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Abstract

The aim of this thesis is to develop an approach which evades the most fundamental short coming

of space-time adaptive processing (STAP): its need for training data. STAP is the state-of-the-

art approach for conducting ground moving target indication (GMTI). Among other things, an

extensive amount of research was conducted in the recent decades to reduce its computational

complexity or the required amount of training data. However, non has been done to avoid it

completely. In doing so and using measurement data from the current cell under test (CUT)

alone, most short comings can be avoided as there are: clutter residuals from not sufficiently

suppressed clutter contributions and target masking or self-nulling. This is advantageous in case

of heterogeneous busy environments e. g. urban areas. This work presents the first approach

to do so for which compressive sensing (CS) and affine rank minimization (ARM) techniques are

used. By exploiting the correlated nature of GMTI clutter signals a low rank matrix can be formed

from the measurement matrix corresponding to the CUT. This is done by focusing the clutter ridge

in the angle-Doppler domain a. k. a. radar scene. Moving targets sparsely present in the radar

scene are invariant with respect to the focus operation i. e. they remain sparse. The focused radar

scene therefore renders to be the sum of a low rank and a sparse matrix which can be separated

by use of an compressed robust principal component analysis (CRPCA) approach. The aim after

separation is the low rank matrix to contain all clutter contributions and the sparse matrix to

hold all moving targets. As a prerequisite for this to work, however, the so called rank sparsity

incoherence condition must be met. Among other things this means that the low rank matrix

must not contain spiky entries. This is not fulfilled as the clutter ridge by its very nature is spiky.

To mitigate this issue a model based projection filter is applied onto the measurement data as a

preconditioning step. The required parameters of the model projection filter are estimated during

the clutter focused operation. Depending on the quality of the estimated parameters, all clutter

energy is suppressed in the preconditioning step resulting the low rank matrix to be empty. In

case the preconditioning step is not able to suppress all clutter contributions, the clutter residuals

are usually of non spiky nature allowing to apply the aforementioned CRPCA separation. In

summary, this is a three step approach for which an auto-clutter focus (ACF) algorithm, a model

based projection filter, and an CRPCA based separation model are presented in this work. With

them it is possible to separate strictly static from moving targets. As such effects like internal

clutter motion are not covered and are subject to future research. The approach is evaluated

thoroughly by use of a simulation model. As mentioned before this work is based on CS and

ARM techniques. Most standard methods from the literature, however, do not consider the

practical needs of radar signal processing e. g. they suffer from restrictions to real numbers,

slow convergence rate, low reconstruction performance, or knowledge of unknown parameters

like the precise number of sparse entries or the exact rank of a low rank matrix. Therefore,

various CS and ARM algorithms are combined and extended in this work to comprise a set of
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high performative CS, ARM, and CRPCA algorithms which do not suffer the aforementioned

restrictions. In summary, the work presented here represents a completely new approach to

solving the GMTI problem. Nevertheless, as GMTI renders to be a complex task further research

is needed with regard to a practical application.
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Zusammenfassung

Das Ziel dieser Arbeit ist es, einen Ansatz zu entwickeln, der die grundlegendste Schwachstel-

le von space-time adaptive processing (STAP) vermeidet: die Notwendigkeit von Trainingsdaten.

STAP ist der modernste Ansatz zur Detektion von sich relativ zur Erdoberfläche bewegenden

Zielen, besser bekannt als ground moving target indication (GMTI). In den letzten Jahrzehnten

wurde unter anderem viel geforscht, um die Komplexität der Berechnungen oder die erforderli-

che Menge an Trainingsdaten für STAP zu verringern. Es wurde jedoch nichts unternommen, um

sie vollständig zu vermeiden. Auf diese Weise und bei Verwendung von Messdaten der cell under

test (CUT) alleine, ist es jedoch möglich die größten Nachteile von STAP zu vermeiden. Diese wä-

ren: Clutter-Residuale von nicht ausreichend unterdrückten Clutter-Beiträgen und Zielmaskierung.

Dies ist vor allem in heterogenen und stark frequentierten Umgebungen, z. B. in städtischen

Gebieten, von Vorteil. In dieser Arbeit wird ein erster Ansatz vorgestellt, bei dem compressive

sensing (CS) und affine rank minimization (ARM) Techniken zum Einsatz kommen. Durch Aus-

nutzung der starken Korrelation von GMTI Clutter-Signalen, wird aus der Messmatrix einer CUT

eine Matrix niedrigen Ranges geformt. Dies erfolgt durch Fokussierung der sogenannten Clutter-

Ridge in der Winkel-Doppler-Domäne bzw. Radarszene. Bewegtziele, die in der Radarszene nur

spärlich vorhanden sind, sind gegenüber der Fokussierungsoperation unveränderlich, d. h. sie

bleiben spärlich. Die fokussierte Radarszene kann daher als Summe einer dünn besetzen Matrix

und einer Matrix niedrigen Ranges formuliert werden, welche mittels eines compressed robust

principal component analysis (CRPCA) Ansatzes separiert werden können. Nach der Separation

sollen alle Cluttersignalanteile in der Matrix niedrigen Ranges und alle Bewegtziele in der dünn

besetzen Matrix enthalten sein. Eine Voraussetzung dafür ist jedoch die sogenannte Rank-Sparsity-

Inkohärenzbedingung. Unter anderem bedeutet dies, dass die Matrix niedrigen Ranges ansatzwei-

se homogen in ihrer Amplitude verteilt sein muss. Diese Voraussetzung ist jedoch nicht gegeben,

da die Clutter-Ridge als solche große Amplituden im Vergleich zu ihren Nebenzipfel aufweist.

Um dieses Problem zu entschärfen, wird ein modellbasiertes Projektionsfilter als Vorstufe auf die

Messdaten angewendet. Die dafür benötigten Parameter werden während des Fokussierungspro-

zesses geschätzt. Je nach Qualität der geschätzten Parameter wird die gesamte Clutterenergie

bereits im Vorkonditionierungsschritt unterdrückt, was dazu führt, dass die niederrangige Matrix

nahezu leer ist. Falls die Vorkonditionierung nicht in der Lage ist, alle Clutter-Beiträge zu unter-

drücken, sind die Clutter-Reste in der Regel jedoch nicht mehr heterogen verteilt, so dass die oben

beschriebene Separation mittels CRPCA angewendet werden kann. In Summe handelt es sich um

einen dreistufigen Ansatz, für den in dieser Arbeit ein auto-clutter focus (ACF)-Algorithmus, ein

modellbasierter Projektionsfilter und ein CRPCA-basiertes Trennmodell vorgestellt werden. Damit

ist es möglich, rein statische von bewegten Zielen zu trennen. Andere Effekte wie z. B. Clutte-

reigenbewegungen werden jedoch nicht erfasst und sind Gegenstand künftiger Forschung. Der

Ansatz wird mit Hilfe eines Simulationsmodells gründlich evaluiert. Wie bereits erwähnt, basiert
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diese Arbeit auf CS- und ARM-Techniken. Die meisten Standardmethoden aus der Literatur be-

rücksichtigen jedoch nicht die praktischen Bedürfnisse der Radarsignalverarbeitung, z. B. leiden

sie unter der Beschränkung auf reelle Zahlen, einer langsamen Konvergenzrate, einer geringen

Rekonstruktionsleistung oder der Kenntnis unbekannter Parameter, wie der genauen Anzahl der

Einträge in der dünn besetzten Matrix oder des exakten Rangs der niederrangigen Matrix. Daher

werden in dieser Arbeit verschiedene CS- und ARM-Algorithmen kombiniert und erweitert, um

eine Reihe leistungsfähiger CS-, ARM- und CRPCA-Algorithmen zu schaffen, die nicht unter den

oben genannten Einschränkungen leiden. Die hier vorgestellte Arbeit stellt einen völlig neuen

Ansatz zur Lösung des GMTI-Problems dar. Da sich GMTI jedoch als komplexe Aufgabe erweist,

sind weitere Forschungen im Hinblick auf eine praktische Anwendung erforderlich.
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1. Introduction

The flooding in the western part of Germany in the year 2021 were devastating. Heavy local rain

showers with extreme intensity of 150 l/m2 per minute caused small streams to swell into raging

floods. Thousands of houses were flooded and entire streets were washed away. The highway

A1 near Erftstadt was washed out and became impassable. The telecommunications network

collapsed, leaving many localities cut off from the outside world. Organizing and coordinating

emergency services in such a situation renders to be a challenging task. In order to get such situ-

ations under control, an up-to-date situation report is required. Among the many possibilities to

obtain such, ground moving target indication (GMTI) is a convenient approach to help acquiring

situational awareness.

The aim of GMTI is to detect targets moving relative to the earth surface and to estimate their

positions, velocities, and moving directions. Like many other developments in the field of radar

technology, GMTI was first used for military purpose. It allows to build up situational awareness

of a region i. e. it answers questions such as: Are there moving entities? Where? How fast? How

many? When did it start? From where did they come and where are they going? This type of

information is not only of interest for military purposes but also for civilian traffic applications e. g.

monitoring of shipping routes or building up situational awareness in case of natural disasters

like flooding or earth quakes. Which directions are survivors heading, which roads are still usable

or where are aid convoys progressing? Among the many possibilities to acquire it, GMTI has

its own particular advantages. Compared to alternative sensors like cameras, infra-red sensors,

light detection and ranging (LIDAR), ground personnel with global positioning system (GPS) and

communication equipment etc., radar is not affected by rain or fog and is able to cover wide areas

providing real time updates. Since it is self illuminating it also works at night and can be quickly

deployed anywhere. However, there is no free lunch. These benefits are accompanied with high

technical effort as for GMTI a fully coherent multichannel air- or spaceborne radar front end along

with a high performance processing back end is required. The resulting high costs explain the

initially purely military driven application and development of GMTI. The technological progress

and the involved miniaturization and cost reduction, however, also allows for civil applications and

developments. Especially recent advancements in 5G communication equipment benefit radar

development. Full digital front ends become a mass product allowing for an increased number of

available channels in GMTI systems. What used to be the question of how to run GMTI with as

few channels as possible will soon be the question of what to better with so many channels that

will be available. Technically, GMTI includes the case of a stationary radar, yet commonly, GMTI

is conducted from moving platforms like airplanes, drones, or satellites. The principal challenge

of GMTI therefore is to find targets which are moving relative to the earth surface, where in

turn the earth surface itself is also moving relative to the air- or spaceborne radar system. The

undesired radar echoes of the earth surface, also called clutter, as well as the moving targets
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render to be of non stationary nature with respect to the radar system. The key question now is,

how to suppress the undesired moving signal part from the desired one? The signal processing

state-of-the-art approach used to do so undoubtedly is space-time adaptive processing (STAP).

Initially developed in 1968 it still is a very active research topic. In its very essence, STAP forms an

optimal filter to suppress all clutter contributions from the received signal by use of training data.

Every signal component contained within the training data will be filtered out. In order for the

STAP approach to work, there are the following requirements to the training data:

• sufficient data is available

• same clutter signal structure or statistic as the cell under test (CUT)

• no moving target within training data.

Violating the first two prerequisites results in non sufficiently suppressed clutter signals called clut-

ter residuals. A violation of the latter requirement results in target masking or target self nulling

as the STAP filter gets trained to also suppress moving target signal components. In case all re-

quirements can be fulfilled, STAP is an optimal approach to use. It does not need any information

about the measurement process e.g. any information about the antenna configuration, pulse

repetition frequency (PRF), antenna beam width, radar velocity and orientation etc. Everything

is learned from the training data at hand. The big question now is where to get it? There is

no other alternative than to take it from surrounding range gates of the CUT and to hope it

will meet all aforementioned requirements. The success of this approach certainly depends on

the deployment area. In regions of homogeneous landscape e.g. big fields, grasslands, steppes,

deserts, sea etc. enough training data certainly will be available. However, when it comes to

heterogeneous regions e.g. if land-sea junctions, mountains, big buildings, or wanes are present

it is likely that the first two stated requirements cannot be fulfilled. The research efforts con-

ducted in the recent decades try to mitigate the results of violated requirements. The primary

objective was to reduce the amount of required training data. The main reason this was done,

however, was not to robustify STAP regarding heterogeneous clutter environments. Rather, the

mathematically optimal form of STAP requires a large number of training data. A direct con-

sequence is a very high computational burden. Since processing power was historically rather

limited, much effort was done to develop sub optimal STAP approaches with the aim to reduce it.

As a result a plethora of algorithms emerged ranging from training data independent methods

like most notably Post-Doppler-STAP to data dependent methods e.g. sub space methods. The

interested reader may refer to [1] for a good overview. Some more sophisticated approaches

incorporate knowledge of the measurement process. An interesting approach is the space-time

autoregressive (STAR) algorithm which models the measurement process as an auto-regressive

one. This can be done since clutter measurements are of correlated nature. By super imposing a

multidimensional finite impulse response (FIR) filter structure on the sample process the number

of required training data can be reduced dramatically. Another example is Kronecker-STAP which

exploits the fact that the clutter covariance matrix is of low rank nature and can be formulated

by use of a Kronecker product. This again reduces the required number of training samples.

Nevertheless, a common necessity among all approaches is the need for training data. As such,

the consequences when violating the accompanying requirements are still present. A common
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procedure when conducting research is to apply every newly emerging signal processing frame-

work onto old problems and to look if any improvement is achievable. In this very manner the

approaches presented in this work were developed. The signal processing framework at hand is

compressive sensing (CS) and affine rank minimization (ARM) developed in 2004. From a linear

algebra point of view, CS and ARM allow to find unique solutions to under determined linear

equation systems given they are either of sparse or low rank nature. Another point of view is that

CS and ARM try to directly find the inverse image corresponding to a linear mapping rather than

using a pseudo-inverse mapping. CS and ARM are formulated as optimization problems, where

in case of CS the number of non zero entries within the solution a. k. a. sparsity and in case of

ARM the rank of the solution is minimized. The traditionally used minimum least-square solution

renders to be the Moore-Penrose pseudo-inverse. CS and ARM techniques are applied with great

successes in many fields e.g. image processing, hyperspectral imaging, control engineering, radar

signal processing, etc. The interested reader may refer to [1] for a collective overview. Beside CS

and ARM, another extremely popular signal processing framework must of course be mentioned,

namely neural networks and their variants. Researchers everywhere try to solve every problem

what so ever by use of neural networks. Their charm consists of the fact that there is no need

to have any understanding of the problem to be solved. The neural network approach solves the

problem on its own, nearly no expertize is needed from the creator. The only thing left to do is to

select the architecture of the network e.g. how many layers, convolutional layers, fully connected

layers, which type of activation function etc. Quiet frankly, even this procedure renders to be of

trial and error nature as up to now no real knowledge of how these networks internally work is

available. The only but most striking requirement is to posses enough training data which covers

every possible manifestation occurring in the deployed environment. At its core, a neural network

is be a multidimensional non linear function. In case a rectified linear unit (ReLU) function is used

as activation function, it is a piecewise linear function. The shape of this function is formed by

fitting it to the training data and its corresponding desired output values a.k.a training. Neural

networks are highly flexible and able to adapt to many input- output relations. They are celebrat-

ing unbelievable successes in areas where sufficient training data is available. In case of image,

audio, and video processing overwhelmingly big data sets are available. Other areas are well

controllable e.g. in the field of control engineering, machine monitoring, or medical diagnosis.

Unfortunately, large data sets are not available in the field of GMTI, nor is the environment well

controlled. A pure GMTI-neural network (NN) approach therefore seems questionable. An inter-

esting approach, however, is deep unfolding. The idea behind this approach is that it is possible

to unroll an iterative algorithm with a fixed number of iterations, e.g. one that solves a CS or

ARM problem, into layers similar to a NN. The individual layers are connected by a number of

trainable parameters. In case of gradient descent algorithms, those parameters might be regular-

ization coefficients or step sizes. These can now be trained by the NN approach to be optimal

in every former iteration step or now layer rather than be constant and hand trimmed or set by

pessimistic boundaries given by e.g. Lipschitz constants. The deep unfolding approach combines

the benefits of both worlds, the modeling of the measurement process as well as trainable recon-

struction algorithms. This seems to be a promising research direction for future GMTI approaches.

Needless to say, being able to start with deep unfolding some adequate measurement process
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model needs to be found. In this work, an attempt is made to evade STAPs fundamental problem:

the need for training data. The key idea in this work is to exploit the correlated nature of the

clutter signal to form a low rank matrix. This is done by focusing the so called clutter ridge in

the angle-Doppler domain, also called radar scene within this work, for which an auto-clutter

focus (ACF) algorithm was developed. Sparse moving targets in the radar scene are invariant

with respect to the focus operations i.e. they stay sparse. The focused scene can therefore be

modeled as the sum of a sparse and a low rank matrix, where the sparse matrix holds all moving

targets and the low rank matrix all clutter contributions. This sum may now be separated by use

of an compressed robust principal component analysis (CRPCA) approach. Unfortunately, this is

not possible directly. For a successful separation to work, the so called rank sparsity incoherence

condition must be fulfilled. Among other things this means that the low rank matrix must not

contain spiky entries. The clutter ridge, however, is by its very nature extremely spiky. Therefore,

an intermediate preconditioning step is introduced. Using a model based projection filter a major

part of the clutter energy is filtered out before the separation is performed. In the best case,

all clutter energy is reduced in the preconditioning step. If clutter residuals occur, those remain

to be of non spiky nature and as such may be separated by use of the CRPCA approach. The

approaches will be evaluated extensively by use of numerical simulations. The aforementioned

approaches build upon CS, ARM, and CRPCA algorithms. However, common algorithms from

the literature are not do not consider the practical needs of radar signal processing e. g. they

suffer from restrictions to real numbers, slow convergence rate, low reconstruction performance,

or knowledge of unknown parameters like the precise number of sparse entries or the exact rank

of a low-rank matrix.

The major contributions of this work to radar signal processing therefore are:

• combine and extend CS and ARM algorithms to comprise a set of high performative CS,

ARM, and CRPCA algorithms

• development of an ACF algorithm, a model based projection filter, and an CRPCA based

separation approach to separate static from moving targets.

A more detailed list of the developed contributions can be found in the conclusions.

The approaches developed in this work are illustrated and evaluated by means of a simulation

model assuming a uniform linear array (ULA) and a flat earth scenario. Further corresponding

simulation parameters are listed in Tab 1.0.1. They corresponds to a common airborne GMTI

system.

This work is organized as follows: in the following Chapter 2, the radar signal model and

rigorous justifications for the usually assumed simplifications applied in the GMTI case are derived.

Furthermore, STAP is introduced in brevity. Chapter 3 to 5 presents brief introductions of the

CS, ARM, and robust principal component analysis (RPCA) approaches. Chapter 6 presents the

improved CS, ARM, and RPCA algorithms. Chapter 7 presents the application of CS and ARM

algorithms onto GMTI. Finally, Chapter 8 concludes this work with a summary, conclusion, and

an outlook.
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Parameter Symbol Value

# transmit (TX) Channels Ntx 1

# receive (RX) Channels Nrx 32

# Pulses Np 64

Wave Form - LFM chirp

Center Frequency fc 10GHz

Bandwidth br 15MHz

PRF fp 3 kHz

Element Antenna Pattern Gtx (~u), Grx (~u) cos-Pattern

Element antenna beam width (ABW) ABW 10°

Maximum Target Velocity vt,max 55m/s

Maximum Platform Velocity vp,max 130m/s

Platform Height hp 10 km

Minimum Slant Range rmin 10 km

Maximum Slant Range rmax 100 km

Table 1.0.1.: Air-borne GMTI scenario parameters.
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2. Fundamentals of Ground Moving Target
Indication

All subsequent signal models of e. g. clutter or target signals are modeled as a superposition

of general point targets. The specification from a point to a target or clutter signal is usually

done by imposing additional parameters e. g. some random reflectivity coefficient etc. Hence,

it is convenient to first introduce a general radar point target signal model which is done in

Section 2.1. The specification to clutter signals is presented in Section 2.2, which shows some

valuable insights into the nature of clutter signals. These come in handy when a dictionary for

clutter signals is set up in Chapter 7. With known signal models for targets and clutter, the space-

time adaptive processing (STAP) approach and the need for a 2D processing in space and time

is presented in Section 2.3. Finally, Section 2.3.5 elaborates on the limitations on STAP which

motivates the new approaches presented in this work.

2.1. Radar System Description

In this section the radar signal models used for ground moving target indication (GMTI) processing

are derived briefly. These models are valid only for given assumptions which usually hold for the

GMTI case e. g. that targets do not move considerably during the measurement process1. In

order to be able to tell if a signal model for a given assumption is valid, a general non-relativistic

description for a radar signal corresponding to an arbitrarily moving target is introduced at first.

Thereafter, common approximations considerably simplifying the general signal description are

presented which eventually yield the signal models applied in the GMTI case. It is assumed that

the reader is familiar with common radar processing steps e. g. a matched filter (MF), ambiguity

functions etc. as these are used throughout this work. In case more details of these steps are

desired, the interested reader may refer to excellent text books e. g. [2].

The general radar transmit and receive scheme is shown in Fig. 2.1.1, for which all signals are

defined as complex signals as this allows for short mathematical manipulations. The intended

transmit (TX) signal stx is of arbitrary choice but taken to be symmetrically centered at zero Hz.

It undergoes a sequence of common filter and amplification steps denoted by the base band

transfer function Hb,tx, followed by an up conversion into the pass band or radio frequency (RF)

band, respectively. The conversion process is not discussed in detail here. The interested reader

may look into quadrature modulation or any other sophisticated conversion scheme [3]. Instead,

the up conversion is modeled by ideal mixers i. e. no side bands else than the desired pass band

emerge. Therefore, the signal is subject to a simple frequency shift of ωc and phase offset φup.

1This means the targets appear quasi-static during one pulse and do not move considerably during one coherent
processing interval (CPI). This is commonly known as stop-and-go approximation.
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Hb,tx Hr,tx

ωc + φup

stx

Hb,rx Hr,rx

ωc + φdn

srx

sr,tx

sr,rx

~etx

~esc

Figure 2.1.1.: General radar transmit and receive scheme.

Further common filter and amplification steps in the pass band are represented by the transfer

function Hr,tx. At this point, if desired, physically real signals are obtained from the analytic band

pass signal sr,tx by taking its real part. The electromagnetic (EM) wave ~etx transmitted by the TX

antenna and the scattered wave ~esc received by the receive (RX) antenna are described in more

detail in Section 2.1.1. In a similar manner to the transmit scheme, the received signal sr,rx is

amplified and filtered described by the transfer functions Hr,rx and Hb,rx and down converted by

an ideal mixer, for which a different phase offset φdn is possible. The final received signal usable

for signal processing is denoted as srx. Interestingly, it cannot be expected to be centered around

zero Hz due to possible target motion induced Doppler shifts.

Unlike what is presented in many text books, the received signal srx cannot generally be de-

scribed as a time-delayed echo of the intended transmitted signal stx. Next to the obvious influ-

ence of the TX and RX paths, also the target parameters have a major influence on the received

signal form. In the following section, the general non-relativistic radar process for an arbitrarily

moving point target is presented. In Section 2.1.3, common approximations and their validity

are discussed. Finally, Section 2.1.4 discusses the space-time signal model required for GMTI

applications.

2.1.1. The General Non-Relativistic Radar Process

The general radar setup for one TX and RX antenna pair is depicted in Fig. 2.1.2, where x, y,

and z denote the coordinate axes in the antenna reference frame. In principle, an EM wave

emitted from a TX antenna located at position ~q gets scattered from a point target located at

position ~r and received by an RX antenna located at position ~p. The location of the point target is

commonly described in the spherical coordinates
[
r ϕ ϑ

]T
with respect to the antenna frame,

where r = ‖~r‖ denotes the range, ϕ ∈ [−π, π) the azimuthal, and ϑ ∈ [0, π] the polar angle.

The velocity vectors ~vp and ~vt indicate the platform and target velocity, however, relative to the

earth surface fixed reference frame. In the antenna frame the resulting velocity vector is therefore

~vt−~vp. Furthermore, θ and ψ denote the angles between the line of sight (LOS) vector ~u and the

antenna x and y axis. The LOS vector can be expressed in the antenna coordinates as

~u =
~r

r
=


sin (ϑ) cos (ϕ)

sin (ϑ) sin (ϕ)

cos (ϑ)


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x

y

z

~u

Point target

~r

~p

~q

TX

RX

~urx

~utx

θ

ϕ

ϑ

Antenna center

~rrx

~rtx

~vp

~vt

ψ

Figure 2.1.2.: General radar geometry in the antenna reference frame.

or likewise as

~u =


cos (θ)

cos (ψ)

cos (ϑ)

 =


u

v

w

 .
For the assumed flat earth GMTI case, θ a. k. a. cone angle and its directional cosine u are of

special interest which will be explained in more detail in Section 2.2. Furthermore,

~rtx = ~r − ~q

~rrx = ~r − ~p

denote the target location with respect to the TX and RX antenna positions and

~utx =
~rtx

rtx

~urx =
~rrx

rrx

the corresponding LOS vectors with rtx = ‖~rtx‖ and rrx = ‖~rrx‖.

In the following, a general description of the emerging radar signal is derived. For this, the

radar is assumed to be stationary while the target is moving. To begin with, it is necessary

to recognize that the transmit and receive process need to be considered separately. During the

transmit process, the point target experiences a phase modulated version of the transmitted radar

signal induced by the point targets motion. This is known as the Doppler effect for a stationary

source and a moving receiver which is the point target in this case. During the receive process, the

point target appears as a moving source radiating a wave whose phase was determined by the

first Doppler effect. The radiated wave is again subject to a motion induced phase modulation.

This is known as the Doppler effect corresponding to a moving source and a stationary receiver.
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Hence, the Doppler effect occurs twice, once for transmit and once for the receive process. This

physical fact is ignored by most radar signal derivations which only consider one time delayed

signal.

The determination of an arbitrary radar signal is done conveniently by decomposing it into

its harmonic components and synthesize them at the points of interest. Unfortunately, due to

motion induced phase variation i. e. a time dependent Doppler effect, no closed form solution for

the finally received signal can be given as will be seen later. Nevertheless, well known results can

be derived from them for common assumptions made e. g. stop and go conditions etc. which

will be presented later. To the contrary of other derivations directly arriving at these simplified

results, statements can be made when these are permissible.

The time sequence of the transmit and receive process is illustrated in Fig. 2.1.3. Let t′′, t′,

and t denote the corresponding times at which the EM wave was transmitted by the TX antenna,

scattered at the point target, and finally received by the RX antenna.

τtx(t
′) τrx(t

′)

~etx ~esc

t′′ t′ t

Target

Figure 2.1.3.: General time sequence of the scatter process.

Furthermore, let

τtx

(
t′
)

= t′ − t′′ = rtx (t′)
c0

(2.1.1)

be the transmit delay,

τrx

(
t′
)

= t− t′ = rrx (t′)
c0

(2.1.2)

the receive delay, and

τ
(
t′
)

= τrx

(
t′
)

+ τtx

(
t′
)

(2.1.3)

be the total round trip delay time (RTDT) [4]. Note, that these inherently depend on the distances

to the point target at t′, the scatter point in time. Next, let the transmit signal be a burst of

consecutive pulses defined as

stx

(
t′′
)

=

Np−1∑
np=0

stx,np

(
t′′ − nptp

)
, (2.1.4)

where Np denotes the number of pulses emitted within a CPI, tp the pulse repetition interval (PRI),

and

stx,np (x) = rect (x/Tp) atx,np (x) ejφtx,np (x) (2.1.5)

the np-th pulse wave form with Tp denoting the pulse length, atx,np (x) an amplitude and
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φtx,np (x) a corresponding phase modulation. Furthermore, stx,np (x) is taken to be a band lim-

ited base band signal of bandwidth br. The derivation of the received radar signal is considerably

easier if the signals are treated by use of their harmonics. Assuming the radar system is linear

with respect to stx (t′′), this can be achieved by use of the inverse Fourier transform (IFT) as

stx(t′′) =
1

2π

πbrˆ

−πbr

Stx (ωb) ejωbt
′′
dωb,

where ωb = 2πfb is the angular base band frequency and Stx (ωb) is the Fourier transform (FT)

of (2.1.4). Hence, the radar signal can be calculated by a superposition of its complex harmonic

signal components

sb,tx(t′′, ωb) = Stx (ωb) ejωbt
′′
. (2.1.6)

Following the typical transmit processing scheme as depicted in Fig. 2.1.1, sb,tx(t′′, ωb) is subject

to a sequence of filtering, amplification, and mixing stages before being emitted via the TX

antenna2. This process can be summarized as

sr,tx

(
t′′, ωb

)
= Cup (ωb) sb,tx

(
t′′, ωb

)
ej(ωct′′+φup), (2.1.7)

where

Cup (ωb) = Hb,tx (ωb)Hr,tx (ωb + ωc)

denotes an up conversion coefficient3 reflecting any magnitude and phase modification corre-

sponding to the harmonic component ωb. The latter term in (2.1.7) is a frequency shift from

the base band up into the RF range with ωc being the center angular frequency and φup a corre-

sponding phase offset which typically depends on the local oscillator (LO) phase offset. The up

conversion process is assumed to be ideal i. e. all emerging side bands else than the desired RF

band are filtered out [3]. Substituting (2.1.6) into (2.1.7) yields another form of the RF signal

sr,tx

(
t′′, ωr

)
= ar,tx (ωr) ej(ωrt′′+φup), (2.1.8)

where

ar,tx (ωr) = Cup (ωr − ωc)Stx (ωr − ωc)

and

ωr = ωb + ωc (2.1.9)

is the angular radar signal frequency. As defined before, this signal is radiated via the TX antenna

with respect to t′′. Among other evanescent components it emits a transverse electromagnetic

2Note that a complex signal cannot be transmitted via a physical antenna. The formulation as complex analytic band
pass signal, however, allows for a convenient short notation. The physically emitted real signal is Re {stx(t, ωb)}.

3The up conversion coefficient Cup (ωb) cannot be interpreted as a classical transfer function since the frequency
shift renders the transmit chain as a linear time variant system. Transfer functions, however, can only be defined on
linear time invariant systems, hence no impulse response function can be identified with Cup (ωb). Nevertheless, it
is still possible to identify a harmonic sinusoidal in the base band to its corresponding harmonic in the RF band via
Cup (ωb) = Hb,tx (ωb)Hr,tx (ωb + ωc) and an additional frequency shift.
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(TEM) spherical wave

~etx

(
~x, t′′, ωr

)
= aw (~x, ωr)~itxej(ωrt′′−kr‖~x‖)+jφup , (2.1.10)

where the unit vector ~itx denotes an arbitrary polarization direction in the spherical coordinates

ϕ and ϑ, kr = ωr/c0 the wave number, and

aw (~x, ωr) =
ar,tx (ωr) gtx (~ux, ωr)

‖~x‖

a complex wave amplitude. Within aw (~x, ωr), ~x denotes any point in space with respect to the

phase center of the TX antenna and gtx (~ux, ωr) ∈ C an antenna gain coefficient representing the

effect of the antenna on the harmonic component with respect to the radar frequency and the

pointing direction given by the LOS vector ~ux = ~x/ ‖~x‖. From the definition of the antenna gain,

gtx (~ux, ωr) can be implicitly identified as

Gtx (~ux, ωr) =
4π

2ηw
|gtx (~ux, ωr)|2 , (2.1.11)

where ηw =
√
µ0/ε0 ' 120πΩ is the free space impedance. A derivation of (2.1.11) can be

found in the Appendix A.2.1. Notice the factor 2ηw, which accounts for the translation from

a (voltage) signal into an EM wave quantity. Notice further, that gtx (~ux, ωr) already accounts

for mutual coupling effects e. g. the coupling between the TX and RX antenna, the influence

of the antenna mounting gear, the (earth) ground, or the impact of a radome.4 For a distance

of ‖~x‖ > dF, where dF is the Fraunhofer distance, the TEM wave ~etx (~x, t, ωr) is the governing

component of the generated waves. For electrically large antennas common for radar applications

i. e. D > 2.5λr, with D denoting the largest aperture size of the antenna and λr = 2πc0/ωr the

radar wave length, the Fraunhofer distance is defined as dF = 2D2/λr [5]. In case of ‖~x‖ ≤ dF,

near field effects occur which can not be described sufficiently via (2.1.10). Within this work only

far fields are considered. The transmitted wave form can be synthesized by

~etx

(
~x, t′′

)
=
~itx
2π

ωc+πbrˆ

ωc−πbr

aw (~x, ωr) ej(ωrt′′−kr‖~x‖)+jφupdωr (2.1.12)

=
~itx
2π

ejφup

ωc+πbrˆ

ωc−πbr

aw (~x, ωr) e
−jωr

‖~x‖
c0 ejωrt′′dωr (2.1.13)

=
~itx
‖~x‖

s′tx

(
t′′ − ‖~x‖

c0

)
e

jωc

(
t′′− ‖~x‖

c0

)
+jφup , (2.1.14)

where s′tx (t′′) is a modified version of stx (t′′) due to the TX path and antenna transfer coefficients

Cup (ωb) and gtx (~ux, ωr). Notice, that (2.1.14) is only valid in case ~x denotes a time independent

location5. Unfortunately, this condition is not given in case of an arbitrary moving target.

With respect to t′, the TEM wave ~etx (~x, t′) arrives at the point targets position given by ~rtx (t′)

4This accounts for more effects than the commonly assumed uncoupled antenna gain. As a consequence Gtx in
(2.1.11) must also include coupling effects.

5Otherwise there is no Fourier pair available allowing for a closed form time signal.
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relative to the TX antenna reference frame. For a single harmonic frequency the field at the target

is

~etx

(
~rtx

(
t′
)
, t′, ωr

)
= aw

(
~rtx

(
t′
)
, ωr

)
~itxej(ωrt′−krrtx(t′))+jφup . (2.1.15)

Since the location ~rtx (t′) is time dependent, (2.1.14) can not be exploited directly. Furthermore,

a motion induced phase modulation gives rise to the aforementioned Doppler effect. For the

harmonic component ωr, the emerging angular frequency at the point targets position at time t′

can be calculated by

ωsc

(
t′
)

=
∂

∂t′
arg
(
~etx

(
~rtx

(
t′
)
, t′, ωr

))
=

∂

∂t′
(
ωrt
′ − krrtx

(
t′
)

+ φup

)
= ωr − kr

〈
~utx

(
t′
)
, ~vt

(
t′
)
− ~vp

〉
= ωr − krvrtx

(
t′
)

= ωr

(
1− vrtx (t′)

c0

)
= αtx(t′)ωr, (2.1.16)

where ~vt (t′)−~vp denotes the targets velocity vector with respect to the antenna reference frame

and vrtx (t′) the radial velocity component with respect to ~utx (t′). For sake of readability, the

dependencies ωsc on t′ is omitted in the further text. Note, that (2.1.16) renders to be the

Doppler frequency for a stationary source (here the TX antenna) and moving receiver (the point

target) with the scaling factor

αtx(t′) =
(
1− vrtx(t′)/c0

)
. (2.1.17)

This modulated harmonic component gets scattered by the point target. The corresponding

spherical wave is a new wave oscillating with ωsc. It can be described in a similar manner to

(2.1.10) as

~esc (~xsc, t, ωsc) = asc (~xsc, ωsc)~isce
j(ωsct−ksc‖~xsc‖)+jφup+jφtx , (2.1.18)

where the origin of ~xsc is at the point targets position at scatter time t′, ksc = ωsc/c0 is the

corresponding wave number and φup remains constant. In addition, a constant phase term φtx

is introduced which which is necessary to adjust the phase position of the wave according to the

physical boundary conditions. At the point targets position i. e. ‖~xsc‖ = 0 at scatter time t =

τtx (t′), the total phase of (2.1.18) must be φup as this was the phase of the wave at transmission

time. Thus, the constant phase offset results to

φtx = −ωscτtx

(
t′
)
. (2.1.19)

Furthermore,

asc (~xsc, ωsc) =
aw (~rtx, ωsc/αtx)αr

(
~utx, ~uxsc , ωsc,~itx

)
‖~xsc‖

denotes the complex wave amplitude with αr ∈ C being a reflection coefficient depending on

the incident direction ~utx at scatter time t′, the scatter direction ~uxsc = ~xsc/ ‖~xsc‖, the observed
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angular frequency ωsc and the polarization direction of the incident wave~itx. It can be identified

implicitly from the radar equation as

σr =
∣∣∣αr

(
~utx, ~uxsc , ωsc,~itx

)∣∣∣2 , (2.1.20)

where σr denotes the targets radar cross section (RCS) [2]. Finally,

~isc = Rsc

(
~utx, ~uxsc , ωsc,~itx

)
·~itx

is the polarization direction of the reflected wave with Rsc ∈ R3×3 denoting a rotation matrix

describing the reflective behavior of the point target.

With respect to t, the scattered wave ~esc (~xsc, t, ωsc) is observed by the RX antenna located at

position −~rrx(t′) relative to the point targets reference frame at t′ i. e. at the scattered waves

origin. The time dependent motion again causes a phase modulation giving rise to the afore-

mentioned second Doppler effect. The observed angular Doppler frequency at the RX antennas

position at time t is

ωr,rx

(
t′
)

=
∂

∂t
arg
(
~esc

(
−~rrx(t′), t, ωsc

))
=

∂

∂t

(
ωsc(t

′)t− kscrrx(t′) + φup + φtx

)
=

∂

∂t
ωsc(t

′)
(
t− rrx(t′)

c0

)
=

∂

∂t
ωsc(t

′)
(
t− τrx

(
t′
))

=
∂

∂t
ωsc(t

′)t′

=
∂ωsc(t

′)
∂t

t′ + ωsc(t
′)
∂t′

∂t

= ωr
∂αtx(t′)
∂t

t′ + ωsc(t
′)
∂t′

∂t

= −ωr

c0
artx(t′)

∂t′

∂t
t′ + ωsc(t

′)
∂t′

∂t

= ωsc(t
′)
∂t′

∂t

(
1− artx(t′)

αtx(t′)c0
t′
)

= αrx(t′)ωsc(t
′)
(

1− artx(t′)
αtx(t′)c0

t′
)
,

where artx(t′) denotes the radial acceleration with respect to ~utx,

∂t′

∂t
= αrx(t′) =

(
∂t

∂t′

)−1

=

(
∂(t′ + τrx (t′))

∂t′

)−1

=

(
1 +

1

c0

∂rrx(t′)
∂t′

)−1

=
1

1 + vrrx(t′)
c0
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by using (2.1.2)6 and vrrx(t′) is the radial velocity component with respect to ~urx at t′. Due to

better readability, the dependence of ωr,rx on t′ is dropped in the following notation. For the

remainder of this work we assume gracefully, that the radial acceleration is negligible i. e.

artx(t′)
αtx(t′)c0

t′ � 1.

In this case, the observed angular Doppler frequency at the RX antennas position becomes

ωr,rx

(
t′
)

= αrx(t′)ωsc(t
′) (2.1.21)

= αtrx(t′)ωr. (2.1.22)

Note, that (2.1.21) renders to be the Doppler modulation for the case of a moving source (here

the point target) and a stationary receiver (the RX antenna) with a scaling factor of

αrx(t′) =
1

1 + vrrx(t′)
c0

. (2.1.23)

The combined Doppler modulation shows a factor of

αtrx(t′) = αtx(t′)αrx(t′) =
1− vrtx(t′)

c0

1 + vrrx(t′)
c0

=
c0 − vrtx (t′)
c0 + vrrx (t′)

. (2.1.24)

The wave observed by the RX antenna can be formulated in a similar manner as the wave scat-

tered by the point target. Doing so yields

~erx (0, t, ωr,rx) = asc (~xsc, ωr,rx/αrx)~isce
jωr,rxt+jφup+jφtx+jφrx , (2.1.25)

where the constant phase term φrx is introduced to adjust the phase position of the wave accord-

ing to the physical boundary conditions. At the receive time t = τ (t′), the total phase of (2.1.25)

must be φup as this was the phase of the wave at transmission time (any phase offset due to the

scatter process is covered by asc). Thus, the constant phase offset results to

φrx = −ωsc

(
αrx(t′)τrx

(
t′
)

+
(
αrx(t′)− 1

)
τtx

(
t′
))
.

The signal received by the antenna is

sr,rx (t, ωr,rx) = ar,rx (ωr,rx) ejωr,rxt+jφup+jφtx+jφrx (2.1.26)

where

ar,rx (ωr,rx) = asc (−~rrx, ωr,rx/αrx) grx

(
~urx, ωr,rx,~isc

)
is a complex amplitude with grx ∈ C being an RX antenna gain coefficient representing the

effect of the antenna on the received signal with respect to frequency, direction, and polarization

of the impinging wave. Note, that the RX antenna observers the angular frequency ωr,rx =

6The form ∂t′

∂t
=
(
∂t
∂t′

)−1
is valid as long as ∂t

∂t′ 6= 0.
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αrxωsc, hence, any frequency dependency corresponds to ωr,rx. The complex amplitude grx can

be identified implicitly as

Grx

(
~ux, ωr,rx,~isc

)
=

(4π)2 2ηw

λ2
r,rx

∣∣∣grx

(
~ux, ωr,rx,~isc

)∣∣∣2 , (2.1.27)

where the additional factor of 4π/λ2
r,rx accounts for the antenna cross section. A derivation of

(2.1.27) can be found in the Appendix A.2.1. Notice the factor 2ηw, which accounts for the trans-

lation from an EM wave into a (voltage) signal quantity. Also, grx readily accounts for coupling

effects just as gtx. The received signal (2.1.26) is subject to a sequence of filtering, amplification,

and mixing stages before being sampled by a digitizer. This process can be summarized as

sb,rx (t, ωr,rx) = sr,rx (t, ωr,rx)Cdn (ωr,rx) e−j(ωct+φdn), (2.1.28)

where

Cdn (ωr,rx) = Hb,rx (ωr,rx − ωc)Hr,rx (ωr,rx)

denotes a down conversion coefficient reflecting any magnitude and phase modification corre-

sponding to the instantaneous angular frequency of the harmonic component ωr,rx. The observed

frequency in the base band shall be denoted as

ωb,rx = ωr,rx − ωc (2.1.29)

= αtrxωb + (αtrx − 1)ωc, (2.1.30)

where (2.1.9) and (2.1.22) was used. The final received and down converted signal can thus be

given as

sb,rx (t, ωb,rx) = ab,rx (ωb,rx) ejωb,rxt+jφup+jφtx+jφrx+jφc , (2.1.31)

where

φc = φup − φdn (2.1.32)

is a constant phase offset caused by the LO signal and

ab,rx (ωb,rx) = ar,rx

(
~urx, ωb,rx + ωc,~isc

)
Cdn (ωb,rx + ωc) .

The final received signal again is the superposition of all received harmonic components. Due to

the Doppler modulations, the transmitted frequency band [−πbr, πbr] gets modified to

ωb,rx,min(t′) = (αtrx(t′)− 1)ωc − πbrαtrx(t′)

ωb,rx,max(t′) = (αtrx(t′)− 1)ωc + πbrαtrx(t′),

where (2.1.30) was used. Therefore, the superposition is of the form

srx (t) =
1

2π

ωb,rx,maxˆ

ωb,rx,min

sb,rx (t, ωb,rx) dωb,rx = arx (t) ejφrx(t), (2.1.33)
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where arx (t) ∈ R denotes the received amplitude and ejφrx(t) the received phase history. Like in

the TX case, due to the time dependent delay τrx (t′), there is no closed form solution available

to (2.1.33).

Summarizing the above derivation, the received signal srx (t) may completely differ from the

original transmitted signal stx (t) due to the in general time dependent motion induced phase

modulations. Even worse, no closed form solution can be given for the received signal form.

Recall, that the frequency modulation factors αtx and αrx, as well as the amplitudes asc and

ar,rx directly depend on t′ and thus are time dependent quantities. This means for every fixed

point in time t, the integral (2.1.33) needs to be evaluated individually. Since the integral form is

rather non informative, additional assumptions regarding the point target are introduced which

allow for a dramatic simplification of the general scheme presented here. This is the topic of the

following sections. Before that, however, the subject of relativistic Doppler should be elaborated

in more detail.

2.1.2. On the Relativistic Doppler Effect

In this Section a few words on the relativistic Doppler effect shall be mentioned. For a single

transmit frequency ωr, the received frequency according to the derivation in the latter chapter is

ωr,rx = αtrxωr

= ωr
c0 − vrtx

c0 + vrrx
, (2.1.34)

where (2.1.22) was used. Quiet interestingly and although no relativistic considerations were

made, (2.1.34) already turns out to be the exact form of the relativistic Doppler shift for constant

radial velocities. The reason therefore is, that emerging time dilatation effects corresponding to

the transmit and receive process cancel each other out. More specifically, the relativistic time

dilation needs to be considered by use of the Lorentz factor two times. In the TX case, where

the target is moving, the clock at the point target is time dilated with respect to the clock resting

at the radar i. e. is slower. The point target will therefore observe the same phase history in a

shorter period of time and hence measure the increased Doppler frequency [6]

ωtgt
sc = ωscγtx,

where ωtgt
sc denotes ωsc measured in the targets reference frame and

γtx =
1√

1− v2
rtx

c20

(2.1.35)
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is the corresponding Lorentz factor. In the contrary RX case, the point target emits a wave with

angular frequency ωtgt
sc which in the reference frame of the stationary radar is observed as

ωr,rx,rel =
ωtgt

sc

1 + vrrx
c0

1

γrx

= ωr
c0 − vrtx

c0 + vrrx

γtx

γrx
, (2.1.36)

where

γrx =
1√

1− v2
rrx

c20

is the Lorentz factor in the RX case. In the constant radial velocity scenario, the radial velocities

are such that vrtx = ±vrrx (see Section 2.1.3), hence the Lorentz factors cancel each other and

ωr,rx,rel = ωr,rx.

