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Abstract

Semi– and non–leptonic decays of B mesons offer a powerful probe for the flavour
sector in the Standard Model (SM). With ever increasing amounts of experimental data
from particle colliders, the need for more precise, but also more utilizable and reliable
theoretical predictions is growing. In this work, we study the inclusive semileptonic
decays B → Xcℓν̄ and B → Xuℓν̄ and extract the CKM elements Vcb and Vub from
them, respectively. In addition, we investigate the extent of CP violation in the non–
leptonic decay B → πππ. The description of these three decays is complicated due to
the appearance of short– and long–distance effects in the strong interactions. In order
to disentangle the pieces that can be determined from a perturbative expansion and
the genuinely non–perturbative ones, we make use of an Operator Product Expansion.
We collect all state–of–the–art corrections to the expressions and summarize them into
open–source software packages.

For the decay B → Xcℓν̄, we exploit the Reparameterization Invariance (RPI) of
the Heavy Quark Effective Theory to reduce the number of non–perturbative matrix
elements. Subsequently we use the recently measured moments of the lepton invariant
mass to extract a new value for Vcb up to O(1/m4

b) in the Heavy Quark Expansion.
In the decay B → Xuℓν̄ it is necessary to subtract the unwanted background of the

decay into a charmonium final state. This restriction causes the appearance of non–
local shape functions, which have to be modelled. We include all available information
about the leading and subleading shape functions and determine a cluster of models to
find a reasonable estimate for the model uncertainty. Furthermore we include all per-
turbative corrections up to α2

s to finally calculate partial rates with various kinematical
cuts and extract Vub from them.

Unlike the aforementioned semileptonic decays, the non–leptonic decay B → πππ

shows pronounced features in the CP landscape that are difficult to explain with the-
oretical methods. In recent amplitude analyses, only resonance contributions were
included to dynamically generate the strong phase. We suggest a new parameteriza-
tion of charm–loop effects, which can cause intricate structures in the CP landscape,
while at the same time being easy to implement in current analyses. We discuss the
implications of this approach and how the underlying physics can be made more visible
by changing to a suitable set of physical operators in the analysis.
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Zusammenfassung

Semi– und nicht–leptonische Zerfälle von B–Mesonen stellen eine wirkungsvolle Mög-
lichkeit dar, den Flavour-Sektor des Standardmodells (SM) zu erforschen. Mit der
zunehmenden Menge an experimentellen Daten wächst der Bedarf an präziseren, aber
auch besser nutzbaren theoretischen Vorhersagen. In dieser Arbeit untersuchen wir die
inklusiven semileptonischen Zerfälle B → Xcℓν̄ und B → Xuℓν̄ und extrahieren daraus
die CKM-Elemente Vcb und Vub. Darüber hinaus untersuchen wir die CP-Verletzung
im nicht-leptonischen Zerfall B → πππ. Die Beschreibung dieser drei Zerfälle ist
aufgrund des Auftretens von starken Wechselwirkungen, die sich über physikalische
Effekte kurzer wie langer Skalen erstrecken, sehr anspruchsvoll. Um die Anteile, die sich
mit einer Störungsreihe berechnen lassen, von den anderen zu trennen, verwenden wir
eine Operator Produkt Entwicklung. Hierfür nutzen wir alle nach dem Forschungsstand
bekannten Korrekturen und fassen sie in Open–Source Softwarepaketen zusammen.

Für den Zerfall B → Xcℓν̄ nutzen wir die Reparametrisierungsinvarianz (RPI) der
effektiven Theorie für schwere Quarks, um die Anzahl der nicht–perturbativen Matrix-
elemente zu reduzieren. Anschließend verwenden wir die kürzlich gemessenen Momente
der invarianten Leptonenmasse, um einen neuen Wert für Vcb zu bestimmen.

Bei dem Zerfall B → Xuℓν̄ ist es experimentell notwendig den Charm Hintergrund
zu reduzieren. Diese Einschränkung führt zum Auftreten von modellierten, nicht–
lokalen Shape Funktionen. Wir beziehen alle verfügbaren Informationen über die Shape
Funktionen ein und bestimmen anschlißend eine Gruppe von Modellen für eine sinnvolle
Abschätzung der Modellunsicherheit. Weiterhin berücksichtigen wir alle Störungskor-
rekturen bis α2

s, um schließlich partielle Raten mit verschiedenen Phasenraumschnitten
zu berechnen und Vub daraus zu extrahieren.

Im Gegensatz zu den vorher erwähnten semileptonischen Zerfällen, zeigt der nicht–
leptonische Zerfall B → πππ ausgeprägte Strukturen in der CP–Landschaft, die mit
theoretischen Methoden schwer zu erklären sind. In Amplitudenanalysen wurden bisher
nur Resonanzbeiträge zur dynamischen Erzeugung der starken Phase genutzt. Wir
schlagen eine neue, einfach zu implementierende Parametrisierung von Charm–Loop
Effekten vor, die starke Strukturen in der CP-Landschaft hervorrufen kann. Wir disku-
tieren die Auswirkungen dieses Ansatzes und wie die zugrundeliegende Physik durch
die Wahl geeigneter physikalischer Operatoren deutlicher dargestellt werden kann.
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Introduction

The investigation of natural phenomena with empirical methods constitutes the core
of natural sciences since the 17th century. In physics it has led to the emergence of
numerous successful theories, which cast the results of observations into a mathematical
description. One of the questions that was always sought–after, is what the constituents
of matter are and how they interact. This research has led to the development of the
Standard Model of Particle Physics (SM) [1, 2, 3], which is currently the most precise
and experimentally tested scientific theory. It describes the interactions of all known
particles and forces at the fundamental level with the exception of gravity.

Apart from its obvious success, there are still several phenomena that cannot be
explained in the SM. Most notable is the abundance of any explanation for the ex-
perimentally well verified dark matter and dark energy [4, 5] as well as the so called
baryon asymmetry [6]. The former refers to the existence of an additional form of
matter that is potentially of a completely different nature than the matter in the SM.
Baryon asymmetry is the observed imbalance of baryonic and anti–baryonic matter
in the universe. According to the Sakharov conditions [7] the underlying theory must
allow for baryon number violations, out–of–equilibrium reactions and especially C and
CP violation to produce matter and antimatter at different rates. In particular the
latter condition is tied to low–energy reactions and the flavour sector of the SM, that
we investigate in this thesis.

Generally speaking, effects beyond the SM, sometimes called "New Physics", can
be searched for in two ways – directly and indirectly. Direct searches are performed in
experiments at large particle colliders, where new forms of matter hopefully show up at
highest energies. However, up till today, there were no significant hints at phenomena
that deviate substantially from the SM. Indirect searches, on the other hand, look for
tiny deflections from the SM caused by new physics. Needless to say, the precision
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Introduction

necessary to render such effects visible must be outstanding – both experimentally and
theoretically. In particular, it is inevitable for the indirect approach that both sides
work together hand in hand, i.e. theoretical predictions at the highest possible precision
need to be provided to the experimental collaborations in a suitable and usable form.

The precision necessary for the aforementioned endeavour is reflected in particular in
the determination of the fundamental parameters of the SM. In this respect the flavour
sector is quite challenging, because it contains a number of parameters that relate
quarks of different flavour. The part of the SM that describes the dynamics of quarks
and gluons is Quantum Chromodynamics (QCD). Due to its non–abelian nature, the
gluons, which are the gauge bosons of the strong force, may interact with each other
causing the theory to be asymptotically free [8]. At high energies quarks thus interact
weakly, while at low energies the coupling becomes strong leading to the confinement
of quarks and gluons in composite hadrons. With the strong coupling becoming large
at low energies, theoretical predictions cannot be obtained as perturbative expansions
anymore. This non–perturbative behaviour has led to the development of various
techniques to render calculations possible. Most notably we use so–called Effective
Field Theories (EFTs) in this thesis, which are Quantum Field Theories, designed to
describe particle interactions at the appropriate energy scale.

A prime example that combines the above aspects, i.e. a relation to fundamental
parameters, a connection to the phenomenon of CP violation (and thereby baryon
asymmetry) and low–energy scales, is the B meson. It provides the simplest bound
state of a heavy and light quark/anti–quark pair and has, due to its relatively large
mass, a variety of intriguing decay channels at its disposal. Of particular interest are
flavour–changing semi– and non–leptonic decays. They are related to the universal
Cabibbo–Kobayashi–Maskawa–matrix (CKM) elements [9, 10], which pose the major
factor of precision in several CP violating decays in the SM. Notably the B meson
factories like Belle (II), BaBar and LHCb have provided extraordinarily amounts of
precise data for B decays in the last decade. Hence, the extraction of fundamental
parameters from that data with ever–increasing theoretical predictions, is a vital aspect
of investigations in particle physics.

In the present work, we want to contribute a significant step towards meeting this
challenge. On the one hand, we focus on the determination of the CKM factors Vcb and
Vub from the inclusive semileptonic decays B → Xcℓν̄ and B → Xuℓν̄, respectively. On
the other hand we investigate the exclusive decay B → πππ that shows remarkably
strong features in its CP landscape, which are difficult to explain with the techniques
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usually applied to non–leptonic decays.
Apart from the obvious connection to the B meson and its relation to fundamental

parameters, those three studies are related in how they offer a bridge to the experi-
mental analysis. Often particularly precise (and hence complicated) theory predictions
are not made accessible to the experimental collaborations in a utilizable manner. In
turn, the analyses are conducted with models that are simpler; especially simpler to
implement. Therefore we deploy, together with this thesis, two open–source software
packages for both inclusive processes, which contain all state–of–the–art corrections in
them [11, 12]. In addition, for the exclusive decay, we develop an extension for the
current analyses, that can immediately be incorporated into existing models [13].

We structure this thesis as follows. We start with a short introduction into the SM,
where we focus on the flavour sector and CP violation in particular. It follows a short
presentation of the general techniques used in Effective Field Theories. In particular,
we give short introductions in the Weak Effective and Heavy Quark Effective Theory,
as they are the basis for many of the following calculations. In the next chapter we lay
the theoretical foundation for the study of inclusive semileptonic decays of B mesons.
We distinguish between final states containing charm– and up quarks and show how
this affects the structure of the Operator Product Expansion. In this, we discuss the
different perturbative and non–perturbative pieces of the calculations and how they can
be disentangled. Furthermore we introduce the concept of mass schemes and discuss
in particular how the kinetic scheme can be used to improve the precision for physical
observables.

The second part of the thesis is in general separated in three parts. The first
concentrates on the non–leptonic three body decay B → πππ [13]. We suggest a
new parameterization of charm–loop effects and demonstrate how it can easily be
implemented in current amplitude analyses. In addition we use this ansatz to generate
elaborate structures in the CP landscape, which show a significant resemblance with
recent experimental findings [14, 15, 16].

The next chapter is dedicated to the determination of |Vcb| with q2 moments from
newly obtained data by Belle [17] and especially Belle II [18]. We use the Reparam-
eterization Invariance of the Heavy Quark Effective Theory to lessen the number of
non–perturbative matrix elements and attempt a determination of |Vcb|, including all
terms up to 1/m4

b . To that end we perform a distinguished fit to the experimental data
and discuss in detail all inputs and uncertainties. Finally we present a new value for
|Vcb| obtained with this method [19].

3



Introduction

In the last chapter we draw our attention to the determination of partial decay rates
in the semileptonic process B → Xuℓν. We make use of a factorization theorem [20, 21],
which uses the Soft Collinear Effective Theory to disentangle contributions at different
energy scales. The kinematical region of interest inherits a different power counting
than the full phase space, which in turn introduces non–local matrix elements; the so–
called shape functions. We gather all available information on these shape functions
and subsequently derive a model ansatz. In addition we discuss the several sources of
power corrections, generate models for the subleading shape functions, which are the
dominant corrections to the leading power and collect all inputs in a software package
[12], which we then use to determine partial decay rates for various kinematical cuts.
We give a detailed overview over the different sources of theoretical uncertainties and,
as an outlook, we use these rates as an input to extract |Vub|.
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Chapter 1

Foundations

The standard model of particle physics (SM) is one the most successful scientific theory
up to date. It produces remarkably accurate results and has been tested in a plethora
of different experiments. A full review of all its properties and peculiarities goes beyond
the scope of this thesis; for comprehensive overviews see for example [22, 23, 24]. In
the course of this chapter a number of concepts and methods will be introduced that
are important throughout this work. Special emphasis is put on the foundations of
flavour physics and CP violation.

1.1 The Standard Model

The standard model is a renormalizable Quantum Field Theory. It is invariant under
local gauge transformations of the symmetry group

SU(3)C ⊗ SU(2)L ⊗ U(1)Y , (1.1)

with SU(3)C being the gauge group of the strong interactions with colour charge,
SU(2)L the group of electroweak interactions with charge T3 and U(1)Y the group of
electromagnetic interactions with hypercharge Y . Since every group SU(N) has N2−1

generators, there are eight gauge bosons in SU(3)C , the gluons g1µ, . . . , g8µ, a triplett of
gauge bosons in SU(2)L, W 1

µ ,W
2
µ ,W

3
µ and a single boson in U(1)Y , the field Bµ. By

5



Chapter 1. Foundations

acquiring a vacuum expectation value (VEV)

⟨H⟩ = 1√
2

(
0

v

)
, (1.2)

the Higgs field H and its potential

V (H) = µ2H†H +
1

2
λ|HH†|2 (1.3)

spontaneously break the electroweak symmetry of the gauge group to

SU(2)L ⊗ U(1)Y → U(1)Q , (1.4)

with the electric charge Q related to the hypercharge and the third component of the
weak isospin via Y = 2(Q+ T3).

After the symmetry breaking there are three massive gauge bosons in the electroweak
sector: two charged W±

µ and one uncharged Z0
µ together with one uncharged massless

photon Aµ in the electromagnetic sector. The SM also contains six types (flavours) of
quarks: up (u), down (d), strange (s), charm (c), bottom (b) and top (t) and an addi-
tional six types of leptons: electron (e), muon (µ), tauon (τ) with three corresponding
neutrinos (νe, νµ, ντ ). Each particle of the SM falls into a specific representation of the
gauge group; see table 1.1. Also note that right–handed neutrinos are commonly not
included in the SM, but can be added in an extension [25].

The most general Lagrangian that can be constructed under the aforementioned
assumptions and the symmetry group eq.(1.1) is 1

LSM =ψ̄i /Dψ − 1

4

(
Gb

µνG
µν
b +W a

µνW
µν
a +BµνB

µν
)

+(DµH)∗(DµH)− V (H)− (ψ̄LŶ HψR + h.c.) ,
(1.5)

where ψ are all fermion fields and Gb
µν , W a

µν and Bµν are the field strength tensors of
the three different gauge groups respectively. They are defined by

Bµν = ∂µBν − ∂νBµ , (1.6)

W a
µν = ∂µW

a
ν − ∂νW

a
µ − ig2ε

abcW b
µW

c
ν , (1.7)

Gb
µν = ∂µG

b
ν − ∂νG

b
µ − igsf

bacGa
µG

c
ν , (1.8)

1We omit ghost terms and gauge fixing terms here, as they will not play a role in this thesis.
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1.1. The Standard Model

Field Generations Representation

Bµ - (1,1, 0)

W a
µ - (1,3, 0)

gaµ - (8,1, 0)

Qi
L

(
uL
dL

)
,

(
cL
sL

)
,

(
tL
bL

)
(3,2, 1/3)

E i
L

(
νe,L
eL

)
,

(
νµ,L
µL

)
,

(
ντ,L
τL

)
(1,2,−1)

uiR (uR, cR, tR) (3,1, 4/3)

d i
R (dR, sR, bR) (3,1,−2/3)

eiR (eR, µR, τR) (1,1,−2)

H - (1,2, 1)

Table 1.1: Representation of the SM fields under SU(3)C , SU(2)L, U(1)Y . The upper section
contains the gauge boson fields, the middle section the matter content and the lower row the
Higgs field. The second column represents the different generations of the fields if existent.
It is worthwhile to note that the SM distinguishes between left and right handed fields by
means of the electroweak sector.

with the structure constant εabc of SU(2) and f bac of SU(3). Furthermore the covariant
derivative Dµ reads

Dµ = ∂µ − ig1Y Bµ − ig2
σa

2
W a

µ − igs
λb

2
Gb

µ , (1.9)

in which σa are the Pauli matrices and λa the Gell–Mann matrices – both are the
generators of their respective symmetry group in the fundamental representation. In
addition the three quantities g1, g2 and gs are the couplings of U(1)Y , SU(2)L and
SU(3)C respectively. They are related to the electric charge via

e =
g1g2√
g21 + g22

, (1.10)

and in addition it is also useful to define the strong and electromagnetic coupling
constant by

αe :=
e2

4π
αs :=

g2s
4π

. (1.11)

7



Chapter 1. Foundations

1.2 Flavour sector and the CKM matrix

The Lagrangian in eq.(1.5) is expressed in the interaction basis in which gauge bosons
do not mix quarks of different flavours. Quarks are, however, defined as mass eigen-
states and thus we switch to a basis in which the fermion masses are diagonal; the so
called mass basis. Disregarding the lepton sector, we decompose the components of
the SU(2)L quark doublet Qi

L = (uiL, d
i
L)

T in the Yukawa sector of the Lagrangian 2

LY k ⊃ (Md)ij d̄
i
Ld

j
R + (Mu)ij ū

i
Lu

j
R + h.c., Mq :=

v√
2
Yq. (1.12)

The mass matrices Mq defined in the above expression can always be diagonalized by
means of a biunitary transformation on the quark fields

qiL = (VqL)
ij q j

L, qiR = (VqR)
ij q j

R , (1.13)

such that the mass matrix can be written as

Mdiag
q = VqLMqV

†
qR . (1.14)

The diagonalization of the mass matrix in turn changes the interactions of the W±
µ

with the quark fields. They get the slightly more complicated form

LY k ⊃
g2

2
√
2
ūiL(VuLV

†
dL)ijγ

µ(1− γ5)d
j
LW

+
µ + h.c. , (1.15)

which defines the so called Cabibbo–Kobayashi–Maskawa (CKM) matrix via

VCKM := (VuLV
†
dL) =

Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

 . (1.16)

This unitary, complex–valued matrix is non–diagonal and therefore mixes quark eigen-
states of different flavour. It provides the only source of flavour–changing currents in
the SM, as the neutral currents are unaffected by the mixing at tree level. In addition
it can be shown that the CKM matrix has only four free parameters: three real an-
gles and one complex phase. This fact can be made manifest by choosing an explicit
parameterization. The standard parameterization used by the Particle Data Group

2For this chapter it is assumed that q = u, d.

8



1.2. Flavour sector and the CKM matrix

(PDG) reads for example [26]

VCKM =

 c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13

 , (1.17)

where the cij := cos(θij) and sij := sin(θij) are the real parameters and δ is the
complex phase. In order to unveil the relative sizes of the different flavour transitions,
the so called Wolfenstein parameterization is convenient [27]. It parameterizes the free
parameters in (λ,A, ρ, η) and then expands in the small parameter λ = |Vus|. Up to
O(λ3) it reads [27]

VCKM =

 1− 1
2
λ2 λ Aλ3(ρ− iη)

−λ 1− 1
2
λ2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1

+O(λ4) , (1.18)

where all parameters have been experimentally determined and read approximately
[28]

λ ≃ 0.23, A ≃ 0.8, ρ ≃ 0.1, η ≃ 0.3 . (1.19)

Notice that the diagonal elements of the CKM–matrix are almost unity, which shows
that the SM clearly favours the transition within one family over a flavour changing
process. The fact that the CKM–matrix is unitary by construction implies that several
elements can be related amongst each other; specifically there are six relations of the
form ∑

i

VijV
∗
ik = δjk , (1.20)

and in particular we find

VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0 . (1.21)

Especially for this thesis, eq.(1.21) is important as it contains two CKM–elements that
will be investigated in much detail later on, namely Vcb in chapter 5 and Vub in chapter 6.

The graphical depiction in the complex plane of eq.(1.21) is known as the unitarity
triangle; see figure 1.1. It is usually rescaled by VcdV ∗

cb and depicted in the (ρ̄, η̄)-plane,

9



Chapter 1. Foundations

Figure 1.1: The unitarity triangle in the ρ̄-η̄ plane with several experimental constraints on
the CKM–elements. The red hashed region corresponds to 68% confidence level of the global
combination obtained by the CKMfitter group [28].

where

ρ̄ = ρ

(
1− λ2

2

)
, η̄ = η

(
1− λ2

2

)
. (1.22)

Furthermore in terms of the CKM–elements the lengths of the triangles sides read

Ru :=

∣∣∣∣VudV ∗
ub

VcdV
∗
cb

∣∣∣∣ , Rt :=

∣∣∣∣VtdV ∗
tb

VcdV
∗
cb

∣∣∣∣ (1.23)

and the angles are

α := arg

[
− VtdV

∗
tb

VudV
∗
ub

]
, β := arg

[
−VcdV

∗
cb

VtdV
∗
tb

]
, γ := arg

[
−VudV

∗
ub

VcdV
∗
cb

]
. (1.24)

1.3 CP violation

The existence of flavour in the SM and especially the complex phase in the CKM–
matrix are closely related to the occurrence of CP violation in nature. The CP–
symmetry corresponds to the subsequent application of the charge conjugation (C)
and the parity transformation (P) to a given process and relates particles with their
antiparticles. Violation of this symmetry hence resembles the fact that a given decay

10



1.3. CP violation

process must not have the same rate as the decay of the corresponding antiparticle

Γ(A→ B) ̸= Γ(Ā→ B̄) . (1.25)

This can only arise however in interference between two different decay amplitudes Ai,
which must carry different weak and strong phases, γi and δi, respectively.

As discussed before, the SM with three generations provides a source for the weak
phase in the couplings of the W± bosons. It changes sign under CP transformations
and is therefore called CP–odd. The strong phases arise due to possible rescattering
effects of intermediate on–shell states during the decay process. They are CP–even,
since strong interactions conserve CP.

Parameterizing a decay amplitude A with its phases explicitly reads

A(B → f) = eiγ1 |A1|eiδ1 + eiγ2 |A2|eiδ2 , (1.26)

which is always possible due to the unitarity relations in eq.(1.21). Direct CP violation
is probed via the parameter aCP, which is defined by the amplitude and its CP conjugate

aCP :=
|A(B → f)|2 − |A(B̄ → f̄)|2

|A(B → f)|2 + |A(B̄ → f̄)|2
=

2|A1||A2| sin∆δ sin∆γ
|A1|2 + |A2|2 + 2|A1||A2| cos∆δ cos∆γ

,

(1.27)

where the second equality explicitly utilizes the parameterization in eq.(1.26) and ∆δ

and ∆γ are the differences in the strong and weak phases, respectively. This expression
shows that direct CP violation requires at least two amplitudes and a non–trivial
difference in the CP–even and odd phase. Moreover the size of the CP violation
depends crucially on the sizes of the respective decay amplitudes. If for example |A1| ≫
|A2| we expect the violation to be very small (which in turn might also impede the
measurement) even if the phase differences were large.
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Chapter 2

Effective Field Theories

In order to exactly determine where the SM deviates from experimental measurements
it becomes ever more necessary to have precise theoretical predictions. Unfortunately
the particular structure of the gauge group SU(3)C causes the strong coupling αs to
become very large at low energies – an energy regime particularly interesting for phe-
nomenological investigations in the flavour sector of the SM. This causes QCD, which
is the underlying theory describing the dynamics of quarks and gluons, to contain non–
perturbative pieces that cannot be determined with the usual methods of perturbative
expansions.

There is however a way to resolve this remedy, namely Effective Field Theories
(EFTs). Due to a separation of different scales it becomes possible to construct a QFT
that is valid only for specific energy regions. By expanding in a large scale at which
QCD is still perturbative, the perturbatively calculable pieces can be separated from
the genuinly non–perturbative ones in physical observables.

In physics in general it is often the case that the degrees of freedom at much higher
energies (or distances) do not matter for a system at a much lower scale. For instance
the trajectory of a planet orbiting a star is almost completely unobstructed by the
effects of general relativity. In this example Newtonian mechanics is the effective
theory of general relativity in the limit of non–relativistic velocities. The same idea
can also be applied when separating scales in particle interactions. When investigating
scales close to the bottom mass µ ≈ 4.5GeV it is not necessary to know about the
dynamics of the W -boson with mW ≈ 80GeV and so it makes sense to construct a
theory in which it is not present.

An EFT is a full quantum field theory and therefore comes with regularization and
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Chapter 2. Effective Field Theories

renormalization schemes necessary to obtain finite matrix elements. The key aspect
of EFTs is a systematic expansion in some small parameter, which allows for well–
defined predictions up to a certain order – a feature that especially QCD lacks at low
energies. Due to this form of the expansion it is in general possible to calculate physical
quantities to an arbitrarily high order and make errors as small as desired. In practice
one is of course limited because higher order diagrams become difficult to compute
or the number of non–perturbative matrix elements that need to be determined by
experiment grow factorially at some point.

A great amount of EFTs was developed for all kinds of purposes and since they
provide the basis for many of the calculations carried out in the course of this thesis
we will introduce the ones used in the following chapters. To that end we start by a
general introduction in the renormalization procedure of EFTs and thereby defining
the nomenclature for the perturbative quantities used later on. Subsequently short
introductions are given for the weak effective theory (specifically for b quark decays)
and the Heavy Quark Effective Theory (HQET).

2.1 Basics and renormalization

In the following we consider a generic problem with two distinct energy scales Λ and µ,
which fulfill Λ ≫ µ and demonstrate how some degrees of freedom can be integrated out
from the theory. The specific EFTs we will discuss later all resemble this form. The
physics phenomena are described by the Lagrangian L(φ) in terms of some degrees
of freedom φ. We assume that at the scale Λ some of the degrees of freedom can
be neglected. In order to see how the physics of these scales can be separated, it is
instructive to use the path integral formalism [29, 30]

Z =

∫
Dφ exp

[
i

∫
dDxL(φ)

]
, (2.1)

where D is the number of spacetime dimensions and Dφ is a measure, which symbolizes
the integration over all field configurations. Relabeling the field φ by exploiting the
difference of the energy scales

φ =

φH p > Λ

φL p < Λ
(2.2)
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2.1. Basics and renormalization

and integrating out the heavy degree of freedom yields

Z =

∫
DφL

∫
DφH exp

[
i

∫
dDxL(φH , φL)

]
=

∫
DφL exp

[
i

∫
dDxLeff

]
. (2.3)

Here the effective action was defined as∫
dDxLeff(φL) := −i ln

∫
DφH exp

[
i

∫
dDxL(φL, φH)

]
. (2.4)

It can be formally expanded in a power series∫
dDxLeff(φL) =

∫
dDx

∞∑
n=0

∑
i

C
(n)
i

Λn
O(n)

i (φL), (2.5)

where O(n)
i are a set of local operators built out of the fields of the low–energy theory

and the C(n)
i are the so called Wilson coefficients. The operators O(n)

i have dimension
D = 4+ n and respect all symmetries of the full theory (i.e. Lorentz invariance, gauge
invariance, global symmetries like CPT, e.t.c. ). Their number is in general infinite,
however for each dimension D there exists only a finite set and more importantly
contributions to a given observable are suppressed by (µ/Λ)D−4 compared to operators
in the full theory. In physical observables, these operators appear as matrix elements
and contain the long-distance behaviour of the specific process. For some processes
it is possible to calculate them theoretically with lattice QCD or hadronic sum rules,
however often times their value is determined by experimental measurements and serves
as an additional input in the EFT. The Wilson coefficients C(n)

i are dimensionless, since
their scale dependence has to come from the large scale Λ which was factored out in
eq.(2.5). They contain all information about the short-distance physics.

