and Figure 9.5a for u;) and j = 1 (see
Figure 9.2c for u; and Figure 9.5¢ for u,) have a scale with a positive and negative
range. This changes with the parameter j = 2 (see Figure 9.2e for v, and Fig-
ure 9.5e for uy) and we see a clear similarity between the scale of the data and of
the convolution. Furthermore, there is a rough correspondence in the structure.
Although, we have big variations on the boundary for the convolution with the
source wavelet tensor for j = 3 (see Figure 9.2f for u; and Figure 9.5f for u,), we
can recognize the structure inside compared to the convolution with wavelets of
a higher scale (see Figures 9.3 and 9.4).

In Figures 9.3, 9.4, 9.6 and 9.7 we can see that there is no obvious difference
between the low-pass filtered versions (see Figures 9.3a, 9.3¢c, 9.4a and 9.4c for
u; and Figures 9.6a, 9.6¢, 9.7a and 9.7c for uy) because the magnitude is 1073,
whereas the magnitude of the band-pass filtered information is between 10~* and
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107° (see Figures 9.3b, 9.3d and 9.4b for u; and Figures 9.6b, 9.6d and 9.7b for u,).
The magnitude of the band-pass filtered information decreases with increasing
parameter j. That means the detail information gets consecutively finer and that
is what we expected from the convolution. In our case of smooth data a lower
scale j would be sufficient to do a coarse approximation of the data.

Although we do not see differences between the convolutions with the source
scaling functions of a higher scale, we consider later some kind of computational
difference between the convolutions and the given data. That means we compute
a root mean square error and show that there is improvement for increasing scale
J-

We mentioned above that the shown pictures represent the sum of the convolu-
tion integrals in (8.164) respectively (8.165). Now we want to show the several
components of the composited pictures, that means the convolutions of the sev-
eral elements of the tensor with the appropriate data. We do this, as an example,
for the parameters j = 1 and j = 3 in Figure 9.8 respectively Figure 9.9 for (8.164).
We can see that the convolution with ¢4, ; for j = 1 (see Figure 9.8a) is a very
rough approximation of the data and the convolutions with the other functions
have major effects on the boundary (see Figures Figure 9.8b-9.8d). For j = 3
we can see more clearly that the convolution with ®;; ; (see Figure 9.9a) tends
to the data (here the magnitude is also better than in the case j = 1). The effect
of the convolutions with the elements on the minor diagonal on the boundary
decreased respectively vanishes (see Figures 9.9b-9.9d). Furthermore, the magni-
tude of the convolution with the minor diagonal elements gets smaller that means
we have for j = 1 a range from 1072 to 10~* and in the case of j = 3 the range
decreases from 10~ to 107°. In both cases the convolution with ®%; _ (see Fig-
ures 9.8d and 9.9d) has the most impact among the minor diagonal convolutions.
All in all, the contributions of the elements of the minor diagonal to the whole
convolution in (8.164) get smaller and in the limit the convolution with @4, , tends
to the data. Let us continue with the multiscale approximation of the data given
for p.

Figures 9.10 and 9.11 show the sum of the convolutions of the source scaling
functions and the wavelets represented in (8.166). In the multiscale approxima-
tion in Figure 9.10, we can see that we have again effects near the boundary for
the wavelets (especially see Figures 9.10d and 9.10f) which get smaller with in-
creasing j.

The magnitude of the convolution for j = 0 (see Figure 9.10a) is quite good and
improves with increasing j. Here Figure 9.10b does not have boundary effects
and contributes an important part for the improvement of the convolution. In the
picture with the convolution with the source scaling function for j = 2 (see Fig-
ure 9.10e), we can already see a good approximation of the data but with effects
on the boundary.

In Figure 9.11 we can see no difference between the convolutions with the source
scaling functions (see Figures 9.11a, 9.11c and 9.11e), whereas we can see that
something on the detail-space happens (see Figures 9.11b and 9.11d). Here the
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magnitude of the convolutions in the left column is about 10~% and the magni-
tude of the convolution with the wavelet falls from 10™* to 107°. The calculation
of the difference between the data and the convolutions later shows still an im-
provement at the higher scale.

In the case of the multiscale approximation of p, we only have the decorrelation
up to scale j = 5, because for j = 6, we need N = 200 points and the compu-
tational effort is very big due to the fact that the functions are space and time
dependent. For a consideration of some of the results with an uncut boundary,
we refer to Remark 9.3.3. For a more computational difference (not only based on
the pictures) between the different scales, we have a look at the so-called relative
root mean square error (RMSE) given by

num 2 3
el g (er/\zms ZteAm[O,T] |h(x,t) — h™™(z, 1) ) ’ . (9.39)

rms 2
Z:ceAmB ZteAm[o,T] |h(z,1)]

Here z and t represent the points at which we calculated our convolutions, which
are the same as the points of our data grid (see also Remark 9.3.2). The function &
represents one of the components u;, us or p and h(x,t) is the evaluation of 4 on
our given data grid. By ™™ we denote the results of the convolution given on
the data grid. Here this error is not to be understood in the classical sense of an
error but rather as a measure how large the difference between the convolutional
data and given data is and how well the convolution approximates the data.