For the sake of completeness, it shall be mentioned, that in the literature the relativistic Doppler

effect is derived in a different way, namely by using two times the stationary source model [6].

At first the radar acts likewise as a stationary source for the TX case but in the RX case, the

scattering point target is taken to be a stationary source with the radar moving. The result is

called non-relativistic Doppler frequency, which results to

ω′r,rx = ωr

(
1− vrtx

c0

)(
1− vrrx

c0

)
= ωr

(
1− vrtx + vrrx

c0
+
vrtxvrrx

c2
0

)
. (2.1.37)

To account for relativist time dilation, (2.1.37) must be extended by the Lorentz factor two times

yielding [6]

ωr,rx,rel = ω′r,rxγtxγrx, (2.1.38)

which after short manipulation yields the same form as in (2.1.36). However, the derivation given

in (2.1.38) disregards the effect of relativistic aberration i. e. the directions from and to the target

in the radar resting frame do not coincide with the directions in the target resting frame i. e.

utx 6= −utgt
tx and urx 6= −utgt

rx . These effects considerably complicate the derivation but finally

cancel each other yielding (2.1.38) to be the final result. Nevertheless, the derivation appears

patchy. In case the TX and RX antenna are identical, (2.1.36) reduces to the famous equation

ωr,rx,rel = ωr
c0 − vr

c0 + vr
= ωr

(
1− 2vr

c0 + vr

)
.

2.1.3. Common Approximations

Several approximations allow for a closed form radar signal model. Those are presented in the

following.
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Calibration and Reflectivity

As discussed in Section 2.1.1, the received signal srx (t) depends on many individual parameters

cluttering the signal model. However, assuming the radar system to be calibrated and the target

to behave somewhat nicely, the signal model becomes easier to handle. Calibration addresses

two aspects:

• The radar TX and RX paths including the antennas shall be independent with respect to

ωr in the desired bands. In this case, the transit and receive wave forms stx (t) and srx (t)

remain unchanged by the radar channels.

• Mutual electromagnetic coupling phenomena shall be corrected for as there is the mutual

influence of all antennas to each other, the antenna mounting gear, the earth ground,

or a radome. Commonly, these phenomena are frequency dependent and as such the

correction for mutual coupling can be combined with correcting for the dependence of ωr

of the TX and RX paths at the same time. If the calibration is conducted successfully, the

radar appears transparent regarding the transmitted and received EM waves ~etx and ~esc

i. e. the waves can be sampled in space and time without changing their shape due to the

presence of the radar.

A convenient description of the mutual coupling and as such for a practical calibration can be

done for the final signal model presented in Section 2.1.4 only. However, in order to ease the

following approximations, it is assumed that the radar system is already calibrated. This is valid

since the radar measurement process and the calibration procedure are linear operations and

as such can be interchanged. Hence, the radar can be assumed to be transparent to the EM

waves. The theoretical calibration procedure, which establishes a baseline of what a practical

calibration can achieve, is discussed in the following. Assume a non moving point target for

which no Doppler modulation occurs. In this case the transmission factor for the TX path for a

single angular frequency ωr and fixed transmit LOS vectors ~utx is

cp,tx (ωr, ~utx) =
Cup (ωr) gtx (~utx, ωr)

rtx
. (2.1.39)

The distance rtx is not frequency dependent and thus not subject to the calibration proce-

dure. The transmit path coefficient Cup (ωr) comprises all amplification steps before transmission.

Therefore, it is reasonable to identify Cup (ωr) after calibration with
√
Ptx, where Ptx is the final

transmit signal power. For this to make sense and to be able to introduce meaningful absolute co-

efficients describing the radar signal after calibration, the energy of a transmitted pulse stx,np (t)

is usually normed without loss of generality to

Tp/2ˆ

−Tp/2

∣∣stx,np (t)
∣∣2 dt = 1. (2.1.40)

In a similar manner, the active antenna coefficients gtx (~utx, ωr) after calibration can be substituted

for a fixed LOS vector ~utx by a real gain coefficient ḡtx(~utx) ∈ R. Likewise, the transmission factor
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for the RX path is

cp,rx

(
ωr, ~utx, ~urx,~itx

)
=
αr

(
~utx, ~urx, ωr,~itx

)
rrx

grx

(
~urx, ωr,Rsc ·~itx

)
Cdn (ωr) . (2.1.41)

The targets reflectivity coefficient αr

(
~utx, ~urx, ωr,~itx

)
and polarization rotation

Rsc

(
~utx, ~urx, ωr,~itx

)
dependencies are usually not calibrated for. Most often, they are unknown

and thus are modeled as random variables (RVs), e. g. in case of GMTI land clutter αr may

be αr ∼ CN (0, σr) [1]. If information about αr and Rsc is known, this can be exploited e. g.

by use of matched illumination [7]. Regarding the calibration process, it is commonly assumed

that αr and Rsc are independent with respect to ωr, thus do not change the wave form. Any

discrepancies regarding this assumption are accounted to the RV model. The active antenna

coefficients grx

(
~urx, ωr,Rsc (·) ·~itx

)
after calibration can again be substituted by a real gain co-

efficients ḡrx(~urx) ∈ R, where the dependence on the polarization direction ~isc = Rsc (·) ·~itx is

pulled into the RV αr too. This of course assumes, that all RX antennas are polarized in the same

direction (which is usually the case). Finally, the receive path coefficient Cdn (ωr) comprises all am-

plification steps required to achieve some reasonable noise figure [4]. It is therefore reasonable,

to identify Cdn (ωr) after calibration with some mean gain coefficient gdn ∈ R. Combining the

aforementioned identities, the calibration factor

ccal (ωr) =

√
Ptxgdnḡtx(~utx)ḡrx(~urx)

Cup (ωr)Cdn (ωr) gtx (~utx, ωr) grx

(
~urx, ωr,Rsc (·) ·~itx

) (2.1.42)

can be defined for a single TX/RX pair. Applying this calibration factor onto the path factors cp,tx

and cp,rx yields due to the normalization (2.1.40) a calibrated received amplitude

xcal (Ptx, αr, rtx, rrx, ~utx, ~urx) = cp,tx (ωr, ~utx) cp,rx

(
ωr, ~utx, ~urx,~itx

)
ccal (ωr)

=
αr

√
Ptxgdnḡtx(~utx)ḡrx(~urx)

rtxrrx
. (2.1.43)

This means applying ccal (ωr) onto the transmit signal harmonics sb,tx(t, ωb) defined in (2.1.6),

the received signal becomes

srx (t) = xcalstx(t− τ)e−jωcτ+jφc

in case of a non moving point target. The calibrated receive amplitude xcal determines, in con-

junction with the noise figure of the RX path and the Friis formula, the final signal to noise ratio

(SNR) [4]. In case the target is moving, Doppler modulation occurs causing an extension of the

frequency range. If (2.1.42) accounts for this extended frequency range, (2.1.43) holds too.

As mentioned before, the radar signal process described in Section 2.1.1 is linear and as such

the calibration factor (2.1.42) can be drawn into the transmit signal whose signal form as a result

gets modulated by the motion of the target only and never more by the transfer functions of

the TX and RX paths and antennas. This comes in handy in the approximations described in the

following. From this point forward, the radar system is assumed to be calibrated.
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Target Induced Phase Modulation

A moving target observes a modulated transmit wave form induced by its own motion. Because

of this motion, unfortunately, it is not possible to obtain a closed form solution for the scattered

and received fields. Nevertheless, the period of time during which the point target is able to

modify the transmit wave form is restricted by the illumination time, which in turn is inherently

restricted by the pulse duration Tp. If the targets motion during the illumination time is somewhat

limited, the wave forms can be considered unaltered. This allows for a dramatically simplification

of the received radar signal description. In this section, two measures regarding the modulation

impact are presented which allow to decide whether the impact is negligible or not.

For the following derivations the radar system is assumed to be calibrated. As discussed in

Section 2.1.3, some partial TX path calibration factor can be defined as

ccal,tx (ωr) =

√
Ptxḡtx (~utx)

Cup (ωr) gtx (~utx, ωr)

which corrects for any impact of the radars TX path onto the signal form i. e. cancels any fre-

quency dependency. The calibrated field at the point targets position ~rtx (t′) at scatter time t′ can

be given by use of (2.1.12) as

~etx,cal

(
~rtx

(
t′
)
, t′
)

=
1

2π

ωc+πbrˆ

ωc−πbr

ccal,tx (ωr)~etx

(
~rtx

(
t′
)
, t′, ωr

)
dωr

=
~itxxtx,cal

2π

ωc+πbrˆ

ωc−πbr

Stx (ωr − ωc) e−jωrτtx(t′)ejωrt′ejφupdωr

=
~itxxtx,cal

2π
ejωc(t′−τtx(t′))+jφup

πbrˆ

−πbr

Stx (ωb) e−jωbτtx(t′)ejωbt
′
dωb

=
~itxxtx,cal

2π
ejωc(t′−τtx(t′))+jφupF−1

{
stx (ωb) e−jωbτtx(t′)

}
, (2.1.44)

where

xtx,cal =

√
Ptxḡtx (~utx)

rtx (t′)

is some calibrated amplitude and F−1 {·} denotes the inverse Fourier transform. Now, as men-

tioned in Section 2.1.1, there does not exist a Fourier pair to obtain a closed form solution to

2.1.44 due to the time dependent delay term exp (−jωbτtx (t′)). Nevertheless, if the modulation

is limited such that the shape of the RF wave form is somewhat preserved, i. e. the point target

does not move considerably during the time the pulse hits the target, τtx (t′) can be assumed

constant. This comes in very handy as subsequent signal models can be derived in closed form.

As such, if the variation of τtx (t′) in (2.1.44) is limited during the illumination time i. e.

4τtx

(
t′
)
ωb =

ωb

c0

∣∣rtx (til)− rtx

(
t′
)∣∣ < πγtol (2.1.45)

with γtol being e. g. 1/10, the effective delay can be assumed constant with respect to t′. Within
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(2.1.45), til denotes any point in time in the period of illumination. In general, however, just like

for t′, the illumination period cannot be given in closed form. A worst case approximation can be

given by assuming a maximum radial velocity vrtx,max which is constant during the illumination

period. In this case, the illumination period in the source time frame T src
il , i. e. in the radar time

frame, can be calculated as

Tpc0 + vrtx,maxT
src
il,tx = c0T

src
il,tx

→ T src
il,tx =

Tp

1− vrtx,max

c0

.

Due to time dilation, the clock at the moving point target is slower. Hence, the illumination period

experienced by the point target T tgt
il is reduced by the Lorentz factor γtx defined in (2.1.35) to

T tgt
il,tx =

T src
il,tx

γtx

= Tp

√
c0 + vrtx,max

c0 − vrtx,max
. (2.1.46)

The worst case distance occurring in (2.1.45) thus becomes7

∣∣rtx (til)− rtx

(
t′
)∣∣ =

T tgt
il,txvrtx,max

2
. (2.1.47)

Therefor, by combining (2.1.45), (2.1.46), and (2.1.47) we can deduce that as long as the pulse

duration is smaller than

Tp ≤
γtolλb

vrtx,max

√
c0 − vrtx,max

c0 + vrtx,max
, (2.1.48)

the delay term exp (−jωbτtx (t′)) in (2.1.44) can be approximated to be constant. In this case the

calibrated field at the point targets position (2.1.44) has the closed form solution

~e′tx,cal

(
~rtx

(
t′
)
, t′
)

=~itx

√
Ptxḡtx (~utx)

rtx (t′)
stx

(
t′ − τtx

(
t′
))

ejωc(t′−τtx(t′))+jφup . (2.1.49)

A second more reasonable error measure as (2.1.48) may be a correlation loss (CL) between the

time dependent form ~etx,cal and the assumed time independent solution ~e′tx,cal. Assuming the

point target moves at vrtx,max during Til, the CL is

CLtx = Rstxstx

(
T tgt

il,txvrtx,max

2c0

)
, (2.1.50)

where Rstxstx (x) denotes the auto correlation of stx. In case of a linear frequency modulation

(LFM) chirp wave form, the CL is

CLtx,chirp = Λ

(
vrtx,max

2c0

)
sinc

(
brT

tgt
il,txvrtx,max

2c0
Λ

(
vrtx,max

2c0

))
(2.1.51)

7Recall that t′ denotes the center of the pulse.
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with Λ(x) denoting the triangular function. A derivation of (2.1.50) and (2.1.51) can be found in

the Appendix A.2.2. Recall now from Section 2.1.1, that the scattered wave is reflected with a

modulated frequency, which now can be given for the whole transmit signal uniformly as

ω′sc =
∂ arg

{
~e′tx,cal (~rtx (t′) , t′)

}
∂t′

=
∂ωc (t′ − τtx (t′))

∂t′
= ωc

(
1− vrtx (t′)

c0

)
= αtx(t′)ωc. (2.1.52)

In the following, the receive process is elaborated. Recall now from Section 2.1.1, that the

scattered wave oscillates with ω′sc. Recognize further, that the signal shape experienced by the

point target is unaltered, thus the calibrated scattered wave can be formulated as

~e′sc,cal

(
~xsc, t

′, ω′sc
)

=~isc

√
Ptxḡtx (~utx)αr

rtx (t′) ‖~xsc‖
stx

(
t′ − τtx

(
t′
))

ej(ω′sct
′−k′sc‖~xsc‖)+jφup+jφ′tx ,

where the reflection coefficient αr was assumed to be frequency independent and

φ′tx = −ω′scτtx

(
t′
)

in similar manner to (2.1.19). The receive process works the same way as the transmit process. If

condition (2.1.46) and (2.1.50) are likewise fulfilled as

Tp ≤
γtolλb

vrrx,max

√
c0 − vrrx,max

c0 + vrrx,max

and

CLrx = Rstxstx

(
T tgt

il,rxvrrx,max

2c0

)
,

the signal received by the RX antenna is

s′r,rx,cal (t) =

√
Ptxḡtx (~utx)αrḡrx

rtx (t′) rrx (t′)
stx

(
t− τ

(
t′
))

ejω′r,rxt+jφup+jφ′tx+jφ′rx .

The corresponding observed angular frequency can be found in similar manner to (2.1.52) as

ω′r,rx = αrx(t′)ω′sc (2.1.53)

= αtrx(t′)ωc. (2.1.54)

and

φ′rx = −ω′sc
(
αrx(t′)τrx

(
t′
)

+
(
αrx(t′)− 1

)
τtx

(
t′
))
.

The final down converted signal thus becomes

s′b,rx,cal (t) = xcalstx

(
t− τ

(
t′
))

ejωDt+jφc+jφ′tx+jφ′rx , (2.1.55)
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where

ωD = ω′r,rx − ωc

= ωc

(
αtrx(t′)− 1

)
= ωc

(
c0 − vrtx (t′)
c0 + vrrx (t′)

− 1

)
= −ωc

vrtx (t′) + vrrx (t′)
c0 + vrrx (t′)

(2.1.56)

is the residual offset to the center frequency and is commonly referred to as Doppler frequency.

In case vrrx (t′)� c0, (2.1.56) becomes

ωD ' −ωc
vrtx (t′) + vrrx (t′)

c0
(2.1.57)

and in the monostatic case

ωD ' −ωc
2vr (t′)
c0

. (2.1.58)

Round Trip Delay Time for Constant Radial Velocities

The special case of a target moving with constant speed in a radial direction with respect to the TX

and RX antennas allows for a closed form of the RTDT τ (t′). Hence, the special case of constant

radial velocity yields valuable insights into the radar signal for which it is elaborated here.

We assume a point target to moves with constant speed and ~rtx (t) and ~rrx (t) to be collinear

such that the radial velocities are constant too.8 In this case, vrtx = 〈~utx, ~vt − ~vp〉 = ±vrt as well

as vrrx = 〈~urx, ~vt − ~vp〉 = ±vrt depending on the location of the point target. If ~p = ~q then

vrtx = vrrx = 〈~u,~vt − ~vp〉 = ±vrt with +vrt in case the point targets moves away from the radar.

Note, that vrt is related to the antenna reference frame and ~vt and ~vp to the earth surface fixed

reference frame. For such constant radial velocities, the RTDT τ (t′) = τtx (t′) + τrx (t′) can be

given explicitly. Using

rrx (t) = rrx,0 + vrrxt, (2.1.59)

τrx (t′) can be determined from (2.1.2) as

τrx

(
t′
)

=
1

1 + vrrx
c0

rrx (t)

c0
. (2.1.60)

Using the same model (2.1.59) for the rtx (t), τtx (t′) can be determined from (2.1.1) as

τtx

(
t′
)

=
rtx (t)− τrx (t′) vrtx

c0
. (2.1.61)

Combining (2.1.60) and (2.1.61) yields after short manipulation

τ
(
t′
)

=
c0 − vrtx

c0 + vrrx

rrx (t)

c0
+
rtx (t)

c0
. (2.1.62)

8This means either the TX and RX antennas are co-located and the target moves in a radial direction or the point
target moves along the line defined by ~p and ~q, where ~p and ~q define the positions of the antennas.
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In case the TX and RX antennas are the same, (2.1.62) reduces to

τ
(
t′
)

=
1

1 + vrt
c0

2r (t)

c0
.

Stop-and-Go Approximation

The range and the RTDT are inherently coupled which can be seen from (2.1.3), (2.1.2), and

(2.1.1) as

τ
(
t′
)

= τtx

(
t′
)

+ τrx

(
t′
)

=
rtx (t− τrx (t′)) + rrx (t− τrx (t′))

c0
.

As a consequence, it is not possible to give an explicit formulation for τ (t′) without additional

knowledge of ~rtx (t′) and ~rrx (t′) (as it was the case for constant radial velocities). The exact

value for τ (t′) can be found by use of numerical approaches for simulation setups where ~rtx (t)

and ~rrx (t) are given. For a measurement model, however, an explicit expression for τ (t′) is

required for which a motion model for ~rtx (t) and ~rrx (t) needs to be assumed. The most common

assumption is, that the target does not move significantly during the travel time. In this case, the

phase variation given by (2.1.44) is negligible, i. e.

ωb4τ
(
t′
)

=
ωb

c0

∣∣rtx

(
t′
)
− rtx (t) + rrx

(
t′
)
− rrx (t)

∣∣ = kb4rwalk < γtol (2.1.63)

with 4rwalk denoting the range walk. Hence, the RTDT can be simplified to

τ
(
t′
)
' τ (t) =

rtx (t) + rrx (t)

c0
. (2.1.64)

In case of highly maneuvering targets or long pulses e. g. in case of continuous wave (CW) radars,

the stop and go approximation may not valid any more. In this case, more sophisticated motion

models are assumed for ~rtx (t′) and ~rrx (t′), e. g., [8, 9]!

A reasonable alternative compared to the general criterion (2.1.63) is to demand the range

walk to be less than the range resolution

4rwalk < γtolδr. (2.1.65)

The range walk depends on the application scenario. For the case of airborne radar, an estimation

of 4rwalk for non moving targets can be found in Appendix A.2.3. In addition to determine the

range walk for one pulse, it may also be calculated for a whole CPI i. e. tcpi = Nptp to verify the

stop-and-go approximation to be valid in any case.
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Plane Wave Approximation

This approximation is also known as far field condition for antenna arrays. The length difference

between a target to the antenna origin ‖~r‖ = r and target to an antenna located at ~x is [4]

4l = ‖~r − ~x‖ − ‖~r‖ . (2.1.66)

The length difference in case of a plane wave approximation is

4lpw = −〈~u, ~x〉 . (2.1.67)

The error between (2.1.66) and (2.1.67) is negligible if it is only a fraction of the wave length

ε = |4l −4lpw| ≤ γfarλr. (2.1.68)

The worst case yielding an upper bound for (2.1.68) is

4lpw = 〈~u, ~x〉 = 0⇒4l =
√
r2 + x2 − r ≤ γfarλr. (2.1.69)

In case (2.1.68) holds, then for a given TX and RX antenna pair the corresponding RTDT given by

(2.1.3) can be approximated by

τ
(
t′
)

=
rtx (t′) + rrx (t′)

c0

' r (t′)− 〈~u, ~q〉+ r (t′)− 〈~u, ~p〉
c0

=
2r (t′)− 〈~u, ~p+ ~q〉

c0
. (2.1.70)

Narrow- and Broadband Beamforming

For GMTI processing, beamforming is of particular importance. Usually a delay and sum beam-

forming (DSB) approach is applied which depends on the relative bandwidth br/fc of the transmit-

ted signal. In case the relative bandwidth is small, the relative delay term in the complex envelope

factor stx (t− τntxnrx (t′)) from (2.1.55) for distinct τntxnrx (t′) is insignificant. This means, that

for different TX and RX antenna combinations stx (t− τntxnrx (t′)) does not change significantly,

where ntx ∈ [0, Ntx) denotes the index of the TX and nrx ∈ [0, Nrx) the index of the RX an-

tenna. In this case, a narrow band beamforming can be done by considering the phase of the

exponential term

φntxnrx = ωcτntxnrx

(
t′
)

(2.1.71)

in (2.1.55) only. Assuming the far field approximation holds, the relative phase difference with

respect to the center frequency is

4φntxnrx ' −kc 〈~u, ~pnrx + ~qntx〉 . (2.1.72)
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If the relative bandwidth is high, the relative delay term in the complex envelop factor

stx (t− τntxnrx (t′)) from (2.1.55) matter and true time shifts need to be used. If this would not

be done, the formed beam squints with respect to ωr. Let ~u0 be the desired steering direction

and ~u the direction of the impinging wave. The narrow band phase correction for ~u0 is given

by (2.1.72). For an impinging wave with different k∗, the narrow band phase delay leads to a

focused beam at a different direction, namely [10]

−kc 〈~u0, ~pnrx + ~qntx〉 = 4φntxnrx = −k∗ 〈~u, ~pnrx + ~qntx〉 (2.1.73)

or

u =
kc

k∗
u0 =

fc

f∗
u0

where u and u0 are the directional cosines regarding the inner products in (2.1.73). The total

squint for f∗ being f+ = fc + br
2 and f− = fc − br

2 is

|u+ − u−| = u0
br/fc

(1 + br/fc/2) (1− br/fc/2)
.

Letting f∗ = fr = fc +4f the squint becomes

4f
fr

= −4u
u0

, (2.1.74)

where 4u = u − u0. If 4u is restricted to be below the array resolution 4u = λr/L with L

denoting the largest array size and setting 4f = br/2 then (2.1.74) can be converted to

L ≤ 4δr. (2.1.75)

Hence, if the biggest aperture size is smaller than 4δr, with δr = c0/2/br denoting the range

resolution, the squint due to narrow band beamforming is less than the array resolution. In the

limit of (2.1.75), the worst case u0 = 1 was considered.

Range Doppler Coupling and Correlation Loss for LFM Chirp

The range Doppler coupling and correlation loss as such are not approximations, rather effects

on the range estimation and the achievable SNR caused by a Doppler offset. These effects are

considered here to check if they are of concern since they are usually neglected in the signal

model.

In case the received signal can be modeled as a time shifted TX signal as derived in Section 2.1.3,

the matched filtered pulse compression is conducted by a convolution of the received signal with

the filter response hnp (t) = s∗tx,np
(−t). The implication of such a pulse compression for a

Doppler modulated received signal is measured by means of an ambiguity function (AF) defined

as the magnitude of the pulse compression result [2]

Anp (t, fD) =

∞̂

−∞

stx,np (s) s∗tx,np
(s− t) ej2πfDsds.
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Since the signal energy is normed to unity by (2.1.40), the ambiguity function at the origin is

Anp (0, 0) = 1.

In case of an LFM chirp signal

stx,np (t) =
rect (t/Tp)√

Tp

ejπbrt2/Tp (2.1.76)

the pulse compression result is

Anp (t, fD) = Λ (t/Tp) sinc ((tbr + fDTp) Λ (t/Tp)) e−jπbrt2/Tp (2.1.77)

with Λ(x) denoting the triangular function [2]. The AF reveals a shift in time. The peak of the AF

(2.1.77) occurs at

4tdc = −fDTp

br
,

and acts as a time offset to (2.1.3) as

τ
(
t′
)

= τrx

(
t′
)

+ τtx

(
t′
)

+4tdc. (2.1.78)

In the monostatic case this results in a range shift of

4rdc =
c04tdc

2
=
vrTpfc

br
. (2.1.79)

In addition to the time shift, the AF provides information about a Doppler induced correlation

loss reducing the achievable SNR. This loss, however, is usually neglected as

Anp (0, fD,max) ' 1 (2.1.80)

with

fD,max ' −
2vr,tot

c0
fc,

where vr,tot defined in (A.2.21) is the maximum occurring radial velocity in the GMTI case. Also,

time delays due to different spatial locations of the TX and RX antennas are neglected. As such,

a common approximation is

Anp (4τmax, 0) ' 1 (2.1.81)

with

4τmax =
4rmax

c0
=

max ‖~p− ~q‖
c0

,

where next to the magnitude also the phase offset due to the exponential term in (2.1.77) is

neglected. In case of a LFM chirp the total phase offset is

4φ = ωr,max
4rmax

c0
− πbr
Tp

(
4rmax

c0

)2

, (2.1.82)
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where the first term is a phase shift due to the different spatial location (2.1.77) and the latter

term the impact of the MF (2.1.77). The latter term in (2.1.82) matters if

2fr,maxc0 < γtol4rmax
br
Tp

(2.1.83)

with e. g. γtol = 1/10. This, however, becomes significant for ultra short pulse and ultra wide-band

radar systems only.

Finally it shall be mentioned, that it is assumed that the AF decays rapidly such that consecutive

pulses do not influence each other, hence

Anp (ntp, fD) = 0 (2.1.84)

for n ∈ N \ {0}. The pulse compression result for a burst of consecutive pulses as given by (2.1.4)

stx (t) =

Np−1∑
np=0

stx,np (t− nptp)

therefore results to

A (t, fD) =

∞̂

−∞

stx (s) s∗tx (s− t) ej2πfDsds

'
Np−1∑
np=0

Anp (t− nptp, fD) . (2.1.85)

2.1.4. Space-Time Radar Signals

In this section a space-time signal model required for GMTI processing is discussed. This model

will be stated for a multi-channel radar. The reasoning why multiple channels are necessary for

GMTI is given in Section 2.3.

As shown in Table 2.1.1, the classical airborne GMTI scenario depicted in Tab. 1.0.1 allows

for all approximations given in Section 2.1.3. Since the target induced phase modulation can be

Approximation Criteria Result

Target Ind. Phase Modulation (2.1.51) CLchirp < −100 dB
Stop-and-Go Approximation (2.1.65),(A.2.20) 4rwalk = 3.85× 10−3m� δr = 10m

Plane Wave Approximation (2.1.69) 4l = λr × 10−4m� λr/10

Narrow Band Approximation (2.1.75) L = λr,minNrx/2 = 0.96m� 4δr = 40m

Range-Doppler Coupling (2.1.79) 4rdc ' 3.75m < δr = 10m

MF Doppler CL (2.1.80) A (0, fD,max) ' −1 dB
MF Time Delay CL (2.1.81) A (4τmax, 0) ' −0.05 dB
MF Phase Offset (2.1.83) 2fr,maxc0 = 1018 m/s2 � 4.5× 109m/s2

Table 2.1.1.: Validity of airborne GMTI approximations.
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neglected, the received signal corresponding to a single point target is given by (2.1.55) as

s′b,rx,cal (t) = xcalstx

(
t− τ

(
t′
))

ejωDt+jφc+jφ′tx+jφ′rx (2.1.86)

with

ωD = −ωc
vrtx (t′) + vrrx (t′)
c0 + vrrx (t′)

φ′tx = −ω′scτtx

(
t′
)

φ′rx = −ω′sc
(
αrx(t′)τrx

(
t′
)

+
(
αrx(t′)− 1

)
τtx

(
t′
))
,

where calibrated signals are assumed. Due to the co-located setting, the occurring radial velocities

can be assumed equal, hence vrtx (t′) = vrrx (t′). Furthermore, the considered velocities are very

small compared to c0. Therefore, the corresponding angular Doppler frequency and phase terms

are well approximated by

ωD ' −ωc
2vrt (t′)
c0

φ′tx ' −ωcτtx

(
t′
)

φ′rx ' −ωcτrx

(
t′
)
.

Next, due to the fulfilled stop and go approximation and since the range Doppler coupling effect

of the matched filter can be neglected, the delay terms can be taken according to (2.1.64) as

τ
(
t′
)
' τ (t) = τtx (t) + τrx (t) =

rtx (t) + rrx (t)

c0
. (2.1.87)

The valid plane wave approximation allows according to (2.1.70) for

τ
(
t′
)
' 2r (t′)− 〈~u, ~p+ ~q〉

c0
, (2.1.88)

where ~q denotes the location of the TX, ~p the location of the RX antenna, and ~u the line of sight

vector pointing from the antenna to the target. Using (2.1.87) and (2.1.88), the sum of the phase

terms can be further simplified to

φ′tx + φ′rx ' −
ωc

c0
(2r (t)− 〈~u, ~p+ ~q〉)

= −2kcr (t) + kc 〈~u, ~p+ ~q〉 ,

where kc = ωc/c0 = 2π/λc is the wave number corresponding to the center frequency. Substitut-

ing this into the received signal (2.1.86) yields

s′b,rx,cal (t) = xcalstx (t− τ (t)) e−j2kcr(t)+jωDt+jkc〈~u,~p+~q〉+jφc .

Furthermore, since the Doppler and time delay correlation losses can be neglected, the matched
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filter output can be written as

y (t) = xcalA (t− 2r (t) /c0, 0) e−j2kcr(t)+jωDt+jkr〈~u,~p+~q〉+jφc , (2.1.89)

since A (t− 2r (t) /c0 +4τmax, fD) ' A (t− 2r (t) /c0, 0) holds. Finally, space-time adaptive pro-

cessing (STAP) is a pulse by pulse processing scheme using multiple antennas. Thus, by use of

(2.1.85), the matched filtered signal can be rewritten to

yntxnrx (t) =

Np−1∑
np=0

xcalAnp (t− nptp − 2r (t) /c0, 0) e−jkc2r(t)+jωDt+jkc〈~u,~pnrx+~qntx〉+jφc , (2.1.90)

where np denotes the pulse number, tp the PRI, ~qntx the location of the ntx−th TX antenna, and

~pnrx the location of the nrx−th RX antenna. Considering the received signal of the nr-th range

gate and the np-th pulse only by selecting

t = tnrnp = τnr + nptp (2.1.91)

with τnr = 2nrδr/c0, the measurement model becomes9

ynrntxnrxnp = xcale
−jkc2r+jωD(τnr+nptp)+jkc〈~u,~pnrx+~qntx〉+jφc , (2.1.92)

where Anp (ntp, fD) = 0 from (2.1.84) and the stop-and-go approximation r
(
tnrnp

)
' r was

used. Finally, (2.1.92) can be simplified further by noting that the received complex amplitude

xcal is a function depending on the point targets reflectivity coefficient αr. In the GMTI case,

αr therefore induces a random phase, potentially changing from pulse to pulse. This renders

the remaining phase terms depending on r, ωD, and φc in (2.1.92) unusable and hence the

measurement model can be simplified to

ynrntxnrxnp (r, ~u, ωD) = x (r) ejωDnptp+jkc〈~u,~pnrx+~qntx〉 (2.1.93)

with

x (r) = xcal (r, αr) e−j2kcr+jωDτnr+jφc (2.1.94)

denoting a random complex amplitude. The model given by (2.1.93) renders to be the general

measurement model used in the GMTI case. As noted explicitly in (2.1.93), the signal model

reveals information about the range r, the LOS direction ~u, and the targets Doppler frequency ωD

which are to be estimated from ynrntxnrxnp . All this information is required for STAP processing.

In the following, the general measurement model (2.1.93) is further reduced to follow the

simulation setting defined in Tab. 1.0.1. Hence, considering only target range nr, one transmit

antenna located at ~q = ~0, and the RX antenna to be a uniform linear array (ULA) arranged along

9Neglecting straddle losses and range ambiguities.
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the antenna x axis as

~pnrx =


nrxd

0

0

 ,
the measurement model (2.1.93) becomes

ynrxnp (u, ωD) = xejωDnptp+jkcudnrx . (2.1.95)

The corresponding ULA antenna configuration is sketched in Fig. 2.1.4. By introducing the com-

x

y

ddd d

RX Antennas
~pnrx

Figure 2.1.4.: ULA RX antenna used for simulations.

mon normalizations

ωDnptp =
2πfDnp

fp
= 2πf̄Dnp

and

kcudnrx =
2π

λc
udnrx = 2πd̄unrx = 2πūnrx,

where fp = 1/tp denotes the pulse repetition frequency (PRF),

f̄D =
fD

fp
(2.1.96)

the normalized Doppler frequency,

ū = ud̄ (2.1.97)

the normalized directional cosine, and

d̄ =
d

λc
(2.1.98)

the normalized distance between consecutive RX antennas, the signal can be formulated as

ynrxnp

(
ū, f̄D

)
= xgnrxnp

(
ū, f̄D

)
, (2.1.99)

where

gnrxnp

(
ū, f̄D

)
= ej2πf̄Dnp+j2πūnrx (2.1.100)

is the deterministic space-time signal model [1]. A common representation of the measurements
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(2.1.99) is to arrange the spatial and temporal samples into a matrix as

Y
(
ū, f̄D

)
= x


1 ej2πf̄D · · · ej2πf̄D(Np−1)

ej2πū ej2πf̄D+j2πū
...

...
. . .

...

ej2πū(Nrx−1) · · · · · · ej2πf̄D(Np−1)+j2πū(Nrx−1)

 ∈ CNrx×Np ,

(2.1.101)

= xG
(
ū, f̄D

)
(2.1.102)

= xa (ū) bT
(
f̄D

)
, (2.1.103)

where

a (ū) =
[
ej2πnrxū

]Nrx−1

nrx=0
=
[
1 ej2πū · · · ej2π(Nrx−1)ū

]T
∈ CNrx (2.1.104)

denotes the space vector a. k. a. angular steering vector or array manifold and

b
(
f̄D

)
=
[
ej2πnpf̄D

]Np−1

np=0
∈ CNp (2.1.105)

the time vector a. k. a. temporal steering vector. Another common representation of the mea-

surements (2.1.99) is yielded by vectorizing (2.1.101) into

y
(
ū, f̄D

)
= xg

(
ū, f̄D

)
∈ CNrxNp , (2.1.106)

where

g
(
ū, f̄D

)
= b

(
f̄D

)
⊗ a (ū) (2.1.107)

denotes the so called space time vector and ⊗ the Kronecker product. The measurement model

forms (2.1.99), (2.1.101), and (2.1.106) come in handy in case of theoretical studies as done in

Section 2.2. However, it is necessary to discretize the angular Doppler scene domain too in order

to allow for a reconstruction of it. Doing so yields

ynrxnp;nunD = xej2πnpnD/ND+j2πnrxnu/Nu , (2.1.108)

where ū and f̄D span the intervals

ū = 2d̄
nu

Nu
∈
[
−d̄, d̄

)
(2.1.109)

f̄D =
nD

ND
∈ [−1/2, 1/2) , (2.1.110)

with the bin indices ranges

nu ∈ ΩNu = {−Nu/2,−Nu/2 + 1, . . . , Nu/2− 1} (2.1.111)

nD ∈ ΩND
= {−ND/2,−ND/2 + 1, . . . , ND/2− 1} (2.1.112)

or in case of d = λc/2, ū ∈ [−1/2, 1/2). Note that Nu ∈ 2Z and ND ∈ 2Z need to be even numbers
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if ū and f̄D span the whole interval. For the case of multiple present targets the discretized

measurement model becomes

ynrxnp =
∑
nD

∑
nu

xnunDej2πnpnD/ND+j2πnrxnu/Nu (2.1.113)

which renders to be a 2D-inverse discrete Fourier transform (IDFT) form mapping from the nor-

malized angle Doppler scene domain xnunD to the channel-pulse measurement domain ynrxnp .

As done in (2.1.101), the scalar measurement model (2.1.113) can also be formulated as a mea-

surement matrix

Y = AXBT, (2.1.114)

where X ∈ CNu×ND denotes the radar scene a. k. a. reflectivity or scatter map in the angular-

Doppler domain,

A = [a (nu/Nu)]nu∈ΩNu
∈ CNrx×Nu (2.1.115)

the spatial steering matrix formed by the spatial steering vectors (2.1.104) steered to all angular

directions defined by the index set ΩNu , and

B = [b (nD/ND)]nD∈ΩND
∈ CNp×ND (2.1.116)

the corresponding temporal steering matrices formed by the temporal steering vectors (2.1.105)

steered to all Doppler directions defined by the index set ΩND
. Obviously, A and B are IDFT

matrices in case of a ULA antenna. Hence, (2.1.114) can be efficiently implemented by use of fast

Fourier transforms (FFTs). The unknown target parameters x, ū, and f̄D are thus encoded within

the matrix X by the indices nu and nD within X, which correspond to the targets LOS direction

and Doppler, and the amplitude at the corresponding indices. The primary goal therefore is, to

estimate X from the measurements Y . The common space-time vector form, however, is the

vectorized form analog to (2.1.106) as

y = vec
(
AXBT

)
(2.1.117)

= (B ⊗A)x, (2.1.118)

where x = vec (X) =
[
xT

1 xT
2 · · · xT

ND

]T
denotes the vectorized matrix

X =
[
x1 x2 · · · xND

]
formed by stacking all columns on top of each other.

Commonly, (2.1.117) is expressed by use of a general measurement operator a. k. a. sensing

operator A : CN1×N2 → CM as

y = A (X) , (2.1.119)

where N1 ×N2 can be identified with the scene size Nu ×ND and the number of measurement

samples as M = NrxNp. In case of missing samples i. e. some pulses or antennas are not present

during a CPI,10 compressive sensing (CS) and affine rank minimization (ARM) can be used to

10In this case certain rows in A and/or B are missing.
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obtain a solution for (2.1.119), given that the sensing operator A fulfills certain conditions e. g.

the restricted isometry property (RIP) condition. Further details on CS and ARM are discussed in

Section 3 and 4.

Finally, the calibration procedure of the derived signal model shall be mentioned here. As

discussed at the beginning of this chapter, the signal model was derived assuming the radar to

be calibrated. In this case, the radar appears transparent to the EM wave such that it can sample

the wave in space and time without any influence on the waves shape due to the presence of the

radar. This is clearly not the case in practice. The coupled and non-calibrated measurements are

often modeled by use of a mutual coupling matrix Cmc ∈ CNrxNp×NrxNp as

yraw = xCmcg
(
ū, f̄D

)
,

where the signal model given in (2.1.106) was used. Obtaining Cmc might be a complicated

matter and is beyond the scope of this work. Depending on the types of the used antennas and

their arrangement in the array, Cmc might also depend on ū, a fact which most often is clearly

not desired. The interested reader may refer to specialized papers e. g. [11, 12, 13, 14, 15, 16].

Once Cmc is known, calibrated measurements are obtained by

y = C−1
mcyraw

yielding the signal model given in (2.1.106).

In this section, a simplified space-time point target signal model suitable for the GMTI case was

derived. The model follows the approximations verified in Tab. 2.1.1. In the following section,

the general point target signal (2.1.99) is specified to clutter signals present in the airborne radar

case.

2.2. Airborne Radar Signals

In this section some useful signal models emerging for airborne radar are discussed. In the ground

moving target indication (GMTI) application, two major signal types emerge: target and clutter

signals. Targets are referred to as moving and clutter as non-moving scatterers relative to the

earth surface. Depending on the application scenario, also jamming signals may be considered,

however, this is not covered in this work. In general, only radar signals for one particular range

gate are considered from this point forward. Also the approximations verified in Section 2.1.4 are

used i. e. target and clutter patches can be considered quasi-static during a coherent processing

interval (CPI).

The clutter signal can be modeled as a superposition of non-moving scatterers distributed over

the visible area ~u ∈ [−1, 1). Especially for non-moving scatterers, the line of sight (LOS) vector ~u

and the emerging Doppler frequencies fDc are coupled. It is

fDc (~u) = −2vr (~u)

λc
, (2.2.1)
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where the observed radial velocity is

vr (~u) = 〈~u,−~vp〉 (2.2.2)

with ~vp denoting the platform velocity vector with respect to the earth surface. The term −~vp

can be identified as the clutter velocity vector with respect to the platform reference frame. This

is sketched in Fig. 2.2.1 for a single non-moving scatterer a. k. a. clutter patch. The size of the

patch is restricted by the range resolution δr and the minimal occurring angular resolution 4uc.

In case −~vp and the antenna x axis coincide, the radial velocity can be written as

x

y

z

−~vp

~u

~r

δr

4uc

Radar

Range gate

Clutter patch

Figure 2.2.1.: Coupling of emerging Doppler frequency and LOS vector ~u for static clutter under
flat earth condition.

vr (~u) =

〈
u

v

w

 ,−

vp

0

0


〉

= −uvp

which directly couples the Doppler frequency and the directional cosine u as

fDc (u) =
2uvp

λc
. (2.2.3)

The normalized clutter Doppler frequency

f̄Dc (u) =
fDc (u)

fp
,

with fp denoting the pulse repetition frequency (PRF), can also be expressed in terms of the

normalized directional cosine ū = ud̄ defined in (2.1.97) as

f̄Dc (ū;β) = βū, (2.2.4)
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where

β =
2vp

dfp
(2.2.5)

is the slope of the so called clutter ridge. The term clutter ridge comes from the appearance of

the clutter in the angular Doppler domain, which is depicted in Fig. 2.2.2 for β = 1. As can be

seen, the clutter populates only a small portion in the angle-Doppler domain, which is one of the

key facts why multiple channels are required for GMTI. In case ~vp and the antenna x axis do not

ū
in

1

f̄D in 1

Clutter Ridge

Figure 2.2.2.: Clutter ridge in the angle-Doppler domain for β = 1.

coincide, the radial velocity (2.2.2) becomes

vr (~u) =

〈
u

v

w

 ,−vp


cos (ϕm) sin (ϑm)

sin (ϕm) sin (ϑm)

cos (ϑm)


〉

= −vp (sin (ϑ) sin (ϑm) cos (ϕ− ϕm) + cos (ϑ) cos (ϑm)) ,

where the so-called misalignment angles ϕm and ϑm are the spherical angles pointing along the

platform velocity vector ~vp in the platform frame11. It is usually assumed that the vertical velocity

component can be neglected with ϑm ' π/212, hence

vr (u) ' −vp sin (ϑ) cos (ϕ− ϕm)

= −vp

(
u cos (ϕm)± sin (ϕm)

√
sin2 (ϑ)− u2

)
. (2.2.6)

By combining (2.1.96), (2.1.97), (2.1.98), (2.2.1), (2.2.5), and (2.2.6), the normalized Doppler

frequency in this case becomes

f̄Dc (ū;β, ϕm) = β

(
ū cos (ϕm)± sin (ϕm)

√
d̄2 sin2 (ϑ)− ū2

)
. (2.2.7)

11Note ~vp not −~vp as the negative sign is already counted for!
12This assumption is not necessarily true in case of airborne GMTI due to air turbulence. In this work, however, this

effect is neglected and an extension to incorporate the vertical misalignment is left as a future work.
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The clutter signal of a single clutter patch can thus be modeled as

yc (ū;β, ϕm) = xc (ū) gc (ū;β, ϕm) (2.2.8)

with xc (ū) denoting a clutter patch amplitude and

gc (ū;β, ϕm) = g
(
ū, f̄Dc (ū;β, ϕm)

)
(2.2.9)

a corresponding space-time signal vector with g defined by (2.1.107). The total clutter signal is

obtained by the superposition of all clutter patches as

yc(β,ϕm) =

d̄ˆ

−d̄

yc (ū;β, ϕm) dū. (2.2.10)

The integral form (2.2.10) may also be approximately expressed by use of a matrix as

yc(β,ϕm) = Gc (β, ϕm)xc, (2.2.11)

where

xc = [xc (ūnc)]
Nc/2−1
nc=−Nc/2

∈ CNc

is a vector holding the amplitudes of Nc individual clutter patches,

Gc (β, ϕm) = [gc (ūnc ;β, ϕm)]
Nc/2−1
nc=−Nc/2

∈ CNrxNp×Nc (2.2.12)

is a matrix of space-time clutter vectors steered to all clutter patches located at

ūnc =
2d̄

Nc
nc

with

Nc = 2

⌈
N

4uc

⌉
denoting the number of clutter patches with N ∈ N+,

4uc = min (ABW, δu,4uD)

the minimal occurring clutter patch resolution in u,

δu =
1

Nrxd̄

the array resolution in u, and

4uD = 4fD
λc

2vp
=

λcfp

2vpNp

the Doppler resolution in u, where (2.2.3) was used as an approximation. Due to the random
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nature of the reflectivity coefficient xc (ū) it is not possible to obtain a closed form clutter signal.