We are interested in the investigation of processes at an arbitrary scale µ < Λ. Thus
we want to study the effective Lagrangian

Leff =
∞∑
n=0

∑
i

C
(n)
i (µ)

Λn
O(n)

i (µ), (2.6)

where the scale dependence of the Wilson coefficients and operators has been made
explicit. Changing µ basically moves contributions from the matrix elements of the
operators to the Wilson coefficients and vice versa. Of course actual, physical observ-
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Chapter 2. Effective Field Theories

ables Ophys cannot depend on the arbitrary scale µ and hence

µ
d

dµ
Ophys =

∑
i

[(
µ
dCi(µ)

dµ

)
Oi(µ) + Ci(µ)

(
µ
dOi(µ)

dµ

)]
!
= 0, (2.7)

where we dropped the index n as the relation holds for each order separately. Note that
the operators Oi mix under renormalization, however not in between orders as long as
dimensional regularization is used to single out singularities. This makes dimensional
regularization by far the most convenient regularization scheme in practice. The oper-
ators form a complete basis such that mixing can be written as a linear combination
of operators with the same mass dimension

µ
dOi(µ)

dµ
=
∑
j

γij(µ)Oj(µ), (2.8)

with the so called anomalous dimension matrix γij. It can be obtained from the coef-
ficient of the single 1/ε pole terms in the matrix of renormalization factors. Inserting
this into eq.(2.6) gives

∑
i,j

[
µ
dCi(µ)

dµ
δij − Ci(µ)γij(µ)

]
Oj(µ) = 0 (2.9)

and due to the linear independence of the basis operators this gives for each j

∑
i

[
µ
dCi(µ)

dµ
δij − Ci(µ)γij(µ)

]
= 0 . (2.10)

We can also write this in matrix notation as

µ
dC⃗(µ)

dµ
= γT(µ)C⃗(µ) . (2.11)

This differential equation defines the RG evolution of the Wilson coefficients. It is
noteworthy that for example in SCET also 1/ε2 divergences appear and therefore an
additional contribution ∼ γcusp(µ) ln Λ/µ with the so called cusp anomalous dimension
γcusp appears on the right–hand side of this equation. In order to solve eq.(2.11) we
observe that all scale dependence in the coefficients must be governed by the masses and
coupling constants of the theory. Basically all change in the scale µ is compensated
by appropriate changes in these renormalizable quantities to finally render physical
observables scale–independent. Throughout this thesis we merely consider the case
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of massless QCD and therefore the only scale dependence comes from the coupling
constant αs(µ). Its scale dependence is defined by the so called β function via

β(αs(µ)) := µ
dαs(µ)

dµ
(2.12)

and similarly the anomalous dimension depends only on the the strong coupling too

γ(µ) ≡ γ(αs(µ)) . (2.13)

Rewriting the derivative, eq.(2.11) becomes

dC⃗(αs)

dαs

=
γT(αs)

β(αs)
C⃗(αs) , (2.14)

which is just a first–order differential equation with the solution

C⃗(αs(µ)) = exp

 αs(µ)∫
αs(Λ)

dαs
γT(αs)

β(αs)

 C⃗(αs(Λ)), αs(µ) < αs(Λ) . (2.15)

We implicitly assume that the strong couplings are decreasing (which is the case for
QCD). With known boundary conditions at the high scale C⃗(αs(Λ)) we can match the
coefficients at some lower scale µ order by order to the full theory. The exponential
has the effect of running the coefficients down to the scale we are interested in. During
this process there appear potentially large logarithms ∼ ln Λ/µ which might spoil the
perturbative expansion when elevating higher orders such that they are larger than the
lower ones. Fortunately this problem is automatically taken care of by the solution
eq.(2.15) via resummation. All potentially large logarithms will be contained in the
Wilson coefficients after the process albeit in such a way that the coupling constants
all come with an appropriate power of the respective logarithm.

In almost all practical calculations the β function and anomalous dimension (and
also potentially other perturbative quantities like the formerly mentioned cusp anoma-
lous dimension) are expanded as a series in αs like

β(αs) = αs

∑
n

β(n)
(αs

4π

)n+1

, γij(αs) =
∑
n

γ
(n)
ij

(αs

4π

)n+1

. (2.16)

Currently the β function is known up to five loops and most anomalous dimensions
up to four – see appendix A.2 for their explicit form. This grants us with very precise
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Chapter 2. Effective Field Theories

tools for the running of scales so they usually do not pose the bottleneck for preci-
sion calculations. Much more constraining are the non–perturbative inputs, that are
contained in the matrix elements of the operators defined above.

2.2 Weak Effective Theory

The first EFT we want to introduce is the weak effective theory – specifically for decays
with ∆B = 1. The underlying idea is that for most processes involving flavour changes,
the W boson, which serves as the mediator of the electroweak force, must not be taken
into account as an actual degree of freedom for the purpose of practical calculations.
The energy scale of interest (for flavour physics it is usually of order mb ≈ 5GeV) is
very distinct from the scale of the W at mW ≈ 80GeV and so it is reasonable to employ
the procedure outlined in the previous section to derive an effective Lagrangian. More
details about the derivation can be found in [31, 32].

The part of the generating functional that is relevant for the discussion of W bosons
is given by

ZW ∼
∫

DW+ DW− exp

(
i

∫
d4xLW

)
, (2.17)

where LW is the Lagrangian containing kinetic terms of the W and its interactions given
by the Yukawa sector of the SM in eq.(1.15). Note that this is analogous to the general
form of the generating functional in eq.(2.1) and thus following the separation of scales
we can integrate out the W field from the theory. Without going into the details of the
calculation we finally find the effective Hamiltonian by expanding in inverse powers of
the W mass. Because mW is so much larger than the scale in the process of interest,
it usually suffices to consider only the leading order in this expansion

Heff =
GF√
2
V ∗
udVu′d′(ūd)V−A(d̄

′u′)V−A . (2.18)

The subscript V − A refers to the Lorentz structure γµ(1 − γ5) and we defined the
Fermi constant as GF := g22/2

√
2m2

W . By means of this procedure the W boson is fully
removed from the low–energy theory as a degree of freedom. Its only remnant is cast
in the Fermi constant, but all short–range exchanges in which it serves as a mediator
correspond to point interactions now. The dominant contribution to these processes
comes from four–fermion operators of dimension six.

Up to this point effects from the strong interaction have not been taken into account.
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They must however be included when other low energy EFTs, that explicitly deal with
strong interactions are matched to the weak effective theory. The other EFTs intro-
duced throughout this thesis will implicitly be matched to the weak effective theory
because it suffices to consider the high energy effects represented in its Wilson coeffi-
cients. Focusing on the relevant processes for this thesis with ∆B = 1 , there are three
types of operators we have to include in the effective Hamiltonian. On the one hand
we observe that a gluon linking two colour singlet weak currents can ’mix’ the colour
indices of the current–current operators. On the other hand QCD and electroweak
penguin operators can be generated by attaching a gluon to the initial state via a loop.
By means of these operators the effective Hamiltonian for ∆B = 1 is extended to

Heff =
GF√
2

[∑
i=1,2

∑
q=u,c

λqCiOq
i −

10∑
i=3

λtCiOi

]
, (2.19)

where we abbreviated the CKM matrix elements with λq := VqbV
∗
qd. The Ci are the

respective Wilson coefficients to a given operator. The full basis of the operators Oi

reads

Oq
1 = (b̄iqj)V−A(q̄jdi)V−A , Oq

2 = (b̄iqi)V−A(q̄jdj)V−A ,

O3 = (b̄idi)V−A

∑
q

(q̄iqi)V−A , O4 = (b̄idj)V−A

∑
q

(q̄jqi)V−A ,

O5 = (b̄idi)V−A

∑
q

(q̄iqi)V+A , O6 = (b̄idj)V−A

∑
q

(q̄jqi)V+A ,

O7 =
3

2
(b̄idi)V−A

∑
q

eq(q̄iqi)V+A , O8 =
3

2
(b̄idj)V−A

∑
q

eq(q̄jqi)V+A ,

O9 =
3

2
(b̄idi)V−A

∑
q

eq(q̄iqi)V−A , O10 =
3

2
(b̄idj)V−A

∑
q

eq(q̄jqi)V−A .

(2.20)

A couple of comments are in order about these operators. If no QCD effects are taken
into account, all Wilson coefficients except for C2 would vanish and only O2 remained
such that eq.(2.18) is recovered. The inclusion of QCD effects creates another current–
current operator O1 at tree–level which has a different colour structure by means of
the relation

T a
ikT

a
jl = − 1

2Nc

δikδjl +
1

2
δilδjk . (2.21)

In addition there are four QCD penguin operators O3 - O6. Their gluon coupling is
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flavour conserving and so they cannot be generated from the tree–level operators. The
sum over q runs over the quarks q = u, d, s, c, b for processes with ∆B = 1. They are
decomposed in the vector structures V − A and V+A and bear two different colour
structures due to the exchange of a gluon. Compared to the tree–level operators their
Wilson coefficients are about a magnitude smaller. The same types of diagrams can
be generated by the exchange of a photon or Z–boson, which creates the electroweak
penguin operators O7 - O10. Their coefficients are usually even more suppressed than
the QCD penguins due to their dependence on the QED coupling constant eq.

Finally when dealing with decays of b quarks into c or u quarks, there are no penguin
operators because no vertices into those final states exist. Hence, at least up to NLO,
only current–current operators are present for such decays.

2.3 Heavy Quark Effective Theory

We now want to turn our attention to systems that contain a heavy quark and light
degrees of freedom. We can imagine this system as an almost static heavy quark
with mass mQ surrounded by a "cloud" of gluons and light quarks with which it
interacts in a complicated way. The typical scale of these interactions is of the order
of ΛQCD ≈ 0.3GeV, where QCD starts becoming non-perturbative.

In the same way as in the Weak Effective Theory, we want to integrate out the
heavy degree of freedom. Thus, we want to consider a state which contains a single
heavy quark. Since the flavour quantum number is conserved in QCD, the heavy quark
is still present as a degree of freedom – even at low scales. It remains as a static source
of colour in the effective theory.

The starting point for the construction of the EFT is the observation that a heavy
quark bound inside a hadron is nearly on–shell and moves with about the velocity
of the hadron defined by pH = mHv, such that the heavy quark momentum can be
written as

pµQ = mQv
µ + kµ , (2.22)

where kµ ≪ mQ denotes the residual momentum. We can explicitly extract the heavy
phase from the quark field Q(x) in full QCD and decompose it in terms of the spinors
hv(x) and Hv(x)

Q(x) = e−imQv·x [Hv(x) + hv(x)] , (2.23)
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where the spinors may be written as

hv(x) = eimQv·x1 + /v

2
Q(x) , Hv(x) = eimQv·x1− /v

2
Q(x) . (2.24)

Note that the terms P± = 1/2(1± /v) act as projectors on a two–dimensional subspace
of the full QCD field. In the rest frame of the B meson, i.e. for vµ = (1, 0, 0, 0), the
spinor hv corresponds to the upper two components of Q(x) and Hv to the lower ones.
The QCD Lagrangian can then be written in terms of the new fields

LQCD = Q̄ (i /D −mQ)Q

= h̄v iv ·Dhv − H̄v (iv ·D + 2mQ)Hv + h̄v i /D⊥Hv + H̄v i /D⊥ hv ,
(2.25)

where we decomposed the covariant derivative in a time and spatial part via

Dµ = (v ·D)vµ +Dµ
⊥ , Dµ

⊥ = (gµν − vµvν)Dν . (2.26)

From this form of the Lagrangian it becomes apparent that hv describes the massless
degrees of freedom, whereas Hv fluctuates with twice the heavy quark mass mQ and
hence resembles the heavy degree of freedom. We can integrate it out explicitely as
scetched in chapter 2.1, because the integral over these fields is Gaussian; for a detailed
derivation see [33, 34]. This leads to the effective action

Seff =

∫
d4xLeff − i ln∆ , (2.27)

with the effective Lagrangian of heavy quark effective theory

Leff = h̄v iv ·Dhv + h̄v i /D⊥
1

iv ·D + 2mQ

i /D⊥ hv . (2.28)

The appearance of the term ln∆ = 1/2 tr ln[2mQ + iv ·D − iε] is a quantum effect and
it can be shown that by choosing the axial gauge v · A = 0 it is just an irrelevant
constant, which does not alter the equations of motion [35]. The Gaussian integration
in the path integral corresponds to the replacement for the lower component field

Hv =

(
1

2mQ + iv ·D

)
i /D⊥hv . (2.29)

Since derivatives acting on hv correspond to powers of the residual momentum kµ in
momentum space, which is much smaller than the heavy quark mass mQ by construc-
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tion, we can expand Leff in powers of iD/mQ as

Leff = h̄v iv ·Dhv +
1

2mQ

∞∑
n=0

h̄v i /D⊥

(
− iv ·D

2mQ

)n

i /D⊥ hv . (2.30)

The same can be obtained for the QCD field (2.23) by utilizing eq.(2.29)

Q(x) = e−imQv·x 1

2mQ

∞∑
n=0

(
− iv ·D

2mQ

)n

i /D⊥ hv . (2.31)

These two results enable us to express any matrix element involving heavy-quark states
as an expansion in 1/mQ.

In the heavy quark limit mQ → ∞ only the first term in the Lagrangian from
eq.(2.30) remains and new symmetries emerge that are not present in full QCD. In
particular, the expression is independent of the heavy quark mass and thus SU(2)
rotations in flavour space leave it invariant. Note that this symmetry only relates
quarks moving with the same velocity. The second symmetry is the heavy quark spin
symmetry. Since there appear no Dirac matrices in the leading term of eq.(2.30) it is
invariant under transformations of the SU(2) spin group. This becomes transparent in
the rest frame, where the generators Si of SU(2) can be chosen as

Si =
1

2

(
σi 0

0 σi

)
,
[
Si, Sj

]
= iεijkSk .

When performing an infinitesimal transformation on the field hv → (1 + iε⃗ · S⃗)hv, the
Lagrangian is left invariant in the heavy quark limit

δLeff = h̄v

[
iv ·D, iε⃗ · S⃗

]
hv = 0 ,

and hence all the heavy hadron states moving with the same velocity v fall into spin–
symmetric doublets.
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Chapter 3

Inclusive decays of B mesons

Inclusive B meson decays are very important channels for the study of all CKM–
elements involving the decay of a b quark. In this chapter we specifically investigate
semileptonic processes, i.e. decays of a B meson into any hadronic final state as well
as a lepton–neutrino pair B → Xℓν̄ℓ. First, we summarize the basic setup for the
precision calculations attempted further in this thesis. To that end we introduce the
inclusive rate for the processes b → c and b → u, respectively. Thereby, we show
how perturbative and non–perturbative physics can be separated and define the non–
perturbative parts for either process. We finally motivate the necessity of a suitable
short–distance mass scheme for the decaying quarks.

3.1 The inclusive rate

We are ultimately interested in the (differential) inclusive decay rate, as it can be mea-
sured directly in experiment or serve as the basis for measurable observables. Inclusive
decay rates are defined as a sum over all possible final states, i.e. the differential rate
schematically reads

dΓ(B → Xℓν̄ℓ) =
∑
f

dΓ(B → fℓν̄ℓ) . (3.1)

Without the specification of the kinematic variables this differential width can be used
for any process and often the actual choice of kinematics is determined by the exper-
imental setup and the cuts that can be imposed on the phase space. In general the
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differential width takes the form

dΓ =
∑
X

1

mB

(2π)4δ(4)(pB − pX)|M(B → X)|2dΦPS , (3.2)

where M denotes the matrix element of the decay and dΦPS is the phase space ele-
ment. We are interested in semileptonic decays, which are mediated by an effective
Hamiltonian that contains currents for the leptonic Lµ and hadronic Jµ states; similar
to the one introduced in chapter 2.2

Heff =
4GF√

2
VCKM (q̄b)V−A

(
ℓ̄ν
)
V−A

+ h.c. :=
4GF√

2
VCKMJ

µLµ + h.c. , (3.3)

where q̄ denotes either up–type quark q = u, c. Note that for these final state quarks,
there are no contributions of penguin operators in semileptonic decays. The final state
for this process is |f⟩ = |Xℓν̄ℓ⟩ and since the currents only act on either the leptonic
or hadronic states we can factorize the matrix element

|M(B → Xℓν̄ℓ)|2 = 8G2
F |VCKM|2 |⟨Xℓν̄ℓ|JµLµ|B⟩|2

= 8G2
F |VCKM|2 ⟨B|J†

α|X⟩⟨X|Jβ|B⟩⟨0|L†,α|ℓν̄ℓ⟩⟨ℓν̄ℓ|Lβ|0⟩ .
(3.4)

Upon defining the so called hadronic and leptonic tensors by

Wµν :=
∑
X

⟨B|J†
µ|X⟩⟨X|Jν |B⟩(2π)3δ(4)(pB − pX) (3.5)

Lµν :=
∑
spins

⟨0|L†
µ|ℓν̄ℓ⟩⟨ℓν̄ℓ|Lν |0⟩ , (3.6)

we can rewrite the differential decay rate in a more suitable form that makes the
separation of leptonic and hadronic contributions manifest

dΓ =
8πG2

F |VCKM|2

mB

WµνL
µνdΦPS . (3.7)

Note that we had defined the leptonic tensor with a sum over the lepton spins, since
experimentally these are never measured, but rather averaged and so we can explicitly
calculate it with the usual trace evaluations

Lµν = 2(kµk′ν + kνk′µ − gµνk · k′ − iεανβµkαk
′
β) , (3.8)

where k and k′ are the momenta of the lepton and neutrino respectively. Since we
do not consider decays in the heavy τ lepton, all masses in this expression have been
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3.2. Inclusive b→ c decays

neglected. The hadronic tensor contains the non–perturbative parts of the calculation.
It takes different forms for either the decay into a charm or up quark, and thus we will
consider each final state separately in the next chapters.

3.2 Inclusive b → c decays

Similar to the procedure outlined in chapter 2.3, we want to exploit the fact that the
mass of the decaying b quark is much heavier than its final state. In doing so, it
becomes possible to systematically introduce corrections to the tree–level results of the
respective decay rate in an expansion of the inverse heavy quark mass. This procedure
separates the effects of perturbative and non–perturbative parts in the hadronic tensor
in a local OPE. We furthermore exploit the invariance under reparameterization to
reduce the number matrix elements at a given order in the inverse heavy mass.

3.2.1 The Heavy Quark Expansion

The triple differential rate from eq.(3.7) for an inclusive b → c decay in terms of the
lepton invariant mass q2 and their energies Eν and Eℓ reads explicitly

d3Γ

dq2dEνdEℓ

=
G2

FV
2
cb

2π3

(
q2W1 + (2EℓEν − q2/2)W2 + q2(Eℓ − Eν)W3

)
, (3.9)

where phase space is restricted by 4EℓEν − q2 ≥ 0 and we explicitely used the leptonic
tensor from eq.(3.8). Note that without cuts on the lepton energy, the integration over
the lepton energies can be carried out analytically, yielding the differential q2 rate,
which is used in chapter 5.

We want to cast the hadronic tensor W µν into a form that separates the perturbative
parts from the non–perturbative ones in a systematic way. To that end, we employ an
OPE in inverse powers of the b quark mass in this chapter. Upon noticing that the b
quark in the bound state has a small momentum relative to that of the B meson, we
can utilize the methods discussed in chapter 2.3 and expand in terms of the residual
momentum. First we relate the hadronic tensor to a correlator of hadronic currents via
the optical theorem [24, 36]. For one–particle decays it basically states that the forward
transition amplitude is equal to the imaginary part of the production of intermediate
states. Hence we may write the hadronic tensor as

W µν = − 1

π
ImT µν , (3.10)
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Chapter 3. Inclusive decays of B mesons

where we defined the correlator of the hadronic currents

T µν =

∫
d4x e−iq·x⟨B|T{J†,µ(x)Jν(0)}|B⟩ . (3.11)

For the purpose of calculations it is advantageous to perform a Lorentz decomposition
of the hadronic tensor

Wµν = −gµνW1 + vµvνW2 − iεµναβv
αqβW3 + qµqνW4 + (qµvν + vµqν)W5 . (3.12)

A similar expansion can also be done for the correlator such that the structure functions
are again related by the optical theorem Wj = −1/πImTj. To exploit the effects of
the heavy quark mass we extract its fluctuations of the b quark field

bv(x) = eimbv·xb(x) . (3.13)

Note that this is still the full QCD field and we merely redefined its phase. With the
different scales now manifestly separated, we may finally perform the OPE and write
the correlator schematically as

Tµν =
m∑

n=0

Cµ1...µn
n,µν (mb, v)⟨B|On+3

µ1...µn
|B⟩ . (3.14)

The Wilson coefficients Cn contain the perturbative pieces of the hadronic correlator
so they each include an expansion in αs. The matrix elements of the operators On+3

resemble all non–perturbative pieces coming from the binding of the quark in the
hadron. To find their exact form it has proven useful to expand the correlator with the
help of a background field [37, 38]. We define it as

SBGF :=
1

/Q+ i /D −mc

, Qµ = mbvµ − qµ . (3.15)

The expression up to order 1/mk
b can be obtained by expanding the background field

in terms of the residual momentum i /D

SBGF =
1

/Q−mc

k∑
n=0

(
(i /D)

−1

/Q−mc

)n

. (3.16)

This eventually yields the respective Ti as an expansion in inverse powers of the prop-
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3.2. Inclusive b→ c decays

agator

∆0 = (mbv − q)2 −m2
c , (3.17)

whose imaginary part is given by corresponding delta distributions and their derivatives
as

− 1

π
Im

(
1

∆0

)n+1

=
(−1)n

n!
δ(n)

(
(mbv − q)2 −m2

c

)
. (3.18)

The expansion eq.(3.16) shows furthermore, that the non–perturbative matrix ele-
ments have the general form

⟨B|On+3
µ1...µn

|B⟩ = ⟨B|b̄v(iDµ1) · · · (iDµn)bv|B⟩ . (3.19)

The remaining task is to relate these matrix elements to a basic set of non–perturbative
HQE parameters. It is important to note that they are not tied to the actual process
that is considered here, and so, once determined with experimental data, can be used
for several decays involving a heavy quark.

All fields and operators are still in full QCD (they were only rephased) and therefore
operators at a given dimension might contain corrections in higher orders of 1/mb. In
fact using the equations of motions of HQET, we may derive a set of relations to show
the explicit correspondence to higher orders in the inverse b quark mass

/vbv = bv −
1

mb

i /Dbv ,

P+bv = − 1

2mb

i /Dbv + bv ,

P−bv =
1

2mb

i /Dbv ,

(iv ·D)bv = − 1

2mb

i /Di /Dbv .

(3.20)

Here we defined the projection operators P± := 1/2(1 ± /v) onto two–component sub-
spaces analogous to the ones that appeared in eq.(2.24). The calculational procedure
that was carried out in [37, 38] works in a recursive fashion. It starts at the highest
desired dimension for the respective operator, where one can use eqs.(3.20) in the static
limit, i.e. no further 1/mb corrections to the matrix element at that order will appear.
Subsequently a minimal set of matrix elements at the given order is defined, to which
the operators of lower dimension can be related by the equations of motion. In the
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Chapter 3. Inclusive decays of B mesons

following we give the definitions and physical interpretation of the matrix elements for
increasing powers of 1/mb.

The lowest order terms in the OPE are dimension three operators of the form b̄vbv.
At leading order in the 1/mb expansion the corresponding matrix element contains only
the normalization of the states

2mB = ⟨B|b̄v/vbv|B⟩ . (3.21)

The terms at the next higher order would be proportional to 1/mb. They vanish
however due to the equations of motion. Note that this statement is generally true by
means of Luke’s theorem [39]. Consequently the next HQE parameters enter at order
1/m2

b and come from the dimension five operators. They are defined as

2mBµ
2
π = −⟨B|b̄v(iD)2bv|B⟩

2mBµ
2
G = ⟨B|b̄v(iDµ)(iDν)(−iσµν)bv|B⟩ .

(3.22)

Physically µ2
π is proportional to the square of the residual momentum k and therefore

referred to as the kinetic term, and µ2
G describes the coupling of the heavy quark spin

to the chromomagnetic field inside the heavy hadron. At dimension six, i.e. order 1/m3
b

there are two additional parameters defined as

2mBρ
3
D =

1

2
⟨B|b̄v [(iDµ), [(iv ·D), (iDµ)]] bv|B⟩

2mBρ
3
LS =

1

2
⟨B|b̄v{(iDµ), [(iv ·D), (iDν)]}(−iσµν)bv|B⟩ .

(3.23)

The Darwin term ρ3D is related to the divergence of the chromoelectric field ∇ · E
and the spin–orbit term ρ3LS to its curl s · ∇ × E. The dimension seven operators
introduce an additional nine parameters in general, which we discuss in the context of
reparameterization invariance in chapter 3.2.2.

We emphasize that there are other conventions for defining the HQE–parameters.
For example in [38, 40] they are given in terms of a spatial covariant derivative as defined
in eq.(2.26), which makes a difference in higher orders of 1/mb. Explicit conversions are
given in [41] (App. A). Furthermore it is possible to define the parameters with actual
HQET fields, instead of the rephased full QCD fields. There are no 1/mb corrections
to the matrix elements then, however one must make up for that by adding additional
contributions to get the full results. This is for example shown in [42]. No matter how
the matrix elements are defined, their operator basis always has the same dimension
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3.2. Inclusive b→ c decays

and thus there is no general advantage for choosing one definition over another.
In addition note that the number of parameters at O(1/m4

b) is already quite large,
which is becoming factorially worse with higher orders in the OPE. This makes it
relatively difficult to determine them with meaningful errors from experimental data.
Therefore it is desirable to find observables that depend on a reduced set of parameters,
yet fully resemble all contributions from dimension seven operators.

Finally we want to remark on perturbative corrections to the differential rate dΓ in
the HQE. For illustrations we may write it schematically as

dΓ = dΓ0 + dΓµπ

µ2
π

m2
b

+ dΓµG

µ2
G

m2
b

+O
(

1

m3
b

)
, (3.24)

where the dΓi obey a perturbative expansion in the strong coupling

dΓi = dΓ
(0)
i + dΓ

(1)
i

αs

π
+ dΓ

(2)
i

α2
s

π2
+ . . . (3.25)

The calculation of the perturbative corrections to dΓ0 is generally straightforward but
gets quite complicated at higher orders, since more and more loop diagrams need to
be taken into account. For the higher powers, determinations are even more involved.
To compute those Wilson coefficients it is necessary to calculate the respective loop
diagrams while simultaneously taking into account the expansion in the charm propa-
gator. In this, additional gluon matrix elements need to be considered, which render
the calculation more complicated. We will return to this issue in chapter 5.1.2.

3.2.2 Reparameterization invariance

In chapter 2.3 we demonstrated how an expansion in inverse heavy quark masses can
be set up. We exploited the fact that the residual momentum of the heavy quark is
small and that its velocity is linked to that of the composite hadron. Even though a
natural choice for this velocity is defined by v = pH/mH , i.e. the momentum and mass
of the heavy meson, this choice is by no means unique.

The fact that the final result should be independent of the choice of v is known as
Reparameterization Invariance (RPI) [43, 44]. It is related to the Lorentz invariance
of QCD [45] and was investigated in depth for inclusive decays, for example in [46, 47,
48].

In the course of this section we want to introduce the basic idea of RPI and sub-
sequently use it to lessen the number of parameters necessary for the description of
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Chapter 3. Inclusive decays of B mesons

inclusive decays. In particular we will investigate this for the HQE parameters at order
1/m4

b . In turn we will write down the full set of matrix elements which we utilize for
the determination of Vcb in chapter 5.

