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Zusammenfassung

Die Poroelastizität zählt zu einer Disziplin in den Materialwissenschaften und
beschreibt die Wechselwirkung zwischen einer Materialverschiebung und dem
Porendruck. Daher ist dieser Zusammenhang überall dort interessant, wo ein
poröses Medium und eine Flüssigkeit eine Rolle spielen und einen gegenseiti-
gen Effekt aufeinander haben. Dies ist in vielen Anwendungen der Fall und wir
konzentrieren uns auf die Geothermie. Das ist ein wichtiger Aspekt beim Re-
servoirmanagement, den man berücksichtigen sollte, denn der Austausch von
Wasser in einem Reservoir mehrere Kilometer unterhalb der Erdoberfläche hat
einen Einfluss auf das umgebende Gestein und umgekehrt.
Die zugrundeliegenden physikalischen Prozesse können mit Hilfe von partiellen
Differentialgleichungen beschrieben werden, den sogenannten quasistatischen
Gleichungen der Poroelastizität (QEP).
Unser Ziel ist eine Multiskalenzerlegung der Komponenten Verschiebung und
Porendruck. Dies ermöglicht es uns, zugrundeliegende Strukturen in den ver-
schiedenen Zerlegungsskalen zu sehen, die im Gesamtbild nicht gesehen werden
können. Wir möchten Trennflächen herausarbeiten und aus den Daten mehr De-
tails erhalten.
Zunächst beginnen wir im allgemeineren Kontext der Thermoporoelastizität, die
die Poroelastizität mit thermischen Effekten verbindet. Nach der Herleitung der
Fundamentallösungen reduzieren wir das Ganze zur Poroelastizität. Wir kon-
struieren physikalisch begründete Skalierungsfunktionen mit der Hilfe einer
Mollifier-Regularisierung der entsprechenden Fundamentallösungen. Hierbei ha-
ben wir einen genaueren Blick darauf, dass die Skalierungsfunktionen die not-
wendigen theoretischen Eigenschaften einer approximativen Identität erfüllen.
Des Weiteren zeigen wir numerische Experimente mit synthetischen Daten, die
die Anwendbarkeit unserer konstruierten Funktionen unterstreichen.



Abstract

Poroelasticity is part of material research discipline and describes the interaction
between solids deformation and the pore pressure. Therefore, this is anywhere
interesting where a porous medium and a fluid come into play and have an ef-
fect on each other. This is the case in many applications and we want to focus
on geothermics. It is important to consider this aspect in reservoir management
since the replacement of the water in the reservoir some kilometers below the
Earth’s surface has an effect on the surrounding material and vice versa.
The underlying physical processes can be described by partial differential equa-
tions, called the quasistatic equations of poroelasticity (QEP).
Our aim is to do a multiscale decomposition of the components given by dis-
placement and pore pressure. This enables us to see underlying structures in the
different decomposition scales that cannot be seen in the whole data. We want to
detect interfaces and extract more details of the data.
First, we start in a more general setting, that is thermoporoelasticity which relates
poroelasticity to thermal effects. After the derivation of fundamental solutions,
we reduce the setting to poroelasticity. We construct physically motivated scal-
ing functions with the help of a mollifier regularization of the appropriate fun-
damental solutions. Here we have a closer look that the scaling functions fulfill
the necessary theoretical requirements of an approximate identity. Further, we
present numerical experiments with synthetic data, which show the applicability
of our constructed functions.
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1. Introduction

1.1. Poroelasticity in a geothermal background

To understand why poroelasticity is important in geothermal research, we have to
explain what is meant by poroelasticity. Briefly speaking, it is part of the material
research discipline and describes the interaction between the solids deformation
and the pore pressure of a fluid. This theory is an extension of the classical elastic-
ity theory and goes back to Biot in the 1930s. These processes play an important
role in geothermics, since aquifers can essentially be described as poroelastic (see
for example [83, 147] for considerations of poroelasticity in reservoirs). Addition-
ally, the consideration of thermal effects can be taken into account which is then
called thermoporoelasticity. We can think of several influences of the components
solids deformation, pore pressure and temperature: Changes in the pore pressure
or extraction of fluid can cause a deformation of the solid right up to formation of
fissures (which can cause land subsidence and seismic events) and temperature
increase or decrease. Solid deformation influences the pore pressure and surely
the temperature since compressing a material increases the temperature. Temper-
ature variation can cause solid deformation and have effects on the pore pressure,
for example by increasing the temperature, the fluid expands. One more aspect to
mention is the influence of the reinjected fluid which is colder than the extracted
fluid. It is important to consider these things when talking about reservoir man-
agement which can be in the drilling and in the exploitation phase. Up to now
the reservoir management has a subordinate role in Germany in the operational
phase but can be more and more important with essentially longer operational
phases (see [30]).
Still, there are many more aspects and physical processes to consider in a geother-
mal project. The Geomathematics Group at the University of Kaiserslautern sug-
gested a model (graphic illustration given in [10]) to show the different tasks in
the field of geothermal energy, which bases on the four mainstays potential meth-
ods, seismic exploration, transport processes and stress field. Since there is many
literature given to these four aspects, we want to give a few examples to show
how many various scientists from different disciplines are concerned with these
topics (in particular geothermics).
For potential methods (where the focus is here broader) we refer for example to
the literature given by [57, 63, 65, 69, 76, 92, 114, 117–119, 121, 131, 138, 141] and in
the case of seismics to [36, 53, 55, 95, 100, 122].
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1. Introduction

Under the aspect of transport processes (see for example [38]), the topics fluid
flow [7, 14, 125, 132], heat flow [29, 109, 126, 129, 143], transport of chemical mate-
rial [12, 56, 145] and transport of tracers [84, 130, 153] are summarized.
The topic of stress field contains poroelasticity [9, 28, 32, 33, 80, 99, 148], thermoe-
lasticity [3, 8, 13, 42, 96, 102, 124, 139, 155], fracture mechanics [4, 87, 127, 133, 157],
seismic waves [2, 31, 51, 146, 154] and microseismicity [47, 54, 113, 134].
We focus on the topic poroelasticity where our aim is to construct physically rel-
evant wavelets by applying a mollifier technique. In general, mollifiers are aux-
iliary functions that are smooth. The convolution of a non-smooth function with
mollifiers generates a sequence of smooth functions which act as approximations
of the non-smooth function. The beginnings of mollifiers can be dated back to
Friedrichs in 1944 (see [79]). In the general theory of inverse problems, molli-
fiers can be found in [48, 49, 106, 107] in connection with operator solutions. In
this case the problem is assumed to be too ill-posed to be solved with known
regularization methods. More applications of mollifiers are given by [52] for the
construction of mollified finite element approximants, [91] for spherical decon-
volutions, [98] for optimization problems, [137] for the Laplace transform, [136]
for vector tomography, [149] for the solution of nonlinear systems of differential
equations and [144] for the recovery of piecewise analytic functions. These pa-
pers depict some of the topics where mollifiers occur and do not raise a claim to
be complete.
The theory of wavelets begins, to be precise, with the work of Haar (see [89])
and the Haar wavelets can be seen as the most simple wavelets. In general, there
are many approaches to construct wavelets which we want to recover here in
short. The similarity between all approaches is the construction of wavelets as
basis functions for multiscale analysis. The main topics of wavelets are for ex-
ample covered by [35, 43, 108, 110]. Besides the Haar wavelet as a wavelet on
the real line, we can mention for example the Daubechies wavelet (see [43]) and
the Meyer wavelet (see [115]). For wavelets on the sphere, there exist several
possibilities for the construction. One ansatz to mention here is the tensor prod-
uct ansatz [40] and another one as a more abstract ansatz with a group-theoretic
approach is given in [5, 6]. Moreover, [93, 104, 123, 128, 142, 151] consider certain
kernel wavelets. Another approach are the frequency reflected wavelets, for ex-
ample given in [64, 74, 78, 152]. The constructions based on potential theoretic
concepts, for example layer potentials, are presented in [62, 67, 82]. Some wavelet
methods come from boundary integral equations [68, 90, 101]. In [105, 116] the
construction under the aspect of localization has been done.
A survey on several multiresolution analyses can be found in [37].
More concepts about wavelets are considered in [39, 41, 45, 46, 70, 85, 88, 150].
For a more detailed literary overview about wavelets, we refer for example to [73]
or [117]. The former contains also a classification regarding the geomathematical
applications.
The key idea of the new approach (see for example [61] whose idea goes to back to
[75]) is the construction of mollifier wavelets which have geophysical relevance

2



1.1. Poroelasticity in a geothermal background

due to the connection to the differential equation and their fundamental solu-
tion. They should generate the decomposition of geophysical quantities. In the
case of the gravitational potential, the potential wavelets use the density as input
data to reconstruct the gravitational potential as the target data. Other wavelets
(called source wavelets) for the decomposition of the gravitational potential or
the density can be obtained by application of the associated operator on the po-
tential wavelets. Outgoing from the usage in geothermal energy, the benefits of
a wavelet approximation should be checked for signals with a relevance for the
geothermal exploration.
Since this new approach of a multiscale mollifier technique was discussed for
many other physical issues, we want to give an overview about the existing liter-
ature which concentrates on the multiscale mollifier technique, which we want
to apply to poroelasticity. We group the existing literature by its application,
that means gravimetry, magnetometry and seismics. We start with the case of
gravimetry: In [59, 60, 119] (see also the references therein) the mollifier method
has been elaborated and realized. For a similar technique in the case of migration
results via the Helmholtz equation, we refer to [11, 27]. More discussions about
the new approach are given in [21] for the acoustic wave equation, in [22] for the
static Cauchy-Navier equation and [23] for the elasto-oscillatory Cauchy-Navier
equation. For the application in magnetometry, the reader is referred to the most
recent publications [24, 59].
In this thesis, we introduce the aspect of decorrelation in poroelasticity by apply-
ing a multiscale mollifier technique that means we transfer this method to the
aspect of the stress field in geothermal reservoirs. Our starting points are the
quasi-static equations of poroelasticity (QEP) (here in homogeneous form) given
by

−λ+ µ

µ
∇x(∇x · u)−∇2

xu+ α∇xp = 0, (1.1)

∂t(c0µp+ α(∇x · u))−∇2
xp = 0. (1.2)

They interrelate the dependencies between the main components displacement
u and pore pressure p in a chosen porous medium defined by the material con-
stants λ, µ, α, c0. We construct in a first step scaling functions by mollifying the
fundamental solution tensor belonging to the QEP with a scaling parameter. Sec-
ondly, we generate the corresponding wavelets by subtracting two consecutive
scaling functions. After the application of the poroelastic differential operator on
them, we get our desired scaling functions and wavelets that are necessary for
the decorrelation of our data.

3



1. Introduction

These scaling functions are given in the tensor Φτj and fulfill the property of an
approximate identity which is a convolution with the given vector-valued data f

lim
j→∞

∫
B
Φτj (x− y) f(y) dy = f(x). (1.3)

This is the main theoretical result in our thesis and the foundation for the con-
volution with the data. The scaling functions can be understood as the low-pass
filters and their localization can be controlled with the scale parameter. This leads
us to an approximation of the data at that given point. The wavelets are the band-
pass filters and provide us with the necessary detail information. With the help of
this outcome, we can show the decomposition ability of our functions with some
synthetic test data.

1.2. Layout of the Work

The main goal of this thesis is to construct physically motivated source scal-
ing functions and wavelets to do a decorrelation of poroelastic data. This work
consists of three parts which discuss the mathematical basics, the physical back-
ground and the multiscale decorrelation in poroelasticity. In Part I, we introduce
the general background and concepts which form the basis of this thesis. We start
with the introduction of the necessary notation and special functions and function
spaces we need, here especially the exponential integral, the Gauss error func-
tion and integrals, where the exponential function is linked with polynomials,
are very important for us. Afterwards, we have a short overview on constrained
optimization problems. We continue with classical partial differential equations
and take a closer look at the Dirac distribution. The general concept of scaling
functions and wavelets will be presented before we go over to the basic theory of
lattices and lattice point summation formulas.
Part II deals with the physical background and the derivation of the partial dif-
ferential equations and their fundamental solutions. The main physical laws are
presented to gain the partial differential equations in thermoporoelasticity. With
the help of a decomposition scheme, the fundamental solutions are derived very
shortly. To come back to an easier setting, we want to neglect the thermal ef-
fects and reduce the equations to the quasistatic equations of poroelasticity (QEP).
With the appropriate fundamental solutions, we conclude this part.
Based on the fundamental solutions in poroelasticity from the previous part, we
construct in Part III mollifier regularizations for them, because they have singu-
larities. This is done with the help of a Taylor expansion up to order 1. Applying
the poroelastic differential operator on the modified fundamental solutions, we
get our desired source scaling functions and wavelets. To fulfill the theoretical
properties of an approximate identity, we have to do little modifications on some
of the functions. This part completes with the numerical experiments. Therefore,
we have to think about suitable cubature formulas with the help of the lattice
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1.2. Layout of the Work

point summation formulas. Then we present the convolution pictures and addi-
tionally a relative root mean square error to show the ability of the constructed
source scaling functions and wavelets.
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Part I.

Mathematical Basics
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2. Preliminaries

In the following, we introduce the required basic notations, which we use through-
out this thesis.

2.1. Notation

We denote the non-negative integers by N, the integers by Z, the real numbers by
R and the complex numbers by C. Please note that N, in our case, includes the
zero. For every real number x, the floor function b·c is the largest integer n with
n ≤ x. The n-dimensional real vector space is defined as

R× · · · × R︸ ︷︷ ︸
n-times

= Rn, n ∈ N \ {0}. (2.1)

We define the inner product x · y of two elements x = (x1, x2, . . . , xn)T ∈ Rn,
y = (y1, y2, . . . , yn)T ∈ Rn as

x · y :=
n∑
i=1

xiyi (2.2)

and the induced norm ‖x‖ is

‖x‖ :=
√
x · x =

√√√√ n∑
i=1

x2
i . (2.3)

The closed ball Bnr (x) with center x ∈ Rn and radius r > 0 is the following set

Bnr (x) := {y ∈ Rn
∣∣‖x− y‖ ≤ r}. (2.4)

Furthermore, the sphere Sn−1
r (x) in Rn with radius r and center x ∈ Rn is defined

by

Sn−1
r (x) := {y ∈ Rn

∣∣‖x− y‖ = r}. (2.5)

For brevity, we write Br(x) instead of B2
r(x) and Sn−1(x) instead of Sn−1

1 (x) through-
out this thesis. Every point x 6= 0 ∈ Rn has a representation in polar coordinates
with a uniquely determined ξ, that means

x = rξ, r = ‖x‖ =
√
x2

1 + · · ·+ x2
n, ξ ∈ Sn−1, r > 0. (2.6)
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2. Preliminaries

In the following, we want to define the gradient, the divergence and the Laplace
operator of a function. Therefore, we need an open subset of Rn called B, whose
boundary is denoted by ∂B and B = ∂B ∪ B is the closure. If B is open and
connected, it is called a region. We call a bounded region regular, if ∂B is an
orientable piecewise smooth Lipschitzian manifold of dimension n− 1 (see [58]).
For a regular region B the volume of B is given by

vol(B) := ‖B‖ :=

∫
B

dx. (2.7)

Especially in the case of a ball Bnr (x) and a sphere Sn−1
1 (x), we have for the volume

of the ball and the area of the sphere the following (see for example [120])

‖Bnr (x)‖ =
π
n
2

Γ
(
n
2

+ 1
)rn, (2.8)

‖Sn−1
r (x)‖ = 2

π
n
2

Γ
(
n
2

)rn−1, (2.9)

where Γ represents the Gamma function given by the following definition (see
for example [65]).

Definition 2.1.1. The function x 7→ Γ(x), x > 0 defined by

Γ(x) =

∫ ∞
0

e−ttx−1 dt (2.10)

is called the Gamma function.

For the following definitions, we assume that we have a region B in Rn. The
gradient of a differentiable scalar function F : B → R at x ∈ B (notation: ∇xF (x))
is given by

∇xF (x) :=

(
∂F

∂x1

(x), . . . ,
∂F

∂xn
(x)

)T

. (2.11)

Let f = (f1, . . . , fn)T be a vectorial function, which is differentiable in x ∈ B. We
define the divergence divx(f) by

divx(f)(x) := ∇x · f(x) =
n∑
i=1

∂

∂xi
fi(x). (2.12)

Please note that for a tensor-valued function f , the divergence is defined row-
wise, that means

(∇x · f)i =

(
n∑
j=1

∂

∂xj
fj

)
i

, (2.13)
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where fj is the j-th row of f . If we now assume that F is twice differentiable in
x ∈ B, we can define the Laplace operator ∆ of F in Rn at x ∈ B by

∆xF (x) := ∇2
xF (x) := ∇x · ∇xF (x) =

n∑
i=1

∂2

∂x2
i

F (x). (2.14)

In the case of vectorial and tensorial functions, we apply the Laplace operator
componentwise. Furthermore, we have to define the Kronecker Delta by

δnm :=

{
1, n = m,

0, n 6= m,
(2.15)

for n,m ∈ N. Please note that we use boldfaced letters for tensors of order 2 and
higher.

2.2. Special Functions and Function Spaces

In this section, we want to introduce the function spaces (see for example [64, 117])
we need throughout this thesis and the well-known exponential integral (see also
[1, 86, 94]). The exponential integral is necessary on the one hand for the funda-
mental solutions for thermoporoelasticity and on the other hand for our theory of
decorrelation. We start with the exponential integral and go over to some more
special functions and specific integrals that we need.

Definition 2.2.1. The exponential integral is defined as the following integral

Ei(x) := −
∫ ∞
−x

e−t

t
dt =

∫ x

−∞

et

t
dt, x > 0 (2.16)

and has to be understood in the sense of the Cauchy principal value. Furthermore, we
have the following characterization as an alternative

Ei(x) = C + ln |x|+
∞∑
k=1

xk

k · k!
, ∀x ∈ R \ {0} (2.17)

with C as the Euler constant. Hence we have

Ei(−t) · tk → 0 for t→ 0 for k ≥ 1, (2.18)

since x · ln |x| → 0 (x→ 0), which we need later for some limit considerations.
Closely related is the following function

E1(x) :=

∫ ∞
x

e−t

t
dt =

∫ ∞
1

e−xt

t
dt, x > 0. (2.19)
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2. Preliminaries

Please note that for positive values of x, we may extend (2.19) in the sense that
−E1(x) = Ei(−x). We also define

E0(x) =

∫ ∞
1

e−tx dt =
e−x

x
, x > 0. (2.20)

The following relation between E1(x) and E0(x) holds true (see [86])

E ′1(x) = −E0(x). (2.21)

Furthermore, we need the error function (also called Gauss error function).

Definition 2.2.2. The error function is defined by

erf(x) :=
2√
π

∫ x

0

e−τ
2

dτ. (2.22)

Please note that we use the error function for real arguments.

For the proof of the theory of the decorrelation, there are some integrals related
to the exponential function, that we use several times.

Lemma 2.2.3. The following integrals are helpful for us (see [86]):

∫
exp

(
− τ 2

4C2t

)
dt =

τ 2Ei
(
− τ2

4C2t

)
4C2

+ t · exp

(
− τ 2

4C2t

)
(2.23)∫

exp

(
− τ 2

4C2t

)
· 1

t
dt = −Ei

(
− τ 2

4C2t

)
(2.24)

∫
exp

(
− τ 2

4C2t

)
· 1

t2
dt =

4C2 exp
(
− τ2

4C2t

)
τ 2

(2.25)

∫
exp

(
− τ 2

4C2t

)
· 1

t3
dt =

4C2 exp
(
− τ2

4C2t

)
(4C2t+ τ 2)

tτ 4
(2.26)

∫
exp

(
− τ 2

4C2t

)
· 1

t4
dt =

4C2 exp
(
− τ2

4C2t

)
(32C2

2 t
2 + 8C2tτ

2 + τ 4)

t2τ 6
. (2.27)
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2.2. Special Functions and Function Spaces

Proof. We can easily verify these integrals by differentiation (see also
Definition 2.2.1), that means

∂

∂t

τ 2Ei
(
− τ2

4C2t

)
4C2

+ t · exp

(
− τ 2

4C2t

)
=

τ 2

4C2

·
exp

(
− τ2

4C2t

)
− τ2

4C2t

· τ 2

4C2t2
+ exp

(
− τ 2

4C2t

)
+ t · exp

(
− τ 2

4C2t

)
· τ 2

4C2t2

= exp

(
− τ 2

4C2t

)(
− τ 2

4C2t
+ 1 +

τ 2

4C2t

)
= exp

(
− τ 2

4C2t

)
, (2.28)

∂

∂t

(
−Ei

(
− τ 2

4C2t

))
=
− exp

(
− τ2

4C2t

)
− τ2

4C2t

· τ 2

4C2t2
= exp

(
− τ 2

4C2t

)
· 1

t
, (2.29)

∂

∂t

(
4C2

τ 2
exp

(
− τ 2

4C2t

))
=

4C2

τ 2
exp

(
− τ 2

4C2t

)
· τ 2

4C2t2
= exp

(
− τ 2

4C2t

)
· 1

t2
,

(2.30)
∂

∂t

(
4C2 exp

(
− τ 2

4C2t

)(
4C2

τ 4
+

1

tτ 2

))
= 4C2 exp

(
− τ 2

4C2t

)
· τ 2

4C2t2

(
4C2

τ 4
+

1

tτ 2

)
+ 4C2 exp

(
− τ 2

4C2t

)
·
(
− 1

τ 2t2

)
= exp

(
− τ 2

4C2t

)
· 1

t3
, (2.31)

∂

∂t

(
4C2

τ 6
exp

(
− τ 2

4C2t

)(
32C2

2 +
8C2τ

2

t
+
τ 4

t2

))
=

4C2

τ 6
exp

(
− τ 2

4C2t

)
· τ 2

4C2t2

(
32C2

2 +
8C2τ

2

t
+
τ 4

t2

)
+

4C2

τ 6
exp

(
− τ 2

4C2t

)(
−8C2τ

2

t2
− 2τ 4

t3

)
=

4C2

τ 6
exp

(
− τ 2

4C2t

)(
8C2τ

2

t2
+

2τ 4

t3
+

τ 6

4C2t4
− 8C2τ

2

t2
− 2τ 4

t3

)
= exp

(
− τ 2

4C2t

)
· 1

t4
. (2.32)

We use these integrals mostly in combination with the particular interval [0, T ].
Therefore, we have a look at the integrals again with these interval boundaries.
Please note that in our case the constant C2 is a combination of positive material
parameters and always > 0.
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Remark 2.2.4. For the case of an integral
∫ T

0
we obtain for the previous integrals with

C2 > 0∫ T

0

exp

(
− τ 2

4C2t

)
dt =

τ 2

4C2

Ei

(
− τ 2

4C2T

)
+ T exp

(
− τ 2

4C2T

)
− lim

b→0+

[
τ 2

4C2

Ei

(
− τ 2

4C2b

)
+ b exp

(
− τ 2

4C2b

)]
=

τ 2

4C2

Ei

(
− τ 2

4C2T

)
+ T exp

(
− τ 2

4C2T

)
, (2.33)∫ T

0

exp

(
− τ 2

4C2t

)
· 1

t
dt = −Ei

(
− τ 2

4C2T

)
+ lim

b→0+
Ei

(
− τ 2

4C2b

)
= −Ei

(
− τ 2

4C2T

)
,

(2.34)∫ T

0

exp

(
− τ 2

4C2t

)
· 1

t2
dt =

4C2 exp
(
− τ2

4C2T

)
τ 2

, (2.35)

∫ T

0

exp

(
− τ 2

4C2t

)
· 1

t3
dt =

4C2 exp
(
− τ2

4C2T

)
(τ 2 + 4C2T )

Tτ 4
, (2.36)

∫ T

0

exp

(
− τ 2

4C2t

)
· 1

t4
dt =

4C2 exp
(
− τ2

4C2T

)
(32C2

2T
2 + 8C2Tτ

2 + τ 4)

T 2τ 6
. (2.37)

Now we go over to the function spaces and start with the definition of a compact
support.

Definition 2.2.5. We assume that we have an open set B ⊂ Rn and a given function
F : B → R. We say the function F has compact support if there is a compact set G ⊂ B
such that

supp(F ) = {x ∈ B
∣∣F (x) 6= 0} ⊂ G. (2.38)

Assume that we have an open subset X ⊂ Rn. The class C(k)(X) denotes the set
of all functions, which are k-times continuously differentiable for k ≥ 0. The case
k = −1 denotes the piecewise continuous functions. For k = 0 we simply write
C(X) instead of C(0)(X). Furthermore, we set

C(∞)(X) =
⋂

C(k)(X), (2.39)

where the intersection is taken for all finite k. Especially C
(k)
0 (X) denotes the

space of all u ∈ Ck(k)(X) with compact support. Furthermore, assume that we
have a regionB in Rn. Then we define the spaceLp(B) by all measurable functions
F : B → R, that satisfy∫

B
‖F (x)‖p dx < +∞, 1 ≤ p < +∞. (2.40)
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In analogy the space N p(B) is

N p(B) :=

{
F : B → R measurable

∣∣∣∣∣
∫
B
‖F (x)‖p dx = 0

}
, 1 ≤ p < +∞. (2.41)

With these definitions and the concept of equivalence classes, we can define

Lp(B) := Lp(B)/N p(B), (2.42)

which is together with the norm

‖F‖Lp(B) :=

(∫
B
‖F (x)‖p dx

)1/p

, 1 ≤ p ≤ ∞, (2.43)

a normed space. Note that for 1 ≤ q ≤ p < +∞ it holds true that Lp(B) ⊂ Lq(B),
if B is bounded. For the case p = 2, we have the function space L2(B) with the
inner product 〈·, ·〉L2(B) defined by

〈F,G〉L2(B) =

∫
B
F (x)G(x) dx, F,G ∈ L2(B), (2.44)

which is a Hilbert space. For a continuous function F ∈ C(B), we define

‖F‖∞ := ‖F‖C(B) := sup
x∈B
|F (x)| . (2.45)

Since C(B) is a pre-Hilbert space with the topology 〈·, ·〉L2(B), we have for every
F ∈ C(B) the following estimate for the norm

‖F‖L2(B) ≤
√
‖B‖ ‖F‖C(B). (2.46)

With this, we get that L2(B) is the completion of C(B) with respect to ‖ · ‖L2(B),
that means

L2(B) = C(B)
‖·‖L2(B) . (2.47)

A last very important point to define, is the convolution of two functions, which
we will use later and plays an important role in this thesis.

Definition 2.2.6. Let a measurable set D ⊂ Rn and Φ ∈ L2(D × D), F ∈ L2(D) be
given. We define the convolution of Φ and F (characterized by ∗) by

(Φ ∗ F ) (x) :=

∫
D

Φ(x, y)F (y) dy, x ∈ D. (2.48)

We can show that the convolution is always defined in L2(D) by the use of the
Cauchy-Schwarz inequality

‖Φ ∗ F‖2
L2(D) =

∫
D

(∫
D

Φ(x, y)F (y) dy

)2

dx

≤
∫
D

∫
D

Φ(x, y)2 dy

∫
D

F (y)2 dy dx

= ‖Φ‖2
L2(D×D)‖F‖2

L2(D). (2.49)
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2.3. Theoretical Aspects of Constrained Optimization
Problems

The following aspects of constrained optimization problems are briefly summa-
rized and are obtained from [81]. We consider an optimization problem of the
following form

find min f(x) (2.50)
under the constraints gi(x) ≤ 0, i = 1, . . . ,m, (2.51)

hj(x) = 0, j = 1, . . . , p, (2.52)

where the objective function f : Rn → R and the functions describing the con-
straints gi : Rn → R and hj : Rn → R are assumed to be continuously differen-
tiable. For solving this optimization problem, the following Lagrange function
plays an important role.

Definition 2.3.1. The Lagrange function L of a constrained optimization problem is a
mapping L : Rn × Rm × Rp → R given by

L(x, λ, µ) := f(x) +
m∑
i=1

λigi(x) +

p∑
j=1

µjhj(x). (2.53)

With the help of the Lagrange function, we want to define the so called Karush-
Kuhn-Tucker conditions (KKT conditions).

Definition 2.3.2. We consider the optimization problem (2.50)-(2.52) with continuously
differentiable functions f, g and h.

(i) We call the conditions

∇xL(x, λ, µ) = 0, (2.54)
h(x) = 0, (2.55)

λ ≥ 0, g(x) ≤ 0, λTg(x) = 0 (2.56)

the KKT conditions of the optimization problem. Here

∇xL(x, λ, µ) = ∇f(x) +
m∑
i=1

λi∇gi(x) +

p∑
j=1

µj∇hj(x) (2.57)

is the gradient of the Lagrange function L concerning the x-variable.

(ii) Each vector (x∗, λ∗, µ∗) ∈ Rn × Rm × Rp, which fulfills the KKT conditions, is
called a Karush-Kuhn-Tucker point (KKT point) of the optimization problem. We
call the components of λ∗ and µ∗ the Lagrange multipliers.
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In a last step, we have to establish a connection between local minima of the
optimization problem (2.50)-(2.52) and the corresponding KKT conditions given
in (2.54)-(2.56). Therefore, we want to have a look at the KKT conditions under
the Abadie constraint qualification (Abadie CQ). We first define the constraint
qualification of Abadie.

Definition 2.3.3. Let the optimization problem (2.50)-(2.52) be given. An admissi-
ble point x of the optimization problem satisfies the constraint qualification of Abadie
if TX(x) = Tlin(x) holds true.

Here we have the tangential cone of X ⊂ Rn in x given by

TX(x) := {d ∈ Rn | ∃ {xk} ⊆ X ∃tk ↓ 0 : xk → x and (xk − x)/tk → d} (2.58)

with sequences {xk} ⊆ X and {tk} ⊆ R. Furthermore, we have the linearized
tangential cone of X in x defined by

Tlin(x) :=
{
d ∈ Rn | ∇gi(x)Td ≤ 0 (i ∈ I(x)),∇hj(x)Td = 0 (j = 1, . . . , p)

}
, (2.59)

with the set of the active inequality restrictions in x

I(x) := {i ∈ {1, . . . ,m} |gi(x) = 0} (2.60)

and the admissible set X given by

X := {x ∈ Rn|gi(x) ≤ 0 (i = 1, . . . ,m), hj(x) = 0 (j = 1, . . . , p)} . (2.61)

With this definition, we can go over to this important theorem for the interrelation
of KKT points and local minima.

Theorem 2.3.4. Assume that we have a local minimum x∗ of the optimization problem
(2.50)-(2.52) given which fulfills Abadie CQ. In that case there exist Lagrange multipliers
λ∗ ∈ Rm and µ∗ ∈ Rp such that the triple (x∗, λ∗, µ∗) is a KKT point of (2.50)-(2.52).

There are some more constraint qualifications, especially for non-linear restric-
tions, namely the constraint qualification of Mangasarian-Fromovitz (MFCQ) or
linear independence (LICQ). For details see [81].
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3. Differential Equations

This chapter deals with a general introduction into partial differential equations
(PDEs). After the introduction of the classification of PDEs, we continue with
some known PDEs, where we can see similarities to the later introduced equa-
tions of poroelasticity. We end up with a short introduction of fundamental solu-
tions and present the fundamental solutions of the known PDEs from above. We
are mainly guided by [50, 94, 103].

3.1. Basics

Our aim in this section is to give an overview of the classification of partial differ-
ential equations corresponding the order and the properties ellipticity, parabolic-
ity and hyperbolicity. Assume we have an open subset U of Rn and an element
x = (x1, x2, . . . , xn). The following equation is called a partial differential equa-
tion (PDE) of order k for u(x) in U :

F
(
Dku(x), Dk−1u(x), . . . , Du(x), u(x), x

)
= 0, x ∈ U, (3.1)

where we use the usual multi-index notation (here ν ∈ Nn
0 )

Dν :=
∂ν1

∂xν1
1

. . .
∂νn

∂xνnn
=

∂|ν|

∂xν1
1 · · · ∂xνnn

, |ν| =
n∑
i=1

νi. (3.2)

Here |ν| is the order of the derivative and we denote the set of all derivatives
of the function u of order k by (Dku)(x) = {(Dν)(x) : |ν| = k}. The mapping
F : Rnk ×Rnk−1×· · ·×Rn×R×U → R is known and u : U → R is unknown. The
PDE is of order k that means there is at least one derivative with order k and none
with higher order. Since we only handle with linear PDEs, we can write (3.1) in
the following way: ∑

|ν|≤k

aν(x)Dνu(x) = f(x), ν ∈ Nn. (3.3)

The PDE is called homogeneous if f ≡ 0. In the following, we present the three
main categories of partial differential operators and start with the elliptic one.
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Definition 3.1.1 (Elliptic PDE). Assume we have an open and bounded subset U ⊂ Rn,
u : U → R and L a second-order linear operator of the form

Lu =
n∑

i,j=1

aij(x)∂xi∂xju(x) +
n∑
i=1

bi(x)∂xiu(x, t) + c(x)u(x). (3.4)

The operator L is said to be uniformly elliptic if there exists a constant M > 0 such that
n∑

i,j=1

aij(x)ξiξj ≥M‖ξ‖2 (3.5)

for almost every x ∈ U and all ξ ∈ Rn.

The following two classes have also a time dependency and we continue with the
second class, the parabolic PDEs.

Definition 3.1.2 (Parabolic PDE). We have an open and bounded subset U ⊂ Rn,
u : U × [0, T ]→ R and L a second-order linear operator with the form

Lu =
n∑

i,j=1

aij(x, t)∂xi∂xju(x, t) +
n∑
i=1

bi(x, t)∂xiu(x, t) + c(x, t)u(x, t)− ∂tu(x, t).

(3.6)

The operator L is said to be uniformly elliptic if there exists a constant M > 0 such that
n∑

i,j=1

aij(x, t)ξiξj ≥M‖ξ‖2 (3.7)

for all (x, t) ∈ U × [0, T ] and all ξ ∈ Rn.

The last case to consider the case of the hyperbolic PDE.