However, its signal structure is known from space-time adaptive processing (STAP) to consist of

numerous clutter contributions which are measured in a somewhat redundant or correlated na-

ture. The radar system obtains such correlated measurements due to its multiple channels. The

extreme case in which redundant samples are taken is known as displaced phase center antenna

(DPCA) condition [4]. In this case, pulses are emitted at exactly the point in time when a sub-

sequent channel arrives at the position of the preceding channel. This is sketched in Fig. 2.2.3.

From a mathematical point of view, these redundant samples can be seen directly from the mea-

Spatial Location =̂ nrxd+ vpnp/fp

T
em

p
or
al

L
o
ca
ti
on

=̂
n
p
/f

p

1/
f p

d

Figure 2.2.3.: Sampling process in space and time with fulfilled DPCA condition.

surements of a single clutter patch in case of no velocity misalignment

gc,nrxnp (ū;β) = ej2πū(nrx+βnp), (2.2.13)

where (2.2.4) was used. In case β ∈ N+13, one can find

ρB = Nrx + β(Np − 1) (2.2.14)

non redundant samples of the NrxNp possible samples for (2.2.13). This is known as Brennan’s

rule [17] and gives a hint on the possible rank of the emerging clutter covariance matrix

Rc (β, ϕm) = E
{
yc(β,ϕm)yH

c (β,ϕm)
}

(2.2.15)

=

d̈̄

−d̄

E
{
xc (ū)x∗c

(
ū′
)}
gc (ū;β, ϕm) gH

c

(
ū′;β, ϕm

)
dūdū′

as only non redundant samples contribute to the clutter rank. It is known, that Brennan’s Rule

gives a good hint on the effective clutter rank also in case of non-perfectly redundant samples

i. e. for non-DPCA conditions. In this case, the samples are still correlated to each other which

results in a decay of the corresponding singular values. A common assumption is that the clutter

patch reflection coefficients αr are uncorrelated as

E
{
αr (ū)α∗r

(
ū′
)}

= σrδ
(
ū− ū′

)
,

13Which corresponds to the DPCA condition.
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where (2.1.20) was used. The required correlation of the clutter amplitude therefore is

E
{
xc (ū)x∗c

(
ū′
)}

= E
{
xcal (ū)x∗cal

(
ū′
)}

=
Ptxg

2
dn

r4
ḡtx(ū)ḡrx(ū)ḡ∗tx(ū′)ḡ∗rx(ū′) E

{
αr(ū)α∗r (ū′)

}
=
Ptxg

2
dn

r4
ḡtx(ū)ḡrx(ū)ḡ∗tx(ū′)ḡ∗rx(ū′)σrδ

(
ū− ū′

)
= Pc

(
ū, ū′

)
δ
(
ū− ū′

)
(2.2.16)

where (2.1.94), (2.1.43) was used and

Pc

(
ū, ū′

)
=
Ptxg

2
dnσr

r4
ḡtx(ū)ḡrx(ū)ḡ∗tx(ū′)ḡ∗rx(ū′)

denotes the clutter patch power. In case of ū = ū′, the clutter patch power is

Pc (ū) =
Ptxg

2
dnḠtx(ū)Ḡrx(ū)σr

(4π)3r4
,

where Ḡtx and Ḡrx denote the calibrated, i. e. frequency independent, antenna gains for which

(2.1.11) and (2.1.27) was used. As such the covariance matrix becomes

Rc (β, ϕm) =

d̄ˆ

−d̄

Pc (ū) gc (ū;β, ϕm) gH
c (ū;β, ϕm) dū. (2.2.17)

The internal structure of the covariance matrix can be determined in more detail by noting the

identity

ggH =
(
bbH

)
⊗
(
aaH

)
from which it can be seen that the covariance matrixRc is a block matrix formed from N2

p spatial

covariance matrices of size Nrx ×Nrx. By looking at the individual covariance values

Rc

(
nrx, np, n

′
rx, n

′
p;β, ϕm

)
=

d̄ˆ

−d̄

Pc (ū) ej2πū(nrx−n′rx)+j2πf̄Dc(ū;β,ϕm)(np−n′p)dū, (2.2.18)

it can be seen that the entries depend only on the channel and pulse differences nrx − n′rx
and np − n′p. As a consequence, the clutter matrix Rc (β, ϕm) is of Toeplitz-block-Toeplitz form

consisting of 2Np − 1 block matrices and every block matrix is formed from 2Nrx − 1 entries [17].

The covariance matrices not only offer a possibility to form a classical clutter filter as done in

STAP and shown in Section 2.3, it also provides a possibility to obtain a basis for the clutter signals.

The clutter signal yc(β,ϕm) resides in a signal space spanned by all clutter signal vectors given by

the space-time clutter signal matrix Gc (β, ϕm) from (2.2.12). A basis of the clutter signal space

is given by the left singular vectors U of Gc (β, ϕm), where

UΣV H = Gc (β, ϕm)
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denotes the singular value decomposition (SVD) ofGc (β, ϕm) with Σ denoting a diagonal matrix

holding the corresponding singular values and V the right singular vectors14. Using basic linear

algebra, the basis of the clutter signal space U may also be found from the Eigendecomposition

of

GcG
H
c = UΣΣHUH, (2.2.19)

where the property V HV = I was used. Now note, that the covariance matrix may also be

expressed compactly in matrix form as

Rc (β, ϕm) = Gc (β, ϕm) E
{
xcx

H
c

}
GH

c (β, ϕm) (2.2.20)

using (2.2.11) and (2.2.15). Using the common assumption, that the clutter amplitudes are

uncorrelated, the covariance matrix becomes

Rc (β, ϕm) = PcGc (β, ϕm)GH
c (β, ϕm) , (2.2.21)

where E
{
xcx

H
c

}
= PcI was used. Comparing (2.2.21) and (2.2.19) reveals that the covariance

matrix Rc spans the space of the clutter signal vectors U . Hence, the clutter subspace can be

determined from the Eigendecomposition of Rc (β, ϕm). This subspace can be used to form an

orthogonal projection filter, allowing for an improved clutter suppression. Assuming the clutter

patch power to be constant i. e. Pc (ū) = Pc, the covariance matrix (2.2.18) has a closed form

solution in case of no velocity misalignment i. e. ϕm = 0 as

Rc (ñrx, ñp;β) = 2d̄Pc sinc
(
2d̄ (ñrx + βñp)

)
, (2.2.22)

where sinc (x) = sin(πx)/(πx) denotes the normalized sinc function and ñrx = nrx−n′rx and ñp =

np−n′p the channel and pulse differences.15 In other cases like for present velocity misalignment

ϕm 6= 016 or if an antenna pattern was to be considered (which currently is contained within

14As known from basic linear algebra, U is a basis of the column space and V a basis of the row space of Gc.
15Some authors state (2.2.22) by use of the zeroth order Bessel function 2d̄PcJ0

(
2πd̄ (ñrx + βñp)

)
which coincides

with the sinc (·) form since J0(z) = sin(z)/z [18].
16The covariance matrix (2.2.18) can be reformulated into

Rc (c, d;β, ϕm) = Pc

d̄ˆ

−d̄

ej2πūced
√
ρ2−P2

dū,

with Pc (ū) = Pc, c = ñrx + β cos (ϕm) ñp, d = β sin (ϕm) ñp, ρ = j2πd̄ sin (ϕ), and P = j2πū. For this form a
closely related Fourier integral is known as

∞̂

−∞

ej2πūced
√
ρ2−P2

dū =
−dρK1

(
ρ
√
c2 + d2

)
π
√
c2 + d2

with the constraint d < 0 and K1 denoting the modified Bessel function of first order and second kind [19]. Unfor-
tunately, the integral limits do not match and a reformulation by use of a rect

(
ū/2/d̄

)
results in the convolution

Rc (ñrx, ñp;β, ϕm) =
−dρK1

(
ρ
√
ñ2

rx + d2
)

π
√
ñ2

rx + d2
∗Rc (ñrx, ñp;β)

with Rc (ñrx, ñp;β) from (2.2.22). This convolution cannot be evaluated in an efficient manner since the real part
of K1 does not decay rapidly for small mismatch angles ϕm.
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Pc (ū)), a closed form solution of (2.2.18) is not known. In these cases, the covariance matrix

Rc (β, ϕm) needs to be evaluated numerically.17 While the assumption of the clutter power to be

constant is rather non-realistic, the subspace filter obtained from it works surprisingly well also

for realistic clutter power distributions as shown in Section 7.3.2.

As an important phenomena, internal clutter motion (ICM) has to be mentioned as well. In the

case of ICM, the clutter reflectivity changes from pulse to pulse rendering the clutter amplitude

xc (ū) to become an Np × 1 vector [17]

xcp (ū) =
[
xc,np (ū)

]Np−1

np=0

to the contrary of being constant as assumed before. The clutter signal of a single clutter patch

changes from (2.2.8) to

yc (ū;β, ϕm) =
(
xcp (ū)� b

(
f̄Dc (ū;β, ϕm)

))
⊗ a (ū)

and the covariance matrix from (2.2.17) to

Rc (β, ϕm) =

d̄ˆ

−d̄

(
Pc (ū)� b

(
f̄Dc (ū;β, ϕm)

))
⊗ a (ū) dū,

where

Pc (ū) = E
{
xcp (ū)xH

cp (ū)
}
∈ CNp×Np

is again a Toeplitz matrix. The clutter amplitude xc (ū) is commonly modeled as a wide-sense

stationary (WSS) random processes e. g. the Billingsley model [1].

A single target signal can be modeled by use of (2.1.99) as

yt,nrxnp

(
xt, ūt, f̄Dt

)
= xte

j2πf̄Dtnp+j2πūtnrx (2.2.23)

or in vector form

yt

(
xt, ūt, f̄Dt

)
= xtg

(
ū, f̄Dt

)
. (2.2.24)

The random nature of the target amplitude xt can be modeled by well known Swerling models

[2]. However, in this work targets are considered as non-fluctuating. The Doppler frequency

corresponding to the target is

fDt = −2vrt

λc
, (2.2.25)

where the radial velocity observed by the radar is [4]

vrt = 〈~ut, ~vt − ~vp〉

with ~vt denoting the target velocity vector with respect to the earth surface. The observed radial

17Due to the Toeplitz-block-Toeplitz form only (2Np − 1) (2Nrx − 1) instead of N2
pN

2
rx numerical integrals must be

solved. Since only big singular values are of interest, the integration error is allowed to be as big as 10−4 for the
total and 10−2 for the relative error according to tests in Matlab. Special care should be taken to ensure that the
central blocks for ñp = 0 are hermitian.
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velocity can be decomposed into two components

vrt = vtu + vr (~ut)

with

vtu = 〈~ut, ~vt〉

and vr (~ut) defined as in (2.2.2). Hence, the observed Doppler frequency (2.2.25) can be decom-

posed into

fDt = fDc (~ut)−
2vtu

λc

with the target independent component fDc (~ut) defined as in (2.2.1). Consequently, any moving

target posses a Doppler offset to stationary clutter reflections. Therefore, moving targets are

separated from clutter signals in the angle-Doppler domain as shown in Fig. 2.2.4. In summary,

ū
in

1

f̄Dc in 1

Clutter Ridge

− 2vtu
λcfp

Moving Target

Figure 2.2.4.: Clutter ridge in angle-Doppler domain for β = 1 with one moving target present.

the signal observed by the radar is

y =

Nt−1∑
nt=0

yt

(
xnt , ūnt , f̄D,nt

)
+ yc(β,ϕm) + n, (2.2.26)

where Nt denotes the number of moving targets and n ∼ CN (0, Pn). An alternative form is

obtained by discretizing the radar scene similar to (2.1.119) as

y = A (Xt) + yc(β,ϕm) + n. (2.2.27)

In this form, targets are forced to be located at a grid position of the scene matrix Xt which in

reality is never fulfilled. Hence, straddle loss will occur when trying to reconstruct Xt from an

inverse processing of the sensing operator A. In general, the separation from the moving targets

within Xt from the clutter yc(β,ϕm) is subject to STAP which is discussed in brevity in the next

section.
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2.3. Space-Time Adaptive Processing

In this section, a short introduction to space-time adaptive processing (STAP) and its prerequi-

sites are given. Next to the inevitable basics and some justification why multiple channels are

mandatory for the purpose of ground moving target indication (GMTI), the idea of an orthogo-

nal projection onto the complementary clutter subspace is given in brevity as this idea is used in

Chapter 7. Finally, a short summary on STAP detectors is given as these are of major interest for

GMTI applications.

2.3.1. The Need for a Multichannel System

On a regular basis, it is questioned if it is really mandatory to use a multichannel radar system for

GMTI. This questioning stems mainly from cost considerations as evidently a multichannel radar

is more expansive. Unfortunately, the use of a multichannel system is unavoidable. In this section,

common ideas how GMTI could be realized with a single channel only and reasons why they are

either not possible at all or not suitable are discussed in brevity.

Basically, GMTI is a change detected procedure. The very first, yet naive, idea to detect a change

is to conduct two or more measurements and compared them against each other. Consistent

signal components indicate static background or clutter and differences in the measurements

indicate changes or moving targets. In case of a stationary radar, such measurements can be

conducted by use of a single channel only. However, as soon as the channel changes its position,

as is the case for a moving platform, the received measurements are quickly not comparable any

more. The reason therefore is, that the coherent sum of all reflections cause a rapid decorrelation.

From (2.1.95) and (2.2.10), a single static clutter measurement for a single channel is calculated

as

yc(l) =

1ˆ

−1

xc (u) ejkculdu,

where l denotes the location of the single antenna and the integral denotes the coherent sum of

all reflections for a single range gate. The correlation with a displaced channel is

rycyc(l, l +4l) = E {yc(l)y
∗
c (l +4l)} =

1̈

−1

E
{
xc (u)x∗c

(
u′
)}

ejkc(ul−u′l−u′4l)du′du.

Assuming the clutter amplitudes are uncorrelated as E {xc (u)x∗c (u′)} = Pc(u, u
′)δ (u− u′) as

given by (2.2.16), the correlation becomes

rycyc(4l) =

1ˆ

−1

Pc(u)e−jkcu4ldu.

Neglecting the antenna pattern i. e. Pc(u) = Pc, the correlation has the close form solution

rycyc(4l) = 2Pc sinc

(
24l
λc

)
.
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A similar derivation for the three dimensional case can be found in [4]. For 4l = λc/2, the cor-

relation between the two measurements becomes rycyc(λc/2) = 0, hence, the correlation decays

rapidly18. The influence of the antenna pattern tapers the main lobe of the sinc-function to be-

come broader, however, this effect is quite limited and the measurements still decorrelate rapidly.

In order to acquire a second correlated measurement, already a second channel is required, which

conducts a measurement at the very same position a former measurement was taken. This tech-

nique is known as displaced phase center antenna (DPCA) and is, due to its poor performance

compared to STAP, nowadays only of educational interest [1]. The DPCA scheme is depicted in

Fig. 2.2.3.

A second more robust approach would be to conduct Doppler processing. The key idea is,

that any moving target causes a Doppler frequency 6= 0 Hz and thus can be distinguished from

static background reflections. Again this works well for a stationary radar, however, only very

limited in the GMTI case. The reason therefore is that, contrary to the stationary case, the earth

also moves relative to the radar. The motion of a target of interest, however, is a motion relative

the earths motion or, in other words, a motion on top of the earths motion. It is therefore

difficult to distinguish between Doppler frequencies caused by the earths motion and Doppler

frequencies caused by the moving target. From (2.2.2) it can be seen, that the moving earth

causes observable radial velocities in the range of vr ∈ [−vp, vp], where vp denotes the platform

velocity. The emerging clutter-Doppler spectrum is sketched in Fig. 2.3.1. Doppler frequencies of

fDfp/2−fp/2 2vp/λc−2vp/λc

Endo-Clutter Exo-Clutter

Figure 2.3.1.: Emerging temporal spectrum in the GMTI case.

targets moving slower than vp will submerge in the Doppler band stemming from the earth. This

case is commonly known as endo-clutter and results to be the common case in GMTI applications

[4]. The detection of endo-clutter targets is subject to STAP algorithms. The complementary

case, where the target moves faster than vp, is known as exo-clutter case. In this, simple Doppler

filtering would be sufficient to detect the moving target. Within the realm of GMTI, however, exo-

clutter is of limited practical importance. Quiet the contrary, usually the pulse repetition frequency

(PRF) is chosen quiet low in order to avoid range ambiguities. This in turn causes Doppler aliasing,

which at first excludes the exo-clutter case and second prohibits pure Doppler processing at all.

A third idea to detect moving targets by use of a single channel only would be to apply a

synthetic aperture radar (SAR)-like technique [4]. Using SAR, a spatially resolved radar image

of the earth can be calculated. Changes can be detected by comparing two such SAR images

created from two independent flyovers. In principle, this approach works, but only with a very

high effort to make the two SAR images comparable. In addition to the technically very complex

18For fc = 10 GHz, λc/2 ' 15 mm.
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co-registration of SAR images, the long acquisition time required is a major disadvantage of

this approach. It causes a smearing of moving targets and a low update rate, which makes

tracking of targets impossible. Furthermore, the exact positions of moving targets cannot be

determined without any additional knowledge19. Finally, the process of “comparing” SAR images

is also a demanding process to automatize. This falls into the area of image processing for which

machine learning algorithms must be trained accordingly. Altogether, this comprises a demanding

processing scheme which is currently not suitable for a real-time application.

The solution to distinguish targets moving relative to the earth surface from reflections of the

earth itself is to use the information from which directions the reflections arrive. As discussed

in the former chapter, the angular direction u and the clutter Doppler frequency fDc are directly

related. This means that the clutter signals occupy only a small portion of the angular Doppler

domain. Moving targets, furthermore, are separated from clutter signals in the angle Doppler

domain due to the motion induced Doppler offset. The reason for multiple channels therefor is

the need for an additional measurement dimension which allows for a separation of clutter from

moving targets as depicted in Fig. 2.2.4.

2.3.2. Fundamentals of STAP

The main purpose of STAP is to separate the moving targets from stationary clutter i. e. to sup-

press yc(β,ϕm) in (2.2.26). Within the classical STAP approach, (2.2.26) is treated as a purely

random variable (RV) signal model with one point target and no clutter parameters given. Hence

(2.2.26) becomes

y = yt

(
ūt, f̄Dt

)
+ yc + n

with the target signal, clutter, and noise assumed to be uncorrelated. The main goal within STAP

is to maximize the signal to interference and noise ratio (SINR) for a given steering direction ūt

and f̄Dt defined as

SINR
(
ūt, f̄Dt

)
=

E
{∣∣wHyt

(
ūt, f̄Dt

)∣∣2}
E
{
|wH (yc + n)|2

} =
Pt

∣∣wHg
(
ūt, f̄Dt

)∣∣2
wHRcnw

, (2.3.1)

where w ∈ CNrxNp is a linear filter vector to be chosen, Pt = E
{
|xt|2

}
is the received target

power, and

Rcn = Rc +Rn (2.3.2)

is the clutter plus noise covariance matrix with the noise covariance matrix Rn = PnI. Maximiza-

tion of (2.3.1) yields the so called matched filter (MF) vector

wmf

(
ūt, f̄Dt

)
= αmfR

−1
cn g

(
ūt, f̄Dt

)
, (2.3.3)

19The position of a point target within a SAR image corresponds to its observed Doppler frequency. A target moving
relative to the earth surface has an additional Doppler offset and its position is thus shifted accordingly. The correct
location can only be determined if the targets velocity would be known. To the contrary, if the true position of a
target is known, the corresponding velocity can be determined. This would be possible for cars which usually drive
on roads only.
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where αmf ∈ R is an arbitrary factor not changing the achievable SINR which is

SINRopt

(
ūt, f̄Dt

)
= Ptg

H
(
ūt, f̄Dt

)
R−1

cn g
(
ūt, f̄Dt

)
.

Commonly, the performance of a STAP filter is measured by the SINR loss20 defined as

SINRloss

(
ūt, f̄Dt

)
=

SINR
(
ūt, f̄Dt

)
SNR

=

∣∣wHg
(
ūt, f̄Dt

)∣∣2
wHRcnw

Pn∥∥g (ūt, f̄Dt

)∥∥2

2

which for wmf

(
ūt, f̄Dt

)
is

SINRloss,opt

(
ūt, f̄Dt

)
=

Pn∥∥g (ūt, f̄Dt

)∥∥2

2

gH
(
ūt, f̄Dt

)
R−1

cn g
(
ūt, f̄Dt

)
. (2.3.4)

Usually, the SINR loss is evaluated for ūt = 0 and f̄Dt ∈ [−1/2, 1/2). Figure 2.3.2 illustrates a SINR

loss curve for simulation settings listed in Tab. 1.0.1 and CNR = 60 dB. Such a graph allows

to determine an important figure of merrit of STAP algorithms, namely the minimum detectable

Doppler value, which is usually defined as f̄MDD = arg minf̄Dt
SINRloss

(
0, f̄Dt

)
≥ −3 dB. This

value allows to determine the minimum detectable velocity of a moving target. One popular
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Figure 2.3.2.: SINR loss for ū = 0 and settings listed in Tab. 1.0.1 with CNR = 60 dB.

choice to maximize the SINR is to minimize the clutter and noise contributions yc + n while

leaving the desired space-time steering vector under test undistorted

min
wmv

E
{∣∣wH

mv (yc + n)
∣∣2} s.t. wH

mvg
(
ūt, f̄Dt

)
= 1. (2.3.5)

This is known as the minimum variance distortionless response (MVDR) principle or Capon beam-

former with the well known result

wmv =
R−1

cn g
(
ūt, f̄Dt

)
gH
(
ūt, f̄Dt

)
R−1

cn g
(
ūt, f̄Dt

) . (2.3.6)

It differs from the MF vector by the particular choice of the denominator through which the

MVDR filter achieves some kind of super-resolution compared to a simple Fourier estimator i. e.

20Although termed loss it is indeed defined as a gain. Unfortunately, this unfortunate name is used throughout the
STAP community.
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the filter notch becomes very small [1].

A common necessity to obtain the filter coefficients is the need for the clutter covariance matrix

Rcn which is unknown in practice. The most basic approach to determine Rcn is by estimating it

as

R̂ =
1

Ntr

Ntr∑
ntr=1

yntry
H
ntr
, (2.3.7)

where R̂ is the sample covariance matrix (SCM) withNtr being the number of training range gates

and yntr a training range gate for a particular cell under test (CUT). The common assumption is

that no targets are contained withing the training data, which is one of its biggest drawbacks.

As a rule of thumb, the number of training gates has to be at least twice as big as the clutter

rank. In this case, the SINR loss compared to the optimal achievable performance (2.3.1) is within

3 dB [17]. In practice, this yields an intractable number of required training gates as well as

computational burden. As a consequence, a plethora of sub-optimal approaches were developed

to reduce the required number of training gates e. g. diagonal loading (DL)

R̂dl =
1

Ntr

Ntr∑
ntr=1

yntry
H
ntr

+ diag (ε) ,

where diag (ε) ∈ RNrxNp×NrxNp is a diagonal matrix with constant entry ε which stabilizes the

noise singular values of R̂ that require many training samples to estimate. Also, sub-optimal

approaches were developed to avoid the required inversion of the big covariance matrix e. g. Pre-

and Post-Doppler approaches or other rank reducing transformations. For further information,

especially an interesting explanation on how the optimal filter suppresses clutter using an Eigen-

decomposition of (2.3.3), the interested reader may refer to common text books e. g. [1]. A

further very interesting approach introduces an auto-regressive model for the clutter signal yc

known as space-time autoregressive (STAR), which dramatically reduces the number of required

training gates [20, 21].

2.3.3. On the Complementary Clutter Subspace

It was shown in [20] that matched subspace filters offer a higher performance in terms of SINR

loss compared to classical filters using the SCM or other sub optimal approaches. We loose a

few words on this idea here since it will be used in Chapter 7. As explained in Section 2.2, the

clutter signals forming the covariance matrix Rc are of correlated nature. In the continuous case

time, it can be shown that the clutter plus noise signal resides in a one dimensional subspace

allowing for a perfect separation [22]. This appealing property, however, does not translate into

the discrete regime. In the special case of DPCA, the clutter occupies a distinct subspace of a

size given by Brennan’s rule (2.2.14). Hence, rank(Rc) < NrxNp rendering Rc to be a true low

rank matrix. In the more general case, the DPCA condition does not apply, however, the clutter

signals still remain strongly correlated. As shown in [1], this results in Rc to be of full rank but its

eigenvalues decay more or less rapidly depending on the antenna configuration, internal clutter

motion (ICM), system calibration, etc. Nevertheless, an effective clutter rank can be defined as
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the number of eigenvalues greater than the noise eigenvalues. Let

Rcn = UcnΛcnU
H
cn

be the eigendecomposition of the clutter plus noise covariance matrix with Ucn being a matrix

of eigenvectors and Λcn a diagonal matrix holding the eigenvalues sorted in descending order.

Then, since Rcn = Rc +Rn are hermitian and thus normal matrices, they can be diagonalized by

any unitary matrix, hence it follows

Λcn = UH
cnRcnUcn = PcΛc + PnI (2.3.8)

and thus

λcn,i = Pcλc,i + Pn

for i = [1, 2, . . . , NrxNp]. It shall be noted that Λc denotes the eigenvalues with respect to the

clutter signal space (2.2.12). As shown in [1], eigenvalues below the noise floor do not contribute

to clutter suppression, hence the effective clutter rank is

ρeff =

NrxNp∑
i=1

I (Pcλc,i > Pn) , (2.3.9)

where I (·) denotes the indicator function. Now, instead of using the estimated inverse clutter plus

noise covariance matrix R̂
−1

cn to suppress the clutter, one may also use an orthogonal projection

onto the complementary effective clutter subspace to get rid of the clutter contributions. The

projection onto the complementary subspace is given by

P⊥c = I −UeffU
H
eff , (2.3.10)

where

Ueff = [ucn,i]
ρeff
i=1 ∈ CNrxNp×ρeff

spans the effective clutter space. The matched subspace filter vector therefore becomes

wms

(
ūt, f̄Dt

)
= αmsP⊥c g

(
ūt, f̄Dt

)
and its SINR loss

SINRloss,ms

(
ūt, f̄Dt

)
= αms

gH
(
ūt, f̄Dt

)
P⊥c g

(
ūt, f̄Dt

)∥∥g (ūt, f̄Dt

)∥∥2

2

, (2.3.11)

where (2.2.20) was used.21 Here, αms ∈ [1/2, 1] determines the lower and upper bounds of

(2.3.11), where the worst case lower bound is achieved if all complementary effective clutter

eigenvalues would be as strong as the noise i. e. Pcλc,i = Pn for i > ρeff . The benefit of the

21Since P⊥c = I −UeffU
H
eff = UreffU

H
reff with Ureff = [ucn,i]

NrxNp

i=ρeff+1 ∈ CNrxNp×ρreff with ρreff = NrxNp − ρeff , the
SINR loss is

SINRloss =

∣∣gHP⊥c g
∣∣2 Pn

gHP⊥c (PcGcGH
c + PnI)P⊥c g ‖g‖22

=

∣∣gHP⊥c g
∣∣2 Pn

gHUreffΛcn,reffUH
reffg ‖g‖22
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matched subspace (MS) filter is that the noise eigenvalues, which usually require a lot of training

gates to be estimated well, are not required. However, a practical problem arises when it comes

to determine the rank of the clutter covariance matrix ρ which is unknown in general. To the

contrary as suggested in (2.3.8), the noise eigenvalues of the SCM are not constant. Since the

noise values within n stem from a limited number of RVs, the eigenvalues of R̂n are also subject

to a distribution, which is known as complex Wishart distribution [23]. Therefore, the simple

approach conducted in (2.3.9) is not feasible. In addition, for a wrongly chosen subspace size the

performance of MS approach may suffer dramatically [1]. In Chapter 7 an idea to circumvent this

problem is discussed.

2.3.4. STAP Detectors

For GMTI applications, STAP is set up as a detection problem. The detection is performed by

conducting a Neyman-Pearson test for which a plethora of possible detectors emerged over time.

Some of the most commonly used detectors are listed in Tab. 2.3.1, where the following assump-

tions are taken to be given or not

CFAR In the constant false alarm rate (CFAR) case, the training and the test data may be of

different scale i. e. if Rcn denotes the covariance matrix of the CUT, the covariance

matrix corresponding to the training data is assumed to be σ2Rcn with unknown

σ2 ∈ R. Hence, CFAR detectors are capable of handling heterogeneous clutter

scenarios.22

Adaptive In case of adaptivity, the covariance matrix Rcn is unknown and needs to be es-

timated in some manner. For the case of non-adaptivity, Rcn is assumed to be

known.

Within the test statistics in Tab. 2.3.1, the acronyms mean the following: matched filter (MF),

adaptive matched filter (AMF), Kelly’s generalized likelihood ratio test (GLRT), normalized matched

filter (NMF), and adaptive coherence estimator (ACE). A common precondition of the test statistics

is the absence of a target within the training data, as well as the CUT shares the same covariance

matrix structure. The somewhat simpler AMF detector is a simplification of Kelly’s GLRT detector

which uses the CUT data in its decision statistic [24]. For a large amount of training data, the

CUT term in the denominator tends to zero and thus coincides with the AMF detector. Hence,

the AMF is computational less expensive, however, suffers from poorer performance in case of

with Λreff = diag
(

[λc,i]
NrxNp

i=ρeff+1

)
∈ Rρreff×ρreff . To see this, note

P⊥c GcG
H
c P⊥c = UreffU

H
reffUcΣcV

H
c VcΣcUcUreffU

H
reff

= Ureff

[
0 Iρreff×ρreff

]
Λc

[
0

Iρreff×ρreff

]
UH

reff

= UreffΛc,reffU
H
reff

and
Λcn,reff = Λc,reff + PnI.

In the worst case, this case becomes Λcn,reff = 2PnI which yields the lower bound of (2.3.11).
22Some authors define CFAR also to be given when the test statistic is independent of scaling of Rcn alone. While

this is true, it is less strict as in our definition.
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Name Detector CFAR Adaptive Disturbance

MF |gHR−1y|2
gHR−1g

≷ ηmf × × Gaussian

AMF

∣∣∣gHR̂
−1
y
∣∣∣2

gHR̂
−1
g

≷ ηamf × X Gaussian

Kelly’s GLRT

∣∣∣gHR̂
−1
y
∣∣∣2

gHR̂
−1
g
(

1+ 1
Ntr

yHR̂
−1
y
) ≷ ηK × X Gaussian

NMF |gHR−1y|2
(gHR−1g)(yHR−1y)

≷ ηnmf X × compound-Gaussian

ACE

∣∣∣gHR̂
−1
y
∣∣∣2(

gHR̂
−1
g
)(
yHR̂

−1
y
) ≷ ηace X X compound-Gaussian

Table 2.3.1.: Collection of STAP detectors with η denoting the thresholds.

low amount of training data23 [25]. The NMF and ACE detectors are designed to work also in

the compound-Gaussian case i. e. a multiplicative combination of independent random processes.

This allows for the modeling of spiky clutter contributions, for which yc is modeled as a spherically

invariant random vector (SIRV)24 [27]. In addition to the classical estimators given in Tab. 2.3.1,

also subspace detectors were developed [29, 30]. Good performance was also shown to be

achieved if R̂
−1

is replaced with the projection onto the complementary clutter subspace P⊥c
from (2.3.10) [21]. Such an approach was tested within this work and is presented in more detail

in Section 7.3.2.

2.3.5. Prerequisites and Limitations

As shown in the preceding sections, STAP requires an accurate estimate of the SCM R̂cn from

which it forms a filter to suppress the clutter. As it is unknown in practice, it has to be estimated

in some form. In order to do so the following prerequisites are assumed to hold

• Sufficient, independently sampled training data is available

• All training data shares the same clutter structure as the CUT, i. e.

Rntr = E
{
yntry

H
ntr

}
= σ2

ntr
Rcn

• No training data contains any moving target signals contributions

Violation of any of the above listed prerequisites results in degraded performance. If the required

amount of training data is not available, the expected SINR loss compared to the optimal achiev-

able is
SINRloss,exp

SINRloss,opt
=
Ntr −NrxNp + 2

Ntr + 1
forNtr ≥ NrxNp

23The AMF detector is obtained in many ways, e. g. by conducting a GLRT test assuming covariance matrix Rcn

is known and afterwards replacing it with the SCM [25]. Another derivation is to conduct a Wald test on the
detection problem [26].

24It shall be noted, that the ACE detector is sensitive with respect to the clutter texture statistics and thus not very

applicable in practice. This can be circumvented by normalizing the training data as ȳntr
= yntr/

√
‖yntr‖2 /Ntr

prior to calculating the SCM. This, however, diminishes the detection performance [27]. Furthermore, the ACE
detector is very sensitive with respect to mismatched target steering vectors [28].
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which is known as Reed, Mallot, and Brennan (RMB) rule [1]. The second condition is violated in

heterogeneous clutter environment, e. g. land-sea transitions, forest borders, regions of different

ICM characteristics etc. The last condition is violated in target-rich environments as in cities

or any kind of much traveled roads [31]. In this case, the training data likely contains moving

target signals which as a consequence results in target masking. To mitigate the effects of non-

homogeneous clutter and target masking, a large amount of STAP algorithms were designed

which either reduce the number of training samples in the hope that the available training data

is distributed as the CUT e. g. [20, 21], or a preceding selection of the training data is conducted

based on some statistical assumptions e. g. [32, 33, 34]. Further attempts try to use apriori

knowledge, e. g. a terrain map or even pre-computed covariance matrices, known as knowledge-

aided STAP (KA STAP). In recent years, low-rank approximation models received great attention.

Among those, an intermediate approach between the classical STAP and affine rank minimization

(ARM) regimes is Kronecker-STAP, which attempts to find a low rank matrix which approximates

the SCM as [35]

Â, B̂ = arg min
rank(A)≤ρa,rank(B)≤ρb

∥∥∥R̂−B ⊗A∥∥∥2

F

R̂new = B̂ ⊗ Â.

STAP filtering is conducted by use of R̂new, which is supposed to be free of moving target com-

ponents due to the superimposed structure. Nevertheless, also this approach relies on suitable

training data and in addition on the validity of the Kronecker-form.

To the contrary, this work attempts to follow a completely different approach, not using training

data at all but rather to exploit the correlated nature of stationary clutter directly. By doing so, all

of the aforementioned prerequisites are circumvented, which would allow for a successful moving

target detection also for heterogeneous clutter or busy areas. Within this work, a uniform linear

array (ULA) antenna and furthermore a flat earth scenario is assumed. The approach builds

upon compressed robust principal component analysis (CRPCA) which separates low rank from

sparse matrices. It is a combination of compressive sensing (CS) and ARM approaches which are

described in the following chapter.
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In this chapter the compressive sensing (CS) approach is discussed in brevity. The interested

reader keen to know more on the basics of CS and its application to radar is referred to [36, 37].

Next to the theoretical basics, two algorithms most commonly used to solve CS problems are

shown, namely fast iterative shrinkage-thresholding algorithm (FISTA) and normalized iterative

hard thresholding (NIHT). These algorithms illustrate two so-called denoising schemes and serve

as a reference to the advanced algorithms presented in Chapter 6.

3.1. The Compressive Sensing Approach

The primary objective is to recover an unknown sparse vector s̃ ∈ Cn, where the number of

sparse entries κ� n, from a limited number of noisy observations of the form

y = As̃+ n, (3.1.1)

where A ∈ CM×n (M < n) is a known affine transformation1, y ∈ CM is a measurement vector,

and n ∈ CM is additive noise with independent identically distributed (i. i. d.) coefficients of zero

mean and variance Pn. To find a solution to this under-determined linear system, we seek the

closest sparse solution which is consistent with the measurements via

min
s
‖s‖0 subject to h (s) ≤ ε2, (3.1.2)

where

h (s) = ‖As− y‖22 (3.1.3)

is the data fidelity term with ‖·‖x denoting the `x norm and ε2 ≥ ‖n‖22 is some constant error

energy. In order to find a solution using (3.1.2) the restricted isometry property (RIP) condition

(1− δK (A)) ‖s‖22 ≤ ‖As‖
2
2 ≤ (1 + δK (A)) ‖s‖22 (3.1.4)

must be fulfilled [36]2. Basically (3.1.4) means that the measurement operator A must keep dif-

ferent sparse vectors with at most K entries distinguishable. Low values of δK (A) allow for a

1For the compressive sensing (CS) algorithms, the problem is usually stated by use of a sensing matrix rather than
a sensing operator as defined in (2.1.119). Hence, the sensing operator and the radar scene in y = A (X) are
vectorized to y = Ax. This is possible since within the regime of sparse entries the matrix structure of X is not
of importance. By doing so, multidimensional notations are not required and the problem gets easier to handle by
use of common linear algebra operations.

2To the contrary of the null space property, the RIP condition allows to formulate reconstruction guarantees in the
noisy case. It can be shown, that the existence of any reconstruction algorithm (potentially impractical) that can
stably recover from noisy measurements requires that A satisfy the lower bound of (3.1.4) with some constant c,
where c would depend on the particular reconstruction algorithm [36].
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high reconstruction performance. Another interpretation of the RIP condition is, that the mea-

surement matrixA acts like a unitary operator on K-sparse vectors, i. e. only causes a rotation on

K-sparse vectors and preserves angles between them, thus keeping K-sparse vectors distinguish-

able. Random matrices and randomly chosen rows of discrete Fourier transform (DFT) matrices

possess this requirement with high probability. Unfortunately program (3.1.2) is NP-hard to solve.

From this point forward different approaches to solve (3.1.2) are evaluated. The first and most

basic is fast iterative shrinkage-thresholding algorithm (FISTA) presented in section 3.2, which is

a soft thresholding (ST) approach. A hard thresholding (HT) counterpart is normalized iterative

hard thresholding (NIHT) presented in section 3.3. A most sophisticated approach to solve (3.1.2)

the turbo shrinkage-thresholding (TST) algorithm together with its refinement complex successive

concave sparsity approximation (CSCSA) which are presented in Chapter 6.

For all the following algorithms presented, the signal to noise ratio (SNR) is defined as

SNR =
‖As̃‖22
MPn

(3.1.5)

and the recovery success is measured as squared reconstruction error (SRE)

SRE =
‖s̃− ŝ‖22
‖s̃‖22

, (3.1.6)

where ŝ is the reconstruction result. For the phase transition plots [38], the SRE was averaged

over Nmc = 100 Monte Carlo runs as 1
Nmc

∑Nmc
i=1 SREi, where SREi denotes the SRE of the ith

reconstruction. All algorithms are aborted either after a maximum number of iterations I, or if

the residual error defined as

ε2rel =
‖y −Aŝ‖22
‖y‖22

(3.1.7)

'
‖y −As̃‖22
‖y‖22

=
‖n‖22

‖As̃+ n‖22
(3.1.8)

≥
‖n‖22

(‖As̃‖2 + ‖n‖2)2 =
1

(‖As̃‖2 / ‖n‖2 + 1)2 (3.1.9)

'
‖n‖22
‖As̃‖22

, (3.1.10)

drops below a certain threshold. In (3.1.8) it is assumed that ŝ is close to the true solution

s̃, (3.1.9) used the Cauchy-Schwarz inequality ‖u+ v‖22 ≤ (‖u‖2 + ‖v‖2)2, and in (3.1.10) it

was assumed that ‖As̃‖2 / ‖n‖2 � 1. The expectation value of the residual error therefore

approximately is

E
{
ε2rel

}
' E

{
‖n‖22
‖As̃‖22

}
=

MPn

‖As̃‖22
=

1

SNR
.

As a last stop criterion the relative improvement from iteration to iteration is used which is defined

as

di =
‖si − si−1‖22
‖si−1‖22

. (3.1.11)
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Parameter Definition Value

Dimension n 625

SNR (3.1.5) 40 dB

# iterations max. I 300

Table 3.1.1.: Simulation parameter for generation of phase transition diagrams.

The success rate is evaluated by use of phase transition plots, where for a given type of sensing

operator A (random or DFT) a number of sparse vectors s̃ are to be reconstructed for different

measurement ratios M/n ∈ (0, 1] and sparsity ratios κ/M ∈ (0, 1] [38]. In general, the higher

the measurement rate M/n is, the easier it is to find a solution to (3.1.2). In case M/n ≥ 1, the

reconstruction problem can be solved in any case3. Likewise, the higher the sparsity ratio κ/M

is, the more difficult the reconstruction problem becomes. In case κ/M ≥ 1, the reconstruction

problem can not be solved at all. Hence, the phase transition plot renders to be a collection of

reconstruction problems of varying difficulty. Various reconstruction algorithms now compete on

how many problems of varying difficulty they can successfully reconstruct. Usually, a sharp transi-

tion of reconstructable from non-reconstructable problems arise for a given algorithm, hence the

name phase transition diagram. For a single reconstruction problem, the sparse vector s̃ is set up

by first determining κ and M from the given measurement and sparsity ratios. Then κ support

indices are drawn from an i. i. d. U (1, n) distribution. The entries at the determined indices are

drawn from an i. i. d. complex Gaussian distribution. Next, the sensing operatorsA of size M ×n
are set up, where for random sensing operators A ∼ CN (0, 1) or for DFT operators A is set

up from M randomly selected rows of an n × n DFT matrix. Finally, the elements of the noise

vector n are drawn from an i. i. d. standard complex Gaussian distribution and scaled to the given

SNR according to (3.1.5). For every combination of measurement and sparsity ratio 100 Monte

Carlo runs were conducted and averaged to generate the phase transition plot. The simulation

parameters to generate the phase transition plots in Fig. 3.2.1, Fig. 3.3.1, and Fig. 3.3.2 are listed

in Tab. 3.1.1.

Finally it shall be noted, that random sensing matrices are of limited interest in radar engineer-

ing and serve here merely as a comparison benchmark since many algorithms in the literature

are stated for random sensing matrices alone. For the application of CS algorithms within space-

time adaptive processing (STAP), their performance with respect to DFT sensing operators are of

interest.

3.2. Fast Iterative Shrinkage Thresholding

The fast iterative shrinkage-thresholding algorithm (FISTA) algorithm tries to find a solution to

(3.1.2) by applying the basis pursuit denoise (BPDN) approach which relaxes (3.1.2) to

min
s
‖s‖1 subject to h (s) ≤ ε2. (3.2.1)

3For instance by classical least square approaches.
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The regularized form of (3.2.1) is

ŝ = arg min
s

λ ‖s‖1 + h (s) , (3.2.2)

where λ > 0 is some regularization parameter. It is of convex nature and can be solved by the

iterative thresholding (IT) approach by iteratively updating

si = Ss,µλ (si−1 − µ∇sh (si−1)) . (3.2.3)

Here, µ is some step size, i the iteration index,

∇sh (si−1) = AH (y −Asi−1)

denotes the gradient with respect to s at s = si−1, and

[Ss,a (x)]i = (|xi| − a)+ exp (j arg (xi)) (3.2.4)

is the nonlinear soft thresholding operator with (·)+ = max (0, ·). A derivation of the gradient

can be found in Appendix A.7.1. The step size is chosen as

µ =
1

ML
,

where ML is the smallest Lipschitz constant of∇sh (s) [39]. For the parameter λ no optimal value

is known, however, the following heuristic formula may be used [40]

λ = 2cr
√
PnΦ−1

(
1− αr

2n

)
, (3.2.5)

where cr > 1 is some constant, Φ is the cumulative density function (CDF) of N (0, 1), and

αr ∈ [0, 1] is some parameter. With such a choice, a least absolute shrinkage and selection

operator (LASSO) estimator achieves a so-called near-oracle performance with probability at least

1− αr. It is well known, that IT techniques have a low computational complexity, however, they

suffer from low convergence rates on the order of O (1/i) where i denotes the iteration index. To

accelerate the IT approach, (3.2.3) is expanded to

si = Sµλ
(
s′i − µ∇sh

(
s′i
))

ti+1 =
1 +

√
1 + 4t2i

2

s′i+1 = si +
(ti − 1)

ti+1
(si − si−1) ,

which is known as FISTA technique. It barely increases the computational complexity but boosts

the convergence rate up to O (1/i2) [41]. Putting all the above steps together, the final FISTA

algorithm is listed in Algorithm 3.1. The threshold selections given in Algorithm 3.1 were evalu-

ated numerically and prove to work well in every case. In the following some simulation results

are shown for which λ was chosen according to (3.2.5) with cr = 1.05 and α = 0.5. The result
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Algorithm 3.1 The FISTA algorithm.
Input: A, y, µ,λ, I
Initialization:

1: ε← min
(
10−4, 5 · 10−3λ

)
2: i← 0, d←∞, t1 ← 1, s0 ← 0, s′1 ← 0

Body:
1: while d > ε and i < I do
2: i← i+ 1
3: si ← Sµλ (s′i − µ∇sh (s′i))

4: ti+1 ← (1 +
√

1 + 4t2i )/2

5: s′i+1 ← si + (ti − 1) (si − si−1) /ti+1

6: d← ‖si − si−1‖2 / ‖si−1‖2
7: end while

Output: ŝ← si
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(a) Mean SRE in dB for random sensing operators A ∼
CN (0, 1).
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(b) Mean SRE in dB for random DFT sensing operators.