The reparameterization transformation δRP resembles the infinitesimal variation of
the velocity v, such that

vµ 7→ vµ + δvµ , v · δv = 0 . (3.26)

This immediately yields the transformation properties of the different building blocks
in the HQE

δRP vµ = δvµ ,

δRP iDµ = −mbδvµ ,

δRP bv(x) = imb(x · δv)bv(x) ,

(3.27)

where the last relation follows from the rephasing of the b quark field eq.(3.13). We
want to apply the transformation to the hadronic correlator of eq.(3.14), because its
left–hand side must be independent of v and is therefore RPI. The same is true for the
OPE itself, but only if the full sum, i.e. all operators, are considered. Applying the
transformation yields

0
!
= δRPTµν =

m∑
n=0

[
δRPC

µ1...µn
n,µν

]
⟨B|On+3

µ1...µn
|B⟩

+
m∑

n=0

Cµ1...µn
n,µν

[
δRP⟨B|On+3

µ1...µn
|B⟩
]
.

(3.28)

In order to explicitly determine the RP transformation acting on the matrix element,
we use their general form consisting of covariant derivatives as given in eq.(3.19). The
fields in this expression do not transform as they are evaluated at zero, so using the
transformation property of the covariant derivative from eq.(3.27) gives

δRP⟨B|On+3
µ1...µn

|B⟩ = −mbδvµ1⟨B|b̄v(iDµ2) · · · (iDµn)bv|B⟩ − . . .

−mbδvµn⟨B|b̄v(iDµ1) · · · (iDµn−1)bv|B⟩ .
(3.29)

Since eq.(3.28) must hold order by order, we can read off a relation between different
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orders in 1/mb

δRPC
µ1...µn
n,µν = mb δvα

(
C αµ1...µn

n+1,µν + · · ·+ C µ1...µnα
n+1,µν

)
. (3.30)

This poses a remarkable result as it allows to relate different orders of the HQE with
each other. Thus by applying eq.(3.30) to an observable that is RPI, it is possible to
reduce the number of parameters that need to be determined experimentally. In turn
this paves the way for a fully data–driven extraction of quantities up to O(1/m4

b).
When using the RPI relations, the reduced set of parameters reads [41, 48]

⟨B|b̄vbv|B⟩ = 2mBµ3 , (3.31a)

⟨B|b̄v(iDα)(iDβ)(−iσαβ)bv|B⟩ = 2mBµ
2
G , (3.31b)

1

2
⟨B|b̄v

[
(iDµ) ,

[(
ivD +

1

2mb

(iD)2
)
, (iDµ)

]]
bv|B⟩ = 2mBρ

3
D , (3.31c)

⟨B|b̄v [(iDµ) , (iDν)] [(iD
µ) , (iDν)] bv|B⟩ = 2mBr

4
G , (3.31d)

⟨B|b̄v [(ivD) , (iDµ)] [(ivD) , (iDµ)] bv|B⟩ = 2mBr
4
E , (3.31e)

⟨B|b̄v [(iDµ) , (iDα)] [(iD
µ) , (iDβ)] (−iσαβ)bv|B⟩ = 2mBs

4
B , (3.31f)

⟨B|b̄v [(ivD) , (iDα)] [(ivD) , (iDβ)] (−iσαβ)bv|B⟩ = 2mBs
4
E , (3.31g)

⟨B|b̄v [iDµ , [iD
µ , [iDα , iDβ]]] (−iσαβ)bv|B⟩ = 2mBs

4
qB . (3.31h)

We denote a couple of specific points about these relations. First of all we realize that,
as predicted, employing the RPI relations reduces the number of independent matrix
elements up to O(1/m4

b) from a total of thirteen parameters down to only eight. The
strongest reduction comes from the dimension seven operators, where now only five
matrix elements are present. The matrix element µ3, that appears at tree level here,
is related to the matrix elements at order 1/m2

b by the equations of motion via the
relation

µ3 = 1 +
µ2
π − µ2

G

2m2
b

. (3.32)

Therefore this representation is related to the one including µ2
π, but there are some

caveats to it, that we discuss in detail in chapter 5.2.2. In addition, some of the
matrix elements from the full evaluation are combined in a single parameter here,
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Chapter 3. Inclusive decays of B mesons

because RPI strictly relates their coefficients such that they can be written as a linear
combination. For instance ρ3D is defined with its RPI completion, i.e. we have added
a higher order contribution to make the expression RPI. Also the spin–orbit coupling
ρLS from eq.(3.23) is now missing because it does not appear in RPI observables [38,
49].

3.3 Inclusive b → u decays

In the previous chapter we saw how to construct a short–distance expansion in form of
an OPE for semileptonic b→ c decays. The same procedure can also be applied when
discussing b → u. However, due to the large charm background experimental cuts on
the phase space must be imposed, enhancing the importance of the endpoint regions
that show a pathological behaviour when interpreted point by point. Several attempts
were made in treating these endpoint regions to leading [50, 51, 52] and subleading
order [53, 54, 55, 56] by resumming the singular terms into a non–local object – the
shapefunction – which embodies all non–perturbative structures in this region of phase
space. In this chapter we review a method that utilizes the Soft Collinear Effective
Theory (SCET) which allows us to systematically include perturbative corrections
and (sub)leading contributions from the shapefunctions in calculations of the partial
rate. First we define suitable kinematical variables and give a master formula for the
partial rate including different cuts. Subsequently we motivate the definition of the
shapefunction and discuss its properties. Finally we show how a factorized form of
the hadronic tensor can be used to systematically introduce perturbative corrections
at different energy scales.

3.3.1 Kinematics and the differential decay rate

In the region of phase space that we are interested in, the energy of the hadronic final
state is much larger than its invariant mass and thus some components of the hadronic
jet momentum pµ are larger than others. In this situation one usually expands the
correlator in light–cone coordinates [52, 57]. We consider the B meson to be at rest such
that vµ = (1, 0, 0, 0) and the lepton momentum q⃗ points in the negative z–direction. In
addition we define the light–like vectors nµ = (1, 0, 0, 1) and n̄µ = (1, 0, 0,−1), which
satisfy n · n̄ = 2 and n · v = n̄ · v = 1. This allows us to write every four–vector in this
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basis as

pµ = (n · p) n̄
µ

2
+ (n̄ · p)n

µ

2
+ pµ⊥ := pµ+ + pµ− + pµ⊥ . (3.33)

The different components of the vector defined above (p+, p−, p⊥) scale differently in
the phase space region under consideration. Because of our assumptions the minus
component scales like the (large) energy p− ∼ E. The scaling of the plus component
p+ ∼ m2/E and the perpendicular one p⊥ ∼ m follow from the consideration of the
invariant mass p2 = p+p− + p2⊥ = m2 ≪ E2. Thus upon introducing a dimensionless
scaling variable λ := m/E, we see that the components of the four–momentum scale
like

(p+, p−, p⊥) ∼ E

(
m2

E2
, 1,

m

E

)
= E(λ2, 1, λ) . (3.34)

In this region of phase space, we therefore have three different scales that we will sys-
tematically disentangle in chapter 3.3.3 to separate perturbative and non–perturbative
physics. Note that for the process at hand, where the B meson is at rest, we can
explicitly identify the scaling of the minus component as p− ∼ mb and of the plus
component as p+ ∼ ΛQCD, such that the perpendicular component then scales like
p⊥ ∼

√
mbΛQCD.

It is advantageous for the kinematic structure of the triple differential rate below,
to decompose the hadronic tensor W µν in these light–cone coordinates

W µν = (nµvν + nνvµ − gµν − iϵµναβnαvβ) W̃1 − gµν W̃2

+ vµvν W̃3 + (nµvν + nνvµ) W̃4 + nµnν W̃5 . (3.35)

Note that it has a different structure than the one in eq.(3.12), but the components Wi

and W̃i are directly related.
Apart from the coordinate basis mentioned above there is another set of hadronic

variables that has proven very useful for the processes at hand [21, 58]

Pℓ = mB − 2Eℓ, P− = EH + |P⃗H |, P+ = EH − |P⃗H | . (3.36)

In this P± are the light–cone components of the hadronic final state momentum, Eℓ is
the lepton energy and EH and P⃗H are the energy and three–momentum of the hadronic
jet. The hadronic and light–cone variables are related by P+ = n ·PH and P− = n̄ ·PH .
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The phase space in these variables has a simple form

m2
π

P−
≤ P+ ≤ Pℓ ≤ P− ≤ mB , (3.37)

with mπ being the lightest possible final state and mB being the heaviest. Furthermore
the hadronic and leptonic invariant masses m2

X and q2 can be written

m2
X = P+P− , q2 = (mB − P+)(mB − P−) , (3.38)

which makes it easier to apply the necessary kinematical cuts to the phase space. Usu-
ally we will constrain the invariant mass such that the charm background is subtracted,
i.e. P+P− < m2

D. However it can also be advantageous to apply cuts that are more
applicable from the experimental point of view, for example in q2 or Eℓ.

The triple differential rate can be written with these variables as [20, 21]

d3Γu

dP+ dP− dPℓ

=
G2

F |Vub|2

16π3
(mB − P+)

[
(P− − Pℓ)(mB − P− + Pℓ − P+) f1

+ (mB − P−)(P− − P+) f2 + (P− − Pℓ)(Pℓ − P+) f3

]
,

(3.39)

where we defined the structure functions fi, that are related to the components of the
hadronic tensor from eq.(3.35)

f1 = W̃1 , f2 =
W̃2

2
, f3 =

(
y

4
W̃3 + W̃4 +

1

y
W̃5

)
, (3.40)

and for convenience we also defined the kinematic variable y

y :=
P− − P+

mB − P+

. (3.41)

The structure functions contain all physical information about the decay – we discuss
their particular features in chapters 3.3.3 and 6.2.2. Note that writing the decay rate
this way has the added benefit, that any dependence on the quark mass only enters
through the structure functions.

The integration in the variables Pℓ and P− can be carried out analytically and thus
we find a formula for the P+ spectrum, which is particularly suited for applying any cuts
on the phase space. Only the final integration in P+ must be performed numerically
then, to obtain the partial inclusive rate. We give the final formula for the rate in
appendix A.4.
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3.3.2 Leading shape function in the light cone expansion

Before we turn our attention to the perturbative corrections of the structure functions
from eq.(3.40), we show how the non–perturbative quantities enter in the region of
phase space described above. As mentioned, we can in general apply the same pro-
cedure that we had for the OPE of b → c. However, for the case at hand, we are
interested in a region of phase space in which there are three different scales shown in
eq.(3.34) and therefore we cannot simply expand in the residual momentum anymore.
Thus, in order to find the particular form of the non–perturbative matrix elements, we
write the background field eq.(3.15) in the light cone coordinates introduced above and
take the limit mu → 0. First we write the propagator of the up quark in a background
field as

1

/Q+ i /D
=

1

2

{
(/Q+ i /D),

1

(/Q+ i /D)2

}
. (3.42)

In light–cone coordinates the squared term can be written as

1

(/Q+ i /D)2
=

1

(n̄ ·Q)(n ·Q) + (n̄ ·Q)(in ·D) + (n ·Q)(in̄ ·D) + (i /D)2
. (3.43)

Since the covariant derivative corresponds to the residual momentum, it scales like
∼ λ2 and thus the first two component are ∼ λ2, while the latter two are ∼ λ4, so we
can expand

1

(/Q+ i /D)2
=

1

(n̄ ·Q)
1

(n ·Q) + (in ·D)
+O

(
1

n̄ ·Q2

)
. (3.44)

Note that the higher order terms generate the subleading shape functions, which we
will explicitly add to our structure functions in chapter 6.2.2. To leading order the
expansion of the background field from eq.(3.42) may now be written as

1

/Q+ i /D
=

1

2
/n

1

(n ·Q) + (in ·D)
+O

(
1

n̄ ·Q

)
. (3.45)

With this procedure it is possible to generate the higher order contributions in the
light–cone expansion to the b → u rate similar to how we did in chapter 3.2.1 for
b → c. Note that since n̄ · Q ∼ E ∼ mb, by the power counting introduced in
the previous chapter, this effectively is an expansion in the inverse heavy quark mass
again. However, when taking the forward matrix element to obtain the corresponding
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element of the correlator, we see that at leading order

⟨B|b̄vΓ
1

/Q+ i /D
bv|B⟩ =1

2
⟨B|b̄vΓ

1

(n ·Q) + (in ·D)
bv|B⟩

=
1

2

∫
dω

1

(n ·Q) + ω
⟨B|b̄vΓδ(ω − (in ·D))bv|B⟩ ,

(3.46)

where Γ denotes all possible Dirac structures from the currents and the expansion. We
see that, in contrast to the local matrix elements in chapter 3.2.1, the structure that
appears in the light–cone expansion is non–local. We define the shape function S(ω)

of the process in terms of this matrix element

⟨B|b̄vΓδ(ω − (in ·D))bv|B⟩ = tr

(
Γ
1 + /v

2

)
S(ω) , (3.47)

where we used the HQET trace formalism [59] to resolve the Dirac structures. The
shape function contains all non–perturbative dynamics that encode the Fermi motion
of the heavy quark inside the B meson. It cannot be calculated from first principles,
but by comparison with the local OPE, we can relate its moments to the local matrix
elements [54, 60]. Since those are in general accessible experimentally, we can extract
some information on S(ω). In chapter 6.1 we use this information to construct several
models for the shape function. In addition, note that the shape function has support
for ω ∈]−∞, Λ̄] as was shown in [20, 61]. We will often make use of a shifted version
of S(ω) however, where we define ω̂ := Λ̄−ω, such that the support is for ω̂ ≥ 0, which
simplifies some of the convolutions.

3.3.3 Perturbative corrections

Apart from the power–corrections in the light–cone expansion of the former chapter,
there are perturbative corrections to the rate, that we want to incorporate into the
structure functions of eq.(3.40). The most straightforward way to do so, is to factorize
the contributions from the three different scales present. The appropriate effective
theory to integrate out any fluctuations associated with the hard scale p−, defined in
eq.(3.34) and to disentangle the three different scales, is SCETI. It has been discussed
in detail in literature [62, 63, 64] and was reviewed for example in [61, 65, 66].

At leading order, the factorized form of the structure functions was derived in [20,
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3.3. Inclusive b→ u decays

21] and reads

f
(0)
i (P+, y) = Hui(y, µi)

P+∫
0

dω̂ ymbJ(ymb(P+ − ω̂), µi)Ŝ(ω̂, µi) , (3.48)

where the hard functions Hui include contributions at the hard scale µh ∼ mb, the jet
functions J include physics at an intermediate scale µi ∼

√
ΛQCDmb and the shape

function Ŝ, that was introduced in the previous chapter, describes non–perturbative
physics at the soft scale µ0 ∼ O(ΛQCD). Achieving a factorization of the different
contributions poses a great advantage, because we may now use results for each of these
functions at their natural scale, where they contain no large logarithms. Subsequently
we use the RGEs, introduced in chapter 2.1, to evolve them to a common scale, at
which we want to evaluate them. Note that the hatted notation for ω and S(ω) is used
to shift the integration variable defined by ω̂ ≡ Λ̄ − ω, where Λ̄ = mB − mb in the
Heavy Quark limit and thus the shape function has support for ω̂ ≥ 0.

The hard functions Hui are obtained by matching the weak effective Hamiltonian
onto the current operators in SCET. The higher order corrections have been found
at NLO [20, 63] and NNLO [67, 68, 69]. The jet functions J can be determined by
evaluating one– and two–loop corrections to the SCET current correlator, giving the
NLO [20] and NNLO [70] contributions. Finally there are also perturbative corrections
to the soft function S, that determine its radiative tail (more details in chap 6.1). They
were determined up to NNLO too [71, 72]. All of the contributions mentioned above,
can be found in appendix A.1 up to O(α2

s) for completeness.
Having determined the perturbative corrections to the above quantities, we need

to evolve them to a common scale at which we want to evaluate them. It is natural
to choose the intermediate scale µi for this purpose, as the jet functions are without
large logarithms there and it lies parametrically in the middle of the scales 1. To that
end, we need to evolve the hard function down from the hard scale µh and the shape
function up from µ0.

For the hard function, we may use the methods discussed in chapter 2.1, i.e. the

1Actually one would choose an auxiliary scale µ̄ and evolve all three quantities to it. After
evaluating the RGEs this arbitrary scale would then drop out again (see [58]). For the purpose of
illustrating, which perturbative quantities enter due to the running, it suffices to immediately choose
µi as the default scale.
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Chapter 3. Inclusive decays of B mesons

relevant exponent for the running of the scale follows from the RGE

d

d lnµ
Hui(y, µ) = 2γJ(y, µ)Hui(y, µ) , (3.49)

where γJ is the anomalous dimension of the semileptonic current in SCET. It contains
an additional term that depends logarithmically on the scale, due to 1/ε2 poles in the
renormalization factor mentioned earlier

γJ(y, µ) = Γcusp(αs) ln
mby

µ
+ γ′(αs) . (3.50)

Here Γcusp is the universal cusp anomalous dimension in SCET [73] and γ′ contains the
non–cusp parts. The solution to eq.(3.49), for example derived in [20, 74], reads

Hui(y, µi) = exp

[
2S(µh, µi)− 2aγ′(µh, µi)− 2aΓ(µh, µi) ln

mby

µh

]
Hui(y, µh) , (3.51)

where the Sudakov exponent S and the anomalous exponent aΓ are given by

S(ν, µ) = −
αs(µ)∫

αs(ν)

dα
Γcusp(α)

β(α)

α∫
αs(ν)

dα′

β(α′)
, aΓ(ν, µ) = −

αs(µ)∫
αs(ν)

dα
Γcusp(α)

β(α)
(3.52)

and similarly for aγ′ , but with Γcusp replaced by the anomalous dimension of the hard
function. In appendix A.2 there terms are expanded in terms of αs up to NNLO.

The running of the shape function Ŝ is more complicated. When determining its
scale evolution, we have to take into account an infinite number of operators instead
of the finite basis, we employed in eq.(2.8). Thus the RGE for the shape function is
written with an integral over all configurations of ω̂′, instead of a finite sum [20, 74,
75]

d

d lnµ
Ŝ(ω̂, µ) =

∞∫
0

dω̂′ γ̂S(ω̂, ω̂
′, µ)Ŝ(ω̂′, µ) . (3.53)

In this the anomalous dimension γS is not simply a matrix anymore, but a distribution,
which has the general form [74]

γ̂S(ω̂
′, ω̂, µ) = −2Γcusp(αs)

[
1

ω̂ − ω̂′

]
∗
+ 2 (γ′(αs)− γJ(αs)) δ(ω̂ − ω̂′) . (3.54)

Here we used the so–called star distribution, that will be defined in eq.(3.58) further
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3.3. Inclusive b→ u decays

down below. Without going into the exact details of the derivation, we state the
solution of the RGE for the shape function, that was derived in [20, 74, 75, 76]

Ŝ(ω̂, µi) = exp [2S(µ0, µi) + 2aγ′(µ0, µi)− 2aγJ (µ0, µi)]

× e−γEη

Γ(η)

ω̂∫
0

dω̂′ Ŝ(ω̂′, µ0)

µη
0(ω̂ − ω̂′)1−η

.
(3.55)

Apart from the RG exponent, there is an additional dependence on the scale evolution
in the parameter η = 2aΓ(µ0, µi).

We can collect all the dependence on RG factors and anomalous dimensions from
the above considerations into one factor Uy(µh, µi, µ0), by using a relation between
anomalous dimensions at different scales [77]

aΓ(µ1, µ2) + aΓ(µ2, µ3) = aΓ(µ1, µ3) . (3.56)

This way, all effects from the RG running (apart from the dependence on η) are bundled
in one coefficient in the structure functions. It reads

Uy(µh, µi, µ0) = exp

[
2S(µh, µi) + 2S(µ0, µi) + 2aγJ (µi, µ0)

− 2aγ′(µh, µ0)− 2aΓ(µh, µi) ln
mby

µh

]
. (3.57)

In the above, we need the RG factors as input. The cusp–anomalous dimension
has been calculated to three [78] and four–loop accuracy [79]. The jet anomalous
dimension γJ is known up to three loops [77], as well as the the anomalous dimension
of the SCET currents γ′, which was determined to two– [80] and three–loop accuracy
[81]. The expressions of the respective quantities can also be found in appendix A.2.

Finally we may write down the factorized form of the leading power structure func-
tion with the above considerations for the RG evolution. Note that the jet function as
written in eq.(3.48) is a complicated distribution, as was shown for example in [20, 70].
To simplify the expression, it can be transformed it into Laplace space [70, 71], where
it contains merely simple derivatives, acting on the scale parameter η appearing in a
star distribution, which is defined as

Q∫
0

dx

[
1

x

(x
a

)η]
∗
f(x) =

Q∫
0

dx
f(x)− f(0)

x

(x
a

)η
+
f(0)

η

(
Q

a

)η

. (3.58)
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This enables us to systematically include higher order perturbative corrections into
the factorization formula, because every dependence on the RG parameter η is auto-
matically generated to the order required. In addition only one integral over the star
distribution needs to be determined, as all dependence on higher orders is contained
in the Laplace transform j̃ of the jet function. The final factorized form of the leading
power structure function reads

f
(0)
i (P+, y) = Uy(µh, µi, µ0)Hui(y, µh) j̃

(
ln
mbµ0y

µ2
i

+ ∂η, µi

)
(3.59)

×e
−γEη

Γ(η)

P+∫
0

dω̂

[
1

P+ − ω̂

(
P+ − ω̂

µi

)η]
∗
Ŝ(ω̂, µ0) .

As written, this formula achieves a factorization of the perturbative contributions at
the different scales and can in general be extended to an arbitrary order. Formally the
results that are obtained with eq.(3.59) are independent of the scales µ0, µi and µh,
however a residual dependence remains from missing higher order terms. By varying
the scales, we can estimate the size of the error this causes. We perform our analyses
at NNLO, since both the perturbative corrections to the hard– and jet function, as well
as the RG exponents are fully known to this order. For the actual calculations we then
need to reexpand eq.(3.59) in terms of αs. We assign the same power counting to the
strong coupling at different scales and reexpand the final structure functions in them.
The expansion for any terms ∼ αs(µ0) in the modelling of the shape function must be
treated in a different way and we discuss the implications for it in chapter 6.3.

3.4 Mass schemes

In the previous section we established an expansion in the inverse quark mass, as well
as in the strong coupling αs for inclusive decays. Upon performing the phase space
integration, it becomes apparent that the leading term in the expansion has a very
strong dependence on the quark mass

dΓ ∼ G2
F |VCKM|2m5

b , (3.60)

which is expected since, without corrections in the inverse quark mass, the decay of
the meson is simply the decay of its respective bound heavy quark. However in nature,
quarks can never appear as free particles. They must always be confined in bound states
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3.4. Mass schemes

due to the phenomenon known as confinement. Therefore there is no unambiguous way
to determine the mass of a quark, unlike for leptons (or other particles) that do appear
as asymptotic states and hence can be measured experimentally. Consequently, any
deviation in the value of the quark mass introduces a very large effect on the decay
width, due to its enhancement by the fifth power.

In the following we want to show schematically how the choice of a suitable mass
scheme can reduce the size of the perturbative corrections. We may derive relations
between different mass schemes – in general their definition is related to the quark
propagator

S(p) =
−i

/p−m0 + Σ(p,mscheme
Q )

, (3.61)

with the bare mass m0 and the self–energy Σ. Masses in different schemes are related
to the bare mass m0 by a perturbative series with divergent coefficients cn that must
be renormalized

m0 =

[
1 +

∞∑
n=1

cn

(αs

π

)n]
mscheme

Q . (3.62)

Depending on the choice of the renormalization procedure, there are several distinct
possibilities for the relation of the bare mass to the mass in a particular scheme. Since
the quark mass is not directly experimentally accessible there is no unique choice –
however one must make sure that all physical observables are unaffected by the scheme.
For the on–shell (or pole) and the MS scheme the first coefficient can be determined
[35]

cOS
1 = −3

4
CF

(
1

ε
+ γE − 4π + ln

µ2(
mOS

Q

)2 +
4

3
+O(ε)

)

cMS
1 = −3

4
CF

(
1

ε
+ γE − 4π

)
.

(3.63)

Note that the scale µ in the OS scheme is fixed by the on–shell condition, but the MS

scheme stays scale dependent. Since both schemes can formally be defined by their
perturbative series, it is possible to find a relation between the two

mOS
Q = zOS→MSmMS

Q , (3.64)

in which the factor z is expressed in yet another perturbative series that can be written
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as

zOS→MS = 1 +
∞∑
n=1

an

(αs

π

)n
and a1 = −CF

(
3

4
ln

µ2(
mOS

Q

)2 + 1

)
, (3.65)

where all coefficients an are now finite after renormalization. Thus the choice of the
mass scheme has direct impact on the perturbative series for observables. To make this
explicit we write the differential rate from eq.(3.60) in the MS scheme instead of the
on–shell scheme

dΓ ∼ G2
F |VCKM|2

(
mMS

b

)5
(zOS→MS)5

(
1 +

αs

π
r1 +

(αs

π

)2
r2 + . . .

)
(3.66)

= G2
F |VCKM|2

(
mMS

b

)5 (
1 +

αs

π
(r1 + 5a1) + . . .

)
, (3.67)

where the dots denote higher order corrections in αs. Thus we can conclude that by
a suitable choice for the mass scheme, we may decrease the size of the perturbative
corrections.

It was shown for example in [82, 83] that the on–shell scheme, which is often the nat-
ural choice for particles appearing as asymptotic states, is a particularly bad choice for
quark masses . Computing observables in the on–shell scheme yields a badly behaved
perturbative series. This is related to the fact that the on–shell mass mOS

Q suffers from
a so–called renormalon ambiguity [84, 85]. Using a short–distance mass scheme (such
as e.g. MS) cures this problem since such schemes are by definition free of renormalons.
Computing observables in a suitable short–distance scheme eventually yields a more
rapidly converging perturbative series, which means in turn that the bad behaviour
of the series in the on–shell scheme is related to the problem of renormalons in the
on–shell mass.

In fact, the renormalon ambiguities cause an intrinsic uncertainty of O(ΛQCD), which
renders all predictions in higher orders of 1/mb in HQET meaningless. The MS scheme
does not suffer from such renormalon issues, however still has a relatively bad conver-
gence in the perturbative series for B meson observables [86, 87]. This is related to the
fact that the MS scheme is designed to work for scales µ > mb, while the scales in the
Heavy Quark Expansion are typically µ < mb. For this reason specific mass schemes
have been defined which we introduce in the next chapter.
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3.4. Mass schemes

3.4.1 Kinetic mass scheme

Due to the above considerations it becomes apparent that a mass scheme is needed
specifically for the purpose of treating infrared contributions. One of such schemes
is the kinetic mass scheme [88, 89]. The definition of the kinetic mass is based on
the scheme independence of the meson mass mH . By means of the Lagrangian from
eq.(2.30) and the normalization from eq.(3.21) we can derive a systematic expansion
for mH in terms of the non–perturbative matrix elements introduced in the former
section [34, 42, 89]

mH̄ = mQ + Λ̄ +
µ2
π

2mQ

+O

(
1

m2
Q

)
, (3.68)

where mH̄ = (mH + 3mH∗)/4 is the average mass of the ground state and excited
meson H and H∗, respectively. The additional term Λ̄ resembles the binding energy
of the quark inside the meson and can be defined as Λ̄ = mB −mb in the heavy quark
limit. Because the l.h.s. of eq.(3.68) is an actually measurable quantity, the r.h.s. must
necessarily be scheme independent 2. This means, that for any specific choice of a mass
scheme, all ambiguities in the mass definition must be compensated by a corresponding
shift of the other parameters. It is worth mentioning that in higher orders, there appear
non–local matrix elements in this formula [88], whose numerical values have not been
determined experimentally yet.