Definition 3.1.3 (Hyperbolic PDE). We have an open and bounded subset U ⊂ Rn,
u : U × [0, T ]→ R and L a second-order linear operator with the form

Lu =
n∑

i,j=1

aij(x, t)∂xi∂xju(x, t) +
n∑
i=1

bi(x, t)∂xiu(x, t) + c(x, t)u(x, t)− ∂2
t u(x, t).

(3.8)

The operator L is said to be uniformly elliptic if there exists a constant M > 0 such that
n∑

i,j=1

aij(x, t)ξiξj ≥M‖ξ‖2 (3.9)

for all (x, t) ∈ U × [0, T ] and all ξ ∈ Rn.

The difference between the last two cases is only the fact that we have the second
derivative with respect to the time in the hyperbolic case. Note that not every
partial differential equation can be dedicated to one of the three classes above
clearly.
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3.2. Some Known Classic Differential Equations

3.2. Some Known Classic Differential Equations

In this section, we want to present some basic known partial differential equa-
tions and their belonging to one of the three classes defined above. At first we
have a look at Laplace’s equation defined by

∆u(x) = ∇2u(x) =
n∑
i=1

∂2
xi
u(x) = 0. (3.10)

This is a linear, elliptic second-order partial differential equation. The next one to
consider is the heat (or diffusion equation), which is known as

∂tu(x, t)−∆u(x, t) = 0. (3.11)

Here we have a linear, parabolic differential equation of second order. The next
interesting one for us is a system of partial differential equations, the equilibrium
equations of linear elasticity (also Cauchy-Navier equations), which are given by

µ∆u(x) + (λ+ µ)∇(∇ · u(x)) = 0. (3.12)

Please note here that u is a vector-valued function and λ and µ are the so-called
Lamé constants, which are material constants. We deal here with a linear ellip-
tic partial differential equation. The last PDEs to mention here, are the Stokes
equations (please note here, that they are a simplification of the Navier-Stokes
equations), which are given by

−µ∇2u(x) +∇p(x) = 0, (3.13)
∇ · u = 0. (3.14)

In the next chapter we will see several similarities between these basic PDEs and
the governing equations of thermoporoelasticity and certainly poroelasticity.

3.3. Fundamental Solutions

Since we need the fundamental solutions for the construction of our desired func-
tions for the decorrelation, this section presents the definition of a fundamental
solution and shows the fundamental solutions for the four PDEs defined above
(Laplace, heat, equilibrium and Stokes equations). First we have to define what a
distribution and the Dirac measure are. Furthermore, we present some properties
of them (see also [94, 97, 103]).

Definition 3.3.1. Assume, we have an open set X in Rn. We call a linear form u in X
on C

(∞)
0 (X) a distribution if for every compact set K ⊂ X there are constants C and k

such that

|u(φ)| ≤ C
∑
|ν|≤k

sup
x∈K
|∂νφ(x)| , φ ∈ C∞0 (K). (3.15)
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3. Differential Equations

We denote the set of all distributions in the open set X in Rn by D′(X). Let us
continue with the Dirac measure.

Definition 3.3.2. The Dirac distribution (or Dirac functional, Dirac measure, Delta
distribution) δa at a ∈ Rn is a mapping defined as

δa : C0(R)→ R (3.16)
〈δa, φ〉 := δa(φ) = φ(a), (3.17)

that means the Dirac measure δa of a function φ is the evaluation of φ at the point a.

Furthermore, we need more properties of distributions especially of the Delta
distribution for our convolutions later. The following features are useful for us.

Remark 3.3.3. For an open set X in Rn, φ ∈ C∞0 (X) and u ∈ D′(X), we have

(∂xku)φ = −u (∂xkφ) . (3.18)

Furthermore, we have especially for the Dirac distribution

〈δ′, φ〉 = −〈δ, φ′〉 . (3.19)

The following properties can be seen in the sense of an extension of the result
above (formally speaking)

〈−δ′, 1〉 =

〈
δ,

d

dx
1

〉
= 〈δ, 0〉 = 0, (3.20)

〈−δ′, x〉 =

〈
δ,

d

dx
x

〉
= 〈δ, 1〉 = 1. (3.21)

With this definition and properties, we can go on to the definition of a fundamen-
tal solution.

Definition 3.3.4. We have a differential operator P =
∑
aν∂

ν with constant coefficients
and a distribution E ∈ D′(Rn). We call E a fundamental solution of P if PE = δ0.

Furthermore, we have to explain what we understand as a regular distribution,
which is a subset of the set of distributions.

Definition 3.3.5. We say that a distribution u is regular, if it is generated by a locally
integrable function f , that means there exists a representation in the following way

uf (φ) =

∫
Rn
f(t)φ(t) dt for all φ ∈ C∞0 (Rn). (3.22)

So regular distributions can be represented by functions. Distributions that are
not regular are called singular. The Delta distribution is an example for a singular
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3.3. Fundamental Solutions

distribution, because there does not exist a locally integrable function that fulfills
(3.22) (for the proof see [97]).
In a next step, we want to show the fundamental solutions of the four differential
equations mentioned above. Let us start with Laplace’s equation. The fundamen-
tal solution is given by

u(x) =

{
1

2π
ln ‖x‖, n = 2

− 1
(n−2)ωn

1
‖x‖n−2 , n > 2,

(3.23)

where ωn = 2πn/2Γ
(
n
2

)−1, which is the area of the surface of the n-dimensional
unit sphere and Γ is the Gamma function given in Definition 2.1.1. For more
properties of the Gamma function or other representations like the functional
equation see [65]. Continuing with the heat equation, we obtain

u(x, t) =


1

(4πt)n/2
e−
‖x‖2

4t , x ∈ Rn, t > 0

0, x ∈ Rn, t < 0.
(3.24)

The next one is the tensor-valued fundamental solution of the equilibrium equa-
tion (also Cauchy-Navier equation)

uik(x) =


λ+µ

4πµ(2µ+λ)

[(
λ+3µ
λ+µ

)
ln(‖x‖)δik + xixk

‖x‖2

]
, n = 2,

λ+µ
8πµ(2µ+λ)‖x‖

[(
λ+3µ
λ+µ

)
δik + xixk

‖x‖2

]
, n = 3.

(3.25)

At last, we have the fundamental solutions for the Stokes equations. They are
also tensor- and vector-valued and given by

uij(x) =
1

8π‖x‖

(
δij +

xixj
‖x‖2

)
, (3.26)

p(x) =
x

4π‖x‖2
. (3.27)

With the definition and properties of distributions, we now have to come back
to convolutions, especially we have to say something about convolutions with
distributions. In general for u ∈ D′(Rn) and φ ∈ C∞0 (Rn) their convolution is
defined by

(u ∗ φ)(x) = u(φ(x− ·)) (3.28)

that means u is acting on φ(x − y) as a function on y. Furthermore, it holds true
that the convolution u ∗ φ ∈ C∞(Rn) fulfills the following with respect to the
derivatives

∂α (u ∗ φ) = (∂αu) ∗ φ = u ∗ (∂αφ) . (3.29)
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3. Differential Equations

With this property and Remark 3.3.3, we can have a look at distributions of the
form φ(x)δt or φ(x)δ′t with a distributional time dependent part (in our case the
Delta distribution) and set the convolution of these (scaling) functions with the
data given by f (assumed to be differentiable with respect to t) as

(φδt ∗ f) :=

∫
R2

φ(x− y) (δtf(y, ·)) dy =

∫
R2

φ(x− y)f(y, t) dy, (3.30)

(φδ′t ∗ f) :=

(
φδt ∗

∂

∂t
f

)
=

∫
R2

φ(x− y)
∂

∂t
f(y, t) dy. (3.31)
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4. Multiscale Approach

This chapter deals with the definition of scaling functions and their wavelets.
Furthermore, we define operators and spaces. A similar multiscale approach as
stated here, was proposed in [75]. See also [21, 25] and the references therein.

4.1. Scaling Functions and Wavelets

In this section, we introduce the (scale discrete) scaling and wavelet functions,
which build the basis for a multiscale approach. We start with the definition and
the properties of a scaling function.

Definition 4.1.1. We assume that we have a regular region B in Rn. Furthermore,
{τj}j∈N, τj > 0, is a strictly monotonically decreasing null sequence, that means

lim
j→∞

τj = 0. (4.1)

The sequence {Φτj}j∈N, Φτj : R→ C is called a scaling function if

lim
j→∞

∫
B

Φτj (x− y)F (y) dy = α(x)F (x) (4.2)

holds true for all x ∈ B and all F ∈ C(B).

Especially, we notice that

lim
j→∞

∫
B

Φτj(x− y) dy = α(x) (4.3)

holds true for all x ∈ B by inserting F (x) = 1. Here α(x) denotes the solid angle,
which can in general be defined in the following way (see [63]).

Definition 4.1.2. We have a region G ⊂ R3. The solid angle α(x) can be defined by

α(x) =

∫
∂B

∂

∂νy
G(∆; ‖x− y‖) dy, (4.4)

where G(∆; ‖x − y‖) is the fundamental solution of the Laplace operator ∆ in Rq given
by (see also (3.23) for the fundamental solution in the case of a unit sphere)

G(∆; ‖x− y‖) =

{
1

2π
ln(‖x− y‖), n = 2,
‖x−y‖2−n

(2−n)‖Sn−1‖ , n ≥ 3,
(4.5)

and νy denotes the unit normal vector in y pointing into the space Rq \ B.
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4. Multiscale Approach

In a 3-dimensional cube B = (−1, 1)3, the solid angle α(x) correlates with the
position of x in the cube that means

α(x) =



0, if x is not an element of the cube B or of the boundary ∂B,
1
8
, if x is one of the eight corner points of ∂B,

1
4
, if x is on one of the four edges of ∂B but is not a corner point,

1
2
, if x is on one of the six faces of ∂B but not on a corner or edge,

1, if x is in the open cube B.
(4.6)

If we now assume that we have x ∈ B, then α(x) = 1 and we obtain for the
convolution integral in the limit

lim
j→∞

∫
B

Φτj (x− y)F (y) dy = F (x). (4.7)

Please note that in our case the scale discrete scaling function Φ is a tensor with
Φ : R3 → R3×3 and the data function F is then vector-valued and approximated
by f : B × R → R3. Therefore, we have to extend this definition of a scaling
function also due to the time and therefore modify the definition to the following
(cf. [21] for a one dimensional time-variate case or [22] for a multidimensional
case without a time component).

Definition 4.1.3. Suppose that B is a regular region in R3, f : B×R→ R3 continuous
and {τj}j∈N, τj > 0 is a strictly monotonically decreasing sequence with

lim
j→∞

τj = 0. (4.8)

The sequence {Φτj}j∈N, Φτj : R3 → R3×3 is called a scaling function if

lim
j→∞

∫
B

∫
R

Φτj(x− y, t− θ)f(y, θ) dθ dy = f(x, t) (4.9)

holds true for all x ∈ B and t ∈ R.

Please note that we now assume x ∈ B instead of x ∈ B, which means that we
can set α(x) = 1.

Remark 4.1.4. A possible sequence for τj can, for example, be τj = 2−j . This is the
sequence which we will use later.

In the following, we will use the tensor-valued varieties of the definition that
means our scaling functions and wavelets are tensor-valued and the data function
f is vector-valued. Please notice that they can always be replaced by a scalar-
valued scaling function and data function instead. With the help of the scaling
function, we can define the wavelet function.
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4.1. Scaling Functions and Wavelets

Definition 4.1.5. Assume that we have a scaling function {Φτj}j∈N. Then we can define
the wavelet function {Ψτj}j∈N, Ψτj : R3 → R3×3 as the following

Ψτj = Φτj −Φτj−1
. (4.10)

With this definition of the wavelet function, we can write a scaling function ΦτJ

for j ∈ N as the following sum of wavelets.

Lemma 4.1.6. Let j, J ∈ N with j < J arbitrary. Then any ΦτJ of {Φτj}j∈N can be
represented as

ΦτJ = Φτj +
J∑

l=j+1

Ψτl . (4.11)

With this representation of ΦτJ , we can write the following convolution of a func-
tion f ∈ C(B,R3) in this way.

Theorem 4.1.7. Our assumptions are as follows: We have a strictly monotonically de-
creasing sequence {τj}j∈N, the scaling function {Φτj}j∈N and the corresponding wavelet
{Ψτj}j∈N. Furthermore, f ∈ C(B,R3) with a regular region B and j > j0 with j, j0 ∈ N.
We get for all x ∈ B

fτj(x) :=

∫
B
Φτj(x− y)f(y) dy

=

∫
B
Φτj0

(x− y)f(y) dy +

j∑
l=j0+1

∫
B
Ψτl(x− y)f(y) dy (4.12)

and

f(x) = lim
j→∞

fτj(x)

= lim
j→∞

∫
B
Φτj(x− y)f(y) dy

=

∫
B
Φτj0

(x− y)f(y) dy +
∞∑

l=j0+1

∫
B
Ψτl(x− y)f(y) dy. (4.13)

The convolution of a function f against the kernel Φτj as represented in (4.12)
shows us the decomposition of the approximation of a function f into a low-pass
part, which is the convolution of f against Φτj0

, and several band-pass parts,
which we get by the convolution of f with the wavelets Ψτl , l = j0 + 1, . . . , j.

Remark 4.1.8. Please note that in numerical uses, we will only calculate the convolution
of the data with the scaling functions and obtain the convolution of the data with the
wavelet by subtracting the convolution of two consecutive scaling functions.
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4. Multiscale Approach

With this, we obtain the multiscale representation.

Corollary 4.1.9. Again let {Φτj}j∈N be a scaling function and {Ψτj}j∈N the wavelet
belonging to it. The multiscale representation is then given by∫

B
Φτ0(x− y)f(y) dy +

∞∑
j=1

∫
B
Ψτj(x− y)f(y) dy = f(x) (4.14)

and holds true for all x ∈ B and f ∈ C(B,R3).

4.2. Scale and Detail Spaces

We can define operators PΦτj
in relation to the scaling function andRΦτj

concern-
ing the wavelet function as follows (see [77, 78])

PΦτj
[f ] =

∫
B
Φτj(· − y)f(y) dy, f ∈ C(B,R3), (4.15)

RΦτj
[f ] =

∫
B
Ψτj(· − y)f(y) dy, f ∈ C(B,R3). (4.16)

Since the operator PΦτj
is in connection with Φτj and RΨτj

with Ψτj , they can be
understood as the so called low-pass filter and band-pass-filter. With the help of
these operators, we can define scale-spaces VΦτj and detail-spacesWΦτj

.

Definition 4.2.1. We define the scale-spaces VΦτj and the detail-spacesWΦτj
by

VΦτj = PΦτj

[
C(B)

]
= {PΦτj

[f ]
∣∣f ∈ C(B,R3)}, (4.17)

WΦτj
= RΦτj

[
C(B)

]
= {RΨτj

[f ]
∣∣f ∈ C(B,R3)}. (4.18)

By writing

PΦτj+1
[f ] = PΦτj

[f ] +RΦτj+1
[f ], j ∈ N, (4.19)

we can conclude (see also Definition 4.1.5)

VΦτj = VΦτj +WΦτj+1
. (4.20)
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5. Cubature on Lattice Points

We introduce the most important results that we need for the calculation of our
convolution integrals, that means volume integrals over regular regions. There-
fore we want to adopt suitable cubature formulas which we obtain from [58].
More precisely, we are interested in the Poisson summation formula in the for-
mulation of Gauß-Weierstraß summability. We show here a very compressed
version of [58] referring to the condensed version given in [21]. For more infor-
mation about integration and cubature methods from a geomathematical point of
view see also [66].

5.1. Lattices

At the beginning it is important to define a lattice Λ in Rq, its fundamental cell and
the appropriate inverse lattice. With this, we go afterwards over to the so-called
Λ-periodic functions and their function spaces.

Definition 5.1.1. We have the space Rq and the basis g1, . . . , gq. We call the set Λ of all
points obtained by

g = n1g1 + · · ·+ nqgq, n1, . . . , nq ∈ Z, (5.1)

a lattice in Rq regarding the basis g1, . . . , gq. Furthermore, the half-open parallelotope FΛ

consists of the points x ∈ Rq given by

x = t1g1 + · · ·+ tqgq, −1

2
≤ ti <

1

2
, (5.2)

i = 1, . . . , q and is named the fundamental cell FΛ of the lattice Λ.

In Figure 5.1 an example of a lattice with basis g1, g2 in R2 and its fundamental
cell FΛ is shown. Proceeding from this definition, we have for example that the
unit vectors e1, . . . , eq form a basis of Zq.
The volume of a fundamental cell can be obtained by linear algebra in the follow-
ing way (see for example [44])

‖FΛ‖ =

∫
FΛ

dx =

√
det
(

(gi · gj)i,j=1,...,q

)
. (5.3)

In the case that we have Λ = Zq, we get that the volume of the fundamental cell
is given by ‖FΛ‖ = 1. Furthermore, we have the following properties.
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5. Cubature on Lattice Points

g1 

g2  0 

ℱ𝚲  

g1 g2 0 

Figure 5.1.: Example of a lattice in R2 and its corresponding fundamental cell FΛ.

Remark 5.1.2. For each g ∈ Λ and FΛ + {g} :=
{
y + g

∣∣y ∈ FΛ

}
, we obtain for the

volume

‖FΛ‖ = ‖FΛ + {g}‖ . (5.4)

With the property (FΛ + {g}) ∩ (FΛ + {g′}) = ∅ for g 6= g′ and g, g′ ∈ Λ, we can write
the space Rq as

Rq =
⋃
g∈Λ

(FΛ + {g}) =
⋃
g∈Λ

(FΛ − {g}) . (5.5)

For the definition of the inverse lattice, we have a look at the vectors h1, . . . , hq,
which should satisfy

hj · gi = δij, (5.6)

where δij is the Kronecker Delta (see (2.15)). The existence of the vectors h1, . . . , hq
is given due to the linear independency of the vectors g1, . . . , gq.
The vectors h1, . . . , hq can be obtained with the following considerations and com-
putations. We define the scalars γij with the help of the inner product of the
vectors g1, . . . , gq by

γij = gi · gj, i, j = 1, . . . , q. (5.7)

We are interested in getting the scalars γij by solving the linear equation system
q∑
i=1

γijγjk = δik. (5.8)

With this we can calculate the vectors hj, j = 1, . . . , q with the help of the vectors
gk, k = 1, . . . , q by

hj =

q∑
k=1

γjkgk. (5.9)
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They satisfy the equations

hj · gi =

q∑
k=1

γjkgk · gi =

q∑
k=1

γjkγki = δij, (5.10)

for i, j = 1, . . . , q, which is the property we wanted. Moreover, we get

hi · hj =

q∑
k=1

γikgk ·
q∑
l=1

γjlgl

=

q∑
l=1

γjl
q∑

k=1

γikγkl

= γji. (5.11)

With these preliminary considerations, we want to define the inverse lattice Λ−1.

Definition 5.1.3. The inverse (or dual) lattice Λ−1 of Λ is the lattice with basis h1, . . . , hq
with the properties given in (5.6).

Furthermore, the following properties between the lattice and the inverse lattice
hold true

Λ =
(
Λ−1

)−1 (5.12)

and ∥∥F−1
Λ

∥∥ = ‖FΛ‖−1 . (5.13)

In the last part of this section, we define Λ-periodic functions and their function
spaces.

Definition 5.1.4. Let a lattice Λ ⊂ Rq be given. We call a function Φ : Rq → C
Λ-periodic, if

Φ(x+ g) = Φ(x) (5.14)

holds true for all x ∈ Rq and all g ∈ Λ.

We want to give an example for a Λ-periodic function.

Lemma 5.1.5. Now assume that h is an element of the inverse lattice Λ−1. The functions
Φh : Rq → C defined by

Φh(x) =
1√
‖FΛ‖

exp (2πih · x) , x ∈ Rq, (5.15)

are Λ-periodic.
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Furthermore, we can define the following spaces in connection with Λ-periodic
functions.

Definition 5.1.6. The space C
(k)
Λ (Rq) denotes the set of all functions F ∈ C(k)(Rq) with

0 ≤ k ≤ ∞ that are Λ-periodic. By LpΛ(Rq) we denote the space of all F : Rq → C that
are Λ− periodic and Lebesgue-measurable on FΛ with

‖F‖LpΛ(Rq) =

(∫
FΛ

|F (x)|p dx

) 1
p

<∞, 1 ≤ p <∞. (5.16)

Furthermore, we define the null space N p
Λ(Rq) by

N p
Λ(Rq) :=

{
F ∈ LpΛ(Rq)

∣∣∣∣ ∫
FΛ

|F (x)|p dx = 0

}
1 ≤ p <∞. (5.17)

With the concept of equivalence classes and the two definitions above, we can define the
space LpΛ(Rq) by

LpΛ(Rq) := LpΛ(Rq)/N pΛ(Rq). (5.18)

Furthermore, we have that C
(k)
Λ (Rq) ⊂ LpΛ(Rq) holds true and that L2

Λ(Rq) is the
completion of C

(k)
Λ (Rq) with respect to the norm ‖ · ‖L2

Λ(Rq), that means

L2
Λ(Rq) = C

(k)
Λ (Rq)

‖·‖
L2

Λ
(Rq)

. (5.19)

We see that the system {Φh}h∈Λ−1 from above is orthonormal with respect to the
LpΛ(Rq)-inner product for h, h′ ∈ Λ−1:

(Φh,Φh′)LpΛ(Rq) =

∫
FΛ

Φh(x)Φh′(x) dx = δhh′ . (5.20)

We continue with the Laplace operator ∆x and the eigenvalue λ of the lattice Λ.

Definition 5.1.7. If we have a non-trivial solution U of the given differential equation
(∆x + λ)U(x) = 0, that satisfies the condition U(x + g) = U(x) for all g ∈ Λ and all
x ∈ Rq, we call λ an eigenvalue of the lattice Λ with respect to the Laplace operator ∆x.
We say that U is the eigenfunction of the lattice Λ regarding the eigenvalue λ and the
operator ∆x.

We get the following connection of the definition to the function Φh from above.

Lemma 5.1.8. The function Φh(x) (see Lemma 5.1.5) is called an eigenfunction of the
lattice Λ regarding the Laplace operator ∆x and the eigenvalue ∆∧(h) = 4π2 ‖h‖2.
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The functions Φh are the only eigenfunctions of the lattice and the scalars ∆∧(h)
are the only eigenvalues of ∆ with respect to the lattice Λ. We get that the system
{Φh}h∈Λ−1 is closed and complete in the pre-Hilbert space (C

(0)
Λ (Rq), ‖·‖L2

Λ(Rq)) and
also in the Hilbert space (L2

Λ(Rq), ‖ · ‖L2
Λ(Rq)). Furthermore, we get for F ∈ L2

Λ(Rq)
the following

lim
N→∞

∥∥∥∥∥∥∥∥F −
∑
‖h‖≤N
h∈Λ−1

F∧Λ (h)Φh

∥∥∥∥∥∥∥∥
L2

Λ(Rq)

= 0, (5.21)

where we have the respective Fourier coefficients F∧Λ (h) given by

F∧Λ (h) =

∫
FΛ

F (x)Φh(x) dx, h ∈ Λ−1. (5.22)

That means each F ∈ L2
Λ(Rq) can be represented by its Fourier series.

5.2. Lattice Point Summation Formulas

In this section, we have some preparations left on our way to the Poisson sum-
mation formula in Gauß-Weierstraß summability. In order to do this, we need the
Poisson summation formula and the Theta function.
Please note that we write

∑
g∈Λ instead of limN→∞

∑
‖g‖≤N
g∈Λ

for reasons of brevity.

We start with the introduction of two new spaces.

Definition 5.2.1. We have m ∈ N, ε > 0 and λ ∈ R given. The spaces CP
(2m)
1 (λ,Rq)

and CP
(2m)
2 (ε, λ,Rq) are defined as below

(i) The space of all functions H ∈ C(2m)(Rq) with the asymptotic relations

(∆x + λ)kH(x) = o
(
‖x‖1−q) , ‖x‖ → ∞, (5.23)∥∥∇x(∆x + λ)kH(x)

∥∥ = o
(
‖x‖1−q) , ‖x‖ → ∞, (5.24)

for k = 0, . . . ,m− 1 is denoted by CP
(2m)
1 (λ,Rq).

(ii) By CP
(2m)
2 (ε, λ,Rq), the space of all functions H ∈ C(2m)(Rq) fulfilling

(∆x + λ)mH(x) = O
(
‖x‖−(1+ε)

)
, ‖x‖ → ∞ (5.25)

is denoted.

The next theorem is the Poisson summation formula and obtained from [58] and
is required for our desired summation formula.
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5. Cubature on Lattice Points

Theorem 5.2.2. Let a lattice Λ in the space Rq be given. Let us assume that for ε > 0
and λ ∈ R the function F ∈ C(2m)(Rq), m > q

2
, fulfills the property that it is a member

of class CP
(2m)
1 (λ,Rq) ∩ CP

(2m)
2 (ε, λ,Rq), then the following holds true

lim
N→∞

 ∑
‖g‖≤N
g∈Λ

F (g)− 1√
‖FΛ‖

∑
(∆+λ)∧(h)=0

h∈Λ−1

∫
‖x‖≤N
x∈Rq

F (x)Φh(x) dx


=

1√
‖FΛ‖

∑
(∆+λ)∧(h)6=0

h∈Λ−1

∫
x∈Rq

F (x)Φh(x) dx. (5.26)

Moreover, if we have that the sum

∑
(∆+λ)∧(h)=0

h∈Λ−1

∫
‖x‖≤N
x∈Rq

F (x)Φh(x) dx (5.27)

converges for N →∞, we are able to conclude that

∑
g∈Λ

F (g)− 1√
‖FΛ‖

∑
(∆+λ)∧(h)=0

h∈Λ−1

∫
x∈Rq

F (x)Φh(x) dx

=
1√
‖FΛ‖

∑
(∆+λ)∧(h)6=0

h∈Λ−1

∫
Rq
F (x)Φh(x) dx. (5.28)

Now we come to the last component that we need for the development of the
Poisson summation formula in Gauß-Weierstraß summability, which is the Theta
function in Rq of degree 0 and its functional equation. Please note here that the
Theta function of degree 0 is sufficient here for us. For a representation of the
Theta function of degree n, see [58].

Definition 5.2.3. Let arbitrary points x, y ∈ Rq and an arbitrary lattice Λ be given. We
call ϑ(q)(·; ·, ·; Λ) with σ ∈ C and real part <(σ) > 0 given by

ϑ(q)(σ;x, y; Λ) =
∑
g∈Λ

exp
(
−πσ ‖g − x‖2)
√

4π
exp (2πig · y) , (5.29)

the Theta function of degree 0 and dimension q.

The Theta function is an example for a function that fulfills the property to be a
member of class CP

(2m)
1 (λ,Rq)∩CP

(2m)
2 (ε, λ,Rq). We continue with the functional

equation.
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5.2. Lattice Point Summation Formulas

Theorem 5.2.4. The Theta function ϑ(q)(·; x, y; Λ) is for all values σ ∈ C with real part
<(σ) > 0 holomorphic and fulfills the following functional equation

ϑ(q)(σ;x, y; Λ) =
1

‖FΛ‖
exp(2πix · y)σ−

q
2ϑ(q)

(
1

σ
;−y, x; Λ−1

)
for all x, y ∈ Rq.

(5.30)

Starting with the functional equation, we can deduce the summation formula.
This is done by multiplying the functional equation of the Theta function with
a function F ∈ C(B) and application of the Poisson summation formula (see
Theorem 5.2.2). We do not show the derivation of the formula in detail. For a
detailed proof, see [58]. The result is given in the next theorem.

Theorem 5.2.5. Assume that B is a regular region in Rq and F ∈ C(B). For all x ∈ Rq

and all τ ∈ R with τ > 0, the series∑
h∈Λ−1

exp(−τπ2h2)

∫
B
F (y)Φh(y) dy Φh(x) (5.31)

converges. Furthermore, we have for all x ∈ Rq the summation formula∑
g+x∈B
g∈Λ

α(g + x)F (g + x) = lim
τ→0
τ>0

∑
h∈Λ−1

exp(−τπ2h2)

∫
B
F (y)Φh(y) dy Φh(x). (5.32)

We want to simplify the theorem by setting x = 0 and separate the term belonging
to h = 0 and get the following.

Corollary 5.2.6. For an arbitrary lattice Λ in Rq, a regular region B ⊂ R and a function
F ∈ C(B), we get∑

g∈B
g∈Λ

α(g)F (g) =
1

‖FΛ‖

∫
B
F (y) dy

+
1

‖FΛ‖
lim
τ→0
τ>0

∑
h6=0
h∈Λ−1

exp(−τπ2h2)

∫
B
F (y) exp(−2πih · y) dy. (5.33)

Now let us have a look at the second term on the right-hand side, that means the
second line of the equation above. In the limit, this term vanishes, if the mesh
size and also the area of the fundamental cell tend to zero due to the Riemann
integrability of the function F ∈ C(B). With this knowledge, we can deduce the
following cubature formula∫

B
F (y) dy ≈ ‖FΛ‖

∑
g∈B
g∈Λ

α(g)F (g). (5.34)
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5. Cubature on Lattice Points

There are some things left to say: This summation formula will only give good
results if the support of the integrand is large enough, that means covers enough
data points. Since our source scaling functions have a shrinking support for the
limit τ → 0+, it is necessary to do a little modification of the summation formula
that we get good results also for the case with a small support. This is done
analogously to the modification in [21]. For further details see Section 9.1.
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6. Thermoporoelasticity

In this chapter, we want to give a short overview of the term thermoporoelasticity
and what is meant by this. We continue with the derivation of the governing
equations of thermoporoelasticity before we derive the fundamental solutions.
We are guided by [33].

6.1. Overview

We start with a short description of what is meant by poroelasticity. This term
describes the connection between a solid and the pore pressure for example in a
geothermal reservoir and its interaction on each other. That means for example
solid deformation can change the pore pressure and also a variation in the pore
pressure has an effect on the solid. In this case the temperature is assumed to
be constant. Thermoporoelasticity connects poroelasticity with thermal effects.
Since thermal effects play an important role in geothermal reservoirs, it is neces-
sary to have a look at poroelastic effects that are linked with thermal ones. The
temperature can change for example by deformation of the solid itself but also
by heat conduction, for example by injecting a colder fluid than extracted before.
Furthermore, deformation of the solid can cause temperature changes. For the
description of the thermoporoelastic behavior of such a setting, several material
constants for the solid and fluid are necessary. For an overview (listed in the or-
der as they appear in the derivation of the equations below) of the symbol and
the corresponding quantity, see Table 6.1. Please note that there are many more
material constants that we do not explain here in detail, because they can be ex-
pressed with the ones above. There exist relations between the thermoporoelastic
constants. An important one for the Biot-Willis constant α is

α =

(
1− K

Ks

)
. (6.1)

Another one is the connection to the well-known Lamé constants, where we have

µ = G, λ = K − 2

3
G. (6.2)

For further relations between the constants and the other constants, that exist,
we refer to [33]. For the derivation of the partial differential equations in ther-
moporoelasticity, we need 9 of these constants, which can for example be the fol-
lowing {G,K,M,α, αd, βe,md, κ, κT}. For the theory of poroelasticity later, only 4
constants are necessary, for example {G,K, α,B}.
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6. Thermoporoelasticity

Symbol Quantity
G shear modulus
K drained bulk modulus
αd drained thermoelastic effective stress coefficient
Ks bulk modulus of the solid
α Biot-Willis constant
κ permeability coefficient
M Biot modulus
βe coefficient for volumetric thermal expansion

for variation in fluid content at constant frame volume
κT thermal conductivity
md drained thermoelastic constitutive constant
B Skempton pore pressure coefficient
βd drained coefficient of volumetric thermal expansion

for porous medium frame

Table 6.1.: Table with the main material constants for thermoporoelasticity.