Figure 3.2.1.: Phase transition of FISTA in SRE in dB for simulation parameters listed in Tab. 3.1.1.

for random and discrete Fourier transform (DFT) sensing operators are shown in Fig. 3.2.1a and

3.2.1b. The advantage of FISTA over normalized iterative hard thresholding (NIHT) is its lack of

parameters which have to be known somehow or may be even unknown. Its drawback is its

slower convergence rate and poor reconstruction performance.

3.3. Normalized Iterative Hard Thresholding

The normalized iterative hard thresholding (NIHT) algorithm tries to find a solution to (3.1.2) by

solving the equivalent optimization problem

ŝ = arg min
s

h (s) subject to ‖s‖0 ≤ K, (3.3.1)

where K is a chosen constant. Program (3.3.1) is solved by iteratively updating

si+1 = Hs,K (si − µi∇sh (si)) ,
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where µi is some step size and

[Hs,K (x)]i =

xi, if |xi| ≥ x[K]

0, else
(3.3.2)

is the nonlinear hard thresholding operator with x[K] being the Kth biggest entry in magnitude

in vector x. As such, Hs,K (x) sets all but the K largest elements in magnitude of x to zero.

The step size µi is updated in every iteration and needs to be verified such that it truly minimizes

(3.3.1) [42]. Putting all the above steps together, the final NIHT algorithm is listed in Algorithm 3.2.

The threshold selections given in Algorithm 3.2 were evaluated numerically and prove to work

well in every case. The simulation results for random sensing and the discrete Fourier transform

Algorithm 3.2 The NIHT algorithm.
Input: A, y, K, I
Initialization:

1: ε← min
(
10−4, 5 · 10−3λ

)
2: i← 0, d←∞, s0 ← 0

Body:
1: while d > ε and i < I do
2: µi ←(13) and (14) in [42]
3: si+1 ← Hs,K (si − µi∇sh (si))
4: d← ‖si+1 − si‖2 / ‖si‖2
5: i← i+ 1
6: end while

Output: ŝ← si

(DFT) operators are shown in Fig. 3.3.1 and Fig. 3.3.2, where the parameter K was once set to

the true number of sparse entries κ of s̃ and once to twice the number 2κ. As can be seen, the

reconstruction success depends heavily on K.

Clearly, neither fast iterative shrinkage-thresholding algorithm (FISTA) nor NIHT are optimal

choices for practical problems. Therefore, improved versions are presented in Section 6.1 and

6.2 which show superior reconstruction performance and do not require parameters unknown in

practice.
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(b) Mean SRE in dB for K = 2κ.

Figure 3.3.1.: Phase transition of NIHT algorithm for random sensing operators A ∼ CN (0, 1)
and simulation parameters listed in Tab. 3.1.1.
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(b) Mean SRE in dB for K = 2κ.

Figure 3.3.2.: Phase transitions of NIHT algorithm for random DFT sensing operators and simula-
tion parameters listed in Tab. 3.1.1.
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4. Fundamentals of Affine Rank Minimization

In this chapter the affine rank minimization (ARM) approach is discussed in brevity. Next to

the theoretical basics, two algorithms most commonly used to solve ARM problems are shown,

namely singular value thresholding (SVT) and singular value projection (SVP). These algorithms

illustrate two so-called denoising schemes and serve as a reference to the advanced algorithms

presented in Chapter 6.

4.1. The Affine Rank Minimization Approach

The primary objective is to recover an unknown low-rank matrix L̃ ∈ CN1×N2 , where rank(L̃) =

ρ� nmin = min (N1, N2), from a limited number of noisy observations of the form

y = A(L̃) + n, (4.1.1)

where A ∈ CM×N1×N2 (M < N1N2 = n) is a known affine transformation, y ∈ CM is a

measurement vector, and n ∈ CM is additive noise with i. i. .d coefficients of zero mean and

variance Pn. To find a solution to this under-determined linear system, we seek the closest low-

rank solution which is consistent with the measurements via

min
L

rank (L) subject to h (L) ≤ ε2, (4.1.2)

where

h (L) = ‖A (L)− y‖22 (4.1.3)

is the residual term, and ε2 ≥ ‖n‖22 some constant noise energy. In order to find a solution using

(4.1.2) the restricted rank isometry property (RRIP) condition

(1− δR (A)) ‖L‖2F ≤ ‖A (L)‖2F ≤ (1 + δR (A)) ‖L‖2F (4.1.4)

for all L with rank (L) ≤ R need to be fulfilled. Basically (4.1.4) means that the measurement

operator A (·) must keep different matrices of rank ρ ≤ R distinguishable. Low values of δR (A)

allow for a high reconstruction performance. Random matrices and randomly chosen rows of

discrete Fourier transform (DFT) matrices possess this requirement. Unfortunately problem (4.1.2),

which is known as stable affine rank minimization (ARM) problem, is NP-hard to solve [43].

From this point forward different approaches to find approximate solutions to (4.1.2) are evalu-

ated. The first and most basic is singular value thresholding (SVT) presented in Section 4.2, which

is a soft thresholding (ST) approach. A hard thresholding (HT) counterpart is singular value pro-

jection (SVP) presented in Section 4.3. A most sophisticated approach to solve (4.1.2) the turbo
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singular value thresholding (TSVT) algorithm together with its refinement complex smoothed rank

approximation (CSRA) which are presented in Chapter 6. All aforementioned algorithms require

an singular value decomposition (SVD) in every iteration step which is a computational bottle neck

in case of large low rank matrices are to be reconstructed. Therefore, alternatives were evaluated

which avoid this expensive computation. One algorithm doing so is an iterative procedure called

the bi-factored gradient descent (BFGD) algorithm [43]. However, for the BFGD algorithm no

practical step size determination was available. Hence, an optimal step size determination was

developed, which was published at the EUSIPCO 2020 conference in Amsterdam [44] and can be

found in the Appendix A.6. The BFGD may serve as a final refinement algorithm and as such is

not evaluated in more detail in this work.

For all the following ARM algorithms presented, the signal to noise ratio (SNR) is defined like-

wise to compressive sensing (CS) as

SNR =

∥∥∥A(L̃)
∥∥∥2

2

MPn
(4.1.5)

and the recovery success is measured as squared reconstruction error (SRE)

SRE =

∥∥∥L̃− L̂∥∥∥2

F∥∥∥L̃∥∥∥2

F

, (4.1.6)

where L̂ is the reconstruction result. For the phase transition plots [38], the SRE was averaged

like in the CS case over Nmc = 100 Monte Carlo runs. All algorithms are aborted either after a

maximum number of iterations imax, or if the residual error defined as

ε2rel =

∥∥∥y −A(L̂)
∥∥∥2

2

‖y‖22
(4.1.7)

'

∥∥∥y −A(L̃)
∥∥∥2

2

‖y‖22
=

‖n‖22∥∥∥A(L̃) + n
∥∥∥2

2

(4.1.8)

≥
‖n‖22(∥∥∥A(L̃)
∥∥∥

2
+ ‖n‖2

)2 =
1(∥∥∥A(L̃)

∥∥∥
2
/ ‖n‖2 + 1

)2 (4.1.9)

'
‖n‖22∥∥∥A(L̃)

∥∥∥2

2

, (4.1.10)

drops below a certain threshold. In (4.1.8) it is assumed that L̂ is close the true solution L̃, (4.1.9)

used the Cauchy-Schwarz inequality ‖u+ v‖22 ≤ (‖u‖2 + ‖v‖2)2, and in (4.1.9) it was assumed

that the
∥∥∥A(L̃)

∥∥∥
2
/ ‖n‖2 � 1. The expectation value of the residual error therefore approximately

is

E
{
ε2rel

}
' E

 ‖n‖22∥∥∥A(L̃)
∥∥∥2

2

 =
MPn∥∥∥A(L̃)

∥∥∥2

2

=
1

SNR
.
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Parameter Definition Value

Dimension N1 ×N2 24× 80

SNR (3.1.5) 40 dB

# iterations max. I 300

Table 4.1.1.: Simulation parameter for generation of phase transition diagrams.

As a last stop criterion the relative improvement from iteration to iteration is used which is defined

as

di =
‖Li −Li−1‖2F
‖Li−1‖2F

. (4.1.11)

The success rate is again evaluated by use of phase transition plots, where for a given type of

sensing operator A (random or DFT) a number of low-rank matrices L̃ are to be reconstructed

for different measurement ratios M/n ∈ (0, 1] and degree of freedom ratios dρ/M ∈ (0, 1], where

dρ = ρ (N1 +N2 − ρ) denotes the number of degrees of freedom in a rank-ρ matrix. The low-

rank matrices L̃ are set up by first determining ρ and M from the given ratios. Here it shall

be mentioned, that since the rank ρ has to be a whole number, it is not possible to clearly find

a suitable integer ρ for every possible dρ. Instead, ρ is determined by the closest integer to

give the desired dρ. Obviously, this only approximates the desired dρ, where the approximation

becomes better for larger dimensions N1 × N2. This however results in very high computation

time. With this approach, the resulting ρ may also result to zero, especially for small dρ. In

this case, no simulations were conducted, which are indicated by blank white entries in the

following phase transition plots. For the construction of a true low-rank matrix L̃, two matrices

Xr ∈ CN1×ρ and Xl ∈ CN2×ρ are set up, whose entries are drawn from an i. i. d. complex

Gaussian distribution. In a next step Xr and Xl are orthonormalized. In addition a diagonal

matrix determining the singular values of the final low-rank matrix ΣL is created. Finally, the

low-rank matrix is constructed as L̃ = XrΣLX
H
l . Next, the sensing operators A are set up,

where for random sensing operators A ∼ CN (0, 1) or for DFT operators A is set up from M

randomly selected rows of an N1N2 × N1N2 DFT matrix following the identity y = A (L) =

A vec (L). Finally, the elements of the noise vector n are drawn from an i. i. d. standard complex

Gaussian distribution and scaled the given SNR according to (3.1.5). For every combination of

measurement and rank ratio 100 Monte Carlo runs were conducted and averaged to generate

the phase transition plot. The simulation parameters to generate the phase transition plots are

listed in Tab. 4.1.1.

4.2. Singular Value Thresholding

The singular value thresholding (SVT) algorithm tries to find a solution to (4.1.2) by applying the

nuclear norm minimization (NNM) approach which relaxes (4.1.2) to

min
L
‖L‖∗ subject to h (L) ≤ ε2, (4.2.1)
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where the nuclear norm ‖L‖∗, defined as the sum of the singular values of L, renders to be the

tightest convex envelop to rank(L). The regularized form of 4.2.1 is

L̂ = arg min
L

λ ‖L‖∗ + h (L) , (4.2.2)

where λ > 0 is some regularization parameter. It is of convex nature and can be solved by the

SVT algorithm by iteratively updating

Li+1 = Sl,µλ (Li − µ∇Lh (Li))

where µ is some step size, i the iteration index, and

Sl,a (X) =

nmin∑
i=1

(σi − a)+ uiv
H
i , (4.2.3)

the so called singular value soft thresholding (ST) denoiser. Furthermore, X = U diag (σ)V H is

the singular value decomposition (SVD) of X with ui and vi denoting the ith column vector of

U and V , and σ =
[
σ1 · · · σnmin

]T
is a vector holding the singular values of X in decreasing

order. The step size is chosen as

µ =
n

M ‖A‖22
,

where ‖A‖2 is the spectral norm of the sensing operator [45]. For the parameter λ an ideal value

does not exist. We use a value derived from (3.2.5) as

λ = 2crΦ
−1
(

1− αr

2n

)√
Pn max (N1, N2), (4.2.4)

where cr > 1 is some constant, Φ is the cumulative density function (CDF) of N (0, 1), and

αr ∈ [0, 1] is some parameter. With such a choice, a least absolute shrinkage and selection

operator (LASSO) estimator achieves a so-called near-oracle performance1 with probability at

least 1 − αr. Given the similarities between the LASSO estimator and the NNM approach we

may use this heuristic for a sophisticated choice of λ. To adapt this formula to our needs, we

adjusts
√
Pn to

√
Pn max (N1, N2) to reflect the noise level present in the singular values in L̃

[47]. Putting all the above steps together, the final SVT algorithm is listed in Algorithm 4.1. The

threshold selections given in Algorithm 4.1 were evaluated numerically and prove to work well

in every case. For the conducted simulations the parameter λ was chosen as cr = 1.05 and

α = 0.5. The result for random and discrete Fourier transform (DFT) sensing operators are shown

in Fig. 4.2.1a and 4.2.1b. The odd reconstruction success for low values of M/n result from

the very coarse approximation of dρ/M since in this case the rank ρ, which has to be an integer

number, can not be chosen to be close to the desired degree of freedom ratio. This is a simulation

setup effect, which can only be mitigated by increasing the problem size N1×N2 as explained in

the beginning of this chapter. The advantage of SVT over singular value projection (SVP) is that

a successful reconstruction is possible for a wide range of the regularization parameter λ where

1In compressive sensing (CS), oracle performance denotes the performance as one would get if an oracle that fore-
knows the true support of the true sparse vector x was used to reconstruct the sparse signal [46].
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Algorithm 4.1 The SVT algorithm.
Input: A, y, λ, I
Initialization:

1: ε← min
(
10−4, 5 · 10−3λ

)
2: µ← n/(M ‖A‖22)
3: i← 0, d←∞, L0 ← 0

Body:
1: while d > ε and i < I do
2: Li+1 ← Sl,µλ (Li − µ∇Lh (Li))
3: d← ‖Li+1 −Li‖F / ‖Li‖F
4: i← i+ 1
5: end while

Output: L̂← Li
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(a) Mean SRE in dB for random sensing operators A ∼
CN (0, 1).
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(b) Mean SRE in dB for random DFT sensing operators.

Figure 4.2.1.: Phase transition of SVT in SRE in dB for simulation parameters listed in Tab. 4.1.1.

(4.2.4) is a good choice. To the contrary, the parameters of SVP need to be known well, however,

are unknown in practice. Its drawback is its slow convergence rate and poor reconstruction

performance.

4.3. Singular Value Projection

The singular value projection (SVP) algorithm tries to find a solution to (4.1.2) by solving the

equivalent optimization problem

L̂ = arg min
L

h (L) subject to rank (L) ≤ R, (4.3.1)

where R is a chosen constant [48]. Program (4.3.1) is solved by iteratively updating

Li+1 = Hl,R (Li − µi∇Lh (Li)) ,
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(a) Average squared reconstruction error (SRE) in dB
for R = ρ.

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

m/n in 1

d
ρ
/
m

in
1

−40

−30

−20

−10

0

(b) Average SRE in dB for R = 2ρ.

Figure 4.3.1.: Phase transition of SVP algorithm for random sensing operators A ∼ CN (0, 1) and
simulation parameters listed in Tab. 4.1.1.

where µi is some step size which can be updated in every iteration for faster convergence and

better stability, and

Hl,R (X) =

R∑
i=1

σiuiv
H
i (4.3.2)

is the nonlinear hard thresholding operator which sets all but the R largest singular values of X

to zero. Further details can be found in [48, 49]. Putting all the above steps together, the final

singular value thresholding (SVT) algorithm is listed in Algorithm 4.2. The threshold selections

given in Algorithm 4.2 were evaluated numerically and prove to work well in every case. Phase

Algorithm 4.2 The SVP algorithm.
Input: A, y, R, I
Initialization:

1: ε← min
(
10−4, 5 · 10−3λ

)
2: i← 0, d←∞, L0 ← 0

Body:
1: while d > ε and i < I do
2: µi ←(17) in [49]
3: Li+1 ← Hl,R (Li − µi∇Lh (Li))
4: d← ‖Li+1 −Li‖F / ‖Li‖F
5: i← i+ 1
6: end while

Output: L̂← Li

transition plots for random and discrete Fourier transform (DFT) sensing operators are shown in

Fig. 4.3.1 and Fig. 4.3.2, where the parameter R was once set to the true rank of ρ of L̃ and

once to twice the number 2ρ. As can be seen, the reconstruction success depends heavily on R,

which is usually unknown in practice. Nevertheless, in case R is known, the SVP shows a higher

reconstruction performance and convergence speed than the SVT algorithm.

Clearly, neither SVT nor SVP are optimal choices for practical problems. Therefore, improved

versions are presented in Section 6.6 and 6.4 which show superior reconstruction performance

and do not require parameters unknown in practice.
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(a) Average SRE in dB for R = ρ.
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(b) Average SRE in dB for R = 2ρ.

Figure 4.3.2.: Phase transitions of SVP algorithm for random DFT sensing operators and simula-
tion parameters listed in Tab. 4.1.1.
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5. Fundamentals of Compressive Robust
Principal Component Analysis

In this chapter the compressed robust principal component analysis (CRPCA) approach is dis-

cussed in brevity, however, no algorithms from the literature will be given. Those are usually a

combination from pure compressive sensing (CS) and affine rank minimization (ARM) algorithms

which would not serve our purpose here. The interested reader may refer to textbooks e. g. [50].

We therefore omit those and instead refer to the algorithm developed in this work termed turbo

compressed robust principal component analysis (TCRPCA) presented in Section 6.6.

5.1. The Compressive Robust Principal Component Approach

The primary objective is to recover an unknown sparse matrix S̃ ∈ CN1×N2 and low-rank matrix

L̃ ∈ CN1×N2 , where
∥∥S̃∥∥

0
= κ� n = N1N2 and rank

(
L̃
)

= r � nmin = min (N1, N2), from a

limited number of noisy observations of the form

y = A
(
S̃ + L̃

)
+ n, (5.1.1)

where A ∈ CM×N1×N2 (M < n) is a known affine transformation, y ∈ CM is a measurement

vector, and n ∈ CM is additive noise with i. i. .d coefficients of zero mean and variance Pn
1. To

find a solution to this under-determined linear system, we seek the closest sparse and low-rank

solution which is consistent with the measurements via

min
S,L

λ ‖S‖0 + rank (L) subject to h(S,L) ≤ ε2, (5.1.2)

where

h(S,L) = ‖A (S +L)− y‖22 (5.1.3)

and ε2 ≥ ‖n‖22 is some constant error energy.

Like for compressive sensing (CS) and affine rank minimization (ARM) problems, the restricted

isometry property (RIP) condition (3.1.4) and the restricted rank isometry property (RRIP) condition

(4.1.4) need to be fulfilled to allow for successful reconstruction of (5.1.2). In the same way as

for CS and ARM, the reconstruction problem (5.1.2) is of NP-hard nature and is thus commonly

relaxed to

min
S,L

λ ‖S‖1 + ‖L‖∗ subject to h(S,L) ≤ ε2.

1The uncompressed case y = S̃ + L̃ + n is commonly referred to as robust principal component analysis (RPCA)
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However, additional requirements to guarantee a unique solution to (5.1.2) are necessary. Intu-

itively speaking, it is possible that S̃ is not only sparse but simultaneously low rank too. Imagine

a matrix which consists of very few sparse entries or all sparse entries are clustered into one row

or column, then this matrix is a low rank matrix as well. The same holds for L̃. This is known as

the identifiability issue and is elaborated in more detail in the following section.

5.2. On the Rank-Sparsity Incoherence Condition

In this section, fundamental statements regarding the aforementioned identifiability issue in order

to be able to distinguish between sparse and low rank matrices are recapitulated from [51]. The

derivations contained in this paper provide bounds and conditions for a successful separation in

the noiseless non compressed counterpart to (5.1.1) termed principal component pursuit (PCP)

(Ŝ, L̂) = arg min
S,L

λ ‖S‖1 + ‖L‖∗ subject to S +L = C. (5.2.1)

While (5.2.1) refers to a noiseless signal model, the following remarks deliver helpful guidelines

for a successful reconstruction also in the noisy case and thus provide valuable insight into the

applicability of compressed robust principal component analysis (CRPCA) to the ground moving

target indication (GMTI) problem. As such, recapitulating from [51], let

P(ρ) =
{
M ∈ RN1×N2 | rank (M) ≤ ρ

}
denote the set of all rank restricted and

S(κ) =
{
M ∈ RN1×N2 | ‖M‖0 ≤ κ

}
the set of all sparse matrices. The tangent space T (M) with respect to P (rank (M)) at M is

the span of all matrices with either the same row or column space as M , hence is

T (M) =
{
UXT + Y V T|X ∈ RN2×ρ,Y ∈ RN1×ρ} ,

whereM = UΣV T denotes the singular value decomposition (SVD) ofM with U ∈ RN1×ρ and

V ∈ RN2×ρ. Likewise, for any matrix M the tangent space with respect to S(‖M‖0) at M is

Ω (M) =
{
N ∈ RN1×N2 | supp (N) ⊆ supp (M)

}
.

Since both T (M) and Ω (M) are subspaces in RN1×N2 , we can compare vectors in this space.

Then it can be shown, that a necessary and sufficient condition for unique identifiability of (S̃, L̃)

with respect to the tangent spaces T (L̃) and Ω(S̃) is that they have a trivial intersection

T (L̃) ∩ Ω(S̃) = {0}.

The tangent space transversality is equivalent to a “linearized” identifiability condition around

(S̃, L̃) and is a sufficient condition for local identifiability around (S̃, L̃) but does not imply global
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identifiability. The following proposition provides a simple condition for the tangent spaces to

intersect transversally

Proposition 5.1. (Proposition 1 from [51]) Given two matrices S̃ and L̃, we have that

ν(S̃)ξ(L̃) < 1⇒ Ω(S̃) ∩ T (L̃) = {0},

where

ν(M) := max
N∈Ω(M),‖N‖∞≤1

‖N‖2 (5.2.2)

ξ(M) := max
N∈T (M),‖N‖2≤1

‖N‖∞ (5.2.3)

The quantity ν(M) is small for a matrix whose spectrum of any element of the tangent space

Ω(M) is diffuse, i. e. the singular values of those matrices are not too large. Likewise, the

quantity ξ(M) being small implies that elements of the tangent space T (M) are diffuse or not

too sparse. An important consequence of proposition 5.1 is the rank-sparsity principle given in

the following theorem.

Theorem 5.1. (Theorem 1 from [51]) For any matrix M 6= 0, it is that

ν(M)ξ(M) ≥ 1

for ν(M) defined in (5.2.2) and ξ(M) defined in (5.2.3).

This states that a matrix can not be at the same time sparse and posses a diffuse row and

column space. The next theorem provides sufficient conditions for a successful separation by use

of the PCP i. e. in the noiseless case using convex relaxation.

Theorem 5.2. (Theorem 2 from [51]) Given C = S̃ + L̃ with

ν(S̃)ξ(L̃) <
1

6
,

the unique optimum of the PCP program (5.2.1) is (S̃, L̃) provided

λ ∈

(
ξ(L̃)

1− 4ν(S̃)ξ(L̃)
,

1− 3ν(S̃)ξ(L̃)

ν(S̃)

)
.

This states that if the tangent spaces are sufficiently transverse then the PCP can successfully

recover (S̃, L̃) without any knowledge of the tangent spaces. It shall be noted that the presented

theorems give conditions for a diffuse sparse plus low rank separation i. e. a separation into a dif-

fuse sparsity pattern (no row or column contains too many zeros) and a diffuse row and column

space (row and column spaces are not aligned to any standard coordinate axis and hence do not

contain sparse vectors). In fact, a general separation into sparse and low rank matrices is not

unique since one can trade entries from sparse into the low rank part arbitrarily. However, a dif-

fuse separation is unique provided the conditions stated above are fulfilled. The next propositions

introduces practical bounds for the measures ν(M) and ξ(M).
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Proposition 5.2. (Proposition 3 from [51]) Let S ∈ RN1×N2 be any matrix with at least κs,min (S)

and at most κs (S) entries per row and column, then with ν(S) as defined in (5.2.2) it holds that

κs,min (S) ≤ ν(S) ≤ κs (S) .

This proposition states that the measure ν(S) can be controlled by controlling the sparsity ratio

κs (S) which not only limits ‖S‖0 but also the support i. e. a clustering of sparse entries is not

permissible. An equivalent proposition for the low rank case exists for which the incoherency

measure

inc(L) = max (inccol (L) , incrow (L)) (5.2.4)

with

inccol (L) = max
i
‖PUei‖2 = max

i

∥∥UHei
∥∥

2

incrow (L) = max
i
‖PV ei‖2 = max

i

∥∥V Hei
∥∥

2

is used, where L = UΣV H is the SVD of L, PU = UUH is a projection matrix onto the column

space, and PV = V V H a projection matrix onto the row space of L. It measures the incoherence

or how well the subspace of L is aligned with the standard basis, where inccol (L) measures the

incoherence with respect to the column space and likewise incrow (L) the incoherence regarding

the row space of L. These measures are bounded by√
ρ

N1
≤ inccol (L) ≤ 1√

ρ

N2
≤ incrow (L) ≤ 1.

The following proposition establishes a bound on the measure ξ(M).

Proposition 5.3. (Proposition 4 from [51]) Let L ∈ RN1×N2 be any matrix, then with inc(L)

defined as in (5.2.4) and ξ(L) defined as in (5.2.3) it holds that

inc(L) ≤ ξ(L) ≤ 2 inc(L).

This proposition states that the measure ξ(L) can be controlled by handling the incoherence

of L with respect to the standard basis. This can be done elegantly by use of a quiet common

alternative incoherence measure called µ-incoherence

µ (U) :=
N1

ρ
inccol (L)2

µ (V ) :=
N2

ρ
incrow (L)2

with the bounds

1 ≤ µ (U) ≤ N1

ρ

1 ≤ µ (V ) ≤ N2

ρ
,

(5.2.5)
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where again the bigger measure is used

µ := max(µ (U) , µ (V )). (5.2.6)

By use of the Cauchy-Schwarz inequality it follows from (5.2.5) that the maximum entry in mag-

nitude of the dyadic UV H for a given upper µ-incoherence is [52]

∥∥UV H
∥∥
∞ ≤

µρ√
N1N2

. (5.2.7)

The incoherence conditions (5.2.5), (5.2.6), and (5.2.7) assert that for small µ the singular vectors

are incoherent with the standard basis i. e. are reasonably spread out or in other words not sparse.

In addition they ensure that the singular vectors are not too spiky. A final theorem reformulates

Theorem 5.2 in terms of incoherence and sparsity measures.

Theorem 5.3. (Corollary 3 from [51]) Let M = S̃ + L̃ with κs(S̃) being the maximum number

of nonzero entries per row and column and inc(L̃) being the maximum incoherence of the row

and column space of L̃ as defined in (5.2.4). Then it holds that if

κs(S̃) inc(L̃) <
1

12
,

the solution of the PCP program (5.2.1) is (S̃, L̃) provided

λ ∈

(
2 inc(L̃)

1− 8κs(S̃) inc(L̃)
,

1− 6ν(κs(S̃)) inc(L̃)

κs(S̃)

)
.

The derivations so far follow [51], however, [52] gives alternative bounds e. g. the PCP succeeds

in any case given

λ =
1√

max (N1, N2)
.

Also bounds allowing for a higher reconstruction success compared to those given in Theorem

5.3 are presented, where the major difference is the assumption that the support of S̃ is uni-

formly random distributed. While the concrete reconstruction success bounds do not handle the

noisy case (and most often depend on the concrete reconstruction algorithm applied), theorem

5.3 states that a control of the sparsity ratio κs(S̃) and the incoherence inc(L̃) help in finding

a unique diffuse decomposition. As such, the following operators are introduced which handle

identification issues by restricting S and L to be of identifiable form. The sparsity ratio thresh-

olding operator Qκs : CN1×N2 → CN1×N2 , which prevents clustering of sparse entries, is defined

element-wise as

[Qκs (S)]ij =

sij , if |sij | ≥ S[bκsN2c]
i: and |sij | ≥ S[bκsN1c]

:j

0, else
, (5.2.8)

where κs ∈ (0, 1), sij denotes the (i, j)-th entry of S, Si: the i-th row, S:j the j-th column of S in

Matlab notation, and x[a] the a-th biggest entry in magnitude in x. The infinity norm thresholding

operator Pϕ : CN1×N2 → CN1×N2 , which prevents spikiness in the low rank reconstruction, is
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defined element-wise as

[Pϕ (L)]ij =

ϕ exp (j arg (lij)) , if |lij | ≥ ϕ

lij , else
. (5.2.9)

The required parameter ϕ can be determined from (5.2.7) by

ϕ =
µρcϕ

∥∥L̃∥∥
2√

N1N2
, (5.2.10)

where cϕ is a parameter set manually usually < 1 [53]. Unfortunately, most parameters in (5.2.10)

are unknown since it requires knowledge of the true low rank matrix L̃. As a rough estimate we

may use
∥∥L̃∥∥

2
≈
∥∥AH (y)

∥∥
2
, µ = 1, and ρ ≈ min (N1, N2) /2. Certainly, this estimate is not

justified to be anywhere close to an optimal value but it was found from simulations that it is

sufficient to apply (5.2.9) for a limited number of iterations e. g. the first 10 iterations. This is

enough to bias the intermediate solution Li to not contain spiky entries.

To the contrary of the pure compressive sensing (CS) and affine rank minimization (ARM) coun-

terparts, no CRPCA algorithms from the literature are presented here since those usually are

a simple composition of CS and ARM algorithms. As such, only the algorithm developed in this

work termed turbo compressed robust principal component analysis (TCRPCA) is presented which

can be found in Section 6.6.
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Within this chapter, a complete set of algorithms to solve compressive sensing (CS), affine rank

minimization (ARM), and compressed robust principal component analysis (CRPCA) problems is

presented. These algorithms were designed such that no parameters, unknown in practice, are

required and for unavoidable parameters equations are given to determine those. The only pa-

rameter required to know is the noise power Pn. Furthermore, these algorithms offer very high

convergence rate next to low computational complexity due to the use of closed solutions of

subsequent optimization problems. The algorithms offer state-of-the-art reconstruction perfor-

mance, as will be shown by use of phase transition plots. Finally, the algorithms are designed

to be capable of complex numbers and are evaluated not only for random sensing operators but

also for discrete Fourier transform (DFT) operators, rendering them suitable for radar applications.

They are called

• Turbo shrinkage-thresholding (TST)

• Complex successive concave sparsity approximation (CSCSA)

• Turbo singular value thresholding (TSVT)

• Complex smoothed rank approximation (CSRA)

• Turbo compressed robust principal component analysis (TCRPCA)

where TST and CSCSA solve CS problems, TSVT and CSRA solve ARM problems and TCRPCA

allows for solving the combined CS and ARM problem.

6.1. Turbo Shrinkage-Thresholding

The turbo shrinkage-thresholding (TST) algorithm is inspired by the turbo algorithms presented in

[54, 55, 56], which describe general reconstruction algorithms for compressive sensing (CS) and

affine rank minimization (ARM) problems applying the message passing principle. This principle

allows for a drastic improvement in convergence speed for right-orthogonally invariant linear

(ROIL) sensing operators to which random and discrete Fourier transform (DFT) sensing operators

belong1. To the best of our knowledge, [54, 55, 56] presented their algorithms for generic

and in particular hard thresholding (HT) operators but do not elaborate on soft thresholding (ST)

1Consider a linear operator A with matrix form A, the singular value decomposition (SVD) of A is A = UAΣAV
H
A .

If VA is a Haar distributed random matrix independent of ΣA, we say that A is a right-orthogonally invariant linear
(ROIL) operator [57].
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operators which are of major interest in our work. The contribution of this work is to fill in

required formulas for the complex case, add a final purification step to achieve a pure sparse

solution and elaborate on the ST denoiser hence the name TST algorithm.

Like fast iterative shrinkage-thresholding algorithm (FISTA), the TST algorithm tries to find a

solution to (3.1.2) by solving the relaxed regularized convex optimization problem

ŝ = arg min
s

λ ‖s‖1 + h (s) , (6.1.1)

which is solved by TST by the iterative procedure

ri = si−1 − µ∇sh (si−1)

zi = Ss,µλ (ri)

si = ci (zi − αiri) ,

where µ is some step size, i is the iteration index, and Ss,a is the soft thresholding operator given

by (3.2.4). The required parameters {µ, αi, ci} are chosen according to the turbo principle such

that

(ri − s̃)H (si−1 − s̃) = 0, (6.1.2)

(ri − s̃)H (si − s̃) = 0, (6.1.3)

and further that for a given si−1,
∥∥si − s̃∥∥2

2
is minimized under (6.1.2) and (6.1.3) [57]. In the

above, (6.1.2) ensures that the input and output error of the gradient update step are uncorre-

lated. Equally, (6.1.3) ensures a decorrelation of the input and output error of the denoising step.

This strategy allows for an improved convergence rate compared to classical gradient approaches.

In order to fulfill (6.1.2) and (6.1.3), the true solution s̃ is required to determine exact values for

{µ, αi, ci}. Since s̃ is unknown, approximate formulations for {µ, αi, ci} were derived in [57] for

the real valued case. In the general complex case these parameters are

µ =
n

M ‖A‖22
(6.1.4)

αi =

 1
ndiv (Ss,µλ (ri)) if s ∈ Rn

1
2ndiv (Ss,µλ (ri)) if s ∈ Cn

(6.1.5)

ci =
(zi − αiri)H ri

‖zi − αiri‖22
, (6.1.6)

where div (·) is the divergence operator. Luckily, the divergence can be derived in closed form as

div (SS,a (r)) =

n∑
i=1

(
2− a

|ri|

)
I (|ri| > a) , (6.1.7)

where I (·) denotes the indicator function. A derivation of (6.1.7) can be found in the Ap-

pendix A.3. The next question of course is how to choose λ and thus which shrinkage a should

be applied. Too much shrinkage results in a large bias while too little results in a slow conver-
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gence rate. As such, an optimal constant λ does not exists, rather λ would need to be adjusted

in every iteration. Unfortunately, to the best of the authors knowledge, a closed form solution to

determine such an optimal λ is not known to exists. A reasonable choice for the parameter λ is

a scaled version of the formula of [40]

λ =
1

4
cr
√
PnΦ−1

(
1− αr

2n

)
, (6.1.8)

which was found from simulations to perform well. The parameter cr > 1 in (6.1.8) is some

constant, Φ is the cumulative density function (CDF) of N (0, 1), and αr ∈ [0, 1] is some param-

eter. For further details have a look into [41]. The resulting inevitable bias of a constant λ is

circumvented by a final purification step, which is conducted using the HT operator Hs,K (x)

given by (3.3.2). This purification step is an adjustment introduced in TST and not present in

the algorithms presented in [54, 55, 56]. It is motivated by the aforementioned bias of the soft

thresholding operator SS,µλ (·) for constant selected λ. As an estimate for K, we conveniently

use ‖zi‖0. This final purification step allows for a clean sparse solution. For further details, e. g.

proof of convergence, the interested reader may refer to the proofs given in [54, 55, 56] which

also hold for the TST version presented here.

Putting all the above steps together, the final TST algorithm is listed in Algorithm 6.1. The

threshold selections given in Algorithm 6.1 were evaluated numerically and prove to work well in

every case.

Algorithm 6.1 The TST algorithm.
Input: A, y, λ, I
Initialization:

1: ε← min
(
10−4, 5 · 10−3λ

)
2: i← 0, d←∞, s0 ← 0, µ← n/(M ‖A‖22)

Body:
1: while d > ε and i < I do
2: i← i+ 1
3: ri ← si−1 − µ∇sh (si−1)
4: zi ← Ss,µλ (ri)

5: αi ←

{
1
ndiv (Ss,µλ (ri)) if s ∈ Rn
1

2ndiv (Ss,µλ (ri)) if s ∈ Cn

6: ci ← (zi − αiri)H ri/ ‖zi − αiri‖22
7: si ← ci (zi − αiri)
8: d← ‖si − si−1‖2 / ‖si−1‖2
9: end while

10: K ← ‖zi‖0
Output: ŝ← Hs,K (ri)

In the following, simulation results are shown to illustrate the performance of TST. Phase tran-

sition diagrams for random and DFT sensing operators are shown in Fig. 6.1.1. The illustrated

reconstruction performance is close but not as high as for e. g. spectral projected gradient for

`1 (SPGL1) shown in Fig. 6.1.2 but higher as for FISTA shown in Fig. 3.2.1a. Compared to FISTA

and normalized iterative hard thresholding (NIHT), TST shows an overall better performance. The

advantage of TST over FISTA is evident in Fig. 6.1.3 as TST shows a higher convergence rate and
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(b) Result of TST for random row DFT sensing operator.

Figure 6.1.1.: Phase transition of TST algorithm in SRE in dB.
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(a) Result of SPGL1 for random sensing operator A ∼
CN (0, 1).
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(b) Result of SPGL1 for random row DFT sensing opera-
tor.

Figure 6.1.2.: Phase transition of SPGL1 algorithm in SRE in dB.

also achieves a lower reconstruction error. A throughout comparison of TST with remaining CS

algorithms in terms of convergence speed was not conducted. Nevertheless, TST is very easy to

implement (to the contrary of SPGL1), shows a state-of-the-art convergence rate, has low com-

putational complexity as there are closed form solutions available for all required parameters, and

finally it does not require any unknown parameters in general. Hence, it is well suited for practical

applications.

6.2. Complex Successive Concave Sparsity Approximation

Despite the convexity of the basis pursuit denoise (BPDN) approach presented in Chapter 3, there

is a large gap between the sufficient conditions for the robust recovery of sparse vectors using

min
s
‖s‖0 subject to h (s) ≤ ε2

compared to

min
s
‖s‖1 subject to h (s) ≤ ε2.

In order to narrow this gap, while making the recovery tractable, we may approximate the `0
norm by a smooth function. The complex successive concave sparsity approximation (CSCSA) al-
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0 20 40 60 80
−40

−30

−20

−10

0

Iteration in 1

Er
ro

r
in

d
B

TST
FISTA

(b) DFT sensing operators with random rows.

Figure 6.1.3.: Comparison of convergence speed of TST and FISTA.

gorithm does so by enforcing a stricter sparsity measure compared to the `1 norm. The CSCSA is

our extension, applicable to complex valued problems, of the successive concave sparsity approx-

imation (SCSA) algorithm from [58], which only works for real valued problems. In this section

the idea of CSCSA is presented in brevity, a throughout derivation and more simulation results

can be found in the Appendix A.4.

The idea is to substitute the `0 norm of s =
[
s1 · · · sn

]T
by a more tractable approximation.

In general, the `0 norm is defined as the number of non zero elements in s. Let

δ(x) =

1 if x = 0

0 else
(6.2.1)

be the Kronecker delta function, then we can define the `0 norm of s as

‖s‖0 =

n∑
i=1

[1− δ (|si|)] , (6.2.2)

where |si| denotes the magnitude of si. To make (6.2.2) smooth we may approximate it by

1− δ(|s|) ≈ fγ (|s|) = 1− exp

(
−|s|
γ

)
, (6.2.3)

where γ determines how accurately the Kronecker function is approximated. An illustration of

this approximation and other common approximations to the `0 norm are shown in Fig. 6.2.1. As

shown in [58], the series {fγ (|s|)} converges point wise to 1− δ (|s|) as

lim
γ→0+

fγ (|s|) =

0 if |s| = 0

1 else.

Thus we can define

‖s‖0 ≈
n∑
i=1

fγ (|si|) = Fγ (|s|) , (6.2.4)

where |s| denotes a vector which holds the magnitudes of the elements of s. The optimization
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Figure 6.2.1.: Common approximations to the `0 norm.

problem (3.1.2) may now be relaxed to

min
s
Fγ (|s|) subject to h (s) ≤ ε2, (6.2.5)

where the residual term h (s) was defined in (3.1.3) and ε2 ≥ ‖n‖22 is some constant noise energy.

The constrained optimization problem (6.2.5), for a fixed γ, can be converted to an unconstrained

optimization problem by use of regularization as

ŝ = arg min
s

λγFγ (|s|) + h (s) . (6.2.6)

At this point it shall be noted, that the program (6.2.6) is not convex any more, rather it is a sum

of a concave and a convex function. As such (6.2.6) does not posses a unique minimum and it is

possible to get stuck in local minima. To circumvent this problem, the graduated non-convexity

(GNC) approach is used. The idea of GNC is to start the program (6.2.6) with a solution ŝ0 which

is somewhat close to the true solution s̃ obtained from a convex algorithm e. g. fast iterative

shrinkage-thresholding algorithm (FISTA) or turbo shrinkage-thresholding (TST). Then, (6.2.6) is

minimized for a γ large enough such that the solution ŝ is closer to s̃ yet not get stuck in a wrong

local minima. Subsequently, γ is reduced by a constant factor γ ← cγ to further approximate the

`0 norm and (6.2.6) is minimized using the solution from the previous iteration. The procedure

is conducted until a stop criteria is met. The optimization problem can be solved by use of the

iterative thresholding (IT) approach by iteratively conducting

si+1 = T (γ)
µλγ

(si − µ∇sh (si)) , (6.2.7)

where µ is some step size and T (γ)
µλγ

is again a thresholding operator given in the Appendix by

(A.4.40). It shall be noted that T (γ)
µλγ

is a closed form solution of a subsequent minimization prob-

lem emerging from the IT approach. This closed form is possible only through the special choice

of the `0 norm approximation (6.2.3). For different choices, the subsequent minimization prob-

lem would require an additional minimization loop increasing the computational complexity. The

regularization parameters is set to λγ = γλ, where for λ (3.2.5) is used. More details regarding

the CSCSA algorithm and how γ shall be chosen are given in the Appendix A.4. The CSCSA

algorithm was published in the paper Complex Successive Concave Sparsity Approximation at the
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IRS2020 conference [59].

It is well known, that IT techniques have a low computational complexity, however, they suffer

from low convergence rates on the order of O (1/i). To accelerate (6.2.7), a FISTA like technique

is used which does not increase the computational complexity but boosts the convergence rate

up to O (1/i2) [41]. Putting all the above steps together, the final CSCSA algorithm is listed

in Algorithm 6.2. It consists of two loops, an inner and an outer one. In the outer loop γ is

decreased gradually according to the GNC technique. The inner loop solves (6.2.6) by using a

FISTA like technique. The loops are aborted after a maximum number of iterations J and P or

if the solutions change, measured by the relative distance between consecutive solutions, drops

below certain thresholds εo and εi. The threshold selections given in Algorithm 6.2 are taken

from [58] and prove to work well in every case. Simulation results of a CSCSA update onto FISTA,

Algorithm 6.2 The CSCSA algorithm.
Input: A, y, λ, I, J
Initialization:

1: c← (0, 0.5), µ← 0.99/ ‖A‖22
2: εo ← min

(
10−4, 5 · 10−3λ

)
3: εi ← min

(
10−3, 5 · 10−3λ

)
4: ŝ← TST (A,y, λ, εi, J)
5: γ ← max (|ŝ|)

Body:
1: i← 0, do ←∞
2: while do > εo and i < I do
3: i← i+ 1, j ← 0 , di ←∞
4: t1 ← 1, z1 ← ŝ, s0 ← ŝ
5: while di > εi and j < J do
6: j ← j + 1

7: sj ← T (γ)
µλγ

(
zj − µAH (Azj − y)

)
8: tj+1 ←

(
1 +

√
1 + 4t2j

)
/2

9: zj+1 ← sj + (tj − 1) (sj − sj−1) /tj+1

10: di ← ‖sj − sj−1‖2 / ‖sj−1‖2
11: end while
12: do ← ‖sj − ŝ‖2 / ‖ŝ‖2
13: ŝ← sj
14: γ ← cγ
15: end while
Output: ŝ

spectral projected gradient for `1 (SPGL1), and TST for random and discrete Fourier transform

(DFT) sensing operators are shown in Fig. 6.2.2, Fig. 6.2.3, and Fig. 6.2.4. As can be seen

CSCSA significantly improves upon the results of the aforementioned algorithms. Also, CSCSA

does not depend on any unknown additional parameters and shows very low computational

complexity due to available closed form solutions of subsequent minimization problems. In case

κ is assumed wrong, the reconstruction performance of normalized iterative hard thresholding

(NIHT) drops significantly as given in the comparison plot in Fig. 6.2.5. The curves in Fig. 6.2.5

indicate the 50 % success rate with respect to the Monte Carlo runs. Success is defined twofold
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(b) Result for random row DFT sensing operator.

Figure 6.2.2.: Phase transition of FISTA + CSCSA in SRE in dB.
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(b) Result for random row DFT sensing operator.