All parameters in the kinetic scheme are connected to their counterparts in the OS
scheme by means of a perturbative series, for example like Λ̄OS = Λ̄kin + [Λ̄]pert. Here
all αs corrections are contained in [Λ̄]pert. By considering eq.(3.68) in the kinetic as
well as in the OS scheme, a relation between the two mass definitions can be derived
[86]

mOS
Q = mkin

Q (µ) + [Λ̄(µ)]pert +
[µ2

π(µ)]pert
2mkin

Q (µ)
+O

(
1

m2
Q

)
. (3.69)

Here we explicitly denoted the scale µ, which serves as a Wilsonian cutoff ΛQCD ≪
µ ≪ mQ which separates short– and long distance effects. As demonstrated in [86,
88], one can relate the perturbative corrections of the HQE parameters to the QCD
sum rules in the small–velocity limit, i.e. in the limit where the three–momentum of

2Of course this statement is only true, when one considers eq.(3.68) to all orders in 1/mb. By
employing a cutoff, uncertainties from the choice of the mass scheme might reappear.
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the final state is much smaller than mb and mc in the rest frame of the B meson.
The perturbative corrections to the mass, as well as the HQE parameters are cur-

rently known at NNLO [90] and N3LO [86] – their respective expressions are given
in appendix A.3 for completeness. Knowing the conversion between schemes to this
order in αs is necessary, as the corrections to the partonic rates are known to the same
accuracy.
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CP Violation in three–body B decays

We investigate the violation of CP symmetry in multibody B decays. As discussed
in chapter 1.3 a difference in the strong as well as in the weak phase is necessary to
have non–vanishing CP violation in the SM. While the latter is given in terms of the
CKM matrix, the strong phase is often challenging to compute and a full QCD–based
theoretical description is missing for most processes of interest.

In the last decades large amounts of data became available on B decays from BaBar,
Belle(II) and LHCb. For charmless nonleptonic two–body decays the method of QCD
factorization (QCDF) [91, 92, 93, 94] has been established, which is set up as a double
expansion in αs and ΛQCD/mb.

A large part of nonleptonic B decays are however three– and more–body decays.
They come with the added benefit that the strong phases and therefore also the CP
asymmetries depend on one of the kinematical variables such that they differ across
phase space. First attempts to use QCDF to calculate decay rates and CP asymmetries
show that the leading order can reproduce the gross features for the Dalitz distributions,
but does not seem to describe the corresponding CP asymmetries properly [95, 96].

Consequently, the current description of multibody B decays relies to a large extent
on modelling of the corresponding decay amplitudes (see e.g. [97, 98, 99, 100, 101,
102, 103, 104]). In this chapter we introduce a new parameterization for such decays
by dividing the amplitude into Au and Ac, which contain valence u and c quarks,
respectively. This allows us to extend the usual amplitude analysis with charmonium
loops at high invariant masses, which may be governed by charm resonances or even
charmonium–like exotic states. Unlike the usual resonance description, this generates
large CP effects, that we discuss using several scenarios for intermediate states [13].
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4.1 Modelling the three–body amplitudes

In this chapter we focus on the process B+(pB) → π+(p1)π
−(p2)π

+(p3), however the
approach can also be extended to B → hhh with h = π,K decays. In the SM, the
decay is described by the weak effective Hamiltonian for the b → d flavour transition
eq.(2.19). For the sake of modelling the amplitudes, we are only interested in the
difference of operators containing u quarks and c quarks. Therefore we use eq.(1.21)
to eliminate the CKM element VtbV ∗

td and rewrite the Hamiltonian as

Heff =
GF√
2
(VubV

∗
ud Ou + VcbV

∗
cd Oc) , (4.1)

where Ou,c contain the current–current as well as the relevant penguin operators. Ex-
plicitly employing the convention that the CP–violating weak phase of the CKM matrix
enters via Vub = |Vub|e−iγ , the decay amplitude can be written as

A±(s12, s23) := ⟨B±|Heff |πππ⟩ = Au(s12, s23) e
∓iγ +Ac(s12, s23) (4.2)

with

Aq(s12, s23) =
GF√
2
|VqbV ∗

qd|⟨B|Oq|πππ⟩ . (4.3)

The amplitudes A± and Au contain CP–conserving strong phases and are complex
valued functions of the kinematic variables s12 and s23, which are defined as

sij := m2
ij = (pi + pj)

2 . (4.4)

Direct CP violation is induced by the interference of the matrix elements of the two
operators Ou and Oc, analogously to the general case from eq.(1.27).

The matrix elements Aq are non–perturbative and therefore their values have to
be extracted from data by means of an amplitude analysis. In general, A+ and A−

are fitted separately using a model ansatz. Frequently used are isobar models, which
parameterize the three–body amplitudes as pseudo two–particle decays, where one of
the two particles is a resonance that subsequently decays into two stable particles [14].
Schematically this reads

A±(s12, s23) =
∑
k

c±k P
(ℓ)
k (s12, s23)

s12 −m2
k + imkΓk

+
∑
l

c±l P
(ℓ)
l (s12, s23)

s23 −m2
l + imlΓl

. (4.5)
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Here P (ℓ) are the Legendre polynomials describing the spin of the decaying resonances
with massesm and widths Γ. In the simplest isobar model the propagators of the decay-
ing resonances are described by Breit–Wigner shapes. More sophisticated approaches
make use of Blatt–Weisskopf factors [105] to account for different spin configurations
or employ the so called K–matrix approach [106], which preserves unitarity in contrast
to the Breit–Wigner model. However all of these approaches contain the complex pa-
rameters c±k which are assumed to be constant throughout the Dalitz distribution, such
that all the kinematic dependence arises from the Breit–Wigner form. Therefore the
strong phases extracted from the differential rates depend strongly on the underlying
shape of the these models. In addition there is no possibility to include non–resonant
effects in the analysis, which pose a valid source of CP violation.

As the weak CKM phase γ is constant throughout the Dalitz plane, the CP distri-
bution gives a direct measure of the strong phase differences between the amplitudes
Au and Ac. This difference is driven by the mass of the charm quark. If the charm
and up–quark mass would be equal, the CP asymmetry would vanish, since then Au

and Ac would be identical.
In the isobar model, the kinematical dependence of the phases in Au and Ac arises

from the Breit–Wigner shapes and is related to the asymptotic final–state interactions
of the decay products of the resonance. These asymptotic interactions are not related
to CP violation, which is evident since both interfering amplitudes will have the same
Breit–Wigner phase. Therefore, the fact that the thresholds for charm states are fun-
damentally different from light quark states will manifest itself in the CP asymmetry
close the charm thresholds. Such effects would contribute to Ac, while they would be
absent (or strongly suppressed) in Au. Interestingly, the distribution of CP violation
for B → πππ obtained by the LHCb Collaboration [14, 15, 16] shows pronounced
structures in the center of the Dalitz plane close to the invariant mass of cc̄ states.

Therefore, parameterizing the amplitudes in terms of Au and Ac is the natural
choice in which the known mechanisms of CP violation in the SM are incorporated.
It is thus advantageous to perform the analysis using not the amplitudes A+ and A−,
but rather Au and Ac. Specifically this implies

A±(s12, s23) =
∑
k

(a
(u)
k e∓iγ + a

(c)
k )P

(ℓ)
k (s12, s23)

s12 −m2
k + imkΓk

+
∑
l

(b
(u)
l e∓iγ + b

(c)
l )P

(ℓ)
l (s12, s23)

s23 −m2
l + imlΓl

,

(4.6)

with the same set of complex fit parameters a(u) and a(c) for both amplitudes. In
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addition, the benefit of a set up using Au and Ac is, that charm effects which are
expected to play a dominant role above the open–charm threshold can be included
systematically. We discuss the inclusion of these threshold effects in the next section.

We note that the isobar–model parameterization has a few interesting features.
First of all, in the case of very narrow resonances (meaning that their width is small
compared to the mass spacing between the different resonances) the relation in eq.(4.6)
implies

d2Γ±

ds12 ds23
=

∑
k

δ(s12 −m2
k)P

(ℓ)
k (m2

k, s23)B(B± → πRk) , (4.7)

where

B(B± → πRk) =
1

Γtot

∣∣∣a(u)k e∓iγ + a
(c)
k

∣∣∣2 , (4.8)

is the branching ratio of the two–body decay B → πRk. In this approximation, the rate
asymmetry is completely determined by those of the two particle decays. Therefore, if
only low lying resonances with masses well below the charm threshold are taken into
account, the narrow width example clearly shows how the complex structure in the CP
asymmetries at high invariant masses can hardly be accounted for.

A second remark needs to be made concerning the current fits of the data. In the
most recent analysis of the LHCb Collaboration [14, 15] the residues of the resonances
are parameterized as

c±k = a
(u)
k e∓iγ + a

(c)
k = xk ± δxk + i(yk ± δyk) , (4.9)

with real parameters xk, yk, δxk, δyk and where a(q) = |a(q)|eiϕ(q) . This shows that
the two parameterizations are related and contain the same information. However
we emphasize, that when using x, y, δx, δy, the assignment to the matrix elements
appearing in the effective Hamiltonian is not evident anymore. In practice, the fit
values are extracted with respect to the ρ resonance [14, 15]. This means that yρ
and δyρ are fixed to 0 corresponding to a phase choice, because the overall phase of
amplitude A± is not observable. For our parameterization this implies that ϕ(u)

ρ = 90◦.
In addition for the isobar fit, xρ is fixed to 1, so the values of x, y, δx, δy for other
resonances are in units of the value for the ρ resonance. The relative strength of the
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two matrix elements Au and Ac is then given by

|a(u)ρ |
|a(c)ρ |

≃ δxρ ≃ O(10−3) , (4.10)

where the numerical factor can be obtained by using the fit result for δxρ from [15].
The smallness of the ratio seems to indicate that the amplitude for the ρ resonance
is driven by Ac. This seems counter–intuitive as the ρ can be immediately formed
from the valence u quarks in Au. Therefore, we expect the ratio in eq.(4.10) to be
much larger. The small ratio may very well be an artefact of the analysis as charmed
resonances are not included. In fact, rewriting the fit parameters x, y, δx, δy from [15]
for the S–wave resonance σ and the D–wave resonance f2 also leads to a small ratio
a(u)/a(c). This indicates that charmed resonances and threshold effects might play a
role.

4.2 Parameterization of threshold effects

We now want to turn our attention to the parameterization of the charm threshold
effects and include them into the isobar fit. In addition we study whether this extension
to current fit models changes the ratio in eq.(4.10) to more plausible values.

To parameterize the impact of the open–charm threshold effects, we concentrate on
the current–current part of the operator Oc. We insert a full set of intermediate states
1 =

∑
|n⟩⟨n| to write it as

⟨B+|Oc|πππ⟩ =
∑
n

⟨B+|Oc|n⟩ ⟨n|πππ⟩ . (4.11)

The sum over these intermediate states can be split into the states with and without
valence charm quarks. We assume that the difference between the matrix elements
of the operators Oc and Ou is mainly driven by the states involving valence charm
quarks and hence focus on them. We naively factorize the matrix element ⟨B+|Oc|n⟩,
by employing a Fierz identitiy on the four–quark operator

⟨Oc⟩ =
1

Nc

⟨b̄γµ(1− γ5)d⟩⟨c̄γµ(1− γ5)c⟩+ ⟨b̄γµT a(1− γ5)d⟩⟨c̄γµT a(1− γ5)c⟩ . (4.12)

The invariant mass of the intermediate states |n⟩ must be close to the B meson
mass, and therefore the lowest possible (hadronic) state with valence charm quarks
is a cc̄ resonance Rcc̄ and a pion. At leading order in the Fock state, the cc̄ reso-
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nance is in a color singlet state, thus only the first term in eq.(4.12), which is 1/Nc

suppressed, contributes. Furthermore, the cc̄ resonance Rcc̄ is in a V − A isopin–zero
state. The (axial)–vector current generates a tower of J/ψ (1−−) (and orbitally excited
charmonium) resonances which decay into two pions, but only with small branching
ratios [26]. Thus it is reasonable to assume that they do not mark the most significant
contributions in the process.

The color–allowed second term in eq.(4.12) produces the two charm quarks in a
color–octet state. Its leading hadronic contribution arises through intermediate states
containing a D(∗)D̄(∗) pair. A similar picture emerges in QCD factorization of two
body decays, where the charm loop drives the CP asymmetry. This is sketched in
Fig. 4.1, where the cut shows that the DD̄ states can appear as intermediate states. In
two–body decays, the loop momentum q has q2 = m2

B and therefore this contribution
is subleading in 1/mb. However, in three–body decays such DD̄ intermediate states
can rescatter into two pions which leads to a threshold behaviour once the invariant
mass of the two pions crosses the value 2mD. In general, the amplitude Ac will thus
contain – aside from Breit–Wigner like contributions as modelled in the isobar model
– also threshold-like singularities

Ac = ⟨B+|Oc|Rcc̄π⟩ ⟨Rcc̄π|πππ⟩+ ⟨B+|Oc|DD̄X⟩ ⟨DD̄X|πππ⟩ , (4.13)

where for simplicity we only consider the DD̄ threshold. We denote the intermediate
DD̄X–state by R, where R contains the cc̄ pair in a color-octet configuration. The
second term in eq.(4.13) is challenging to calculate, even if one constructs a mesonic
model based on heavy–meson chiral perturbation theory. The diagrams encountered in
this approach can in general become divergent whenever orbitally excited D∗ mesons
appear in the loop–induced decay [97]. In order to render the diagrams finite it is

Figure 4.1: Left: Sketch of color–octet contribution in QCD factorization, where the blobs
correspond a single or two-pion states. Right: example of a mesonic diagram corresponding
to the one on the left.
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Figure 4.2: Left: Real and imaginary parts of the modified propagator TR below and above
the open–charm threshold. Right: Comparison of the argument of TR and a standard Breit–
Wigner shape.

necessary to introduce a formfactor that regulates the diagram [99, 100]. Since this
also poses a model assumption there is no advantage in actually constructing such
diagrams – the number of parameters that must be determined by experiment does
not decrease this way. The same problem applies to a dispersive treatment, where
additional subtraction constants need to be introduced, that limit the predictive power
of the approach in the same way. Because of these issues, we propose a simple model
ansatz for the threshold contributions. While this procedure does not contain more pa-
rameters that need fixing with experimental data than more sophisticated approaches,
it is much easier to extend existing Dalitz analyses with it.

The intermediate state R can be described with a modified propagator corresponding
to a two–point function of a quantum field

TR(s12) =
1

s12 − (mbare
R )2 + Σ(s12)

=
1

s12 −m2
R + [ΣR(s12)− Re ΣR(m2

R)]
, (4.14)

where ΣR(s12) is the self energy of the state R. To ensure that the pole is located at the
physical mass mR, the bare mass is renormalized by Re ΣR(m

2
R)

1. Here we focus on the
contributions from the open–charm loops to the self–energy, which entail the standard
bubble summation diagrams. The underlying assumption of this parameterization
is the fact, that the self energy of the resonance decaying into two pions may be
represented by this particular threshold contribution. These loops generate a dynamical
width for the resonance above the open–charm threshold, which we parameterize by

1We do not explicitly consider the field renormalization, as these terms would only alter the residue
of the propagator which is a model parameter.
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the threshold function

ΣR(s12) = gRmR

√
sthres − s12 arctan

 1√
sthres
s12

− 1 + iϵ

 , (4.15)

where sthres is the open-charm threshold and gR is the coupling of the intermediate state
R to an open–charm system. Note that the threshold function acquires an imaginary
part, once its threshold is crossed, while the real part has a cusp there. Figure 4.2
depicts the real and imaginary part of TR below and above the open–charm threshold,
and a comparison between the argument of TR and a standard Breit–Wigner shape.
This shows that the strong phase introduced from the threshold is fundamentally dif-
ferent from that in a standard Breit–Wigner parameterization. The sharp sign change
at the DD̄ threshold was also found in [103, 104], which shows how this parameteriza-
tion shares features with an approach using mesonic loop–diagrams. As a consequence,
our parameterization generates much larger structures in the CP distribution. We note
that in principle the coupling gR can be fixed once the width of R is determined from
experiment. In addition also effects of composite states could be described by eq.(4.15).

Finally, the threshold effects described by TR are accounted for via

Ac(s12, s23) =
∑
R

aRe
iϕR

(
P

(ℓ)
R (s12, s23)TR(s12) + (s12 ↔ s23)

)
+ . . . , (4.16)

where aR and ϕR are constant normalization constants and phases, and the dots in-
dicate low–lying resonances that can be parameterized in the usual way. In principle,
mR, gR, aR and ϕR are fit parameters that should be determined from the amplitude
analysis.

Furthermore known exotic charmonium resonances can also be explicitly included
with this parameterization. For example X(3872) or Zc(3900), which decay predomi-
nantly into a pair of open–charm states (like DD̄, DD̄∗, . . .) and lie very close to their
respective thresholds. Finally, we emphasize that these DD̄ threshold effects may be
even more pronounced in B → KKK or B → Kππ decays. The above discussion
can be similarly applied to these decays and our model ansatz for Ac in eq.(4.16) can
directly be applied to these analyses as well.
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Figure 4.3: CP distributions from the resummed propagator TR. Left: the S–wave resonance
χc0(3860). Right: the P–wave resonance X(3872).

Figure 4.4: CP distributions from interference of a ρ resonances and the resummed propa-
gator TR. Left: the S–wave resonance χc0(3860). Right: the P–wave resonance X(3872).

4.3 Discussion and conclusion

The model ansatz for the threshold effects, that we presented in this chapter, should
be tested in a full analysis of the B → hhh data to see if the CP asymmetries in the
high–energy region can be described. As discussed, it would be particularly interesting
to see, if the fit results for the lower–lying resonances change, such that they are more
in line with the expectation of a dominating Ac contribution. Furthermore it would be
interesting to see how these effects influence an B → KKK amplitude analysis.

A full analysis of the experimental data cannot be obtained in this thesis, because
it requires the inclusion of the lower–lying resonances and specific S and D wave
parameterizations that the LHCb Collaboration uses (see [14, 15] for a recent elaborate
study). These are unfortunately only implicitly denoted in the respective publications,
such that an extraction of their explicit model is very cumbersome. Nevertheless we
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Figure 4.5: CP distributions from the interference of a ρ resonances and Breit–Wigner
parameterizations. Left: the S–wave resonance χc0(3860). Right: the P–wave resonance
X(3872).

illustrate that the sharp change in the strong phase, due to the opening of the DD

threshold, can generate interesting CP patterns. For this we discuss four exemplary
studies.

In figure 4.3 we show the effect of TR in the high–s region with the assumption
that Au is constant and considering the effect of one resonance in Ac. To emphasize
the difference between S and P–wave contributions, we consider the scalar χc0(3860)

and the vector X(3872) described by the resummed propagator TR. There the relevant
charmonium thresholds are DD̄ and DD̄∗, respectively. We emphasize that these
states are just examples to illustrate the effect of TR. In fact, our parameterization is
not limited to these known resonances and can be applied more generally by leaving
the parameters mR and gR unconstrained in the analysis. For the purpose of these
examples, we fixed mR to the value of the respective resonance and assumed gR = 0.1.
We observe that the inclusion of the charm–loops, causes large patterns of CP violation
of O(1) above the open–charm threshold. Similarly large effects were found in the
recent analysis of [104], where a model based on hadronic charm loops combined with
a χ0

c resonance is discussed.
Of course, the assumption of Au poses a large simplification, as in a full fit this

amplitude contains a series of low–lying resonances (correspondingly also Ac can con-
tain such resonances). To illustrate the effect that the interference of these resonances
with Ac has, we include a ρ resonance, parameterized with a Breit–Wigner shape in
the amplitude Au. In figure 4.4 we show the corresponding CP distributions again for
both the scalar χc0(3860) and the vector X(3872) resonance described by the resummed
propagator TR. Even in parameterizing Au in such a simplistic way, we observe a wide
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variety of CP violation in different regions of the Dalitz as the model generates O(1)

CP violation in the high–energy region. To stress the difference of our model with a
standard Breit–Wigner parameterization, we generate in figure 4.5 the corresponding
plots using Breit–Wigner parameterizations for the ρ as well as the χc and X reso-
nance. Because these resonances are very narrow, CP violation is only observed in
their very close vicinity. This is particularly contrasted by the center region of the
Dalitz distribution, where such a parameterization cannot create any structures at all.

We see that the model ansatz, which includes effects from open–charm threshold
states, can indeed cause intricate structures with O(1) CP violation. Moreover, we
conclude that it is feasible to perform the amplitude analysis in terms of the amplitudes
Au and Ac, instead of A+ and A−. This allows to better distinguish effects from
different physical sources and directly probe the strong phases, which drive the strength
of CP violation. From the experimental point of view it will become relevant to include
open–charm effects and exotic states in one way or the other, once data becomes more
precise. The framework established here is an easy to implement possibility to do that.
Thus, employing this model ansatz into a full amplitude analysis, may give valuable
insights and help improve the theoretical description of multibody decays.
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Chapter 5

First extraction of inclusive Vcb from q2 moments

In this chapter, we want to turn our attention to the inclusive determination of the
CKM element Vcb from B → Xcℓν decays. As mentioned before, Vcb is present in several
different processes such that enhancing its precision is a key component even beyond
the decays considered here. Furthermore, improving our knowledge of Vcb is important
given the longstanding tension between Vcb obtained from exclusive B → D(∗)ℓν decays
and the inclusive result, known as the Vcb puzzle (for recent works see e.g. [107, 108]).
In some observables (like Bs → µ+µ−), the uncertainty on Vcb is already the dominating
contribution to the full error. Beyond that, also the extraction of HQE parameters from
the process is important, as they form an input in, for example, the SM prediction for
inclusive B → Xs,dℓℓ decays [109, 110].

The determination of Vcb has reached an impressive percent–level of accuracy due to
both experimental and theoretical progress (see e.g. [111] for a recent review). As we
explained in chapter 3.1 and 3.2.1, inclusive determinations are based on the Heavy-
Quark Expansion, allowing for an OPE of the differential semileptonic rate as a power
expansion in the inverse bottom quark mass, 1/mb. We want to tackle the problem of
proliferations that appears at O(1/m4

b) for the non–perturbative matrix elements and
use a new method utilizing q2 moments to determine an updated value for Vcb.

All previous inclusive extractions of Vcb use centralized moments of the lepton energy
and hadronic invariant mass decay spectra that are normalized and do not depend on
Vcb. These moments allow for the extraction of the non–perturbative hadronic matrix
elements, which are in turn used in combination with the total semileptonic rate to
determine Vcb.

The current most precise determination employs the kinetic scheme for the b quark
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mass, outlined in [112] (see also [113, 114]):

|Vcb| = (42.16± 0.30|th ± 0.32|exp ± 0.25|Γ) · 10−3 = (42.16± 0.51) · 10−3 . (5.1)

This state–of–the–art determination includes the recently calculated α3
s corrections to

the total rate [115] and power corrections up to 1/m3
b . At this level, only the four

hadronic parameters are present, that we introduced in eq.(3.22, 3.23): µ2
π and µ2

G

at order 1/m2
b , and ρ3LS and ρ3D at 1/m3

b . Computing the expansion at even higher
orders, the number of hadronic matrix elements increases rapidly with an additional
nine elements at 1/m4

b and eighteen at 1/m5
b [37, 38, 116]. This proliferation of HQE

elements hinders their full extraction from data. On the other hand, using the lowest–
lying state saturation (LLSA) assumption [38, 117], the size of the 1/m4

b and 1/m5
b

parameters can at least be estimated. Using these estimates as Gaussian priors, the
1/m4

b and 1/m5
b parameters were included in an analysis of the inclusive semileptonic

b → c data [40, 112]. The inclusion of the higher power corrections mentioned above,
is found to reduce the value of Vcb by about 0.25% [40]. In addition, a recent analysis
using the 1S–scheme provided a value for Vcb consistent with (5.1), but exhibiting a
slightly larger uncertainty [118].

In this chapter, we use the methods described in chapter 3.2.2 to perform the first
determination of Vcb using the approach suggested in [41] based on the moments of the
four–momentum transfer q2 spectrum. These moments have recently been measured
experimentally with high precision by both Belle [17] and Belle II [18]. Furthermore
they are reparameterization invariant quantities and thus we may significantly reduce
the number of HQE parameters, that are necessary up to O(1/m4

b) – see eq.(3.31).
This chapter is outlined as follows. We first summarize the method to determine Vcb

from q2 moments and discuss the available αs corrections. In chapter 5.2, we discuss the
fit procedure as well as the inputs and the treatment of the theoretical uncertainties.
We continue discussing our results for several scenarios for the theoretical correlations.

All of the results in this chapter were published in [19].
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5.1 The new method to determine Vcb

5.1.1 Preliminaries

We consider the semileptonic decay of a B meson B(pB) → Xc(pX)ℓ(pℓ)νℓ(pν), with
ℓ = e, µ, triggered by the effective Hamiltonian from eq.(3.3), with a transition into a
charm quark:

Heff =
GF√
2
Vcb (c̄b)V−A

(
ℓ̄ν
)
V−A

+ h.c. . (5.2)

In order to include the spectral moments ⟨Mk⟩ of the inclusive decay, we generalize
the phase space integration over the total semileptonic rate Γsl in eq.(3.7) by multiplying
with a certain weight function w(v, pℓ, pν), raised to an integer power n

⟨Mn[w]⟩ =
∫

dΦwn(v, pℓ, pν)W
µνLµν . (5.3)

Here v = pB/mB is the B meson velocity and pν and pℓ denote the momenta of the
neutrino and the charged–lepton, respectively. The prediction for Γsl is obtained with
w(v, pℓ, pν) = 1, while moments of the leptonic invariant mass (q2 moments) correspond
to the weight function w(v, pℓ, pν) = q2, where q = pℓ+pν is the momentum of the lepton
pair. In this prescription it is also simple to generate other spectral moments. For
example, for the hadronic invariant mass moments, one sets w(v, pℓ, pν) = (mBv − q)2

with pX = pB − q, while moments of the charged lepton energy in the B meson rest
frame are obtained with w(v, pℓ, pν) = v · pℓ.

The calculation of the total semileptonic rate proceeds via the OPE of the time–
ordered product of the hadronic tensor, yielding the HQE we derived in chapter 3.2.1.
Just like for the total rate, we may utilize this method to determine an expansion in
inverse mb for the spectral moments as well

⟨Mn[w]⟩ =
∞∑
n=0

C
(n)
µ1...µn

mn+3
b

⟨B|b̄v(iDµ1 · · · iDµn)bv|B⟩ , (5.4)

where we explicitly denoted the suppression in the heavy quark mass.
The total rate and the q2 moments are invariant under the reparameterization trans-

formation δRP that we introduced in eq.(3.27). This can easily be seen, when applying
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the transformation to the generalized moments from eq.(5.3)

δRP⟨Mn[w]⟩ =
∫

dΦ [δRPw
n(v, pℓ, pν)]W

µνLµν . (5.5)

Note that the RP transformation only acts on the weight function on the r.h.s. here, be-
cause it is the only quantity which can be velocity dependent. Obviously the weights
of the rate and the q2 moments do not depend on v and thus they are fundamen-
tally RPI. On the contrary, the hadronic invariant mass and charged–lepton energy
moments are not invariant under reparameterization, since their associated weight
functions δRPw(v, pℓ, pν) ̸= 0. In [41, 48] it was shown that the invariance under
reparameterization of the total rate and the q2 moments, which implies δRPΓsl = 0

and δRP⟨(q2)n⟩ = 0, holds also for their corresponding OPE and connects subsequent
orders in 1/mb in eq.(5.4). As we have shown in chapter 3.2.2, we can exploit this
fact to reduce the number of parameters that need to be determined by experiment
significantly from thirteen to eight at O(1/m4

b) – see eq.(3.31) for the definition of the
RPI matrix elements.