6.2. Physical Background and Mathematical
Derivation of the Equations

In this section the main idea and the most important physical laws for the deriva-
tion of the partial differential equations for the thermally coupled model of ther-
moporoelasticity are shown. Later the simplification to the uncoupled model is
presented.
The first constitutive equations and a consistent theory for the three-dimensional
linear poroelasticity without thermal effects go back to Biot (see [15–17, 20]) and
furthermore for thermoelasticity see [19].
In thermoporoelasticity, we have a look at a combination of both. In general,
there exist three models, the complete, the coupled and the uncoupled model.
The detailed derivation for the three models can be found in [33] and also for
the uncoupled model see [139]. We show here briefly the way to get the govern-
ing equations of the thermally coupled model and afterwards to the uncoupled
model. For that reason, the Navier equation, the fluid diffusion equation and the
thermal diffusion equation are used. Note that in the following the displacement
u, the pore pressure p and the temperature T are the unknown variables. It is
possible to express the equations with the set of unknown variables displacement,
pore pressure and temperature {u, p, T} in equations with the unknown variables
stress-strain-tensor, variation in fluid content and entropy {σij, ζ, s}, which de-
pend on {u, p, T}. In some cases it is easier to switch between the variables. It is
also possible to have combinations of these six as unknown variables, that means
one can choose, if u or σij for the displacement component, p or ζ for the pressure
component and T or s for the temperature component.
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6.2. Physical Background and Mathematical Derivation of the Equations

Beginning with the variables u, p and T , the variables σij , ζ and s are defined in
the following way:

σij =

(
K − 2G

3

)
δije+ 2Geij − αδij − αdδijT, (6.3)

ζ = αe+
p

M
− βeT, (6.4)

s = αde− βep+mdT. (6.5)

Here eij is the infinitesimal or total (Cauchy) strain tensor which is given by

eij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
=

1

2

(
∂xjui + ∂xiuj

)
(6.6)

and e the total volumetric strain

e =
3∑
i=1

eii =
3∑
i=1

∂xiui = ∇ · u. (6.7)

We see that e and eij depend on the variable u. The following notation is used for
a better readability

ui,j =
∂

∂xj
ui. (6.8)

There are three main physical laws that lead us to the partial diferential equations
and that we have a look at successively. We start with the force equilibrium equa-
tion.
Navier-type equation/Force equilibrium equation
For an isotropic material, the stress-strain relation in general can with the help of
the shear and drained bulk modulus be written as

σij = 2Geij +

(
K − 2G

3

)
δije. (6.9)

Taking into account the pressure and the temperature, the stress-strain-temperature
relation is given by

σij = 2Geij +

(
K − 2G

3

)
δije− αdδijT − αδijp, (6.10)

where σij is the Cauchy stress tensor in the porous medium. The static equilib-
rium equation is written as

3∑
j=1

σij,j = 0, (6.11)
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6. Thermoporoelasticity

since there are no body forces and inertia effect. Also the thermal effect has no
influence on the force equilibrium. Putting (6.10) in (6.11) and considering (6.6)
yields

(
K − 2G

3

) 3∑
j=1

δij∂xje+ 2G
3∑
j=1

∂xjeij − α
3∑
j=1

δij∂xjp− αd

3∑
j=1

δij∂xjT = 0

⇔
(
K − 2G

3

)
∇(∇ · u) + 2G

1

2

(
3∑
j=1

∂xjxjui +
3∑
j=1

∂xixjuj

)
− α∇p− αd∇T = 0

⇔
(
K − 2G

3

)
∇(∇ · u) +G

(
∇2u+∇(∇ · u)

)
− α∇p− αd∇T = 0

⇔
(
K +

G

3

)
∇(∇ · u) +G∇2u− α∇p− αd∇T = 0, (6.12)

which is the first equation of thermoporoelasticity. We continue with the equation
for the main equation that concerns the behavior of the fluid.
Fluid diffusion equation
For the derivation of the fluid diffusion equation, first the fluid mass balance
equation

∂ζ

∂t
+∇ · q = 0 (6.13)

and Darcy’s law (which describes the flow of a fluid through a porous medium)

q = −κ∇p (6.14)

are combined to get

∂ζ

∂t
− κ∇2p = 0. (6.15)

In this case, q is the specific flux and ζ the variation in fluid content. The variable
ζ in the equation above can be eliminated with the help of (6.4) to obtain

∂p

∂t
− κM∇2p = −αM ∂e

∂t
+ βeM

∂T

∂t
. (6.16)

This is a pore pressure diffusion equation and the second equation, which can
also be written as

∂p

∂t
− κM∇2p = −αM ∂(∇ · u)

∂t
+ βeM

∂T

∂t
. (6.17)

We continue with the last equation, which effects the thermal behavior.
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6.2. Physical Background and Mathematical Derivation of the Equations

Thermal diffusion equation
The thermal diffusion equation is based on the thermal energy balance and also
Fourier’s law. The linearized version of the thermal energy conservation equation
is

T0
∂s

∂t
+∇ · q = 0, (6.18)

where s is the entropy, q the so-called heat flux vector and T0 the reference abso-
lute temperature. Together with Fourier’s law (which describes the rate of heat
transfer in a material), the heat flux vector can be replaced by

q = −kT∇T (6.19)

and the following equation is obtained

∂s

∂t
− kT

T0

∇2T = 0. (6.20)

By substituting s = αde−βep+mdT (see (6.5)), the diffusion equation for temper-
ature is obtained

αd
∂e

∂t
− βe

∂p

∂t
+md

∂T

∂t
− kT

T0

∇2T = 0. (6.21)

Dividing this equation by md, setting kT

T0md
= κT and replacing e, the third gov-

erning equation of thermoporoelasticity is obtained:

∂T

∂t
− κT∇2T = − αd

md

∂(∇ · u)

∂t
+

βe

md

∂p

∂t
. (6.22)

The equations (6.12), (6.17) and (6.22) are the governing equations for the coupled
model in thermoporoelasticity. The unknown variables are u, p and T . The set of
9 independent material constants consists of {G,K,M,α, αd, βe,md, κ, κT}. Now
we have a look at the derivation of the uncoupled equations, which is done by
the following considerations. In the coupled equations there exists a poroelastic
and a thermoelastic coupling. Poroelastic coupling means that pore pressure can
generate solid deformation and solid deformation can cause pore pressure (called
the Skempton effect). This poroelastic coupling can be ignored (see [156]) if

αB � 1 (6.23)

holds true. Based on the materials given in [33], this condition is not satisfied and
therefore the poroelastic coupling cannot be ignored. The thermoelastic coupling
on the contrary can be disregarded if

Kβ2
d

md

� 1. (6.24)
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6. Thermoporoelasticity

For the materials deep sea clay, rock salt, Berea sandstone and Westerly granite
given in [33] this coupling coefficient is 1.7 × 10−6, 4.6 × 10−2, 2.7 × 10−5 and
1.8 × 10−3. That means in most cases the thermoelastic coupling is weak and
can be ignored. This uncoupling of the thermoelastic effect is achieved by taking
md →∞ and the thermal diffusion equation (6.22) reduces to

∂T

∂t
− κT∇2T = 0. (6.25)

In this case the constant md is not longer necessary and the independent mate-
rial constants reduce to 8. The governing equations for the uncoupled model in
thermoporoelasticity are

(
K +

G

3

)
∇(∇ · u) +G∇2u = α∇p+ αd∇T (6.26)

∂p

∂t
− κM∇2p = −αM ∂(∇ · u)

∂t
+ βeM

∂T

∂t
(6.27)

∂T

∂t
− κT∇2T = 0. (6.28)

The temperature equation (6.28) is a homogeneous heat equation for T and can
be solved independently from the other two. The equation for the pore pressure
(6.27) is an inhomogeneous heat equation, where its right-hand side depends on u
and T . Equation (6.26) (for u) is an inhomogeneous Navier-type equation, which
is subjected on p and T .

6.3. Fundamental Solutions

Fundamental solutions for the partial differential equations in porothermoelastic-
ity are derived in [33] for the coupled equations, where this subsection is guided
by it. The idea is to show the main concept and strategy how such fundamental
solutions can be constructed. We write down the fundamental solutions for the
unknown u, p and T in detail in contrast to [33], where not all components are
presented explicitly. For the determination of the fundamental solutions first sin-
gular forcing terms for displacement, pore pressure and temperature are needed.
In this case Fi is the concentrated force, γ the fluid source and γT the heat source.
Another possible way to get fundamental solutions is the integral transform tech-
nique (see [140]).
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6.3. Fundamental Solutions

With these forces the equilibrium equations (6.11), the fluid mass balance (6.13)
and the thermal energy balance (6.18) can be rewritten as

3∑
j=1

σij,j = −Fi, (6.29)

∂ζ

∂t
+

3∑
i=1

qi,i = γ, (6.30)

T0
∂s

∂t
+

3∑
i=1

qi,i = γT . (6.31)

Note that we now switch here from the unknown variables {u, p, T} to {u, ζ, s}
in the equations derived before that means we now express {u, p, T} from the
equations above in terms of {u, ζ, s} and obtain (see [33] for a detailed derivation)

G
3∑
j=1

ui,jj +

(
Kb +

G

3

) 3∑
j=1

uj,ji − αbMζ,i −
αu

mu

s,i = −Fi, (6.32)

∂ζ

∂t
− cc∇2ζ − ccβg

md

∇2s =
3Mαbκ

3Kb + 4G

3∑
i=1

Fi,i + γ,

(6.33)

∂s

∂t
− cb∇2s−Mcbβh∇2ζ =

3mdαuκT

mu(3Kb + 4G)

3∑
i=1

Fi,i +
γT
T0

.

(6.34)

Some new obtained constants here are combinations of the well-known constants
from above and are introduced as an abbreviation here for the sake of readability.
The relations between the new and the old constants can be found very detailed
in [33]. In this setting (6.32) depends on all unknowns but (6.33) and (6.34) are
independent of u and uncoupled from the Navier equation that means can be
solved independently from (6.32). This is easier for the derivation of the fun-
damental solutions. We can get back to p and T with the help of the following
formulas (see [33] for details)

p = M

(
−αbe+

md

mu

ζ +
βe

mu

s

)
, (6.35)

T =
1

mu

(s− αue+mβeζ) , (6.36)

which are obtained by rearrangement of (6.4) and (6.5).

6.3.1. Biot Decomposition

We have a look at the fundamental solutions in the two-dimensional case. For the
derivation of the fundamental solutions, a variable decomposition, which was
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6. Thermoporoelasticity

first suggested by Biot (see [18]) in poroelasticity, is applied to further decouple
the equations (6.32)-(6.34). This decomposition holds true for all different types
of forcing terms and is very important for us to calculate the ui in the different
cases

ui = u0
i +

ηbM

G
Φ,i +

ηu

muG
Ψ,i. (6.37)

Here Φ and Ψ are potentials fulfilling

ζ = ∇2Φ, (6.38)
s = ∇2Ψ. (6.39)

The main idea is to solve the equations first for the unknown {u0
i ,Ψ,Φ}. Then we

obtain ui, ζ and s with the help of (6.37), (6.38) and (6.39). In the end we can use
(6.35) and (6.36) for the determination of p and T or use directly the following
equations for p and T in dependency on the defined potentials (obtained from
[33])

p =
1

Sc

∇2Φ +
βg

mdSc

∇2Ψ +
ηbM

G
g1, (6.40)

T =
βhM

Sb

∇2Φ +
1

Sb

∇2Ψ +
ηu

muG
g1, (6.41)

where

g1k =
1

2π

xk
r2

(6.42)

and the new constants depend on the well-known constants and are introduced
for a better readability. In the following, we will consider several scenarios of
source functions to obtain the components of the fundamental solution matrix as
it is done in [33]

6.3.2. Continuous Heat Source

We start with the heat source, that means γT is represented as a point heat source
located at x, which corresponds to the following singular forcing distribution

γT = δxH(t− τ); γ = Fi = 0. (6.43)
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6.3. Fundamental Solutions

In this case the corresponding fundamental solutions and quantities have the su-
perscript ·hsc and the potentials Φ and Ψ are given by (see [33])

Φhsc =
βg

2πT0mdcb(µ2
1 − µ2

2)

[
1

2
t exp

(
−µ

2
1r

2

4t

)
− 1

8
(µ2

1r
2 + 4t)E1

(
µ2

1r
2

4t

)
−1

2
t exp

(
−µ

2
2r

2

4t

)
+

1

8
(µ2

2r
2 + 4t)E1

(
µ2

2r
2

4t

)]
,

(6.44)

Ψhsc
1 = −md

βg

Φhsc, (6.45)

Ψhsc
2 =

1

2πT0cbcc(µ2
1 − µ2

2)

[
1

2µ2
1

t exp

(
−µ

2
1r

2

4t

)
− 1

8µ2
1

(µ2
1r

2 + 4t)E1

(
µ2

1r
2

4t

)
− 1

2µ2
2

t exp

(
−µ

2
2r

2

4t

)
+

1

8µ2
2

(µ2
2r

2 + 4t)E1

(
µ2

1r
2

4t

)]
,

(6.46)

Ψhsc = Ψhsc
1 + Ψhsc

2 . (6.47)

The detailed derivation for Φ and Ψ can be found in [33], where also a Laplace
transform is used. We obtain for p and T (see also [33])

phsc(r, t) = − βg

4πT0mdSccbcc(µ2
1 − µ2

2)

[
E1

(
µ2

1r
2

4t

)
− E1

(
µ2

2r
2

4t

)]
, (6.48)

T hsc(r, t) =
ccµ

2
1(md −Mβgβh)−md

4πT0cccbmdSb(µ2
1 − µ2

2)
E1

(
µ2

1r
2

4t

)
− ccµ

2
2(md −Mβgβh)−md

4πT0cccbmdSb(µ2
1 − µ2

2)
E1

(
µ2

2r
2

4t

)
. (6.49)

We calculate the displacement, which obtained with the relations (see (6.37))

ui = u0
i +

ηbM

G
Φ,i +

ηu

muG
Ψ,i, (6.50)

u0
i = 0, (6.51)

resulting from the decomposition and the assumptions in (6.43). To get the funda-
mental solution ui, the derivative with respect to xi of E1(·) has to be determined.
This is (see the properties of the exponential integral in (2.21) and (2.20))

∂

∂xi
E1

(
µ2

1r
2

4t

)
= −E0

(
µ2

1r
2

4t

)
· µ

2
1xi
2t

=
−µ2

1xi
2t

· 4t

µ2
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2
exp

(
−µ

2
1r

2

4t

)
=
−2xi
r2

exp

(
−µ

2
1r

2

4t

)
. (6.52)
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For a better readability, we summarize the fractions of constants in front of Φ and
Ψ in two new constants given by

K1 :=
βg

2πT0mdcb(µ2
1 − µ2

2)
, (6.53)

K2 :=
1

2πT0cbcc(µ2
1 − µ2

2)
, (6.54)

and first calculate the derivative of the term of Φhsc equipped with µ1 and use
(6.52)

∂

∂xi

[
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2
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2
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4t
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8
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2 + 4t)E1
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=
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+
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4
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2
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+

1

4
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(
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2
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4t

)(
µ2

1 +
4t

r2

)
= −xiµ

2
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4
E1

(
µ2
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2

4t

)
+
xit

r2
exp

(
−µ

2
1r

2

4t

)
. (6.55)

The term provided with µ2 and the derivative of Ψhsc
2 can be derived in analogy

due to the similarity of both terms. We get for uhsc
i

uhsc
i

(6.50)
=

ηbM

G
Φhsc
,i +

ηu

muG
Ψhsc
,i

=
ηbM

G

∂

∂xi
Φhsc +

ηu

muG

∂

∂xi
Ψhsc

(6.45),(6.47)
=

ηbM

G

∂

∂xi
Φhsc +

ηu

muG

∂

∂xi

(
−md

βg
Φhsc + Ψhsc

2

)
(6.55)
=

(
ηbM

G
− mdηu

βgmuG

)
K1

[
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2
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+
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+
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+
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[
−xi
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2

4t

)
+

xit

r2µ2
1

exp

(
−µ

2
1r

2

4t

)
+
xi
4

E1

(
µ2
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2

4t

)
− xit

r2µ2
2

exp

(
−µ

2
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2

4t

)]
. (6.56)
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6.3.3. Continuous Fluid Source

For the continuous fluid source the following assumptions have to be made in
analogy to the continuous heat source before

γ = δxH(t− τ); γT = Fi = 0. (6.57)

Due to the symmetry between ζ and s in (6.33) and (6.34), we obtain (see [33])

Ψfsc =
Mβh

2πcc(µ2
1 − µ2

2)

[
1

2
t exp

(
−µ

2
1r

2

4t

)
− 1

8
(µ2

1r
2 + 4t)E1

(
µ2

1r
2

4t

)
− 1

2
t exp

(
−µ

2
2r

2

4t

)
+

1

8
(µ2

2r
2 + 4t)E1

(
µ2

2r
2

4t

)]
, (6.58)

Φfsc
1 = − 1

Mβh

Ψfsc, (6.59)

Φfsc
2 =

1

2πcbcc(µ2
1 − µ2

2)

[
1

2µ2
1

t exp

(
−µ

2
1r

2

4t

)
− 1

8µ2
1

(µ2
1r

2 + 4t)E1

(
µ2

1r
2

4t

)
− 1

2µ2
2

t exp

(
−µ

2
2r

2

4t

)
+

1

8µ2
2

(µ2
2r

2 + 4t)E1

(
µ2

2r
2

4t

)]
,

(6.60)

Φfsc = Φfsc
1 + Φfsc

2 (6.61)

T fsc = − Mβh

4πSbcbcc

(µ2
1 − µ2

2)

[
E1

(
µ2

1r
2

4t

)
− E1

(
µ2

2r
2

4t

)]
, (6.62)

pfsc =
cbµ

2
1(md −Mβgβh)−md

4πcbccmdSc(µ2
1 − µ2

2)
E1

(
µ2

1r
2

4t

)
− cbµ

2
2(md −Mβgβh)−md

4πcbccmdSc(µ2
1 − µ2

2)
E1

(
µ2

2r
2

4t

)
, (6.63)

where we can also see the symmetry between ζ and s compared to (6.48), (6.49)
and (6.44)-(6.47). Please note that these fundamental solutions only differ from
those corresponding to the continuous heat source by substituting the following:
Φ ↔ Ψ, cb ↔ cc, βg ↔ βh, md ↔ 1

M
, Sb ↔ Sc and omitting T0. The case hsc deals

with the heat source and needs therefore a reference temperature. We define the
following constants

K3 :=
Mβh

2πcc(µ2
1 − µ2

2)
(6.64)

K4 :=
1

2πcbcc(µ2
1 − µ2

2)
(6.65)
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and determine the displacement vector with the help of the considerations in the
case of the continuous heat source

ufsc
i =

ηbM

G
Φfsc
,i +

ηu

muG
Ψfsc
,i

=
ηbM

G

∂

∂xi
Φfsc +

ηu

muG

∂

∂xi
Ψfsc

(6.55)
=

(
ηu

muG
− ηb

βhG

)
K3

[
−xiµ

2
1

4
E1

(
µ2

1r
2

4t

)
+
xit

r2
exp

(
−µ

2
1r

2

4t

)
+
xiµ

2
2

4
E1

(
µ2

2r
2

4t

)
− xit

r2
exp

(
−µ

2
2r

2

4t

)]
+
ηbM

G
K4

[
−xi

4
E1

(
µ2

1r
2

4t

)
+

xit

r2µ2
1

exp

(
−µ

2
1r

2

4t

)
+
xi
4

E1

(
µ2

2r
2

4t

)
− xit

r2µ2
2

exp

(
−µ

2
2r

2

4t

)]
. (6.66)

The following interrelations are obtained

Ψfsc =
K3

K1

Φhsc, (6.67)

Φfsc
1 = − 1

Mβh

Ψfsc = − 1

Mβh

· K3

K1

Φhsc, (6.68)

Φfsc
2 =

K4

K2

Ψhsc
2 . (6.69)

With this, the fundamental solutions with superscript ·fsc can be expressed with
those with ·hsc.

6.3.4. Continuous Fluid and Heat Dipole

We obtain the dipole solution (a solution of source and sink pushed together) by
differentiating the source solution with a negative sign, that means

Φhpc
i = −Φhsc

,i , Ψhpc
i = −Ψhsc

,i , (6.70)

Φfpc
i = −Φfsc

,i , Ψfpc
i = −Ψfsc

,i . (6.71)

This is necessary for the last case of the continuous force.

6.3.5. Continuous Force

The last case to consider is the continuous force given by the last combination

Fik = δikδxH(t− τ); γ = γT = 0. (6.72)
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6.3. Fundamental Solutions

In this case the following fundamental solutions terms can in a first step be affili-
ated to some known from the continuous heat source (hsc) and continuous fluid
source (fsc) and in a second step the terms of ·fsc attributed to terms in ·hsc (see
(6.67),(6.68),(6.69)). Note that in the derivation of these fundamental solutions
many derivatives and Laplace operators have to be applied and therefore, we try
to reduce the terms to a minimum of different functions (here we reduce to Φhsc

and Ψhsc
2 ). It holds true:

ΦFc
k = −ηbMκ

G
Φfpc
k −

ηumdκT

muG
Φhpc
k

(6.70),(6.71)
=

ηbMκ

G
Φfsc
,k +

ηumdκT

muG
Φhsc
,k

(6.68)
=

ηbMκ

G
· K4

K2

Ψhsc
2,k +

(
ηbMκ

G
·
(
−1

Mβh

)
· K3

K1

+
ηumdκT

muG

)
Φhsc
,k

=
ηbMκ

G
· K4

K2

Ψhsc
2,k +

(
− ηbκ

Gβh

· K3
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+
ηumdκT

muG

)
Φhsc
,k , (6.73)

ΨFc
k = −ηbMκ

G
Ψfpc
k −

ηumdκT

muG
Ψhpc
k

(6.70),(6.71)
=

ηbMκ

G
Ψfsc
,k +

ηumdκT

muG
Ψhsc
,k

(6.68)
=

ηbMκ

G
· K3

K1

Φhsc
,k +

ηumdκT

muG
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,k

(6.45),(6.47)
=

(
ηbMκ

G
· K3

K1

− ηumdκT

muG

md

βg

)
Φhsc
,k +

ηumdκT

muG
Ψhsc

2,k . (6.74)

For a better readability for the calculation of the components pFc, TFc and uFc, we
define again constants

K5 := − ηbκ

Gβh

· K3

K1

+
ηumdκT

muG
, K6 :=

ηbMκ

G
· K4

K2

, (6.75)

K7 :=
ηbMκ

G
· K3

K1

− ηumdκT

muG

md

βg

, K8 :=
ηumdκT

muG
, (6.76)

and get

ΦFc
k = K5Φhsc

,k +K6Ψhsc
2,k , (6.77)

ΨFc
k = K7Φhsc

,k +K8Ψhsc
2,k . (6.78)
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It is obtained (see (6.55))

∇xΦ
hsc = K1
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x2

)[
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4
E1

(
µ2

1r
2
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)
+
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, (6.79)

∇xΨ
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)[
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)
+
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exp
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. (6.80)

With (which is a fundamental solution in elasticity and given by [33])

u0
ik =

1

16πG(1− νb)

1

r

[xixk
r2

+ (3− 4νb)δik

]
, (6.81)

we obtain the fundamental solution by

uFc
ik = u0

ik +
ηbM

G
ΦFc
k,i +

ηu

muG
ΨFc
k,i. (6.82)

To obtain pk and Tk, we use (6.40), (6.41) and (6.42). For the determination of the
complete fundamental solutions, we have to apply the differential operator and
the Laplacian on ΦFc

k and ΨFc
k respectively on (6.79) and (6.80). First we consider

the derivative with respect to x1 and x2 for the following part with µ1 of (6.79).
The other cases are obtained due to symmetry.
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, (6.83)
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We get
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(6.79)1,2 = K1

[
−2x1x2t

r4
exp

(
−µ

2
1r

2

4t

)
+

2x1x2t

r4
exp

(
−µ

2
2r

2

4t

)]
, (6.86)
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We obtain in general
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Please note that we only have here the term of (6.79) with the µ1-factor in front
because the other one is the same with different signs.
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Furthermore, we have some of the second derivatives required for the Laplacian.
We get
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and
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The corresponding second derivatives of the second component are derived due
to the symmetry. Furthermore, second derivatives of (6.80) are the same as (6.79)
divided by the factor µ2

1 for the first term and divided by µ2
2 for the second term.
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We get for the Laplacian for the first component and the term with µ1

∇2(6.79)µ1 = (6.90) + (6.91)
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All in all, we obtain for the thermoporoelastic components u, p and T with the
help of (6.92) and together with (6.40), (6.41), (6.42), (6.77) and (6.78)
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=
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ηbM
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=
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(
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+

(
1
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2π

1

r2
(6.93)

and

TFc
k =

βhM

Sb

∇2ΦFc
k +

1

Sb

∇2ΨFc
k +

ηu

muG
g1k

=
βhM

Sb
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K5Φhsc

,k +K6Ψhsc
2,k
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+

1

Sb
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,k +K8Ψhsc
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ηu

muG

1

2π

xk
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βhM

Sb

K5 +
1

Sb

K7
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∇2Φhsc
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βhM

Sb
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1
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K8
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∇2Ψhsc

2,k +
ηu

muG

1

2π

xk
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=

(
βhM
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K5 +
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Sb
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[
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1

r4
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(
−µ
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2
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− µ2
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r4
exp

(
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+

(
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Sb
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k + 2r2)

[
1

r4
exp

(
−µ
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2
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r4
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(
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. (6.94)
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6. Thermoporoelasticity

Furthermore, we obtain with (6.82), (6.81), (6.77), (6.78) and (6.89)

uFc
ik = u0

ik +
ηbM

G
ΦFc
k,i +

ηu

muG
ΨFc
k,i

=
1

16πG(1− νb)

1
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]
+
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Ψhsc

2,k

)
,i

)
+
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=
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+
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+
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+
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All in all, the fundamental solutions can be written as a fundamental solution
tensor given by

G(x, t) =


uFc

11 uFc
12 pFc

1 TFc
1

uFc
21 uFc

22 pFc
2 TFc

2

ufsc
1 ufsc

2 pfsc T fsc

uhsc
1 uhsc

2 phsc T hsc

 =

 uFc
ik pFc

k TFc
k(

ufsc
k

)T
pfsc T fsc(

uhsc
k

)T
phsc T hsc

 . (6.96)
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7. Non-dimensionalization and
reduction to poroelasticity

In this section, the dimensionless form of the governing equations of thermo-
poroelasticity are derived. Then, with these equations, we go over to the quasi-
static equations of poroelasticity, where we also depict the appropriate funda-
mental solutions. We need these fundamental solutions afterwards for the con-
struction of the scaling functions and wavelets for the decorrelation process.

7.1. Equations of Thermoporoelasticity in
Dimensionless Form

The governing equations from the section above for the coupled case are given
by (

K +
G

3

)
∇(∇ · u) +G∇2u− α∇p− αd∇T = 0, (7.1)

∂p

∂t
− κM∇2p+ αM

∂(∇ · u)

∂t
− βeM

∂T

∂t
= 0, (7.2)

∂T

∂t
− κT∇2T +

αd
md

∂(∇ · u)

∂t
− βe
md

∂p

∂t
= 0. (7.3)

For the non-dimensionalization we define u0 and t0 as a characteristic length- and
timescale and define

x̌ =
x

x0

, ť =
t

t0
, (7.4)

ǔ =
u

x0

, p̌ =
p

µ
, Ť= T · βe. (7.5)

Please note that the entities marked with a ·̌ are dimensionless and x0, µ and βe
are necessary constants to non-dimensionalize u, p and T . We start by inserting
(7.4) and (7.5) in (7.1) and get

G
x0

x2
0

∇2
x̌ǔ+

(
K +

G

3

)
x0

x2
0

∇x̌ (∇x̌ · ǔ)− α µ
x0

∇x̌p̌− αd
1

βex0

∇x̌Ť = 0

∣∣∣∣ (:
µ

x0

)
⇔ G

µ
∇2
x̌ǔ+

(
K + G

3

)
µ

∇x̌ (∇x̌ · ǔ)− α∇p̌− αd
βeµ
∇x̌Ť = 0. (7.6)
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7. Non-dimensionalization and reduction to poroelasticity

Following the same way for (7.2) and (7.3) and choosing t0 =
x2

0

κµ
, we obtain

µ

t0

∂p̌

∂ť
− κM µ

x2
0

∇x̌p̌+ αM
1

t0

∂ (∇x̌ · ǔ)

∂ť
− βeM

∂Ť

∂ť

1

βet0
= 0

∣∣∣∣ · t0M
⇔ µ

M

∂p̌

∂ť
− κµ t0

x2
0

∇2
x̌p̌+ α

∂ (∇x̌ · ǔ)

∂ť
− ∂Ť

∂ť
= 0

⇔ µ

M

∂p̌

∂ť
−∇2

x̌p̌+ α
∂ (∇x̌ · ǔ)

∂ť
− ∂Ť

∂ť
= 0, (7.7)

1

t0βe

∂Ť

∂ť
− κT

1

x2
0βe
∇2
x̌Ť +

αd
md

1

t0

∂ (∇x̌ · ǔ)

∂ť
− βe
md

· µ
t0

∂p̌

∂ť
= 0

∣∣∣∣ · t0βe
⇔ ∂Ť

∂ť
− κT
κµ
∇2
x̌Ť +

αdβe
md

∂ (∇x̌ · ǔ)

∂ť
− β2

eµ

md

∂p̌

∂ť
= 0. (7.8)

In the following, we omit the ·̌ for the sake of readability. From here on we always
use the dimensionless quantities. Furthermore, we replace G and K by the more
known Lamé constants λ and µ by the following rule: G = µ and K = λ + 2

3
µ.

Furthermore, we can write 1/M =: c0 as a specific storage coefficient (see [10]).
We obtain the equations for thermoporoelasticity in dimensionless form:

∇2
xu+

λ+ µ

µ
∇x (∇x · u)− α∇p− αd

βeµ
∇xT = 0 (7.9)

c0µ
∂p

∂t
−∇2

xp+ α
∂ (∇x · u)

∂t
− ∂T

∂t
= 0 (7.10)

∂T

∂t
− κT
κµ
∇2
xT +

αdβe
md

∂ (∇x · u)

∂t
− β2

eµ

md

∂p

∂t
= 0. (7.11)

7.2. Governing Equations in Poroelasticity

Now we want to reduce the partial differential equations in thermoporoelasticity
in dimensionless form to the case of poroelasticity. For this, we have to consider
the equations (7.9)-(7.11) with a constant temperature. That means specifically
that for a constant temperature T , the gradient ∇xT , the Laplacian ∇2

xT and the
time derivative ∂T/∂t are zero and can be omitted. We obtain the dimensionless
equations in poroelasticity by

−λ+ µ

µ
∇x(∇x · u)−∇2

xu+ α∇xp = 0, (7.12)

∂t(c0µp+ α(∇x · u))−∇2
xp = 0. (7.13)
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7.3. Fundamental Solutions in Poroelasticity

For the third equation (7.11), the following is left after setting the gradient and
time derivative of T to zero

αd
md

∂(∇ · u)

∂t
− βeµ

md

∂p

∂t
= 0. (7.14)

This equation is trivially true, because in the thermal uncoupled case, we men-
tioned that for this case the material constant md goes to infinity. With this as-
sumption the terms on the left-hand side go to zero. That means for poroelasticity,
the equations (7.12) and (7.13) are the governing equations, called the quasistatic
equations of poroelasticity (briefly QEP). In Figure 7.1, the QEP are compared
with the known differential equations from Section 3.2 (see also [72]), where we
can see several similarities.

 

 

Heat equation 

𝜕𝑡𝑝 − ∇2𝑝 = 0 

 

  

 

 

 

Stokes equations 

−𝜇∇2𝑢 + ∇𝑝 = 0 

∇ ⋅ 𝑢 = 0 

  

 

 

 

Cauchy-Navier equation 

𝜇∇2𝑢 + (𝜆 + 𝜇)∇(∇ ⋅ 𝑢) = 0 

 

  

 

 

 

Quasistatic equations of poroelasticity 

−  
𝜆 + 𝜇

𝜇
∇(∇ ⋅ 𝑢) − ∇2𝑢 + 𝛼∇𝑝 = 0 

∂t(c0μp + α∇ ⋅ u) − ∇2p = 0 

  

 

 

 

Figure 7.1.: Connection between the QEP and other known differential equations.

7.3. Fundamental Solutions in Poroelasticity

The QEP in dimensionless form are given by (see the considerations from above
and [10])

−λ+ µ

µ
∇x(∇x · u)−∇2

xu+ α∇xp = f, (7.15)

∂t(c0µp+ α(∇x · u))−∇2
xp = h, (7.16)
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7. Non-dimensionalization and reduction to poroelasticity

where we first have a look at the QEP in the inhomogeneous case following the
way of [10]. Here f is the volume force and h results from the mass transport.
With the help of the QEP, we define the poroelastic differential operator in the
following way

Lpe(u, p) =

(
−λ+µ

µ
∇x(∇x · u)−∇2

xu+ α∇xp

∂t(c0µp+ α(∇x · u))−∇2
xp

)
, (7.17)

which we will use later for the construction of the source scaling functions. Please
note that we only show here the basic idea of the derivation of the fundamental
solutions again. A detailed proof for the dimensionless case can be found in [10]
and cf. [34] for the non-dimensionless case. For the derivation of the fundamental
solutions it is convenient to rearrange the QEP and express them in terms of the
displacement u and the volumetric dimensionless fluid content change ζ , which
depends on u and p, and is given by

ζ := c0µp+ α(∇x · u). (7.18)

This is similar to the derivation of the fundamental solutions in thermoporoelas-
ticity. This trick has the advantage that the second equation in ζ is now uncoupled
from u and leads us to the following

−c0(λ+ µ) + α2

c0µ
∇x(∇x · u)−∇2

xu = f − α

c0µ
∇xζ, (7.19)

∂tζ −
λ+ 2µ

c0µ(λ+ 2µ) + µα2
∇2
xζ =

α

c0(λ+ 2µ) + α2
∇x · f + h. (7.20)

That means we can solve (7.19) and (7.20) for u and ζ . In a next step, we can
determine p from u and ζ by using the connection in (7.18). For the sake of read-
ability there are the following abbreviations for some material constants which
result from the determination of the fundamental solutions (see [10])

C1 :=
α

c0(λ+ 2µ) + α2
, C2 :=

λ+ 2µ

c0µ(λ+ 2µ) + µα2
, (7.21)

C3 :=
c0(λ+ 3µ) + α2

2(c0(λ+ 2µ) + α2)
, C4 :=

c0(λ+ µ) + α2

c0(λ+ 3µ) + α2
. (7.22)

Remark 7.3.1. Please note that C1, C2, C3, C4 > 0 holds true for the constants because
they consist of positive material constants. This is helpful for us later for the theoretical
part.