Figure 6.2.3.: Phase transition of SPGL1 + CSCSA in SRE in dB.
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Figure 6.2.4.: Phase transition of TST + CSCSA in SRE in dB.
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Figure 6.2.5.: Comparison of phase transitions.

as either SRE ≤ − SNR for a strict success definition and SRE ≤ − (SNR−5 dB) for a more lax

or less strict success definition. In addition the 25 % and 75 % success rate confidence intervals are

indicated as shaded areas. As can be seen, the CSCSA refinement improves the reconstruction

performance significantly.

6.3. Turbo Singular Value Thresholding

The turbo singular value thresholding (TSVT) algorithm was inspired by turbo affine rank min-

imization (TARM) presented in [57] which solves for affine rank minimization (ARM) problems

applying the turbo principle. This principle is a special form of the more general message passing

principle. Within TARM a hard thresholding (HT) operator is applied. Hence, TARM was reworked

to use a soft thresholding (ST) operator. After finalizing TSVT it came to our attention, that a sim-

ilar approach was formerly published in [55] called singular value thresholding-turbo-compressive

sensing (SVT-Turbo-CS) conducting the same reconstruction as TSVT. The contributions of this

work beyond SVT-Turbo-CS is the expansion into the complex case, adding a final purification

step to yield a clear low rank solution and we give a formula how to select the regularization

parameter λ.

Problem (4.1.2) is converted to a regularized relaxed convex optimization problem

L̂ = arg min
L

λ ‖L‖∗ + h (L) , (6.3.1)

where ‖L‖∗ is the nuclear norm of L and λ > 0 is some regularization parameter and h (L)

denotes the data fidelity term given by (4.1.3). Program (6.3.1) is classically solved by singular

value thresholding (SVT) but TSVT does it by iteratively updating

Ri = Li−1 − µ∇Lh (Li−1)

Zi = Sl,µλ (Ri)

Li = ci (Zi − αiRi)

(6.3.2)
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where µ is some step size, i is the iteration index, Sl,a (X) is the ST operator given by (4.2.3),

and αi and ci are required parameters explained later. The classical question now is, of course,

how to choose λ and thus which shrinkage a should be applied. Too much shrinkage results in a

large bias while too little results in a slow convergence rate. As such, an optimal constant λ does

not exists, rather λ would need to be adjusted in every iteration. Unfortunately, to the best of

the authors knowledge, a closed form solution to determine such an optimal λ is known to exists

only for the signal model X = L̃ + E with the entries of E being i. i. d. normally distributed

[60]. However, this does not apply here since the gradient update step as input to SL,a (·) is not

of such form. We therefore follow another approach and set the regularization parameter λ as

given in (4.2.4) to

λ = 2crΦ
−1
(

1− αr

2n

)√
Pn max (N1, N2), (6.3.3)

where cr > 1 is some constant, Φ is the cumulative density function (CDF) of N (0, 1), and

αr ∈ [0, 1] is some parameter. The resulting inevitable bias of a constant λ is circumvented by

a final purification step, which is described later. The required parameters {µ, αi, ci} are chosen

according to the turbo principle such that〈
Ri − L̃,Li−1 − L̃

〉
F

= 0 (6.3.4)〈
Ri − L̃,Li − L̃

〉
F

= 0, (6.3.5)

where 〈X,Y 〉F denotes the Frobenius product, and further that for a given Li−1,
∥∥Li − L̃∥∥2

F
is

minimized under (6.3.4) and (6.3.5) [57]. In the above, (6.3.4) ensures that the input and output

error of the gradient update step are uncorrelated. Equally, (6.3.5) ensures a decorrelation of the

input and output error of the denoising step. This strategy allows for an improved convergence

rate compared to classical gradient approaches. In order to fulfill (6.3.4) and (6.3.5), the true

solution L̃ is required to determine exact values for {µ, αi, ci}. Since L̃ is unknown, approximate

formulations for {µ, αi, ci} were derived in [57] for the real valued case. In the general case these

parameters are

µ =
n

M ‖A‖22
(6.3.6)

αi =

 1
ndiv (Sl,µλ (Ri)) ifX ∈ RN1×N2

1
2ndiv (Sl,µλ (Ri)) ifX ∈ CN1×N2

(6.3.7)

ci =
〈Zi − αiRi,Ri〉F
‖Zi − αiRi‖2F

. (6.3.8)

For the required divergence operator in (6.3.7), which is to be interpreted in the weak sense i. e.

it can fail to exist on negligible sets, a closed form solution exists [60]

div (Sl,a (X)) =

nmin∑
j=1

[I (σj > a) +Aj ] + 2B (6.3.9)
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for X ∈ RN1×N2 or

div (Sl,a (X)) =

nmin∑
j=1

[I (σj > a) +Aj ] + 4B (6.3.10)

for X ∈ CN1×N2 , when X is simple i. e. X has no repeated singular values and 0 otherwise. In

(6.3.9) and (6.3.10), I (·) denotes the indicator function and

Aj =


|N1 −N2|

(
1− a

σi

)
+

ifX ∈ RN1×N2

(2|N1 −N2|+ 1)
(

1− a
σi

)
+

ifX ∈ CN1×N2

B =

nmin∑
i 6=j,i,j=1

σi (σi − a)+

σ2
i − σ2

j

.

For more details on the derivation of {µ, αi, ci}, the reader is referred to [57]. The main loop

stops if an upper limit I is reached or if the relative change of the intermediate solutions is below

a predefined threshold ε.

As a last step, a purification step is conducted using a HT operator Hl,R (X) as defined in

(4.3.2). This purification step is an adjustment of TSVT to TARM, where in TARM the final output

is Zi and not Li. The purification step is motivated by the aforementioned bias of the soft

thresholding operator Sl,µλ (·) for constant non optimally selected λ. As an estimate for R, we

conveniently use rank (Zi). This final purification step allows for a clean low-rank solution with,

as shown in the simulation results, a slight improvement of the reconstruction performance. For

proofs of convergence, unique solutions etc. of TARM and thus TSVT the interested reader may

have a look into [57]. Putting all the above steps together, the final TSVT algorithm is listed in

Algorithm 6.3. The threshold selections given in Algorithm 6.3 were evaluated numerically and

prove to work well in every case.

Algorithm 6.3 The TSVT algorithm.
Input: A, y, λ, I
Initialization:

1: ε← min
(
10−4, 5 · 10−3λ

)
2: i← 0, d←∞, L0 ← 0, µ← n/(M ‖A‖22)

Body:
1: while d > ε and i < I do
2: i← i+ 1
3: Ri ← Li−1 − µ∇Lh (Li−1)
4: Zi ← Sl,µλ (Ri)

5: αi ←

{
1
ndiv (Sl,µλ (Ri)) ifX ∈ RN1×N2

1
2ndiv (Sl,µλ (Ri)) ifX ∈ CN1×N2

6: ci ← 〈Zi − αiRi,Ri〉F / ‖Zi − αiRi‖2F
7: Li ← ci (Zi − αiRi)
8: d← ‖Li −Li−1‖F / ‖Li−1‖F
9: end while

10: R← rank (Zi)
Output: L̂← Hl,R (Ri)
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(b) Result for random row DFT sensing operator.

Figure 6.3.1.: Phase transition of TSVT algorithm of squared reconstruction error (SRE) in dB.
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(a) Result of TARM for random sensing operator
A ∼ CN (0, 1) in case true rank was given.
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(b) Result of SVT for random sensing operator A ∼
CN (0, 1).

Figure 6.3.2.: Phase transition in SRE in dB.

In the following, simulation results are shown to illustrate the performance of TSVT. Phase

transition diagrams for random and discrete Fourier transform (DFT) sensing operators are shown

in Fig. 6.3.1. As a comparison the phase transition diagrams of TARM and SVT are shown in

Fig. 6.3.2 for random sensing operators. The results of SVT in Fig. 6.3.2b are shown to illustrate

the performance gain achieved by TSVT and TARM. As can be seen in Fig. 6.3.2a, the results for

TARM are very good, however, only if the true rank of L̃ is known. In case this parameter is

assumed wrong, the reconstruction performance drops significantly as given in the comparison

plot in Fig. 6.3.3. The curves in Fig. 6.3.3 indicate the 50 % success rate with respect to the Monte

Carlo runs. Success is defined twofold as either SRE ≤ − SNR for a strict success definition and

SRE ≤ − (SNR−5 dB) for a more lax or less strict success definition. In addition the 25 %

and 75 % success rate confidence intervals are indicated as shaded areas. For a reconstruction

problem with settings M/n = ρ/M = 0.5 we plot the per iteration errors in Fig. 6.3.4, where solid

lines refer to the intermediate SRE
∥∥Li−L̃∥∥2

F
/
∥∥L̃∥∥2

F
and dashed lines to the squared residual error∥∥A (Li)−y

∥∥2

2
/
∥∥y∥∥2

2
. The dotted line reflects

∥∥Zi− L̃∥∥2

F
/
∥∥L̃∥∥2

F
and as such illustrates the impact

of the aforementioned bias of Sµλ (·). In this simulations we equipped TARM with the true rank

of the unknown matrix L̃ and as can be seen it converges most rapid. SVT converges slowest as

its convergence speed O (1/i) dictates. The TSVT algorithm closely follows TARM despite its non

awareness of the rank of L̃. Interestingly, the final purification step at iteration 20 additionally
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Figure 6.3.4.: Convergence comparison of algorithms.

improves upon the results of TARM. In summary, TSVT is very easy to implement, shows a state-

of-the-art convergence rate, has low computational complexity as there are closed form solutions

available for all required parameters, and finally it does not require any unknown parameters, e. g.

as the true rank ρ of L̃, in general. Hence, it is well suited for practical applications.

6.4. Complex Smoothed Rank Approximation

Although the performance of turbo singular value thresholding (TSVT) is already good, we can

improve upon them in a similar manner as complex successive concave sparsity approximation

(CSCSA) does for turbo shrinkage-thresholding (TST) results. The complex smoothed rank approx-

imation (CSRA) algorithm does so by enforcing a stricter rank measure compared to the nuclear

norm used in (6.3.1). The CSRA algorithm is our extension based on the smoothed rank func-

tion (SRF) algorithm [61] and the smoothed rank approximation (SRA) approach in [62]. CSRA is

applicable to complex valued problems and to the contrary of [62] has a closed form solution to

a subsequent optimization problem, hence, reduced computational complexity. We give here an

idea of how the algorithm works while a thorough derivation of the algorithm can be found in

the Appendix A.5.

To enforce a stricter rank measure, a different replacement for the rank function is proposed.

Fraunhofer FHR 87|255



6. Boosting Performance of CS, ARM, and CRPCA Algorithms Fraunhofer FHR

The rank of L = UΣV H, where Σ = diag (σ), is defined as the number of non zero elements in

σ, where the vector σ =
[
σ1 · · · σnmin

]T
holds the singular values of L. We thus can define

the rank of L as

rank (L) =

nmin∑
i=1

[1− δ (σi (L))] , (6.4.1)

where σi (L) is the ith largest singular value of L and δ (x) is the Kronecker delta function. To

make (A.5.4) smooth we may apply the same idea as used for CSCSA

fγ (x) = 1− δ(x) ≈ 1− exp

(
−|x|
γ

)
.

As can be seen, γ determines how close the rank function is approximated. Thus we can define

rank (L) ≈
nmin∑
i=1

fγ (σi (L)) = F ′γ (σ (L)) = Fγ (L) , (6.4.2)

where σ (X) yields the singular values of X arranged as a vector. The optimization problem

(4.1.2) may now be relaxed to

min
L
Fγ (L) subject to h (L) ≤ ε2, (6.4.3)

where h (L) is the data fidelity term given by (4.1.3). The constrained optimization problem

(A.5.6) can be converted to an unconstrained one by use of regularization, which yields

min
L
λFγ (L) + h (L) , (6.4.4)

where λ again is some regularization parameter. In this approach, Fγ (L) is not concave nor

convex (since fγ (x) is defined also for negative numbers) and not smooth i. e. not differentiable

at the origin. Nevertheless, the iterative thresholding (IT) method can be utilized to conduct the

desired minimization by iteratively solving

L0i = Li − µ∇Lh (Li)

Li+1 = U0i diag
(
T (γ)
µλ (σ0i)

)
V H

0i

(6.4.5)

where L0i = U0i diag (σ0i)V
H

0i is the singular value decomposition (SVD) of the gradient update

step L0i and T (γ)
µλ is again a thresholding operator which is given in the Appendix by (A.5.24).

To the contrary of [62], we do not need a differenct of convex (D.C.) optimization strategy to

solve (A.5.7), rather we have the closed form solution T (γ)
µλγ

(·) to do so. Hence our solution

shows lower computational complexity. It shall be noted that, similar to CSCSA, (A.5.7) is not

convex any more. In order to avoid getting stuck in local minima the graduated non-convexity

(GNC) approach is applied. At first an initial solution L0 is obtained from a convex optimization

algorithm like TSVT and γ is chosen big enough such that (6.4.5) does not get stuck in a local

minima. After convergence, γ is subsequently reduced until a stopping criteria is met. Details on

how to choose γ are given in the Appendix A.5.

It is well known, that IT techniques have a low computational complexity, however, they suffer
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from low convergence rates on the order of O (1/i). To accelerate the proposed approach, a fast

iterative shrinkage-thresholding algorithm (FISTA) like technique is used which does not increase

computational complexity but boosts the convergence rate up to O (1/i2) [41]. Putting all the

above steps together, the final CSRA algorithm is listed in Algorithm 6.4. The algorithm consists

of two loops, an inner and an outer one. In the outer loop γ is decreased gradually according

to the GNC technique. The inner loop solves (6.4.5) by using a FISTA like technique. The loops

are aborted after a maximum number of iterations J and P or if the solutions change, measured

by the relative distance between consecutive solutions, drops below certain thresholds εo and εi.

The threshold selections given in Algorithm 6.4 were found numerically just like done in [58] and

prove to work well in every case. A more detailed explanation of the CSRA algorithm is given in

Algorithm 6.4 The CSRA algorithm.
Input: A, y, λ, J , P
Initialization:

1: c← (0, 0.5), µ← 0.99/ ‖A‖22
2: εo ← min

(
10−4, 5 · 10−3λ

)
3: εi ← min

(
10−3, 5 · 10−3λ

)
4: L̂← TSVT (A,y, λ, εi, J)
5: γ ←

∥∥L̂∥∥
2

Body:
1: p← 0, do ←∞
2: while do > εo and p < P do
3: p← p+ 1, j ← 0 , di ←∞
4: t1 ← 1, Z1 ← L̂, L0 ← L̂
5: while di > εi and j < J do
6: j ← j + 1

7: Lj ← T (γ)
µλ

(
Zj − µAH (A (Zj)− y)

)
8: tj+1 ← (1 +

√
1 + 4t2j )/2

9: Zj+1 ← Lj + (tj − 1) (Lj −Lj−1) /tj+1

10: di ← ‖Lj −Lj−1‖F / ‖Lj−1‖F
11: end while
12: do ←

∥∥Lj − L̂∥∥F
/
∥∥L̂∥∥

F

13: L̂← Lj
14: γ ← cγ
15: end while
Output: L̂

the Appendix A.5.

Simulation results for random and discrete Fourier transform (DFT) sensing operators are shown

in Fig. 6.4.1. As can be seen, since TSVT already achieves a high reconstruction performance, the

additional gain of CSRA is not as dramatic as in the compressive sensing (CS) counterpart CSCSA.

Nevertheless, especially for DFT sensing operators, CSRA helps to boost the reconstruction perfor-

mance. A bigger impact is achieved for compressed robust principal component analysis (CRPCA)

where CSRA significantly boosts the reconstruction performance as shown in Section 6.6. In

summary, CSRA in combination with TSVT is very easy to implement, shows a state-of-the-art

convergence rate and reconstruction performance, has low computational complexity as there
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(a) Result for random sensing operator A ∼
CN (0, 1).
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(b) Result for random row DFT sensing operator.

Figure 6.4.1.: Phase transition of TSVT + CSRA in squared reconstruction error (SRE) in dB.

are closed form solutions available for all required parameters and subsequent optimization prob-

lems, and finally both do not require any unknown parameters in general. Hence, they are well

suited for practical applications.

6.5. Bi-Factored Gradient Descent

The bi-factored gradient descent (BFGD) algorithm tries to find a solution to (4.1.2) by solving the

equivalent optimization problem

L̂ = arg min
L

h subject to rank (L) ≤ R, (6.5.1)

where R is a chosen constant [43]. Instead of using a hard threshold approach like singular

value projection (SVP), the idea in BFGD is to factorize the low-rank matrix as L = UV H with

U ∈ CN1×R, V ∈ CN2×R. Program (6.5.1) may then be solved by minimizing

F (U ,V ) = h
(
UV H

)
+ λ

∥∥UHU − V HV
∥∥2

F
. (6.5.2)

The second term in (6.5.2) is necessary in order to prevent U and V obtaining large condition

numbers which is required by the BFGD algorithm to ensure convergence. Program (6.5.2) can

be solved by an alternating minimization scheme as [43]

Ui+1 = Ui − µU∇UF (Ui,Vi)

Vi+1 = Vi − µV∇V F (Ui,Vi) ,

where µU and µV denote some step sizes. The BFGD algorithm needs initial solutions U0 and V0

which are sufficiently close to the true solution. One possibility to obtain those is to conduct a

few iterations J of the turbo singular value thresholding (TSVT) algorithm. Of particular interest is

the question of how to choose the step sizes µU and µV . The existence of an optimal step width

was shown in [43, 63, 53, 64], however, no equations based on parameters known in practice are

given. Hence, we came up with a new solution for this particular step size determination prob-

lem, for which a paper was submitted to EUSIPCO 2020 [44] and is given in the Appendix A.6 by
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(A.6.62) and (A.6.63). The phase transition results of BFGD depend on the initial solution deliv-

ered and thus on the algorithm creating it as BFGD delivers a refined solution. The benefit over

the remaining algorithms is its lower computational burden since singular value decompositions

(SVDs) are omitted. Putting all the above steps together, the final BFGD algorithm is listed in

Algorithm 6.5. The threshold selections given in Algorithm 6.5 were evaluated numerically and

prove to work well in every case.

Algorithm 6.5 The BFGD algorithm.
Input: A, y, λ, I, J
Initialization:

1: ε← min
(
10−4, 5 · 10−3λ

)
2: L̂0 ← TSVT (A,y, λ, ε, J)

3: U ′0,Σ′0,V ′0 ← SVD
(
L̂0

)
4: U0 ← U ′0

√
Σ′0

5: V 0 ← V ′0
√

Σ′0
Body:

1: i← 0, d←∞
2: while d > ε and t < T do
3: i← t+ 1
4: µU ←(A.6.62)
5: µV ←(A.6.63)
6: U i ← Ui − µU∇UF (Ui,Vi)
7: Vi ← Vi − µV∇V F (Ui,Vi)

8: d←
∥∥∥U iV

H
i − L̂

∥∥∥
F
/
∥∥∥L̂∥∥∥

F

9: L̂← U iV
H
i

10: end while
Output: L̂

6.6. Turbo Compressed Robust Principle Component Analysis

The turbo compressed robust principal component analysis (TCRPCA) algorithm is inspired by the

turbo algorithm presented in [56]. For TCRPCA, all of the aforementioned reconstruction algo-

rithms for compressive sensing (CS) and affine rank minimization (ARM) problems are combined

together. To the contrary of the turbo algorithms presented in [56], we henceforth only apply

soft thresholding (ST) operators and additionally improve the reconstruction results by applying

complex successive concave sparsity approximation (CSCSA) and complex smoothed rank approx-

imation (CSRA) refinements.

Following the graduated non-convexity (GNC) approach described in Section 6.2, the com-

pressed robust principal component analysis (CRPCA) problem given by (5.1.2)

min
S,L

λs ‖S‖0 + rank (L) subject to h(S,L) ≤ ε2

with

h(S,L) = ‖A (S +L)− y‖22
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is in a first step relaxed to a convex problem as

Ŝ0, L̂0 = arg min
S,L

λs ‖S‖1 + λl ‖L‖∗ + h(S,L), (6.6.1)

which is solved via a combination of turbo shrinkage-thresholding (TST) and turbo singular value

thresholding (TSVT) by iteratively updating

Rs,i = Si−1 − µs∇Sh (Si−1,Li−1)

Zs,i = Ss,µsλs (Rs,i)

Si = Qκs (cs,i (Zs,i − αs,iRs,i))

Rl,i = Li−1 − µl∇Lh (Si−1,Li−1)

Zl,i = Sl,µlλl (Rl,i)

Li = Pϕl (cl,i (Zl,i − αl,iRl,i)) ,

where the required parameters µs, λs, cs,i, and αs,i are determined as for the TST algorithm ex-

plained in Section 6.1 and µl, λl, cl,i, and αl,i as for the TSVT algorithm explained in Section 6.3.

The projection parameters κs ∈ (0, 1) and ϕl are explained in Chapter 5, where for κs a reason-

able guess is required and ϕl might be chosen as in (5.2.10). According to numerical simulations,

κs = 1/4 worked well, however, this establishes an upper bound on the permitted maximum

number of sparse entries! Finally it shall be mentioned, that the projections Qκs and Pϕl may

be applied only on the first few, e. g. 10, iterations. The intermediate results Si and Li then

lie in a surrounding of a diffuse sparse and low rank solution and subsequent iterations won’t

need any further “guidance” by the projection operators. This also circumvents the problem of

not knowing the optimal parameters κs and ϕl. Once a suitable convex solution was obtained, a

refinement is conducted by solving

Ŝ, L̂ = arg min
S,L

λsF0,γs (S) + λlFr,γl (L) + h(S,L), (6.6.2)

where F0,γs (·) is the `0 approximation function (6.2.4) and Fr,γl (·) is the rank approximation

function (6.4.2). Program (6.6.2) is solved via a combination of CSCSA and CSRA by iteratively

updating

Si = T (γs)
0,µsλs,γs

(Zs,i − µs∇Sh (Zs,i,Zl,i))

Li = T (γl)
r,µlλl

(Zl,i − µl∇Lh (Zs,i,Zl,i))

ti+1 =
1 +

√
1 + 4t2i

2

Zs,i+1 = Si +
(ti − 1)

ti+1
(Si − Si−1)

Zl,i+1 = Li +
(ti − 1)

ti+1
(Li −Li−1) ,
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where T (a)
0,b (·) is the thresholding operator as defined in CSCSA in Section 6.2 and T (a)

r,b (·) is

the thresholding operator as defined in CSRA in Section 6.4. The required parameters γs and

γl are also the same as defined in CSCSA and CSRA. Putting all the above steps together, the

final TCRPCA algorithm is listed in Algorithm 6.6 which delivers a solution to program (6.6.1) and

Algorithm 6.7 which solves for program (6.6.2).

Algorithm 6.6 Part 1 of TCRPCA algorithm delivering convex solution.
Input: A, y, λs, λl, κs, ϕl, I
Initialization:

1: εs ← min
(
10−4, 5 · 10−3λs

)
, εl ← min

(
10−4, 5 · 10−3λl

)
2: S0 ← 0, L0 ← 0, µs ← n/(M ‖A‖22), µl ← n/(M ‖A‖22)
3: i← 0, ds ←∞, dl ←∞

Body:
1: while (ds > ε or dl > ε) and i < I do
2: i← i+ 1
3: Rs,i ← Si−1 − µs∇Sh (Si−1,Li−1)
4: Zs,i ← Ss,µsλs (Rs,i)
5: αs,i ←(6.1.5)
6: cs,i ←(6.1.6)
7: Si ← Qκs (cs,i (Zs,i − αs,iRs,i))
8: Rl,i ← Li−1 − µl∇Lh (Si−1,Li−1)
9: Zl,i ← Sl,µlλl (Rl,i)

10: αl,i ←(6.3.7)
11: cl,i ←(6.3.8)
12: Li ← Pϕl (cl,i (Zl,i − αl,iRl,i))
13: ds ← ‖Si − Si−1‖F / ‖Si−1‖F
14: dl ← ‖Li −Li−1‖F / ‖Li−1‖F
15: end while
16: K ← ‖Zs,i‖0
17: R← rank (Zl,i)

Output: Ŝ ← Hs,K (Rs,i)

Output: L̂← Hl,R (Rl,i)

In the following, simulation results are shown to illustrate the performance of TCRPCA for a

discrete Fourier transform (DFT) sensing operator. A thorough comparison of TCRPCA to alterna-

tives from the literature is beyond the scope of this work. The reader may refer to extensive review

papers e. g. [65]. The simulation parameters and metrics are the same as for the aforementioned

algorithms. The phase transition plots now emerge to be of 3D nature since sparsity and low

rank measures need to be varied. As can be seen from Fig. 6.6.1, the reconstruction performance

is improved by applying the refinement (6.6.2). To see how big the successful reconstruction

volume is, the phase transition plane running along the 3 dB margin of the SRE was determined

and is shown in Fig. 6.6.2. In general the reconstruction success depends mainly on the sparsity

ratio. It was found from simulations, that in order to correctly reconstruct the special case of

S̃ = 0, the allowed sparsity ratio per row and column needs to be limited to κs ≤ 0.25. In case

of a higher allowed ratio, S̃ = 0 was not found any more. Consequently, only reconstruction

problems showing a sparsity ratio of κ/M ≤ 0.25 can be reconstructed successfully. Nevertheless,

part 1 of the TCRPCA algorithm achieves this border. Part 2 of TCRPCA does not apply the spar-
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Algorithm 6.7 Part 2 of TCRPCA algorithm delivering refined solution.

Input: A, y, λs, λl, Ŝ0, L̂0, I, J
Initialization:

1: c← (0, 0.5), µs ← 0.99/ ‖A‖22, µl ← 0.99/ ‖A‖22
2: εsi ← min

(
10−3, 5 · 10−3λs

)
, εso ← min

(
10−4, 5 · 10−3λs

)
3: εli ← min

(
10−3, 5 · 10−3λl

)
, εlo ← min

(
10−4, 5 · 10−3λl

)
4: γs ← max(|Ŝ|), γl ←

∥∥L̂∥∥
2

Body:
1: i← 0, dso ←∞, dlo ←∞
2: while (dso > εo or dlo > εo) and i < I do
3: i← i+ 1, j ← 0 , dsi ←∞, dli ←∞
4: t1 ← 1, Zs,1 ← Ŝ, Zl,1 ← L̂, S0 ← Ŝ, L0 ← L̂
5: while (dsi > εi or dli > εi) and j < J do
6: j ← j + 1

7: Sj ← T (γs)
0,µsλs,γs

(Zs,j − µs∇Sh (Zs,j ,Zl,j))

8: Lj ← T (γl)
r,µlλl

(Zl,j − µl∇Lh (Zs,j ,Zl,j))

9: tj+1 ← (1 +
√

1 + 4t2j )/2

10: Zs,j+1 ← Sj + (tj − 1) (Sj − Sj−1) /tj+1

11: Zl,j+1 ← Lj + (tj − 1) (Lj −Lj−1) /tj+1

12: dsi ← ‖Sj − Sj−1‖F / ‖Sj−1‖F
13: dli ← ‖Lj −Lj−1‖F / ‖Lj−1‖F
14: end while
15: dso ←

∥∥Sj − Ŝ∥∥F
/
∥∥Ŝ∥∥

F

16: dlo ←
∥∥Lj − L̂∥∥F

/
∥∥L̂∥∥

F

17: Ŝ ← Sj , L̂← Lj
18: γs ← cγs, γl ← cγl
19: end while
Output: Ŝ,L̂
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(d) Final phase transition plot of L̂.

Figure 6.6.1.: Phase transition plots of TCRPCA in SRE in dB.

sity ratio operator and is able to extend the region of successful reconstructions for sparsity ratios
κ/M > 0.25. The fact that only problems of low sparsity ratio can be reconstructed successfully is

also known from other CRPCA algorithms [53]. In the same manner as for the sparsity ratio κs,

also the infinity norm thresholding operator (5.2.9) was needed to be limited to cϕ ≤ 0.5 in order

to successfully recover the special case of L̃ = 0. This incurs likewise restrictions regarding the

possible reconstruction performance of the TCRPCA algorithm. If the special cases S̃ = 0 and/or

L̃ = 0 can be excluded, the region of successful reconstructions can be extended by some extend

by relaxing κs and cϕ, respectively. How to treat the special cases of either S̃ = 0 or L̃ = 0 in

a satisfactory manner, i. e. to relax κs and cϕ, is still an open question. The obvious approach of

conducting a CS, an ARM, and an CRPCA reconstruction separately and comparing the resulting

residual errors to determine if either S̃ = 0 or L̃ = 0 does not work. Especially in case of low
n/M the CRPCA approach always yields the lowest residual error regardless if the scene is strictly

sparse or low rank due to its larger degree of freedom. In summary, TCRPCA combines the ad-

vantages of all aforementioned CS and ARM algorithms. In general only problems of low sparsity

ratio can be reconstructed due to the required rank-sparsity incoherence condition. Nevertheless,

TCRPCA achieves a high value of κ/M ≤ 0.25 compared to other CRPCA algorithms e. g. [53].
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Figure 6.6.2.: 3 dB margin phase transition planes of TCRPCA.

96|255 Fraunhofer FHR



7. Application of CS and ARM Algorithms to
GMTI

In this chapter we illustrate the application of compressive sensing (CS) and affine rank minimiza-

tion (ARM) algorithms to the ground moving target indication (GMTI) problem. At first, we show

where the low-rank property of GMTI signals comes from and illustrate how to exploit it which

leads to an auto-clutter focus (ACF) algorithm. Once the low-rank was established, we show the

separation of moving from non-moving targets via turbo compressed robust principal component

analysis (TCRPCA).

7.1. On the Low-Rank Nature of GMTI Measurements

In this section a different approach compared to the classical space-time adaptive processing

(STAP) idea is presented. The fundamental idea is the observation, that in case of a multi channel

array, every channel observes the very same clutter scenario. It is therefore possible to form a

low-rank matrix from such clutter measurements. This low-rank property can be exploited to es-

timate certain measurement parameters as discussed in Section 7.2, e. g. the clutter ridge slope

β, the velocity misalignment angle ϕm, etc., or to separate the low-rank clutter measurements

from moving targets which is discussed in Section 7.3. In this section, the two low-rank property

natures of clutter measurements are revealed and practical implications regarding limited obser-

vation times etc. are discussed1. Finally, the low-rank properties of various clutter scenarios are

demonstrated by use of simulated examples.

7.1.1. The Primary Low-Rank Form

In Section 2.2, it was shown that measurements from a static clutter scene are of the form

Yc (β, ϕm) =

d̄ˆ

−d̄

xc (ū)G
(
ū, f̄Dc (ū;β, ϕm)

)
dū, (7.1.1)

where xc (ū) denotes a clutter amplitude in normalized directional cosine direction ū and

G
(
ū, f̄Dc (ū;β, ϕm)

)
the space time signal matrix defined in (2.1.101) corresponding to the

emerging clutter Doppler frequency f̄Dc (ū;β, ϕm). This measurement process is a linear map

from the radar scene spanned by ū and f̄D into the measurement scene spanned by the spatial

1In general there are multiple approaches possible to formulate or introduce a low rank matrix in the signal model. A
popular one is the lifting technique which models the scene by use of dyadic products. This approach was studied,
however, it was found to not be optimal for the subsequent separation of moving from non-moving targets by use
of compressed robust principal component analysis (CRPCA).

Fraunhofer FHR 97|255



7. Application of CS and ARM Algorithms to GMTI Fraunhofer FHR

and temporal measurement dimensions d′ = nrxd̄ and t′ = nptp. Some more insights can be

found by looking at the scalar, non normalized, and continuous version of (7.1.1)

yc(d
′, t′;β, ϕm) =

1ˆ

−1

xc (u) ej2πfDc(u;β,ϕm)t′ej2πud′du (7.1.2)

= F−1
u

{
xc (u) ej2πfDc(u;β,ϕm)t′

}
,

which is an inverse Fourier transform (IFT) with respect to u denoted by F−1
u . This form can be

further recast by applying a Fourier transform (FT) followed by an IFT with respect to the emerging

Doppler frequency fD to

yc(d
′, t′;β, ϕm) =

∞̂

−∞

∞̂

−∞

1ˆ

−1

xc (u) ej2πfDc(u;β,ϕm)t′ej2πud′e−j2πfDt
′
ej2πfDt

′
dudt′dfD

=

∞̂

−∞

1ˆ

−1

xc (u) δ (fD − fDc (u;β, ϕm)) ej2πud′ej2πfDt
′
dudfD

= F−1
fD
◦ F−1

u︸ ︷︷ ︸
map to meas. dom.

{ xc (u)︸ ︷︷ ︸
static clutter

δ (fD − fDc (u;β, ϕm))︸ ︷︷ ︸
influence of moving radar

}, (7.1.3)

which now is of the form of a two dimensional IFT with respect to u and fD, where ◦ de-

notes the composition of functions as g ◦ h(x) = g(h(x)). Another key observation is, that

the measurements are of correlated nature as can be seen from the auto correlation function of

yc(d
′, t′;β, ϕm). The auto correlation function was introduced in Section 2.2 and in the continu-

ous case is

Rc

(
4d′,4t′;β, ϕm

)
=

1ˆ

−1

Pc (u) ej2πu4d′+j2πfDc(u;β,ϕm)4t′du, (7.1.4)

where (2.2.18) was used. As can be seen, measurements displaced by 4d′ and 4t′ for which

u4d′ + fDc (u;β, ϕm)4t′ = 0 holds are maximally correlated. In summary, the aforementioned

observations permit the following useful conclusions which are illustrated in Fig. 7.1.1:

• The static clutter scene xc (u) is subject to an angle dependent Doppler shift caused by the

moving radar. This creates the clutter scene observed by the radar

xsh
c (u, fD) = xc (u) δ (fD − fDc (u;β, ϕm)) , (7.1.5)

which contains the famous clutter ridge known from all STAP textbooks e. g. [4, 1, 17] etc.

• The shifted clutter scene is mapped to the measurement domain via a two dimensional IFT

yc(d
′, t′;β, ϕm) = F−1

fD
◦ F−1

u

{
xsh

c (u, fD)
}

• The measurements yc are highly correlated along displacements for which

u4d′ + fDc (u;β, ϕm)4t′ = 0 holds.
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Figure 7.1.1.: Illustration of the measurement process.

The two dimensional IFT in (7.1.3) naturally coincides with the general measurement signal for-

mulation of a multi-channel radar system presented in Section 2.1.4. Hence, the formulation

given by (2.1.114) can be directly used to obtain the discretized measurement or sensing model

from (7.1.3), which yields

Yc (β, ϕm) = AXsh
c B

T ∈ CNrx×Np (7.1.6)

where

Xsh
c =

[
xsh

c (nu/Nu, nD/ND)
]
nu∈ΩNu ,nD∈ΩND

∈ CNu×ND

denotes the discretized shifted clutter scene with the bin indices nu and nD defined in (2.1.111)

and (2.1.112) and A ∈ CNrx×Nu and B ∈ CNp×ND the spatial and temporal steering matrices

given by (2.1.115) and (2.1.116). In case of a uniform linear array (ULA) antenna and equidistant

pulses, A and B are inverse discrete Fourier transform (IDFT) matrices. For convenient illustration

purposes presented in the following, the transformation from the radar scene into the measure-

ment domain is shortly denoted by the measurement operator B : CNu×ND → CNrx×Np as

Yc (β, ϕm) = B
(
Xsh

c

)
. (7.1.7)

The shifted clutter scene is modeled as

Xsh
c = Df (Xc;β, ϕm), (7.1.8)

whereDf : CNu×ND → CNu×ND is a sub sample shift operator realizing the shift fD−fDc (u;β, ϕm)

from (7.1.3) and Xc denotes the so-called primal, i. e. Doppler focused, low rank form of the

clutter. The shift operator is modeled using the modified Fourier shift identity2

Df (X;β, ϕm) =

(
F4(β, ϕm)�

(
X
(
F−1
f

)T
))

FT
f (7.1.9)

2This allows for optimizations later on.
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Discretized Primal Low Rank Form

Xc

Doppler Focused Clutter Measurements

Y fc,fD
c
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Yc

Af

Df
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Figure 7.1.2.: Illustration of the discretized primal low rank form sensing model.

with Ff ∈ CND×ND denoting a discrete Fourier transform (DFT) matrix resulting in a FT of the f̄D

dimension, � the Hadamard product, and

F4(β, ϕm) = exp
(
−j2πnf̄D

f̄T
4(β, ϕm)

)
(7.1.10)

the Fourier shift matrix with

nf̄D
= [0, 1, . . . , ND − 1]T

f̄4(β, ϕm) =
[
f̄Dc (i/Nu;β, ϕm)

]Nu/2−1

i=−Nu/2
.

(7.1.11)

The corresponding Doppler shifts f̄Dc (ū;β, ϕm) are given by (2.2.7). In summary, the following

sensing model can be formulated by combining (7.1.6) and (7.1.8) to

Yc (β, ϕm) = B ◦ Df (Xc;β, ϕm)

= Af (Xc;β, ϕm). (7.1.12)

Figure 7.1.2 shows an overview of the introduced model, where the “Doppler focused” clut-

ter measurements Y fc,fD
c , which correspond to measurements taken from Xc directly, allow for

valuable insights explained further below. As can be readily seen from Fig. 7.1.1, the original

discretized clutter scene Xc is supposed to be a low rank matrix formed by a single column or

in other words all clutter contributions are supposed to be located at zero Doppler. Within the

scope of this work, this is termed as the primary low-rank form of clutter measurements as it is

the physically inspired form. The rank of the clutter scene observed by the radar is increased due

to the motion induced Doppler shift. Nevertheless, this process is reversible in case the required

parameters β and ϕm are available. These, in general, may be unknown or partially known from

inertial measurement unit (IMU) measurements. As a matter of fact, however, it is possible to

estimate these parameters from Yc directly, exploiting the aforementioned effect of the Doppler

shift on the rank of Xsh
c . This is discussed in more detail in the following Section 7.2.

The sensing model (7.1.12) reveals one important practical limitation which is not considered

in the continuous model yc(d
′, t′;β, ϕm): it offers only a limited spatial aperture and sampling

time. This gives rise to the following implications:

• Leakage of the clutter signal due to limited angular and Doppler resolution

• Incomplete measurements
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t′

Measurements yc(d
′, t′)

CPI

Missing Measurements

Incomplete Measurements

Complete Measurements

d′

Figure 7.1.3.: Illustration of incomplete measurements due to limited CPI interval.

The limited angular and Doppler resolution causes side lobes in the angular and Doppler dimen-

sions and as such the emerging clutter leakage potentially covers weak moving targets. This

effect is circumvented by applying the techniques presented in Section 7.3. The effect of in-

complete measurements is more severe but can be handled efficiently as will be discussed in

the following sections. Incomplete measurements are all measurements which are cut off at the

beginning and at the end of a coherent processing interval (CPI). This is illustrated in Fig. 7.1.3.

Since a Fourier transformation assumes periodic signals, the temporal windowing due to the time

limited CPI gives rise to a more densely populated spectrum3 which corresponds to additional

clutter leakage. Furthermore, the incomplete measurements also increase the minimum achiev-

able rank of Xc which can be found from Yc. This is disadvantageous for the estimation of the

parameters β and ϕm, as well as the separation of the low rank clutter from moving targets. To

further investigate on this effect, consider how the clutter of the primal low rank form looks in

the measurement domain as

Y fc,fD
c = B (Xc) ,

with the primal low rank form found from the observed clutter measurements as

Xc = A−1
f (Yc;β, ϕm).

The result of this inverse sensing operation, Y fc,fD
c , is termed “Doppler focused” clutter mea-

surements as the clutter ridge energy is focused onto f̄D = 0. An illustration of the focused

measurements is shown in Fig. 7.1.44. At first note, that the measurement operator B con-

sists of DFT matrices and as such is a unitary operator. The singular values of a matrix, and its

rank respectively, are invariant with respect to unitary operations, hence, the rank of W and

B (W ) are identical. We therefore can make statements regarding the low rank properties in

both domains, the measurement as well as the radar scene domain. At this point, looking at the

measurement domain is beneficial as will be seen shortly. Furthermore, note that a shift in the

Doppler dimension in the radar scene domain corresponds to a shift in the spatial dimension in

3This corresponds to the FT of a step function.
4Strictly speaking, the illustrations in Fig. 7.1.4 are matrices to the contrary of the illustrations in Fig. 7.1.1 and

Fig. 7.1.3, which correspond to the continuous measurement model. For sake of clarity, however, the column and
row lines are omitted.
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np

Clutter Measurements Yc Doppler Focused Clutter Measurements Y fc,fD
c

nrx

Compl. MeasurementsIncompl. Measurements
Subsample shift 4d′ corresponding to 4fDc(u)

Contained low rank matrices

np

nrx

Discontinuation Border

Figure 7.1.4.: Doppler focused clutter measurements Y fc,fD
c found from observed clutter mea-

surements Yc.

the measurement domain5, which is indicated by the arrows in the left picture of Fig. 7.1.4. The

result after a perfect shift back is illustrated on the right side of Fig. 7.1.4, which consists of three

parts, two triangular areas containing the incomplete measurements and a central area holding

all correlated complete measurements. The triangular forms emerge due to the cyclic nature of

the Fourier shift operator Df . As can be seen, the Doppler focused measurement matrix Y fc,fD
c

is not a low rank matrix due to the discontinuation border. Low rank matrices are available in

the center part only and unfortunately only a small portion of the total measurements NrxNp is

usable to form those. The only possibility to increase the size of the available low rank matrix is

to increase the number of channels Nrx, which in case of a radar system is inconvenient. A more

advantages form offers the dual low-rank form of clutter measurements, which is presented in

the following section.

7.1.2. The Dual Low-Rank Form

The primal low-rank form discussed in the previous section emerges from the physical interpreta-

tion of a non moving radar, which corresponds to all clutter components located at zero Doppler.

Nevertheless, it is also possible to form a low-rank matrix from the shifted clutter scene Xsh
c by

relocating all clutter components at zero angle i. e. ū = 0 which may now be denoted as Xu
c to

distinguish it from the primary form Xc. This is illustrated in Fig. 7.1.5, where the shift amount

in ū for given β and ϕm is

ūc(f̄D;β, ϕm) = − f̄D

β
cos(ϕm) +

√
d̄2 sin2 (ϑ)− f̄D

2/β2 sin (ϕm) for
∣∣f̄D

∣∣ ≤ d̄ sin (ϑ)β,

(7.1.13)

for which (2.2.7) was used. Within (7.1.13), ϑ denotes the polar angle to the current range gate

under test as shown in Fig. 2.1.2. In case of a flat earth condition, which is assumed in this

work, ϑ renders to be a constant. For all simulations to follow, ϑ is assumed to be known and

set to ϑ = π/2 rad which is a choice also used in [1]. The area f̄D > d̄ sin (ϑ)β is free of clutter,

5Recall, that a shift in Doppler in the radar scene relocates all Doppler components to zero, which in turn corresponds
to a non moving radar. For a non moving radar and a static clutter scene, all antenna channels obtain constant
measurements from pulse to pulse. Hence, the measurements align along the channel indices.
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D
)
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Figure 7.1.5.: Primal and dual low-rank clutter illustration.

however, this case does rarely occur in practice. In order to extend (7.1.13) to be defined for

f̄D ∈ [−1/2, 1/2), it is modified to

ūc(f̄D;β, ϕm) = − f̄D

β
cos(ϕm) +

√∣∣d̄2 sin2 (ϑ)− f̄D
2/β2

∣∣ sin (ϕm) . (7.1.14)

This form is advantageous for gradient descent algorithms compared to (7.1.13). The shifted

clutter scene is obtained from the discretized dual low rank form as

Xsh
c = Du(Xu

c ;β, ϕm), (7.1.15)

whereDu : CNu×ND → CNu×ND is a sub sample shift operator realizing the shift u−uc (fD;β, ϕm).

It is modeled using the modified Fourier shift identity6

Du(X;β, ϕm) = Fu
(
U4(β, ϕm)�

(
F−1
u X

))
(7.1.16)

with Fu denoting a DFT matrix resulting in a FT of the ū dimension and

U4(β, ϕm) = exp
(
−j2πnūū

T
4(β, ϕm)

)
(7.1.17)

the Fourier shift matrix with

nū = [0, 1, . . . , Nu − 1]T

ū4(β, ϕm) = [ūc (i/ND;β, ϕm)]
ND/2−1
i=−ND/2

.
(7.1.18)

The dual form sensing operator yielding the clutter measurement samples is

Yc (β, ϕm) = B ◦ Du(Xu
c ;β, ϕm)

= Au(Xu
c ;β, ϕm), (7.1.19)

where (7.1.7) and (7.1.15) was used. Figure 7.1.6 shows an overview of the dual low rank form

model. Again the “angle focused” clutter measurements

Y fc,u
c = B (Xu

c ) (7.1.20)

6This allows for optimizations later on.