The spectral moments are measured at B factories with various threshold selec-
tions on the charged–lepton energy. On the one hand these selections are neces-
sary to suppress backgrounds from low–energy electrons. On the other hand, mea-
surements with different selections provide additional information on the HQE pa-
rameters. Predictions for the moments with threshold selections on the charged–
lepton energy are obtained by including a proper veto function in the weight, e.g.
w(v, pℓ, pν) → w(v, pℓ, pν)θ(v · pℓ − Ecut). However, introducing a similar phase–space
constraint in the q2 moments breaks their invariance under reparameterization. There-
fore it was suggested in [41] to study q2 moments with a threshold selection directly
on q2, which then preserves the RPI of the observable. Note that the constraint on
the minimum value of q2 also implies a bound on the charged–lepton energy, because
q2 ≤ 4EℓEν . In particular we see

Eℓ ≥
m2

B + q2cut −m2
D − λ1/2(m2

B, q
2
cut,m

2
D)

2mD

, (5.6)

where λ1/2(m2
B, q

2
cut,m

2
D) is the Källén function. The q2 threshold selection cannot be

chosen too large, since a value at high q2 would significantly reduce the available phase
space and render the decay no longer sufficiently inclusive, as pointed out in [41].
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5.1.2 Spectral q2 moments in the HQE

In accordance with eq.(5.3), we may write the moments of the q2 spectrum with a
threshold selection by

Qn(q
2
cut) :=

1

Γ0

∫
dΦ (q2)n θ(q2 − q2cut)W

µνLµν =
1

Γ0

m2
b(1−

√
ρ)2∫

q2cut

dq2 (q2)n
dΓ

dq2
, (5.7)

where Γ0 = G2
Fm

5
b |Vcb|2Aew/(192π

3) and ρ = m2
c/m

2
b . In addition the factor

Aew = (1 +
α

π
log(MZ/mb))

2 ≃ 1.01435 (5.8)

accounts for short–distance radiative corrections at the electroweak scale [119]. We
define the normalized moments of the spectrum in the following way

〈
(q2)n

〉
q2≥q2cut

:=

m2
b(1−

√
ρ)2∫

q2cut

dq2 (q2)n
dΓ

dq2

/ m2
b(1−

√
ρ)2∫

q2cut

dq2
dΓ

dq2
=

Qn(q
2
cut)

Q0(q2cut)
. (5.9)

Furthermore we can define the central moments of the q2 spectrum, because they can
in general be measured more precisely

q1(q
2
cut) :=

〈
q2
〉
q2≥q2cut

for n = 1 ,

qn(q
2
cut) :=

〈
(q2 −

〈
q2
〉
)n
〉
q2≥q2cut

for n > 1 . (5.10)

These moments are related to the normalized ones from eq.(5.9) via the binomial
formula

〈
(q2 − a)n

〉
=

n∑
i=0

(
n

i

)〈
(q2)i

〉
(−a)n−i . (5.11)
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In the HQE, the moments are expressed as a double expansion in αs and 1/mb; equiv-
alently to the differential rate that was schematically shown in eq.(3.24) and (3.25)

Qn(q
2
cut) = (m2

b)
n

{
µ3

[
X

(n)
0 +

(αs

π

)
X

(n)
1 + . . .

]
+
µ2
G

m2
b

[
g
(n)
0 +

(αs

π

)
g
(n)
1 + . . .

]
+
ρ3D
m3

b

[
d
(n)
0 +

(αs

π

)
d
(n)
1 + . . .

]
+
r4E
m4

b

l(n)rE
+
r4G
m4

b

l(n)rG
+
s4B
m4

b

l(n)sB
+
s4E
m4

b

l(n)sE
+
s4qB
m4

b

l(n)sqB

}
, (5.12)

where the strong coupling constant αs ≡ α
(4)
s (µs) is evaluated at the renormalization

scale µs. The overall factor of (m2
b)

n is introduced to ensure that the various functions
appearing in eq.(5.12) are dimensionless.

The tree–level expressions up to O(1/m4
b) of Qn(q

2
cut), with n = 0, . . . , 4 are com-

puted and listed in [41]. The q2 spectrum in the free–quark approximation was cal-
culated at NLO several times [120, 121, 122], while NNLO corrections are currently
not known. The calculations in [87, 123, 124] focus solely on the hadronic invariant
mass and charged–lepton energy moments, such that their results are not applicable
to the analysis at hand. NLO corrections to the power suppressed terms of order 1/m2

b

are computed in [125, 126, 127], while the corrections at O(1/m3
b) were presented just

recently [128].
The total rate Γsl within the HQE was introduced schematically in eq.(3.24). To

leading order in the HQE, perturbative QCD corrections are computed to NLO [129],
NNLO [123, 130, 131, 132] and recently at N3LO [115] (results for the Abelian colour
factors are also confirmed in [133]). At orders 1/m2

b and 1/m3
b the NLO corrections are

computed in [128, 134], while for higher orders they are currently not known.

5.1.3 NLO corrections to the q2 moments

There are basically two sources of O(αs) corrections to the differential q2 rate. On the
one hand there are what we call ’genuine’ corrections, which are the NLO corrections to
the Wilson coefficients that were discussed before. On the other hand the change to a
suitable mass scheme introduces further corrections of O(αs), as we saw in chapter 3.4
in detail. The genuine NLO corrections were first derived in [120], utilizing the on–shell
(or pole) renormalization scheme for the charm and bottom mass. These corrections
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Γ tree αs α2
s α3

s

Partonic ✓ ✓ ✓ ✓

µ2
G ✓ ✓

ρ3D ✓ ✓

1/m4
b ✓

mkin
b /mMS

c ✓ ✓ ✓

⟨(q2)n⟩ tree αs α2
s α3

s

Partonic ✓ ✓

µ2
G ✓ ✓

ρ3D ✓ ✓

1/m4
b ✓

Table 5.1: Schematic overview of the perturbative corrections available for the partial rate
Γ and the q2 moments. Green checkmarks denote corrections that are known and built into
our code. Red checkmarks indicate corrections that are in general known, but currently not
part of our package. For references and further information we refer to the text.

correspond to X(n)
1 in eq.(5.12)) and they are given by

X
(n)
1 =

1

(m2
b)

nΓ0

m2
b(1−

√
ρ)2∫

q2cut

dq2 (q2)n
dΓ(1)

dq2
, (5.13)

where the explicit expression for dΓ(1)/dq2 has been derived in [120] (see also [128]).
Reexpanding the q2 moments in eq.(5.9) in αs, gives the explicit dependence on O(αs)

terms for the normalized q2 moments

⟨(q2)n⟩
∣∣∣
αs

=
αs

π

1(
X

(0)
0

)2 (X(0)
0 X

(n)
1 −X

(n)
0 X

(0)
1

)
. (5.14)

Equivalently we can obtain the genuine O(αs) corrections for the centralized moments
in terms of the non–normalized q2 moments from eq.(5.9).

The expressions in the on–shell scheme are affected by a renormalon ambiguity,
leading to a badly behaved perturbative series, as we discussed in chapter 3.4. To
avoid this, the heavy quark masses are converted from the on–shell scheme to a short–
distance scheme. For the determinations in this chapter we adopt the kinetic scheme
(see chapter 3.4.1) for the bottom quark mass, while for the charm mass we use the MS

scheme. Since the mass relations are known to N3LO [86] we can consistently apply
the conversion between different mass schemes to the computations in this chapter.

In the kinetic scheme, the HQE parameters are also redefined by subtracting the
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respective perturbative correction – for the parameters at hand this means particularly

µ2
π(0) = µ2

π(µ)− [µ2
π(µ)]pert ,

µ2
G(0) = µ2

G(µ)− [µ2
G(µ)]pert ,

ρ3D(0) = ρ3D(µ)− [ρ3D(µ)]pert ,

(5.15)

where the HQE parameter at µ = 0 denotes the pole scheme. In our analysis, we thus
extract the values of the kinetic scheme HQE parameters.

The conversion of the bottom (charm) mass to kinetic (MS) scheme is performed
after reexpanding the expressions for the centralized q2 moments in the on–shell scheme
up to O(αs). In that way, the mass scheme redefinitions yield additional αs corrections
besides the genuine αs corrections described before. Note that it is only possible to
consistently use corrections from both sources, if they are included to the same order.

In figure 5.1 we show the theoretical predictions for the partonic part of the first
four centralized moments, including both genuine and scheme change αs corrections.
The ratio between the LO and NLO prediction is shown in the lower panel of each
plot. Note that for consistency, we neglected all terms ∼ αs × HQET parameters (i.e.
corrections of O(αs/m

2
b)), since we have not included the genuine αs corrections to

these parameters for the q2 moments. The shaded area in the ratios represents the
uncertainty obtained by varying the scale of µs in the range mkin

b /2 < µs < 2mkin
b . We

observe that for larger cuts in q2 the NLO corrections become more important for the
second to fourth moments.

In the software package developed for the calculation of inclusive Vcb as described
above, all genuine αs corrections as well as all corrections associated with the scheme
conversion are implemented [11]. The integrals appearing in eq.(5.13) are solved nu-
merically with fixed order gaussian quadrature. Furthermore, we implement the charm
mass mc in both the kinetic and MS scheme, allowing for the current, most precise
value to be used as input. For the bottom mass mb we fix the choice of the mass
scheme to be kinetic. We finally point out that it is easily possible to extend this
package to even higher order corrections, once they become available. In table 5.1,
we present an overview of the perturbative corrections available and those included in
the current version. Very recently, also the αs corrections to ρ3D for the moments have
become available [135]. These will be implemented in an updated version of the code.
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5.1. The new method to determine Vcb

Figure 5.1: The first to fourth order centralized q2 moments and their NLO/LO ratio for
the perturbative αs contributions. Note that the NLO part in the ratio is depicted without
the leading order contribution. The grey area represents the uncertainty due to variations of
the scale µ.

5.1.4 Dependence on µ3 and µ2
π

It is worth emphasizing that eq.(5.12) is not explicitly dependent on the HQE parameter
µ2
π. Due to RPI, the Wilson coefficient of µ2

π/(2m
2
b) is always equal to the one of the

free quark decay µ3 which was defined in terms of its HQE matrix element in eq.(3.31a).
Both parameters have a direct correspondence, shown in eq.(3.32). This means that
there is a direct connection between µ3 and µ2

π in the HQE after employing RPI. Due
to the normalization of the q2 moments in eq.(5.9) there is no sensitivity in the fit
for µ3 and the dependence on µ2

π becomes effectively of order 1/m4
b , once the ratio in

eq.(5.9) is reexpanded in 1/mb.
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Chapter 5. First extraction of inclusive Vcb from q2 moments

This can be seen explicitly in the normalized moments
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, (5.16)

where we neglected all terms at order 1/m3
b for easier readability in the last line.

Consequently, the moments are, in fact, insensitive to µ2
π, while µ3 is an important

input for the total rate and thus the Vcb determination. At the moment, we circumvent
this problem by using an external constraint on µ2

π, as discussed in more detail in
chapter 5.2.2. For this reason our code contains the parameter µ2

π instead of µ3.

5.1.5 Dependence on 1/m4
b parameters

The exploitation of RPI enables us to extract the reduced set of HQE parameters up
to O(1/m4

b) consistently from data. However we observe that not all parameters are
equally sensitive to the q2 moments at this order. In figure 5.2 we show the sensitivity
of the first to fourth central q2 moments to the 1/m4

b matrix elements by individually
varying them between ±1GeV4. The largest variation is observed for rG and rE, while
there is only limited sensitivity to sE, sB, and sqB. We also note that different orders
of moments exhibit different differential dependencies as a function of the q2 threshold.
In other words, the simultaneous analysis of different orders should allow us – similar
to the existing inclusive Vcb hadronic and leptonic moment fits – to separate parameter
contributions from each other. In figure 5.3 we illustrate the impact of different choices
for the subleading terms on the value of Vcb by varying them individually between
±1.5GeV4. In the following, we include r4E and r4G, along with ρ3D, µ

2
G and µ2

π in our
fits, as we expect very little sensitivity to the other 1/m4

b parameters. In turn, the
precise value of the other parameters will only have a small impact on the description
of the moments and, due to their subleading contributions to the total rate, on Vcb.
Since the measured experimental information from Belle and Belle II do not provide
partial branching fractions of B → Xcℓν̄ℓ with q2 cuts, the extraction of Vcb will rely
on the total branching fraction as an input. We discuss this issue in chapter 5.2.4.
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5.1. The new method to determine Vcb

Figure 5.2: Sensitivity of the central q2 moments for individual contributions of 1/m4
b HQE

terms, obtained by varying their values between ±1GeV4. We observe that the strongest
dependence is coming from the parameters rE and rG, while the others have almost no effect.

Figure 5.3: Illustration of the variation of |Vcb| × 103 as a function of O(1/m4
b) HQE terms.
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Chapter 5. First extraction of inclusive Vcb from q2 moments

5.2 The fit procedure using Belle (II) data

Having defined the q2 moments with the perturbative corrections that are included
in our default fit, the extraction of Vcb can straightforwardly be approached. The
normalized or centralized q2 moments with different threshold selections q2cut, defined
in (5.9) and (5.10), combined with the measured total rate (without lepton energy cut),
can now be used to extract the reduced set of HQE parameters. As mentioned, this
includes only eight parameters up to O(1/m4

b), instead of the thirteen that are necessary
when using non–RPI observables and hence the level of proliferation is significantly
reduced. The recently measured q2 moments from Belle and Belle II, allow us to obtain
|Vcb| using this alternative method for the first time. Furthermore we can determine
the 1/m4

b HQE parameters from the datasets and investigate the effect of correlations
between the different moments for different threshold selections.

5.2.1 Fit setup

The HQE parameters and |Vcb| are determined in a simultaneous χ2 fit, that takes into
account both experimental and theoretical correlations. The full χ2 function reads

χ2(|Vcb|, θ⃗ ) =

(
B − τB

ℏ Γ(|Vcb|, θ⃗ )
)2

σ2
B + σ2

Γ

+
(
q⃗ (θ⃗)− q⃗meas

)
C−1

(
q⃗ (θ⃗)− q⃗meas

)T
+

4∑
i=1

(θi − θconsi )2

σ2
θi

, (5.17)

where B is the experimental branching ratio for B → Xcℓν and Γ the theoretical pre-
diction for the rate introduced above. In addition q⃗ denotes the theoretical expressions
for the different qn moments at different cuts, while q⃗meas are the corresponding mea-
sured moments. In addition, we use the B meson life time τB = (1.579± 0.004) ps [26]
and define θ⃗ =

{
mkin

b ,mc, µ
2
G, µ

2
π

}
for the constrained fit parameters, which we further

discuss in chapter 5.2.2. Furthermore we include external constraints to the parameters
as discussed in the next section whenever possible. Finally, C = Cstat + Csyst + Ctheo

denotes the sum of the statistic, systematic and theory covariance matrix respectively.
The statistical and systematical covariance matrices are obtained directly from the

Belle and Belle II data. The theoretical covariance matrix however is less straightfor-
ward to determine. As we discuss in chapter 5.2.3, we include an estimate for missing
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5.2. The fit procedure using Belle (II) data

higher–order contributions for which the correlation between different q2 moments is
unknown. In addition, a single moment qi at different values of q2cut is expected to be
highly correlated. We therefore introduce two separate correlation parameters ρcut and
ρmom. The first parameterizes the correlation between two moments of the same order
but with different q2 threshold selections

ρ
(
qn(q

2
cut,A), qn(q

2
cut,B)

)
≡ ρxcut and x =

∣∣q2cut,B − q2cut,A
∣∣

0.5GeV2
, (5.18)

meaning that we consider two observables at consecutive cuts to be more strongly
correlated than those with larger separation. This way of parameterizing the correlation
was inspired by the detailed study performed in [114].

For moments of different order and different q2 cuts, the correlation parameter ρmom

is constructed as

ρ
(
qm(q

2
cut,A), qn(q

2
cut,B)

)
= sign(ρmom) · |ρmom||m−n| · ρ

(
qn(q

2
cut,A), qn(q

2
cut,B)

)
, (5.19)

which results in a decrease of correlations for moments of different order. The size of
the parameter ρmom is the percentual change in correlation and it increases if orders are
further apart. Note that both correlation scenarios impair each other, i.e. moments of
different order and at different cuts are influenced by both parameters and thus are less
strongly correlated than moments that are closer together in either the order or cut. In
order to minimize the effect of choosing a specific value for the correlation parameters
ρcut and ρmom, we include the correlation as nuisance parameters into the fit. These
parameters are constrained using a flat prior, built from a double Fermi–Dirac function

fDFD(ρ, a, b) =
1

2(1 + ew(ρ−b))(1 + e−w(ρ−a))
, b > a , (5.20)

with w = 50. The parameters a and b denote the lower and upper boundaries for ρ,
respectively. We constrain ρcut between 0 and 1, while ρmom is allowed to take negative
values with a lower boundary of −0.45. These constraints for ρcut and ρmom are included
in the χ2 function as additional terms like

χ2 7→ χ2 + χ2
DF = χ2 − 2 ln fDFD(ρcut, 0, 1)− 2 ln fDFD(ρmom,−0.45, 1) . (5.21)
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Chapter 5. First extraction of inclusive Vcb from q2 moments

5.2.2 External constraints to the fit

The fit parameters θ⃗ that we previously discussed, can be constrained by external
inputs. Most importantly, as discussed in detail in [114], only a linear combination of mb

andmc is constrained by the fit. Therefore it is beneficial to employ external constraints
on these parameters, as otherwise they are not easy to fix. For our default fit we work in
the kinetic mass scheme for mb. Taking the values in the MS scheme that were obtained
in lattice calculations mb(mb) = 4.198(12)GeV and mc(3GeV) = 0.988(7)GeV [136],
we find for the bottom quark mass in the kinetic scheme

mkin
b (1GeV) = 4.565± 0.015± 0.013GeV = 4.565± 0.020GeV , (5.22)

where the first error is the theoretical uncertainty coming from the scheme conversion
[86] and the second stems from the mb(mb) error. In addition, we use the charm quark
mass mc in the MS scheme, for which precise determinations exist from lattice [136]
and QCD sum rules [137, 138]. This way, we ensure to use the strongest possible
constraints on the value of mc in the fit. Using RunDec with four–loop accuracy, we
obtain

mc(2GeV) = 1.093± 0.008GeV . (5.23)

We implement the above considerations on the masses as Gaussian constraints in our
default fit. Moreover, we may place a constraint on µ2

G. Using the mass difference
between the vector meson B∗ and the ground state B, we find

mB∗ −mB =
2

3

µ2
G

mb

+O(αsµ
2
G, 1/m

3
b) . (5.24)

Note that our convention for the definition of the HQE parameters uses the rephased
QCD fields (see the explanations in chapter 3.2.1), while the mass difference above
is defined in the infinite mass limit of HQET. In general the difference between the
two approaches introduces corrections in the higher orders of the relation, which are
non–local and currently unknown. However for the purpose of finding a constraint on
µG this issue can be neglected and thus we find

µ2
G = (0.362± 0.07) GeV2 , (5.25)
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5.2. The fit procedure using Belle (II) data

which is implemented as a Gaussian constraint in our default fit as well. Finally, as
discussed in chapter 5.1.4, we have a limited sensitivity to µ2

π. Therefore we add a
rather loose Gaussian constraint on µ2

π for the analysis

µ2
π = (0.432± 0.24)GeV2 , (5.26)

which we obtain by using the value that was computed in [40] and inflating the uncer-
tainty by a factor of approximately four. It then agrees with µ2

π = 0.477± 0.056GeV2,
found in the most recent Vcb analysis [112]. The need to put a constraint (even though
loose) on µ2

π is somewhat of a downside to our approach. However, we stress that in
future analyses, it may become possible to extract the parameter µ3 directly with other
non–perturbative methods (see discussion in [41]). In addition, progress on the lattice
(see [139, 140]) may also give additional insights into the HQE parameters and thus
sharpen the constraints further.

5.2.3 Theoretical uncertainties and correlations

In order to generate the theoretical uncertainties to the nominal and centralized q2

moments, we use mb and mc as given in eq.(5.22) and eq.(5.23) as inputs, respectively.
As a default for the strong coupling, we use

αs(m
kin
b ) = 0.2184 , (5.27)

which was obtained using RunDec [141, 142] with nf = 4 active flavours and five loop
accuracy, as well as the initial value of α(5)

s (MZ) = 0.1179(9) [26].
We account for three types of theoretical uncertainties due to missing higher–order

terms:

• For missing higher–order corrections in αs, we vary the scale of αs(µs) between
mkin

b /2 < µs < 2mkin
b .

• For missing higher–order 1/m5
b corrections, we vary the contribution of ρ3D by

30%.

• For missing αs/m
2,3
b corrections, we vary the contribution of µ2

G by 20%.

Note that for the power corrections, these variations were inspired by the uncertainties
implemented in [113, 114]. Since this was the first determination of Vcb and the HQE
elements using the q2 method, we use these variations as a conservative estimate. In
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Chapter 5. First extraction of inclusive Vcb from q2 moments

future determinations with possible αs/m
2
b corrections included, these variations may

be reduced. Finally, we do not include uncertainties on the input values of mb or mc.
As these inputs are very precisely known, they would not contribute to the theory
uncertainty in any substantial way.

In order to estimate the theory uncertainties, we need default values for the HQE
parameters µ2

G and ρ3D, which we take from the analyses in [40]

µ2
G = 0.362GeV2, ρ3D = 0.127GeV3 . (5.28)

Contributions from the 1/m4
b terms are currently not varied, because their corrections

are already accounted for in the variation of ρ3D.

5.2.4 Experimental input

The B → Xcℓν̄ℓ branching fraction

Knowledge of the branching ratio of B → Xcℓν̄ℓ is instrumental to determine |Vcb|. The
current measurements of this branching ratio either quote partial branching fractions
as a function of the lepton energy cut, or provide the full B → Xℓν̄ℓ rate. Also in
the latter case, the total rate is measured with a cut on the lepton energy and then
extrapolated to the full phase space. Unlike in the fits of [112, 114], we cannot directly
make use of the partial branching fraction results, since a lepton energy cut spoils
RPI. We therefore need to use the total branching fraction. Currently only a small
number of results are available that quote the total branching fraction and thus we
also extrapolate partial branching fractions with a cut on the lepton energy Bcut to the
full phase space. This is done with a correction factor ∆(Ecut), such that

B(B → Xcℓν̄ℓ) = ∆(Ecut)Bcut(B → Xcℓν̄ℓ) . (5.29)

The factor ∆(Ecut) can be calculated reliably in the local OPE. Using the partial
branching rate at leading order in the HQE and including perturbative corrections up
to NLO, we find

∆(0.6GeV) = 1.047± 0.004 , ∆(0.4GeV) = 1.014± 0.001 . (5.30)

The quoted uncertainty is obtained by including the power corrections up to 1/m3
b

and evaluated with the values obtained in [112]. Additional uncertainties due to the
variation of the renormalization scale µs are negligible. We note that, as expected, this
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5.2. The fit procedure using Belle (II) data

correction factor is rather insensitive to power corrections, due to the small extrapola-
tion region.

In table 5.2, we list the available measurements for B → Xℓν̄ℓ and B → Xcℓν̄ℓ

branching fractions and quote the extrapolations to the full phase space. We correct
the branching fractions of B → Xℓν̄ℓ, by subtracting the |Vub|2 suppressed B → Xuℓν̄ℓ

contribution via

B(B → Xcℓν̄ℓ) = B(B → Xℓν̄ℓ)−∆B(B → Xuℓν̄ℓ)/ϵ∆B . (5.31)

We use ∆B(B → Xuℓν̄ℓ) = (0.159±0.017)% from [143], which has a lepton–energy cut
of Eℓ > 1GeV. To correct for this cut, we use a factor of ϵ∆B = 0.858± 0.008 1. This
yields a total branching fraction of B(B → Xuℓν̄ℓ) = (0.185± 0.020)%.

Averaging the indicated measurements listed in Table 5.2, we obtain

B(B → Xcℓν̄ℓ) = (10.48± 0.13) · 10−2 , (5.32)

which we use as our default branching ratio.
The central value of the branching ratio will dominate the central value of Vcb, so a

few comments are in order. Our default value differs by ≈ 1.4 σ from the value obtained
in [112] which is (10.66 ± 0.15) · 10−2. This difference is caused most notably by the
inclusion of the Babar measurement [144] into our average, while [112] only include
the Belle [145] and BaBar [146] results. In their analysis, the total branching ratio of
B → Xcℓν̄ℓ is a prediction of the fit, determined from the used partial branching ratio
measurements at different Eℓ cuts and the analyzed moments. This approach allows
for a self–consistent extrapolation. To allow for an easier comparison with their results,
we also determine Vcb using an average based on the same branching fractions [145,
146]

B(B → Xcℓν̄ℓ) = (10.63± 0.19) · 10−2 . (5.33)

This value is in excellent agreement with the value obtained by [112].
In the future, new branching ratio measurements are imperative to clarify the mild

tension between the two averages shown above. In addition, new branching ratio
measurements with (different) q2 thresholds would be the natural input for the RPI
Vcb determination. This way uncertainties from subtracting the b → u contributions
can be avoided, increasing the experimental precision.

1We thank Lu Cao, author of [143], for providing this correction to us.
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B(B → Xℓν̄ℓ) (%) B(B → Xcℓν̄ℓ) (%) In Average
Belle [145] Eℓ > 0.6GeV - 10.54± 0.31 D
Belle [145] Eℓ > 0.4GeV - 10.58± 0.32
CLEO [147] incl. 10.91± 0.26 10.72± 0.26

CLEO [147] Eℓ > 0.6GeV 10.69± 0.25 10.50± 0.25 D
BaBar [148] incl. 10.34± 0.26 10.15± 0.26 D
BaBar SL [146] Eℓ > 0.6GeV - 10.68± 0.24 D
Our Average - 10.48± 0.13
Average Belle [145] - 10.63± 0.19
& BaBar [146] Eℓ > 0.6GeV

Table 5.2: Available measurements of the inclusive B → Xℓν̄ℓ and B → Xcℓν̄ℓ branching
fractions, extrapolated to the full region using the correction factors in (5.30). The χ2 of our
average with respect to the included measurements is 2.2, corresponding to a p-value of 52%.

Belle and Belle II qn measurements

Belle [17] and Belle II [18] recently presented first measurements of q2 moments. The
Belle measurement presents separate moments for electrons and muons with a minimal
q2 threshold selection of 3.0GeV2 up to a maximum value of 10.5GeV2. We average the
Belle measured electron and muon q2 moments, fully correlating identical systematic
uncertainty sources. Belle II provides measurements with a q2 threshold starting at
1.5GeV2 up to 8.5GeV2. Due to the high degree of correlations between the measured
moments, we do not analyze the full set of each experiment, but focus on the subset
listed in table 5.3. We stress that the result of the analysis is fairly insensitive to the
choice of the subset. We do not use moments with thresholds larger than 8GeV2, to
avoid the endpoint of the q2 spectrum, whose contributions are dominated by exclusive
states. We fully correlate the systematic uncertainties between both measurements
related to the composition of the Xc system and form factor uncertainties.

q2 threshold [GeV2]
Belle [143] 3, 4, 5, 6, 7, 8
Belle II [18] 1.5, 2.5, 3.5, 4.5, 5.5, 6.5, 7.5

Table 5.3: Analyzed measured q2 moments from Belle and Belle II.
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5.3 Fit results

5.3.1 First Vcb determination from q2 moments

We will now combine the first four central moments of the Belle and Belle II measure-
ments and the branching ratio of eq. (5.32) in our default fit for |Vcb|. The parameters
|Vcb|, ρ3D, r4G, and r4E are free parameters in the fit, while mb, mc, µ2

G, and µ2
π are in-

cluded with Gaussian constraints as discussed in chapter 5.2.2. We set the remaining
1/m4

b parameters to zero, as we have limited sensitivity to them, and we include the
correlation parameters ρmom and ρcut as nuisance parameters in the fit. The result of
the fit is listed in table 5.4. We find in particular for |Vcb|

|Vcb| =
(
41.69± 0.27

∣∣
B ± 0.31

∣∣
Γ
± 0.18

∣∣
exp.

± 0.17
∣∣
theo.