Remark 7.3.2. For the graphic representation of the fundamental solutions and their reg-
ularized versions and wavelets, we use material constants from Berea sandstone (which
are also used in [10]) which are given by

λ = 4× 109, µ = 6× 109, α = 0.867, c0µ = 0.461. (7.23)
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7.3. Fundamental Solutions in Poroelasticity

With the help of a so-called Biot decomposition, the fundamental solutions can
be calculated (see [10, 33]). They are on the plane R2 given by

pSi(x, t) =
1

4πt
exp

(
−‖x‖

2

4C2t

)
, (7.24)

uSi(x, t) = C1
x

2π‖x‖2

(
1− exp

(
−‖x‖

2

4C2t

))
, (7.25)

pFi(x, t) = C1
x

2π‖x‖2
δt − C1C2

2

π

x

(4C2t)2
exp

(
−‖x‖

2

4C2t

)
, (7.26)

uFi
ki(x, t) = C3

1

2π

(
−δki ln(‖x‖) + C4

xixk
‖x‖2

)
δt

+ C2
1

1

2π‖x‖2

[(
δik −

2xixk
‖x‖2

)(
1− exp

(
−‖x‖

2

4C2t

))
+

2

4C2t
xixk exp

(
−‖x‖

2

4C2t

)]
. (7.27)

In the following, we consider the QEP from (7.12) and (7.13) with vanishing right-
hand sides, that means f ≡ 0, h ≡ 0. Please note that we first go back to the
equations with unknown u and ζ again for the homogeneous QEP for the deter-
mination of the fundamental solutions. With this assumption, (7.19) and (7.20) in
u and ζ simplify to

−c0(λ+ µ) + α2

c0µ
∇x(∇x · u)−∇2

xu = − α

c0µ
∇xζ (7.28)

∂tζ − C2∇2
xζ = 0. (7.29)

We have the homogeneous heat equation (7.29) for ζ and an inhomogeneous
Cauchy-Navier equation (7.28) for u. With the help of a Biot decomposition again,
we get the alternative fundamental solution tensor Galt (for now in u and ζ) for
(7.28) and (7.29) by

Galt(x, t) =

(
uCN(x)δt 0
uSi(x, t) GHeat(x, t)

)
. (7.30)

That means the fundamental solutions in Galt belonging to u and ζ are an interme-
diate step to our fundamental solution tensor for (7.12) and (7.13) with f ≡ h ≡ 0.
Getting back to the origin variables u and p means calculating then p from ζ and
u (see (7.18) and [10]) and our fundamental solution tensor G in u and p reads

G(x, t) =

(
uCN(x)δt pSt(x)δt
uSi(x, t) pSi(x, t)

)
(7.31)
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7. Non-dimensionalization and reduction to poroelasticity

with the following entries

pSi(x, t) =
1

4πt
exp

(
−‖x‖

2

4C2t

)
, (7.32)

uSi(x, t) = C1
x

2π‖x‖2

(
1− exp

(
−‖x‖

2

4C2t

))
, (7.33)

pSt(x) = C1
x

2π‖x‖2
, (7.34)

uCN
ki (x) = C3

1

2π

(
−δki ln(‖x‖) + C4

xixk
‖x‖2

)
. (7.35)

That means our differential operator (7.17) applied to the fundamental solution
tensor yields the following

Lpe(G) = Iδxδt, (7.36)

where I is the identity matrix. Please note here that the application of the differ-
ential operator is applied row-wise like in the case of the divergence (see (2.13)).
These fundamental solutions are on the one hand necessary for the method of
fundamental solutions (briefly MFS, for more information about the MFS in poroe-
lasticity see [10]) to approximate given data for u and p and on the other hand for
the decorrelation of u and p at which we are aiming. Please note the similarity
of some of them by comparison with the fundamental solutions for more known
partial differential equations given in Section 3.3.
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Part III.

Multiscale Decorrelation for
Poroelasticity
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8. Regularized Fundamental
Solutions

This chapter starts with a short overview of the concept of decorrelation for the
Laplace case and the construction of the relevant source scaling functions appro-
priate for the multiscale mollifier approach. The idea and the realization for this
are given in [61] with more details. Furthermore, in [71] the method was worked
out theoretically for gravimetry and the numerical realization was done in [21]
and [26]. For more information see the mentioned literature in the introduction.
With this knowledge, we go over to the construction of the appropriate functions
in poroelasticity and present some theoretical results.

8.1. Laplace and Generalization

We now start with the Laplace equation and explain the approach of the mol-
lifier fundamental solution and the corresponding potential and source scaling
functions. The development of these two types of scaling functions is physically
motivated and takes the Newton integral equation as a starting point. We have a
body B and its gravitational potential V in its exterior R3 \ B is given by

V (x) = γ

∫
B
G(∆; ‖x− y‖)ρ(y) dy, x ∈ R3 \ B. (8.1)

Here γ is the gravitational constant and ρ is the density function. Since the de-
scription here is very short, please see for example [21, 25, 61] for further details
to this approach. For more general information on the Newton integral equa-
tion, we refer for example to [61, 63] and the references therein. Please note that
we have a look at the 3-dimensional case whereas our fundamental solutions for
poroelasticity below are 2-dimensional in the spatial part. The fundamental so-
lution of the Laplace equation is in the 3-dimensional case given by (here we
replaced ‖x‖ by r)

G(∆; r) = − 1

4πr
. (8.2)

In the next step, we want to avoid the singularity of the fundamental solution in
r = 0 by applying a Taylor expansion for r in the zero point. This is also called a
regularization or a mollification that means using these two phrases implies the
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8. Regularized Fundamental Solutions

same procedure. First we set r =
√
u and get for the expansion up to the linear

term

1√
u

=
1
√
u0

− 1

2u
3/2
0

(u− u0) +O
(
(u− u0)2

)
as u→ u0. (8.3)

Replacing u by ‖x‖2 and u0 by τ 2 leads us to

1

‖x‖
≈ 1

τ
− 1

2τ 3
(‖x‖2 − τ 2). (8.4)

With this, we define our regularized fundamental solution as a mollification of G
piecewise in the following way

Gτ (∆; ‖x‖) :=

{
− 1

4π‖x‖ , ‖x‖ ≥ τ,

− 1
4π

(
1
τ
− 1

2τ3 (‖x‖2 − τ 2)
)
, ‖x‖ < τ.

(8.5)

We use for ‖x‖ ≥ τ the fundamental solution itself and for ‖x‖ < τ the modified
variety of it. This function Gτ is also called the "potential scaling function". For
the Laplace case in Figure 8.1 the fundamental solution G(∆; r) and Gτ (∆; ‖x‖)
for selected values of τ are shown. We see that the difference between the funda-

Figure 8.1.: The Laplace fundamental solution G(∆; r) (dashed black) and its po-
tential scaling function Gτ (∆; ‖x‖) for τ = 1 (red), τ = 0.5 (blue) and
τ = 0.25 (green).

mental solution and the potential scaling function gets smaller with decreasing
parameter τ .

Remark 8.1.1. Please note that in [21, 25, 61] the Taylor mollification was done up to
order n but this is not necessary here because we only want to show the main idea of the
mollification.
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8.1. Laplace and Generalization

In a next step, we apply the Laplace operator on Gτ . The result is the so-called
"source scaling function" Φτ and is given by

Φτ := ∆Gτ = ∆

(
− 1

4π

(
1

τ
− 1

2τ 3
(‖x‖2 − τ 2)

))
=

1

4π

6

2τ 3

=
3

4πτ 3
(8.6)

for ‖x‖ < τ . In the case ‖x‖ ≥ τ , the application of the Laplace operator is the
application on the fundamental solution itself and results in zero, because outside
of the zero point, the fundamental solution is harmonic. Therefore the source
scaling function has compact support. The source scaling function for selected
parameters of τ can be seen in Figure 8.2. Due to the construction, we have a

Figure 8.2.: The source scaling function Φτ (‖x‖) in the Laplace case for τ = 1 (red),
τ = 0.5 (blue) and τ = 0.25 (green).

shrinking support of the source scaling function for a decreasing parameter τ .
With the potential and source scaling functions, we can define the "τ -Newton
potential functions" by

Vτ (x) :=

∫
B
Gτ (∆; ‖x− y‖)ρ(y) dy (8.7)

and the "τ -Newton contrast functions" given by

ρτ (x) =

∫
B

Φτ (‖x− y‖)ρ(y) dy. (8.8)
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8. Regularized Fundamental Solutions

The second convolution integral will later be the interesting one for us, because
our aim in poroelasticity is to do a decorrelation of given data. Now we go over
to a more general statement, which will be helpful for us later. We pursue the fol-
lowing ansatz for a more arbitrary function, where we can show that the mollifi-
cation is in C(1). First we start with a radially symmetric function. We want to reg-
ularize the radially symmetric function f(‖x‖) with the help of a one-dimensional
Taylor expansion up to the first order conform to the same principle as for the
Laplace case. Please note our designations: We name the Taylor modified func-
tion itself with the index reg (for example freg) whereas the index τ denotes the
composite function, that means the fundamental solution itself for ‖x‖ ≥ τ and
the Taylor modified variety for ‖x‖ < τ (for example fτ ). We have a look at a
radially symmetric function in general and obtain by a Taylor expansion in u0 for
f(
√
u) for ‖x‖ < τ

freg(u) := f(
√
u0) +

(
∂

∂u
f(
√
u)

) ∣∣∣∣
u=u0

(u− u0). (8.9)

The substitutions u = ‖x‖2 and u0 = τ 2 yield

freg(u) = f(τ) +

(
∂

∂u
f(
√
u)

) ∣∣∣∣
u=τ2

(‖x‖2 − τ 2)

= f(τ) +

(
f ′(
√
u) · 1

2
√
u

) ∣∣∣∣
u=τ2

(‖x‖2 − τ 2)

= f(τ) + f ′(τ)
1

2τ
(‖x‖2 − τ 2). (8.10)

We call the composite function fτ the Taylor mollification of f , that means

fτ (x) :=

{
f(‖x‖), ‖x‖ > τ,

f(τ) + f ′(τ) 1
2τ

(‖x‖2 − τ 2), ‖x‖ < τ.
(8.11)

We want to show the C(1) property of our function fτ .

Lemma 8.1.2. The Taylor mollification for the radially symmetric continuously differen-
tiable function f(‖x‖) given by

fτ (x) :=

{
f(‖x‖), ‖x‖ > τ,

f(τ) + f ′(τ) 1
2τ

(‖x‖2 − τ 2), ‖x‖ < τ,
(8.12)

fulfills the property C(1).

Proof. It is easy to see that fτ is continuous at the transition point for ‖x‖ = τ
if we insert this. We now want to show the same property for the gradient. We
consider the gradient of f and freg and compare them for ‖x‖ = τ :
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8.2. Mollification of the Fundamental Solution Tensor

∇xf(‖x‖) = f ′(‖x‖) · x

‖x‖
, (8.13)

∇xfreg(x) = f ′(τ)
x

τ
. (8.14)

We can now see that they are equal if we insert τ = ‖x‖ in ∇xfreg.

With this we go over to the more general function F , which is not radially sym-
metric any more. We write F in the following way F (x) = f(‖x‖)g(x1)h(x2) and
only regularize the f -function. With the help of the regularization from above,
we get

Fτ (x) :=

{
f(‖x‖)g(x1)h(x2), ‖x‖ > τ,

freg(‖x‖)g(x1)h(x2), ‖x‖ < τ.
(8.15)

We can show here again the C(1)- property in the following theorem.

Theorem 8.1.3. Let f , g and h be continuously differentiable functions. The regulariza-
tion for the function F (x) = f(‖x‖)g(x1)h(x2) given by

Fτ (x) :=

{
f(‖x‖)g(x1)h(x2), ‖x‖ > τ,

freg(‖x‖)g(x1)h(x2), ‖x‖ < τ,
(8.16)

is in C(1).

Proof. The continuously differentiability of Fτ is given by the lemma above, be-
cause here we have a product of C(1)-functions.

After this short introduction of the approach of mollified fundamental solutions,
we go over to the QEP. Our aim is to apply the technique above to the fundamen-
tal solutions of the QEP and construct potential and source scaling functions in
an analogous way. In the case of poroelasticity, we have a fundamental solution
tensor and additionally some time dependent functions. Our main aim here is
the decomposition of poroelastic data into their components via the application
of low-pass and band-pass filter.

8.2. Mollification of the Fundamental Solution Tensor

In this section, we want to adopt the approach from the Laplace equation to our
application poroelasticity and its appropriate fundamental solutions. For the de-
velopment process of the physically relevant functions, we have a look at Fig-
ure 8.3 (scheme adopted from [21]) which is more detailed with the intermediate
steps than the introduction for the Laplace case. In this overview, we can see
the construction of the potential and source scaling functions resulting from the
mollification of the fundamental solution (tensor) on the left-hand-side. On the
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𝑮 

Mollification 
𝐶(1) 

𝑮𝜏𝑗 

application of 
𝐿𝑝𝑒 

𝚽𝜏𝑗
  

subtraction of 
consecutive 

scaling functions 
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scaling functions 

zero 
mean? 
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𝑮𝑊𝑎𝑣,𝜏𝑗
 

𝚯𝜏𝑗
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application of 
𝐿𝑝𝑒 

source wavelet 

normed source wavelet 

potential wavelet 

yes yes 

no no 

potential scaling function 

source scaling function 

Figure 8.3.: Flowchart showing the process of obtaining the relevant scaling func-
tions and wavelets in the case of poroelasticity. The left-hand side
indicates the design of the scaling functions and the right-hand side
the construction of the corresponding wavelets.

right-hand side, the resulting potential and normed source wavelets are shown.
Depending on the application, one uses the potential scaling function in combi-
nation with the potential wavelet or the source scaling functions together with
the normed source wavelets for the decorrelation. In our case, the latter combi-
nation is interesting for the multiscale decomposition of poroelastic data with the
background that we want to uncover structures in the data that cannot be seen
in the whole picture. For our decorrelation, we need the fundamental solutions,
more precisely the fundamental solution tensor, from Section 7.3 and especially
since the fundamental solutions have singularities, we want to mollify them (cf.
for example [21] for Laplace’s, Helmholtz’ and d’Alembert’s equation, [25] for
Laplace’s equation and [22] for the Cauchy-Navier equation and the references
therein). In the following, we will have a look at each fundamental solution sep-
arately because they are too different in their form to consider them together. We
use the same notation as before and name the Taylor modified function itself with
the index reg (for example pSt

1,reg) and the index τ denotes the composite function,
that means the fundamental solution itself for ‖x‖ ≥ τ and the Taylor modified
variety for ‖x‖ < τ (for example pSt

1,τ , see also (8.5) and Lemma 8.1.2 for the no-

70



8.2. Mollification of the Fundamental Solution Tensor

tation). We follow the same principle as in the Laplace case and start with the
fundamental solution pSt.

8.2.1. pSt

The fundamental solution

pSt(x) = C1
x

2π‖x‖2
(8.17)

has a singularity for x = (0, 0) (see also Figure 8.4), because the norm ‖x‖2 appears
in the denominator.

Figure 8.4.: The first component of the fundamental solution pSt with its singular-
ity in the zero point.

For the regularization, we write pSt as a gradient in the following way

x

‖x‖2
=

1

2
∇x

(
ln
(
‖x‖2

))
. (8.18)

Then we do a Taylor mollification of ln (‖x‖2) and afterwards apply the gradient
to it. Please note that we want to regularize pSt up to the linear Taylor term,
that means we have to regularize the ln-function above up to the quadratic term
because of the application of the gradient then. With a Taylor expansion in u (we
write ‖x‖2 = u) we get

1

2
lnu =

1

2

(
lnu0 +

1

u0

(u− u0)− 1

2u2
0

(u− u0)2

)
+O

(
(u− u0)3

)
=

1

2

(
lnu0 +

u

u0

− 1− u2

2u2
0

+
u

u0

− 1

2

)
+O

(
(u− u0)3

)
=

1

2

(
lnu0 +

2u

u0

− 3

2
− u2

2u2
0

)
+O

(
(u− u0)3

)
as u→ u0. (8.19)
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Replacing u0 by τ 2 and u by r2 respectively ‖x‖2, we obtain for the regularized
fundamental solution

pSt
reg(x) :=

C1

2π
· 1

2
∇x

(
ln τ 2 +

2‖x‖2

τ 2
− 3

2
− ‖x‖

4

2τ 4

)
. (8.20)

We call τ here the regularization parameter (see also Section 8.1). Now we apply
the gradient to the regularized function and get

∇x

(
1

2

(
ln τ 2 +

2‖x‖2

τ 2
− 3

2
− ‖x‖

4

2τ 4

))
=

1

2

(
2 · 2x
τ 2
− 2‖x‖2 · 2x

2τ 4

)
= x

(
2

τ 2
− ‖x‖

2

τ 4

)
. (8.21)

We obtain the regularized fundamental solution as a combination of the funda-
mental solution itself and the modified variety of it, that means

pSt
τ (x) :=

{
C1

2π
x
‖x‖2 , ‖x‖ ≥ τ,

C1

2π
x
τ2

(
2− ‖x‖

2

τ2

)
, ‖x‖ < τ.

(8.22)

Note that in the way we regularized the fundamental solution, the gradient of
pSt

reg and pSt correspond to each other at the transition for every (x1, x2) with
‖x‖ = τ (see Theorem 8.1.3 for the general case) and therefore pSt

τ ∈ C(1). We
choose {τj}j∈N as a positive, monotonically decreasing sequence with the prop-
erty limj→∞ τj = 0. We will choose τj = 2−j (see also Definition 4.1.3 and Re-
mark 4.1.4). Figure 8.5 shows the first component of the regularized fundamental
solution for different parameters τj .

(a) j = 0 (b) j = 1 (c) j = 2

Figure 8.5.: The first component of the regularized fundamental solution pSt
τj

for
selected parameters j.

The regularized fundamental solution approaches to the fundamental solution
for increasing j.
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8.2. Mollification of the Fundamental Solution Tensor

The “τj-fundamental wavelet function ” for pSt
τ is constructed in the following

way

pSt
Wav,τj

:= pSt
τj
− pSt

τj−1
. (8.23)

In Figure 8.6 the corresponding wavelets of the first component are shown.

(a) j = 1 (b) j = 2 (c) j = 3

Figure 8.6.: The wavelets for the first component of pSt
Wav,τj

for selected parameters
j.

Due to the construction of the wavelets, they have compact support. We can show
that the regularized fundamental solution converges weakly to the fundamental
solution for τ → 0+ (see Theorem 8.2.2 below). But first we want to have a look
at the functions L(x) = 1

‖x‖2 and N(x) = − ln ‖x‖ and their Taylor mollifications,
which we obtain by the same principle as in the case of Lemma 8.1.2 and pSt and
are given by

1

u
≈ 1

u0

− 1

u2
0

(u− u0) =
2

u0

− u

u2
0

, (8.24)

− ln
√
u ≈ − ln

√
u0 −

1

2u0

(u− u0) = − ln
√
u0 −

u

2u0

+
1

2
. (8.25)

We replace again u by ‖x‖2 and u0 by τ 2 and get for the Taylor mollification (that
means the composite function)

Lτ (x) :=

{
1
‖x‖2 , ‖x‖ ≥ τ,(

2
τ2 − ‖x‖

2

τ4

)
, ‖x‖ < τ,

(8.26)

Nτ (x) :=

{
− ln ‖x‖, ‖x‖ ≥ τ,

− ln τ − ‖x‖
2

2τ2 + 1
2
, ‖x‖ < τ.

(8.27)

We can show some properties of the functions above in the following lemma,
which helps us for the theoretical results in this section.

Lemma 8.2.1. For the mollifications of L(x) = 1
‖x‖2 and N(x) = − ln ‖x‖ given above,

it holds true that (L− Lτ )(x) ≥ 0 and (N −Nτ )(x) ≥ 0 for all x ∈ R2 \ {0}.
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Proof. We have a look at the term (L−Lτ )(x) = 1
‖x‖2−

2
τ2 + ‖x‖

2

τ4 for ‖x‖ < τ because
for ‖x‖ ≥ τ the difference is zero. Due to the radially symmetry of the difference
of the functions, we derive them with respect to ‖x‖ = r and get

∂

∂r
(L− Lτ )(x) = − 2

r3
+

2r

τ 4

!
= 0

⇔ 2

r3
=

2r

τ 4

⇔ r = τ. (8.28)

We obtain the following estimate

r < τ ⇔ 2r4 < 2τ 4 ⇔ 2

r3
>

2r

τ 4
⇔ − 2

r3
+

2r

τ 4
< 0. (8.29)

That means we have that (L−Lτ )(x) is a monotonically decreasing function with
respect to r = ‖x‖ and a zero value at ‖x‖ = τ , which yields (L − Lτ )(x) ≥ 0.
Now we have a look at the term (N −Nτ )(x) = − ln ‖x‖+ ln τ + ‖x‖2

2τ2 − 1
2

also for
‖x‖ < τ because otherwise it is zero due to the construction. We differentiate this
term also for ‖x‖ = r with respect to r and get

∂

∂r
(N −Nτ )(x) = −1

r
+

r

τ 2

!
= 0

⇔ r2 = τ 2

⇔ r = τ. (8.30)

An estimation gives us the following result

r < τ ⇔ r

τ 2
<

τ

τ 2
=

1

τ
<

1

r

⇔ − 1

r
+

r

τ 2
< 0. (8.31)

With the same arguments as above, we get (N −Nτ )(x) ≥ 0.

After this preparatory work, we can state the following theorem now.

Theorem 8.2.2. We assume that B is a regular region in R2 and f : B → R2 is contin-
uous. Let x ∈ B, then we get

lim
τ→0
τ>0

∣∣∣∣∫
B

(
pSt
i (x− y)− pSt

i,τ (x− y)
)
fi(y) dy

∣∣∣∣ = 0, i = 1, 2. (8.32)
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8.2. Mollification of the Fundamental Solution Tensor

Proof. First we observe that due to the construction, the support of the difference
of functions is Bτ (x) for sufficiently small τ . We use the triangle inequality, drag
the f -component outside of the integral with its maximum and obtain∣∣∣∣∫

Bτ (x)∩B

(
pSt
i (x− y)− pSt

i,τ (x− y)
)
fi(y) dy

∣∣∣∣
≤ max

y∈Bτ (x)∩B
|fi(y)|

∫
Bτ (x)∩B

∣∣pSt
i (x− y)− pSt

i,τ (x− y)
∣∣ dy

≤ max
y∈Bτ (x)∩B

|fi(y)|
∫
Bτ (0)

∣∣pSt
i (y)− pSt

i,τ (y)
∣∣ dy, i = 1, 2. (8.33)

Because of the symmetry of the functions, we only consider the first quadrant of
the y-domain and show the proof for the first component of the difference pSt

1 −pSt
1,τ

by using polar coordinates. Due to Lemma 8.2.1, we can drop out the absolute
value.

lim
τ→0
τ>0

∫
Bτ (0)
y1,y2>0

∣∣pSt
1 (y)− pSt

1,τ (y)
∣∣ dy

=
C1

2π
lim
τ→0
τ>0

∫
Bτ (0)
x,y>0

y1

‖y‖2
− y1

τ 2

(
2− ‖y‖

2

τ 2

)
dy

=
C1

2π
lim
τ→0
τ>0

∫ τ

0

∫ π
2

0

(
r cosϕ

r2
− r cosϕ

τ 2

(
2− r2

τ 2

))
r dϕ dr

=
C1

2π
lim
τ→0
τ>0

∫ τ

0

∫ π
2

0

(
cosϕ− 2

r2 cosϕ

τ 2
+
r4 cosϕ

τ 4

)
dϕ dr

=
C1

2π
lim
τ→0
τ>0

∫ τ

0

(
1− 2

r2

τ 2
+
r4

τ 4

)
dr

=
C1

2π
lim
τ→0
τ>0

(
τ − 2

3

τ 3

τ 2
+

1

5

τ 5

τ 4

)
= 0, (8.34)

which finishes the proof.

The theorem above was transferred from the concept of the Laplace equation.
In the case of the Laplace equation, such an analogous theorem has a physical
background and interpretation. In our case this theorem can be shown but has
no direct physical interpretability and benefit at the moment. We continue with
the second spatial-dependent function, which is a tensor with four entries and
certain symmetry relations.

8.2.2. uCN

Similar to the fundamental solution pSt, we have the problem with the singularity
for x = (0, 0) (see also Figure 8.7).
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(a) uCN
11 (b) uCN

12

Figure 8.7.: Two of the four components of the fundamental solution tensor uCN

with its singularity in the zero point.

Because of the symmetry of the components of uCN, we only show here two of the
four components. For the mollification of the fundamental solutions we consider
the main components ln ‖x‖ and 1

‖x‖2 (see Lemma 8.2.1) and obtain the regular-
ized fundamental solution with a Taylor expansion up to the first order for the
particular components of the tensor uCN by

uCN
12,τ (x) :=

C3C4

2π
x1x2

{
1
‖x‖2 , ‖x‖ ≥ τ,
2
τ2 − ‖x‖

2

τ4 , ‖x‖ < τ.
(8.35)

uCN
kk,τ (x) :=


C3

2π

(
− ln(‖x‖) + C4

x2
k

‖x‖2

)
, ‖x‖ ≥ τ,

C3

2π

(
− ln(τ)− ‖x‖

2

2τ2 + 1
2

+ C4x
2
k

(
2
τ2 − ‖x‖

2

τ4

))
, ‖x‖ < τ.

(8.36)

We do not consider here the xixk-term because for the regularization above the
gradient is again equal at the transition for a point (x1, x2) with ‖x‖ = τ , which
was shown in general in Theorem 8.1.3.
Figures 8.8 and 8.9 show the regularized fundamental solutions uCN

11,τ and uCN
12,τ

separated from each other.

(a) j = 0 (b) j = 1 (c) j = 2

Figure 8.8.: The regularized fundamental solution uCN
11,τj

forseveral parameters j.
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(a) j = 0 (b) j = 1 (c) j = 2

Figure 8.9.: The regularized fundamental solution uCN
12,τj

for selected parameters j.

In analogy to the case of pSt and pSt
τ , we can see that the regularized fundamental

solution approaches to the fundamental solution with decreasing τ .
The respective “τj-fundamental wavelet function” is constructed by

uCN
ik,Wav,τj

:= uCN
ik,τj
− uCN

ik,τj−1
. (8.37)

In Figures 8.10 and 8.11 the corresponding wavelets for each component are
shown separately and we see the compact and shrinking support for increasing
j.

(a) j = 1 (b) j = 2 (c) j = 3

Figure 8.10.: The wavelet for uCN
11,Wav,τj

for selected parameters j.

Now let us state the following theorem in analogy to the Laplace equation like
we did it for the regularized fundamental solution above.

Theorem 8.2.3. We have the same assumptions as above, that means B is a regular
region in R2 and f : B → R2 is continuous. Let x ∈ B, then we get

lim
τ→0
τ>0

∣∣∣∣∫
B

(
uCN
ik (x− y)− uCN

ik,τ (x− y)
)
fi(y) dy

∣∣∣∣ = 0 (8.38)

for all i, k = 1, 2.

77



8. Regularized Fundamental Solutions

(a) j = 1 (b) j = 2 (c) j = 3

Figure 8.11.: The wavelet for uCN
12,Wav,τj

for several parameters j.

Proof. We show this theorem for two of the four components of uCN and uCN
τ

because of their symmetry property. Using again the triangle inequality, the com-
pact support Bτ (x) of the difference of the functions for sufficiently small τ and
the maximum of the data f like above, we obtain∣∣∣∣∫

Bτ (x)∩B

(
uCN
ik (x− y)− uCN

ik,τ (x− y)
)
fi(y) dy

∣∣∣∣
≤ max

y∈Bτ (x)∩B
|fi(y)|

∫
Bτ (0)

∣∣uCN
ik (y)− uCN

ik,τ (y)
∣∣ dy, i, k = 1, 2. (8.39)

Now we have a look at the components separately and use polar coordinates.
Please note that due to Lemma 8.2.1, we can drop out the absolute value in the
integral, since C3, C4 are positive as a combination of positive material constants
(see Remark 7.3.1). We obtain for the difference

lim
τ→0
τ>0

∫
Bτ (0)

(
uCN

11 (y)− uCN
11,τ (y)

)
dy

= lim
τ→0
τ>0

∫
Bτ (0)

C3

2π

(
− ln ‖y‖+ C4

y2
1

‖y‖2
+ ln τ +

‖y‖2

2τ 2
− 1

2
− C4y

2
1

(
2

τ 2
− ‖y‖

2

τ 4

))
dy.

(8.40)

Splitting the integral in two separate terms, we get

lim
τ→0
τ>0

C4

∫
Bτ (0)

(
y2

1

‖y‖2
− y2

1

(
2

τ 2
− ‖y‖

2

τ 4

))
dy

= C4 lim
τ→0
τ>0

∫ τ

0

∫ 2π

0

(
cos2 ϕ− r2 cos2 ϕ

(
2

τ 2
− r2

τ 4

))
rdr dϕ

= C4 lim
τ→0
τ>0

(
1

2
τ 2 · 1

2
· 2π − 1

2
· 2π ·

∫ τ

0

2r3

τ 2
− r5

τ 4
dr

)
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= C4 lim
τ→0
τ>0

(
1

2
τ 2π − π ·

(
1

2

τ 4

τ 2
− 1

6

τ 6

τ 4

))
= 0. (8.41)

The part with the ln-function and its regularization is left:

lim
τ→0
τ>0

∫
Bτ (0)

− ln ‖y‖+ ln τ +
‖y‖2

2τ 2
− 1

2
dy

= lim
τ→0
τ>0

∫ τ

0

∫ 2π

0

(
− ln r + ln τ +

r2

2τ 2
− 1

2

)
r dϕ dr

= lim
τ→0
τ>0

(
2π

∫ τ

0

− ln r · r + ln τ · r +
r3

2τ 2
− 1

2
r dr

)

= lim
τ→0
τ>0

2π

(
−1

4
r2(2 ln r − 1) +

1

2
r2 ln τ +

1

4

r4

2τ 2
− 1

4
r2

) ∣∣∣∣∣
τ

0

= lim
τ→0
τ>0

2π

(
−1

4
τ 2(2 ln τ − 1) +

1

2
τ 2 ln τ +

1

4

τ 4

2τ 2
− 1

4
τ 2

)
= 0. (8.42)

Please note that due to l’Hospital’s rule, it holds true that

lim
b→0
b>0

b2 · ln b = lim
b→0
b>0

ln b

1/b2
= lim

b→0
b>0

1/b

−2/b3
= lim

b→0
b>0

−1

2
b2 = 0. (8.43)

At last, we consider the function uCN
12,τ . Due to the symmetry, we only consider

the function for y1, y2 > 0 and get subsequently with polar coordinates

lim
τ→0
τ>0

∫
Bτ (0)
y1,y2>0

(
uCN

12 (y)− uCN
12,τ (y)

)
dy

= lim
τ→0
τ>0

C3C4

2π

∫
Bτ (0)
y1,y2>0

y1y2

‖y‖2
− y1y2

(
2

τ 2
− ‖y‖

2

τ 4

)
dy

= lim
τ→0
τ>0

C3C4

2π

∫ τ

0

∫ π/2

0

r2 cosϕ sinϕ

r2
· r − r2 cosϕ sinϕ

(
2

τ 2
− r2

τ 4

)
· r dϕ dr

= lim
τ→0
τ>0

C3C4

2π

(∫ π/2

0

sinϕ cosϕ dϕ ·
∫ τ

0

r − 2r3

τ 2
+
r5

τ 4
dr

)

= lim
τ→0
τ>0

C3C4

2π

(
1

2
·
(

1

2
τ 2 − 1

2
τ 2 +

1

6
τ 2

))
= 0. (8.44)
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With this theorem, we have the same situation as with the analogous theorem for
pSt: We do not have a practical benefit of it at the moment. Now we come to the
last part of the fundamental solutions, which is location- and time-dependent.
This is more challenging, because we have to check, if a spatial Taylor mollifi-
cation is sufficient or additionally some Taylor expansion in the time-domain is
necessary. Beforehand let us say: We tested several possibilities for the regular-
ization of pSi and uSi and the one which we present here is the best-working for
us.

8.2.3. pSi

The fundamental solution pSi depends on the space and the time and has a sin-
gularity for the time t = 0 combined with the point x = (0, 0). Figure 8.12 shows
the fundamental solution for two fixed times for the space and Figure 8.13 for
two fixed points over time. (7.32) shows us that the fundamental solution is not
defined respectively gets singular if t = 0 and x = (0, 0). We can show with a
concrete sequence for x and t that the limit does not exist for x = (0, 0) and t = 0.
We use the sequences xk = (1/k, 1/k) and tk = 1/k. We get by inserting this in pSi

lim
k→∞

1

4π 1
k

exp

(
−

2
k2

4C2
1
k

)
= lim

k→∞

k

4π
exp

(
− 1

2C2k

)
=∞. (8.45)

Therefore it is necessary to mollify it. We have the possibilities to do this regard-
ing the space, the time or as a combination of both. Due to the fact that we want
to keep the regularization as simple as possible, we do this with respect to the
space, that means for a fixed t, we do a Taylor expansion for ‖x‖ like in the cases
above. This is also the most practicable ansatz. A pure regularization in time did
not yield the necessary theoretical results. A combination of both is too compli-
cated and we could not prove the necessary theoretical results. Furthermore, the
last-mentioned variety is not necessary to achieve our theoretical results for the
decorrelation. Definition 4.1.3 shows our required theoretical properties.

(a) t = 0.1 (b) t = 1

Figure 8.12.: The fundamental solution pSi in space for two fixed times.
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8.2. Mollification of the Fundamental Solution Tensor

(a) x = (0.8, 0.8) (b) x = (0.2, 0.2)

Figure 8.13.: The fundamental solution pSi for two different fixed points over
time.

As above, we make a Taylor expansion with respect to ‖x‖ with the parameter τ
similar to the cases above. Replacing ‖x‖2 by u and deriving pSi with respect to u,
we get

∂

∂u
pSi(u, t) =

∂

∂u

1

4πt
exp

(
− u

4C2t

)
=

−1

16πC2t2
exp

(
− u

4C2t

)
(8.46)

and the following Taylor expansion for ‖x‖ < τ

pSi(u, t) = pSi(u0, t) +
∂

∂u
pSi(u0, t)(u− u0) +O

(
(u− u0)2

)
=

1

4πt
exp

(
− u0

4C2t

)
− 1

16πC2t2
exp

(
− u0

4C2t

)
(u− u0) +O

(
(u− u0)2

)
=

1

4πt
exp

(
− u0

4C2t

)[
1− 1

4C2t
(u− u0)

]
+O

(
(u− u0)2

)
. (8.47)

Replacing u = ‖x‖2 and u0 = τ 2, we obtain for ‖x‖ < τ up to the linear term, the
identity

pSi
reg(x, t) :=

1

4πt
exp

(
− τ 2

4C2t

)[
1− 1

4C2t

(
‖x‖2 − τ 2

)]
. (8.48)

With this we can define our mollified fundamental solution in the following way

pSi
τ (x, t) :=


1

4πt
exp

(
−‖x‖

2

4C2t

)
, ‖x‖ ≥ τ

1
4πt

exp
(
− τ2

4C2t

) [
1− 1

4C2t
(‖x‖2 − τ 2)

]
, ‖x‖ < τ.