Fraunhofer FHR 103|255



7. Application of CS and ARM Algorithms to GMTI Fraunhofer FHR
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Figure 7.1.6.: Illustration of the discretized primal low rank form sensing model.

np

Clutter Measurements Yc Angle Focused Clutter Measurements Y fc,u
c
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Compl. MeasurementsIncompl. Measurements
Subsample shift 4t′ corresponding to 4u(fD)

Contained low rank matrix

np

nrx

Discontinuation Border

Figure 7.1.7.: Angle focused clutter measurements Y fc,u
c found from observed clutter measure-

ments Yc.

with the dual low rank form found from the observed clutter measurements as

Xu
c = A−1

u (Yc;β, ϕm)

yield valuable insight regarding the effect of incomplete measurements. This is illustrated in

Fig. 7.1.7. A shift in the angular dimension in the radar scene domain corresponds to a shift in

the temporal dimension in the measurement domain. As a consequence, the size of the low-

rank matrix contained in Y fc,u
c can be increased by increasing the number of pulses Np

7, which

is convenient for pulsed radar systems. Thus, the dual low-rank form is beneficial in terms of

sample efficiency and is therefore used in this work. The primary low-rank form is beneficial in

case of many available antennas e. g. in sonar applications. The total length of the incomplete

measurements in the angle focused measurements Y fc,u
c given in number of pulses ntr equals

one aperture length

Nrxd = vp
ntr

fp

and as such the length is approximately

ntr(β) ' 2

⌊
Nrx

β

⌋
, (7.1.21)

7Increasing the number of pulses increases the number of complete measurements.
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where (2.2.5) was used. By use of this length, a cutting operator C : CNrx×Np → CNrx×Np can be

defined as

C(Y , β) = Z(β)� Y , (7.1.22)

where

Z(β) =
[
0Nrx×ntr(β)/21Nrx×(Np−ntr)0Nrx×ntr(β)/2

]
is a matrix of zero and one block matrices. Applying the cutting operator onto the back shifted

measurement as

Y fcct,u
c = C

(
Y fc,u

c , β
)

(7.1.23)

sets all non complete measurements within Y fc,u
c to zero, yielding Y fcct,u

c to be a matrix with the

same singular values (and thus rank) as of the contained low rank matrix illustrated in Fig. 7.1.7.

Until this point, the low-rank forms of the static clutter measurements were presented from

a theoretical point of view. The following section illustrates the dual low-rank form for various

simulated clutter scenarios in order to validate the sensing operator formulation (7.1.19).

7.1.3. Evaluation of the Dual Low-Rank Form by Use of Simulations

The theoretic introduction in the previous section may suggest, at a first glance, that the dual low-

rank form after excluding incomplete measurements is always a rank one matrix. Unfortunately,

this is not the case due to the discretization in the measurement domain. For this to be true, fully

correlated measurements are necessary as will be shown in the following. The continuous auto

correlation function (7.1.4) reveals perfectly correlated measurements to exist if

u4d′ + fDc (u;β, ϕm)4t′ = 0

holds, which for continuous spatial and temporal displacements 4d′ and 4t′ is always possible.

In the discretized (and here normalized) version, this condition becomes

ūñrx + f̄Dc (ū;β, ϕm) ñp = 0, (7.1.24)

where ñrx ∈ N and ñp ∈ N denote the channel and pulse differences. Condition (7.1.24) is a

Diophantine equation which, depending on the parameters β and ϕm, may not allow for any

non-trivial solution else than ñrx = ñp = 0. Hence the clutter measurements may not be fully,

but nevertheless strongly correlated. The correlation between the measurement samples is given

by (2.2.18) as

Rc (ñrx, ñp;β, ϕm) =

d̄ˆ

−d̄

Pc (ū) ej2πūñrx+j2πf̄Dc(ū;β,ϕm)ñpdū,

where the clutter distribution was assumed to be independent, i. e. the clutter power is Pc (ū) =

E
{
|xc (ū)|2

}
. As an example, in case of no velocity misalignment and homogeneous clutter

distribution, the correlation has the closed form solution (2.2.22), which was

Rc (ñrx, ñp;β) = 2d̄Pc sinc
(
2d̄ (ñrx + βñp)

)
. (7.1.25)
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Level β ϕm Back-Attenuation ICM Remarks

1 N - - - DPCA condition, measurements fully correlated

2 R - - - measurements partially correlated

3 R 6= 0 - - velocity misalignment present

4 R 6= 0 6= 0 - reflections from the rear side of the radar present

5 R 6= 0 6= 0 6= 0 ICM further reduces measurement correlation

Table 7.1.1.: Levels of difficulties considered for GMTI simulations.

From this special case it is obvious to see that for different combinations of channels and pulses

a high correlation can be present e. g. in case8

2d̄ (ñrx + βñp) .
1

2
.

For not fully correlated samples it is not possible to find a mathematically strict low-rank matrix.

For strongly correlated samples, however, it is possible to find an accurate approximation or

effective low-rank matrix. Consider the noisy sensing operation derived from (7.1.19)

Yc (β, ϕm) = Au(Xu
c ;β, ϕm) +N , (7.1.26)

with the entries of N ∼ CN (0, Pn) i. i. d., where Pn denotes the noise power. The effective rank

of Xu
c may now be defined similar to (2.3.9) as the number of singular values σ (Xu

c ) which are

bigger than the maximum noise singular value σmax(N) = ‖N‖2

ρeff =

max(Nu,ND)∑
i=1

I (σi (Xu
c ) > σmax(N)) ,

where I(·) denotes the indicator function. In the following, this effective rank will be illustrated

for various clutter scenarios.

Within the realm of ground moving target indication (GMTI) various decorrelation effects are

known which in turn increase the minimum achievable effective rank9 of Xu
c from Yc. Exam-

ples of these decorrelation effects considered within this work are a non present displaced phase

center antenna (DPCA) condition i. e. β ∈ R, present velocity misalignment angle i. e. ϕm 6= 0,

reflections from the rear side of the radar denoted as back attenuation10, and internal clutter

motion (ICM). These effects individually and in combination complicate the successful detection

of moving targets. For their evaluation, certain “levels of difficulty”, as defined in Tab. 7.1.1, are

introduced in this work, combining the aforementioned effects in ascending order of severeness.

The considered effects are by no means exhaustive. Additional effects, subject to further investi-

gations, are e. g. impacts of non perfectly calibrated antennas, broad band decorrelation effects,

range walk decorrelation, etc. More information regarding these effects can be found in [1].

8In this case, the correlation would be sinc (1/2) ? 0.63.
9In the classical STAP theory, these decorrelation effects increase the rank of the covariance matrix, resulting in an

increased number of required training samples for its estimation.
10This effect may be negligible for side mounted arrays, for bottom mounted circular arrays, however, it is not.
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The following simulations show scenarios for the various levels of difficulty as defined in

Tab. 7.1.1 for a radar corresponding to the parameters shown in Tab. 1.0.1. Furthermore, a

broadside oriented ULA antenna with d = λc/2 element spacing was assumed. As such the nor-

malized Doppler frequency is f̄D ∈ [−1/2, 1/2) and the normalized direction cosine is ū ∈ [−1/2, 1/2).

Also, the clutter was assumed to be Rayleigh distributed. The low rank properties of the dual low

rank form are evaluated by the following procedure:

• For given parameters β and ϕm, clutter measurements Yc are simulated by use of (7.1.1)

• For a comparison with noise singular values a noise matrix N ∼ CN (0, 1) is simulated (but

not added to Yc)

• The properties of the low rank forms are evaluated by comparing the respective singular

values to the noise singular values in the order described in the former sections:

– the shifted clutter measurements observed from the radar Xsh
c = B−1 (Yc)

– the dual low rank form in the radar scene domain Xu
c = D−1

u (Xsh
c ;β, ϕm)

– the corresponding angle focused measurement Y fc,u
c = B (Xu

c )

– the cut angle-focused measurements Y fcct,u
c = C

(
Y fc,u

c , β
)

and

– the respective appearance in the radar scene domain Xct,u
c = B−1

(
Y fcct,u

c

)
.

Recall from Section 7.1.1, that B is a unitary operator and hence Y fc,u
c andXu

c , as well as Y fcct,u
c

and Xct,u
c , have the same singular values. Their respective appearances in the measurement

and radar scene domain are shown for illustrative purposes only. For the angle focus operations

D−1
u (Xsh

c ;β, ϕm), the parameters β and ϕm are assumed to be known. Later on, we attempt to

estimate these parameters during the clutter focus procedure, which is presented in Section 7.2.

Dual Low Rank Form for DPCA Condition The following example illustrates the dual low

rank form in case of a fulfilled DPCA condition for the specifically chosen parameters β = 1, and

ϕm = 0. Within this work, this is termed a level one difficulty as listed in Tab. 7.1.1. The DPCA

condition is depicted in Fig. 2.2.3, where preceding antenna phase centers are located at the

position of leading phase centers for subsequent pulses. In this case, the entries in Yc simplify to

yc,nrxnp =

d̄ˆ

−d̄

x (ū) ej2πū(nrx+np)dū,

which obviously gives identical samples for nrx + np = const. in case of static clutter11. Further-

more, the correlation of the samples is given by the closed form solution (7.1.25). In this case,

the Diophantine equation (7.1.24) allows for non-trivial solutions, hence, there exist channel and

pulse differences ñrx and ñp such that the correlation (7.1.25) yields a maximum. An illustration

of such fully correlated measurements is shown in Fig. 7.1.8. The achievable dual low rank form

for such a setting is depicted in Fig. 7.1.9. At first, notice the non low rank nature of the shifted

11Which means if the clutter does not change from pulse to pulse.
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Figure 7.1.8.: Measurement matrix Yc in case of DPCA condition.

clutter scene Xsh
c from Fig. 7.1.9a and the corresponding singular values in Fig. 7.1.9b. Due to

limited angular and Doppler resolution and the incomplete measurement phenomena described

in Section 7.1.1, strong clutter leakage is present. The singular values do not drop below the

noise singular values, hence,Xsh
c is of full effective rank. The dual low rank formXu

c and the cor-

responding singular values are shown in Fig. 7.1.9c and 7.1.9d. The clutter ridge is now focused

at ū = 0, however, the clutter leakage now shows a diagonal course caused by the circular shift

operation D−1
u . As a consequence, the clutter singular values in Fig. 7.1.9d show a more con-

centrated energy at the first singular vectors but due to the diagonal leakage course, the clutter

singular values do not drop below the noise singular values. The dual low rank form Xu
c there-

fore also has full effective rank. Nevertheless, Xu
c is more similar to a low rank matrix compared

to the shifted clutter scene Xsh
c . Figure 7.1.9e shows the dual low rank form Xu

c in the mea-

surement domain i. e. the angle focused clutter measurements Y fc,u
c . At first, notice the three

areas: two triangular areas containing the incomplete measurements and a central area holding

all fully correlated complete measurements. This arrangement is similar to the sketched version

in Fig. 7.1.7. Due to the fulfilled DPCA condition, the complete measurements form constant

columns which give a perfect rank one matrix. This matrix is revealed by applying the cutting op-

erator which sets all triangular areas of incomplete measurements to zero. The result Y fcct,u
c , the

corresponding appearance in the radar scene domain Xct,u
c , and the respective singular values

are shown in Fig. 7.1.9f, 7.1.9g, and 7.1.9h. As can be seen, the result of the cutting operation

reveals a perfect rank one matrix. All clutter leakage effects caused by the incomplete clutter

measurements are suppressed, therefore only the clutter ridge focused at ū = 0 remains12. The

singular values accordingly show a sharp drop off. Such a clean result is possible only due to the

fulfilled DPCA condition. The following example illustrates the achievable dual low rank form for

non DPCA conditioned measurements.

12While the contained low rank matrix is a true rank one matrix, the clutter is unfortunately spiky i. e. the support
of the clutter in Xct,u

c is not spread out. As explained in Section 5, this results in an identification issue between
sparse and low rank matrices. Hence, without any modifications to turbo compressed robust principal component
analysis (TCRPCA) we can not expect to be able to conduct a successful separation of clutter and moving targets.
More on this topic will be discussed later.
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(a) Shifted clutter in scene domain Xsh
c = B−1 (Yc).
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(b) singular value decomposition (SVD) of Yc and Xsh
c .
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(c) The dual low rank form Xu
c = D−1

u (Xsh
c ;β, ϕm).
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(e) Angle-focused clutter measurements Y fc,u
c =

B (Xu
c ).
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(f) Cut angle-focused measurements Y fcct,u
c =

C
(
Y fc,u

c , β
)
.
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(g) Result of cut in scene domain Xct,u
c = B−1

(
Y fcct,u
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Figure 7.1.9.: The dual low rank form for a level one setting with β = 1.
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Dual Low Rank Form for Non-DPCA Condition The following example illustrates the dual

low rank form in case of a non fulfilled DPCA condition for the specifically chosen parameters

β = 2.5, and ϕm = 0. Within this work, this is termed a level two difficulty as listed in Tab. 7.1.1.

In this case, the Diophantine equation (7.1.24) does allow only for a few non-trivial solutions,

hence, the majority of the measurement samples in Yc are not fully correlated13. This increases

the minimum achievable rank of the dual low rank form. Furthermore, in case of β > 1 Doppler

ambiguities occur, which in turn also increases the minimum achievable rank14. The correspond-

ing measurement matrix Yc and the dual low rank form are depicted in Fig. 7.1.10 and 7.1.11.

The Doppler ambiguities can be seen from the clutter ridge in Fig. 7.1.11a, which after focusing,

appear as additional rows in the dual low rank formXu
c as shown in Fig. 7.1.11c. To the contrary

of the former level one example where β = 1, the dual low rank form for β = 2.5 already is

an effective low rank matrix as can be seen from its singular values plotted in Fig. 7.1.11d. This

is because the size of incomplete measurements in pulses decreases as β increases according to

(7.1.21). Therefore, the ratio of incomplete to complete sample in this example is proportionally

less as can be seen in the angle focused clutter measurements Y fc,u
c . This is the reason why the

singular values of the dual low rank form plotted in Fig. 7.1.11d show a sharper drop off as the

incomplete measurements are less influencing. The final contained low rank matrix shown in

Fig. 7.1.11g is not a rank one matrix any more due to the non fully correlated samples in Yc and

the occurring Doppler ambiguities. From this example it is foreseeable that any decorrelating ef-

fect increases the minimum achievable rank. The next example illustrates that for present velocity

misalignment.
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Figure 7.1.10.: Measurement matrix Yc for a level two setting with β = 2.5.

Dual Low Rank Form for Additional Velocity Misalignment The following example illus-

trates the dual low rank form in case of a non fulfilled DPCA condition and additional velocity

misalignment for the specifically chosen parameters β = 2.5, and ϕm = 0.35 rad. Within this

work, this is termed a level three difficulty as listed in Tab. 7.1.1. In this case, the Diophantine

equation (7.1.24) does allow even less non-trivial solutions, hence, the measurement samples in

Yc are less correlated which in turn further increases the minimum achievable rank of the dual low

13For the specific choice of β = 2.5, the Diophantine equation (7.1.24) becomes ñrx + 2.5ñp = 0, i. e. every fifth
measurement is fully correlated.

14Recall that β is the slope of the clutter ridge, hence, for β > 1, the clutter ridge “wraps” as soon as the emerging
clutter Doppler frequency becomes bigger than the pulse repetition frequency (PRF) as

∣∣f̄Dc (ū)
∣∣ > fp/2.
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Figure 7.1.11.: Dual low rank form for level two setting with β = 2.5.
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rank form. The results are shown in Fig. 7.1.12 and Fig. 7.1.13. The effect of velocity misalign-

ment can be seen from the clutter ridge in Fig. 7.1.13a. To the contrary of the former presented

examples, where the clutter ridge formed a straight line, the clutter ridge with present velocity

misalignment describes a curve [1]. For this reason and in case of β > 1, the shift operator D−1
u

can not focus the clutter ridge onto single rows any more as can be seen in Fig. 7.1.13c. This

is due to the fact that the Doppler ambiguities would require a different shifting amount than

the aliased main clutter. Hence, the achievable clutter rank is again increased as can be seen in

Fig. 7.1.13h. A velocity misalignment of 0.35 rad ' 20◦ is of course not a realistic setting but this

value was chosen to test the robustness of the dual low rank form. Despite the aforementioned

shortcoming of the shifting operator, it is still possible to form a solid dual low rank form from Yc.

The next example illustrates the effects of limited back attenuation i. e. present reflections from

the rear side of the radar.
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Figure 7.1.12.: Measurement matrix Yc for a level three setting with β = 2.5 and ϕm = 0.35 rad.
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Figure 7.1.13.: Dual low rank form for a level three setting with β = 2.5 and ϕm = 0.35 rad.
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Figure 7.1.14.: Measurement matrix Yc of clutter focus illustration for a level four setting with
β = 1, ϕm = 0.35 rad, and back attenuation of -10 dB.

Dual Low Rank Form for Additional Limited Antenna Back Attenuation The following

example illustrates the dual low rank form in case of a non fulfilled DPCA condition, present

velocity misalignment, and in addition reflections from the rear side of the radar due to a limited

antenna back attenuation of -10 dB for the specifically chosen parameters β = 1 and ϕm =

0.35 rad. Within this work, this is termed a level four difficulty as listed in Tab. 7.1.1. The effect of

limited back attenuation on the clutter ridge in the shifted clutter scene Xsh
c is the clutter ridge

to become an ellipse instead of a curve. The size and orientation of the axis of the emerging

ellipse depend on the velocity misalignment angle, where for ϕm = 0 rad the ellipse collapses to

a straight line and for ϕm = π/2 rad it becomes a circle [1]. The reflections from the rear side

potentially increase the minimum achievable rank of the dual low rank form. However, it was

found from the simulations shown in Fig. 7.1.14 and Fig. 7.1.15, that limited back attenuation

has a minor effect on the achievable rank. A potentially high impact has ICM, which is shown in

the next example.

Dual Low Rank Form for Additional Present Internal Clutter Motion The following couple

of examples are given to illustrate the impact of present ICM on the minimum achievable rank of

the dual low rank form. This phenomena naturally decreases the correlation of the measurement

samples in Yc as ICM causes the clutter scene to slightly change from pulse to pulse. As a

model for ICM, the Billingsley model is used [1]. Within this work, present ICM is termed a

level five difficulty as listed in Tab. 7.1.1. To begin with, the first example shows a scenario with

fulfilled DPCA condition with the specifically chosen parameters β = 1, ϕm = 0◦, infinite back

attenuation, and ICM with σvel = 20 m/s. Certainly, a value of σvel = 20 m/s is unrealistic,

yet serves as illustrative example. All other effects are not considered to purely illustrate the

effect of ICM on the minimum achievable rank. The simulated clutter measurements Yc and

the corresponding temporal auto correlation function, the variation of the magnitude, and the

variation of the phase of a single clutter patch over pulses due to the ICM effect are shown in

Fig. 7.1.16. The impact on the minimum achievable rank is shown in Fig. 7.1.17. As can be seen

in Fig. 7.1.17a, the clutter ridge broadens and as a result, the clutter ridge can not be focused

onto a single row anymore. Clutter contributions off ū = 0 remain after cutting incomplete

measurements as shown in Fig. 7.1.17g. Nevertheless, the measurement samples in Yc are still
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Figure 7.1.15.: Dual low rank form for a level four setting with β = 1, ϕm = 0.35 rad, and back
attenuation of -10 dB.
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partially correlated. Hence, the dual low rank form still contains a convenient low rank matrix as

shown by the singular values plotted in Fig. 7.1.17h.
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(a) Measurement matrix Yc.

−60 −40 −20 0 20 40 60
0

0.5

1

Pulse Lag in 1

C
ov

ar
ia

nc
e

in
1

(b) Auto correlation of single clutter patch.

10 20 30 40 50 60
0

1

2

3

Pulse Index in 1

M
ag

ni
tu

de
in

1
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(d) Phase variation of a single clutter patch over pulses.

Figure 7.1.16.: Dual low rank form for a level five setting with β = 1, ϕm = 0◦, infinite back
attenuation, and ICM with σvel = 20 m/s.
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Figure 7.1.17.: Dual low rank form for a level five setting with β = 1, ϕm = 0◦, infinite back
attenuation, and ICM with σvel = 20 m/s.
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The next example shown in Fig. 7.1.18 and Fig. 7.1.19 illustrates the effects for β = 2.5,

ϕm = 0.35 rad, back attenuation of -30 dB, and ICM with σvel = 20 m/s. This example com-

prises all aforementioned effects together to form a worst case example. Despite of all present

decorrelation effects, the dual low rank form still contains a convenient low rank matrix.
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(d) Phase variation of a single clutter patch over pulses.

Figure 7.1.18.: Dual low rank form for a level five setting with β = 2.5, ϕm = 0.35 rad, back
attenuation of -30 dB, and ICM with σvel = 20 m/s.
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Figure 7.1.19.: Dual low rank form for a level five setting with β = 2.5, ϕm = 0.35 rad, back
attenuation of -30 dB, and ICM with σvel = 20 m/s.
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Dual Low Rank Form for Present Targets The following example illustrates the impact of

present targets in the radar scene. In Fig. 7.1.20 and Fig. 7.1.21, the result for a setting of

β = 2.5, ϕm = 0.35 rad, back attenuation of -30 dB, ICM with σvel = 20 m/s, and additionally

Nt = 4 targets is shown. As can be seen, the impact is of minor nature. Every present target

increases the minimum achievable rank by approximately one. Since we assume moving targets

to be sparse and as such the number of present targets is low, this is of no concern. Depending

on the signal to noise ratio (SNR) of the target compared to the clutter to noise ratio (CNR),

moving targets have limited effect on the low rank form, since the shifting operator D−1
u keeps

point like targets to stay point like. Only strong side lobes of moving targets effect the low rank

form as will be shown later.
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(d) Phase variation of a single clutter patch over pulses.

Figure 7.1.20.: Dual low rank form for a level five setting with β = 2.5, ϕm = 0.35 rad, back
attenuation of -30 dB, ICM with σvel = 20 m/s, and Nt = 4 present targets.
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Figure 7.1.21.: Dual low rank form for a level five setting with β = 2.5, ϕm = 0.35 rad, back
attenuation of -30 dB, ICM with σvel = 20 m/s, and Nt = 4 present targets.
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The examples presented in this section illustrate the impact of decorrelation effects on the

minimum achievable rank of the dual low rank form. Although not exhaustive, it was shown

that even for severe effects like ICM a convenient dual low rank form exists. This property can

be exploited to estimate unknown parameters e. g. β, ϕm, etc. To be able to do so, a suitable

objective function is required. In the next section, the nuclear norm is shown to be a convenient

choice therefore.

7.1.4. The Nuclear Norm as Objective Function for Parameter Estimation

This section examines the nuclear norm in terms of its usability and robustness as objective func-

tion to estimate the clutter ridge slope β and the velocity misalignment angle ϕm. This idea

builds upon the low rank properties of clutter measurements which was shown in the former

sections. Next to the general emerging shapes of the objective functions, also their robustness

against present targets is elaborated on. It shows, that the nuclear norm is a suitable measure

for parameter estimation. This forms the foundation of the auto-clutter focus (ACF) algorithm

presented in Section 7.2, which conducts the actual estimation.

One key observation from the examples presented in the former section is to recognize, that

the nuclear norm of the dual low rank form ‖Xu
c ‖∗ is the minimum achievable nuclear norm.

If, for instance, the clutter ridge was not focused onto ū = 0 by the shift operator D−1
u , the

resulting nuclear norm would be bigger compared to the nuclear norm of the perfectly focused

clutter ridge ‖Xu
c ‖∗ because the ridge would run on a diagonal course which in turn would

increase the rank. Since the shift amount in ū depends on the parameters β and ϕm as given by

(7.1.14), it is possible to use the nuclear norm within an objective function to estimate them as

β̂, ϕ̂m = arg min
β,ϕm

f∗(β, ϕm), (7.1.27)

where the objective function is defined similar to (7.1.19) as

f∗(β, ϕm) =
∥∥A−1

u (Yc;β, ϕm)
∥∥
∗ (7.1.28)

=
∥∥∥D−1

u (Xsh
c ;β, ϕm)

∥∥∥
∗

(7.1.29)

=
∥∥∥X̂u

c

∥∥∥
∗
. (7.1.30)

The objective function can be interpreted as a shift in ū conducted by D−1
u , which focuses the

clutter ridge energy in Xsh
c along ū = 0. The result of the shift operation X̂

u

c can be interpreted

as an estimate of the dual low rank form. The nuclear norm measures how well the clutter ridge

was focused and offers the advantage over classical correlation methods to be robust against

present targets. Furthermore, it is naturally applicable in case of missing samples by use of affine

rank minimization (ARM) approaches as will be shown in Section 7.2. The price to pay, however,

is that sufficient channels must be available. As a further refinement, the nuclear norm of the

contained low rank matrix within the dual low rank form as sketched in Fig. 7.1.7 can be used for

estimation. As shown later, this improves the estimation performance as disturbing incomplete

measurements are excluded from the estimation process. The refined objective function can be
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defined similar to (7.1.23) as

β̂, ϕ̂m = arg min
β,ϕm

f ct
∗ (β, ϕm;β0)

with the refined objective function

f ct
∗ (β, ϕm;β0) =

∥∥∥C(β0) ◦ B ◦ X̂
u

c

∥∥∥
∗
, (7.1.31)

where β0 ∈ R is some parameter chosen to determine the number of pulses to cut according to

(7.1.14). Within f ct
∗ (β, ϕm;β0), the Fourier operator B maps the focused clutter ridge into the

measurement domain in which the incomplete measurements are set to zero by the cut operator

C(β0).

The shift operator D−1
u used in the defined objective functions is a non linear function in terms

of the unknown parameters β and ϕm. As a consequence, f∗(β, ϕm) and f ct
∗ (β, ϕm;β0) are

not convex, hence, no unique minimum exists. Due to the cyclic shift nature of D−1
u , multiple

minima emerge for β → 0 as in this case ūc → ∞ according to (7.1.14). Likewise, the velocity

misalignment angle is unique only for ϕm ∈ [−π, π) as can be seen from (7.1.14). Nevertheless,

the objective functions offer suitable shapes for a successful estimation of the parameters as will

be shown by the following examples.

As a first illustrative example, Fig. 7.1.22a shows a sweep of β vs. f∗(β, ϕm) for various true

parameter choices β̃, where ϕ̃m = ϕm = 0. Furthermore, Fig. 7.1.22b shows a sweep of β vs.

f ct
∗ (β, ϕm;β) i. e. with cutting. As a first attempt, the unknown parameter β0 from which the

number of pulses to cut is determined is set as β0 = β. This means, the number of pulses cut

continuously changes. As can be seen, convenient minima mark the true parameter locations for

both objective functions. While the refined objective functions f ct
∗ (β, ϕm) in Fig. 7.1.22b show

steeper minima compared to the uncut versions in Fig. 7.1.22a, they are subject to discontinuities

originating from the discrete number of pulses which are cut. Also as β → 0, the number of pulses

to be cut according to (7.1.14) tends to infinity resulting in all samples to be set to zero. Finding

the minimum for the specific choice β0 = β is very challenging. However, the steeper minima

allow for an improved estimation performance as will shown further below. How to choose β0

conveniently is presented in the following section. For the remainder of this section, however, β0

is set to the true parameter as β = β̃ in order to evaluate the best achievable objective functions.

In the following examinations, the objective functions f∗(β, ϕm) and f ct
∗ (β, ϕm; β̃) are evalu-

ated for β ∈ [0.5, 4] and ϕm ∈ [−π, π) for various difficulty scenarios as listed in Tab. 7.1.1. The

objective functions are averaged over a 100 Monte Carlo runs and in the following plots, green

crosses mark the true parameter locations β̃ and ϕ̃m, while red crosses indicates the minimum of

the averaged objective functions, and the red dots the minimum in every Monte Carlo realization.

Figure. 7.1.23 shows the results of the objective function f∗(β, ϕm) for a level one difficulty set-

ting with β̃ = 1. For better illustration also a surface plot is given. As can be seen in Fig. 7.1.23b,

the majority of the individual minima marked by the red dots are located closely to the true pa-

rameter values. Unfortunately, a few Monte Carlo realizations reveal a low value of f∗(β, ϕm) for

a wrongly focused clutter ridge. A more detailed investigation revealed, that these phenomena
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(a) β vs. f∗(β, 0) for various β̃.
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(b) β vs. f ct
∗ (β, 0) for various β̃.

Figure 7.1.22.: Emerging minima of objective functions for sweeping β.

are caused by the shifted clutter leakage i. e. incomplete measurements. This effect gets even

more severe for the remaining scenarios shown in Fig. 7.1.24.
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(a) A valley shaped minima marks the true parameter positions.
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(b) Top view where the green cross marks the true parameter values and the red dots the minima in every
Monte Carlo realization.

Figure 7.1.23.: Objective function f∗(β, ϕm) for a level one setting of β̃ = 1 with parameters
swept over β ∈ [0.5, 4] and ϕm ∈ [−π, π).
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(b) Level three setting with β̃ = 2.5 and ϕ̃m = 0.35 rad.
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(c) Level five setting with β̃ = 2.5, ϕ̃m = 0.35 rad, back
attenuation of -30 dB, and ICM with σvel = 20 m/s.

−3 −2 −1 0 1 2 3

1

2

3

4

ϕm in rad

β
in

1

(d) Level five setting with β̃ = 2.5, ϕ̃m = 0.35 rad, back
attenuation of -30 dB, ICM with σvel = 20 m/s, and
Nt = 4 present targets.

Figure 7.1.24.: Objective function f∗(β, ϕm) for a level two to five setting with parameters swept
over β ∈ [0.5, 4] and ϕm ∈ [−π, π).

The results for the refined objective functions f ct
∗ (β, ϕm; β̃) are shown in Fig. 7.1.25. As can be

seen, the minima become steeper allowing for a better estimation of β̃ and ϕ̃m. This fact will be

seen again in the evaluation of the ACF algorithm in Section 7.2. Furthermore, the minima in the

individual Monte Carlo realizations are consistently located close to the true value. This is a major

advantage compared to the results shown in Fig. 7.1.23 and Fig. 7.1.24. In summary, well shaped

minima occur for β and ϕm. Remarkably, the nuclear norm is robust against present targets as

shown in Fig. 7.1.24d and 7.1.25e. This, however, depends on the SNR of the targets compared

to the CNR. The influence of very strong targets onto the nuclear norm is discussed further below.

Furthermore, taking a closer look onto the emerging nuclear norms reveals a rather flat valley for

ϕm. In Fig. 7.1.26, an additional simulation for a zoomed view is shown for the case of β̃ = 2.5

and ϕ̃m = 0◦ . As can be seen, the minima of ϕm are spread out due to the flat valley shape. As

a consequence, the velocity misalignment angle ϕm cannot be estimated well enough by use of

the nuclear norm. An alternative objective function which allows for a better estimation of ϕm is

presented in the following Section 7.2.

The nuclear norm used in the objective functions f∗(β, ϕm) and f ct
∗ (β, ϕm;β0) is robust to

some extent for present, very strong, moving targets. Depending on how much leakage in

Doppler occurs, the minima marking the true parameter values β̃ and ϕ̃m may be preserved or
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(d) Level five setting with β̃ = 2.5, ϕ̃m = 0.35 rad, back
attenuation of -30 dB, and ICM with σvel = 20 m/s.
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(e) Level five setting with β̃ = 2.5, ϕ̃m = 0.35 rad, back
attenuation of -30 dB, ICM with σvel = 20 m/s, and
Nt = 4 present targets.

Figure 7.1.25.: Refined objective function f ct
∗ (β, ϕm; β̃) with parameters swept over β ∈ [0.5, 4]

and ϕm ∈ [−π, π).
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(a) Objective function f∗(β, ϕm).
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(b) Refined objective function f ct
∗ (β, ϕm; β̃).

Figure 7.1.26.: Zoomed view of objective functions with β ∈ [0.5, 4] and ϕm ∈ [−0.2, 0.2] for
β̃ = 2.5 and ϕ̃m = 0 rad.
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Figure 7.1.27.: Impact of strong targets onto objective function f∗(β, ϕm) - no leakage occurring.

not. An example without Doppler leakage is shown in Fig. 7.1.27, where two very strong targets

are present. The objective functions f∗(β, ϕm) are shown for the case of CNR = 60 dB and SNRs

from 60 dB to 80 dB. For the case of β = 1 the two point targets become aligned within the same

row, causing a very steep minima of the objective function. In the scenario shown, this steep local

minima can be evaded without problems. Nevertheless, it is possible to construct a case for which

very strong point targets are arranged such that a very steep minima emerges close to the true

minima and hence prevent a successful focusing of the clutter ridge. These scenarios, however,

are of less practical importance and might be detected by considering additional range gates. A

more practical problem occurs for the case of Doppler leakage. This is shown in Fig. 7.1.28, where

the point targets are now located half between the grid points such that severe leakage occurs.

While the leakage in u has no impact on the nuclear norm used in the objective functions, the

leakage in Doppler results in very profound rows which directly compete with the aim of aligning

the clutter ridge. As a consequence, the minima marking the true parameter values β̃ and ϕ̃m

vanish in case of very high SNR. One possibility to mitigate this effect is to reduce the Doppler

leakage by increasing the number of pulses used per CPI. This, however, might be undesirable
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Figure 7.1.28.: Impact of strong targets onto objective function f∗(β, ϕm) - sever leakage present.

e. g. in case the CPI or the PRF is limited to a given upper bound.15

In summary it is possible to exploit the correlated nature of the clutter samples in the mea-

surement matrix Yc to find a matrix of minimum nuclear norm. The main contributions which

complicate this attempt are the incomplete measurements in Yc which stem from the inherently

limited number of pulses available and mainly from velocity misalignment in case of Doppler ambi-

guities. Furthermore, ICM increases the minimal achievable nuclear norm, broadens the emerging

minima in the objective functions and thus decrease the estimation performance. Nevertheless,

useful minima are still available since ICM samples are after all correlated. Finally, targets present

in the scene are not of concern as long as their SNR is not higher than the CNR. In case of very

strong targets, the nuclear norm cannot be used any more to estimate β and ϕm if the targets

show strong Doppler leakage effects resulting in very profound rows. In the following section,

the ACF algorithm is presented which uses the low rank property of the correlated clutter mea-

surements to estimate the potentially unknown parameters β and ϕm.

7.2. Auto-Clutter Focus

In this section, an auto-clutter focus (ACF) algorithm is presented which exploits the low-rank

properties presented in Section 7.1 to determine the parameters β and ϕm, which are the clutter

ridge slope and the velocity misalignment angle. Once these parameters are known, they can

be used to separate the clutter from moving targets by either using turbo compressed robust

principal component analysis (TCRPCA) or by use of a modeled projection filter or a combination

of both. These approaches are presented in more detail in Section 7.3.

The ACF problem is as follows, given the single measurement vector of one range-gate under

15Windowing techniques to mitigate the leakage effect, unfortunately, do not help in this case since they have a
negative effect on the clutter ridge which in turn renders them useless.
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test from (2.2.26)

y =

Nt−1∑
nt=0

yt

(
xnt , ūnt , f̄D,nt

)
+ yc(β̃,ϕ̃m) + n, (7.2.1)

find the parameters β and ϕm. To do so, the correlated nature of the clutter shall be exploited.

Furthermore, it is assumed that there are only few moving targets per range gate i. e. targets are

sparsely present in (7.2.1). It is further presumed that sufficient channels and pulses are available

such that a low-rank matrix of suitable size can be formed from y.

In order to estimate the desired parameters from y, the following low-rank measurement

model is used

y = A
(
L̃; β̃, ϕ̃m

)
+ n, (7.2.2)

where L̃ ∈ CNu×ND is a low-rank matrix holding the angle-focused clutter contributions as ex-

plained in Section 7.1, A : CNu×ND → CM is the clutter focus operator defined further below,

y ∈ CM is the measurement vector from (7.2.1), and n ∈ CM ∼ CN (0, Pn) is complex normal

i. i. d. noise. For the clutter focus algorithm, L̃ shall also contain the moving targets present in

(7.2.1)16. The clutter focus operatorA is defined analogously to the dual low rank form presented

in Section 7.1.2 by use of (7.1.19) as

A (L;β, ϕm) = vec
(
ADu(L;β, ϕm)BT

)
, (7.2.4)

where A ∈ CNrx×Nu and B ∈ CNp×ND are the spatial and temporal steering matrices given

by (2.1.115) and (2.1.116), Du is a Fourier shift operator defined in (7.1.16), and vec (·) is the

vectorization operator which reshapes a matrix into a vector by stacking all columns on top of

each other. The measurement model (7.2.2) therefore presumes an angle-focused dual low rank

form in the angle-Doppler dimensions of the radar scene denoted by L, whose clutter energy

is concentrated at ū = 0. It gets shifted in the angular dimension by Du according to the

parameters β and ϕm to form a diagonal clutter ridge. This form is observed by the moving radar.

The shifted radar scene is then mapped to the measurement domain by the spatial and temporal

steering matricesA andB and finally vectorized to form the measured space-time measurement

vector. This low-rank model of (7.2.1) was justified in Section 7.1. In general, the number of

measurements M = NrxNp might be less than the number of unknowns n = NDNu. Hence,

(7.2.2) may be an under-determined system. As explained in Section 7.1.4, a suitable objective

function to estimate β is to use the nuclear norm of the estimated low-rank matrix L̂ for which

nice minima occur as shown in Fig. 7.1.22a. Unfortunately,
∥∥L̂∥∥∗ is not well suited to estimate

16It is tempting to already incorporate moving targets into (7.2.2) by extending it to

y = A
(
S̃ + L̃; β̃, ϕ̃m

)
+ n, (7.2.3)

where S̃ is a sparse matrix intended to hold the moving target contributions. Unfortunately, (7.2.3) is ill-posed in
the sense that it is not possible to estimate all unknowns S̃, L̃, β̃, and ϕ̃m simultaneously! Attempting to solve
(7.2.3) in an robust principal component analysis (RPCA) like fashion destroys the unique low-rank probability of
L for correctly estimated β and ϕm! Quiet frankly, instead of reducing the rank of L by adapting β and ϕm, the
rank of L may also be reduced by assigning all non low-rank like entries to S. In the extreme case, this results in
S containing the whole non-focused clutter ridge.
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ϕm. As shown in Fig. 7.1.26,
∥∥L̂∥∥∗ does not form a narrow minima but remains rather flat. It is

therefore necessary to create an additional objective function which allows for a better estimation

of ϕm. Nevertheless,
∥∥L̂∥∥∗ can still be used to estimate β alone. Inspection of Fig. 7.1.26 reveals,

that
∥∥L̂∥∥∗ is, to some extend, insensitive to wrong intermediate values of ϕm. Thus β and ϕm

can be estimated independently.

7.2.1. Alternative Objective Function for Estimation of Velocity Misalignment
Angle

Within this work, a combination of the clutter ridge energy ecr and a clutter ridge antenna pattern

correlation coefficient racr is used as an objective function to estimate ϕ̃m as

hϕm(L;β, ϕm) =
1

(ecrracr)
2 . (7.2.5)

The clutter ridge energy is defined as

ecr = lTcrlcr, (7.2.6)

where

lTcr =
∣∣∣[L′]icr:

∣∣∣ ∈ R1×ND

denotes the element-wise magnitudes of the clutter ridge row in the matrix L′ with icr being the

row index corresponding to ū = 0. As will be explained in Section 7.2.2 in more detail, the matrix

L′ is taken to be the result of a gradient update step17

L′ = L− µ∇Lh (L;β, ϕm) ,

with h (L;β, ϕm) denoting a residual error term defined in (7.2.13). If no targets are present in

the range gate-under-test, ecr is maximized for a perfectly focused clutter ridge. This is shown in

Fig. 7.2.1. As can be seen, the global maximum marks ϕ̃m well, however, multiple maxima are

present. Therefore, either a grid search or a gradient descent algorithm with a well known initial

start value is required to find the global maximum. Furthermore, if very strong targets like large

ships are present in the scene, the energy in the icr-th row may also be maximized by setting ϕm

such that the strong point target is located at ū = 0. This is illustrated in Fig. 7.2.2. While in case

of a total SNR = 60 dB the main clutter just barley creates the global maximum, clearly for a total

SNR = 100 dB the clutter contribution is not even visible any more. To robustify hϕm , a correlation

coefficient racr is introduced to exclude non clutter like entries within lcr to minimize hϕm . It is

known from space-time adaptive processing (STAP), that the energy distribution of the clutter

ridge follows the product of the antenna patterns and the clutter reflectivity Gtx (ū)Grx (ū)xc (ū)

for ū ∈ [−1, 1) [4]. While xc (ū) is of random nature, the antenna patterns are known to some

extend and the energy distribution of the clutter ridge can be roughly approximated by

Gtrx (ū) = Gtx (ū)Grx (ū) .

17Briefly said, since L(β, ϕm) = A−1 (y;β, ϕm) is not available as A−1 does not exist in case of missing samples,
the gradient update step coming from the singular value thresholding (SVT) approach is used as an approximation
L(β, ϕm) ≈ L′ = L− µ∇Lh (L;β, ϕm) .
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(a) ecr vs. ϕm ∈ [−π, π).
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(b) Zoomed view of Fig. 7.2.1a.

Figure 7.2.1.: Clutter-row energy ecr without present targets. The green line indicates the true
value ϕ̃m, the red cross the global maximum, and the yellow cross the intermediate
value ϕm from which L was determined.
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(a) Two targets present with total SNR = 60 dB.

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

40

60

80

100

ϕm in rad

e c
r

in
dB

(b) Two targets present with total SNR = 100 dB.

Figure 7.2.2.: Clutter-row energy ecr with strong targets present.
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Assuming further, that the shifted or focused clutter follows the same distribution, which of

course is a very coarse approximation, a correlation coefficient can be setup as

racr =
l̄Tcrgap∥∥l̄cr

∥∥
2

(7.2.7)

to compare the clutter ridge row lcr to the expected one. Within (7.2.7), l̄cr ∈ RND denotes the

mean free clutter ridge row vector defined as

l̄cr = lcr − µlcr1, (7.2.8)

with

µlcr =
1

ND

ND∑
i=1

lcr,i (7.2.9)

being the mean value of lcr and 1 ∈ NND a vector of ones. Furthermore, gap ∈ RND is the

normalized mean free antenna pattern vector defined as

gap =
gtrx − µgtrx1

‖gtrx − µgtrx1‖2
,

where

gtrx =

[
Gtrx

(
2d̄
nD

ND

)]ND/2−1

nD=−ND/2

∈ RND

is the antenna pattern product sampled across the visible range and µgtrx denotes the mean value

of gtrx similar to (7.2.9). By construction, the correlation coefficient racr takes values between

−1 ≤ racr ≤ 1. An illustration of racr for the above examples is shown in Fig. 7.2.3. The

case of SNR = 60 dB is shown in Fig. 7.2.3d. Comparing it to Fig. 7.2.2a reveals an increased

robustness against point targets present in the scene. In case of extremely strong targets as shown

in Fig. 7.2.3f, the product ecrracr alone is not capable of suppressing the target contributions

sufficiently. Nevertheless, if all products ecrracr for racr ≤ 0.1 are ignored, e. g. by setting those

to a very small value, the clutter ridge maximum can be found also in case of extremely strong

present targets. It is worthwhile to note, that ecr alone would not be enough in this case, rather

the product ecrracr creates a maximum at the correct value ϕ̃m. As illustrated in Fig. 7.2.4, ecr

does not show any maximum at the true value ϕ̃m, while the product does. Hence, racr serves

the purpose of excluding extremely dissimilar clutter ridges compared the to be expected antenna

pattern product. This helps in acquiring some immunity against strong point targets in the range

gate-under-test. Yet, if extremely strong targets are closely located at the clutter ridge, this

approach might also fail.18 By combining (7.2.6) and (7.2.7), the objective function (7.2.5) can

18One possibility to overcome this issue would be the following: in a first step, the angle-Doppler scene is recon-
structed solely by use of a compressive sensing (CS) approach. In a second step, all entries within the scene
stronger than the clutter to noise ratio (CNR) are set to zero. In a final step, the corresponding measurement values
to the purged scene are fed to the ACF. The use of a CS approach avoids the problem of overwhelming target
side lobes. Thus, target energy can be removed from the scene without disturbing clutter contributions too much.
As the ACF algorithm is somewhat robust against present target energy, residual target energy after the CS purge
should not be of concern.
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(a) Antenna pattern correlation coefficient racr in case of
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(b) Product ecrracr in case of no targets present.
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(c) Antenna pattern correlation coefficient racr in case of
two targets present with total SNR = 60 dB.
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(d) Product ecrracr in case of two targets present with total
SNR = 60 dB.
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(e) Antenna pattern correlation coefficient racr in case of
two targets present with total SNR = 100 dB.
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(f) Product ecrracr in case of two targets present with
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Figure 7.2.3.: Robustification against strong present targets by incorporating the antenna pattern
correlation coefficient racr.
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Figure 7.2.4.: Comparison of ecr to ecrracr for the case of extremely strong present targets.

be reformulated to

hϕm(L;β, ϕm) =

∥∥l̄cr

∥∥2

2∣∣l̄TcrgaplTcrlcr

∣∣2 . (7.2.10)

This quadratic form can be reformulated as

hϕm(L;β, ϕm) = fϕm(L;β, ϕm)2

with

fϕm(L;β, ϕm) =

∥∥l̄cr

∥∥
2

l̄TcrgaplTcrlcr
, (7.2.11)

which will be of use in the following. An example of hϕm is shown in Fig. 7.2.5. As can be seen,

the true value ϕ̃m can be found at the minimum of hϕm(L). Only in the case of extremely strong

targets, the minimum does not coincide with the true value. Note that no attempt to cut non

redundant samples in order to obtain the embedded low-rank matrix is done here so far. Doing

so would result in a non smooth objective function of β and ϕm, as shown in Fig. 7.1.22b, which

would be extremely difficult to minimize.