± 0.34
∣∣
constr.

)
· 10−3 ,

= (41.69± 0.59) · 10−3 , (5.34)

where the uncertainties stem from the experimental branching ratio B, the theoretical
uncertainty on the total rate Γ, the experimental and theoretical uncertainties on the
q2 moments and the uncertainty from the external constraints, respectively. We are
able to determine Vcb with percent level uncertainty, which clearly shows the potential
of this method. Note that the most important error sources for Vcb come from the
constraints on the parameters and the uncertainties of the experimental branching
fraction and the theoretical value for the total rate. In order to enhance them, more
precise determinations would be desirable, especially for the HQE parameters. As
already elaborated on in chapter 5.1.4, a determination of µ3 with lattice values (or
another method) could also help improve this error. Regarding the uncertainty of the
branching fraction, new determinations with cuts on the q2 threshold for the total rate
may reduce this error significantly. Finally note that the error due to the q2 moments
is relatively small for Vcb even though they are known less precisely than the total rate.

|Vcb| × 103 mkin
b mc µ2

G µ2
π ρ3D r4G r4E × 10 ρcut ρmom

Value 41.69 4.56 1.09 0.37 0.43 0.12 -0.21 0.02 0.05 0.09
Uncertainty 0.59 0.02 0.01 0.07 0.24 0.20 0.69 0.34 +0.03

−0.01
+0.10
−0.10

Table 5.4: Results of our default fit using both Belle and Belle II data for |Vcb|, the masses
mkin

b and mc, the HQE parameters (which are included in the fit), and the correlation param-
eters ρcut and ρmom. All parameters are expressed in GeV at the appropriate power.
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Figure 5.4: Correlation matrix for |Vcb|, the HQE parameters, and the correlation parameters
ρcut and ρmom.

However because we use normalized moments, Vcb drops out and thus their effect is
only indirectly affecting it via the HQE parameters.

In addition we depict the correlation of the different fit parameters in figure 5.4.
We note that |Vcb| shows a small correlation to mc and the HQE parameters, while a
larger negative correlation of −0.59 with mb is observed. This is caused by the overall
mb dependence of the total rate. Moreover we find that the parameters r4E, r4G and ρ3D
are strongly correlated amongst each other. This effect might be caused by relations
between their respective matrix elements via the equations of motion of eq.(3.20). In
contrast to the normalized moments, |Vcb| has a moderate correlation with µ2

π, because
its effect is not shifted to 1/m4

b in the total rate. Finally, as already noted in figure 5.3,
r4E and r4G also show an effect on Vcb in the correlation matrix.

In figure 5.5, we show the fit results for the four central q2 moments as a function of
q2cut, together with the analyzed Belle and Belle II measurements. We find χ2

min = 7.17

for our fit with 49 degrees of freedom (dof), indicating that the fit converged excellently.
Just like the former analyses [112, 114, 126] we recover a poor fit χ2/dof = 5.02,
when we do not include the theory covariance. The obtained |Vcb| and ρ3D values are
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compared in figure 5.6, indicating a strong agreement between the individual fits and
the combined Belle and Belle II ones.

We discussed in chapter 5.2.4 that there is a mild tension between the different
branching fractions. In order to use a different input of the B → Xcℓν̄ℓ branching
ratio, the corresponding Vcb value can be easily obtained by a rescaling

|Vcb| =

√
B(B → Xcℓν̄)

(10.48± 0.13)%
× (41.69± 0.59) · 10−3 . (5.35)

Using (5.33), we thus find

|Vcb| = (41.99± 0.65) · 10−3 . (5.36)

This value is in excellent agreement with the results [112], especially when taking
into account that their fit results include estimates for the power corrections, which
decreases the value given in (5.1) by about 0.25%.

Figure 5.5: Fit projections for the central q2 moments as a function of the q2 threshold,
combined with the measured moments from both Belle and Belle II.

77



Chapter 5. First extraction of inclusive Vcb from q2 moments

Figure 5.6: Comparison between Belle, Belle II and the combined fit for the correlation
between |Vcb| and ρ3D. The crosses indicate the best-fit points.

5.3.2 Theory correlations and HQE parameters versus Vcb

In our default fit, we introduce the two correlation parameters ρmom and ρcut as nuisance
parameters to let the optimizer find their best–fit value. The result for this procedure
is listed in table 5.4. In appendix A.5, we find that the one dimensional χ2 profiles
of these parameters have a non–parabolic behaviour. This means that the Gaussian
approximation around the minimum is not well justified anymore and thus we may not
use the inverse of the Hesse matrix to determine the uncertainty on these parameters.
To estimate the confidence intervals, which are quoted in table 5.4, we therefore make
use of ensembles of pseudo–experiments. This means, we fix the other parameters of
the fit to their obtained values in the theoretical prediction, while varying the respective
correlation parameter. This lets us determine the confidence interval from table 5.4.

Of particular interest is also the effect of the chosen values of ρmom and ρcut on Vcb.
To investigate this, we show in figure 5.7 the 2D scans of the ∆χ2 = χ2−χ2

min contours
for Vcb versus ρcut and ρmom. Profiling over a large range of both ρmom and ρcut only
has a small impact on the determined value of Vcb. In other words, our uncertainty
on Vcb includes a large range of possible correlation coefficients. For completeness, we
also performed fits for fixed values of ρmom and ρcut. The fit results for Vcb, ρ3D, r4E and
r4G are given appendix A.5. These scans also show, that Vcb is stable against variations
of ρmom and ρcut, which backups the findings of figure 5.7. A similar conclusion was
presented in [114]. In summary, we conclude that Vcb is very stable with respect to
both of our nuisance parameters. As these parameters are a priori unknown and fully
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Figure 5.7: 2D χ2 profile scans of |Vcb| versus ρcut and ρmom. The minimum χ2
min is sub-

tracted from the χ2 function.

Figure 5.8: 2D χ2 profile scans of |Vcb| versus ρ3D, r
4
E and r4G. The minimum χ2

min is sub-
tracted from the χ2 function.

depend on the chosen form of the theoretical correlation this is an important finding.
In figure 5.8, we show the two–dimensional profile scan of ∆χ2 between ρ3D, r4E and

r4G versus Vcb. We observe no sizeable correlations here and so conclude that the fit is
stable with regard to these parameters.

5.3.3 Determination of the HQE parameters

Besides our our main result – the determination of Vcb – also the determination of
the HQE parameters is insightful. In our fit, both µ2

π and µ2
G are constrained by

external inputs, and our fit results in table 5.4 show that our sensitivity is too limited
to constrain both parameters beyond their default values. On the other hand, ρ3D, r4E
and r4G are free parameters in our default fit scenario and can be determined from the
q2 moments. We find

ρ3D =
(
0.12± 0.12

∣∣
exp.

± 0.13
∣∣
theo.

± 0.11
∣∣
constr.

)
GeV3 = (0.12± 0.20)GeV3 , (5.37)
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where the uncertainty stems from the experimental and theoretical uncertainty on the
moments and the external inputs, respectively. For the 1/m4

b parameters, we are able
to constrain r4E and r4G for the first time in a completely data–driven way. We find

r4E =
(
0.02± 0.21

∣∣
exp.

± 0.27
∣∣
theo.

± 0.00
∣∣
constr.

)
· 10−1 GeV4 (5.38)

= (0.02± 0.34) · 10−1 GeV4 ,

r4G =
(
− 0.21± 0.42

∣∣
exp.

± 0.49
∣∣
theo.

± 0.25
∣∣
constr.

)
GeV4 (5.39)

= (−0.21± 0.69)GeV4 .

Both values are relatively small and compatible with zero within their uncertainties.
We note that r4E – the 1/m4

b parameter we are most sensitive to – is constrained to be
very well below 1GeV4 or even Λ4

QCD, and also our result for r4G excludes spuriously
(unexpected) large values for this parameter. This implies that the HQE seems to be
well behaved and converges well up to this order.

Our determination of ρ3D is compatible with zero. In figure A.7 of appendix A.5, we
observe that this also remains true for all fixed ρmom and ρcut choices. We note that our
definition of ρ3D differs from that used in [112], because we include an additional 1/mb

contribution, namely its RPI completion, as discussed in chapter 3.2.2. Therefore the
result in [112], which reads ρ3D = (0.185 ± 0.031)GeV3, cannot be directly compared
to ours. However, it is worth exploring the apparent difference in sensitivity for ρ3D
between the q2 method and the moment fit of [112]. To understand this differences, we
investigated the two–dimensional contours in ∆χ2 of ρ3D vs. r4E and r4G as well as r4E vs
r4G. These scans are given in the left, middle and right panel of figure. 5.9, respectively.
The contours reveal a large (anti)correlation between the three parameters. In fact,
the slope of the moments, as a function of q2cut, is similar for the variation of the three
parameters. This indicates that they can compensate each other. Especially the slope,
induced by different values of ρ3D and r4G is very similar. This suggests that, at least
in this analysis, we are only sensitive to a linear combination of these parameters.
This, combined with the rather conservative theoretical uncertainties, can explain our
limited sensitivity to ρ3D. Although they are independent in the HQE, this may be a
hint that a further reduction of parameters is possible – for example when expressing
everything in full QCD states (see discussion in [41]).

On the other hand, for a more direct comparison with [112], we may also consider
a fit with all 1/m4

b corrections set to zero. We find the results listed in table A.3
in appendix A.5, most notably ρ3D = (0.03 ± 0.02)GeV3. This determination differs
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5.3. Fit results

Figure 5.9: 2D χ2 profile scans of ρ3D versus (left) r4E and (middle) r4G, and of r4E versus r4G
(right). The minimum χ2

min is subtracted from the χ2 function.

substantially from that obtained by [112] and could indicate that the q2 moments
actually add additional information on the HQE parameters.

5.3.4 Including all 1/m4
b terms

In our default fit, we only consider the 1/m4
b terms r4E and r4G, because the sensitivity to

the others is very limited. To study the effect of these neglected parameters, we further
perform a fit including s4B, s4E and s4qB. In order to have the fit converge, we need to
include a constraint on each of the parameters. We include standard normal Gaussian
constraints (i.e. mean of zero, standard deviation one) for all 1/m4

b terms. The result
is given in table 5.5, where we observe no significant deviations from the default fit
results. As expected, this fit shows that the most sensitive O(1/m4

b) parameters are
r4G and r4E, since the post–fit parameter uncertainties can be reduced from unity. For
the remaining HQE parameters, no significant uncertainty reduction can be reported.
Most importantly, we obtain exactly the same Vcb value as from our default fit, namely

|Vcb| = (41.69± 0.59) · 10−3 . (5.40)

To account for missing higher–order corrections from neglecting s4E, s4B and s4qB, we add
an additional uncertainty to our default fit in (5.34) by including variations of these
parameters of ±1GeV4.

|Vcb| × 103 mkin
b mc µ2

G µ2
π ρ3D r4G r4E × 10 s4E s4qB s4B ρcut ρmom

Value 41.69 4.56 1.09 0.37 0.43 0.10 -0.12 0.04 -0.04 -0.02 0.04 0.05 0.10
Uncertainty 0.59 0.02 0.01 0.07 0.24 0.18 0.68 0.31 0.95 0.99 0.95 +0.03

−0.01
+0.10
−0.10

Table 5.5: Fit result including all 1/m4
b parameters with a standard normal Gaussian con-

straint. All parameters are expressed in GeV at their appropriate power.
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Chapter 5. First extraction of inclusive Vcb from q2 moments

In total, we find a variation on Vcb of 0.23 · 10−3, which is dominated by the contri-
bution of s4E. Our final default result for |Vcb| including all error sources is therefore

|Vcb| =
(
41.69± 0.59

∣∣
fit
± 0.23

∣∣
h.o.

)
· 10−3 = (41.69± 0.63) · 10−3 , (5.41)

where we added both uncertainties in quadrature. This value presents an independent
cross–check of previous inclusive Vcb determinations, using both new data and a new
method. It shows good agreement with the previously obtained inclusive Vcb in eq.(5.1)
from [112], which was obtained from lepton–energy and hadronic invariant mass mo-
ments. We emphasize that any tension between the two determinations is fully due to
a different input for the total branching ratio.

Our analysis can be improved in the future by adding higher–order perturbative
corrections as indicated in table 5.1. We expect that their inclusion can reduce the
uncertainty on the extraction of the HQE parameters. In addition the found correla-
tions between ρ3D, r4E and r4G should be further studied. Finally it may be beneficial
to combine our analysis with that of [112], to include lepton moments and hadronic
invariant mass moments. This requires using the full set of HQE parameters, but may
have the benefit of higher statistics. All these future improvements have the potential
to push the inclusive Vcb determination to below percent level uncertainty.
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Chapter 6

New analysis of semileptonic B → Xuℓν decays

In this last chapter, we discuss the determination of Vub from the inclusive, semilep-
tonic decay B → Xuℓν̄. Just as Vcb, the CKM element Vub poses an important input in
a variety of processes and is often the key component in precision. In addition, there
is also a relatively strong discrepancy of about 3 σ between the inclusive and exclu-
sive determinations [111, 149]. Currently the world average of inclusive and exclusive
measurements are [150]

|V excl.
ub | = (3.67± 0.09± 0.12)× 10−3 ,

|V incl.
ub | =

(
4.32± 0.12+0.12

−0.13

)
× 10−3 ,

(6.1)

which shows that an increase in precision is highly desirable from both sides.
In contrast to the transition into a charm quark, we are now facing a situation in

which we have to subtract the unwanted background coming from Cabbibo–favoured
B → Xcℓν decays. Its branching fraction is about 100 times larger and thus large
kinematical cuts need to be applied in order to render the experimental measurements
possible. In particular this puts us in a situation in which the hadronic final states carry
very large energies E ∼ mB, yet only have a moderate invariant mass m2

X ∼ mBΛQCD,
as discussed in chapter 3.3.1. This kinematic region introduces new non–perturbative
and non–local quantities – the shape functions we introduced in chapter 3.3.2. Because
their exact form is not known and can (currently) not be determined with theoretical
methods, their underlying functional form has to be modeled. This introduces an
additional source of uncertainties, since they can only be constrained through the
moments of the local OPE. Attempts were made using neural networks [151] or the
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Chapter 6. New analysis of semileptonic B → Xuℓν decays

spectra of B → Xsγ [152, 153] to determine the leading shape function more model–
independently. However, they have not been realized in analyses of Vub yet or suffer
from non–universal effects.

Besides, there are basically two sources of corrections to the partial rates. On the
one hand there are perturbative corrections in αs, that can be systematically introduced
when factorizing the hadronic tensor, as discussed in chapter 3.3.3. On the other hand
there are higher power corrections to the shape function. At subleading order, a set
of additional non–local objects emerges, which, like the leading shape function, need
to be modelled. Further power corrections are currently only constrained by the local
matrix elements of the full OPE.

To tackle the challenge of modelling the shape functions and systematically intro-
ducing corrections to the rate, several approaches were developed. Most notably there
are BLNP [20], GGOU [154] and DGE [155]. The method used in GGOU is similar
to BLNP in that it utilizes perturbative results to the hadronic tensor, but the shape
functions are defined differently. They include subleading effects to all orders, but are
non–universal as a result. In DGE ("dressed gluon exponentiation") the perturbative
result is continued into the infrared regime using the renormalon structure obtained in
the large β0 limit.

We follow the idea of BLNP and factorize the hadronic contributions as discussed
in chapter 3.3. Currently the the framework only contains the NLO corrections to
the perturbative quantities, while the power corrections were determined up to 1/m2

b .
Since all ingredients for the NNLO determination are available now [58], we develop
a program which contains all of these state–of–the–art corrections and provide this to
the experimental community [12]. In addition we use a new novel method to include
all possible information into the shape function. It is inspired by the approach in
[152] and models the radiative tail of the shape function by convoluting with the
partonic soft function. Furthermore, we transition to the kinetic scheme with a method
that preserves the full RG evolution. Finally, we treat the subleading shape functions
fully independently from the leading one, allowing for a separate estimation of the
uncertainties from the respective contribution.
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6.1. Modelling the shape function

6.1 Modelling the shape function

6.1.1 Model ansatz and requirements

Any model for the shape function must fulfil two conditions, when integrated over a
sufficiently large interval −Λcut ≤ ω ≤ Λ̄, where Λcut ∼ µ0 ≫ ΛQCD. On the one hand
its moments need to coincide with the matrix elements of the local OPE and on the
other hand its radiative tail is determined by a perturbative expansion.

The moments of the full OPE are recovered, because the operator in the matrix
element of eq.(3.47) can be expanded in a series of local operators as [60, 152]

S(ω, µ0) =
∑
n

Cn(ω, µ0)⟨B|b̄v(inD)nbv|B⟩+ . . . , (6.2)

where Cn(ω, µ0) are a set of Wilson coefficients that contain the perturbative informa-
tion on the shape function and the dots represent operators of dimension six and higher,
which we do not take into account. The moments of the unshifted shape function yield
then

Mn(Λcut, µ0) =

Λ̄∫
−Λcut

dω ωnS(ω, µ0) =
∑
n

⟨B|b̄v(inD)nbv|B⟩
Λ̄∫

−Λcut

dω ωnCn(ω, µ0) ,

(6.3)

meaning they are determined by the local matrix elements plus the perturbative infor-
mation contained in the Cn [20]. This perturbative information generates a radiative
tail, which should be included as adequately as possible. In BLNP this tail was "glued"
onto the shape function at some high value of ω [20]. However to harness all available
information for the shape function, we follow a different approach suggested in [152].
The radiative part of the shape function, even though a non–perturbative object, can
formally be calculated by evaluating it with free quark states. This yields the par-
tonic part of the shape function S(part), which is known up to NNLO [72] and given in
eq.(A.6). We include it in our model by convoluting with a non–perturbative model
function F̂ (k̂)

Ŝ(ω̂, µ0) =

ω̂∫
0

dk̂ S(part)(ω̂ − k̂, µ0)F̂ (k̂) , (6.4)
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where the integration variable is written in terms of the hatted form k = Λ̄−k̂ as before.
Note that all dependence on the soft scale µ0 comes from the partonic shape function
and thus the RG evolution from eq.(3.59) remains correct to all orders. Moreover, this
way of modelling the shape function has the radiative tail automatically built in, as
long as the model function F̂ (k̂) is suppressed at large k̂. It furthermore allows for
a simplification when evolving the shape function to the intermediate scale µi, as we
will show below. Note that this ansatz should not be misconstrued as a factorization
of perturbative and non–perturbative effects. It merely contains information on the
behaviour of the shape function for larger ω̂ that is technically obtained as an expansion
in αs(µ0). However the shape function itself for small values of ω̂ ∼ ΛQCD is entirely
non–perturbative. When allowing for an expanded phase space, for example with very
modest kinematical cuts or even the total decay width, this ansatz transitions smoothly
between the shape function region and the local OPE.

Note that the prescription in eq.(6.4) is consistent with the OPE result. Expressing
the moments of Ŝ(ω̂, µ0) with a cutoff in terms of the unshifted shape function reads

Mn(Λcut, µ0) =

Λ̄∫
−Λcut

dk F (k)

Λcut+k∫
0

dℓ S(part)(ℓ, µ0)(k − ℓ)n . (6.5)

After expanding the inner integral around k = 0 one obtains an expansion involving
perturbative coefficients to the cutoff moments mj(Λcut) of F (k). Therefore, as in
eq.(6.3), the moments of the model function F (k) are given by the matrix elements of
the local OPE, which read

m0(Λcut) = 1 , m1(Λcut) = 0 , m2(Λcut) =
1

3
µ2
π m3(Λcut) = −1

3
ρ3D . (6.6)

This way, we utilize the information about the radiative tail included in S(part) and
identify the moments of the model function F (k) with the ones from the OPE. The
perturbative coefficients involve logarithms of the form ln Λcut/µ0, which are under con-
trol as long as the cutoff and the scale are of comparable order. Therefore there should
be no support for F̂ (k̂) in the region where k > µ0, i.e. at some cutoff kc, the model
function shall vanish F̂ (k̂ > kc) = 0. We expect this cutoff to lie somewhere around
kc ∼ µ0 + Λ̄ ≈ 2GeV. For b → u transitions experimental cuts are well below this
value. However, in order to recover the full OPE result in this framework, it is nec-
essary to ensure that the shape function has this feature. To that end we introduce
a compactification operator in chapter 6.1.4, which guarantees a finite support for the
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model function, while conserving the moment relations. This will serve as a less re-
strictive and more soundly motivated alternative to the demand for positivity in other
approaches [152, 154].

Finally we demonstrate how the radiative tail given by S(part) and the model function
F̂ (k̂) can be smoothly integrated into the factorized formula for the leading structure
functions eq.(3.59). The procedure is equivalent to the Laplace transform of the jet
function. First note that the partonic part of the shape function can be written in
terms of its Laplace transform with derivative operators [71]

S(part)(ℓ, µ0) = s̃(∂τ , µ0)
e−γEτ

Γ(τ)

1

ℓ

(
ℓ

µ0

)τ

, (6.7)

where τ → 0 after taking the derivatives. We may now plug eq.(6.7) and eq.(6.4) into
the factorized structure functions from eq.(3.59), where we only depict the last line for
simplicity

f
(0)
i (P+, y) ∼ s̃(∂τ , µ0)

e−γE(η+τ)

Γ(η)Γ(τ)

P+∫
0

dk F (k)

P+∫
k

dω (P+ − ω)η−1(ω − k)τ−1µ
−(η+τ)
0 .

(6.8)

Here we changed the orders of integration and pulled the Laplace transform of the
shape function out of the integral. The integral over ω can be solved analytically and
yields

P+∫
k

dω (P+ − ω)η−1(ω − k)τ−1 = (P+ − k)η+τ−1Γ(η)Γ(τ)

Γ(η + τ)
(6.9)

and thus upon defining η′ = η + τ , eq.(6.8) becomes

f
(0)
i (P+, y) ∼ s̃(∂η′ , µ0)

e−γEη
′

Γ(η′)

P+∫
0

dk F (k)
1

P+ − k

(
P+ − k

µ0

)η′

. (6.10)

Note that we changed the variable of the derivative in s̃(∂η′ , µ0) (and in the full structure
function also j̃) as well, because it generates the same logarithms when taken with
respect to η′. With this procedure we have the same advantage that we had with the
Laplace transform of the jet function. We automatically generate the correct scale
evolution from µ0 → µi and as an added benefit, do not have to take care of the
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interference of the distributions in the jet and partonic shape functions. In turn higher
order corrections to s̃ can easily be implemented, when enhancing the precision of this
method in the future.

6.1.2 Change to the kinetic scheme

In order to ensure that we do not suffer from renormalon issues, we transfer the mass
and the OPE parameters to the kinetic scheme. In contrast to the procedure for
B → Xcℓν̄, we have to make sure that the scheme transition does not affect the RG
evolution and that the radiative corrections in the partonic shape function do not spoil
the convergence after the scheme change. In other words, we want to shift the O(αs)

contributions between S(part) and the OPE parameters Λ̄ and µπ in such a way that
infrared renormalon ambiguities cancel each other and thus the overall perturbative
series has a better convergence.

First of all we need the moments of the shifted model function F̂ (k̂), which read

Mpole
n =

∞∫
0

dk̂ k̂nF̂ pole(k̂) , (6.11)

where for this section, we explicitly denote the mass scheme of each quantity. In terms
of the unshifted moments they are easily obtained to be

Mpole
0 = 1 , Mpole

1 = Λ̄ , Mpole
2 = Λ̄2 +

1

3
µ2
π , Mpole

3 = Λ̄3 + Λ̄µ2
π +

1

3
ρ3D . (6.12)

Changing the model function to the kinetic mass scheme amounts to adding a function
gn(k̂) with an appropriate corrective coefficient to F̂ pole(k̂), where the function gn(k̂)

has vanishing moments up to the order we are including, ensuring that the coefficients
start at order αs. Specifically the scheme change is obtained via

F̂ pole(k̂) = F̂ kin(k̂) +
∞∑
n=1

cn(αs(µ0))gn(k̂) , (6.13)

where the coefficients cn contain the αs correction from the scheme change. The func-
tions gn are not unique and can be model–dependently or independently constructed.
In [152] moments up to n = 2 were included and the function gn were constructed
from the first n derivatives of F̂ kin(k̂). Written in terms of derivative operators this
achieves model–independence on a formal level, because the effects of the derivative
can be applied to the partonic shape function when integrated by parts. The downside
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of this ansatz is determined by the behaviour of F̂ kin(k̂) near the origin. When acting
on it with higher order derivatives, the model preferably has to behave at least like
a monomial of the same order. In the specific case of [152], moments up to n = 2

had been included and thus F̂ kin(k̂) needed to vanish faster than k̂2 near the origin.
Thus including more moments requires to include ever slower onsets. We circumvent
this problem by choosing an ansatz, where gn contains derivatives with respect to ln k̂,
which do not alter the behaviour at the origin. It reads

F̂ pole(k̂) = G(αs(µ0))F̂
kin(k̂, µ0) , (6.14)

where we defined

G(αs(µ0)) =
∞∑
n=0

cn(αs)gn(k̂) , gn(k̂) =
n∑

ℓ=0

(
n

ℓ

)
k̂ℓ

ℓ!

(
d

dk̂

)ℓ

. (6.15)

The perturbative coefficients can easily be determined by comparing the moments of
F̂ kin(k̂, µ0) and F̂ pole(k̂) with the above ansatz; they read in closed form

cn(αs) =
n∑

ℓ=0

(
n

ℓ

)
(−1)ℓ

(
Mpole

ℓ

Mkin
ℓ

)
, (6.16)

where all HQE parameters in Mpole
ℓ are related to those in the kinetic scheme by the

perturbative corrections explicitly denoted before in eq.(5.15). This procedure enables
us to change from the pole to any small–distance scheme in a model–independent
fashion, by applying derivatives to our model function F̂ (k̂). Also no care needs to be
taken for the behaviour near the origin, as taking the derivatives with respect to ln k̂

ensure that no discontinuities are generated.

6.1.3 Simple models for F̂ kin(k̂)

Having defined the overall model ansatz for the shape function, we may now proceed by
modelling the function F̂ kin(k̂). For convenience we introduce a dimensionless variable
x := k̂/k0, where k0 is a model–dependent constant that provides a scale for each of
the models we construct. The existence of finite moments implies further that the
functions must fall toward zero for x → ∞ faster than any monomial. In general
such functions have a large x behaviour ∼ x−ξ(x) = exp(−ξ(x) ln x), where ξ(x) grows
beyond any boundary. Typical examples are ξ(x) = x/ lnx (exponential model), or
a faster growing ξ(x) = x2/ lnx (Gaussian model), or a slower growing ξ(x) = ln x
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(logarithmic model).
First we pick a weight function w(x) that determines the asymptotic behaviour

of the model for small and large x. These already contain parameters that may be
freely chosen. All of the models we consider here will have F̂ kin(0) = 0, i.e. they are
continuous model functions. The explicit weight functions we consider are

wfin(x) = xα(1− x)βθ(1− x) ,

wgauss(x) = xαe−x2

,

wexp(x) = xαe−βx ,

wlog(x) = eln
2 x .

(6.17)

Here α controls the onset for small x, while β is used to rescale k0 in the exponential
model. For the finite model it controls the offset of the function for large x.

The second step in the construction is to multiply the weight function with a poly-
nomial p(x), whose degree matches the number of moments one wishes to include. Its
coefficients are tuned exactly such that they obey the aforementioned moment con-
straints Mkin

n . Thus the model ansatz for the function F̂ kin(k̂) finally reads

F̂ kin(k̂) =
1

k0
w

(
k̂

k0

)
p

(
k̂

k0

)
. (6.18)

With the model parameters α, β and k0, as well as the weight functions, there is an
abundance of different options to choose from. The guiding principle we follow is to
have as little features as manageable, since for the study of inclusive B decays, we
cannot resolve any resonances or features of exclusive decays with our model. Thus
this "smoothness" of the model function may be considered an application of Ockhams
razor, according to which a theory with fewer assumptions is in general to be preferred.