Remark 9.3.2. Please note that we use the given data grid also for the calculation of
the convolutions. Due to the construction of the cubature formulas, this is a fact that
we have to accept here. Therefore, the RMSE can also only be computed on this fixed
grid. For evaluating the convolutional results and the RMSE on a different grid as the
data grid, we have to interpolate the data on the new desired grid and then calculate the
convolutions on this new grid. Our intention here is to show that the approach with these
scaling functions and wavelets basically works.

First we have a look at Table 9.1 which shows the RMSE evaluated on the same
sector as our given plots above for the spatial part. For the time dependent part,
we did only cut off the end points {0,5} of our considered time interval, because
in Theorem 8.4.4 we assumed ¢ € (0,T) without the boundary.

We see that the RMSE decreases rapidly with increasing j. Also in the most cases
of u; and uy, the RMSE is slightly better if we choose more points (parameter N)
in the spatial domain. For j = 5 it is conversely but in this case the source scal-
ing function might not cover enough data points for N = 100 and the RMSE is
not that convincing. For p the RMSE is only up to j = 5 reasonable to calculate,
because the combination of N = 100 points with the parameter j = 6 only covers
one point in the spatial domain and a few points in the time domain. This is not
justifiable for a meaningful result.
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Another thing to mention is that the RMSE is in the case of p smaller in general in
the beginning in comparison to u; and u,. Remember that we have only spatial-
dependent functions in the case of «; and u, and in the case of p the functions are
space and time dependent. In Table 9.2, the RMSE for the several convolutions

Parameter j | N | M | E* uy | B uy | B p
0 100 | 200 | 0.8012 | 0.8012 | 0.1585
200 | 200 | 0.7900 | 0.7900
100 | 200 | 0.4187 | 0.4187 | 0.0396
200 | 200 | 0.4018 | 0.4018
100 | 200 | 0.0812 | 0.0812 | 0.0101
200 | 200 | 0.0787 | 0.0787
100 | 200 | 0.0391 | 0.0391 | 0.0061
200 | 200 | 0.0387 | 0.0387
100 | 200 | 0.0207 | 0.0207 | 0.0082
200 | 200 | 0.0200 | 0.0200
100 | 200 | 0.0091 | 0.0091 | 0.0062
200 | 200 | 0.0105 | 0.0105
100 | 200 0.0060
200 | 200 | 0.0046 | 0.0046

N ON Ul Ul = = W W NDNN PR R~ O

Table 9.1.: RMSE for the plot area.

is shown for the whole domain (—1,1)? x (0, 7)) without the boundary points. In
contrast to Table 9.1, we can see that the RMSE is greater in general from which
we can conclude that there are effects on the boundary. All in all, the RMSE also
decreases in the case of u; and u, for increasing j. The RMSE for p is also de-
creasing but has an outlier for j = 2 which we can explain with some high peaks
in the convolution near to the boundary (they cannot be seen in the convolution
pictures because of the outcut boundary) because the RMSE in the case of the cut
boundary is small. For a reflection in greater detail for the case j = 2, we refer
to Remark 9.3.4. Again the value for j = 6 is not very convincing because of the
small coverage of integration points.

Remark 9.3.3. In our pictures we cut off some part of the boundary due to boundary
effects that influence the general structure of the picture. Here we want to show what the
pictures look like without the clipped off boundary. We do this, as an example, for the first
line of the convolution integral (see (8.164)) in Figures 9.12 and 9.13.

There are some things to mention. We can see that the boundary effects for the convolution
with the source scaling functions on the minor diagonal get smaller due to the magnitude
and the area they influence (see Figures 9.12b-9.12d compared to Figures 9.13b-9.13d).

136



9.3. Pictures

Parameterj | N | M | E* uy | B uy | B p
0 100 | 200 | 0.9402 | 0.9402 | 0.1895
200 | 200 | 0.9357 | 0.9357
100 | 200 | 0.7605 | 0.7605 | 0.0693
200 | 200 | 0.7562 | 0.7562
100 | 200 | 0.5541 | 0.5541 | 1.3359
200 | 200 | 0.5744 | 0.5744
100 | 200 | 0.3862 | 0.3862 | 0.0540
200 | 200 | 0.4055 | 0.4055
100 | 200 | 0.2548 | 0.2548 | 0.0107
200 | 200 | 0.2777 | 0.2777
100 | 200 | 0.0708 | 0.0708 | 0.0072
200 | 200 | 0.1815 | 0.1815
100 | 200 0.0066
200 | 200 | 0.0501 | 0.0501

AN ON U1 Ul b= - W W NDN P~k O

Table 9.2.: RMSE for the whole area without the boundary.

Here the convolution with ®3; . decreases very slowly such that it has a big influence on
the overall image on the boundary (see Figures 9.12d and 9.13d). We can see in both cases
that the boundary influences the overall image so much that we cannot detect the main
structure of the data in both cases (see Figures 9.12e and 9.13e) in contrast to the picture
where we cut off the boundary (see Figures 9.2c and 9.3a). So it is necessary to find a
suitable parameter for the boundary cut off.

Remark 9.3.4. We have a look at the multiscale approximation of p at scale j = 2 with
the whole boundary, because in Table 9.2 there is an outlier for the RMSE in this case.
Figure 9.14a shows the approximation, where we can see that there are some high peaks
near the edges which influence the RM<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>