7.2.2. The Auto-Clutter Focus Algorithm

To obtain a solution for (7.2.2) the minimization problem

L̂, β̂, ϕ̂m = arg min
L,β,ϕm

λ ‖L‖∗ + h(L;β, ϕm) + hϕm(L;β, ϕm) (7.2.12)

is solved, where

h(L;β, ϕm) = ‖y −A (L;β, ϕm)‖22 (7.2.13)

denotes the residual term and hϕm(L;β, ϕm) is defined in (7.2.5). The objective function in

(7.2.12) is convex in L but not in β and ϕm. For fixed β and ϕm, (7.2.12) is a standard affine

rank minimization (ARM) problem and can be solved via corresponding approaches like SVT and
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Figure 7.2.5.: Objective function hϕm vs. ϕm. The green line indicates the true value ϕ̃m, the red
cross the global minimum, and the yellow cross the intermediate value ϕm from
which L was determined.
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turbo singular value thresholding (TSVT) presented in Chapter 4 and 6.3. Finding a solution

for β and ϕm, however, is not trivial. A direct gradient descent approach to estimate β is not

possible since the required gradient ∇β ‖L‖∗ is not available. At first, the nuclear norm is non

differentiable.19 At second, L is not available in form of a closed form solution like in Section 7.1,

where the clutter focus operator Au (L;β, ϕm) was taken to be invertible, which allowed for the

explicit form L = A−1
u (Y ;β, ϕm) to exist. Nevertheless, it is possible to use the residual term

h(L;β, ϕm) as a guidance function to estimate β. Hence, instead of the unavailable gradient

function ∇β ‖L‖∗, ∇βh(L;β, ϕm) will be used. Finding the velocity misalignment angle ϕm is

also demanding, since the substitute function hϕm has multiple minima. For the derivation to

follow, it is assumed, that an initial value ϕm,0 close enough to the true solution ϕ̃m is known

such that ϕ̃m can be found by use of a gradient descent approach. In case such an initial value

is not available, a grid search strategy to find the global minimum can be used. In summary, the

solution to (7.2.12) can be found by the iterative procedure

Li = TSVT (Li−1)

βi = βi−1 − µβ,i∇βh (Li;βi−1, ϕm,i−1)

ϕm,i = ϕm,i−1 − µϕm,i∇ϕmhϕm (Li;βi, ϕm,i−1) ,

(7.2.14)

where TSVT(L) denotes one TSVT step given by (6.3.2). The gradients ∇βh and ∇ϕmhϕm are

derived in closed form in Appendix A.7.2 and A.7.3. The step sizes µβ and µϕm are determined by

use of a Levenberg-Marquardt (LM) approach, which is a method to solve non-linear least square

problems [67]. In the framework of the LM algorithm, let

ri = y −A (Li;βi−1, ϕm,i−1)

denote the error vector whose `2 norm equals the residual term to be minimized, namely

‖ri‖22 = h(Li;βi−1, ϕm,i−1).

Furthermore, let

Jr,i =

[
∂ri
∂β

,
∂ri
∂ϕm

]
∈ CM×2

= −
[
∂A (Li;βi−1, ϕm,i−1)

∂β
,
∂A (Li;βi−1, ϕm,i−1)

∂ϕm

]
denote the corresponding Jacobi matrix, where the required derivatives are given in the Ap-

pendix A.7 by (A.7.9) and (A.7.21), respectively. Finally, let λlm ∈ R+ be a damping factor

and clm,up ∈ R+ and clm,dn ∈ R+ two adjustment coefficients. Then, a suitable step size µβ,i can

19Although a subgradient exists which might be used for a gradient descent approach [66]!
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be found by the iterative procedure

µβ,i =
[(
JH
r,iJr,i + λlmI

)−1
]

1,1

βi = βi−1 − µβ,i∇βh (Li;βi−1, ϕm,i−1)

λlm =

λlm/clm,dn if h (Li;βi, ϕm,i−1) < h (Li;βi−1, ϕm,i−1)

λlmclm,up else

until h (Li;βi, ϕm,i−1) < h (Li;βi−1, ϕm,i−1)20. A similar approach works for µϕm , for which the

error vector is fϕm(Li;βi, ϕm,i−1) defined in (7.2.11). The required Jacobi matrix, or scalar in this

case, is

Jfϕm ,i =
∂fϕm(Li;βi, ϕm,i−1)

∂ϕm
,

which is given in the Appendix A.7.3 by (A.7.22). Putting all the above steps together, the ACF

algorithm is listed in Algorithm 7.1. The input parameter λ is determined as in the TSVT algorithm

given by (6.3.3). The maximum number of LM step size adaption iterations is denoted by J , which

is necessary to avoid a dead lock in case a local minimum was found from which no improvement

in h (Li;β, ϕm) is possible.

The key idea of the minimization approach given in (7.2.14) is in a first step to find a matrix

of lower nuclear norm. This matrix “looks” more similar to a focused one since homogeneous

rows21 are more emphasized. The second step follows this “guidance” and adjusts β to reflect

the newly found homogeneity. In doing so, it follows the descending direction of ‖L‖∗, which

ultimately leads to the true value β̃. The third step attempts to focus the main energy onto the

ū = 0 row by adjusting ϕm. The sequence of the first two steps in (7.2.14) is therefore crucial

and cannot be interchanged. Some examples illustrating this minimization procedure are shown

in Fig. 7.2.6.

Once a minimum and some reasonable estimate of β and ϕm is found, a refined estimation

of these parameters can be conducted by repeating the ACF algorithm a second time but with

a preceding preparation of the measurement samples y. As was shown in Section 7.1, setting

incomplete measurement samples in the measurement matrix Y to zero suppresses clutter leak-

age and narrows the minimum in the objective function marking the true value in ‖L‖∗ as shown

in Fig. (7.1.25). This knowledge can be exploited by forming a cut measurement matrix Ycut

similar to (7.1.23). This can be done by at first creating an up-sampled measurement matrix

Yup ∈ CNu×ND defined as

[Yup]ij =

yk if k = i+ jNu ∈ Ωy

0 else
, (7.2.15)

where i = 0, 1, . . . , Nu− 1, j = 0, 1, . . . , ND− 1, and Ωy denotes the sample index set. Obviously,

in case of no missing samples, Yup = Y . In the next step, this up-sampled measurement matrix

is angle-focused, followed by setting all incomplete samples to zero and shift back to the original

20Note, that µβ,i ∈ R in any case since the inverse of a hermitian matrix is also hermitian.
21Or columns, which, however, in this case is not wanted.
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Algorithm 7.1 The ACF algorithm.
Input: A, y, λ, I, β0, ϕm,0, J , λlm,β , clm,dn,β , clm,up,β , λlm,ϕm , clm,dn,ϕm , clm,up,ϕm

Initialization:
1: ε← min

(
10−4, 5 · 10−3λ

)
2: i← 0, j ← 0, d←∞, L0 ← 0, µ← n/(M ‖A‖22)

Body:
1: while d > ε and i < I do
2: i← i+ 1
3: Ri ← Li−1 − µ∇Lh (Li−1;βi−1, ϕm,i−1)
4: Zi ← Sl,µλ (Ri)

5: αi ←

{
1
ndiv (Sl,µλ (Ri)) ifR ∈ RN1×N2

1
2ndiv (Sl,µλ (Ri)) ifR ∈ CN1×N2

6: ci ← 〈Zi − αiRi,Ri〉F / ‖Zi − αiRi‖2F
7: Li ← ci (Zi − αiRi)

8: Jr,i ← −
[
∂A(Li;βi−1,ϕm,i−1)

∂β ,
∂A(Li;βi−1,ϕm,i−1)

∂ϕm

]
9: µβ,i ←

[(
JH
r,iJr,i + λlm,βI

)−1
]

1,1

10: βi ← βi−1 − µβ,i∇βh (Li;βi−1, ϕm,i−1)

11: λlm,β ←

{
λlm,β/clm,dn,β if h (Li;βi, ϕm,i−1) < h (Li;βi−1, ϕm,i−1)

λlm,βclm,up,β else

12: while h (Li;βi, ϕm,i−1) > h (Li;βi−1, ϕm,i−1) and j < J do

13: µβ,i ←
[(
JH
r,iJr,i + λlm,βI

)−1
]

1,1

14: βi ← βi−1 − µβ,i∇βh (Li;βi−1, ϕm,i−1)

15: λlm,β ←

{
λlm,β/clm,dn,β if h (Li;βi, ϕm,i−1) < h (Li;βi−1, ϕm,i−1)

λlm,βclm,up,β else
16: j ← j + 1
17: end while
18: j ← 0

19: Jfϕm ,i ←
∂fϕm (Li;βi,ϕm,i−1)

∂ϕm

20: µϕm,i ←
(
J2
fϕm ,i

+ λlm,ϕm

)−1

21: ϕm,i ← ϕm,i−1 − µϕm,i∇ϕmhϕm (Li;βi, ϕm,i−1) ,

22: λlm,ϕm ←

{
λlm,ϕm/clm,dn,ϕm if hϕm (Li;βi, ϕm,i−1) < hϕm (Li;βi−1, ϕm,i−1)

λlm,ϕmclm,up,ϕm else

23: while hϕm (Li;βi, ϕm,i−1) > hϕm (Li;βi−1, ϕm,i−1) and j < J do

24: µϕm,i ←
(
J2
fϕm ,i

+ λlm,ϕm

)−1

25: ϕm,i ← ϕm,i−1 − µϕm,i∇ϕmhϕm (Li;βi, ϕm,i−1) ,

26: λlm,ϕm ←

{
λlm,ϕm/clm,dn,ϕm if hϕm (Li;βi, ϕm,i−1) < hϕm (Li;βi−1, ϕm,i−1)

λlm,ϕmclm,up,ϕm else
27: j ← j + 1
28: end while
29: j ← 0
30: d← ‖Li −Li−1‖F / ‖Li−1‖F
31: end while
Output: β̂ ← βi, ϕ̂m ← ϕm,i
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Figure 7.2.6.: Illustration of the ACF algorithm. The green line indicates the true value β̃, the red
cross the global minimum, and the yellow cross the intermediate value βi−1.
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form22. This is done by applying the concatenation of a sub-sample shift operator D′(β, ϕm) and

the cut operator C(β) from (7.1.22) onto Yup as

Ycut = D′−1(β̂, ϕ̂m) ◦ C(β̂) ◦ D′(β̂, ϕ̂m) ◦ Yup, (7.2.16)

where ◦ denotes the concatenation of functions23. The shift operator

D′(β, ϕm) ◦ Yup = (U4(β, ϕm)� (YupFt))F
−1
t

is defined similar to Du as in (7.1.16) but operates in the measurement domain, where the shift

matrixU4 is defined in (7.1.17) and Ft denotes a discrete Fourier transform (DFT) matrix resulting

in a Fourier transform (FT) of the slow time dimension. The “pre-cut” measurement sample vector

then finally is

ycut = Ycut,Ωy . (7.2.17)

This procedure is illustrated in Fig. 7.2.7, where the arrows indicate the shift direction of the

operators D′. This procedure of cutting incomplete samples in order to refine the estimation can

be repeated until convergence as illustrated in Fig. 7.2.8.

In the following, some ACF reconstructions are shown for various scenarios. For all of them,

the true values were defined to be β̃ = 1 and ϕ̃m = 0, and initial start values were chosen to

be β0 = 2 and ϕm,0 = 0.04 unless otherwise stated. The number of samples available shall be

defined by use of the sub sampling factor - symbol: SSFs (SSFs)

SSFc =
Nc

Nu

and

SSFp =
Np

ND
.

In the first example shown in Fig. 7.2.9, all measurement samples are available and no targets are

present. The family of residual error terms shown in Fig. 7.2.9e illustrate the “guidance” process

which leads the estimation of β to the minimum marked by the nuclear norm shown in Fig. 7.2.9f.

The results of the refinement estimation using pre-cut samples ycut are shown in Fig. 7.2.9g

and 7.2.9h, where the estimation was improved within only a few additional iterations. The

corresponding error terms are shown in Fig. 7.2.10. Note, that since the residual term h changes

from iteration to iteration, it does not necessarily decrease monotonically. In the next example

shown in Fig. 7.2.11, two targets are present with a total SNR = 60 dB. The most notably

difference compared to the former example is the increased number of iterations required to find

the true value of β. For stronger targets this behavior is even more severe. Nevertheless, the

high number of required iterations in this example stems from the very poor initial value of β0

which was chosen for the sake of illustration. In a practical setup, the initial value should be

far better determinable. The next example in Fig. 7.2.12 illustrates the reconstruction in case

of missing channels, where only half the number of channels is available. The position of the

22The angle-focus operation creates a matrix as sketched in Fig. 7.1.7.
23The concatenation symbol allows for a simpler notation in case of multiple operators applied onto some variable

e. g. (g ◦ f)(x) = g(f(x)).
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Figure 7.2.7.: Measurement data preparation by setting all incomplete measurement samples to
zero.
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Figure 7.2.8.: Cyclic refinement of estimation of β and ϕm until convergence.
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(h) Refined estimation of ϕm using ycut.

Figure 7.2.9.: Illustration of ACF reconstruction, where SSFc = SSFp = 1 and Nt = 0.
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Figure 7.2.10.: Objective function terms corresponding to example depicted in Fig. 7.2.9.
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Figure 7.2.11.: Illustration of ACF reconstruction, where SSFc = SSFp = 1 and Nt = 2.
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available channels was chosen randomly. The ACF approach has no problems estimating the

desired parameters for this case. The example shown in Fig. 7.2.13 illustrates the reconstruction

in case of missing pulses, where only half the number of pulses is used. The position of the

available pulses was again chosen randomly. Compared to the case of missing channels, the ACF

approach is more susceptible for missing pulses. As can be seen from Fig. 7.2.13f, the nuclear

norm reveals more local minima. For a successful reconstruction, an initial value β0 close enough

to the true minimum is necessary. For the results shown in Fig. 7.2.13, an initial value of β0 = 1.1

was used. Also of interest is the fact that the pre-cut of the measurement samples allows for

significant improvement of the estimated parameters. The final example shown in Fig. 7.2.14

depicts the case for missing channels and pulses at the same time. The chosen setting is an

extreme case where only half of the channels and half of the pulses are available which are

only 25 % of the total number of possible samples. Even worse, the position of the samples are

severely structured which can not be avoided since only full rows or columns can be removed

from the full sample measurement due to the radar setup. As a consequence, the nuclear norm

shows multiple minima, where the global one marks the true value of β in this case.24 The

reconstruction approached the true value only because the start value β0 = 1.1 was close enough

to the local minimum. A second consequence of the structured sub-sampling is the reduced

restricted rank isometry property (RRIP) of the sensing operator. Hence, the estimated parameters

β̂ and ϕ̂m are not as well estimated as in the previous examples.

To the best of the authors knowledge, there is no non NP-hard optimization algorithm available

which finds for given sub-sample factors the channel and pulse indices such that the RRIP constant

δR (A) explained in Chapter 4 is minimized. This renders to be a discrete optimization problem,

one of the most difficult types. Another measure which is more practical than the RRIP constant

δR (A) is the mutual coherence of the sensing operator. A low coherence results also in a low

RRIP. For the sensing operator in this work, the mutual coherence may be defined as25

µA =
∥∥∥vec

(
ÃHÃ

)∥∥∥
1
, (7.2.18)

where

Ã = B ⊗A ∈ CNcNp×NuND (7.2.19)

with A and B being the space and time steering matrices given in (2.1.115) and (2.1.116).26 For

a uniform linear array (ULA), the spatial steering matrix can be formulated as

A = ScF
−1
1 , (7.2.20)

where F−1
1 ∈ CNu×Nu is a inverse discrete Fourier transform (IDFT) matrix and Sc ∈ {0, 1}Nc×Nu

24However, it is not always the case that the global minimum marks the true value of β.
25From numerical experiments, the `1 norm resulted in best reconstruction performance compared to a traditional

Frobenius norm or the infinity norm.
26The mutual coherence formulation works because the columns of Ã all have the same norm and thus no further

normalization is required.
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Figure 7.2.12.: Illustration of ACF reconstruction, where SSFc = 0.5, SSFp = 1, and Nt = 0.
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(h) Refined estimation of ϕm using ycut.

Figure 7.2.13.: Illustration of ACF reconstruction, where SSFc = 1, SSFp = 0.5, and Nt = 0.
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Figure 7.2.14.: Illustration of ACF reconstruction, where SSFc = 0.5, SSFp = 0.5, and Nt = 0.
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is a row selection matrix whose entries are

[Sc]ij =

1 if Ωc(i) = j

0 else

with Ωc being an ordered channel index set. The same can be done for the selected pulses as

B = SpF
−1
2 , (7.2.21)

where F−1
2 ∈ CND×ND again is a IDFT matrix and Sp ∈ {0, 1}Np×ND is a pulse selection matrix

defined as

[Sp]ij =

1 if Ωp(i) = j

0 else

with Ωp being an ordered pulse index set. To optimize the sensing operator A for given channel

and pulse SSFs, the following optimization problem

Ω̂c, Ω̂p = arg min
Ωc,Ωp

µA (7.2.22)

may be solved. An efficient algorithm to find a solution to (7.2.22) is beyond the scope of

this work as the problem renders to be NP -hard. Nevertheless, in order to avoid obviously

inconvenient index sets Sc and Sp for the simulations to follow, 600 random index sets are

generated for which the ones minimizing µA are used to setup the sensing operator A. While

this approach avoids obviously bad choices of index sets, it is not guaranteed that “good” choices

are found. The total number of combinations to check is

Ncomb =

 Nc

SSFcNc

 Np

SSFpNp


which for SSFc = SSFp = 0.5, Nc = 32, and Np = 64 results in approximately Ncomb = 1.1 · 1027

combinations. The chance of finding a “good” index set is clearly small. Nevertheless, the higher

the SSFs are chosen, the less combinations are possible and thus the higher are the chances of

finding better index sets. This effect can be observed in the statistical evaluations presented in

the following section.

The RRIP may also be improved by adapting the radar transmit signal. This approach, however,

is beyond the scope of this work. The interested reader may refer to [68].

7.2.3. Statistical Evaluation

A statistical evaluation of the ACF algorithm is shown in the following for which Nmc = 100

Monte Carlo runs were conducted. For all simulations CNR = SNR = 60 dB was used. To allow

for a convenient overview, a success threshold is used. All estimations for which
∣∣∣β̂ − β̃∣∣∣ < 0.1 and

|ϕ̂m − ϕ̃m| < 0.01 rad are considered successful. This is a pure arbitrary choice to define a success,

nevertheless, its purpose is solely to allow for a clear presentation of the estimation results. The
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success rate presented in the following is defined to be the ratio nsucc/Nmc, where nsucc is the

number of successful estimations. It depends on the initial values β0 and ϕm,0, especially if only

a few channels or pulses are available. For all simulation to follow, an initialization error of

4β0 = β0 − β̃ = 0.1 and 4ϕm,0 = ϕm,0 − ϕ̃m = 0.01 rad was chosen which are the same values

used in the success definitions. As the ACF algorithm either converges or diverges, the success

rate corresponds to the ACFs convergence rate.

As mentioned in the previous section, cutting improves the estimation performance. The es-

timation was therefore conducted in two steps which are hereafter referred to as primal and

refinement estimations. In the primal estimation step, the ACF algorithm was executed using

the original measurement data y. In the second refinement estimation step, the ACF algorithm

was executed using pre-cut measurement data ycut. The cutting was conducted according to

(7.1.21) and (7.1.22) using the estimated parameter β̂ from the primal step. At this point it shall

be mentioned, that while cutting allows for a refined estimation, it also reduces the CNR which

in turn may degrade the estimation performance. The smaller β is, the more pulses need to

be cut according to (7.1.21). Hence, this effect is bigger for small β. For the simulation results

presented in the following, the number of pulses was kept constant, rendering the CNR to vary

for different β̃. The effect of this can be seen in Fig. 7.2.15, where the reconstruction success

for the primal and the refined estimation is shown. The primal estimation shown in Fig. 7.2.15a

reveals high success rates also for certain scenarios of low SSFs. The uneven distribution of suc-

cess is explained by the non optimal RRIP constant of the sensing operator A as explained in the

previous section. The refined estimation shown in Fig. 7.2.15c reveals an improved success rate

for scenarios using many pulses. However, the success rate for scenarios using a low number of

pulses deteriorate due to the aforementioned loss of CNR. This effect is almost non observable

any more for simulation settings using β̃ = 2.5, where the number of pulses to cut is lower. In

the following, only the refined success rates are shown for sweeps with respect to the SSFs. The

results for level one to five settings are shown in Fig 7.2.16 until Fig. 7.2.20. Next to the suc-

cess rate with respect to the SSFs, also some histograms for the case of SSFc = SSFp = 1, and

mean and standard deviations are shown. The effect of the refinement step is clearly visible as

can be seen from all presented scenarios. The offset error as well as the standard deviation are

significantly improved. Furthermore, as was illustrated in Fig. 7.2.13 in the previous section, the

ACF shows a susceptibility with respect to missing pulses. This can be explained by the fact that

missing pulses cause disturbances in the Doppler dimension which results in densely populated

rows of the unfocused clutter scene. This causes the same effects as leakage of strong targets

in the Doppler domain, which was discussed in Section 7.1. Such strong rows compete with the

unfocused clutter ridge and as such result in multiple minima of the nuclear norm. A successful

reconstruction therefore depends on the initial value β0 which needs to be close enough to the

true value β̃. For the setup simulated here, the reconstruction success for β is high for as long as

SSFp ≥ 0.8, except where severe internal clutter motion (ICM) is present. The ACF algorithm is

robust regarding missing channels. This can be explained by the fact that missing channels intro-

duce disturbances in the angle domain. To the contrary of disturbances in the Doppler domain,

disturbances in the angle domain do not harm the clutter focus operations. Recall, that the focus

operation is conducted by shifts in the angle domain i. e. columns in this work. Such shifts do
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Figure 7.2.15.: Comparison of primal and refined reconstruction success of ACF algorithm for a
level one setting with β̃ = 1 and ϕ̃m = 0 rad.
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not form diagonal entries in this case, hence no competing minima in the nuclear norm emerge.

Comparing the reconstruction success for β̃ = 1 in Fig. 7.2.16 to β̃ = 2.5 in the following figures

reveals a reduced success rate for a lower number of pulses. A reason for the higher success rate

in case of β̃ = 1 might be the unrealistic displaced phase center antenna (DPCA) condition, which

allows for the maximum possible correlation of space-time samples. The reduced correlation for

β̃ = 2.5 causes the lower success rate. Quite interestingly, the estimation performance of ϕm is

better for the β̃ = 2.5 case even for uncut measurement data. The reason therefore is subject to

further investigation. Comparing Fig. 7.2.17 to Fig. 7.2.18 shows that present velocity misalign-

ment has merely no impact on the reconstruction success. The impact of ICM becomes evident

by comparing Fig. 7.2.18 to Fig. 7.2.19. Due to the induced reduction of the space-time sample

correlation, the standard deviation increases for both parameters. Especially the estimation of the

velocity misalignment angle is effected due to the broadening of the clutter ridge in the Doppler

dimension. The presence of strong targets further diminishes the reconstruction success as shown

in Fig. 7.2.20.

7.2.4. Comparison with Alternative Methods

The ACF algorithm presented in this chapter attempts to estimate the clutter ridge slope β and

the velocity misalignment angle ϕm. Recall from (2.2.5) that β depends on the platform veloc-

ity, hence by estimating β, the velocity of the platform relative to the earth can be determined.

These are only two of many parameters, which are of interest for vehicle platforms e. g. airplanes,

satellites, drones, cars, robots etc. The ACF algorithm is not limited to estimate only the aforemen-

tioned parameters, rather it can be extended to a full calibration procedure to also capture e. g.

precise knowledge of the position of the phase centers, channel alignment, antenna coupling

etc.27 The ACF algorithm therefore belongs to the broader regime of calibration procedures.

A variety of calibration methods exist. These differ in terms of the parameters to be determined

and the measurement data available. In general, they can be divided into direct an indirect ap-

proaches. A direct method uses one or more known targets (mostly point scatterers) and adjusts

the required parameters in a direct minimization procedure e. g. [69]. This allows an absolute

calibration of the radar system, which is required e. g. for satellite remote sensing applications. If

no known targets are available, measurements of unknown scenarios have to be used. This is the

application area of the ACF algorithm. Many alternative estimation procedures exists e. g. [70,

71, 72, 73]. These approaches are extremely diverse, ranging from iterative procedures to fast ap-

proximations, leveraging along track interference phases for baseline estimation, clutter Doppler

centroid determination for platform yaw, pitch, and roll angles, antenna attitude angle offsets,

channel phase corrections, platform velocity estimation via direction of arrival measurements etc.

Compared to the ACF approach presented in this work, they have two major requirements: suit-

able homogeneously distributed clutter and no targets present in the training data. The ACF

does not have these prerequisites and thus can be applied in heterogeneous and busy radar

scenes. The price to pay, however, is the required increased number of channels.

27This is subject to future works.
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(h) Mean and standard deviation of ϕm for SSFc = 1.

Figure 7.2.16.: Reconstruction success of ACF algorithm for a level one setting with β̃ = 1.
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Figure 7.2.17.: Reconstruction success of ACF algorithm for a level two setting with β̃ = 2.5.
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Figure 7.2.18.: Reconstruction success of ACF algorithm for β̃ = 2.5 and ϕ̃m = 0.35 rad.
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Figure 7.2.19.: Reconstruction success of ACF algorithm for a level five setting with β̃ = 2.5,
ϕ̃m = 0.35 rad, back attenuation of -30 dB, and ICM with σvel = 20 m/s.
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Figure 7.2.20.: Reconstruction success of ACF algorithm for β̃ = 2.5, ϕ̃m = 0.35 rad, back attenu-
ation of -30 dB, ICM with σvel = 20 m/s, and Nt = 4 targets.
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7.2.5. Summary

In this section, an ACF algorithm was presented which estimates the two parameters β and ϕm,

which are the clutter ridge slope and the velocity misalignment angle. The estimation of β is

done by exploiting the low rank property of the focused clutter ridge scene. It was shown that

well usable minima occur, provided the sensing operator A offers a sufficiently low RRIP property.

Unfortunately, the low rank property develops a rather wide-shaped or flat minimum with respect

to the velocity misalignment angle ϕm. As a consequence, ϕm can not be estimated accurately

enough. To circumvent this problem, an alternative objective function which measures the energy

and shape of the focused clutter ridge was introduced. However, this objective function posses

multiple minima which requires either a good initial start value or a global minimization scheme to

estimate ϕm correctly. Both objective functions, the low rank property and the clutter ridge energy

approach, are robust against targets present in the range gate under test provided the SNR '
CNR for a worst case scenario (i. e. in case of severe target leakage). As a future extension, the

ACF may be robustified against extremely strong targets by a preceding pure CS reconstruction

which removes or thresholds target contributions stronger than the expected clutter power. The

performance of the ACF algorithm was shown for missing channels and/or pulses. The algorithm

is rather robust against missing channels yet somewhat susceptible against missing pulses. The

estimation of the parameters can be improved by cutting non redundant samples within the

measurement matrix Y . This causes the minimum of the nuclear norm objective function to

become more narrow which in turn allows for a better estimation. Finally, a statistical evaluation

by use of Monte Carlo simulations was presented. For the parameter chosen in this simulation,

the reconstruction success was high as long as SSFp > 0.8. This boundary depends on the

initial value β0 . In summary, the overall estimation performance depends heavily on the RRIP

property of the sensing operator A. Removing channels and pulses tend to be a very structured

way of removing samples which resulting in a higher RRIP. A possible future improvement might

be to enhanced the sensing operator to incorporate more “randomness”. This might be done

by adjusting the signal waveform as in e. g. [68]. Once the parameters β and ϕm are known,

they can be used to focus the radar scene and separate the clutter from moving targets in a

subsequent step by use of RPCA. This is shown in the following section.

7.3. Separation of Moving Targets from Stationary Clutter

In this section, the separation of a focused clutter scene from moving targets is discussed. In the

first section, the separation model is presented. In the following Section 7.3.2, some precondi-

tioning of the measurement vector y with the aim of suppressing spiky clutter contributions are

discussed. Finally, a statistical evaluation of the presented approaches is shown in Section 7.3.4.

Unless otherwise stated, the simulation setting for examples shown in the following is a level

three setting as defined in Tab. 7.1.1 with β̃ = 2.5, ϕ̃m = 0.35 rad, CNRtot = 60 dB, antenna

back attenuation of −30 dBm, a single target Nt = 1 with SNR = 15 dB, and SSFp = SSFc = 1.

The position of the target is marked with a red circle28.

28The separation procedure is capable of detecting multiple moving targets, however, for the sake of illustration only
one is considered here.
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7.3.1. The Separation Model

In order to separate stationary clutter from moving targets, the following measurement model is

used

yin = A
(
S̃ + L̃; β̂, ϕ̂m

)
+ n, (7.3.1)

where L̃ ∈ CNu×ND is a low rank matrix intended to hold the clutter contributions, S̃ ∈ CNu×ND

is a sparse matrix holding the moving targets, A : CNu×ND → CM is the radar sensing operator,

yin ∈ CM is some preconditioned measurement vector, β̂ and ϕ̂m are the previously estimated

parameters, and n ∈ CM ∼ CN (0, Pn) is complex normal i. i. d. noise. The need for a precon-

ditioned measurement vector yin is discussed further below. At this point note, that yin = y

is not suitable because in this case Ŝ would contain diagonal running clutter leakage entries as

explained in detail in Section 7.1. The clutter sensing operator is the same as defined in (7.2.4).

To obtain a solution for (7.3.1) the minimization problem

L̂, Ŝ = arg min
L,S

λl ‖L‖∗ + λs ‖S‖1 (7.3.2)

s.t.
∥∥∥y −A(S +L; β̂, ϕ̂m

)∥∥∥2

2
< ε2,

is solved, for which the turbo compressed robust principal component analysis (TCRPCA) algo-

rithm presented in Section 6.6 is used. As was explained in detail in Section 5, a unique separation

within (7.3.2) would require the rank-sparsity incoherence condition to be fulfilled. This means

that sparse entries within S̃ must be uniformly distributed (and hence must not form clusters) and

entries within L̃ must be evenly distributed in magnitude, dense, and not spiky. Unfortunately,

the latter condition is not fulfilled given the concentrated clutter ridge. To guide the separation

into a favorable direction, the sparsity ratio operator Qκs (S) defined in (5.2.8) and the infinity

norm thresholding operator Pϕ (L) defined in (5.2.9) are used. These operators prevent clus-

tering of sparse entries and spiky low rank entries. The infinity thresholding operator Pϕ (L) is

applied only at the first few iterations, since it finally needs to contain the spiky clutter ridge con-

tradicting the thresholding of such. The purpose of Pϕ (L) in the first few iteration is to prevent

the low rank solution L to acquire strong sparse entries, which should be reconstructed within

S. Furthermore, no sparse entries are allowed to be placed at the focused clutter ridge at ū = 0

including aliased Doppler frequencies as at this position only non-moving clutter patches are lo-

cated. For all examples shown, these forbidden areas are marked as shaded areas. In addition,

all reconstructions within S showing an SNR < 10 dB are also set to zero. This is motivated from

the fact that a reliable detection needs at least SNR ≥ 10 dB according to standard detection

theory [4]. The final goal is Ŝ to contain only sparse moving targets and L̂ to contain the clutter

ridge including all clutter leakage contributions. This, however, renders to be a challenging task

as spiky clutter residuals tend to remain within Ŝ. In order to prevent such, the measurement

vector y can be preconditioned with the aim of decreasing spiky clutter contributions. This is

discussed in the following section.
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−0.4 −0.2 0 0.2 0.4

−0.4

−0.2

0

0.2

0.4

Doppler in 1

A
ng

le
in

1

(b) Reconstructed low-rank matrix L̂.

Figure 7.3.1.: Separation result for the case of yin = y.

7.3.2. On the Preconditioning of the Measurement Samples

The need of a preconditioned yin becomes immediately apparent in case one tries to conduct the

separation for the choice yin = y. The separation result is shown in Fig. 7.3.1, where Ŝ contains

diagonal running (Doppler) clutter leakage entries stemming from incomplete clutter samples. A

detailed explanation of this phenomena was given in Section 7.1. Since such diagonal running

entries are not low rank alike at all, it is not possible to enforce their reconstruction within L̂.

Within Fig. 7.3.1a, the red circle marks the position where the target is supposed to be. Evidently,

it is not reconstructed as the moving target has to compete with the clutter leakage. For the given

case of SNR = 15 dB and CNR = 60 dB, the target is too weak compared to the clutter leakage

energy. In Fig. 7.3.1b, the shaded pixels mark areas which are blocked to be reconstructed in Ŝ.

It renders to be necessary to remove diagonal clutter leakage components in a first step. One

obvious way to do so to choose yin = ycut as defined in (7.2.17). The separation result for this

choice is shown in Fig. 7.3.2. Evidently, the moving target is successfully reconstructed within

Ŝ. Unfortunately, also quiet much unwanted clutter leakage energy, i. e. false alarms, is found

within Ŝ, especially at locations from aliased Doppler frequencies. The reason therefore is, that

in case of Doppler aliasing and present velocity misalignment, the clutter ridge can no longer

be focused onto a single row as was explained in Section 7.1. Non focused clutter samples are

neither low rank alike and therefore are likely to be placed within Ŝ. One possibility to treat this

problem is to consider only that part in ū which does not contain clutter ambiguities e. g. ignore

all outside of ū ∈ [−0.2, 0.2]. If case this is not possible, further approaches are necessary. In the

following, two ideas are presented.

An alternative approach to suppress unwanted clutter contributions is to use the estimated

parameters β̂ and ϕ̂m to setup a projection filter. As explained in detail in Section 2.2, the clutter

subspace does not span the total signal space, hence by projecting the measurements onto the

complementary clutter subspace, the clutter signals can be suppressed. The clutter subspace is

spanned by the space-time clutter manifold vector gc (ū;β, ϕm) defined in (2.2.9) for ū ∈ [−d̄, d̄).

For discretized ū, this clutter vector can be stacked into a matrix as defined in (2.2.12) as

Gc (β, ϕm) = [gc (ūnc ;β, ϕm)]
Nc/2−1
nc=−Nc/2

∈ CNrxNp×Nc . (7.3.3)
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(b) Reconstructed low-rank matrix L̂.

Figure 7.3.2.: Separation result for the case of yin = ycut.

In the limit of Nc → ∞, this matrix spans the same space as the manifold vector gc (ū;β, ϕm).

A basis Uc for the column subspace spanned by Gc (β, ϕm) can be found in the least minimum

square error sense by use of an singular value decomposition (SVD) as

Gc (β, ϕm) = UcΣcV
H

c .

From basic properties of the SVD, the column space Uc of Gc (β, ϕm) can be identified with the

Eigenvectors of Gc (β, ϕm)GH
c (β, ϕm) since

Gc (β, ϕm)GH
c (β, ϕm) = UcΣcV

H
c VcΣcU

H
c

= UcΛcU
H
c ,

where V H
c Vc = I was used and Λc = ΣcΣc are the corresponding Eigenvalues. In the limit of

Nc →∞, the matrix product Gc (β, ϕm)GH
c (β, ϕm) becomes

lim
Nc→∞

GcG
H
c = lim

Nc→∞

Nc/2−1∑
nc=−Nc/2

gc (ūnc) g
H
c (ūnc)

=

d̄ˆ

−d̄

gc (ū;β, ϕm) gH
c (ū;β, ϕm) dū

As shown in detail in Section 2.2, this integral form coincides with the model for a clutter covari-

ance matrix

Rc (β, ϕm) =

d̄ˆ

−d̄

gc (ū;β, ϕm) gH
c (ū;β, ϕm) dū, (7.3.4)

which is similar to (2.2.17), however, with the further assumption that the clutter patch power

is constant with Pc (ū) = 1. Following the explanations given in Section 2.3.3, a projection onto

the complementary clutter subspace is given by
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Figure 7.3.3.: Eigenvalues of Rc (β, ϕm) for β ∈ {0.5, 1, 2.5} and ϕm ∈ {0, 0.35}.

P⊥c = I −UeffU
H
eff ,

where

Ueff = [uc,i]
ρeff
i=1 ∈ CNrxNp×ρeff

spans the effective clutter subspace. To the contrary as explained in Section 2.3.3, where not

Rc but only Rcn = Rc + Rn was available, the effective rank can be easily determined from

Λc. Due to the absence of noise eigenvalues, a sharp drop of the clutter eigenvalues marking

ρeff can always be found. An example of emerging eigenvalues for various Rc (β, ϕm) is shown

in Fig. 7.3.3. For all simulations to follow, the effective rank was chosen to be the number of

eigenvalues greater than 10−12. All remaining eigenvalues are accounted to be non zero only due

to numerical noise. With this projection at hand, a preconditioned measurement vector can be

setup as

yin = P⊥c y = ypp. (7.3.5)

While projection filters are very effective, they are susceptible to parameter variations i. e. the

parameters need to be known very precisely. An example for this preconditioning is shown in

Fig. 7.3.4. The parameters were estimated to be β̂ = 2.5038 and ϕ̂m = 0.3500175 rad using the

auto-clutter focus (ACF) algorithm. As can be seen, the clutter energy is suppressed completely.

Nevertheless, if the parameters are estimated not well enough, clutter residuals will occur. The

filter characteristic in terms of signal to interference and noise ratio (SINR) loss as defined in

(2.3.11) is shown in Fig. 7.3.4c and Fig. 7.3.4d. Within Fig. 7.3.4c and all following figures,

the curves denoted as true and estimated refer to filters setup using the true and estimated

parameters β and ϕm. The curves optimal denote the optimal SINR loss as defined in (2.3.4).

Next, the projection matrix may further be used to setup a matched subspace detector. Following

the explanations given in Section 2.3, the corresponding filter vector becomes

wmsd =
P⊥c g√
gHP⊥c g

, (7.3.6)

with

yin = wH
msdy = ymsd
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Figure 7.3.4.: Separation result for the case of yin = ypp.
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Figure 7.3.5.: Separation result for the case of yin = ymsd.
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Figure 7.3.6.: Separation result for the case of yin = ycut,pp.

The matched subspace detector filter aims to suppress the clutter contributions and simultane-

ously establishes a flat noise level suitable for thresholding (hence the name detector). An exam-

ple is shown in Fig. 7.3.5. The filter characteristic in terms of SINR loss is the same as for the

projection filter (7.3.5). The results are very similar to the projection filter, however, the separa-

tion in Ŝ appear somewhat more populated. Finally, it is also possible to combine cutting and

filtering, which especially comes in handy in case of badly estimated parameters. This is shown

in Fig. 7.3.6. The results for the matched subspace detector filter are very similar and are omitted

here. An example for badly estimated parameters is shown in Fig. 7.3.7, where β̂ = β̃ + 0.1 and

ϕ̂m = ϕ̃m + 5 · 10−4 rad was used. As can be seen, more clutter residuals occur. However, a

major part of the clutter contributions was suppressed. The target was successfully found by use

of the TCRPCA separation. An advantage of such a pre-filter step is to reduce the spikiness of

the clutter mitigating the rank-sparsity incoherence condition requirement. The effect of wrongly

estimated parameters on the filtering is shown in Fig. 7.3.7d, where the difference in dB of the

SINR losses for the estimated parameters and the optimal filter characteristic is shown. Especially

for Doppler frequencies off zero, the filter notches separate leaving clutter contributions remain

in the filtered measurement data.

As a final remark it shall be mentioned here, that the methods for clutter separation presented
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(c) SINR loss of P⊥c at ū = −0.17.

−0.4 −0.2 0 0.2 0.4

−0.4

−0.2

0

0.2

0.4

Doppler in 1

A
ng

le
in

1

−40

−20

0

20

(d) SINR loss difference SINRpp − SINRopt in dB.

Figure 7.3.7.: Separation result for the case of yin = ycut,pp for wrongly estimated parameters
β̂ = β̃ + 0.1 and ϕ̂m = ϕ̃m + 5 · 10−4 rad.
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−0.4 −0.2 0 0.2 0.4

−0.4

−0.2

0

0.2

0.4

Doppler in 1

A
ng

le
in

1

(b) Reconstructed low-rank matrix L̂.

−0.4 −0.2 0 0.2 0.4

−40

−20

0

Doppler in 1

SI
N
R

lo
ss

in
dB

True
Estimated
Optimal
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Figure 7.3.8.: Separation result for the case of yin = ycut,pp including ICM with σvel = 20 m/s.

so far are not suitable to handle clutter stemming from internal clutter motion (ICM). By its

very nature, ICM is a moving clutter source. The compressed robust principal component analysis

(CRPCA) approach as well as the filter model are suitable for non moving clutter only. An example

including ICM is shown in Fig. 7.3.8 for σvel = 20 m/s. As can be seen from the optimal filter

characteristic in Fig. 7.3.8c, the clutter ridge broadens due to ICM. Since the covariance model in

(7.3.4) does not incorporate ICM, the derived filters result in filter characteristics showing a too

narrow filter notch. As a consequence, much clutter residuals remain for the CRPCA algorithm to

handle. Depending on the amount of remaining ICM clutter, spiky residuals may remain which are

reconstructed within Ŝ as shown in Fig. 7.3.8a. One possibility to mitigate this effect is to allow

the low-rank solution L̂ to contain ICM clutter by reducing the cost factor λl. This, however,

bears the risk to miss weak moving targets as those contributions may also be accounted to

L̂. Another possibility is to adapt the model filter (7.3.4), introducing additional parameters to

estimate. This is subject to further investigation and is not treated within this work.

Except from the subspace projection approach (7.3.5), all methods presented above require all

measurements i. e. SSFp = SSFc = 1. Since CRPCA is applicable also in case of missing samples,

the preconditioning needs to be extended adequately. This is discussed in the following section.
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7.3.3. On the Sub-Sampling Effects on Separation

In the previous section, the separation of static clutter from moving targets was presented for the

case of no sub sampling. Since CRPCA is used, it is conceivable to conduct the separation also

in case of missing samples, as was done for the parameter estimation in Section 7.2. A practical

use case therefore would be to save antenna channels in order to reduce weight and cost of the

radar sensor. Another one would be to skip pulses during a coherent processing interval (CPI) and

instead use the available time to conduct a different radar task e. g. tracking etc. In order to be

able to handle missing samples, the impact of the sub sampling process onto the preconditioning

of the measurement sample vector y needs to be accounted for. In the following, the filtering of

y is conducted by the use of the complementary clutter space projection P⊥c only. Let

yup = vec (Yup) ∈ CNuND

be the vectorized version of the up sampled measurement matrix Yup as defined in (7.2.15). With

this definition at hand, a preconditioned measurement vector may be set up in a similar manner

to (7.3.5) as

yin =
(
P⊥c yup

)
Ωy
∈ CNcNp , (7.3.7)

where Ωy denotes the sample index set and xΩy means selecting all entries within x defined in Ωy

yielding a vector of reduced size. However, the preconditioning defined in (7.3.7) is not feasible.

At first, P⊥c yup yields a vector being an element of the complementary clutter space, as desired,

yet gives a densely populated vector in general. At second, applying the sub sampling operator

is equivalent to setting all entries within the up sampled vector to zero which are not in Ωy. This

yields a vector which in general is not an element of the complementary clutter subspace defined

by the range of P⊥c . Let

S(Ω⊥y ) =
{
x ∈ CNuND |xΩ⊥y = 0

}
be the set of all vectors which have zero-entries at the complementary sample index set Ω⊥y . By

definition, yup ∈ S(Ω⊥y ). Furthermore, let

C(P⊥c ) =
{
x ∈ CNuND |x ∈ range(P⊥c )

}
be the set of all vectors in the range of the complementary clutter subspace. Both sets S(Ω⊥y ) and

C(P⊥c ) are closed convex subspaces.29 For a successful clutter suppression, the preconditioned

and up sampled measurement vector needs to be an element of the intersection S(Ω⊥y )∩ C(P⊥c ).