Note that we may further motivate the ansatz eq.(6.18) in the following way. As
explained, we would like to avoid unnecessary oscillations in F̂ kin(k̂), even though we
do not require it to be positive definite. To determine a general form for the ansatz
fulfilling these conditions, we consider the functional

χ2[F̂ kin] =
k0
2

∞∫
0

dk̂
F̂ kin2(k̂)

w(k̂/k0)
, (6.19)

and minimize it, while keeping the moments of F̂ kin(k̂) constrained. By considering the
norm of F̂ kin(k̂), it is clear, that large oscillations will lead to a larger χ2 and thus be
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Figure 6.1: Cluster of different models for F̂ kin(k̂), which we use for our analyses. The
legend depicts the respective chosen weight function from eq.(6.17) and the set of inputs for
the free parameters as Fweight[α, β, k0].

excluded by the minimum. In addition, the regions k̂ → 0 and k̂ → ∞ receive diverging
weights, which forces F̂ kin(k̂) to vanish there fast enough such that the integral still
converges. Varying F̂ kin(k̂), while simultaneously keeping the moment constraints fixed
with Lagrange multipliers λn leads to

0 =
δ

δF̂ kin

∞∫
0

dk̂

[
k0F̂

kin2(k̂)

2w(k̂/k0)
+

N∑
n=0

λn

(
k̂

k0

)n

F̂ kin(k̂)

]
, (6.20)

from which eq.(6.18) immediately follows.
The cluster of models we work with is shown in figure 6.1. While their moments

over the entire space 0 ≤ k̂ ≤ ∞ are identical by construction, they differ slightly in the
shape function region. In order to determine the error to the partial rates caused by
the model choice, we use these functions to estimate the uncertainty. Computing the
mean and standard deviation, we find that their moments in this region give relative
errors of 4.0%, 5.3% and 7.5% for the zeroth, first and second moment respectively,
which we judge as reasonable. As per default, we will in the following use the model
function with the Gaussian kernel as well as α = 1 and k0 = 0.9GeV.
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The model with the finite weight function wfin requires a further comment. Its free
parameters reside at much higher values as those of the other models. If in particular
k0 is chosen too small, the model will display large fluctuations, due to the sharp
cutoff at a relatively small value of k0. The only possible set of coefficients that may
fulfil the moment constraints in such a case for mundane polynomials thus fluctuate
strongly, which is an unwanted relic of the weight function choice. We can circumvent
the problem however, by choosing a much higher value, in this case k0 = 6GeV, which
results in a model function that resembles the form of the others in the cluster. We
emphasize that this choice is not arbitrary, because it directly influences the uncertainty
estimation of the model choice. If one of the models fluctuates strongly in the low k̂

region – even though this does not effect the value for the partial rate for relaxed
kinematical cuts – it artificially blows up the error caused by the model choice for
stricter cuts.

6.1.4 Compactification

At this point we introduced simple models for F̂ kin(k̂) and performed the change to
the kinetic scheme via the operator G. We already noted before that the modelling of
F̂ kin(k̂) may generate fluctuations at higher ω̂, which are unwanted and a mere relic
of the modelling process. The left plot in figure 6.2 shows the evolution of the model
function for one and two loop order of G. It does not resemble large oscillations in
the low ω̂ region, however goes through zero near 2.3GeV and oscillates thereafter.
Enhancing this effect for a higher moment in k̂, this feature is more visible in the right
side of the figure.

In order to transition as smoothly as possible from the shape function region to
the full OPE, we describe a moment–preserving algorithm that compactifies the model
function in such a way that it terminates at some value of k̂ ≈ 2GeV. Like in the case
of GF̂ kin(k̂), we need a set of functions to correct for the moments. Again we choose
derivatives with respect to ln k̂ and define

hj(k̂) :=
k̂j

j!

(
d

dk̂

)j

F̂ kin(k̂) . (6.21)

We need the moments M (j)
comp,n(κ) of these functions, but this time over the finite

interval k̂ ∈ [0, κ], keeping the upper limit κ variable. The idea is to use a κ–dependent
linear combination of the hj to build a family of compact functions Fcomp(k̂, κ), which
end in general at a finite value, but all have the same desired moments. This way
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6.1. Modelling the shape function

Figure 6.2: Example for the model construction, based on the exponential weight. Left: The
solid (red) line is F̂pol at LO, which is identical to F̂kin. The dotted and dashed (gray) curves
are F̂pol at NLO and NNLO, respectively. Right: The solid (black) function is k̂2CF̂kin(k̂),
and the dashed (blue) line shows the uncompactified k̂2F̂kin(k̂).

we preserve all moment relations, but generate a model that necessarily terminates
at some endpoint, where the fluctuations start (which is in general different for each
chosen model). The compact functions and their moments read

Fcomp(k̂, κ) = θ(κ− k̂)
∑
j

bj(κ)hj(k̂) ,

∞∫
0

dk̂ k̂nFcomp(k̂, κ) =
∑
j

bj(κ)M
(j)
comp,n(κ) =Mkin,n ∀κ ,

(6.22)

where the compact moments are defined as

M (j)
comp,n(κ) =

κ∫
0

dk̂ k̂nhj(k̂) . (6.23)

If one of the functions in the family terminates in zero, we identify it as our compactified
model. This defines the size of the interval kc such that

Fcomp(κ, κ)
∣∣∣
κ=kc

= 0 , CF̂kin(k̂) = Fcomp(k̂, kc) . (6.24)

If there is no zero in Fcomp(κ, κ), the algorithm will not converge in general. Thus,
if after several iterations with various values for κ no solution was found, the starting
function F̂ kin(k̂) was probably positive definite and thus the compactification unneces-
sary. Altogether, applying the operator C determines the natural value of k̂ at which
the model needs to terminate to avoid model relics, while preserving all moment rela-
tions.

The effect of the compactification procedure is shown in the right plot of figure 6.2,
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where the black solid line is the compactified model. We see that, while preserving
all moments of F̂ kin(k̂), the model function terminates at some value kc and shows
no oscillations afterwards anymore. It also becomes apparent, that this procedure has
almost no effect for the shape function region which is of interest in a Vub determi-
nation. In fact, in the above example, we have b0(kc) = 0.998, b1(kc) = −0.007 and
b2(kc) = −0.013, which indicates how closely the compactified function follows the
uncompactified one in the low k̂ region.

Compactifying the full shape function including all effects from its radiative tail is
more involved than the method we described in this chapter. In general the operators
G and C do not commute and thus it is necessary to compactify everything order by
order. It is clear however, that we can in general get rid of all oscillations outside of the
shape function region with the algorithm presented here. For the purpose of partial
rate determinations with kinematical cuts, it is unnecessary to alter our model function
and thus in the following we will use the simple models presented in chapter 6.1.3 for
further considerations.

6.2 Power corrections to the structure functions

In chapter 3.3 we derived the expression for the leading shape function in the light–
cone expansion. However, as for the full OPE, there are power corrections for higher
powers of 1/mb, which we want to include. In contrast to the treatment of inclusive
B → Xcℓν̄, there are several sources of these corrections. On the one hand there
are corrections that are only suppressed by the inverse mass, because we restrict the
phase space to a certain kinematic region. These terms do not introduce any new
hadronic quantities and we call them kinematical corrections. On the other hand there
are contributions from subleading shape functions, which arise for higher orders in
the light–cone expansion. They form the dominant hadronic contributions and, as the
leading shape function, need to be modelled. Lastly when relaxing the cuts enough, we
require to have a smooth overlap between the shape function region and the full OPE.
Since the power counting in both regions is different, there are hadronic corrections,
that are present in the full OPE and had not been picked up by the subleading shape
functions. These residual hadronic contributions are usually tiny, yet necessary for a
consistent treatment.
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6.2. Power corrections to the structure functions

6.2.1 Kinematical power corrections

The first kind of power corrections we want to introduce are the kinematical corrections.
They do not introduce any new hadronic quantities and are suppressed due to the
restriction of the variable P+ to a kinematically suppressed region. Generally speaking,
they may be viewed as the power corrections generated by the hard– and jet function
in the factorization. As these contributions are generated at the one–loop level, the
kinematical corrections are further suppressed by the strong coupling and therefore
scale like αs/mb. They can be extracted from the one–loop expression derived in [156]
and are then convoluted with the shape function. Note that the one–loop expressions
from [156] are known for fixed–order perturbation theory and thus do not inherit any
RGE evolution factor. Since the Sudakov exponents would be the same as for the
leading power terms, we may estimate that the scale evolution only introduces effects
well below 1%. Hence, we assign the intermediate scale µi to the strong coupling
appearing in these terms without further RGE running.

The expressions for the structure functions have been determined in [21] – we list
them here for completeness:

fkin
1 (P+, y) =

1

mB − P+

CFαs(µi)

4π

P+∫
0

dk̂ Ŝ(k̂)

×
[

f1(x, y)

(1 + x)2y(x+ y)
− 2g1(x, y)

x(1 + x)2y2(x+ y)
ln
(
1 +

y

x

)
− 4

x
ln
(
y +

y

x

)]
,

fkin
2 (P+, y) =

1

mB − P+

CFαs(µi)

4π

P+∫
0

dk̂ Ŝ(k̂) (6.25)

×
[

f2(x, y)

(1 + x)2y2(x+ y)
− 2x g2(x, y)

(1 + x)2y3(x+ y)
ln
(
1 +

y

x

)]
,

fkin
3 (P+, y) =

1

mB − P+

CFαs(µi)

4π

P+∫
0

dk̂ Ŝ(k̂)

×
[

f3(x, y)

(1 + x)2y3(x+ y)
+

2g3(x, y)

(1 + x)2y4(x+ y)
ln
(
1 +

y

x

)]
,
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where the variable x := P+−k̂
mB−P+

and the functions fi(x) and gi(x) are given by

f1(x, y) = −9y + 10y2 + x(−16 + 12y + 6y2) + x2(13y − 12) ,

g1(x, y) = −2y3 − 2xy2(4 + y)− x2y(12 + 4y + y2)− 4x3(y + 2) + 3x4(y − 2) ,

f2(x, y) = y2 + xy(8 + 4y + y2) + 3x2y(10 + y) + x3(12 + 19y) + 10x4 ,

g2(x, y) = 2y2 + 4xy(1 + 2y) + x2y(18 + 5y) + 6x3(1 + 2y) + 5x4 , (6.26)

f3(x, y) = 2y3(2y − 11) + xy2(−94 + 29y + 2y2) + 2x2y(−72 + 18y + 13y2)

+ x3(−72− 42y + 70y2 − 3y3)− 10x4(6− 6y + y2) ,

g3(x, y) = 4y4 − 6x(y − 5)y3 − 4x2y2(−20 + 6y + y2) + x3y(90− 10y − 28y2 + y3)

+ x4(36 + 36y − 50y2 + 4y3) + 5x5(6− 6y + y2) .

The above contributions give the correct O(αs) corrections to the total rate, when
integrated over the full phase space. In the shape function region, where P+ ≪ P−

they are (strongly) suppressed and can be expanded in inverse powers of mB−P+. This
makes it easier to compare them order by order with the hadronic power corrections,
but has the downside that singularities in y are introduced, which need to be treated
specifically [21]. Thus, we refrain from such an expansion and use the full results in
the following.

6.2.2 Subleading shape function contributions

The dominant hadronic correction in the shape function region is given by the sub-
leading shape functions. By going to higher orders in the light–cone expansion from
chapter 3.3.2, one finds a new class of non–local matrix elements, which give rise to
a set of non–perturbative, subleading shape functions at order 1/mb [53, 54, 55, 157].
Equivalently these functions can also be derived in SCET [56, 158, 159], where they
take the same form than in the light–cone expansion, as was shown in [21, 56].

In principle the subleading shape functions are treated in the same way than the
leading shape function: with the help of moment relations to local matrix element,
their modelled functional form can be constrained. Apart from their first few moments,
little is known about the subleading shape functions. In particular it is unnecessary
to perform any RG evolution for them, because corrections from these procedures of
order O(αs/mb) or higher and can safely be neglected. Note that these corrections
are parametrically of the same order as the ones from the kinematical corrections in
chapter 6.2.1. The difference is that the kinematical corrections are enhanced in some
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Figure 6.3: The subleading shape functions t̂(k̂), û(k̂) and v̂(k̂) for a Gaussian kernel with
α = 1. The coloured bands show the variation of k0 between [1GeV, 1.8GeV] and the
continuous lines have k0 = 1.5GeV fixed.

parts of phase space and might pose a viable addition to the partial rate this way,
while the RG evolution corrections are in general already small without any 1/mb

suppression.
Adopting the notation from [21, 56], the relevant subleading shape functions at tree

level t̂(k̂), û(k̂) and v̂(k̂) are incorporated into our structure functions by [21]

f
(1)
1 (P+, y) =

1

mB − P+

(
(Λ̄− P+) Ŝ(P+) + t̂(P+) +

û(P+)− v̂(P+)

y

)
,

f
(1)
3 (P+, y) =

1

mB − P+

2

y

(
−(Λ̄− P+) Ŝ(P+)− 2t̂(P+) +

t̂(P+) + v̂(P+)

y

)
.

(6.27)

In [54, 157] moment relations similar to the ones for the leading shape function were
found. The zeroth moment of the subleading shape functions always vanishes (which
is a consequence of Luke’s theorem again). The higher moments of the unshifted
subleading shape functions are further given by relations to the local matrix elements
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of the full OPE

t(k) =
µ2
G

3
δ′(k) +

ρ3LS
6
δ′′(k) , u(k) =

2µ2
π

3
δ′(k) , v(k) = −µ

2
G

3
δ′(k) . (6.28)

which we may now use in the same way as in chapter 6.1 to derive a functional form. In
former attempts like [21, 56] the derivative of the leading shape function was used as a
model ansatz and then modified with functions that do not contribute to the moments.
There is, however, no known connection between the non–local matrix elements at
leading and subleading order and consequently they should be treated as independently.
We thus model the subleading contributions as we had done for the leading shape
function. That is, we use the ansatz from eq.(6.18) and tune the coefficients of the
polynomial to the moment relations above. As the subleading contributions are only
very weakly constraint by their moments, we do not choose different weight functions or
onsets here, but merely derive one overall form for each of the three contributions. We
will, however, still test the model dependence by varying the freely choosable parameter
k0.

The result of the modelling is shown in figure 6.3, where we depict the three models
for the Gaussian weight with α = 1 and k0 = 1.5GeV for the continuous lines. The
error bands show the variation of the subleading models between k0 ∈ [1GeV, 1.8GeV].
Note that we obtained this range by introducing an unknown third moment and varying
it between zero and one. The knowledge on the first few moments constraints the
subleading models very weakly, which in turn will be reflected in the uncertainty for
the partial rates that we investigate in chapter 6.3.2. As our default, we choose the
upper limit of this range k0 = 1.8GeV, since the fluctuations of the subleading shape
functions are reduced then and their effect is milder on the central value for the partial
rates. Nonetheless we will include the full range of possible k0 values into our error
analysis in chapter 6.3.2.

We observe that the overall subleading contribution will reduce the value of the
partial rates especially for the shape function region, where P+ is small. If integrated
over the full phase space, their contribution is fully determined by the moments of the
local OPE and thus such local effects may play an important role especially for more
restrictive kinematical cuts. Furthermore all three subleading shape functions inherit
oscillations, which is due to their vanishing zeroth moment.
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6.2.3 Residual hadronic corrections

At order 1/m2
b a new set of subsubleading shape functions enters, about which only very

sparse information exist. In the low P+ region it suffices to absorb most of their effects
into the subleading shape functions. When the subsubleading shape functions are
integrated over the major part of phase space, their contributions are distinct. While
the norm of the subleading shape functions vanishes then, this need not be true for the
subsubleading ones, as matrix elements of the local OPE at 1/m2

b emerge. To include
such contributions, one first identifies all terms in the local OPE [160] and converts
them into the (v, n) basis. Subsequently the leading and subleading shape functions
are expanded in their moments, such that by subtracting both results the contributions
from the local OPE at O(1/m2

b) remain. The result of these manipulations was derived
in [21] and reads

f
(2)
1 (P+, y) =

1

(mB − P+)2

(
−4µ2

π − 2µ2
G

3y2
+
µ2
π − µ2

G

3

)
Ŝ(P+) ,

f
(2)
2 (P+, y) =

1

(mB − P+)2

(
2µ2

π + µ2
G

3y2

)
Ŝ(P+) ,

f
(2)
3 (P+, y) =

1

(mB − P+)2

(
−4µ2

π + 8µ2
G

3y2
+

4µ2
π − 3µ2

G

3y

)
Ŝ(P+) .

(6.29)

These terms together with eq.(6.27) account for all known first and second–order con-
tributions, both in the shape function and local OPE region. In addition, further
corrections from 1/m3

b terms are expected to be tiny [21], which coincides with our
numerical findings in chapter 6.3. Besides, terms at this order can only consistently
be applied, by introducing higher order corrections in the transition of hadronic and
partonic kinematic variables. Such a procedure lies beyond the scope of this analysis
and hence we neglect all contributions of terms ∼ 1/m3

b .

6.3 Numerical evaluation of partial rates

Having defined all perturbative and non–perturbative ingredients for the structure
functions, we are now ready to numerically evaluate predictions for the partial rate
Γu with various kinematical cuts. The values for the masses mb and mB as well as all
relevant HQE parameters are updated compared to the ones used in chapter 5, because
[112] was published during the course of this thesis. For convenience, we reference the
newer values in table 6.1. The parameter Λ̄kin is not accessible by experiment and thus
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mb (4.573± 0.012)GeV
mB (5.2793± 0.00012)GeV
µ2
π (0.477± 0.056)GeV2

µ2
G (0.306± 0.05)GeV2

ρ3D (0.185± 0.031)GeV3

ρ3LS (−0.130± 0.092)GeV3

αs(mb) 0.218

Table 6.1: Default inputs for the masses and HQE parameters for the numerical analysis
of chapter 6.3. All values are taken from [112], except for the meson mass mB, which was
taken from [26]. The value for the strong coupling αs is obtained with RunDec with four–loop
accuracy [141, 142].

we use eq.(3.68) to fix it in terms of mb, µ2
π and µ2

G. Note that this reinforces the
dependence on mb, as it formerly only appeared in logarithms of the hard function.
In addition we choose the default values for the different scales as µdef

0 = 1.3GeV,
µdef
i = 1.5GeV and µdef

h = 3GeV, respectively. The soft scale lies very close to the
intermediate one, as it must be large enough to trust perturbative results. The hard
scale is generally of order ∼ mb, however in perturbative logarithms it appears in the
combination (ymb/µh) and thus we are guided by the average ⟨y⟩mb ≈ 3GeV here.

Further note that we have to reexpand the leading power structure functions simul-
taneously in the strong coupling at the different scales. Parametrically the different
scales can be treated identically for the sake of power counting and thus the reexpan-
sion gets rid of any artificial contributions of O(α3

s) from the product of the hard and
jet functions as well as the RG coefficient. The shape function also contains terms
∼ αs(µ0) from the transition to the kinetic scheme. However, since the shape func-
tion is fully non–perturbative, we do not expand it together with the other terms but
instead neglect all terms O(α3

s) in it separately.
For illustrative purposes we perform all default analyses in this chapter with the

leading and subleading shape function with the Gaussian kernel and the aforementioned
model parameters. In section 6.3.2 we vary the model contributions with the other
obtained models, to determine the uncertainty on the partial rates.

6.3.1 Double differential rate

The methods we utilized for the calculation of the partial rates are optimized for
the shape function region. Nonetheless it is instructive to also study some of the
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Figure 6.4: The double differential rate of eq.(6.30) with all power corrections and the
default Gaussian kernel for the leading and subleading shape function. Standard cuts on
P+ ≤ m2

D/mB (dashed), mX ≤ mD (dotted) and q2 ≥ (mB − mD)
2 (dashed–dotted) are

depicted in the double differential rate.

differential spectra, to analyze local effects for different values of P+ and P−. The
double differential rate in those two variables is obtained by integrating eq.(3.39) over
the lepton momentum Pℓ in the range P+ ≤ Pℓ ≤ P−, which yields

d2Γu

dP+dP−
=
G2

F |Vub|2

96π3
(mB − P+)(P− − P+)

2

×
[
(3mB − 2P− − P+)f1 + 6(mB − P−)f2 + (P− − P+)f3

]
.

(6.30)

In figure 6.4 we show the resulting spectrum for our input of the structure functions.
Most of the events that are generated with this procedure lie in the region where
P+ ≪ P−. This phase space slice is quite narrow and therefore relaxing kinematical
cuts will only have a small effect on the resulting partial rates. We observe that the
NLO and NNLO corrections to the leading structure function clench this region. Below
there is a very small patch, where the rate becomes negative, which is a relic of the
scheme change in the shape function. Since cuts are never applied to the P+ ≪ P−
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region, this does not alter the partial rate in any significant way. Above the populated
region, there is another patch, where the rate becomes slightly negative too. This
effect is caused by the modelling of the subleading shape functions. Fortunately this
region is relatively small and does not exhibit large rates. Thus after integrating over
the hadronic momenta, the rates will yield positive results and no unphysical effects
remain.

In the same figure we also indicated different kinematical cuts. We see that we can
include most of the events by employing a cut on the hadronic momentum P+ ≤ ∆P

with the ideal cut ∆P = m2
D/mB ≈ 0.66GeV. Note that cuts on P+ in general probe

the same hadronic phase space as cuts on the lepton energy Eℓ, however with a much
better efficiency, as was shown in [20]. In addition such cuts also get rid of the slightly
negative patch, which would be included with cuts on the hadronic invariant mass
mX , which is in general unwanted. Combining this with a loose cut on q2 removes the
region, where both P+ and P− are small. In this part of phase space weak annihilation
contributions are expected to play an important role, which cannot be described with
our framework [20, 21]. With the software package, we developed with this thesis [12]
it is possible to apply restrictions on all of the above observables at the same time,
allowing for the most efficient extraction of phase space.

6.3.2 Error analysis of the partial rates

We account for several sources of theoretical uncertainties in the determination of the
partial rates. First, there are uncertainties on the parameter inputs we use. We depict
all numerical values for the HQE parameters and their uncertainty in table 6.1. We
vary the mass mb as well as the HQE parameters µ2

π and ρ3D in the range of their
uncertainties. Since we determine Λ̄ in terms of these parameters, we account for its
uncertainty indirectly by their variation. In addition we determine the uncertainty from
unknown higher order perturbative corrections by varying the hard and intermediate
scale µh and µi between their default values via µdef

h /
√
2 ≤ µh ≤

√
2µdef

h and µdef
0 ≤

µi ≤
√
2µdef

i respectively. The lower limit on the µi variation is chosen such that we
do not enter any non–perturbative regimes. Finally we include uncertainties from the
choice of the model for the leading shape function, by taking the mean of the spread
of the five models introduced in chapter 6.1. To estimate the uncertainty caused by
the model choice of the subleading shape functions, we vary the parameter k0 between
1.0GeV ≤ k0 ≤ 1.8GeV, where the range is determined by varying the next unknown
moment in the subleading shape functions and fixing k0 with it. Finally we take the
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mean of the deviation from the central partial rates as the symmetrical uncertainty.
All error sources are finally added in quadrature to obtain the final uncertainty on the
partial rate.

To study the impact of the different sources of uncertainty, we show the partial rate
for three examplary kinematical cuts, where we display the various contributions to the
uncertainty explicitly. For the standard cut on the hadronic momentum P+ ≤ 0.66GeV

we find in units of |Vub|2 ps−1

Γu = 43.49 +1.73
−2.02

∣∣
µh

−0.38
−1.01

∣∣
µi

+1.02
−1.10

∣∣
mb

−0.24
−0.73

∣∣
µ2
π

+0.13
−0.01

∣∣
ρ3D

+0.97
−0.97

∣∣
SF

+3.54
−3.54

∣∣
SSF

= 43.49 +4.22
−4.51 ,

(6.31)

where SF and SSF denote the uncertainties caused by the leading and subleading shape
functions respectively. For a cut on the hadronic invariant mass mX ≤ 1.7GeV the
uncertainties read

Γu = 42.52 +1.08
−2.02

∣∣
µh

+0.38
−0.68

∣∣
µi

+0.95
−0.97

∣∣
mb

−0.22
−0.08

∣∣
µ2
π

+0.09
−0.02

∣∣
ρ3D

+0.78
−0.78

∣∣
SF

+3.24
−3.24

∣∣
SSF

= 42.52 +3.66
−4.07 ,

(6.32)

and finally for a cut on the lepton energy Eℓ ≥ 2.31GeV we find

Γu = 5.07 +0.53
−0.52

∣∣
µh

+0.21
−0.65

∣∣
µi

+0.34
−0.34

∣∣
mb

−0.18
−0.19

∣∣
µ2
π

+0.05
−0.06

∣∣
ρ3D

+0.12
−0.12

∣∣
SF

+0.93
−0.93

∣∣
SSF

= 5.07 +1.16
−1.31 .

(6.33)

Overall we see that the uncertainties give about the same contribution for the different
kinematical cuts. If cuts are chosen more restrictive, as in the case of the lepton energy
Eℓ, the proportion of the model uncertainty is larger. This is expected, as for an
integration over the full phase space, only the moments of shape function contribute
and thus all model dependence vanishes. In turn a more restrictive cut can potentially
enhance the dependence on the model.

As expected, the uncertainty caused by the model dependence from the (sub)leading
shape functions is the dominant source of uncertainty. In particular the subleading
shape functions, about which less information is available, cause a larger uncertainty
than the leading ones. We emphasize that different ways of varying the model param-
eters may yield slightly smaller or larger model uncertainties. Since we probe a large
space of different models with our variation, the lack of knowledge about the model
should be well incorporated in our uncertainty estimate.

We observe that a large part of the uncertainty is due to the variation of the hard
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Figure 6.5: Dependence of the partial rates Γu on the hard and intermediate scale µh and
µi.

and intermediate scale µh and µi, respectively. In figure 6.5 we depict the dependence
of the partial rate on µh and µi at LO, NLO and NNLO. The dependence on the
scale attenuates for growing orders in αs, which shows the importance of the NNLO
results for a precise determination. In turn, including these contributions reduces the
uncertainty caused by the scale variation.

Finally there is a relatively strong dependence on the quark mass mb. Its uncertainty
is strongly enhanced by the appearance in Λ̄, since it is absent as a phase space factor
for our choice of hadronic variables and otherwise mb solely emerges in logarithms of
the perturbative corrections in the hard functions. We note that the error caused by
the variation of µ2

π and ρ3D is relatively small. In addition ρ3D is not present in Λ̄ to the
order we are working at, which further reduces the dependence on it.

6.3.3 Partial rates with kinematical cuts

The partial rates are obtained by further integrating eq.(A.14) over the hadronic vari-
able P+. In appendix A.4 we show the algorithm that is used to employ cuts on
various observables, like the hadronic invariant mass mX , the lepton energy Eℓ, the
lepton invariant mass q2 and the hadronic jet momentum P+ or combinations thereof.
Experimentally cuts on certain variables are favoured, on the one hand due to the
reduction of the charm background and on the other due to the restrictions of the
detector.