(8.49)

Figure 8.14 shows the regularized fundamental solution pSi
τ (x, t) for fixed posi-

tions in space respectively fixed times. Especially the case for x = (0, 0) can be
presented since pSi

τ is no longer singular for this point (see the mentioned figure).
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8. Regularized Fundamental Solutions

In the following, we can prove that the limit for x = (0, 0) and t = 0 exists in gen-
eral which we can see with the help of the consideration below. For this purpose,
we have a look at the regularized part of the function and multiply the terms out
to sort them in another way (terms with and without ‖x‖). We can see that we
get terms only with t-dependency and terms with t- and ‖x‖-dependency that are
separated. It follows

lim
t→0+

lim
‖x‖→0

pSi
τ (x, t) = lim

t→0+
lim
‖x‖→0

(
1

4πt
exp

(
− τ 2

4C2t

)[
1− 1

4C2t
(‖x‖2 − τ 2)

])
= lim

t→0+
lim
‖x‖→0

[
1

4πt
exp

(
− τ 2

4C2t

)(
1 +

τ 2

4C2t

)]
− lim

t→0+
lim
‖x‖→0

1

4πt
exp

(
− τ 2

4C2t

)
‖x‖2

4C2t

= lim
t→0+

[
1

4πt
exp

(
− τ 2

4C2t

)(
1 +

τ 2

4C2t

)]
− lim

t→0+

1

16C2πt2
exp

(
− τ 2

4C2t

)
· lim
‖x‖→0

‖x‖2

= 0 (8.50)

with the usual limit theorems since 1/t·exp(−τ 2/(4C2t)) and 1/t2·exp(−τ 2/(4C2t))
tend to 0 for t→ 0+. Please note here that the order of the limits does not make a
difference here.

(a) t = 1, j = 1. (b) x = (0.2, 0.2), j = 1. (c) x = (0, 0), j = 3.

Figure 8.14.: The regularized fundamental solution pSi
τj

for a fixed time in space
respectively for two different fixed spatial points over the time and
selected parameters j.

The respective wavelet function is defined in analogy to the other wavelets. The
“τj-fundamental wavelet function” is given by

pSi
Wav,τj

:= pSi
reg,τj

− pSi
reg,τj−1

. (8.51)

Figure 8.15 shows the corresponding wavelet functions.
For the theoretical part, we can show the following theorem.
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8.2. Mollification of the Fundamental Solution Tensor

(a) t = 1, j = 1. (b) x = (0.2, 0.2), j = 1. (c) x = (0, 0), j = 1.

Figure 8.15.: The wavelet function pSi
Wav,τj

for a fixed time in space respectively for
two fixed spatial points over time for j = 1.

Theorem 8.2.4. We assume that B is a regular region in R2 and f : B × R → R is
continuous and bounded. Let x ∈ B and t ∈ R, then we get

lim
τ→0
τ>0

∣∣∣∣∫ t

t−T

∫
B

(
pSi(x− y, t− θ)− pSi

τ (x− y, t− θ)
)
f(y, θ) dy dθ

∣∣∣∣ = 0, (8.52)

where T > 0 is the length of our considered time interval.

Proof. We have similar steps as in the proofs above. In a first step, we use the tri-
angle inequality and drag the f -component outside of the integral with its supre-
mum. Please observe that, due to the construction, the spatial support for a fixed
t of the difference of functions is Bτ (x) for sufficiently small τ . We obtain∣∣∣∣∫ t

t−T

∫
Bτ (x)∩B

(
pSi(x− y, t− θ)− pSi

τ (x− y, t− θ)
)
f(y, θ) dy dθ

∣∣∣∣
≤ sup

y∈Bτ (x)∩B,θ∈R
|f(y, θ)|

∫ T

0

∫
Bτ (0)

∣∣pSi(y, θ)− pSi
τ (y, θ)

∣∣ dy dθ. (8.53)

Note that we assumed that f is bounded. We can show that pSi−pSi
τ ≥ 0 holds true

by showing that this difference is monotonically decreasing for ‖x‖ = r, where
we assume that t > 0 holds true:

∂

∂r

(
pSi − pSi

τ

)
(x, t) =

∂

∂r

1

4πt

[
exp

(
−r2

4C2t

)
− exp

(
−τ 2

4C2t

)(
1− 1

4C2t
(r2 − τ 2)

)]
=

1

4πt

[
exp

(
−r2

4C2t

)
·
(
−2r

4C2t

)
− exp

(
−τ 2

4C2t

)
·
(
−1

4C2t

)
· 2r
]

=
1

4πt︸︷︷︸
>0

·
(
−2r

4C2t

)
︸ ︷︷ ︸

<0

[
exp

(
−r2

4C2t

)
− exp

(
−τ 2

4C2t

)]
︸ ︷︷ ︸

>0 (for r<τ)

< 0. (8.54)
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8. Regularized Fundamental Solutions

That means the difference is monotonically decreasing for ‖x‖ = r and together
with the evaluation at ‖x‖ = τ which has the value 0, we get that the differ-
ence of the functions is non-negative for all t > 0 because our consideration and
estimation was independent of t. It holds true that pSi

τ ∈ C(1)(R2 × R) due to
the considerations in Theorem 8.1.3. That means we consider the integral above
without the absolute value and get with polar coordinates (see also
Remark 2.2.4 for the time integrals)∫ T

0

∫
Bτ (0)

1

4πt
exp

(
−‖x‖2

4C2t

)
− 1

4πt
exp

(
−τ 2

4C2t

)[
1− 1

4C2t
(‖x‖2 − τ 2)

]
dx dt

=

∫ T

0

∫ 2π

0

∫ τ

0

r

4πt
exp

(
−r2

4C2t

)
− r

4πt
exp

(
−τ 2

4C2t

)[
1− 1

4C2t
(r2 − τ 2)

]
dr dϕ dt

= 2π

∫ T

0

∫ τ

0

r

4πt
exp

(
−r2

4C2t

)
− 1

4πt
exp

(
−τ 2

4C2t

)[
r − r3

4C2t
+

rτ 2

4C2t

]
dr dt

= 2π · 1

2π

∫ T

0

−C2 exp

(
−τ 2

4C2t

)
+ C2 −

1

2t
exp

(
−τ 2

4C2t

)[
1

2
τ 2 − τ 4

16C2t
+

τ 4

8C2t

]
dt

= C2

T − τ 2Ei
(
− τ2

4C2T

)
4C2

− T exp

(
−τ 2

4C2T

)
+ Ei

(
− τ 2

4C2T

)
· τ

2

4
− τ 4

32C2

·
4C2 exp

(
− τ2

4C2T

)
τ 2

→ 0 (as τ → 0+), (8.55)

where we considered (2.18) and which completes the proof.

We can now go over to the last function of the fundamental solution tensor.

8.2.4. uSi

The fundamental solution uSi has a singularity for x = (0, 0) and for t = 0 (see
also Figure 8.16). We can show this by using the sequences xk = (1/k, 1/k) and
tk = 1/k2 and get

lim
k→∞

C1

2π

k

2

1− exp

(
− 2/k2

4C2 · 1/k2

)
︸ ︷︷ ︸

=const.6=1

 =∞. (8.56)

We mollify it in the same way as pSi only for the spatial component and do not
consider the x-part like in the case of uCN.
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8.2. Mollification of the Fundamental Solution Tensor

Figure 8.16.: The first component of the fundamental solution uSi for the time
point t = 0.05.

Replacing ‖x‖2 = u and applying a Taylor expansion up to the linear term in u0,
we obtain

C1

2π
x

[
1

u0

(
1− exp

(
− u0

4C2t

))
+

(
−1

u2
0

+
1

u0

1

4C2t
exp

(
− u0

4C2t

)
+

1

u2
0

exp

(
− u0

4C2t

))
(u− u0)

]
. (8.57)

Substituting u = ‖x‖2 and u0 = τ 2 for ‖x‖ < τ , the mollified function reads

uSi
reg(x, t) =

C1

2π
x

[
1

τ 2
− 1

τ 2
exp

(
− τ 2

4C2t

)
+

(
−1

τ 4
+

1

τ 2

1

4C2t
exp

(
− τ 2

4C2t

)
+

1

τ 4
exp

(
− τ 2

4C2t

))
(‖x‖2 − τ 2)

]
.

(8.58)

All in all, we get for our mollified fundamental solution

uSi
τ (x, t) =


C1

2π
x
‖x‖2

(
1− exp

(
−‖x‖

2

4C2t

))
, ‖x‖ ≥ τ

C1

2π
x
[

1
τ2 − 1

τ2 exp
(
− τ2

4C2t

)
+
(

1
τ2

1
4C2t

exp
(
− τ2

4C2t

)
− 1
τ4 + 1

τ4 exp
(
− τ2

4C2t

))
(‖x‖2 − τ 2)

]
, ‖x‖ < τ.

(8.59)

Figure 8.17 shows uSi
reg,τ in space for a fixed time and for fixed points during the

time interval.

We can show that the limit in x = (0, 0) and t = 0 exists for our regularized
fundamental solution with the usual limit theorems.
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8. Regularized Fundamental Solutions

(a) t = 1, j = 1. (b) x = (0.8, 0.8), j = 1. (c) x = (0.2, 0.2), j = 1.

Figure 8.17.: The first component of the regularized fundamental solution uSi
τj

for
a fixed time in space respectively for two fixed spatial points over
the time for j = 1.

First, we rearrange the terms of uSi
1,τ for a better clarity (we only consider the part

of the function for ‖x‖ < τ )

lim
t→0+

lim
‖x‖→0

uSi
1,τ (x, t)

= lim
t→0+

lim
‖x‖→0

C1

2π
x1

[
1

τ 2

(
1− exp

(
− τ 2

4C2t

))
+

(
1

τ 2

1

4C2t
exp

(
− τ 2

4C2t

)
+

1

τ 4

(
exp

(
− τ 2

4C2t

)
− 1

))
(‖x‖2 − τ 2)

]
= lim

t→0+
lim
‖x‖→0

C1

2π
x1

[
1

τ 2

(
1− exp

(
− τ 2

4C2t

))
+

(
− 1

4C2t
exp

(
− τ 2

4C2t

)
− 1

τ 2

(
exp

(
− τ 2

4C2t

)
− 1

))]
+ lim

t→0+
lim
‖x‖→0

C1

2π
x1‖x‖2

(
1

τ 2

1

4C2t
exp

(
− τ 2

4C2t

)
+

1

τ 4

(
exp

(
− τ 2

4C2t

)
− 1

))
=
C1

2π
lim
‖x‖→0

x1 · lim
t→0+

[
1

τ 2

(
1− exp

(
− τ 2

4C2t

))
+

(
− 1

4C2t
exp

(
− τ 2

4C2t

)
− 1

τ 2

(
exp

(
− τ 2

4C2t

)
− 1

))]
+
C1

2π
lim
‖x‖→0

(
x1‖x‖2

)
· lim
t→0+

(
1

τ 2

1

4C2t
exp

(
− τ 2

4C2t

)
+

1

τ 4

(
exp

(
− τ 2

4C2t

)
− 1

))
=
C1

2π
· 0 · 2

τ 2
+
C1

2π
· 0 ·

(
− 1

τ 4

)
= 0 (8.60)

since exp(−τ 2/(4C2t)) and 1/t · exp(−τ 2/(4C2t)) tend to 0 for t → 0+. This can
be done analogously for the second component. Furthermore, our regularized
fundamental solution uSi

τ is of class C(1)(R2) due to Theorem 8.1.3. In analogy
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to the cases above, we can define the “τj-fundamental wavelet function” in the
following way

uSi
Wav,τj

:= uSi
τj
− uSi

τj−1
. (8.61)

Figure 8.18 shows three different states of time and domain of the wavelet.

(a) t = 1, j = 1. (b) t = 1, j = 3. (c) x = (0.2, 0.2) for j = 1.

Figure 8.18.: The wavelet function for uSi
1 for two fixed times over the space re-

spectively for one fixed point over the time for j = 1.

For the theoretical part, we consider again the following difference of the funda-
mental solution and its mollification.

Theorem 8.2.5. We assume that B is a regular region in R2 and f : B × R → R2 is
continuous and bounded. Let x ∈ B and t ∈ R, then we get

lim
τ→0
τ>0

∣∣∣∣∫ t

t−T

∫
B

(
uSi
i (x− y, t− θ)− uSi

i,τ (x− y, t− θ)
)
fi(y, θ) dy dθ

∣∣∣∣ = 0, i = 1, 2,

(8.62)

where T > 0 is the length of our considered time interval.

Proof. The steps are the same as for the pSi-part. In a first step, we use the triangle
inequality and drag the f -component outside of the integral with its supremum.
Due to the construction, we have here that the support of the spatial component
of the difference of functions is Bτ (x) with the same arguments as above. We
obtain ∣∣∣∣∫ t

t−T

∫
Bτ (x)∩B

(
uSi
i (x− y, t− θ)− uSi

i,τ (x− y, t− θ)
)
fi(y, θ) dy dθ

∣∣∣∣
≤ sup

y∈Bτ (x)∩B,θ∈R
|fi(y, θ)|

∫ T

0

∫
Bτ (0)

∣∣uSi
i (y, θ)− uSi

i,τ (y, θ)
∣∣ dy dθ. (8.63)

Please note that we show the next steps of this theorem without loss of generality
for the first component of the difference. The second component is obtained due
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to symmetric aspects. First, we consider the difference of uSi
1 − uSi

1,τ without the
factor C1

2π
x1 for ‖x‖ < τ and get

1

‖x‖2

(
1− exp

(
−‖x‖

2

4C2t

))
− 1

τ 2

(
1− exp

(
− τ 2

4C2t

))
+

(
1

τ 2

1

4C2t
exp

(
− τ 2

4C2t

)
+

1

τ 4

(
exp

(
− τ 2

4C2t

)
− 1

))
(τ 2 − ‖x‖2). (8.64)

We have a look at the two lines separately and show that the first one is non-
negative and the second one is non-positive. Let us start our considerations with
the second line. The term (τ 2 − ‖x‖2) is positive since we have the case ‖x‖ < τ .
For the first term, we do the following conversions

1

τ 2

1

4C2t
exp

(
− τ 2

4C2t

)
+

1

τ 4

(
exp

(
− τ 2

4C2t

)
− 1

)

=
τ 2 exp

(
− τ2

4C2t

)
+ 4C2t exp

(
− τ2

4C2t

)
− 4C2t

4C2tτ 4
. (8.65)

Due to the fact that τ, t, C2 > 0 holds true, the denominator is non-negative and
we have to take a closer look at the numerator, which we differentiate with respect
to τ

2τ exp

(
− τ 2

4C2t

)
+ τ 2 exp

(
− τ 2

4C2t

)
·
(
− 2τ

4C2t

)
+ 4C2t exp

(
− τ 2

4C2t

)
·
(
− 2τ

4C2t

)
= exp

(
− τ 2

4C2t

)
·
(
− 2τ 3

4C2t

)
< 0, (8.66)

that means the numerator of (8.65) is monotonically deceasing with respect to τ
and we can estimate it with its maximum for τ = 0. Inserting this yields

τ 2 exp

(
− τ 2

4C2t

)
+ 4C2t exp

(
− τ 2

4C2t

)
− 4C2t ≤ 0 + 4C2t− 4C2t = 0. (8.67)

Thus (8.65) is non-positive and therefore the second line of (8.64), too. We take a
look at the first line of (8.64), set c := 4C2t for the sake of readability and show
that the function

1

r2

(
1− exp

(
− r2

4C2t

))
(8.68)

is monotonically decreasing. We consider the derivative with respect to r and get

− 2

r3

(
1− exp

(
−r

2

c

))
+

1

r2
exp

(
−r

2

c

)
2r

c

=
2

cr3

[
−c+ c exp

(
−r

2

c

)
+ r2 exp

(
−r

2

c

)]
, (8.69)
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from which we want to show that it is negative. The first factor is positive and we
have a closer look at the term in the brackets. We want to detect the maximum of
it and derive it again with respect to r and get

c exp

(
−r

2

c

)
·
(
−2r

c

)
+ 2r exp

(
−r

2

c

)
+ r2 exp

(
−r

2

c

)
·
(
−2r

c

)
= exp

(
−r

2

c

)
·
(
−2r3

c

)
. (8.70)

Possible roots are r = 0 or c = 0, whereas we want to consider the case c = 0
later separately. For the case r = 0, we can see directly from (8.70) that we have
a conversion from positive to negative sign around r = 0 which means that we
have a maximum for r = 0. We can estimate the squared brackets in (8.69) by

−c+ c exp

(
−r

2

c

)
+ r2 exp

(
−r

2

c

)
≤ −c+ c+ 0 = 0 (8.71)

and obtain that (8.69) is non-positive and therefore the function in (8.68) is mono-
tonically decreasing and furthermore, the difference in the first line of (8.64) is
non-negative. The case c = 0 reflects the case t = 0 and results in the function
1/r2 instead of (8.68), which is also monotonically decreasing.
Now we consider the absolute value of the difference as given in the original
integral above and estimate with the triangle inequality. We can drop out the
absolute value for the first term (except for the term x1) since we showed that
the first term is positive. For the second term, we can omit the absolute value
by changing the sign in front of the term since the term in the absolute value is
negative

∣∣uSi
1 (x, t)− uSi

1,τ (x, t)
∣∣

≤ C1

2π
|x1|

∣∣∣∣ 1

‖x‖2

(
1− exp

(
−‖x‖

2

4C2t

))
− 1

τ 2

(
1− exp

(
− τ 2

4C2t

))∣∣∣∣
+
C1

2π
|x1|

∣∣∣∣( 1

τ 2

1

4C2t
exp

(
− τ 2

4C2t

)
+

1

τ 4

(
exp

(
− τ 2

4C2t

)
− 1

))∣∣∣∣ ∣∣τ 2 − ‖x‖2
∣∣

≤ C1

2π
|x1|

(
1

‖x‖2

(
1− exp

(
−‖x‖

2

4C2t

))
− 1

τ 2

(
1− exp

(
− τ 2

4C2t

)))
− C1

2π
|x1|

(
1

τ 2

1

4C2t
exp

(
− τ 2

4C2t

)
+

1

τ 4

(
exp

(
− τ 2

4C2t

)
− 1

))(
τ 2 − ‖x‖2

)
(8.72)
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That means we consider the integral above without the absolute value and get
with polar coordinates for the case x1 > 0:

C1

2π

∫ T

0

∫
Bτ (0),
x1>0

x1

‖x‖2

(
1− exp

(
−‖x‖

2

4C2t

))
− x1

[
1

τ 2

(
1− exp

(
− τ 2

4C2t

))
−
(
− 1

τ 4

(
1− exp

(
− τ 2

4C2t

))
+

1

4C2t

1

τ 2
exp

(
− τ 2

4C2t

))
· (‖x‖2 − τ 2)

]
dx dt

=
C1

2π

∫ π/2

−π/2
cosϕ dϕ

×
∫ T

0

∫ τ

0

r2

r2

(
1− exp

(
− r2

4C2t

))
−
[
r2

τ 2

(
1− exp

(
− τ 2

4C2t

))
−
(
− 1

τ 4

(
1− exp

(
− τ 2

4C2t

))
+

1

τ 2

1

4C2t
exp

(
− τ 2

4C2t

))
(r4 − r2τ 2)

]
dr dt.

(8.73)

For the first integral, we get ∫ π/2

−π/2
cosϕ dϕ = 2. (8.74)

We have a look at the second line of the integral separately later. Now we come
to the third and fourth line of the integral, which is integrated with respect to r
and evaluated (see also Remark 2.2.4)∫ T

0

−1

3

τ 3

τ 2

(
1− exp

(
− τ 2

4C2t

))
+

(
1

τ 4

(
1− exp

(
− τ 2

4C2t

))
− 1

τ 2

1

4C2t
exp

(
− τ 2

4C2t

))
2

15
τ 5 dt

= −1

3
τ

T − τ 2Ei
(
− τ2

4C2T

)
4C2

− T exp

(
− τ 2

4C2T

)
+

 1

τ 4

T − τ 2Ei
(
− τ2

4C2T

)
4C2

− T exp

(
− τ 2

4C2T

)
− 1

τ 2

1

4C2

·
(
−Ei

(
− τ 2

4C2T

)) 2

15
τ 5

→ 0 (τ → 0+) (8.75)
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with the considerations from (2.18). Now we have the second line of the integral
in (8.73) above left, which is∫ T

0

∫ τ

0

1− exp

(
− r2

4C2t

)
dr dt

=

∫ T

0

τ − 1

2

√
π
√

4C2t erf

(
τ√

4C2t

)
dt. (8.76)

Here the first part with τ is also convergent to 0 for τ → 0+. Let us have a look at
the second part, which is given by∫ T

0

√
4C2t erf

(
τ√

4C2t

)
dt

=
2

3


τ

(
τ2Ei

(
− τ2

4C2T

)
4C2

+ T exp
(
− τ2

4C2T

))
√
π

+ T ·
√

4C2T erf

(
τ√

4C2T

)
→ 0 (τ → 0+) (8.77)

with the help of (2.18). We can verify this primitive function easily by deriving
(see also Definition 2.2.1 and (2.22))

∂

∂t

2

3


τ

(
τ2Ei

(
− τ2

4C2t

)
4C2

+ t exp
(
− τ2

4C2t

))
√
π

+ t ·
√

4C2t erf

(
τ√

4C2t

)


=
2

3

[
τ√
π

(
τ 2

4C2

exp

(
− τ 2

4C2t

)
·
(
−4C2t

τ 2

)
·
(

τ 2

4C2t2

)
+ exp

(
− τ 2

4C2t

)
+t exp

(
− τ 2

4C2t

)
· τ 2

4C2t2

)
+
√

4C2t erf

(
τ√

4C2t

)
+ t

4C2

2
√

4C2t
erf

(
τ√

4C2t

)
+t
√

4C2t
2√
π

exp

(
− τ 2

4C2t

)
·
(
− τ · 4C2

2(4C2t)3/2

)]
=

2

3

[
τ√
π

(
− τ 2

4C2t
exp

(
− τ 2

4C2t

)
+ exp

(
− τ 2

4C2t

)
+

τ 2

4C2t
exp

(
− τ 2

4C2t

))
+
√

4C2t erf

(
τ√

4C2t

)
+
√
C2t erf

(
τ√

4C2t

)
− τ√

π
exp

(
− τ 2

4C2t

)]
=

2

3
erf

(
τ√

4C2t

)(√
4C2t+

1

2

√
4C2t

)
=
√

4C2t erf

(
τ√

4C2t

)
. (8.78)

This finishes the proof for uSi and for all regularized fundamental solutions.
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8.2.5. Summary

The fundamental solutions uCN, pSt, pSi and uSi have been regularized with re-
spect to their spatial component ‖x‖. Regularization with respect to the time was
for uSi and pSi not useful due to the necessary theoretical properties for our decor-
relation, that means the theoretical properties of the source scaling functions that
we will construct in the next section. We need the properties of an approximate
identity (see Definition 4.1.3). Thus the regularized fundamental solutions are
an intermediate step to our desired source scaling functions. Since we did the
construction with the Taylor expansion with the constant and linear term, our
regularized functions are C(1) due to Theorem 8.1.3. In the next section, we want
to continue with the construction of our source scaling functions and wavelets,
where we need our deduced mollified fundamental solutions.

92



8.3. Source Scaling Functions and Wavelets

8.3. Source Scaling Functions and Wavelets

Before we go over to the construction of the source scaling functions, we have to
recall the connection between the fundamental solutions ans the poroelastic dif-
ferential operator Lpe. If we understand the fundamental solutions of the QEP as
a fundamental solution tensor, we can apply the poroelastic differential operator
to the given tensor

G(x, t) =

uCN
11 (x)δt uCN

12 (x)δt pSt
1 (x)δt

uCN
21 (x)δt uCN

22 (x)δt pSt
2 (x)δt

uSi
1 (x, t) uSi

2 (x, t) pSi(x, t)

 (8.79)

in the following way and get (see (7.17))

LpeG = Iδxδt, (8.80)

where I is the identity matrix. This is the way how the fundamental solutions
were constructed (see [10, 34] and the references therein). For the construction of
the source scaling functions, we apply the differential operator Lpe now on Gτ ,
which is the tensor containing the regularized fundamental solutions, that means

Gτ (x, t) =

uCN
11,τ (x)δt uCN

12,τ (x)δt pSt
1,τ (x)δt

uCN
21,τ (x)δt uCN

22,τ (x)δt pSt
2,τ (x)δt

uSi
1,τ (x, t) uSi

2,τ (x, t) pSi
τ (x, t)

 . (8.81)

More precisely, we apply the differential operator on each row of Gτ (see (2.13)).
The resulting tensor of the source scaling functions is denoted by

Φτ (x, t) =

Φ11,τ (x)δt Φ12,τ (x)δt Φ1
13,τ (x)δ′t + Φ2

13,τ (x)δt
Φ21,τ (x)δt Φ22,τ (x)δt Φ1

23,τ (x)δ′t + Φ2
23,τ (x)δt

Φ31,τ (x, t) Φ32,τ (x, t) Φ33,τ (x, t)

 (8.82)

and we can figure out the several components. For our notation we have to say:
With Φik,τ , we denote the source scaling functions without the Delta distribution
(if they contain such one) and (Φτ )ik denotes the whole entry of the tensor, that
means in the case of the first two rows the entry including the Delta distribution.
For the third row, it is therefore Φik,τ = (Φτ )ik. Please remember here how we
constructed our regularized fundamental solutions: For ‖x‖ ≥ τ we use the fun-
damental solutions themselves and for ‖x‖ < τ , we use a Taylor mollification of
the fundamental solutions. If we now apply the differential operator on Gτ , we
only have support of the source scaling functions for ‖x‖ ≤ τ for the spatial part
because outside it is zero. Thus our derivations for the source scaling functions
in the following have to be seen for the case ‖x‖ ≤ τ . We start with the first row
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8. Regularized Fundamental Solutions

and calculate the several components that we need for the source scaling function
tensor

(Φ11,τ ,Φ12,τ ,Φ13,τ ) = Lpe
(
uCN

11,τ , u
CN
21,τ , p

St
1,τ

)
=

−
λ+µ
µ
∇x

(
∇x ·

(
uCN

11,τ

uCN
12,τ

))
−∇2

x

(
uCN

11,τ

uCN
12,τ

)
+ α∇xp

St
1,τ

∂t

(
c0µp

St
1,τ + α

(
∇x ·

(
uCN

11,τ

uCN
12,τ

)))
−∇2

xp
St
1,τ


T

.

(8.83)

For Φ11,τ and Φ12,τ we need for ‖x‖ ≤ τ the following partial derivatives

∂x1u
CN
11,τ =

C3

2π

[
−2x1

2τ 2
+ C4 · 2x1 ·

(
2

τ 2
− ‖x‖

2

τ 4

)
+ C4 · x2

1 ·
(
−2x1

τ 4

)]
, (8.84)

∂x2u
CN
11,τ =

C3

2π

[
−2x2

2τ 2
+ C4 · x2

1 ·
(
−2x2

τ 4

)]
, (8.85)

∂x2
1
uCN

11,τ =
C3

2π

(
− 1

τ 2
+ C4 ·

(
4

τ 2
− 12x2

1 + 2x2
2

τ 4

))
, (8.86)

∂x2
2
uCN

11,τ =
C3

2π

[
− 1

τ 2
+ C4 · x2

1 ·
(
− 2

τ 4

)]
, (8.87)

∂x1∂x2u
CN
11,τ =

C3C4

2π

(
−4x1x2

τ 4

)
, (8.88)

∂x1u
CN
12,τ =

C3C4

2π

[
x2 ·

(
2

τ 2
− ‖x‖

2

τ 4

)
+ x1x2 ·

(
−2x1

τ 4

)]
, (8.89)

∂x2u
CN
12,τ =

C3C4

2π

[
x1 ·

(
2

τ 2
− ‖x‖

2

τ 4

)
+ x1x2 ·

(
−2x2

τ 4

)]
, (8.90)

∂x2
1
uCN

12,τ =
C3C4

2π

(
−6x1x2

τ 4

)
, (8.91)

∂x2
2
uCN

12,τ =
C3C4

2π

(
−6x1x2

τ 4

)
, (8.92)

∂x1∂x2u
CN
12,τ =

C3C4

2π

(
2

τ 2
− 3‖x‖2

τ 4

)
. (8.93)

With these preliminary considerations, we can assemble the several components
of our source scaling functions and obtain

∇xp
St
1,τ =

C1

2π

1

τ 2

(
2− 3x2

1+x2
2

τ2

−2x1x2

τ2

)
, (8.94)

∇2
xu

CN
11,τ =

C3

2π

(
− 2

τ 2
+ C4 ·

(
−12x2

1 + 2x2
2 + 2x2

1

τ 4
+

4

τ 2

))
=
C3

2π

(
−2 + 4C4

τ 2
+ C4 ·

(
−14x2

1 + 2x2
2

τ 4

))
, (8.95)
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∇2
xu

CN
12,τ = −C3C4

π

6x1x2

τ 4
, (8.96)

∇x

(
∇x ·

(
uCN

11,τ

uCN
12,τ

))
=

(
∂x2

1
uCN

11,τ + ∂x1∂x2u
CN
12,τ

∂x2∂x1u
CN
11,τ + ∂x2

2
uCN

12,τ

)

=

C3

2π

(
− 1
τ2 + C4 ·

(
6
τ2 − 15x2

1+5x2
2

τ4

))
C3C4

2π

(
−10x1x2

τ4

)
 . (8.97)

Summarizing the components above, we get

Φ11,τ (x) = −λ+ µ

µ

C3

2π

(
− 1

τ 2
+ C4 ·

(
6

τ 2
− 15x2

1 + 5x2
2

τ 4

))
− C3

2π

(
−2 + 4C4

τ 2
+ C4 ·

(
−14x2

1 + 2x2
2

τ 4

))
+ α

C1

2π

1

τ 2

(
2− 3x2

1 + x2
2

τ 2

)
,

(8.98)

Φ12,τ (x) = −λ+ µ

µ
· C3C4

2π

(
−10x1x2

τ 4

)
+
C3C4

π
· 6x1x2

τ 4
− αC1

2π

2x1x2

τ 4

=
x1x2

τ 4π

(
λ+ µ

µ
· 5C3C4 + 6C3C4 − αC1

)
. (8.99)

For Φ13,τ , we have to consider that the fundamental solutions uCN and pSt are
not time-dependent but the whole entries in the fundamental solution tensor be-
longing to uCN and pSt are equipped with δt. Since the third equation contains a
derivative with respect to t, we have to observe this. We get for the Laplacian of
pSt

1,τ

∇2
xp

St
1,τ = −4x1C1

τ 4π
(8.100)

and together with the derivatives above for the two components of Φ13,τ

Φ1
13,τ (x) =

[
c0µC1

2π
· x1

τ 2

(
2− ‖x‖

2

τ 2

)
+
αC3

2π

(
x1(6C4 − 1)

τ 2
− 5C4 · x1 ·

‖x‖2

τ 4

)]
,

(8.101)

Φ2
13,τ (x) =

4x1C1

τ 4π
. (8.102)

The first component is the part which has a δ′t in the whole entry and the second
one is equipped with δt, if we consider the whole entry of the source scaling
function tensor. Please note here that it is necessary to do a little modification
of Φ2

13,τ to ensure that the property of an approximate identity holds true (see
Definition 4.1.3). From now on, we will change the τ 4 in the denominator to
τ 3, which is a part of the regularization and necessary to obtain the theoretical
requirements.
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We continue with the second row of Φτ . In this case the calculations are similar
to those above, because of the symmetry. We get

(
Φ21,τ ,Φ22,τ ,Φ23,τ

)
= Lpe

(
uCN

21,τ , u
CN
22,τ , p

St
2,τ

)
=

−
λ+µ
µ
∇x

(
∇x ·

(
uCN

21,τ

uCN
22,τ

))
−∇2

x

(
uCN

21,τ

uCN
22,τ

)
+ α∇xp

St
2,τ

∂t

(
c0µp

St
2,τ + α

(
∇x ·

(
uCN

21,τ

uCN
22,τ

)))
−∇2

xp
St
2,τ


T

.

(8.103)

Furthermore, we have in analogy to above for ‖x‖ < τ

∇xp
St
2,τ =

C1

2π

1

τ 2

(
−2x1x2

τ2

2− 3x2
2+x2

1

τ2

)
, (8.104)

∇2
xu

CN
21,τ = −C3C4

π
· 6x1x2

τ 4
, (8.105)

∇2
xu

CN
22,τ =

C3

2π

(
− 2

τ 2
+ C4 ·

(
−14x2

2 + 2x2
1 − 4

τ 4

))
, (8.106)

∇x

(
∇x ·

(
uCN

21,τ

uCN
22,τ

))
=

 C3C4

2π

(
−10x1x2

τ4

)
C3

2π

(
− 1
τ2 + C4 ·

(
6
τ2 − 5x2

1+15x2
2

τ4

)) . (8.107)

We can see that Φ21,τ is exactly the same as Φ12,τ and Φ22,τ is the same as Φ11,τ

with changed roles of x1 and x2. The same holds true for Φ23,τ compared with
Φ13,τ (for both upper indices 1 and 2). Therefore, we do not write them down
here separately but rather at the end of our calculations to have all source scaling
functions at a look. Please note that we do the modification in the denominator
of Φ2

23,τ in the same way as for Φ2
13,τ . Let us continue with the third row. Here the

functions are space and time dependent and we do not have to take care about
the Delta distribution.

(
Φ31,τ ,Φ32,τ ,Φ33,τ

)
= Lpe

(
uSi

1,τ , u
Si
2,τ , p

Si
τ

)
=

−
λ+µ
µ
∇x

(
∇x ·

(
uSi

1,τ

uSi
2,τ

))
−∇2

x

(
uSi

1,τ

uSi
2,τ

)
+ α∇xp

Si
τ

∂t

(
c0µp

Si
τ + α

(
∇x ·

(
uSi

1,τ

uSi
2,τ

)))
−∇2

xp
Si
τ


T

.