In table 6.2 we show the resulting partial rates, with the different contributions for
several cut combinations. Overall we observe the importance of the kinematical and
subleading power corrections, which pose a contribution to the total rate of well about
10%. In addition we can nicely see the convergence of the OPE as the residual hadronic
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Cut [GeV] LO NLO NNLO Kin. Subl. SF Res. Had. Total

P+ ≤ 0.66 55.28 3.02 -8.36 5.64 -7.89 -0.83 46.88+4.22
−4.51

mX ≤ 1.7 60.90 -2.78 -10.91 7.80 -9.00 -0.99 45.03+3.66
−4.07

Eℓ ≥ 2.31 5.22 1.93 0.30 0.60 -1.13 -0.68 6.24+1.16
−1.31

q2 ≥ 8 30.56 -4.85 -5.69 6.21 -5.19 -0.64 20.36+2.04
−2.23

P+ ≤ 0.66, Eℓ ≥ 1 49.44 3.26 -7.33 5.11 -7.33 -0.87 42.28+3.54
−4.07

mX ≤ 1.7, Eℓ ≥ 1 55.78 -2.82 -10.18 7.34 -8.46 -1.04 40.62+3.21
−3.87

mX ≤ 1.7, q2 ≥ 8 29.34 -2.48 - 5.92 4.89 -5.65 -0.60 19.47+1.98
−2.31

mX ≤ 1.7, Eℓ ≥ 1, q2 ≥ 8 29.19 -2.48 -5.91 4.88 -5.65 -0.62 19.42+1.68
−2.17

Table 6.2: Partial rates for various (combined) kinematical cuts given in units of |Vub|2 ps−1

and resolved for their different contributions. In order they are listed as leading order,
NLO and NNLO corrections for the perturbative– and kinematical, subleading and resid-
ual hadronic contributions for the power corrections.

corrections ∼ 1/m2
b are about a magnitude smaller than the subleading contributions.

It is also noteworthy that the NNLO contributions play a very important role for the
partial rates and denote a larger addition than the NLO ones. For some cuts they
reduce the leading order value by almost 15%. All of these contributions are included
in our software package [12], which greatly simplifies the comparison of experimental
results with these predictions.

Traditionally the most common variable to discriminate against the charm back-
ground is the lepton energy Eℓ. By requiring the lepton energy to be larger than
(m2

B − m2
D)/2mB ≈ 2.31GeV, the invariant mass of the hadronic final state is re-

stricted to be smaller than mD. Thus, employing this ideal cut yields a complete
reduction of the charm background. The downside of using it lies in its restrictiveness.
Not only is the full charm background reduced, but in turn a large amount of other
events are also cut out. It was shown in [20, 21] that the efficiency of cuts on Eℓ is
much worse than on the hadronic variables. This can also be seen in table 6.2, where
the overall value of the partial rate with the above–mentioned Eℓ cut is much smaller
than for example the equivalent cut on the hadronic momentum. We also see that for
this particular value, the contributions from the subleading shape functions are very
strong, which has also increased the uncertainty as we saw in the previous chapter.

In contrast we may also employ a comparable cut on the hadronic variable P+,
which samples the same phase space than a cut on Eℓ. The ideal separator for this
case is P+ ≤ m2

D/m
2
B = 0.66GeV. We already saw in the differential rate depicted in
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figure 6.4 that this cut samples almost all events in the spectrum; this can also be seen
in the resulting partial rate. It is much larger than the rate with a lepton energy cut
and thus a better discriminator against the charm background. Compared to the cut
on the hadronic invariant mass mX ≤ 1.7GeV, the rate for the P+ cut is even larger in
its central value. This seems counterintuitive at first glance, but can be understood by
considering the effects of especially the NLO contribution. They quench the spectrum
in such a way that most of the events lie in a narrow patch at low P+. This happens
by a strong positive enhancement at very low P+ and a negative contributions directly
above. The cut on mX samples the negative contributions more strongly, causing a
sign change that we observe in table 6.2. Thus the central value for this cut is smaller
than the more restrictive P+ cut, however they are fully consistent in the range of their
uncertainties.

In order to enhance the precision, it is interesting to determine partial rates with
combinations of different cuts. To that end, we give some samples of different cut
combinations in table 6.2 as well. This serves to show that the software package
developed for this chapter [12] can produce values for various phase space restrictions
which can be compared directly with experimental predictions.

Finally, we use the partial rate for the combined cut on the hadronic invariant mass
and lepton energy, mX ≤ 1.7GeV and Eℓ ≥ 1GeV, from table 6.2 to determine a
preliminary value of |Vub|. In [143] the most recent value for the branching fraction
B(B → Xuℓν) was measured by the Belle collaboration. For the aforementioned kine-
matical cuts, it was determined to be B(B → Xuℓν) = (1.09±0.05±0.08) ·10−3, where
the uncertainties denote the statistical and systematical uncertainties, respectively. A
value for |Vub| can be determined with our partial rates by

|Vub| =

√
B(B → Xuℓν)

τB · Γu(B → Xuℓν)
, (6.34)

where τB = (1.579± 0.004) ps [26] is the B meson life time. Using the value for the
partial rate Γu = 40.62+3.21

−3.87 ps
−1, we obtain

|Vub| =
(
4.12± 0.09

∣∣
stat.

± 0.15
∣∣
sys.

+0.16
−0.19

∣∣
theo.

)
· 10−3 =

(
4.12 +0.24

−0.26

)
· 10−3 , (6.35)

where the uncertainties denote the statistical, systematical and theory uncertainty
respectively and the total was obtained by adding the individual errors in quadrature.
We note that the central value in eq.(6.35) is slightly larger than the ones found in
[143] for this specific cut, but is fully consistent in the range of its error and with
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the value averaged over all kinematical cuts. The enhancement compared with their
previous value of BLNP [143], |Vub|BLNP = (3.90± 0.21) · 10−3, is most probably due to
the inclusion of NNLO corrections, which were not included previously. It was already
found in [58] that these corrections reduce the partial rates significantly, which in turn
enhances the value for |Vub|. In addition, this reduces the uncertainty from the variation
of the scales µh and µi such that the final theory error is also slightly smaller than the
previous one. Finally our value eq.(6.35) is significantly lower than the inclusive world
average from eq.(6.1) and thus reduces tension with the exclusive determination.
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Conclusion

The study of semi– and non–leptonic decays of B mesons offers a broad spectrum for
testing the CKM sector of the standard model. With the newly acquired experimental
data from the B factories, pushing the precision of B physics from the theoretical side
has become one of the prime objectives in current particle physics research. Clearly, the
provision of the theoretical predictions to the experimental collaborations in a usable
and implementable manner, is one of the paramount issues in reaching the maximum
precision. In this thesis, we have built this bridge between theory and experiment
for three decay channels of the B meson; the inclusive semileptonic B → Xcℓν̄ and
B → Xuℓν̄ as well as the non–leptonic decay B → πππ.

In the first three chapters of the thesis, we laid the foundations for the applications
to the specific decays. In this, we gave a short introduction into the flavour sector
of the standard model and the concept of CP violation, which was followed by an
overview over Effective Field Theories – in particular the Weak Effective Theory and
Heavy Quark Effective Theory. Furthermore we introduced the theoretical basis for
the treatment of inclusive semileptonic decays. This involved the disentanglement of
perturbative and non–perturbative physics with an Operator Product Expansion and
a discussion about the respective occurring matrix elements. We showed that the local
matrix elements in the case B → Xcℓν̄ can be connected in between orders by exploiting
the invariance under reparameterization. In contrast we discussed the non–local matrix
elements in the decay B → Xuℓν̄ and how a factorization theorem, derived in the Soft
Collinear Effective Theory, separates contributions at different energy scales. Finally
we motivated the use of different mass schemes to enable a more controlled convergence
of the perturbative results. Alongside we introduced the kinetic mass scheme, which
enhanced the precision of our predictions even further.

The first application of these methods, was the study of CP violation in the non–
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leptonic three body decay B → πππ. Since currently all amplitude analyses are per-
formed in variables that are unrelated to the underlying physical process, we encour-
aged to perform future fits with amplitudes that are directly related to the operators
of the quarks involved. Moreover, the strong phase, which drives the CP violation in
this process, is solely generated with resonance contributions, usually modelled in the
Breit–Wigner form. We pointed out how such a parameterization is not sufficient to
describe the experimental findings in the CP landscape and therefore introduced a new
parameterization of charm–loop effects. We showed that this parameterization is able
to generate large structures in the CP plane, while at the same time being simple to
implement in existing amplitude models. Furthermore it is not limited to the process
at hand, but can be easily extended for general non–leptonic three body decays, for
example into three kaons or a combination of kaons and pions.

Secondly, we investigated the inclusive semileptonic decay B → Xcℓν̄. Exploiting
the invariance under reparameterization enabled us to reduce the number of indepen-
dent local matrix elements that need to be fixed with experimental data from thirteen
down to only eight up to O(1/m4

b) in the Heavy Quark Expansion. Since an analysis
of this reduced set of parameters can only be attempted with experimental observables
that share the aforementioned invariance, we used to newest data of the Belle and
Belle II collaboration to analyze the moments of the leptonic invariant mass q2 for
the first time. To that end we developed a software package [11], which includes all
state–of–the–art corrections to the theoretical prediction of the total rate and the q2

moments, while only depending on the reduced set of HQE parameters. By employing
a novel fit, we determined Vcb fully data–driven to O(1/m4

b) for the first time as

|Vcb| =
(
41.69± 0.59

∣∣
fit
± 0.23

∣∣
h.o.

)
· 10−3 = (41.69± 0.63) · 10−3 . (6.36)

This value is fully consistent with the former value of |Vcb| = (42.16±0.51) ·10−3, which
was found using hadronic invariant mass and lepton energy moments [112]. Alongside
this main result, we also studied the correlation of the different HQE parameters and
determined the ones our fit was sensitive to: ρ3D, r4E and r4G.

Future improvements of our analysis include higher perturbative corrections to the
q2 moments, since the NNLO corrections to the partonic and NLO corrections to the
HQE parameters are currently not implemented. It would also be interesting to use
the full range of available spectra, i.e. the lepton energy, hadronic invariant mass and
leptonic invariant mass moments for a full investigation of Vcb even though it is not
possible to use the RPI reduced set of parameters then.
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Finally we studied the inclusive semileptonic decay B → Xuℓν̄. In contrast to
the inclusive b → c decays, it is necessary to apply strong kinematical cuts here, as
otherwise the CKM favoured B → Xcℓν̄ decays overshadow the experimental signal. In
the region of interest in phase space, the OPE features non–local matrix elements – the
shape functions – which are not accessible with current theoretical methods. Therefore
we developed a novel approach to model them, while taking into account all available
information on their moments and perturbative behaviour. In addition we included all
known information on the (non–local) power corrections up to ∼ 1/m2

b , as well as the
perturbative pieces up to NNLO in the software package we developed for this purpose
[12]. Several of the results we employed have been available for some time already, but
were never used in experimental investigations. We numerically evaluated the resulting
partial rates for various kinematical cuts and performed an elaborate error analysis of
the values to subsequently determine a preliminary value for Vub, which reads

|Vub| =
(
4.12± 0.09

∣∣
stat.

± 0.15
∣∣
sys.

+0.16
−0.19

∣∣
theo.

)
· 10−3 =

(
4.12 +0.24

−0.26

)
· 10−3 . (6.37)

This value coincides well with the overall average, that was obtained in [143], which
reads |Vub| = (4.10± 0.28) · 10−3.

We emphasize that the value presented here is preliminary and a full analysis in-
cluding the experimental results for various kinematical cuts is necessary for a full
determination of Vub. We also observed that the uncertainty on the theoretical error is
dominated by the contribution of subleading shape functions. Thus it is desirable to
enhance the precision on these objects further in the future, either by including more
moments in their determination or by gathering more information on them with novel
methods.

The investigation of precision phenomena in the flavour sector denotes one of the
most fruitful branches of the current particle physics research and with ever–increasing
amounts of data, more sophisticated and precise predictions will remain a major part
of research in probing the limits of the Standard Model.
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Appendix

We give all perturbative quantities in this appendix in terms of the SU(N) colour factors
where we follow the convention

dabcdA dabcdA

NA

=
N2(N2 + 36)

24
,

dabcdF dabcdA

NA

=
N(N2 + 6)

48
,

dabcdF dabcdF

NA

=
N4 − 6N2 + 18

96N2
,

TF =
1

2
, CA = N , CF =

N2 − 1

2N
, NA = N2 − 1 , NF = N . (A.1)

Here N is the number of colours (in this thesis N = 3), NF and NA are the dimensions
of the fundamental and adjoint representation respectively and nf is the number of
active quark flavours (if not denoted otherwise we use nf = 4).

A.1 The hard, jet and soft functions

We give the perturbative expansions for the hard, jet and soft–partonic functions.
The hard functions are extremely lengthy and thus we refer to [67] for the NNLO
contributions. In terms of the quantities Hij = CiCj, the Hui read

Hu1 = H11, Hu2 = 0, Hu3 =
2H13 +H33

y
+H12 +H23 +

y

4
H22 . (A.2)
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Up to NLO they read explicitly

Hu1(y) = 1 +
CFαs(µh)

4π

(
−4 ln2ymb

µh

+ 10 ln
ymb

µh

− 4 ln y

−2 ln y

1− y
− 4L2(1−y)−

π2

6
−12

)
, (A.3)

Hu3(y) =
CFαs(µh)

4π

2 ln y

1− y
.

The jet functions are less lengthy. We give their Laplace transform up to NNLO [70]

j̃(L, µ) = 1 +
CFαs

4π

(
2L2 − 3L+ 7− 2π2

3

)
(A.4)

+ CF

(αs

4π

)2
(CFJF + CAJA + TFnfJf ) ,

where

JF = 2L4 − 6L3 +

(
37

2
− 4π2

3

)
L2 +

(
−45

2
+ 4π2 − 24ζ3

)
L

+
205

8
− 97π2

12
+

61π4

90
− 6ζ3 ,

JA = −22

9
L3 +

(
367

18
− 2π2

3

)
L2 +

(
−3155

54
+

11π2

9
+ 40ζ3

)
L (A.5)

+
53129

648
− 155π2

36
− 37π4

180
− 18ζ3 ,

Jf =
8

9
L3 − 58

9
L2 +

(
494

27
− 4π2

9

)
L− 4057

162
+

13π2

9
.

Finally the soft function receives a perturbative correction, that generates its radiative
tail. Up to NNLO its Laplace transform is given by [72]

s̃(L, µ) = 1 +
CFαs(µh)

4π

(
−4L2 +−4L− 5π2

6

)
(A.6)

+ CF

(αs

4π

)2
(CFSF + CASA + TFnfSf ) ,
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where

SF = 8L4 + 16L3 +
10π2L2

3
+ 8L2 +

10π2L

3
+

25π4

72
,

SA =
88

9
L3 +

(
4π2

3
− 136

9

)
L2 +

(
56π2

9
+

220

27
− 36ζ3

)
L (A.7)

− 283ζ3
9

+
107π4

180
− 233π2

36
− 326

81
,

Sf = −32

9
L3 +

32

9
L2 − 20π2

9
L+

7π2

9
− 8

81
+

44

9
ζ3 .
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A.2 RG factors and anomalous dimensions

In this appendix we list all perturbative quantities, related to the RG running up to the
highest known order. We define the respective expansion coefficients as in eq.(2.16).
In terms of these coefficients the Sudakov and anomalous dimension exponent from
eq.(3.52) read [77]

aΓ(ν, µ) =
Γ0

2β0

{
ln
αs(µ)

αs(ν)
+

(
Γ1

Γ0

− β1
β0

)
αs(µ)− αs(ν)

4π
(A.8)

+

[
Γ2

Γ0

− β2
β0

− β1
β0

(
Γ1

Γ0

− β1
β0

)]
α2
s(µ)− α2

s(ν)

32π2
+ . . .

}
,

as well as

S(ν, µ) =
Γ0

4β2
0

{
4π

αs(ν)

(
1− 1

r
− ln r

)
+

(
Γ1

Γ0

− β1
β0

)
(1− r + ln r) +

β1
2β0

ln2 r

+
αs(ν)

4π

[(
β1Γ1

β0Γ0

− β2
β0

)
(1− r + r ln r) +

(
β2
1

β2
0

− β2
β0

)
(1− r) ln r

−
(
β2
1

β2
0

− β2
β0

− β1Γ1

β0Γ0

+
Γ2

Γ0

)
(1− r)2

2

]
(A.9)

+

(
αs(ν)

4π

)2
[(

β1β2
β2
0

− β3
1

2β3
0

− β3
2β0

+
β1
β0

(
Γ2

Γ0

− β2
β0

+
β2
1

β2
0

− β1Γ1

β0Γ0

)
r2

2

)
ln r

+

(
Γ3

Γ0

− β3
β0

+
2β1β2
β2
0

+
β2
1

β2
0

(
Γ1

Γ0

− β1
β0

)
− β2Γ1

β0Γ0

− β1Γ2

β0Γ0

)
(1− r)3

3

+

(
3β3
4β0

− Γ3

2Γ0

+
β3
1

β3
0

− 3β2
1Γ1

4β2
0Γ0

+
β2Γ1

β0Γ0

+
β1Γ2

4β0Γ0

− 7β1β2
4β2

0

)
(1− r)2

+

(
β1β2
β2
0

− β3
β0

− β2
1Γ1

β2
0Γ0

+
β1Γ2

β0Γ0

)
1− r

2

]
+ . . .

}
,

where r = αs(µ)/αs(ν). Note that knowledge about the three–loop results for the
anomalous dimensions is necessary in order to consistently apply the results up to
NNLO, which is now possible without any approximations. In addition the β–function
and cusp–anomalous dimension are needed up to four–loops.

We list all the expressions for the β–function and anomalous dimensions in the MS

scheme. The QCD β–function is currently known to five loops [161], however we list
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only the first four orders, as required by the above equations

β0 =
11

3
CA − 4

3
TFnf ,

β1 =
34

3
C2

A − 4CFTFnf −
20

3
CATFnf ,

β2 =
2857

54
C3

A + 2C2
FTFnf −

205

9
CFCATFnf

−1415

27
C2

ATFnf +
44

9
CFT

2
Fn

2
f +

158

27
CAT

2
Fn

2
f , (A.10)

β3 = C4
A

(
150653

486
− 44

9
ζ3

)
+ C3

ATFnf

(
−39143

81
+

136

3
ζ3

)
+C2

ACFTFnf

(
7073

243
− 656

9
ζ3

)
+ CAC

2
FTFnf

(
−4204

27
+

352

9
ζ3

)
+46C3

FTFnf + C2
AT

2
Fn

2
f

(
7930

81
+

224

9
ζ3

)
+ C2

FT
2
Fn

2
f

(
1352

27
− 704

9
ζ3

)
+CACFT

2
Fn

2
f

(
17152

243
+

448

9
ζ3

)
+

424

243
CAT

3
Fn

3
f +

1232

243
CFT

3
Fn

3
f

+
dabcdA dabcdA

NA

(
−80

9
+

704

3
ζ3

)
+ nf

dabcdF dabcdA

NA

(
512

9
− 1664

3
ζ3

)
+n2

f

dabcdF dabcdF

NA

(
−704

9
+

512

3
ζ3

)
.

The cusp–anomalous dimension is currently known to four–loop accuracy [79] and reads

Γ0 = 4CF ,

Γ1 = 4CF

[(
67

9
− π2

3

)
CA − 20

9
TFnf

]
,

Γ2 = 4CF

[
C2

A

(
245

6
− 134π2

27
+

11π4

45
+

22

3
ζ3

)
+ CATFnf

(
−418

27
+

40π2

27
− 56

3
ζ3

)

+ CFTFnf

(
−55

3
+ 16ζ3

)
− 16

27
T 2
Fn

2
f

]
,

(A.11)

117



Appendix

Γ3 = CF

[
C3

A

(
1309ζ3
432

− 11π2ζ3
144

− ζ23
16

− 451ζ5
288

+
42139

10368
− 5525π2

7776
+

451π4

5760
− 313π6

90720

)
+ nfTFC

2
A

(
−361ζ3

54
+

7π2ζ3
36

+
131ζ5
72

− 24137

10368
+

635π2

1944
− 11π4

2160

)
+ nfTFCFCA

(
29ζ3
9

− π2ζ3
6

+
5ζ5
4

− 17033

5184
+

55π2

288
− 11π4

720

)
+ nfTFC

2
F

(
37ζ3
24

− 5ζ5
2

+
143

288

)
+ (nfTF )

2CA

(
35ζ3
27

− 7π4

1080
− 19π2

972
+

923

5184

)
+ (nfTF )

2CF

(
−10ζ3

9
+

π4

180
+

299

648

)
+ (nfTF )

3

(
− 1

81
+

2ζ3
27

)]
+
dabcdF dabcdA

NF

(
ζ3
6
− 3ζ23

2
+

55ζ5
12

− π2

12
− 31π6

7560

)
+ nf

dabcdF dabcdF

NF

(
π2

6
− ζ3

3
− 5ζ5

3

)
.

The anomalous dimensions γJ and γ′ are both known to three–loop order. The jet
anomalous dimension coefficients are given by [77]

γJ0 = −3CF ,

γJ1 = C2
F

(
−3

2
+ 2π2 − 24ζ3

)
+ CFCA

(
−1769

54
− 11π2

9
+ 40ζ3

)
+ CFTFnf

(
242

27
+

4π2

9

)
,

γJ2 = C3
F

(
−29

2
− 3π2 − 8π4

5
− 68ζ3 +

16π2

3
ζ3 + 240ζ5

)
+ C2

FCA

(
−151

4
+

205π2

9
+

247π4

135
− 844

3
ζ3 −

8π2

3
ζ3 − 120ζ5

)
(A.12)

+ CFC
2
A

(
−412907

2916
− 419π2

243
− 19π4

10
+

5500

9
ζ3 −

88π2

9
ζ3 − 232ζ5

)
+ C2

FTFnf

(
4664

27
− 32π2

9
− 164π4

135
+

208

9
ζ3

)
+ CFCATFnf

(
−5476

729
+

1180π2

243
+

46π4

45
− 2656

27
ζ3

)
+ CFT

2
Fn

2
f

(
13828

729
− 80π2

81
− 256

27
ζ3

)
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and the ones for γ′ are [81]

γ′0 = −5CF ,

γ′1 = −8CF

[(
3

16
− π2

4
+ 3ζ3

)
CF +

(
1549

432
+

7π2

48
− 11

4
ζ3

)
CA −

(
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216
+
π2

24

)
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]
,

γ′2 = CF
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C2

A

(
2786

9
ζ3 −

56π2

9
ζ3 − 100ζ5 −

250477

2916
+

1691π2
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+CACF

(
−844
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ζ3 −
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4
+

205π2
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+

247π4
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−68ζ3 +

16π2

3
ζ3 + 240ζ5 −

29

2
− 3π2 − 8π4

5

)
+CAnfTF

(
−440

27
ζ3 −

7706

729
+

1874π2

243
+

22π4

45

)
+CFnfTF

(
224

9
ζ3 +

3943

27
− 26π2

9
− 28π4

27

)
+(nfTF )

2

(
−32

27
ζ3 +

10532

729
− 40π2

27

)]
.
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Appendix

A.3 Conversions to the kinetic scheme

We give the explicit formulas for the conversion from the OS to the kinetic scheme for
the mass and the HQE parameters up to order α2

s [86, 154]. The expressions to order
α3
s are also available, however extremely lengthy and hence we refer to [86] for their

explicit form. The conversions read

mOS

mkin =1 +
α
(nf )
s (µ)

π
CF

(
4

3

µ

mkin +
1

2

µ2

(mkin)2

)

−

(
α
(nf )
s (µ)

π

)2

CF

{
µ

mkin

[
CA

(
−215

27
+

2π2

9
+

22

9
lµ

)
+ nfTF

(
64

27
− 8

9
lµ

)]

+
µ2

(mkin)2

[
CA

(
−91

36
+
π2

12
+

11

12
lµ

)
+ nfTF

(
13

18
− 1

3
lµ

)]}
,

[
Λ̄(µ)

]
pert =

α
(nf )
s (µ)

π
CF µ

(
4

3
+
α
(nf )
s (µ)

π

(
1

27
CA

(
215− 6π2 − 66lµ

)
− 8

27
nfTF

(
8− 3lµ

)))
,

[
µ2
π(µ)

]
pert =

α
(nf )
s (µ)

π
CF µ

2

(
1 +

α
(nf )
s (µ)

π

(
1

18
CA

(
91− 3π2 − 33lµ

)
− 1

9
nfTF

(
13− 6lµ

)))
,

where the shorthand notation lµ = ln(µ2/m2
b) was used.
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A.4. Differential P+ spectrum with kinematical cuts

A.4 Differential P+ spectrum with kinematical cuts

The differential P+ spectrum is obtained by integrating the triple differential rate
eq.(3.39) over Pℓ and P−

dΓu(ymax, y0)

dP+

=

{
ΓA
u (ymax) , ymax ≤ y0

ΓA
u (y0) + ΓB

u , ymax > y0
, (A.14)

where

ΓA
u (yi) =

G2
F |Vub|2

96π3
(mB − P+)

5

yi∫
0

dy y2 [(3− 2y) f1 + 6(1− y) f2 + y f3] ,

ΓB
u =

G2
F |Vub|2

96π3
(mB − P+)

5

ymax∫
y0

dy y0 (A.15)

×
[(
6y(1 + y0)− 6y2 − y0(3 + 2y0)

)
f1 + 6y(1− y) f2 + y0(3y − 2y0) f3

]
and y0 and ymax are the limits of the y integration. Whenever there is a cut on the
lepton energy Eℓ ≥ Ecut, the lower limit of the y integration reads

y0 =
Pmax
l − P+

mB − P+

= 1− 2Ecut

mB − P+

, (A.16)

while the lower limit on the final P+ integration is always Pmin
+ = 0.

Apart from the lepton energy cut, there are often cuts on the hadronic and leptonic
invariant masses mX and q2. If we constrain the former by mX ≤ mcut, the upper
limits of the y and P+ integration read respectively

ymax =
min(mB,m

2
cut/P+)− P+

mB − P+

, Pmax
+ = min(mcut,mB − 2Ecut) . (A.17)

When constraining the lepton invariant mass with q2 ≥ q2cut the upper limits read

ymax = 1− q2cut
(mB − P+)2

, Pmax
+ = min(mB − qcut,mB − 2Ecut) . (A.18)

We can also apply cuts on all formerly mentioned variables, in which case the minimum
of the limits above marks the upper y and P+ integration.
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Appendix

A.5 Additional material to the Vcb fit

In this appendix we give several additional fit results for the determinations in chap-
ter 5. In figure A.10 we show the different 1D χ2 profile scans for several fit parameters
and the correlation parameters ρmom and ρcut. As mentioned in the main chapter, we
observe a non–parabolic behaviour for the correlation parameters and thus their un-
certainty is determined with an ensemble of pseudo–experiments. The other χ2 profiles
show a parabolic form, so the assumption of Gaussian constraints is well justified.

In figures A.6, A.7, A.8 and A.9 we show the results of our fits for fixed pairs of
the correlation parameters. We depict the Belle and Belle II data separately and for
the combined data set. It can nicely be seen, that the results for Vcb and the HQE
parameters do not strongly depend on the choice of the correlation parameters.

In table A.3 we show the result of our default fit, with all 1/m4
b parameters set to

zero.

|Vcb| × 103 mkin
b mc µ2

G µ2
π ρ3D ρcut ρmom

Value 41.76 4.56 1.10 0.38 0.43 0.03 0.05 0.14
Uncertainty 0.57 0.02 0.01 0.07 0.24 0.02 - -

Table A.3: Results of our default fit using both Belle and Belle II data for |Vcb|, mkin
b , mc,

ρ3D, and the correlation parameters ρcut and ρmom. The O(1/m4
b) terms are set to zero. All

parameters are expressed in GeV at the appropriate power.

Figure A.6: Fit results for |Vcb| for different combinations of correlation parameter values.
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A.5. Additional material to the Vcb fit

Figure A.7: Fit results forρ3D for different combinations of correlation parameter values.

Figure A.8: Fit results for r4E for different combinations of correlation parameter values.

Figure A.9: Fit results for r4G for different combinations of correlation parameter values.
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Figure A.10: 1D χ2 profile scans for |Vcb| × 103, ρ3D, r4E × 10, and r4G. The minimum χ2
min

is subtracted from the χ2 function.
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