(8.108)
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For the calculation of the several components regarding the first row of the differ-
ential operator, we can reduce therefore the relevant components for the deriva-
tive to the

∇x

(
∇x ·

(
x1‖x‖2

x2‖x‖2

))
= ∇x

(
∇x ·

(
x1(x2

1 + x2
2)

x2(x2
1 + x2

2)

))
=

(
8x1

8x2

)
, (8.109)

∇x

(
∇x ·

(
uSi

1,τ

uSi
2,τ

))
=

8C1

2π
· 8 ·

(
x1

x2

)(
− 1

τ 4
+ exp

(
− τ 2

4C2t

)
1

4C2t

1

τ 2

+
1

τ 4
exp

(
− τ 2

4C2t

))
, (8.110)

∇2
x

(
x1‖x‖2

x2‖x‖2

)
= ∇2

x

(
x1(x2

1 + x2
2)

x2(x2
1 + x2

2)

)
=

(
8x1

8x2

)
, (8.111)

∇2
xu

Si
τ =

C1

2π
· 8 ·

(
x1

x2

)(
− 1

τ 4
+ exp

(
− τ 2

4C2t

)
1

4C2t

1

τ 2

+
1

τ 4
exp

(
− τ 2

4C2t

))
, (8.112)

∇xp
Si
τ =

1

4πt
exp

(
− τ 2

4C2t

)
·
(
− 1

4C2t

)
·
(

2x1

2x2

)
= −

(
x1

x2

)
exp

(
− τ 2

4C2t

)
1

8πC2t2
. (8.113)

In this case the x‖x‖-term is the only relevant term that remains if we consider
derivatives of the second order. Now we can put together these derivatives to get
the first two entries Φ31,τ and Φ32,τ of the last row of the source scaling function
tensor, which are(

Φ31,τ

Φ32,τ

)
=

[
−λ+ µ

µ
− 1

]
C1

2π
· 8 ·

(
x1

x2

)(
− 1

τ 4
+ exp

(
− τ 2

4C2t

)
1

4C2t

1

τ 2

+
1

τ 4
exp

(
− τ 2

4C2t

))
−
(
x1

x2

)
α

8C2πt2
exp

(
− τ 2

4C2t

)

=

(
x1

x2

) (−λ− 2µ)8C1

(
−4C2t

2 + tτ 2 exp
(
− τ2

4C2t

)
+ 4C2t

2 exp
(
− τ2

4C2t

))
8C2µt2τ 4π

−
(
x1

x2

) αµτ 4 exp
(
− τ2

4C2t

)
8C2µt2τ 4π

= −
(
x1

x2

)
exp

(
− τ 2

4C2t

)αµτ 4 + 8C1(λ+ 2µ)tτ 2

8C2µt2τ 4π

+
32C1C2(λ+ 2µ)t2

(
1− exp

(
τ2

4C2t

))
8C2µt2τ 4π

 . (8.114)
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The last function to figure out is Φ33,τ . For the Laplacian of pSi
1,τ , we can use the

gradient from above and apply the divergence onto it. The several components
that we need are given by

∇2
xp

Si
τ = div ((8.113))

=
−1

4πC2t2
exp

(
− τ 2

4C2t

)
, (8.115)

∂tp
Si
τ =

−1

4πt2
exp

(
− τ 2

4C2t

)[
1− 1

4C2t
(‖x‖2 − τ 2)

]
+

1

4πt
exp

(
− τ 2

4C2t

)
· τ 2

4C2t2

[
1− 1

4C2t
(‖x‖2 − τ 2)

]
+

1

4πt
exp

(
− τ 2

4C2t

)
· 1

4C2t2
(‖x‖2 − τ 2)

= exp

(
− τ 2

4C2t

)[
− 1

4πt2
+

1

16C2t3π
(‖x‖2 − τ 2) +

τ 2

16C2t3π

− τ 2

64C2
2 t

4π
(‖x‖2 − τ 2) +

1

16C2t3π
(‖x‖2 − τ 2)

]
= exp

(
− τ 2

4C2t

)[
− 1

4πt2
+

1

16C2t3π
(2‖x‖2 − τ 2)− τ 2

64C2
2 t

4π
(‖x‖2 − τ 2)

]
,

(8.116)

∂t(∇x · uSi) = ∂t

(
C1

2π

[
2 ·
[

1

τ 2
− 1

τ 2
exp

(
− τ 2

4C2t

)
+

(
−1

τ 4
+

1

4C2t
exp

(
− τ 2

4C2t

)
· 1

τ 2
+

1

τ 4
exp

(
− τ 2

4C2t

))
(‖x‖2 − τ 2)

]
+2‖x‖2

[
−1

τ 4
+

1

4C2t

1

τ 2
exp

(
− τ 2

4C2t

)
+

1

τ 4
exp

(
− τ 2

4C2t

)]])
=
C1

π

[
− 1

τ 2
exp

(
− τ 2

4C2t

)
· τ 2

4C2t2
+

(
− 1

4C2t2
exp

(
− τ 2

4C2t

)
· 1

τ 2

+
1

4C2t
exp

(
− τ 2

4C2t

)
· τ 2

4C2t2
· 1

τ 2
+

1

τ 4
exp

(
− τ 2

4C2t

)
· τ 2

4C2t2

)
·(2‖x‖2 − τ 2)

]
=
C1

π
exp

(
− τ 2

4C2t

)[
− 1

4C2t2
+

1

16C2
2 t

3
(2‖x‖2 − τ 2)

]
. (8.117)
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We put together the derivatives for the last component of our tensor Φτ . Fur-
thermore, the derived function can be a bit simplified by inserting the material
constants for Berea sandstone given in (7.21) which is done in the next step and
leads us to

Φ33,τ = c0µ exp

(
− τ 2

4C2t

)[
− 1

4πt2
+

1

16C2t3π
(2‖x‖2 − τ 2)− τ 2

64C2
2 t

4π
(‖x‖2 − τ 2)

]
+
αC1

π
exp

(
− τ 2

4C2t

)[
− 1

4C2t2
+

1

16C2
2 t

3
(2‖x‖2 − τ 2)

]
+ exp

(
− τ 2

4C2t

)
1

4C2t2π

= exp

(
− τ 2

4C2t

)
=−1︷ ︸︸ ︷

−C2c0µ− C1α

4C2πt2
+

=1︷ ︸︸ ︷
C2c0µ+ C1α

16C2
2 t

3π
(2‖x‖2 − τ 2)

− c0µτ
2

64C2
2 t

4π
(‖x‖2 − τ 2) +

1

4C2t2π


= exp

(
− τ 2

4C2t

)
4t(2‖x‖2 − τ 2) + c0µτ

2(τ 2 − ‖x‖2)

64C2
2 t

4π
. (8.118)

We want to summarize the components of Φτ at a glance. Here we can see better
the several symmetry relations of the source scaling function, for example Φ11,τ

and Φ22,τ , Φ13,τ and Φ23,τ and at last Φ31,τ and Φ32,τ . The source scaling functions
are given by

Φ11,τ (x) = −λ+ µ

µ

C3

2π

(
− 1

τ 2
+ C4 ·

(
6

τ 2
− 15x2

1 + 5x2
2

τ 4

))
− C3

2π

(
−2 + 4C4

τ 2
+ C4 ·

(
−14x2

1 + 2x2
2

τ 4

))
+ α

C1

2π

1

τ 2

(
2− 3x2

1 + x2
2

τ 2

)
,

(8.119)

Φ12,τ (x) =
x1x2

τ 4π

(
λ+ µ

µ
· 5C3C4 + 6C3C4 − αC1

)
, (8.120)

Φ1
13,τ (x) =

[
c0µC1

2π
· x1

τ 2

(
2− ‖x‖

2

τ 2

)
+
αC3

2π

(
x1(6C4 − 1)

τ 2
− 5C4 · x1 ·

‖x‖2

τ 4

)]
,

(8.121)

Φ2
13,τ (x) =

4x1C1

τ 3π
, (8.122)
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Φ21,τ (x) =
x1x2

τ 4π

(
λ+ µ

µ
· 5C3C4 + 6C3C4 − αC1

)
, (8.123)

Φ22,τ (x) = −λ+ µ

µ

C3

2π

(
− 1

τ 2
+ C4 ·

(
6

τ 2
− 15x2

2 + 5x2
1

τ 4

))
− C3

2π

(
−2 + 4C4

τ 2
+ C4 ·

(
−14x2

2 + 2x2
1

τ 4

))
+ α

C1

2π

1

τ 2

(
2− 3x2

2 + x2
1

τ 2

)
,

(8.124)

Φ1
23,τ (x) =

[
c0µC1

2π
· x2

τ 2

(
2− ‖x‖

2

τ 2

)
+
αC3

2π

(
x2(6C4 − 1)

τ 2
− 5C4 · x2 ·

‖x‖2

τ 4

)]
,

(8.125)

Φ2
23,τ (x) =

4x2C1

τ 3π
, (8.126)

Φ31,τ (x, t) = −x1 exp

(
− τ 2

4C2t

)αµτ 4 + 8C1(λ+ 2µ)tτ 2

8C2µt2τ 4π

+
32C1C2(λ+ 2µ)t2

(
1− exp

(
τ2

4C2t

))
8C2µt2τ 4π

 , (8.127)

Φ32,τ (x, t) = −x2 exp

(
− τ 2

4C2t

)αµτ 4 + 8C1(λ+ 2µ)tτ 2

8C2µt2τ 4π

+
32C1C2(λ+ 2µ)t2

(
1− exp

(
τ2

4C2t

))
8C2µt2τ 4π

 , (8.128)

Φ33,τ (x, t) = exp

(
− τ 2

4C2t

)
8‖x‖2t− 4tτ 2 + c0µτ

2(τ 2 − ‖x‖2)

64C2
2 t

4π
. (8.129)

The existence of the limit ‖x‖ → 0 and t → 0+ for Φ31,τ , Φ32,τ and Φ33,τ can be
obtained with the same considerations as for the existence of the limits for pSi

τ

and the components of uSi
τ . After the theoretical calculations, we want to show

some plots of the source scaling functions. Figure 8.19 shows the source scaling
functions for the component Φ11,τ for several parameters j. We can see that the
support gets smaller for larger j. Since the shrinking support is a character of all
source scaling functions, Figure 8.20 shows Φ12,τ , Φ1

13,τ and Φ2
13,τ together only for

one parameter, namely for j = 1.
Please note that the source scaling function Φ21,τ is the same as Φ12,τ . Due to the
symmetry, Φ22,τ is the same as source scaling function Φ11,τ reflected at the line
given by x1 = x2. Furthermore, Φ13,τ and Φ23,τ are similar, because Φ23,τ is the
same as Φ13,τ also reflected at the line x1 = x2. This holds true for the function
parts with upper index 1 and 2. Therefore, we do not show the components of
Φ23,τ additionally. Figure 8.21 shows the source scaling functions for the compo-
nent Φ31,τ , where we have a spatial and time dependency to show.
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(a) j = 0 (b) j = 1 (c) j = 2

Figure 8.19.: The source scaling function Φ11,τ for several parameters j.

(a) Φ12,τ , j = 1. (b) Φ
(1)
13,τ , j = 1. (c) Φ

(2)
13,τ , j = 1.

Figure 8.20.: The source scaling functions Φ12,τ , Φ
(1)
13,τ and Φ

(2)
13,τ for j = 1.

(a) t = 1, j = 1. (b) t = 1, j = 2. (c) x = (0.2, 0.2), j = 1.

Figure 8.21.: The source scaling function Φ31,τ for a fixed time over the space re-
spectively for a fixed point over time for selected parameters j.

Since Φ32,τ does not differ from Φ31,τ evaluated at the point (0.2, 0.2) due to the
symmetry, this source scaling function is not shown here. Figure 8.22 shows
the source scaling functions for the component Φ33,τ for selected parameters j
in space and time.
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(a) t = 1, j = 1. (b) t = 1, j = 2. (c) x = (0.2, 0.2), j = 1.

Figure 8.22.: The source scaling function Φ33,τ for two fixed times in space respec-
tively for a fixed point in space over the time for selected parameters
j.

The wavelets (we state them as Ψik,τ ) can be defined like above in the following
way

Ψik,τj := Φik,τj − Φik,τj−1
. (8.130)

Some chosen wavelets are shown in the following figures to give a representative
overview. Figure 8.23 shows the source wavelet for the component Ψ11 for several
j.

(a) j = 1 (b) j = 2 (c) j = 3

Figure 8.23.: The source wavelet function Ψ11,τ for selected parameters j.

In this figure, we can see the behavior of the wavelets for increasing j. They are
also getting smaller support for greater j. Therefore, we show in Figure 8.24 some
of the wavelet functions together for j = 1.
Please note that the source wavelet Ψ12 is the same as Ψ21 and also the symmetry
of Ψ31 and Ψ32 is the same as in the case of the source scaling functions and these
functions are not depicted separately. Because of the symmetry of Ψ11 and Ψ22,
the latter is not shown here.
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8.3. Source Scaling Functions and Wavelets

(a) Ψ12,τ , j = 1. (b) Ψ
(1)
13,τ , j = 1. (c) Ψ

(2)
13,τ , j = 1.

Figure 8.24.: The source wavelet functions Ψ12,τ , Ψ
(1)
13,τ and Ψ

(2)
13,τ for j = 1.

(a) t = 1, j = 2. (b) t = 1, j = 3. (c) x = (0.2, 0.2), j = 1.

Figure 8.25.: The source wavelet function Ψ31,τ for two fixed times over space re-
spectively for a fixed point in space over the time for selected pa-
rameters j.

Due to the symmetric aspects of Ψ31 and Ψ32, we only show Ψ31 in Figure 8.25 for
some space or time points and selected parameters j.
Figure 8.26 shows the source wavelet for the component Ψ33,τ with the same pa-
rameters for space and time as Ψ31,τ above.
Please note that the source scaling functions and corresponding wavelets all have
compact support in space due to the construction. Remember how the mollified
fundamental solutions were constructed: We used the fundamental solution for
‖x‖ ≥ τ and the mollification for ‖x‖ < τ . This has the consequence that the
result of the application of the differential operator for ‖x‖ ≥ τ vanishes. We get
compact support for the spatial variable for our source scaling functions.
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8. Regularized Fundamental Solutions

(a) t = 1, j = 2. (b) t = 1, j = 3. (c) x = (0.2, 0.2), j = 1.

Figure 8.26.: The source wavelet function Ψ33,τ for two fixed times over space re-
spectively for a fixed point in space over the time for selected pa-
rameters j.
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8.4. Theoretical Aspects of the Decorrelation

For our source scaling functions, we want to show an important theorem, which
provides the basis for our decorrelation. Here, we have to note that the space
and time dependent source scaling functions Φ31,τ , Φ32,τ and Φ33,τ have to be
equipped with the Haar scaling function in time. This is necessary to achieve a
compact support of the functions in space and time and to yield the theoretical
results. We need the Haar saling function (see [117]) in time that has its support
on the interval [0, t0], that means ϕ(t/t0), which we will denote by

ϕt0(t) := ϕ(t/t0) = X[0,1](t/t0) =

{
1, 0 ≤ t ≤ t0,

0, t > t0.
(8.131)

That means, we modify the mentioned scaling functions by Φnew(x, t) = Φ(x, t) ·
ϕt0(t) and omit the new, because we are only interested in these modified func-
tions. Furthermore, we want to interconnect the parameter t0 with τ in the fol-
lowing way: t0 = T · τ , where T is the end point of our considered time interval.
Before we go over to our main theoretical results and the corresponding theorem,
we have a look at the following, which is also necessary for the proof of our main
theorem.

Theorem 8.4.1. We define the volume integral of the source scaling function tensor Φτ

in the following way

V Φτ :=

∫
R2

∫
R
Φτ (y, θ) dθ dy, (8.132)

that means we want to calculate the volume integral of the several parts of the tensor Φτ .
Our source scaling functions satisfy

(V Φτ )11 = (V Φτ )22 = 1, lim
τ→0+

(V Φτ )33 = C2c0µ, (8.133)

(V Φτ )12 = (V Φτ )21 = (V Φτ )13 = (V Φτ )23 = 0, (8.134)
(V Φτ )31 = (V Φτ )32 = 0. (8.135)

Proof. For the proof, we first need the volume integral VΦik,τ over the several parts
of Φ. We have three types of functions, namely entries of Φτ equipped with the
Delta distribution δt, equipped with the derivative of the Delta distribution δ′t
and the spatial and time dependent functions from the last row. We start with the
entry (Φτ )11 and use property (3.21) from Remark 3.3.3.
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That means the time integral together with the delta distribution reduces to one
and only the spatial integral with compact support is left. We obtain with polar
coordinates

(V Φτ )11 =

∫
Bτ (0)

−λ+ µ

µ

C3

2π

(
− 1

τ 2
+ C4 ·

(
6

τ 2
− 15x2

1 + 5x2
2

τ 4

))
− C3

2π

(
−2 + 4C4

τ 2
+ C4 ·

(
−14x2

1 + 2x2
2

τ 4

))
+ α

C1

2π

1

τ 2

(
2− 3x2

1 + x2
2

τ 2

)
dx

=

∫ τ

0

∫ 2π

0

−λ+ µ

µ

C3

2π

(
6C4 − 1

τ 2
· r − C4 ·

15r2 cos2 ϕ+ 5r2 sin2 ϕ

τ 4
· r
)

− C3

2π

(
−2 + 4C4

τ 2
· r − C4 ·

14r2 cos2 ϕ+ 2r2 sin2 ϕ

τ 4
· r
)

+ α
C1

2π

1

τ 2

(
2 · r − 3r2 cos2 ϕ+ r2 sin2 ϕ

τ 2
r

)
dϕ dr. (8.136)

With
∫ 2π

0
cos2 ϕ dϕ =

∫ 2π

0
sin2 ϕ dϕ = π, we have

(V Φτ )11 = −λ+ µ

µ

C3

2π

(
6C4 − 1

τ 2
· 2π · 1

2
τ 2 − C4

20π

τ 4
· 1

4
τ 4

)
− C3

2π

(
4C4 − 2

τ 2
· 2π · 1

2
τ 2 − C4 ·

16π

τ 4
· 1

4
τ 4

)
+
αC1

2π

(
2

τ 2
· 2π · 1

2
τ 2 − 4π

τ 4
· 1

4
τ 4

)
= −λ+ µ

µ
· C3

2
(6C4 − 1− 5C4)− C3

2
(4C4 − 2− 4C4) +

αC1

2

= −λ+ µ

µ
· C3

2
(C4 − 1) + C3 +

αC1

2
. (8.137)

Inserting the constants C1, C3 and C4 from (7.21) and (7.22) leads us to

(V Φτ )11 = −λ+ µ

µ
· c0(λ+ 3µ) + α2

4(c0(λ+ 2µ) + α2)
·
[
c0(λ+ µ) + α2

c0(λ+ 3µ) + α2
− 1

]
+

c0(λ+ 3µ) + α2

2(c0(λ+ 2µ) + α2)
+

α2

2(c0(λ+ 2µ) + α2)

= −λ+ µ

µ

c0(λ+ µ) + α2 − c0(λ+ 3µ)− α2

4(c0(λ+ 2µ) + α2)
+

c0(λ+ 3µ) + 2α2

2(c0(λ+ 2µ) + α2)

=
(−λ− µ) · (−2c0µ) + 2µc0(λ+ 3µ) + 4µα2

4µ(c0(λ+ 2µ) + α2)

=
4µc0λ+ 8c0µ

2 + 4µα2

4µ(c0(λ+ 2µ) + α2)

= 1. (8.138)
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Due to the symmetry of Φ11,τ and Φ22,τ , the volume integral (V Φτ )22 is the same
as (V Φτ )11. Furthermore, for (Φτ )12, we get with the same argument for the Delta
distribution as above, the integral over the spatial part

∫
B

Φ12,τ (x) dx =

∫
Bτ (0)

Φ12,τ (x) dx

=

∫
Bτ (0)

x1x2

τ 4π

(
λ+ µ

µ
· 5C3C4 + 6C3C4 − αC1

)
dx

=
1

τ 4π

(
λ+ µ

µ
· 5C3C4 + 6C3C4 − αC1

) 2π∫
0

τ∫
0

r3 sin(ϕ) cos(ϕ) dr dϕ

= 0. (8.139)

Also due to the symmetry, we have (V Φτ )21 = 0. For the components (Φτ )13, we
have to distinguish two cases (remember the part equipped with δt and the other
one with δ′t). For the case with δt, we can apply the same argument as above and
get for the remaining integral over the spatial part with polar coordinates

∫
Bτ (0)

4x1C1

τ 3π
=

4C1

τ 3π

∫ τ

0

∫ 2π

0

r2 cosϕ dϕ dr

= 0. (8.140)

For the second part with δ′t, we have again a look at Remark 3.3.3 and (3.20) and
get that this integral is zero. We get due to the similarity of (Φτ )23 and (Φτ )13,
that the volume integrals of the two parts of (Φτ )23 are also zero with the same
considerations as in the case of (Φτ )13.
So the last row of Φτ is left, where we now have a look at. We get for (Φτ )31 with
some symmetric properties based on the factor x1 the opportunity to separate the
spatial from the time integral.

∫
B

t0∫
0

Φ31,τ dt dx = −
∫
Bτ (0)

x1 dx

×
∫ t0

0

exp

(
− τ 2

4C2t

)αµτ 4 + 8C1(λ+ 2µ)tτ 2

8C2µt2τ 4π

+
32C1C2(λ+ 2µ)t2

(
1− exp

(
τ2

4C2t

))
8C2µt2τ 4π

 dt
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= −
∫ τ

0

∫ 2π

0

r cos(ϕ)r dϕ dr

∫ t0

0

exp

(
− τ 2

4C2t

)αµτ 4 + 8C1(λ+ 2µ)tτ 2

8C2µt2τ 4π

+
32C1C2(λ+ 2µ)t2

(
1− exp

(
τ2

4C2t

))
8C2µt2τ 4π

 dt

= 0 ·
∫ t0

0

exp

(
− τ 2

4C2t

)αµτ 4 + 8C1(λ+ 2µ)tτ 2

8C2µt2τ 4π

+
32C1C2(λ+ 2µ)t2

(
1− exp

(
τ2

4C2t

))
8C2µt2τ 4π

 dt

= 0. (8.141)

We also get (V Φτ )32 = 0 due to the symmetry. Furthermore, we need the follow-
ing integrals over Bτ (0) for (V Φτ )33∫

Bτ (0)

‖x‖2 dx =

∫ 2π

0

∫ τ

0

r2 · r dr dϕ = 2π · 1

4
r4
∣∣τ
0

=
π

2
τ 4, (8.142)∫

Bτ (0)

1 dx = πτ 2. (8.143)

With this, let us now have a look at (Φτ )33. Please remember Remark 2.2.4 for the
time integral.

∫
B

∫ t0

0

Φ33,τ dt dx

=

∫ t0

0

∫
Bτ (0)

exp

(
− τ 2

4C2t

)
4t(2‖x‖2 − τ 2) + c0µτ

2(τ 2 − ‖x‖2)

64C2
2 t

4π
dx dt

=

∫ t0

0

exp

(
− τ 2

4C2t

)
4t (τ 4π − πτ 4) + c0µτ

2(πτ 4 − 1
2
τ 4π)

64C2
2 t

4π
dt

=
1

64C2
2

c0µτ
6

2

∫ t0

0

exp

(
− τ 2

4C2t

)
1

t4
dt

=
1

64C2
2

c0µτ
6

2
·

4C2 exp
(
− τ2

4C2t0

)
(32C2

2 t
2
0 + 8C2t0τ

2 + τ 4)

t20τ
6

. (8.144)
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Now we have to take into account the coupling between τ and t0. We obtain for a
constant T > 0 (which is the length of our considered time interval) and t0 = Tτ

lim
τ→0+

VΦ33,τ =
1

64C2
2

c0µ

2
· 4C2 · 32C2

2

= C2c0µ (8.145)

that means the volume integral converges to a constant for t→ 0+.

Remark 8.4.2. In the case of Berea sandstone, we obtain for the limit of the volume
integral of Φ33,τ the following (see [135])

C2c0µ ≈ 0.6205. (8.146)

For a better comparison of the convolution results later, it is better to modify Φ33,τ

in such a way that the volume integral is 1. Therefore, we define the new function
Φnew

33,τ with the help of the volume integral in the following way

Φnew
33,τ =

1

(V Φτ )33

Φ33,τ . (8.147)

Please note that this is necessary on the one hand to prove Theorem 8.4.4 and
on the other hand for a better comparison of the decorrelation for different j.
In the further considerations we omit the "new" for the sake of readability but
consider always the newly defined function. For the decorrelation of given data
for u and p, we have to show that our constructed source scaling functions fulfill
the properties of scaling functions in the sense of Definition 4.1.3.
Before we go over to this theorem, we have to prove another lemma, which we
need for the main theorem.

Lemma 8.4.3. The positive part of Φ11,τ achieves its maximum at (τ, 0) or (−τ, 0).

Proof. We can rearrange Φ11,τ in the following way

Φ11,τ =

(
−λ+ µ

µ

C3

2π

1

τ 2
(6C4 − 1)− C3

2π

1

τ 2
(4C4 − 2) +

αC1

2π

2

τ 2

)
+ x2

1

(
λ+ µ

µ

C3 · C4

2πτ 4
· 15 +

C3 · C4

2πτ 4
· 14− αC1

2πτ 4
· 3
)

+ x2
2

(
λ+ µ

µ

C3 · C4

2πτ 4
· 5 +

C3 · C4

2πτ 4
· 2− αC1

2πτ 4

)
=: D0 + x2

1D1 + x2
2D2. (8.148)

We write D0 =: 1
τ2d0, D1 =: 1

τ4d1 and D2 =: 1
τ4d2 and have a closer look at d0, d1

and d2 and want to show that d0 < 0 and d1, d2 > 0 holds true by inserting the
constants (see (7.21) and (7.22)):
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d0 = −λ+ µ

µ

C3

2π
(6C4 − 1)− C3

2π
(4C4 − 2) +

αC1

π

=
C3C4

2π

(
−λ+ µ

µ
· 6− 4

)
+
C3

2π

(
λ+ µ

µ
+ 2

)
+
αC1

π

=
1

2π

c0(λ+ µ) + α2

2(c0(λ+ 2µ) + α2)
· −6λ− 10µ

µ
+

1

2π

c0(λ+ 3µ) + α2

2(c0(λ+ 2µ) + α2)
· λ+ 3µ

µ

+
1

π

α2

c0(λ+ 2µ) + α2

=
1

2π

(c0(λ+ µ) + α2)(−6λ− 10µ) + (c0(λ+ 3µ) + α2)(λ+ 3µ) + 4α2µ

2µ(c0(λ+ 2µ) + α2)

=
1

2π

−5c0λ
2 − 10c0λµ− c0µ

2 − 5λα2 − 3µα2

2µ(c0(λ+ 2µ) + α2)
< 0. (8.149)

With the same steps, we get for d1 and d2

d1 =
1

2π

(
15λ+ 29µ

µ
· C3C4 − 3αC1

)
=

1

2π

(c0(λ+ µ) + α2) · 15λ+ 29µc0(λ+ µ) + 23µα2

2µ(c0(λ+ 2µ) + α2)
> 0, (8.150)

d2 =
1

2π

(
5λ+ 7µ

µ
· C3C4 − αC1

)
=

1

2π

(c0(λ+ µ) + α2) · 5λ+ c0(λ+ µ) · 7µ+ 5µα2

2µ(c0(λ+ 2µ) + α2)
> 0. (8.151)

Please note that also d1 > d2 holds true. That means we want to find the max-
imum of the function Φ11,τ (x) = D0 + x2

1D1 + x2
2D2 under the given constraint

g(x) := x2
1 + x2

2 − τ 2 ≤ 0. We want to do this by determining the Karush-Kuhn-
Tucker points. Therefore, we have to minimize F (x) = −Φ11,τ under the con-
straint above. We get the following equations

∇F (x) + u∇g(x)
!

= 0 (8.152)
⇔ −2x1D1 + u2x1 = 0 (8.153)
−2x2D2 + u2x2 = 0 (8.154)

and u(x2
1 + x2

2 − τ 2) = 0 (8.155)
and u ≥ 0 (8.156)
and g(x) ≤ 0. (8.157)

That means we have from the first equation x1 = 0 ∨ u = D1 and from the
second equation x2 = 0 ∨ u = D2. Combining the conditions and inserting them
in (8.155)-(8.157), we get
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a) x1 = 0 ∧ x2 = 0: With (8.155), we get u = 0 and (8.156) and (8.157) are fulfilled.
We get the point (0, 0, 0).

b) x1 = 0 ∧ u = D2: With (8.155) u(x2
2−τ 2) = 0 and therefore u = 0 (contradiction

to u = D2) or x2 = ±τ . (8.156) and (8.157) are fulfilled. We have the points
(0,±τ,D2).

c) x2 = 0 ∧ u = D1: With (8.155), we get u(x2
1 − τ 2) = 0 and therefore u = 0

(contradiction to u = D1) or x1 = ±τ . (8.156) and (8.157) are fulfilled and we
have the points (±τ, 0, D1).

We insert the KKT-points in the functions F and Φ11,τ and get

F (0, 0) = −D0, F (0,±τ) = −D0 − τ 2D2, F (±τ, 0) = −D0 − τ 2D1, (8.158)
Φ11,τ (0, 0) = D0, Φ11,τ (0,±τ) = D0 + τ 2D2, Φ11,τ (±τ, 0) = D0 + τ 2D1.

(8.159)

Since D1 > D2 > 0, the function achieves its maximum at the points (τ, 0) and
(−τ, 0). More precisely: The side condition describes a compact disc and the
function Φ11,τ is continuous, that means we have the existence of minimum and
maximum. Therefore, one of the KKT-points yields a maximum.

After this preparatory work, we can state the following theorem for our calcu-
lated source scaling function tensor Φτ from (8.82).

Theorem 8.4.4. Let B be a regular region in R2 and f : B × R → R3 continuously
differentiable. Then

lim
τ→0
τ>0

∫
B

∫
R

Φτ (x− y, t− θ)f(y, θ) dθ dy = f(x, t) (8.160)

holds true for all x ∈ B, t ∈ R and our constructed Φτ is a scaling function in the sense
of Definition 4.1.3.

Proof. In detail we have to show (see the deduced source scaling functions above)

lim
τ→0
τ>0

∫
B

∫
R

Φ11,τ (x− y)δtf1(y, θ) + Φ12,τ (x− y)δtf2(y, θ)

+
(
Φ1

13,τ (x− y)δ′t + Φ2
13,τ (x− y)δt

)
f3(y, θ) dθ dy = f1(x, t), (8.161)

lim
τ→0
τ>0

∫
B

∫
R

Φ21,τ (x− y)δtf1(y, θ) + Φ22,τ (x− y)δtf2(y, θ)

+
(
Φ1

23,τ (x− y)δ′t + Φ2
23,τ (x− y)δt

)
f3(y, θ) dθ dy = f2(x, t), (8.162)

lim
τ→0
τ>0

∫
B

∫
R

Φ31,τ (x− y, t− θ)f1(y, θ) + Φ32,τ (x− y, t− θ)f2(y, θ)

+ Φ33,τ (x− y, t− θ)f3(y, θ) dθ dy = f3(x, t). (8.163)
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Together with Remark 3.3.3, the equations above simplify to the following that
has to be shown

lim
τ→0
τ>0

∫
B

Φ11,τ (x− y)f1(y, t) + Φ12,τ (x− y)f2(y, t)

− Φ1
13,τ (x− y)

∂

∂t
f3(y, t) + Φ2

13,τ (x− y)f3(y, t) dy = f1(x, t), (8.164)

lim
τ→0
τ>0

∫
B

Φ21,τ (x− y)f1(y, t) + Φ22,τ (x− y)f2(y, t)

− Φ1
23,τ (x− y)

∂

∂t
f3(y, t) + Φ2

23,τ (x− y)f3(y, t) dy = f2(x, t), (8.165)

lim
τ→0
τ>0

∫
B

∫
R

Φ31,τ (x− y, t− θ)f1(y, θ) + Φ32,τ (x− y, t− θ)f2(y, θ)

+ Φ33,τ (x− y, t− θ)f3(y, θ) dy dθ = f3(x, t). (8.166)

We start with the several parts of (8.161) and are guided by the technique in [22].
We have x ∈ B and B is open. Then there exists a τ0 such that B ∩ Bτ (x) = Bτ (x)
for all 0 < τ ≤ τ0. We can write the equation for the approximate identity with
time dependence and the compact support of the functions as

∫
B

∫
R
Φτ (x− y, t− θ)f(y, θ) dθ dy

=

∫
Bτ (x)

∫ t

t−t0
Φτ (x− y, t− θ)f(y, θ) dθ dy

=

(
3∑
j=1

∫
Bτ (x)

∫ t

t−t0
(Φτ )ij (x− y, t− θ)fj(y, θ) dθ dy

)
i=1,2,3

.

(8.167)

We split (Φτ )ij into its positive and negative parts, that means we have

(Φτ )
+
ij(x, t) =

{
(Φτ )ij(x, t), (Φτ )ij(x, t) ≥ 0

0, (Φτ )ij(x, t) < 0
, (8.168)

(Φτ )
−
ij(x, t) =

{
(Φτ )ij(x, t), (Φτ )ij(x, t) ≤ 0

0, (Φτ )ij(x, t) > 0
. (8.169)
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Then we have∫
Bτ (x)

∫ t

t−t0
(Φτ )ij (x− y, t− θ)fj(y, θ) dθ dy

=

∫
Bτ (x)

∫ t

t−t0
(Φτ )

+
ij (x− y, t− θ)fj(y, θ) dθ dy

+

∫
Bτ (x)

∫ t

t−t0
(Φτ )

−
ij (x− y, t− θ)fj(y, θ) dθ dy.

(8.170)

Due to the continuity of f and the integrability of (Φτ )
+
ij and (Φτ )

−
ij and the fact

that the positive and negative part do not change their sign in Bτ (x) × [t − t0, t],
we want to apply the mean value theorem of integration. Here we have to distin-
guish two cases, the parts of Φτ with δt or δ′t and the spatial and time dependent
functions. We start with the first case, that means we apply the mean value the-
orem only for the spatial part and consider (8.164) and (8.165). The mean value
theorem guarantees the existence of ξ1, ξ2 ∈ Bτ (x) such that∫

Bτ (x)

Φij,τ (x− y)fj(y, t) dy = fj(ξ1, t)

∫
Bτ (x)

Φ+
ij,τ (x− y) dy

+ fj(ξ2, t)

∫
Bτ (x)

Φ−ij,τ (x− y) dy, i = 1, 2, j = 1, 2, 3.

(8.171)

Remembering Theorem 8.4.1, we have∫
Bτ (x)

Φ+
ij,τ (x− y) dy +

∫
Bτ (x)

Φ−ij,τ (x− y) dy = δij. (8.172)

We can rearrange this equation to∫
Bτ (x)

Φ−ij,τ (x− y) dy = δij −
∫
Bτ (x)

Φ+
ij,τ (x− y) dy. (8.173)

Furthermore, substituting this equation into (8.171), we get∫
Bτ (x)

Φij,τ (x− y)fj(y, t) dy

= fj(ξ2, t)δij + (fj(ξ1, t)− fj(ξ2, t))

∫
Bτ (x)

Φ+
ij,τ (x− y) dy. (8.174)

In a last step, we have to estimate∫
Bτ (x)

Φ+
ij,τ (x− y, t− θ) dy ≤ C (8.175)
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for a positive constant C independent of τ . With this we get

lim
τ→0
τ>0

∫
Bτ (x)

Φij,τ (x− y)fj(y, t) dy = δijfj(x, t) (8.176)

since ξ1, ξ2 ∈ Bτ (x) and fj is continuous. This shows our theorem for the functions
with δt-part, because the difference (fj(ξ1, t) − fj(ξ2, t)) shrinks to 0 for τ → 0+,
because for τ → 0+ it holds true that ξ1, ξ2 → x. Together with the boundedness
of the integral over the positive part, the second term in (8.174) gets 0 and the
first term gets fj(x, t)δij . This goes in analogy for the parts with δ′t but in this case
we have the derivative with respect to t for fj instead of fj . The same technique
can be applied for the spatial and time dependent functions from the last row of
Φτ , which we will also depict here. Since the beginning of the proof was worded
in general terms, we do not have to reproduce this part for the spatial and time
dependent functions again. We continue with the application of the mean value
theorem, which we now apply for the spatial and time integral.
This guarantees the existence of (ξ1, η1), (ξ2, η2) ∈ Bτ (x)× [0, t0], such that∫

Bτ (x)

∫ t

t−t0
(Φτ )ij (x− y, t− θ)fj(y, θ) dθ dy

= fj(ξ1, η1)

∫
Bτ (x)

∫ t

t−t0
(Φτ )

+
ij (x− y, t− θ) dθ dy

+ fj(ξ2, η2)

∫
Bτ (x)

∫ t

t−t0
(Φτ )

−
ij (x− y, t− θ) dθ dy.

(8.177)

Remembering Theorem 8.4.1 and (8.147), we have∫
Bτ (x)

∫ t

t−t0
(Φτ )

+
ij (x− y, t− θ) dθ dy +

∫
Bτ (x)

∫ t

t−t0
(Φτ )

−
ij (x− y, t− θ) dθ dy = δij.

(8.178)

We can rearrange this equation to∫
Bτ (x)

∫ t

t−t0
(Φτ )

−
ij (x− y, t− θ) dθ dy = δij −

∫
Bτ (x)

∫ t

t−t0
(Φτ )

+
ij (x− y, t− θ) dθ dy.

(8.179)

Moreover, substituting this equation into (8.177), we get∫
Bτ (x)

∫ t

t−t0
(Φτ )ij (x− y, t− θ)fj(y, θ) dθ dy

= fj(ξ2, η2)δij + (fj(ξ1, η1)− fj(ξ2, η2))

∫
Bτ (x)

∫ t

t−t0
(Φτ )

+
ij (x− y, t− θ) dθ dy.

(8.180)
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In a last step, we have to estimate again∫
Bτ (x)

∫ t

t−t0
(Φτ )

+
ij (x− y, t− θ) dθ dy ≤ C (8.181)

for a positive constant C independent of τ . With this we get

lim
τ→0
τ>0

∫
Bτ (x)

∫ t

t−t0
(Φτ )ij (x− y, t− θ)fj(y, θ) dθ dy = δijfj(x, t) (8.182)

since (ξ1, η1),(ξ2, η2) ∈ Bτ (x)× [t− t0, t], fj is continuous and we have the coupling
between τ and t0 that means t0 goes to zero likewise as τ . Together with (8.167),
we get

lim
τ→0
τ>0

∫
B

∫
R
Φτ (x− y, t− θ)f(y, θ) dθ dy = f(x, t). (8.183)

That means, we are left to show that the positive part of each source scaling func-
tion is restricted by a positive constant C independent of τ . We show this for each
function separately. Let us start with the source scaling functions with δt and δ′t
dependency and take Remark 3.3.3 into account. That means we start with Φ11,τ

because we do not have to consider the δt any more and want to show that the
positive part is limited by a constant. We estimate

∫
Bτ (x)

(Φ11,τ )
+ (x− y) dy ≤ max

y∈Bτ (x)

∣∣(Φ11,τ )
+ (x− y)

∣∣ ∫
Bτ (x)

1 dy︸ ︷︷ ︸
=πτ2

(8.184)

From Lemma 8.4.3 we know that Φ11,τ achieves its maximum at (±τ, 0) and we
insert it and get

Φ11,τ (±τ, 0) = −λ+ µ

µ

C3

2π

(
(6C4 − 1)

τ 2
− C4

15τ 2

τ 4

)
− C3

2π

(
(4C4 − 2)

τ 2
− C4

14τ 2

τ 4

)
+
αC1

2π

(
2

τ 2
− 3τ 2

τ 4

)
= O(τ−2) as τ → 0 + . (8.185)

Hence it follows that the integral over the positive part can be estimated by a
constant. We continue with the positive part of Φ12,τ∫

Bτ (x)

(Φ12,τ )
+ (x− y) dy =

∫
Bτ (0)

(Φ12,τ )
+ (y) dy (8.186)
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and get for the constants

λ+ µ

µ

C3C4

π
· 5 +

C3C4

π
· 6− αC1

π

=
C3C4

π

(
5
λ+ µ

µ
+ 6

)
− αC1

π

=
1

π

(
C3C4

5λ+ 11µ

µ
− αC1

)
=

1

π

(
c0(λ+ µ) + α2

2(c0(λ+ 2µ) + α2)
· 5λ+ 11µ

µ
− α2

c0(λ+ 2µ) + α2

)
> 0. (8.187)

Due to the fact that the combination of constants above is > 0 and the symmetry,
we get for Φ12,τ (for the part with y1, y2 > 0) and the usage of polar coordinates.

∫
Bτ (0)
y1,y2>0

(Φ12,τ )
+ (y) dy

=

(
5
λ+ µ

µ

C3C4

πτ 4
+ 6

C3C4

πτ 4
− αC1

πτ 4

)∫ π/2

0

∫ τ

0

(
r2 sinϕ cosϕ

)
· r dr dϕ

=

(
5
λ+ µ

µ

C3C4

πτ 4
+ 6

C3C4

πτ 4
− αC1

πτ 4

)
· 1

2
· 1

4
τ 4 (8.188)

which implies that the positive part can also be estimated by a constant. Let us
continue with the two components of Φ13,τ . We can show that the function Φ1

13,τ

without the x1 is > 0. We show that the combination of constants is > 0 and have

c0µC1

2π

1

τ 2

(
2− ‖x‖

2

τ 2

)
+
αC3

2π

1

τ 2

(
6C4 − 1− 5C4

‖x‖2

τ 2

)
>
c0µC1

2π

1

τ 2

(
2− τ 2

τ 2

)
+
αC3

2π

1

τ 2

(
6C4 − 1− 5C4

τ 2

τ 2

)
=

1

2πτ 2
(c0µC1 + αC3(C4 − 1))

=
1

2πτ 2

(
c0µ

α

c0(λ+ 2µ) + α2
+ α

c0(λ+ 3µ) + α2

2(c0(λ+ 2µ) + α2)
·
(
c0(λ+ µ) + α2

c0(λ+ 3µ) + α2
− 1

))
=

1

2πτ 2

(
c0µ

α

c0(λ+ 2µ) + α2
− α · c0µ

c0(λ+ 2µ) + α2

)
= 0. (8.189)
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With this knowledge, let us continue and have a look at the integral

∫
Bτ (0)
y1,y2>0

C1c0µ

2π
· y1

τ 2

(
2− ‖y‖

2

τ 2

)
+
αC3

2π

(
y1(6C4 − 1)

τ 2
− 5C4 · y1

‖y‖2

τ 4

)
dy

=
c0µC1

2π

1

τ 2

∫ π/2

0

∫ τ

0

r cosϕ

(
2− r2

τ 2

)
· r dr dϕ

+
αC3

2π

∫ π/2

0

∫ τ

0

(
r cosϕ(6C4 − 1)

τ 2
− 5C4r cosϕ · r

2

τ 4

)
· r dr dϕ

=
c0µC1

2π

1

τ 2

(
2

3
τ 3 − 1

5

τ 5

τ 2

)
+
αC3

2π

(
1

3

τ 3

τ 2
(6C4 − 1)− 5C4 ·

1

5

τ 5

τ 4

)
→ 0 (τ → 0+), (8.190)

that means the integral can also be estimated by a constant. Due to the symmetry
it is for Φ2

13,τ sufficient to have a look at the part with y1, y2 > 0

∫
Bτ (0)
y1,y2>0

4y1C1

τ 3π
dy =

4C1

τ 3π

∫ π/2

0

∫ τ

0

r2 cosϕ dr dϕ

=
4C1

π

τ 3

3τ 3

=
4C1

3π
. (8.191)

This integral is also bounded. Now we have a look at the positive part of Φ31,τ . If
we have a look at the function without the y1-term, we see that the remaining part
contains no y-dependent term. Therefore, the sign of this term is independent of
the spatial variable. We consider an arbitrary time interval and a half circle with
polar coordinates and also Remark 2.2.4. We can separate the spatial and the time
integral to obtain

∫ τ

0

∫ t2

t1

∫ π/2

−π/2
Φ31,τ dϕ dt dr

=

∫ τ

0

∫ t2

t1

∫ π/2

−π/2
−r2 cosϕ dϕ

× exp

(
− τ 2

4C2t

)αµτ 4 + 8C1(λ+ 2µ)tτ 2

8C2µt2τ 4π

+
32C1C2(λ+ 2µ)t2

(
1− exp

(
τ2

4C2t

))
8C2µt2τ 4π

 dt dr
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= −2
τ 3

3

1

8C2µτ 4π
·

αµτ 4

4C2 exp
(
− τ2

4C2t2

)
τ 2

−
4C2 exp

(
− τ2

4C2t1

)
τ 2


−8C1(λ+ 2µ)τ 2

(
Ei

(
− τ 2

4C2t2

)
− Ei

(
− τ 2

4C2t1

))
+32C1C2(λ+ 2µ)

(
τ 2

4C2

(
Ei

(
− τ 2

4C2t2

)
− Ei

(
− τ 2

4C2t1

))
+

(
t2 exp

(
− τ 2

4C2t2

)
− t1 exp

(
− τ 2

4C2t1

))
− (t2 − t1)

)]
. (8.192)

For the limit τ → 0+, it is obvious that the first three lines vanish. We only have
to look at the last line more precisely and get

t2
τ

(
exp

(
− τ 2

4C2t2

)
− 1

)
︸ ︷︷ ︸

→0 (τ→0+)

− t1
τ

(
exp

(
− τ 2

4C2t1

)
− 1

)
︸ ︷︷ ︸

→0 (τ→0+)

(8.193)

due to L’Hospital’s rule

lim
τ→0+

exp
(
− τ2

4C2t1

)
− 1

τ
= lim

τ→0+

exp
(
− τ2

4C2t1

)
· −2τ

4C2t1

1
= 0. (8.194)

Please note that we have a quadratic term for t in the numerator, that means we
have a maximum of 3 intervals, where the function is only positive or negative.
For Φ33,τ , our aim is to estimate the function for the space-dependent part with its
maximum. Therefore, we have a look at the derivative with respect to ‖x‖2 and
get for the numerator (because the numerator is sufficient to get the roots of the
derivative)

8t− c0µτ
2

{
> 0, t > 1

8
c0µτ

2,

< 0, t < 1
8
c0µτ

2.
(8.195)

We start with the first case t > 1
8
c0µτ

2, that means the function is monotonically
increasing for ‖x‖ and achieves its maximum at the boundary for ‖x‖ = τ . Insert-
ing this maximum into the numerator of the function (here it is sufficient to have
a look at the numerator for the sign of the function) leads us to 4tτ 2 which is posi-
tive and the maximum therefore too. In the second case we have a monotonically
decreasing function and its maximum in the point (0, 0). We have to check for the
case t < 1/8c0µτ

2 that the numerator of the function is actually positive again.
This can be done by insertion of (0, 0) in the numerator and a simple estimate:

−4tτ 2 + c0µτ
4 > −1

2
c0µτ

4 + c0µτ
4 =

1

2
c0µτ

4 > 0. (8.196)
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8.4. Theoretical Aspects of the Decorrelation

We can now go over to the estimation of the integrals for both cases and split the
integral over the positive part of Φ33,τ into two cases (remember Remark 2.2.4).
We start with the second case and the following integral, where the maximum is
estimated by ‖x‖ = 0 and get (do not forget the area of Bτ (0) multiplied with the
integral)

πτ 2

∫ 1/8c0µτ2

0

exp

(
− τ 2

4C2t

)
−4tτ 2 + c0µτ

4

64C2
2 t

4π
dt

= τ 2

−4τ 2

4C2 exp

(
− τ2

4C2( 1
8
c0µτ2)

)(
τ 2 + 4

(
1
8
c0µτ

2
)
C2

)
64C2

2

(
1
8
c0µτ 2

)
τ 4

+c0µτ
4

4C2 exp

(
− τ2

4C2( 1
8
c0µτ2)

)(
32C2

2

(
1
8
c0µτ

2
)2

+ 8C2

(
1
8
c0µτ

2
)
τ 2 + τ 4

)
(

1
8
c0µτ 2

)2
τ 6 · 64C2

2

 ,
(8.197)

where the integral converges to a constant for τ → 0+ and is therefore bounded.
We continue with the integral in the first case given by t > 1/8 c0µτ

2 and the
maximum for ‖x‖ = τ .

πτ 2

∫ t0

1
8
c0µτ2

exp

(
− τ 2

4C2t

)
tτ 2

16C2
2 t

4π
dt

=
τ 2

16C2
2

· τ 2 ·

4C2 exp
(
− τ2

4C2t0

)
(τ 2 + 4t0C2)

t0τ 4

−
4C2 exp

(
− τ2

4C2( 1
8
c0µτ2)

)(
τ 2 + 4

(
1
8
c0µτ

2
)
C2

)
(

1
8
c0µτ 2

)
τ 4

 ,
(8.198)

where this integral is also bounded for τ → 0+. Please note that t0 is linked with
τ by a constant T in the way that t0 = T · τ holds true. In our case T is the length
of our considered time interval.

This finishes our proof. We showed that our constructed source scaling functions
fulfill the property of a scaling function and the approximate identity. This the-
oretical result builds the basis for our upcoming numerical part. We can now go
over to the numerical details of the decorrelation.
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9. Numerical Experiments

In this section, we want to introduce suitable cubature formulas for our source
scaling functions and show the numerical results. For the cubature formulas, we
implement the numerical method from [21].

9.1. Cubature Formulas for Scaling Functions

Our next step is now, to have a look at the situation of our given data. This is the
following: We have given data sets on a fixed grid. That implies for increasing
τ the support of the source scaling function gets smaller and the Poisson sum-
mation formula gets less points to evaluate. This goes on up to the point that
the source scaling function covers only one point for increasing j. The problem
is that the soure scaling function has to cover a sufficient number of integration
nodes for good convolution results. Therefore, it is necessary to modify the Pois-
son summation formula. We do this in the same way as it was done in [21], that
means we introduce a particular weight, which is multiplied to the summation
formula and is related to the source scaling functions.
We start with the procedure of a decomposition at a scale j0 and have the data
given on a lattice Λ, that means we calculate the convolution integrals with Φtj0
on a coarse grid Λj0 ⊂ Λ. This grid Λj0 has to be chosen such that there are enough
data points and integration nodes such that the integration method (which is in
our case the Poisson summation formula) yields good results. In this case it is not
necessarily required that we use the whole lattice Λ for the convolution. This has
the advantage that the convolution integral can be calculated faster than with the
whole lattice Λ. Proceeding with this principle, we can use a lattice Λj1 for the
convolution Φτj1

and so on with the property that the grids are nested like this

Λj0 ⊂ Λj1 ⊂ Λj2 ⊂ · · · ⊂ ΛJ−1 ⊂ ΛJ = Λ. (9.1)

With this we have for a convolution Φτj against the data the associated grid Λ and
it is desired that the error of the numerical integration is small. For this purpose
it is very important that the support of the respective source scaling function
covers enough integration nodes. But here is another thing to mention if we are
at step J , where we use the originally given lattice Λ = ΛJ : If we want to do a
convolution for j > J , we are confronted with the problem that we do not have
more integration nodes as in the case for J , since we used in this case the whole
lattice. If we now increase j > J , we come to the point again that the support of
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9. Numerical Experiments

the source scaling function tends to a single point and therefore our summation
formula results in infinity or zero. This is dependent on the single point itself,
if it is a node of the numerical integration method or not. One solution for this
problem would be to interpolate the given data and get nodes on lattices like

Λ = ΛJ ⊂ ΛJ+1 ⊂ ΛJ+2 ⊂ . . . . (9.2)

But this would also increase the computational effort because of the additional
task to compute the interpolation. Due to these reasons, we want to introduce
cubature formulas that are suited for our singular integrals. For the construction,
we follow the same way as it was done in [21], that means we equip the original
summation formula (5.34) with an additional weight on the right-hand side. This
weight is connected with the source scaling function due to the construction. For
a short overview, we first show the choice of the additional weight for the Laplace
case. Here the weight is chosen such that

wL(τ ;x) =

∫
B Φτ (‖x− y‖) dy

‖FΛ‖
∑

g∈Λ∩B
α(g)Φτ (‖x− g‖)

. (9.3)

Due to the construction, the weight reflects how precisely the integral of Φτ is
approximated by the Poisson summation formula. If we now define

I(x) :=

∫
B

Φτ (‖x− y‖) dy (9.4)

with I(x) = 1 for the case Bτ (x) ⊂ B, we see the following property of the weight:

wL(τ ;x)



> 1, shows that the approximation of I(x) by Corollary 5.2.6
is too small,

= 1, shows that the approximation of I(x) by Corollary 5.2.6
is exact,

< 1, shows that the approximation of I(x) by Corollary 5.2.6
is too large.

(9.5)

That means the weight provides information about the quality of the approxi-
mation. With the help of the Poisson summation formula, it is shown that the
modified cubature formula

wL(τ ;x) ‖FΛ‖
∑
g∈Λ∩B

α(g)Φτ (‖x− g‖)ρ(g) (9.6)

tends to α(x)ρ(x) in the limit τ → 0+, which is in the Laplace case also the result
in the limit τ → 0+ of the convolution integral (see Definition 4.1.1) given by∫

B
Φτ (‖x− y‖)ρ(y) dy. (9.7)
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9.1. Cubature Formulas for Scaling Functions

That means summarizing the results, we get

lim
τ→0
τ>0

wL(τ ;x) ‖FΛ‖
∑
g∈Λ∩B

α(g)Φτ (‖x− g‖)ρ(g)

 = α(x)ρ(x)

= lim
τ→0
τ>0

∫
B

Φτ (‖x− y‖)ρ(y) dy.

(9.8)

With these preliminary considerations, we want to switch over to our source scal-
ing functions in the case of poroelasticity. Please note here that we have a source
scaling function tensor (in contrast to [21], where there is a single source scaling
function). Due to the construction and the properties of the source scaling func-
tion tensor (see Theorem 8.4.1), it is only for the diagonal elements possible to
compute such specific weights in analogy to the weight in the Laplace case. For
the functions on the minor diagonal, we use the same weights as for the main
diagonal. For the functions Φ11,τ and Φ22,τ , we introduce the following weights in
analogy to [21]

w1(τ ;x) :=

∫
Bτ (x)

Φ11,τ (x− y) dy

‖FΛx‖
∑

g∈Λx∩Bτ (x)

α(g)Φ11,τ (x− g)
, (9.9)

w2(τ ;x) :=

∫
Bτ (x)

Φ22,τ (x− y) dy

‖FΛx‖
∑

g∈Λx∩Bτ (x)

α(g)Φ22,τ (x− g)
, (9.10)

where we used the abbreviation Bτ (x) := Bτ (x) ∩ B to consider the compact
support of the source scaling functions. For the weights belonging to Φ33,τ , we
have the drawback that the function tends to zero for (x, t) → (0, 0). Therefore,
we have to define the auxiliary function

Φ′33,τ (x, t) =

{
Φ33,τ (x, t), t ≥ σ,

Φ33,τ (x, σ), t < σ,
(9.11)

where σ is sufficiently small enough. For an estimation, how small this σ should
be, we have a short look at Φ33,τ (x, σ)

Φ33,τ (x, σ) = exp

(
− τ 2

4C2σ

)
8‖x‖2σ − 4στ 2 + c0µτ

2(τ 2 − ‖x‖2)

64C2
2σ

4π
. (9.12)

Neither the expression with the exponential function nor the denominator can
get zero.
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Let us have a look at the numerator more precisely and solve the equation with
respect to ‖x‖

8‖x‖2σ − 4στ 2 + c0µτ
4 − c0µτ

2‖x‖2 = 0

⇔ ‖x‖2(8σ − c0µτ
2) = 4στ 2 − c0µτ

4

⇔ ‖x‖2 =
4στ 2 − c0µτ

4

8σ − c0µτ 2
, (9.13)

where the denominator is unlike zero for σ 6= 1
8
c0µτ

2. The numerator gets zero
for σ = 1

4
c0µτ

2, that means if we, for example, take care that σ < 1
8
c0µτ

2 holds
true, because σ should be chosen sufficiently small, both requirements are ful-
filled. Therefore it seems useful to couple the parameter σ with the parameter
τ , that means σ should decrease with decreasing τ . With this we can state the
weight belonging to the function Φτ . Furthermore, we have to introduce the
originally solid angle α(x) now with respect to domain and time as a combina-
tion. That means, we understand the space and the time as a three-dimensional
space and define α(x, t) as the following (in the setting of a rectangular prism
B× [0, T ] = (−1, 1)2× [0, T ] for our numerical setting, where T is the end point of
our considered time interval)

α(x, t) =



0, if x is not an element of the cube B or the boundary ∂B
and t is not an element of the closed interval [0, T ],

1
8
, if x is one of the four corner points of ∂B and t ∈ {0, T}

1
4
, if x is on one of the four edges of ∂B and t ∈ {0, T}

or x is one of the four corner points of ∂B and t ∈ (0, T ),
1
2
, if x is in the open square B and t ∈ {0, T}

or x is on one of the four edges of ∂B and t ∈ (0, T ),

1, if x is in the open square B and t ∈ (0, T ).

(9.14)

With this definition, we go over and set the last weight as

w3(τ ;x, t) :=

∫
Bτ (x)

∫
Tt0 (t)

Φ33,τ (x− y, t− θ) dθ dy

‖FΛx‖‖FΛt‖
∑

g∈Λx∩Bτ (x)

∑
s∈Λt∩Tt0 (t)

α(g, s)Φ′33,τ (x− g, t− s)
, (9.15)

where we used the abbreviation Tt0(t) := [0, T ] ∩ [t − t0, t]. Here, Λx is a lattice
in R2 referring to the spatial component and Λt is a lattice in R regarding the
time component. Especially for the construction in the time-dependent case of
w3(τ ;x, t), we refer to the d’Alembert case in [21]. These weights reflect also how
precisely the integrals of Φ11,τ , Φ22,τ and Φ33,τ are approximated by the classi-
cal Poisson summation formula. For a more detailed comparison of the classical
Poisson summation formula to its modified version in the Laplace, Helmholtz
and d’Alembert case, we refer to [21]. In this thesis the behavior of both sum-
mation formulas is shown for some numerical examples (test functions for the
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9.1. Cubature Formulas for Scaling Functions

data functions that are convolved). More precisely, the exact solution, the corre-
sponding approximation and the relative error are shown for some n ∈ N. Now
we want to show that our constructed weights and the corresponding summa-
tion formulas also fulfill the necessary results to approximate our convolution
integrals like in (9.8) in the following theorem.

Theorem 9.1.1. Let a regular region B in R2 be given. We have α(x) as the solid angle
in x subtended by the boundary ∂B or α(x, t) for the time dependent case as defined
above. Furthermore, we have fixed lattices Λx in R2 and Λt in R with the respective
fundamental cells FΛx and FΛt . Let x ∈ Λx ∩B, t ∈ Λt ∩ [0, T ] and Bτ (x) := Bτ (x)∩B
and Tt0(t) := [0, T ] ∩ [t − t0, t] and f : B × [0, T ] → R3 be continuously differentiable.
We obtain

wj(τ ;x) ‖FΛx‖
∑

g∈Λx∩Bτ (x)

α(g)Φji,τ (x− g)fi(g, t)

=

∫
Bτ (x)

Φji,τ (x− y)fi(y, t) dy +
(
wj(τ ;x)− 1

) ∫
Bτ (x)

Φji,τ (x− y)fi(y, t) dy

+wj(τ ;x) lim
ε→0
ε>0

∑
hx∈Λ−1

x
hx 6=0

exp(−επ2 ‖h‖2)

∫
Bτ (x)

Φji,τ (x− y)fi(y, t) exp(−2πih · y) dy,

for j = 1, 2, i = 1, 2, 3 (9.16)

and for the case with the additional time component

w3(τ ;x, t) ‖FΛx‖ ‖FΛt‖
∑

g∈Λx∩Bτ (x)

∑
s∈Λt∩Tt0 (t)

α(g, s)Φ′3i,τ (x− g, t− s)fi(g, s)

=

∫
Bτ (x)

∫
Tt0 (t)

Φ3i,τ (x− y, t− θ)fi(y, θ) dθ dy

+
(
w3(τ ;x, t)− 1

) ∫
Bτ (x)

∫
Tt0 (t)

Φ′3i,τ (x− y, t− θ)fi(y, θ) dθ dy

+

∫
Bτ (x)

∫
Tt0 (t)

(
Φ′3i,τ (x− y, t− θ)− Φ3i,τ (x− y, t− θ)

)
fi(y, θ) dθ dy

+w3(τ ;x, t) lim
ε→0
ε>0

∑
hx∈Λ−1

x
hx 6=0

∑
ht∈Λ−1

t
ht 6=0

exp(−επ2(‖hx‖2 + h2
t ))

×
∫
Bτ (x)

∫
Tt0 (t)

Φ′3i,τ (x− y, t− θ)fi(y, θ) exp(−2πi(hx · y + ht · θ)) dθ dy,

for i = 1, 2, 3, (9.17)

where we have

Φ′3i,τ :=

{
Φ3i,τ , i = 1, 2,

Φ′33,τ , i = 3,
(9.18)
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and the introduced weightsw1(τ ;x),w2(τ ;x) andw3(τ ;x, t) from (9.9),(9.10) and (9.15).
Additionally, we obtain

lim
τ→0
τ>0


w1(τ ;x) ‖FΛx‖

∑
g∈Λx∩Bτ (x)

∑3
i=1 α(g)Φ1i,τ (x− g)fi(g, t)

w2(τ ;x) ‖FΛx‖
∑

g∈Λx∩Bτ (x)

∑3
i=1 α(g)Φ2i,τ (x− g)fi(g, t)

w3(τ ;x, t) ‖FΛx‖ ‖FΛt‖
∑

g∈Λx∩Bτ (x)

∑
s∈Λt∩Tt0 (t)

∑3
i=1

α(g, s)Φ′3i,τ (x− g, t− s)fi(g, s)


= f(x, t) = lim

τ→0
τ>0

∫
B

∫ T

0

Φτ (x− y, t− θ)f(y, θ) dθ dy, (9.19)

that means

lim
τ→0
τ>0

(wj(τ ;x)− 1
) ∫

Bτ (x)

Φji,τ (x− y)fi(y, t) dy + wj(τ ;x)

× lim
ε→0
ε>0

∑
hx∈Λ−1

x
hx 6=0

exp(−επ2 ‖h‖2)

∫
Bτ (x)

Φji,τ (x− y)fi(y, t) exp(−2πih · y) dy


= 0 (9.20)

and

lim
τ→0
τ>0

((
w3(τ ;x, t)− 1

) ∫
Bτ (x)

∫
Tt0 (t)

Φ′3i,τ (x− y, t− θ)fi(y, θ) dθ dy

+

∫
Bτ (x)

∫
Tt0 (t)

(
Φ′3i,τ (x− y, t− θ)− Φ33,τ (x− y, t− θ)

)
fi(y, θ) dθ dy

+ w3(τ ;x, t) lim
ε→0
ε>0

∑
hx∈Λ−1

x
hx 6=0

∑
ht∈Λ−1

t
ht 6=0

exp(−επ2(‖hx‖2 + h2
t ))

×
∫
Bτ (x)

∫
Tt0 (t)

Φ′3i,τ (x− y, t− θ)fi(y, θ) exp(−2πi(hx · y + ht · θ)) dθ dy

)
= 0. (9.21)

Proof. For the proof, we have a look at each convolution integral separately. We
start with the convolution integrals given by (8.164) and the convolution Φ11,τ ∗f1.
We apply the same technique for the proof as given in [21].
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9.1. Cubature Formulas for Scaling Functions

With the help of the defined weight w1(τ ;x) and the Poisson summation formula
(see Theorem 5.2.5 and the resulting Corollary 5.2.6), we find

w1(τ ;x) ‖FΛx‖
∑

g∈Λx∩Bτ (x)

α(g)Φ11,τ (x− g)f1(g, t)

= w1(τ ;x)

∫
Bτ (x)

Φ11,τ (x− y)f1(y, t) dy + w1(τ ;x)

× lim
ε→0
ε>0

∑
hx∈Λ−1

x
hx 6=0

exp(−επ2 ‖h‖2)

∫
Bτ (x)

Φ11,τ (x− y)f1(y, t) exp(−2πih · y) dy

=

∫
Bτ (x)

Φ11,τ (x− y)f1(y, t) dy

+
(
w1(τ ;x)− 1

) ∫
Bτ (x)

Φ11,τ (x− y)f1(y, t) dy

+ w1(τ ;x) lim
ε→0
ε>0

∑
hx∈Λ−1

x
hx 6=0

exp(−επ2 ‖h‖2)

×
∫
Bτ (x)

Φ11,τ (x− y)f1(y, t) exp(−2πih · y) dy. (9.22)

For the limit relation, we consider the following: Because x ∈ Λx ∩ B, we find a
τ0 such that {g|g ∈ Λx ∩Bτ (x)} = {x} for all 0 < τ ≤ τ0. We insert this and the
weight into the modified cubature formula and get

w1(τ ;x) ‖FΛx‖
∑

g∈Λx∩Bτ (x)

α(g)Φ11,τ (x− g)f1(g, t)

=

∫
Bτ (x)

Φ11,τ (x− y) dy

α(x)Φ11,τ (0)
α(x)Φ11,τ (0)f1(x, t). (9.23)

Now taking the limit τ → 0+, we obtain

lim
τ→0
τ>0

w1(τ ;x) ‖FΛx‖
∑

g∈Λx∩Bτ (x)

α(g)Φ11,τ (x− g)f1(g, t) = f1(x, t). (9.24)

For the second and third term on the right-hand side of (9.22), it follows from the
limit relation above and the fact that the first term on the right-hand side tends to
f1(x, t) for τ → 0+ that this part tends to zero in the limit τ → 0+, that means
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lim
τ→0
τ>0

(w1(τ ;x)− 1
) ∫

Bτ (x)

Φ11,τ (x− y)f1(y, t) dy

+w1(τ ;x) lim
ε→0
ε>0

∑
hx∈Λ−1

x
hx 6=0

exp(−επ2 ‖h‖2)

×
∫
Bτ (x)

Φ11,τ (x− y)f1(y, t) exp(−2πih · y) dy

)
= 0. (9.25)

If we now follow the same procedure for the remaining convolution integrals
in (8.164), that means for the functions Φ12,τ , Φ1

13,τ and Φ2
13,τ with the modified

weight w1(τ ;x), we can do the same steps as before and obtain instead of (9.23),
for example for Φ12,τ ,

w1(τ ;x) ‖FΛx‖
∑

g∈Λx∩Bτ (x)

α(g)Φ12,τ (x− g)f2(g, t)

=

∫
Bτ (x)

Φ11,τ (x− y) dy

α(x)Φ11,τ (0)
α(x)Φ12,τ (0)f2(x, t). (9.26)

Since Φ12,τ (0) = 0 and also Φ1
13,τ (0) = Φ2

13,τ (0) = 0, we get altogether for the
convolution integrals of (8.164) the result f1(x, t) in the limit, which is also the
first line of the convolution integral

f(x, t) = lim
τ→0
τ>0

∫
B

∫
R
Φτ (x− y, t− θ)f(y, θ) dθ dy. (9.27)

The same thoughts and steps can be applied to the second line of our convolution
integrals (see (8.165)) with the weight w2(τ ;x). For the third line (see (8.166)), the
technique is the same with the weight w3(τ ;x, t) but we want to show it more
detailed here again because of the time dependency. We have a look at the third
convolution integral Φ33,τ ∗ f3.
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With the help of the Poisson summation formula and the defined weightw3(τ ;x, t),
we get for the auxiliary function Φ′33,τ defined above

w3(τ ;x, t) ‖FΛx‖ ‖FΛt‖
∑

g∈Λx∩Bτ (x)

∑
s∈Λt∩Tt0 (t)

α(g, s)Φ′33,τ (x− g, t− s)f3(g, s)

= w3(τ ;x, t)

∫
Bτ (x)

∫
Tt0 (t)

Φ′33,τ (x− y, t− θ)f3(y, θ) dθ dy

+w3(τ ;x, t) lim
ε→0
ε>0

∑
hx∈Λ−1

x
hx 6=0

∑
ht∈Λ−1

t
ht 6=0

exp(−επ2(‖hx‖2 + h2
t ))

×
∫
Bτ (x)

∫
Tt0 (t)

Φ′33,τ (x− y, t− θ)f3(y, θ) exp(−2πi(hx · y + ht · θ)) dθ dy

=

∫
Bτ (x)

∫
Tt0 (t)

Φ′33,τ (x− y, t− θ)f3(y, θ) dθ dy

+
(
w3(τ ;x, t)− 1

) ∫
Bτ (x)

∫
Tt0 (t)

Φ′33,τ (x− y, t− θ)f3(y, θ) dθ dy

+w3(τ ;x, t) lim
ε→0
ε>0

∑
hx∈Λ−1

x
hx 6=0

∑
ht∈Λ−1

t
ht 6=0

exp(−επ2(‖hx‖2 + h2
t ))

×
∫
Bτ (x)

∫
Tt0 (t)

Φ′33,τ (x− y, t− θ)f3(y, θ) exp(−2πi(hx · y + ht · θ)) dθ dy.

(9.28)

Proceeding, we get

w3(τ ;x, t) ‖FΛx‖ ‖FΛt‖
∑

g∈Λx∩Bτ (x)

∑
s∈Λt∩Tt0 (t)

α(g, s)Φ′33,τ (x− g, t− s)f3(g, s)

=

∫
Bτ (x)

∫
Tt0 (t)

Φ33,τ (x− y, t− θ)f3(y, θ) dθ dy

+
(
w3(τ ;x, t)− 1

) ∫
Bτ (x)

∫
Tt0 (t)

Φ′33,τ (x− y, t− θ)f3(y, θ) dθ dy

+

∫
Bτ (x)

∫
Tt0 (t)

(
Φ′33,τ (x− y, t− θ)− Φ33,τ (x− y, t− θ)

)
f3(y, θ) dθ dy

+w3(τ ;x, t) lim
ε→0
ε>0

∑
hx∈Λ−1

x
hx 6=0

∑
ht∈Λ−1

t
ht 6=0

exp(−επ2(‖hx‖2 + h2
t ))

×
∫
Bτ (x)

∫
Tt0 (t)

Φ′33,τ (x− y, t− θ)f3(y, θ) exp(−2πi(hx · y + ht · θ)) dθ dy.

(9.29)
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For the limit relation, we consider again the following: Because x ∈ Λx ∩ B and
t ∈ Λt ∩ [0, T ], we find a τ0 such that{

g ∈ Λx ∩Bτ (x), s ∈ Λt ∩ Tt0(t)|Φ′33,τ (x− g, t− s) 6= 0
}

= {(x, t)} (9.30)

for all 0 < τ ≤ τ0. We insert the weight and get

w3(τ ;x, t) ‖FΛx‖ ‖FΛt‖
∑

g∈Λx∩Bτ (x)

∑
s∈Λt∩Tt0 (t)

α(g, s)Φ′33,τ (x− g, t− s)f3(g, s)

=

∫
Bτ (x)

∫
Tt0 (t)

Φ33,τ (x− y, t− θ) dθdy

α(x, t)Φ′33,τ (0, 0)
α(x, t)Φ′33,τ (0, 0)f3(x, t). (9.31)

Now taking the limit τ → 0+, we obtain

lim
τ→0
τ>0

w3(τ ;x, t) ‖FΛx‖ ‖FΛt‖
∑

g∈Λx∩Bτ (x)

∑
s∈Λt∩Tt0 (t)

α(g, s)Φ′33,τ (x− g, t− s)f3(g, s)


= f3(x, t). (9.32)

The last four lines of (9.29) tend to zero for τ → 0+ due to the limit relation proven
above and the fact that the first line tends to f3(x, t) for τ → 0+, that means we
have

lim
τ→0
τ>0

((
w3(τ ;x, t)− 1

) ∫
Bτ (x)

∫
Tt0 (t)

Φ′33,τ (x− y, t− θ)f3(y, θ) dθ dy

+

∫
Bτ (x)

∫
Tt0 (t)

(
Φ′33,τ (x− y, t− θ)− Φ33,τ (x− y, t− θ)

)
f3(y, θ) dθ dy

+w3(τ ;x, t) lim
ε→0
ε>0

∑
hx∈Λ−1

x
hx 6=0

∑
ht∈Λ−1

t
ht 6=0

exp(−επ2(‖hx‖2 + h2
t ))

×
∫
Bτ (x)

∫
Tt0 (t)

Φ′33,τ (x− y, t− θ)f3(y, θ) exp(−2πi(hx · y + ht · θ)) dθ dy

)
= 0. (9.33)

If we now follow the same procedure for the remaining convolution integrals
in (8.166), that means for the functions Φ31,τ and Φ32,τ with the modified weight
w3(τ ;x, t), we can do the same steps as before and obtain instead of (9.31), for
example for Φ31,τ ,

w3(τ ;x, t) ‖FΛx‖ ‖FΛt‖
∑

g∈Λx∩Bτ (x)

∑
s∈Λt∩Tt0 (t)

α(g, s)Φ31,τ (x− g, t− s)f1(g, s)

=

∫
Bτ (x)

∫
Tt0 (t)

Φ33,τ (x− y, t− θ) dθdy

α(x, t)Φ′33,τ (0, 0)
α(x, t)Φ31,τ (0, 0)f1(x, t). (9.34)
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Since Φ31,τ (0, 0) = 0 and also Φ32,τ (0, 0) = 0, we get altogether for the convolution
integrals of (8.166) the result f3(x, t) in the limit τ → 0+, which is also the third
line of the convolution integral

f(x, t) = lim
τ→0
τ>0

∫
B

∫ T

0

Φτ (x− y, t− θ)f(y, θ) dθ dy. (9.35)

Summarizing, we can say that the constructed weights together with the mod-
ified cubature formulas correspond to the right-hand side of the approximate
identity given in Theorem 8.4.4 in the limit τ → 0+. In other words, we can
rewrite Theorem 9.1.1 as a cubature formula in the following way.

Corollary 9.1.2. Under the assumptions of Theorem 9.1.1, we have the cubature formu-
las∫

Bτ (x)

Φ1i,τ (x− y)fi(y, t) dy ≈ w1(τ ;x) ‖FΛx‖
∑

g∈Λx∩Bτ (x)

α(g)Φ1i,τ (x− y)fi(y, t),

for i = 1, 2, 3 (9.36)∫
Bτ (x)

Φ2i,τ (x− y)fi(y, t) dy ≈ w2(τ ;x) ‖FΛx‖
∑

g∈Λx∩Bτ (x)

α(g)Φ2i,τ (x− y)fi(y, t),

for i = 1, 2, 3 (9.37)∫
Bτ (x)

∫ t

t−t0
Φ3i,τ (x− y, t− θ)fi(y, θ) dθ dy

≈ w3(τ ;x, t) ‖FΛx‖ ‖FΛt‖
∑

g∈Λx∩Bτ (x)

∑
s∈Λt∩Tt0 (t)

α(g, s)Φ′3i,τ (x− y, t− θ)fi(y, θ),

for i = 1, 2, 3 (9.38)

Please note that we have to use the auxiliary function in (9.38) instead of Φ33,τ on the
right-hand side. The cubature formulas also hold true for the cases Φ1

13,τ and Φ1
23,τ , where

we have the derivative of the data with respect to the time instead of the data itself at the
time t.

9.2. Test Datasets

We introduce the data sets that we want to decompose with the help of our source
scaling functions and the appropriate cubature formulas from Section 9.1. We
have to draw on synthetic data, which we generate with the help of the funda-
mental solutions.
This is done in the following way: We take the fundamental solutions uSi and pSi

and shift them such that the singularity is outside of our considered area (this
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is also done in [10] for testing the method of fundamental solutions). Then we
evaluate these fundamental solutions on a fixed grid and take them (in analogy
to [10]) as our given input data. In our case this means that we take the square
[−1, 1]2, the time interval [0, 5] and shift the fundamental solutions by (2, 2) in the
space and −1 in the domain. More precisely, we evaluate uSi(x1 − 2, x2 − 2, t+ 1)
and pSi(x1−2, x2−2, t+1) forN = 100 points in the spatial direction andM = 200
points in the time direction. For the last scale j = 6, we use N = 200 points as an
exception.
In Figure 9.1 the plots of the generated datasets for u1, u2 and p for the fixed point
of time t = 1 are shown. We see that we have very smooth data in contrast to the
used data in [21–23, 61]. Unfortunately, we do not have access to real data or data
models in poroelasticity.

(a) Component u1, t = 1 (b) Component u2, t = 1 (c) Component p, t = 1

Figure 9.1.: Data sets for the displacement component and the pore pressure
given for the multiscale modeling for the fixed time t = 1.

One thing is to mention here about the image section of the data before we go
over to the convolution results.

Remark 9.2.1. Since we have some boundary effects in our convolutions (see further
considerations in Remark 9.3.3 and Figure 9.14), we cut off a fixed part of the boundary in
the spatial component because these boundary effects should not superimpose the overall
structure of the convolutions. This is also done here in the case of the given data for a
better comparability between the data and the convolutions in the next section.

In the following, we summarize the data set consisting of u1, u2 and p sometimes
by the data vector f that means f = (u1, u2, p)

T.

9.3. Pictures

In this section, we show the decomposition ability of our source scaling function
tensor {Φτ,j}j∈N and the corresponding wavelet tensor {Ψτ,j}j∈N by showing the
decorrelation for several parameters τj of the data. We choose the monotonically
decreasing sequence τj = 2−j . For a better clarity, we show the convolutions for a
time cut that means the spatial part for a fixed time.
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Remark 9.3.1. Please note that we do not use the σ-distinction (see (9.11)) for Φ33,τ be-
cause our numerical tests show that σ can be chosen arbitrarily small. For the numerical
tests we do not let the support of Φ33,τ shrink so small that it shrinks to a single point
because this is not useful for a numerical integration. It is necessary that a sufficient
number of points is covered by the source scaling function.

The convolutions and numerical tests are implemented in Matlab (see [111] and
[112]) and the computations are performed on the OMNI cluster (University of
Siegen). We have a look at the convolution results of the data u1 and u2 together
because due to the symmetry of the data, the fundamental solutions and the con-
structed source scaling functions, they behave very similarly. Please remember
here that we have the situation of a source scaling function tensor (see Section 8.3).
First we have a look at the convolutions of (8.164) respectively (8.165) together
that means the several components of the convolution are added in the pictures
for a better comparability with the input data. Later, we show the several com-
ponents of (8.164) as an example individually for some parameters.
Figures 9.2-9.7 show the multiscale approximation of the data u1 respectively u2

by convolution of the source scaling function (tensor)
{

Φτj

}
j∈N (scale-space) and

the source wavelet (tensor)
{

Ψτj

}
j∈N (detail-space) with the data. Here we use

the parameters j = 0, . . . , 6 for the source scaling function (results depicted in
the left column of the mentioned figures) and j = 1, . . . , 6 for the source wavelet
function (resulting pictures in the right column of the figures). Remembering the
definition of the wavelet function, we obtain the convolution of the source scaling
function at scale j if we add the convolution at scale j − 1 and the appropriate
wavelet convolution at scale j. In our case the last two mentioned components
are shown in one row that means the pictures of one row have to be added to
obtain the convolution in the next row on the left-hand side. For example Fig-
ure 9.2a and Figure 9.2b are added to obtain Figure 9.2c.
Especially in Figure 9.2 and 9.5 we can see that the main difference of two convo-
lutions happens near to the boundary (see Figures 9.2b, 9.2d and 9.2f for u1 and
Figures 9.5b, 9.5d and 9.5f for u2). The convolutions with the source scaling func-
tion tensor for j = 0 (see Figure 9.2a for u1 and Figure 9.5a for u2) and j = 1 (see
Figure 9.2c for u1 and Figure 9.5c for u2) have a scale with a positive and negative
range. This changes with the parameter j = 2 (see Figure 9.2e for u1 and Fig-
ure 9.5e for u2) and we see a clear similarity between the scale of the data and of
the convolution. Furthermore, there is a rough correspondence in the structure.
Although, we have big variations on the boundary for the convolution with the
source wavelet tensor for j = 3 (see Figure 9.2f for u1 and Figure 9.5f for u2), we
can recognize the structure inside compared to the convolution with wavelets of
a higher scale (see Figures 9.3 and 9.4).
In Figures 9.3, 9.4, 9.6 and 9.7 we can see that there is no obvious difference
between the low-pass filtered versions (see Figures 9.3a, 9.3c, 9.4a and 9.4c for
u1 and Figures 9.6a, 9.6c, 9.7a and 9.7c for u2) because the magnitude is 10−3,
whereas the magnitude of the band-pass filtered information is between 10−4 and
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10−5 (see Figures 9.3b, 9.3d and 9.4b for u1 and Figures 9.6b, 9.6d and 9.7b for u2).
The magnitude of the band-pass filtered information decreases with increasing
parameter j. That means the detail information gets consecutively finer and that
is what we expected from the convolution. In our case of smooth data a lower
scale j would be sufficient to do a coarse approximation of the data.
Although we do not see differences between the convolutions with the source
scaling functions of a higher scale, we consider later some kind of computational
difference between the convolutions and the given data. That means we compute
a root mean square error and show that there is improvement for increasing scale
j.
We mentioned above that the shown pictures represent the sum of the convolu-
tion integrals in (8.164) respectively (8.165). Now we want to show the several
components of the composited pictures, that means the convolutions of the sev-
eral elements of the tensor with the appropriate data. We do this, as an example,
for the parameters j = 1 and j = 3 in Figure 9.8 respectively Figure 9.9 for (8.164).
We can see that the convolution with Φ11,τ for j = 1 (see Figure 9.8a) is a very
rough approximation of the data and the convolutions with the other functions
have major effects on the boundary (see Figures Figure 9.8b-9.8d). For j = 3
we can see more clearly that the convolution with Φ11,τ (see Figure 9.9a) tends
to the data (here the magnitude is also better than in the case j = 1). The effect
of the convolutions with the elements on the minor diagonal on the boundary
decreased respectively vanishes (see Figures 9.9b-9.9d). Furthermore, the magni-
tude of the convolution with the minor diagonal elements gets smaller that means
we have for j = 1 a range from 10−2 to 10−4 and in the case of j = 3 the range
decreases from 10−4 to 10−6. In both cases the convolution with Φ2

13,τ (see Fig-
ures 9.8d and 9.9d) has the most impact among the minor diagonal convolutions.
All in all, the contributions of the elements of the minor diagonal to the whole
convolution in (8.164) get smaller and in the limit the convolution with Φ11,τ tends
to the data. Let us continue with the multiscale approximation of the data given
for p.
Figures 9.10 and 9.11 show the sum of the convolutions of the source scaling
functions and the wavelets represented in (8.166). In the multiscale approxima-
tion in Figure 9.10, we can see that we have again effects near the boundary for
the wavelets (especially see Figures 9.10d and 9.10f) which get smaller with in-
creasing j.
The magnitude of the convolution for j = 0 (see Figure 9.10a) is quite good and
improves with increasing j. Here Figure 9.10b does not have boundary effects
and contributes an important part for the improvement of the convolution. In the
picture with the convolution with the source scaling function for j = 2 (see Fig-
ure 9.10e), we can already see a good approximation of the data but with effects
on the boundary.
In Figure 9.11 we can see no difference between the convolutions with the source
scaling functions (see Figures 9.11a, 9.11c and 9.11e), whereas we can see that
something on the detail-space happens (see Figures 9.11b and 9.11d). Here the
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magnitude of the convolutions in the left column is about 10−2 and the magni-
tude of the convolution with the wavelet falls from 10−4 to 10−5. The calculation
of the difference between the data and the convolutions later shows still an im-
provement at the higher scale.
In the case of the multiscale approximation of p, we only have the decorrelation
up to scale j = 5, because for j = 6, we need N = 200 points and the compu-
tational effort is very big due to the fact that the functions are space and time
dependent. For a consideration of some of the results with an uncut boundary,
we refer to Remark 9.3.3. For a more computational difference (not only based on
the pictures) between the different scales, we have a look at the so-called relative
root mean square error (RMSE) given by

Erel
rmsh =

(∑
x∈Λx∩B

∑
t∈Λt∩[0,T ] |h(x, t)− hnum(x, t)|2∑

x∈Λx∩B
∑

t∈Λt∩[0,T ] |h(x, t)|2

) 1
2

. (9.39)

Here x and t represent the points at which we calculated our convolutions, which
are the same as the points of our data grid (see also Remark 9.3.2). The function h
represents one of the components u1, u2 or p and h(x, t) is the evaluation of h on
our given data grid. By hnum we denote the results of the convolution given on
the data grid. Here this error is not to be understood in the classical sense of an
error but rather as a measure how large the difference between the convolutional
data and given data is and how well the convolution approximates the data.

Remark 9.3.2. Please note that we use the given data grid also for the calculation of
the convolutions. Due to the construction of the cubature formulas, this is a fact that
we have to accept here. Therefore, the RMSE can also only be computed on this fixed
grid. For evaluating the convolutional results and the RMSE on a different grid as the
data grid, we have to interpolate the data on the new desired grid and then calculate the
convolutions on this new grid. Our intention here is to show that the approach with these
scaling functions and wavelets basically works.

First we have a look at Table 9.1 which shows the RMSE evaluated on the same
sector as our given plots above for the spatial part. For the time dependent part,
we did only cut off the end points {0, 5} of our considered time interval, because
in Theorem 8.4.4 we assumed t ∈ (0, T ) without the boundary.
We see that the RMSE decreases rapidly with increasing j. Also in the most cases
of u1 and u2, the RMSE is slightly better if we choose more points (parameter N )
in the spatial domain. For j = 5 it is conversely but in this case the source scal-
ing function might not cover enough data points for N = 100 and the RMSE is
not that convincing. For p the RMSE is only up to j = 5 reasonable to calculate,
because the combination of N = 100 points with the parameter j = 6 only covers
one point in the spatial domain and a few points in the time domain. This is not
justifiable for a meaningful result.
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Another thing to mention is that the RMSE is in the case of p smaller in general in
the beginning in comparison to u1 and u2. Remember that we have only spatial-
dependent functions in the case of u1 and u2 and in the case of p the functions are
space and time dependent. In Table 9.2, the RMSE for the several convolutions

Parameter j N M Erel
rms u1 Erel

rms u2 Erel
rms p

0 100 200 0.8012 0.8012 0.1585
0 200 200 0.7900 0.7900
1 100 200 0.4187 0.4187 0.0396
1 200 200 0.4018 0.4018
2 100 200 0.0812 0.0812 0.0101
2 200 200 0.0787 0.0787
3 100 200 0.0391 0.0391 0.0061
3 200 200 0.0387 0.0387
4 100 200 0.0207 0.0207 0.0082
4 200 200 0.0200 0.0200
5 100 200 0.0091 0.0091 0.0062
5 200 200 0.0105 0.0105
6 100 200 0.0060
6 200 200 0.0046 0.0046

Table 9.1.: RMSE for the plot area.

is shown for the whole domain (−1, 1)2 × (0, T ) without the boundary points. In
contrast to Table 9.1, we can see that the RMSE is greater in general from which
we can conclude that there are effects on the boundary. All in all, the RMSE also
decreases in the case of u1 and u2 for increasing j. The RMSE for p is also de-
creasing but has an outlier for j = 2 which we can explain with some high peaks
in the convolution near to the boundary (they cannot be seen in the convolution
pictures because of the outcut boundary) because the RMSE in the case of the cut
boundary is small. For a reflection in greater detail for the case j = 2, we refer
to Remark 9.3.4. Again the value for j = 6 is not very convincing because of the
small coverage of integration points.

Remark 9.3.3. In our pictures we cut off some part of the boundary due to boundary
effects that influence the general structure of the picture. Here we want to show what the
pictures look like without the clipped off boundary. We do this, as an example, for the first
line of the convolution integral (see (8.164)) in Figures 9.12 and 9.13.
There are some things to mention. We can see that the boundary effects for the convolution
with the source scaling functions on the minor diagonal get smaller due to the magnitude
and the area they influence (see Figures 9.12b-9.12d compared to Figures 9.13b-9.13d).

136



9.3. Pictures

Parameter j N M Erel
rms u1 Erel

rms u2 Erel
rms p

0 100 200 0.9402 0.9402 0.1895
0 200 200 0.9357 0.9357
1 100 200 0.7605 0.7605 0.0693
1 200 200 0.7562 0.7562
2 100 200 0.5541 0.5541 1.3359
2 200 200 0.5744 0.5744
3 100 200 0.3862 0.3862 0.0540
3 200 200 0.4055 0.4055
4 100 200 0.2548 0.2548 0.0107
4 200 200 0.2777 0.2777
5 100 200 0.0708 0.0708 0.0072
5 200 200 0.1815 0.1815
6 100 200 0.0066
6 200 200 0.0501 0.0501

Table 9.2.: RMSE for the whole area without the boundary.

Here the convolution with Φ2
13,τ decreases very slowly such that it has a big influence on

the overall image on the boundary (see Figures 9.12d and 9.13d). We can see in both cases
that the boundary influences the overall image so much that we cannot detect the main
structure of the data in both cases (see Figures 9.12e and 9.13e) in contrast to the picture
where we cut off the boundary (see Figures 9.2c and 9.3a). So it is necessary to find a
suitable parameter for the boundary cut off.

Remark 9.3.4. We have a look at the multiscale approximation of p at scale j = 2 with
the whole boundary, because in Table 9.2 there is an outlier for the RMSE in this case.
Figure 9.14a shows the approximation, where we can see that there are some high peaks
near the edges which influence the RMSE so much that it seems that the approximation
is not that good. Therefore we have a look at Figure 9.14b, where we can see the absolute
difference of the approximation minus the given data. Furthermore, we restricted the
colorbar axis to the interval [0, 0.02]. Here we can see that the problem of the big RMSE
is a boundary problem. The approximation of the remaining part without a boundary is
quite good. For the further detection of the reasons for these boundary effects, more data
sets have to be tested and more numerical experiments need to be done.

Remark 9.3.5. In our case we have fairly smooth synthetic data in contrast to the Laplace
case in [21] with the data model. That means in our case we cannot see the decorrelation
so good and the detail spaces because of our smooth data.
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(a) Application of the low-pass filter(
PΦτj

[f ]
)

1
at scale j = 0.

(b) Application of the band-pass filter(
RΦτj

[f ]
)

1
at scale j = 1.

(c) Application of the low-pass filter(
PΦτj

[f ]
)

1
at scale j = 1.

(d) Application of the band-pass filter(
RΦτj

[f ]
)

1
at scale j = 2.

(e) Application of the low-pass filter(
PΦτj

[f ]
)

1
at scale j = 2.

(f) Application of the band-pass filter(
RΦτj

[f ]
)

1
at scale j = 3.

Figure 9.2.: Multiscale approximation of the data u1 by convolution of the
source scaling function (tensor)

{
Φτj

}
j∈N (scale-space) and the source

wavelet (tensor)
{

Ψτj

}
j∈N (detail-space) with the data f .
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(a) Application of the low-pass filter(
PΦτj

[f ]
)

1
at scale j = 3.

(b) Application of the band-pass filter(
RΦτj

[f ]
)

1
at scale j = 4.

(c) Application of the low-pass filter(
PΦτj

[f ]
)

1
at scale j = 4.

(d) Application of the band-pass filter(
RΦτj

[f ]
)

1
at scale j = 5.

Figure 9.3.: Multiscale approximation of the data u1 by convolution of the
source scaling function (tensor)

{
Φτj

}
j∈N (scale-space) and the source

wavelet (tensor)
{

Ψτj

}
j∈N (detail-space) with the data f .
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(a) Application of the low-pass filter(
PΦτj

[f ]
)

1
at scale j = 5.

(b) Application of the band-pass filter(
RΦτj

[f ]
)

1
at scale j = 6.

(c) Application of the low-pass filter(
PΦτj

[f ]
)

1
at scale j = 6.

Figure 9.4.: Multiscale approximation of the data u1 by convolution of the
source scaling function (tensor)

{
Φτj

}
j∈N (scale-space) and the source

wavelet (tensor)
{

Ψτj

}
j∈N (detail-space) with the data f .
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9.3. Pictures

(a) Application of the low-pass filter(
PΦτj

[f ]
)

2
at scale j = 0.

(b) Application of the band-pass filter(
RΦτj

[f ]
)

2
at scale j = 1.

(c) Application of the low-pass filter(
PΦτj

[f ]
)

2
at scale j = 1.

(d) Application of the band-pass filter(
RΦτj

[f ]
)

2
at scale j = 2.

(e) Application of the low-pass filter(
PΦτj

[f ]
)

2
at scale j = 2.

(f) Application of the band-pass filter(
RΦτj

[f ]
)

2
at scale j = 3.

Figure 9.5.: Multiscale approximation of the data u2 by convolution of the
source scaling function (tensor)

{
Φτj

}
j∈N (scale-space) and the source

wavelet (tensor)
{

Ψτj

}
j∈N (detail-space) with the data f .
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9. Numerical Experiments

(a) Application of the low-pass filter(
PΦτj

[f ]
)

2
at scale j = 3.

(b) Application of the band-pass filter(
RΦτj

[f ]
)

2
at scale j = 4.

(c) Application of the low-pass filter(
PΦτj

[f ]
)

2
at scale j = 4.

(d) Application of the band-pass filter(
RΦτj

[f ]
)

2
at scale j = 5.

Figure 9.6.: Multiscale approximation of the data u2 by convolution of the
source scaling function (tensor)

{
Φτj

}
j∈N (scale-space) and the source

wavelet (tensor)
{

Ψτj

}
j∈N (detail-space) with the data f .
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9.3. Pictures

(a) Application of the low-pass filter(
PΦτj

[f ]
)

2
at scale j = 5.

(b) Application of the band-pass filter(
RΦτj

[f ]
)

2
at scale j = 6.

(c) Application of the low-pass filter(
PΦτj

[f ]
)

2
at scale j = 6.

Figure 9.7.: Multiscale approximation of the data u2 by convolution of the
source scaling function (tensor)

{
Φτj

}
j∈N (scale-space) and the source

wavelet (tensor)
{

Ψτj

}
j∈N (detail-space) with the data f .
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9. Numerical Experiments

(a) Convolution of Φ11,τ with u1. (b) Convolution of Φ12,τ with u2.

(c) Convolution of Φ1
13,τ with ∂tp. (d) Convolution of Φ2

13,τ with p.

Figure 9.8.: Single parts of the application of the low-pass filter
(
PΦτj

[f ]
)

1
at scale

j = 1.
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9.3. Pictures

(a) Convolution of Φ11,τ with u1. (b) Convolution of Φ12,τ with u2.

(c) Convolution of Φ1
13,τ with ∂tp. (d) Convolution of Φ2

13,τ with p.

Figure 9.9.: Single parts of the application of the low-pass filter
(
PΦτj

[f ]
)

1
at scale

j = 3.
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9. Numerical Experiments

(a) Application of the low-pass filter(
PΦτj

[f ]
)

3
at scale j = 0.

(b) Application of the band-pass filter(
RΦτj

[f ]
)

3
at scale j = 1.

(c) Application of the low-pass filter(
PΦτj

[f ]
)

3
at scale j = 1.

(d) Application of the band-pass filter(
RΦτj

[f ]
)

3
at scale j = 2.

(e) Application of the low-pass filter(
PΦτj

[f ]
)

3
at scale j = 2.

(f) Application of the band-pass filter(
RΦτj

[f ]
)

3
at scale j = 3.

Figure 9.10.: Multiscale approximation of the data p by convolution of the source
scaling function (tensor)

{
Φτj

}
j∈N (scale-space) and the source

wavelet (tensor)
{

Ψτj

}
j∈N (detail-space) with the data f .
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9.3. Pictures

(a) Application of the low-pass filter(
PΦτj

[f ]
)

3
at scale j = 3.

(b) Application of the band-pass filter(
RΦτj

[f ]
)

3
at scale j = 4.

(c) Application of the low-pass filter(
PΦτj

[f ]
)

3
at scale j = 4.

(d) Application of the band-pass filter(
RΦτj

[f ]
)

3
at scale j = 5.

(e) Application of the low-pass filter(
PΦτj

[f ]
)

3
at scale j = 5.

Figure 9.11.: Multiscale approximation of the data p by convolution of the source
scaling function (tensor)

{
Φτj

}
j∈N (scale-space) and the source

wavelet (tensor)
{

Ψτj

}
j∈N (detail-space) with the data f .

147



9. Numerical Experiments

(a) Convolution of Φ11,τ with u1. (b) Convolution of Φ12,τ with u2.

(c) Convolution of Φ1
13,τ with ∂tp. (d) Convolution of Φ2

13,τ with p.

(e) Application of the low-pass filter(
PΦτj

[f ]
)

1
at scale j = 1.

Figure 9.12.: Single parts of the application of the low-pass filter
(
PΦτj

[f ]
)

1
at

scale j = 1 without cutting off the boundary.
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9.3. Pictures

(a) Convolution of Φ11,τ with u1. (b) Convolution of Φ12,τ with u2.

(c) Convolution of Φ1
13,τ with ∂tp. (d) Convolution of Φ2

13,τ with p.

(e) Application of the low-pass filter(
PΦτj

[f ]
)

1
at scale j = 3.

Figure 9.13.: Single parts of the application of the low-pass filter
(
PΦτj

[f ]
)

1
at

scale j = 3 without cutting off the boundary.
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9. Numerical Experiments

(a) Application of the low-
pass filter

(
PΦτj

[f ]
)

3
at

scale j = 2 with the whole
boundary.

(b) Absolute difference of the ap-
plication of the band-pass filter(
RΦτj

[f ]
)

3
at scale j = 2 to the

given data.

Figure 9.14.: Multiscale approximation of the data p by convolution of the source
scaling function (tensor)

{
Φτj

}
j∈N (scale-space) and the source

wavelet (tensor)
{

Ψτj

}
j∈N (detail-space) with the data f .
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10. Conclusion and Outlook
Our main aim in this thesis was to develop a multiscale mollifier technique in
poroelasticity that means the construction of physically motivated scaling func-
tions and wavelets for the decomposition of given poroelastic data. The approach
extracts and visualizes underlying structures that cannot be seen in the whole
data. We started in a more general setting, the thermoporoelasticity, that means
poroelastic effects including thermal influences. There are three main model
types: the complete, the coupled and the uncoupled model, where we focused
on the coupled model and showed how to get the uncoupled model from this.
In a first step, we derived the main equations (partial differential equations with
time and spatial dependency) in thermoporoelasticity with their related physi-
cal laws. Afterwards, the fundamental solutions were derived with the help of
a scheme, called the Biot decomposition. The fundamental solutions themselves
can be arranged in a tensor. The nondimensionalization of the equations com-
pleted the aspect of this physical model.
We went over to a simplification of the model by ignoring the thermal effects in
the following, that means we concentrated on poroelasticity. Here we were inter-
ested in the fundamental solutions because they build the basis for the construc-
tion of the scaling functions and wavelets with the mollifier technique. For that
reason, we constructed a mollification of the fundamental solutions by applying a
Taylor expansion up to the first order regarding a parameter τ . With this step, we
avoid the singularities of the fundamental solutions. It was sufficient to do this
regarding the spatial variable (also for the space and time dependent functions).
The last step in construction was to apply the poroelastic differential operator
(obtained by the equations of poroelasticity) on these mollifier functions. The so-
called source scaling functions are the result of this last step. They are used for
the decomposition in the sense that we convolve them with the given poroelastic
data for different parameters τ . We considered a monotonically decreasing se-
quence for our parameter τ and the differences of two consecutive source scaling
functions are the source wavelet functions.
The next step was to check the theoretical requirements and necessary properties
that the source scaling functions have to satisfy. These considerations showed
that we have to do little modifications on some of our source scaling functions,
which did not change the character of the functions. This allowed us to state and
prove the property of an approximate identity, which is our main result in theory.
This theorem builds the fundament for our numerical experiments.
Before we could go over to the numerical implementation of the convolutions,
we had to think about a suitable cubature formula. Here we used the Poisson
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10. Conclusion and Outlook

summation formula in Gauß-Weierstraß summability as a starting point. Due to
the compact support of the source scaling functions and the fact that this support
shrinks with decreasing τ , it was necessary to define modified weights depending
on the source scaling functions to control the case that the support of the source
scaling function covers only a few integration points. These cubature formulae
guarantee the convergence of the convolutional data to the given data. With these
ingredients, we performed the convolutions with synthetic data and showed the
appropriate convolution pictures. For a rough approximation of the data, a lower
scale would be sufficient. But there is still improvement for higher scales, which
can be seen more clearly in the convolutions with the wavelets. Some of the con-
volutions were considered additionally in view of the effects that occur on the
boundary. In a last step, we computed a relative root mean square error to show
how big the difference between the multiscale approximation of the data com-
pared to the given data is. All in all, the results showed that our source scaling
functions and wavelets provide a good decomposition of the given data.
There are some things which may be considered in future research work. One
point is to test the decomposition ability with more data sets. In general it would
be interesting to see how the boundary effects behave in these cases and espe-
cially in the case, where we had some high peaks near the boundary (see Re-
mark 9.3.4). In this context, we have to mention again that our synthetic data
are very smooth due to the way we constructed them via the fundamental solu-
tions. Data that are not that smooth would show the decomposition ability of our
source scaling functions maybe much better. It would be more interesting for the
decorrelation technique of the source scaling functions in general, if we had ac-
cess to data from another source, maybe more realistic data or data models would
be great. Laboratory experiments and measurement data may be the next step to
more realistic data. More concrete, measurement data of experiments that are de-
signed to determine the poroelastic material constants are meant in this case. This
would also be more challenging due to noisy data because of measuring errors.
In the case of realistic and probably not so smooth data, a higher scale for con-
volutions may be necessary, which includes the use of more data points. In this
case, the performance of the algorithm has to be further improved, maybe also
transferred in another coding language. The last point to mention is the integra-
tion method, which is in its fundamental structure like a trapezoidal rule. Maybe
there is a possibility to use another cubature formula or improve the existing one
such that less integration points are needed. One more drawback with the cuba-
ture formula is the fact that we have to calculate the result of the convolutions on
the given data grid due to the construction. One possibility would be to check
if another integration method can avoid this problem that we can calculate the
convolutions on a different grid. This would also be better for the calculation of
the RMSE.
One can also think of long term goals: We started with thermoporoelasticity and
reduced to poroelasticity due to the complexity of the fundamental solutions. The
inclusion of thermal effects in the process of decorrelation would be interesting to
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investigate the injection of cold water for example in the reservoir. A more realis-
tic setting would also be the consideration for example of heterogeneous media,
fractured media, prediction and prevention of seismic events. For this future re-
search it is necessary to check if for more complicated cases, it is still possible to
do a mollifier regularization and obtain the required theoretical properties.
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