One possibility to find a suitable yin is to use the method of alternating projection as

xi = PS ◦ PC ◦ xi−1 (7.3.8)

until a suitable abortion criteria is met. In this scheme, PS and PC denote projections onto the

corresponding vector spaces S(Ω⊥y ) and C(P⊥c ). It is well known, that the method of alternating

29This can be seen immediately from the definition of a convex set: Let S be a subset of Cn. S is a convex set if it
is closed under convex combinations. Thus, for any k > 0, for any vectors v1, . . . ,vk ∈ S, and for any scalars
λ1, . . . , λk ∈ R+ satisfying

∑k
i=1 λi = 1, the convex combination

∑k
i=1 λivi is also in S. Furthermore, S is a

subspace if it is closed under any linear combination. Thus, any subspace is also a convex set.
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Figure 7.3.9.: The alternating projection scheme for sub sampled filtering.

projections finds a point of the intersection of two closed convex sets given the sets are not

disjoint and the angle of interception is sharp i. e. the cosine of the angle between the subspaces

is positive [74]. An illustration of this projection scheme is shown in Fig. 7.3.9. It shall be noted,

that the matched subspace detection filter wmsd given in (7.3.6) cannot be used instead of the

projection filter P⊥c , since wmsd is not idempotent, a prerequisite for a valid projection operator.

The final preconditioned measurement vector is obtained by sub sampling as

yin = xfinal,Ωy ,

where xfinal is the final result of the alternating projection scheme. An algorithm conducting

(7.3.8) called alternating projection sub sample filtering (APSF) is given in Algorithm 7.2. Instead

Algorithm 7.2 The APSF algorithm.

Input: yup, Ωy, Ω⊥y , P⊥c , I
Initialization:

1: x0 ← yup

2: i← 0, d←∞, ε← 10−8

Body:
1: while d > ε and i < I do
2: i← i+ 1
3: xi ← P⊥c xi−1

4: xi,Ω⊥y ← 0

5: d← ‖xi − xi−1‖22 / ‖xi−1‖22
6: end while

Output: yin ← xi,Ωy

of yup, also the pre-cut measurement vector ycut = vec (Ycut) defined in (7.2.16) can be used

for a further clutter suppression. This is done in the following. In Fig. 7.3.10, the first few in-

termediate and the final result of the filtering scheme is shown in the focused scene domain as

A−1
(
xi; β̃, ϕ̃m

)
for the case of SSFc = 0.5, SSFp = 1.30 For a better illustration, the target en-

ergy was increased to SNR = 45 dB. Due to the sub sampling in the channel domain, distortions

in the angle domain emerge, however, due to cutting no diagonal clutter residuals emerge. Itera-

tion by iteration, the distorted clutter energy is reduced by the APSF procedure. In the final result,

only the strong target remains as desired. In Fig. 7.3.11, the results for the case of SSFc = 1,
30Note that since xi ∈ CNuND is an up sampled vector, the sensing operator is invertible, hence A−1 exists. The result

is the same as applying the hermitian sensing operator AH onto the sub sampled measurement vector.
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Figure 7.3.10.: Intermediate and final result of the APSF algorithm in the scene domain for the
case of yin = ycut, SSFc = 0.5, and SSFp = 1.
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Figure 7.3.11.: Intermediate and final result of the APSF algorithm in the scene domain for the
case of yin = ycut, SSFc = 1, and SSFp = 0.5.

SSFp = 0.5 is shown. Note here, that although cutting was conducted, diagonal clutter residuals

occur. This is a direct consequence of focusing the clutter ridge in the angle domain. As was

explained in Section 7.1, focusing in the angle domain is equivalent to shift space-time samples

in the time domain. In case of no missing pulses, non redundant clutter samples occur only at

the edges of the measurement map Y and can be cut in the time domain. Cutting in the time

domain is advantageous as it is easier and cheaper to obtain a larger number of pulses compared

to channels. In case of missing pulses, multiple non redundant samples emerge in the middle

of Y and can not be get rid by cutting except a very large amount of pulses is available. To the

contrary, skipping channels in combination with a clutter focus in the angle domain does not yield

any non redundant sample arrangements. Hence, diagonal entries do not occur as was the case

in the latter example. Nevertheless, in case the parameters β and ϕm are known very well, the

projection filter also cancels the effect of the non redundant samples as shown in Fig. 7.3.11c. It

shall be mentioned, that if the clutter ridge is not focused in the angle but in the Doppler domain,

the sub sampling effect is exactly the opposite. In this case, skipping pulses would not cause any

non redundant arrangements, while missing channels would. A possible combination of both

clutter focus approaches is beyond the scope of this work.

As was seen from the figures shown before, cutting alone is not sufficient anymore to handle
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Figure 7.3.12.: Intermediate and final result of the APSF algorithm in the scene domain for the
case of yin = y, SSFc = 0.5, and SSFp = 1.

the impact of non redundant samples in case of missing pulses. Hence, cutting can be neglected

as a preconditioning step of yin at all. The success of the separation therefore depends purely

on the quality of the estimated parameters β and ϕm. In Fig. 7.3.12 and Fig. 7.3.13, the filter

results without cutting are shown. As can be noticed, the signal to noise ratio (SNR) of the

target is slightly higher. This is due to two facts, first of all as no pulses were cut, no target

energy is lost. Secondly, the target is not smeared in angle dimension, a consequence of cutting.

However, this is a leakage effect which in general always might happen. Another beneficial effect

compared to the cut versions above is the less structured clutter floor. Especially close at the

clutter ridge, structured clutter residuals emerge when cutting was conducted. These residuals

might be reconstructed within the sparse matrix S, increasing the false alarm rate.

An alternative approach compared to the alternating projection scheme is to incorporate the

filtering step into the robust principal component analysis (RPCA) algorithm and use yin = y. Just

like the sparsity ratio operator Qκs (S) defined in (5.2.8), the filter step can be introduced as an

additional restriction of the sparse reconstruction S. This approach would also allow to apply the

matched subspace detector filter wmsd for sub sampled reconstructions. However, this renders

the RPCA separation problem to be incomplete in the sense that non redundant clutter samples

which would be placed within S are not accounted for. Due to their non-low rank nature, the
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Figure 7.3.13.: Intermediate and final result of the APSF algorithm in the scene domain for the
case of yin = y, SSFc = 1, and SSFp = 0.5.
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energy of these samples also will not be placed in the low rank reconstruction L. Consequently,

the residual error term h holds them. This renders to be a potential bias in the reconstruction

scheme since the gradients depend on the residual term. In summary, the measurement and the

separation model would not coincide, rendering the separation result questionable. Therefore,

all separations shown in the following were conducted using the APSF algorithm to generate a

preconditioned measurement vector yin.

7.3.4. Statistical Evaluation

In this section, a statistical evaluation of the separation of moving targets from static clutter is

presented. Since ICM is not covered by the approaches presented in this work, no statistical

evaluation therefore was conducted therefore. In the following, the detection performance of

the RPCA approach was evaluated. To do so, a sweep versus SNR was conducted for Nmc = 100

Monte Carlo runs each with a fixed CNR = 60 dB. In every run, the parameters β̂ and ϕ̂m were

at first estimated using the ACF algorithm presented in Section 7.2. Thereafter, the target clutter

separation was conducted using the RPCA based separation approach presented before. As a

preconditioning, the APSF algorithm given in Algorithm 7.2 was used in case of scenarios with

missing channels or pulses. In case of SSFp = SSFc = 1, also the matched subspace detector

filter was applied. The probability of detection pD was thereafter determined by checking if a

target is present within the sparse reconstruction Ŝ at the known target position. Dividing the

number of detections by Nmc yields the estimate p̂D. To check that the determined p̂D curve is

not too severely biased from false detections31, the signal was removed from the Monte Carlo

realization and the detection test was repeated. If in this case a detection was still present, this

was caused by clutter and noise energy only. This verification curve is termed false detection

rate or p̂D false in the following. The general false alarm rate pFA was checked by conducting

simulations without present targets and counting all detections within Ŝ. Dividing this number

of false detections by Nmc and the number of bins i. e. NpNc yields the estimate p̂FA. However,

the required amount of Monte Carlo (MC) runs to estimate pFA reliably is extremely high! It is

not computationally feasible and thus the results are not representative.32 They are therefore

not shown in this work and merely serve the purpose of checking for possible weaknesses of

the preconditioning and the RPCA approach. For the sake of comparison, the preconditioning

31Detections caused from noise and clutter energy only, not from signal energy.
32The MC estimation procedure of determining pFA is a scaled Bernoulli process i. e. the estimator is

p̂FA =

∑NmcNcNp

i Xi
NmcNcNp

,

where Xi is a Bernoulli distributed random variable (RV) representing the detection of a target (detected or not
detected). The estimator p̂FA is therefore binomially distributed with standard deviation

σ(p̂FA) =

√
p̂FA(1− p̂FA)

NmcNcNp
.

The typical desired false alarm probability of space-time adaptive processing (STAP) detectors is 10−6. If this level is
to be estimated up to 1% accuracy, the required number of MC runs is Nmc ' 4.8 · 106. The corresponding 95%
confidence interval is 10−6 ± 1.96 · 10−8 for which the Wald approximation was used. If every MC run requires
10 sec this would take ∼ 11/2 years to complete.

The standard deviation of pD = 0.9 for Nmc = 100 results to σ(pD)/pD = 3.3̇% with a 95% confidence interval
of 0.9± 0.058.
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and the separation approach was also conducted using the true parameters β̃ and ϕ̃m. This

allows to determine the influence of the ACF algorithm on the separation results. The simulation

results for pD versus SNR are shown in Fig. 7.3.14, where the solid lines mark the results using

the estimated parameter β̂ and ϕ̂m and the dashed lines the results using the true parameter β̃

and ϕ̃m. Figure 7.3.14a illustrates the results in case of channel sub sampling but with all pulses

available. As explained in Section 7.2, this setting allows for the parameters β̂ and ϕ̂m to be

well estimable. Consequently, the solid and dashed lines lie close together. The results in case

of missing pulses but all channels available are shown in Fig. 7.3.14b. This setup aggravates

the estimation of β̂ and ϕ̂m, consequently the detection performance using these is diminished

compared to the ideal case using β̃ and ϕ̃m. This is also the reason SSFp = 0.5 is not shown in

Fig. 7.3.14b as the estimation of β̂ and ϕ̂m failed completely. As a benchmark, the pD vs SNR

curve corresponding to a matched filter (MF) detector is shown as well.33 As was explained in

Section 2.3.4, the MF detector assumes the true covariance matrix to be known which allows

for optimal detection and thus represents the best possible detection performance. Comparing

different detectors is usually done for a fixed pFA and comparing their pD versus SNR curves.

Since the pFA of the presented approach can not be determined reliably, the MF curve was fitted

to the comparable case of SSFc = SSFp = 1. The corresponding threshold value of the MF

detector is 12 dB which is equivalent to a pFA ' 1.31 · 10−7 [76]. The estimated probability of

false alarm (PFA) of the RPCA approach, yet statistically not reliable, was found to be of the same

order of magnitude. Although this statement would need to be verified by further simulations,

this indicates that the presented approach achieves the best possible performance in the SSFc =

SSFp = 1 case. The false detection rate is shown in Fig. 7.3.14c and Fig. 7.3.14d. As can be seen,

false detections are practically nonexistent. The pD curves are therefore merely not biased due

to false detections. The result for the matched subspace detector filter is shown in Fig. 7.3.15,

where only the case SSFp = SSFc = 1 is applicable. The performance is comparable to the

projection filter shown above. Just as the case with the MF, the matched subspace detection

filter and the projection filter can not be compared directly here. From the plot it seems, that

the matched subspace detection filter shows slightly higher detection performance, however, the

unreliably estimated PFA seemed to be a bit higher than that of the projection filter. Nevertheless,

their performances are quite equivalent giving the projection filter a slight advantage in less

required computation time. The separation performance with respect to the sub sampling factor

- symbol: SSFs (SSFs) is shown in Fig. 7.3.16. The performance depends mainly on the quality

of the estimated parameters β̂ and ϕ̂m as can be seen by comparing the corresponding results

in Fig. 7.3.16a and Fig. 7.3.16c to those where the true parameters were used in Fig. 7.3.16b

and Fig. 7.3.16d. In case of less used pulses, the estimated parameters deviate such that the

subspace projection filter used in the preconditioning step can not sufficiently cancel the clutter

33generalized likelihood ratio test (GLRT) and adaptive matched filter (AMF) benchmarks are not shown for two reason.
At first, the corresponding pD equations contain factorials of the product NpNc, which in this work was chosen
to be 2048 [24, 75]. However, the maximum computable factorial using the commonly available IEEE-754 float
double precision format is 170! ' 7.3 ·10306. Therefore, the corresponding pD curves can not be computed without
significant effort. Furthermore, the GLRT and AMF detectors suffer an SNR loss due to the required estimation of
the unknown covariance matrix and the estimation of a constant false alarm rate (CFAR) threshold. This loss
depends on the the number of training data range gates. Commonly, the number of training gates has to be two
to five times the number of NpNc. The minimal required number of training gates for the scenario depicted in this
work is far beyond any practical meaning. Hence a comparison to these detectors renders to be of no use.
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(b) pD vs. SNR and SSFp for SSFc = 1.
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(c) False detection rate vs. SSFc and SNR for SSFp = 1.

5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

SNR in dB

p
D

fa
ls

e
in

1

1
0.9
0.8
0.7

(d) False detection rate vs. SSFp and SNR for SSFc = 1.

Figure 7.3.14.: Separation results using APSF for preconditioning. Solid lines mark results using
the estimated parameters β̂ and ϕ̂m and dashed lines using true parameters β̃ and
ϕ̃m.
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Figure 7.3.15.: Separation results using the matched subspace detection filter wmsd from 7.3.6
for preconditioning. Solid lines mark results using the estimated parameters β̂
and ϕ̂m and dashed lines using true parameters β̃ and ϕ̃m. Sub sampling is not
applicable, hence SSFc = SSFp = 1.
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Figure 7.3.16.: Separation results vs. SSFs using APSF for preconditioning.

or the clutter spikiness. It therefore seems a viable goal to improve the estimation performance

in a future work.

7.3.5. Summary

In this section, the separation of moving targets from static clutter using CRPCA was presented.

The sensing operator used for separation is the same used for the ACF algorithm which focuses

the clutter ridge onto ū = 0. In order to obtain a low rank matrix for static clutter contributions,

a preconditioning of the measurement signal is required. If this step would be omitted, diagonal

entries within Ŝ would emerge from non redundant clutter samples. A detailed explanation of

this fact was given in Section 7.1. Various preconditioning approaches were tested, namely the

cutting of the measurement matrix Y as was done for the ACF algorithm, a subspace projection

filter and a matched subspace detection filter. The approach of cutting non redundant samples

alone is sub optimal as it leaves the resulting low rank matrix to be of spiky nature. This contradicts

the prerequisites of the CRPCA approach, which requires non-spiky entries within the low rank

matrix in order to allow for a diffuse separation. As a consequence, many clutter residual entries

may remain in Ŝ. Nonetheless, cutting may be combined with the latter two approaches for

increased robustness of the CRPCA based separation against badly estimated parameters β̂ and

ϕ̂m. This, however, is only applicable in case of no sub sampling. The subspace projection filter
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and the matched subspace detector filter suppress all clutter contributions completely in case the

parameters β̂ and ϕ̂m were estimated well enough. In this case, the low rank matrix renders to

be empty with moving targets located in the sparse matrix only. If the parameters were estimated

badly, clutter residuals occur which, however, are of less spiky nature as the filters suppress a big

part of the clutter ridge energy. Clutter residuals are therefore more likely reconstructed within

the low rank matrix L̂ enhancing the robustness of the CRPCA separation approach. In case of

well estimated parameters, the presented filters are also capable of suppressing excessively strong

clutter contributions due to the orthogonal projection approach. The common problem in setting

up projection filters of choosing the clutter subspace size is circumvented due to the absence

of noise in the covariance matrix model (7.3.4). The size of the clutter subspace therefore can

be determined by counting all eigenvalues of the clutter covariance matrix Rc greater than a

numerical noise threshold. Both filters yield similar detection performance. The preconditioning

approaches of cutting and the matched subspace detection filter do not allow for any spatial or

temporal sub sampling. The subspace projection filter, however, can be extended to the APSF

algorithm which successfully suppresses clutter contributions within a sub sampled measurement

vector. The presented filter schemes are applicable for static clutter only as they do not include

ICM effects. Extending the model filters to include these is subject to future work.

Finally, the probability of detection pD and the false alarm probability pFA were evaluated

for the subspace projection filter and the matched subspace detection filter preconditioning ap-

proaches. In general, the detection performance mainly depends on the preconditioning step and

less on the CRPCA settings. In case the parameters β̂ and ϕ̂m can be estimated good enough,

the clutter can be well suppressed which naturally yields a high detection performance. The ACF

algorithm presented in this work estimates the required parameters well in case of missing chan-

nels, yet is susceptible for missing pulses. This is reflected in the detection performance. How

to improve the estimation performance further is an interesting research question, however, is

beyond the scope of this work. Furthermore, pD decreases the less pulses and channels are used,

also in case of a perfect preconditioning. This a quite natural behavior of compressive sensing al-

gorithms. The performance may be enhanced by improving the restricted isometry property (RIP)

and restricted rank isometry property (RRIP) properties of the sensing operator A e. g. by adapt-

ing the radar transmit signal. The reader may refer to [68]. The false alarm probability pFA was

evaluated briefly and also depends heavily on the quality of the estimated parameters. Although

the numerical simulations regarding the PFA are not statistically reliable (due to the extremely

high amount of required MC runs), the performance in terms of pD and pFA are comparable to a

MF detector and as such achieve near optimal detection performance.
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Although extensive research was conducted in the recent decades to mitigate the shortcomings

of space-time adaptive processing (STAP), no attempt was made so far to evade its fundamental

problem: the need for training data. In this work, initial approaches to do so are presented using

low-rank and compressed sensing methods.

Within the realm of ground moving target indication (GMTI), space-time adaptive processing

is the state-of-the-art algorithm to detect moving targets. A basic part of STAP is its adaptive

nature i. e. an optimal filter to suppress clutter contributions is formed by using measured training

data taken from the very same radar scene. In order for this to work, several prerequisites are

necessary:

• sufficient, independently sampled training data is available

• all training data shares the same clutter structure as the cell under test (CUT)

• no training data contains any moving target signals contributions.

If all of the listed points can be met, STAP is an ideal method to use. It does not require any

knowledge of the measurement process e. g. the radar velocity and orientation, array config-

uration, pulse repetition frequency (PRF), antenna beam pattern etc. In its very essence, STAP

composes a filter which cancels every signal contribution present in the training data. If the first

two prerequisites are not met, clutter residuals will occur as the composed filter does not fit to

the clutter structure of the CUT. A moving target present in the training data results in target

masking as the composed filter is trained to also cancel such signal contributions. Extensive re-

search was conducted to mitigate the prerequisites of STAP, however, training data remains to be

still needed. Therefore, all aforementioned shortcomings are still present.

In this work, attempts to evade the need for training data and as such the shortcomings of

STAP are presented. Rather than using training data, the measurement data of the CUT alone

is used to obtain sufficient information in order to separate clutter from moving targets. This is

accomplished by exploiting the correlated nature of the measurement process. As this is the first

attempt to do so, an idealized measurement process and radar scene are assumed:

• perfectly calibrated uniform linear array (ULA) antenna array

• sufficient radar channels (32 channels used in this work)

• flat earth condition

• rough knowledge of radar velocity and orientation (e. g. through inertial measurement unit

(IMU))
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• no polar velocity misalignment i. e. ϑm = π/2 rad

• moving targets are of type Swerling 0 and only sparsely present

The methods presented in this work are based on low-rank and compressed sensing methods.

Most standard methods from the literature, however, do not consider the practical needs of radar

signal processing e. g. they suffer from restrictions to real numbers, slow convergence rate, low

reconstruction performance, or knowledge of unknown parameters like the precise number of

sparse entries or the exact rank of a low-rank matrix. The first contributions of this work to

radar signal processing was to combine and extend compressive sensing (CS) and affine rank

minimization (ARM) algorithms to comprise a set of high performance CS, ARM, and compressed

robust principal component analysis (CRPCA) algorithms as there are:

• turbo shrinkage-thresholding (TST)

• complex successive concave sparsity approximation (CSCSA)

• turbo singular value thresholding (TSVT)

• complex smoothed rank approximation (CSRA)

• turbo compressed robust principal component analysis (TCRPCA).

These algorithms avoid the aforementioned shortcomings and show state-of-the-art reconstruc-

tion performance as was shown by use of phase transition plots. They furthermore offer very

high convergence rates next to low computational complexity due to the use of closed form so-

lutions of subsequent optimization problems. The only parameter required to know is the noise

power Pn, which is commonly known in radar applications. In case of very big low rank matri-

ces to reconstruct, the required singular value decomposition (SVD) computation step might be

a bottleneck in terms of computational complexity. To circumvent this problem, an alternative

algorithm called bi-factored gradient descent (BFGD) may be used. It avoids the usage of SVDs,

however, requires an initial solution somewhat close to the final solution. A contribution to the

BFGD algorithm presented in this work is the derivation of an optimal step size formula which

improves the convergence speed.

The partitioning of the radar signals into stationary and moving targets is done in three steps:

1. focusing of the clutter ridge and estimation of the parameters β and ϕm i. e. the clutter

ridge slope and the velocity misalignment angle

2. preconditioning of the measurement signal y using β and ϕm

3. separation of preconditioned and focused radar scene into stationary and moving targets.

Therefore, the following contributions to radar signal processing were developed:

• auto-clutter focus (ACF) algorithm

• a model based projection filter

• alternating projection sub sample filtering (APSF) algorithm
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• an CRPCA based separation model.

The key idea to separate moving targets from stationary clutter from CUT measurement data only

is to exploit the correlated nature of the clutter signals to form a low rank matrix. In the radar

scene, i. e. in the angle-Doppler domain, this is accomplished by focusing the clutter ridge onto

ū = 0 or f̄D = 0, where in this work the focusing on ū = 0 is used. For the focusing operation

cyclic sub sample shifts in the ū dimension of the radar scene are used. The shift amount 4ū
depends on the parameters β and ϕm. The ACF algorithm now estimates these parameters using

a low rank and an energy objective function i. e. for correctly chosen parameters, the focused

clutter scene has minimal rank with the clutter ridge being focused onto ū = 0 (except for aliased

clutter signals). This approach is to some extend robust against targets present in the CUT. As

long as SNR > CNR, the ACF algorithm is successful. In case of low Doppler leakage also

stronger targets are not of concern. Moving targets which appear as sparse entries in the radar

scene remain sparse by the clutter focus operation. Hence, the radar scene after focusing is the

sum of a low rank and a sparse matrix L+S. This superposition is separated into S and L by use

of an CRPCA approach. However, before being able to do so a preconditioning step is necessary.

For a successful separation using the CRPCA approach the so called rank-sparsity incoherence

condition must be fulfilled. Among other things this means that the low rank matrix L must not

contain spiky entries unlike the clutter ridge itself. While it is easily possible to exclude the clutter

ridge at ū = 0 from being reconstructed within S, this is not possible for aliased clutter signals

or strong clutter leakage. Therefore, the previously estimated parameters β and ϕm are used to

setup a model based projection filter to suppress clutter contributions. In case of missing pulses

or channels, the preconditioning is accomplished by the APSF algorithm. In the best case i. e. if

the parameters β and ϕm were estimated good enough, the projection filter cancels all clutter

contributions within the preconditioning step, rendering the final low rank matrix to be empty.

In case the parameters are erroneous, clutter residuals occur. Nevertheless, the preconditioning

step reduces the spikiness of the clutter residuals allowing the CRPCA approach to reconstruct

these residuals within the low rank matrix L as desired. The approach and techniques presented

in this work a capable of handling static clutter only. As such, effects like internal clutter motion

(ICM) are not covered and are subject to future research. The presented approach was extensively

evaluated in terms of parameter estimation performance and probability of detection pD by use

of Monte Carlo simulations for various sub sampling factor - symbol: SSFs (SSFs). Due to the

excessive amount of Monte Carlo runs needed to adequately estimated the false alarm proba-

bility, pFA was not evaluated. The overall success in case of missing pulses or channels heavily

depends on the sensing operator A. Especially the position of the missing pulses or channels

determine the separation quality. Unfortunately, selecting optimal pulse and channel positions is

an NP -hard problem. Within this work, 300 combinations of various pulse and channel locations

were evaluated for every SSF in order to avoid obvious sub optimal arrangements. Other common

approaches like adjusting the transmit signal to improve the sensing operator A are not consid-

ered in this work. The separation approach presented in this work works well in case of missing

channels, yet is susceptible for missing pulses. This is a consequence of the choice to focus the

clutter ridge onto ū = 0 and might be improved by additionally focusing the clutter ridge onto

f̄D = 0 followed by a subsequent fusion of the results. The probability of detection was deter-

Fraunhofer FHR 181|255



8. Conclusion Fraunhofer FHR

mined for a detection threshold of 10 dB and compared to the standard adaptive matched filter

(AMF) detector. In case of no missing pulses or channels, the detection performances coincide.

In case of missing samples, the detection performance diminishes slightly. Successful detections

are currently possible for SSFp ≥ 0.5 and SSFp ≥ 0.7 in case of SNR = 20 dB. It mainly de-

pends on the parameter estimation quality. An interesting future research topic would be how

to further improve the parameter estimation. The false alarm probability was not fully evaluated,

however, heuristically comparable with the false alarm rate of a corresponding matched filter. A

subsequent validation of the detections e. g. by use of trackers seems mandatory.

In summary, the presented approach is capable of separating static from moving targets by use

of CUT measurements only. As this is a complete new approach of solving the GMTI problem,

there are many further interesting research questions e. g.:

• extension of ACF algorithm to incorporate polar velocity misalignment errors ϑm and non-

flat earth condition

• further robustification of ACF algorithm against very strong targets present in the CUT

• setup a refined parameter estimation algorithm1

• extension of the projection filter to incorporate ICM

• effects of sub optimal antenna calibration

• experimental validation

Undoubtedly, the experimental validation of the presented approaches is of utmost interest. So

far, this could not be realized due to the lack of GMTI systems having the required amount

of channels available. One could obviously claim, that the high number of required channels

is a severe practical drawback of the presented approach. Quite the contrary, the approaches

presented in this work answer the question of what can be done better given so many channels

are available. At the time writing this work, fully digital front ends become more and more

common. The question is therefore not whether so many channels will ever be available but how

best to use them when they are. The plain STAP approach does not benefit from an increased

number of channels, rather it becomes more and more demanding in terms of required amount

of training data. The presented approaches give a sophisticated answer of what can be done

better. Nevertheless, much further research is required before practical use can be considered.
1A quit interesting approach would be to use the model projection filter P⊥c (β, ϕm) to further estimate the parame-

ters. The key idea would be to use the filtered signal energy
∥∥P⊥c (β, ϕm)y

∥∥2

2
as objective function i. e. for correctly

selected parameters all of the clutter energy would be suppressed creating a suitable minima. However, there are
two obvious challenges. At first, this approach is not invariant with respect to present targets. For wrongly chosen
parameters, the projection filter may suppress a target. Strong present targets therefore create wrong local minima
for the proposed objective function. This might be circumvented by using the ACF algorithm, which is invariant
regarding present targets, to obtain a first estimate of β and ϕm. This initial estimate is then further refined using
the projection filter. This approach evades wrong local minima given strong moving targets are not positioned
too close to the clutter ridge. The second challenge is that a gradient descent approach is very demanding. The
projection filter requires an eigenvalue decomposition of the model covariance matrix Rc (β, ϕm) = UcΛcU

H
c ,

hence this results in the need to derive the eigenvectors with respect to the parameters. It is well known, that
the derivative of eigenvectors is a tedious task as it is computable in a single iteration only if the corresponding
eigenvalues are simple i. e. unique. This may not be fulfilled, e. g. in the simple case of β = 1 and ϕm = 0 where
only repetitive eigenvalues occur. Finally, the eigenvalue decomposition of the possibly big covariance matrix Rc

has a high computational complexity.
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A.1. Wirtinger Derivatives

In this work, gradient descent approaches are used for minimizing real valued objective functions

of complex arguments. A convenient way to calculate the required gradients are the Wirtinger

derivatives

∂

∂u
=

1

2

(
∂

∂ure
− j

∂

∂uim

)
∂

∂u∗
=

1

2

(
∂

∂ure
+ j

∂

∂uim

)
,

where ure = Re{u} and uim = Im{u}. Some useful properties are

∂u

∂u∗
= 0

∂u∗

∂u
= 0

∂f∗

∂u∗
=

(
∂f

∂u

)∗
∂f∗

∂u
=

(
∂f

∂u∗

)∗
.

Furthermore, the complex product and chain rules are required, which are

∂fg

∂u
=
∂f

∂u
g + f

∂g

∂u
∂fg

∂u∗
=

∂f

∂u∗
g + f

∂g

∂u∗
∂h(g)

∂u
=
∂h

∂g

∂g

∂u
+
∂h

∂g∗
∂g∗

∂u
.

∂h(g)

∂u∗
=
∂h

∂g

∂g

∂u∗
+
∂h

∂g∗
∂g∗

∂u∗
.

A gradient indicating a descendant direction in the real and imaginary domain can be found as

[77]1

∇Xf(X) =

(
∂f(X)

∂X∗

)T

.

1It is also possible to choose ∇Xh(X) = 2
(
∂h(X)
∂X

)T

as a gradient, however, this is not the common form usually

chosen in the literature.
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Within this work, the derivative of a scalar function w. r. t. a vector x = [x1, x2, . . . , xN ]T ∈ CN is

defined as
∂f(x)

∂x
=
[
∂f(x)
∂x1

∂f(x)
∂x2

· · · ∂f(x)
∂xN

]
∈ C1×N

and w. r. t. a matrix

X =


x11 x12 · · · x1M

x21 x22

...
. . .

xN1 xNM

 ∈ CN×M

as

∂f(X)

∂X
=



∂f(x)
∂x11

∂f(x)
∂x21

· · · ∂f(x)
∂xN1

∂f(x)
∂x12

∂f(x)
∂x22

...
. . .

∂f(x)
∂x1M

∂f(x)
∂xMN

 ∈ CM×N .

The derivative of a vector y = [y1, y2, . . . , yP ]T ∈ CP w. r. t. to a vector x ∈ CN is defined as

∂y

∂x
=



∂y1

∂x1

∂y1

∂x2
· · · ∂y1

∂xN
∂y2

∂x1

∂y2

∂x2

...
. . .

∂yP
∂x1

∂yP
∂xN

 ∈ CP×N .

The gradient of a scalar function w. r. t. a vector x ∈ CN is defined as2

∇xf(x) =

(
∂f(x)

∂x∗

)T

=



∂f(x)
∂x∗1
∂f(x)
∂x∗2
...

∂f(x)
∂x∗N

 ∈ CN

2As an example, the gradient of ‖x‖22 therefore is

∇x ‖x‖22 =

(
∂ ‖x‖22
∂x∗

)T

=
([

∂‖x‖22
∂x∗1

∂‖x‖22
∂x∗2

· · · ∂‖x‖22
∂x∗

N

])T

=



∂
∑N

i=1 x
∗
i xi

∂x∗1
∂
∑N

i=1 x
∗
i xi

∂x∗2
...

∂
∑N

i=1 x
∗
i xi

∂x∗
N

 =


x1

x2

...

xN

 = x.
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and w. r. t. a matrix X ∈ CN×M as

∇Xf(X) =

(
∂f(X)

∂X∗

)T

=



∂f(x)
∂x∗11

∂f(x)
∂x∗12

· · · ∂f(x)
∂x∗1M

∂f(x)
∂x∗21

∂f(x)
∂x∗22

...
. . .

∂f(x)
∂x∗N1

∂f(x)
∂x∗NM

 ∈ CN×M .

A.2. Fundamentals

In this section more fundamental derivatives are shown in more detail.

A.2.1. Antenna Gain and Reflection Coefficients

In this section the antenna gain coefficients gtx (~ux, ω) and grx (~ux, ω) introduced in Section 2.1.1

are derived. Starting with the transmit (TX) case, the spherical wave emitted by a TX is

~etx (~x, t, ω) =~itx
a (ω) gtx (~ux, ω)

‖~x‖
ej(ωt−k‖~x‖), (A.2.1)

where a (ω) ∈ C denotes the complex magnitude of the harmonic input signal of the TX an-

tenna and gtx (~ux, ω) an antenna gain coefficient translating the input harmonic signal into an

electromagnetic (EM) field quantity. The antenna gain Gtx (~ux, ω) is defined as [5]

Gtx (~ux, ω) = εr (ω)D (~ux, ω) , (A.2.2)

where 0 ≤ εr (ω) ≤ 1 is the antenna efficiency parameter and

D (~ux, ω) =
U (~ux, ω)

Uave
= 4π

U (~ux, ω)

Pw
(A.2.3)

is the antenna directivity with Pw denoting the power of the emitted wave. Within (A.2.3)

U (~ux, ω) =
∥∥∥~S (~x, ω)

∥∥∥ ‖~x‖2 (A.2.4)

denotes the radian intensity (which is independent of the total distance ‖~x‖) with∥∥∥~S (~x, ω)
∥∥∥ =

1

2ηw
‖~etx (~x, t, ω)‖2 (A.2.5)

denoting the magnitude of the pointing vector or the power density at point ~x. Within (A.2.5),

ηw =
√
µ0/ε0 ' 120πΩ is the free space impedance which accounts for a transformation from

the signal into an EM field quantity. Combining (A.2.1), (A.2.2), (A.2.3), (A.2.4), and (A.2.5) yields

for the antenna gain

Gtx (~ux, ω) =
4π

2ηw
|gtx (~ux, ω)|2 , (A.2.6)

where Pw = |a (ω)|2 εr (ω) was used.
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The receive antenna gain coefficient grx (~ux, ω) translates an incoming EM wave into a signal

quantity. It therefore can be derived in an analogous manner as gtx (~ux, ω), however, it needs to

be extended by an antenna cross section factor λ2/4π. This can readily be found from the radar

equation

Pr (ω) =
Pt (ω)Gtx (~utx, ω)Grx (~urx, ω)σr

(4π)3 r2
txr

2
rx

from which

Grx (~ux, ω) =
(4π)2 2ηw

λ2
|grx (~ux, ω)|2 (A.2.7)

and

σr = |αr|2

follows. Notice in (A.2.7) the factor 2ηw which accounts for the transformation from an EM field

into a signal quantity.

A.2.2. Target Induced Phase Modulation for Constant Velocity

A moving target induces a phase modulation of the transmit signal s′tx (t′) namely

st

(
t′
)

=

∞̂

−∞

S′tx (ω) e−jωτtx(t′)e−jωt′dω, (A.2.8)

where t′ denotes the point in time where the center of the pulse hits the target, S′tx (ω) the

Fourier transform of s′tx (t′), and

τtx

(
t′
)

=
rtx (t′)
c0

(A.2.9)

is the travel time from the TX antenna to the point target. Due to the time dependence of the

delay τtx (t′), (A.2.8) can not be solved in a close form. One idea to achieve a closed form solution

is to assume that (A.2.9) is somewhat constant during the time the pulse hits the target i. e.

τtx (til) ' τtxc

with the choice

τtxc =
rtx (x)

c0

∣∣∣∣
x=t′

.

In this case (A.2.8) becomes

st

(
t′
)
' s′tx

(
t′ − τtxc

)
. (A.2.10)

The implications of this approximation can be measured by e. g. a cross correlation loss (CL)

between (A.2.8) and (A.2.10) which seems reasonable as this corresponds to a subsequently

applied pulse compression. A closed form solution can be obtained by assuming the point target

moves at constant radial velocity vrt during the illumination period Til. In this case (A.2.9) can be

written as

τtx (til) = τtxc +
(
til − t′

) vrt

c0
= τtxc +

4tvrt

c0
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with 4t ∈
[
−Til

2 ,
Til
2

]
. The illumination time is given by 2.1.46 as

Til = Tp

√
c0 + vrtx,max

c0 − vrtx,max

Using the correlation Fourier pair

F {corr {f1, f2} (L)} = F {f1}∗F {f2}

with F {f1} = S′tx (ω) e−jωτtx(til), F {f2} = S′tx (ω) e−jωτtxc , and L denoting the lag, the correla-

tion is

corr
{
st (til) , s

′
tx

(
t′ − τtxc

)}
(L) = F−1

{∣∣S′tx (ω)
∣∣2 e
−jω

4tvrt
c0

}
= Rs′txs′tx

(
L− 4tvrt

c0

)
, (A.2.11)

whereRs′txs′tx (x) denotes the auto correlation of s′tx. The CL of (A.2.8) and (A.2.10) is determined

at L = 0 and 4t = Til
2 , hence

CL = Rs′txs′tx

(
Tilvrt

2c0

)
. (A.2.12)

In case of a chirp wave form, (A.2.12) becomes [78]

CLchirp = Λ

(
vrt

2c0

)
sinc

(
brTilvrt

2c0
Λ

(
vrt

2c0

))
(A.2.13)

with

Λ (x) = max (1− |x| , 0) .

A.2.3. Range Walk for Airborne Radar

The range walk in case of an airborne radar can be divided in two limiting scenarios. In the first

case, the range walk is limited by the amount the radar is moving 4rp. This scenario is sketched

in Fig. A.2.1 where r (t) denotes the current slant range, r (tcen) = rc the slant range at the point

in time where the center of the antenna beam hits the target, and r (tcls) = r0 is the closest slant

range to the target. Furthermore, θs is the antenna squint angle. The range walk is defined as

4rwalk,1 = r (t)− rc, (A.2.14)

where

r2 (t) = r2
c +4r2

p − 2rc4rp sin (θs) (A.2.15)

with

4rp = vp (t− tcen) = vp4t (A.2.16)

and

rc =
r0

cos (θs)
. (A.2.17)
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Commonly of interest is the time span of a half coherent processing interval (CPI)

4t =
Nptp

2

to determine if targets can be considered non moving, or the maximal travel time

4t =
rmax

c0

to verify the stop-and-go approximation described in Section 2.1.3. Combining (A.2.14), (A.2.15),

and (A.2.16) yields

4rwalk,1 =

√
r2

0

cos2 (θs)
+ v2

p4t2 − 2r0vp4t tan (θs)−
r0

cos (θs)
(A.2.18)

or in case no squint is applied

4rwalk,1 =
√
r2

0 + v2
p4t2 − r0.

In the second scenario, the range walk is limited by the visible area determined by the antenna

beam width (ABW)

4rABW = r0

(
tan

(
θs +

ABW

2

)
− tan

(
θs −

ABW

2

))
.

This scenario is sketched in Fig. A.2.2, where

r1 =
r0

cos
(
θs + ABW

2

)
r2 =

r0

cos
(
θs − ABW

2

)
denote the leading and trailing edge of the visible area. The range walk, depending on the squint

angle, therefore is

4rwalk,2 =

|r1 − r2| θs ≥ ABW
2

max (r1, r2)− r0 else
. (A.2.19)

Depending on whether the radar movement4rp or the visible area is smaller, the effective range

walk is

4rwalk =

rwalk,1 4rp < 4rABW

rwalk,2 else
. (A.2.20)

A.2.4. Maximum Observable Radial Velocity in GMTI Scenario

The maximal radial velocity observable by the radar in the ground moving target indication (GMTI)

case is of interest for validating common radar signal approximations as given in Section 2.1.3

or for the selection of a suitable pulse repetition frequency (PRF). It depends on the platform
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Figure A.2.1.: Range walk for non moving target in case of constant platform velocity vp.
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Figure A.2.2.: Range walk deduced from the ABW depending visible area.
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vp
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Radar

Target
vrp

(a) Velocities in the plane spanned by the radar and ~vp.

h

rmax

vt

vrt

Radar

Target

(b) Velocities in the plane spanned by the radar and ~vp.

Figure A.2.3.: Worst case of observable radial velocity for broad side oriented antenna.

and target velocities vp and vt and is restricted by the antenna beam width, which limits the

area the target is visible. In general is vr,max = 〈~usl, ~vt − ~vp〉, where ~usl points into the direction

of the n-th considerable side lobe of the antenna pattern and ~vt and ~vp are to be taken to

achieve the maximum possible vr,max according to the measurement scenario. The worst case for

a broadside directed antenna is depicted in Fig. A.2.3 with the target moving in radial direction,

where Fig. A.2.3a depicts the superposition of radial velocity components from vp and vt and

Fig. A.2.3b the observable radial velocity of a point target vrt. The total radial velocity in this case

is

vr,tot = vrt + vrp

=

√
1−

(
hp

rmax

)2

vt + sin

(
ABW

2

)
vp

' vt +
ABWvp

2
, (A.2.21)

where ABW
2 was considered as visible angle and in the last line the assumption hp � rmax and

sin
(

ABW
2

)
' ABW

2 were assumed.

A.3. Derivation of the Divergence of the Complex Thresholding

Operator

In this section, the divergence of the complex thresholding operator is derived in closed form. The

required Wirtinger derivatives are listed in Appendix A.1. The complex soft thresholding operator

is defined as [79]

S(a)
S (z) = sgn (z) max (0, |z| − a) , (A.3.1)

where z ∈ C, a ∈ R+, and

sgn (z) =

0 if z = 0

z
|z| else
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is the complex sign function. A useful alternative formulation of the second term in (A.3.1) is

max (0, |z| − a) =

0 if |z| ≤ a

|z| − a if |z| > a
. (A.3.2)

Furthermore, for some matrix Z ∈ CN1×N2 , the complex soft thresholding operator is defined as

an element-wise operation as [
S(a)

S (Z)
]
ij

= S(a)
S (zij) (A.3.3)

with i = 1, 2, . . . , N1 and j = 1, 2, . . . , N2. Finally, the definition of the divergence for a scalar

complex function f : C→ C is

div f = 2 Re

(
∂f (z)

∂z

)
and for a multidimensional function F : CN → CN [80]

divF =
N∑
i=1

2 Re

(
∂Fi (Z)

∂zi

)
. (A.3.4)

Combining (A.3.3) and (A.3.4) yields the desired divergence

div
(
S(a)

S (Z)
)

=

N1,N2∑
i,j=1

2 Re

∂
[
S(a)

S (Z)
]
ij

∂zij

 . (A.3.5)

Using (A.3.2), the required derivative is

∂
[
S(a)

S (Z)
]
ij

∂zij
=
∂S(a)

S (zij)

∂zij
=
∂ sgn (zij)

∂zij
max (0, |zij | − a)︸ ︷︷ ︸
T1

+ sgn (z)
∂max (0, |zij | − a)

∂zij︸ ︷︷ ︸
T2

with the derivative in T1 being

∂ sgn (zij)

∂zij
=


0 if zij = 0

∂
zij

|zij|
∂zij

else

=

0 if zij = 0

1
2|zij | else

, (A.3.6)
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where

∂
zij
|zij |
∂zij

=

∂zij
∂zij
|zij | − zij ∂|zij |∂zij

|zij |2

=
|zij | − zij

z∗ij
2|zij |

|zij |2

=
1

2 |zij |

and

∂ |zij |
∂zij

=
∂
(
z∗ijzij

) 1
2

∂zij
=

z∗ij
2 |zij |

(A.3.7)

was used. Note, that the discontinuity at zij = 0 can be discarded since S(a)
S (z) = 0 for |z| < a.

Combining (A.3.2) and (A.3.6) yields

T1 =

0 if |zij | ≤ a
|zij |−a
2|zij | if |zij | > a

. (A.3.8)

The required derivative in term T2 is

∂max (0, |zij | − a)

∂zij
=


0 if |zij | < a

not differentiable if |zij | = a
z∗ij

2|zij | if |zij | > a.

=

0 if |z| ≤ a
z∗ij

2|zij | if |z| > a
,

where the set {z : |z| = a} has Lebesgue measure zero and can be discarded due to weak

differentiability. As such

T2 =

0 if |zij | ≤ a
1
2 if |zij | > a

, (A.3.9)

where (A.3.7) was used again. Combining (A.3.5), (A.3.8), and (A.3.9) yields for the divergence

div
(
S(a)

S (Z)
)

=

N1,N2∑
i,j=1

(
2− a

|zij |

)
I (|zij | > a) ,

where I (·) denotes the indicator function.

A.4. Complex Successive Concave Sparsity Approximation

In this chapter, based on the successive concave sparsity approximation (SCSA) algorithm [58], we

derive a new algorithm called complex successive concave sparsity approximation (CSCSA) for the
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recovery of complex sparse vectors in the field of compressive sensing (CS). The following section

covers the derivation of the CSCSA algorithm. In section A.4.2, we show some simulation results.

A.4.1. Derivative of the CSCSA Algorithm

The primary objective is to recover an unknown sparse vector s ∈ CNsc , where the number of

sparse entries κ� Nsc, from a limited number of noisy observations of the form

y = As+ n, (A.4.1)

where A ∈ CM×Nsc (M < Nsc) is a known affine transformation, y ∈ CM is a measurement

vector, and n ∈ CM is additive noise. To find a solution to this under-determined linear system,

we seek the closest sparse solution which is consistent with the measurements via

min
s
‖s‖0 subject to h (s) ≤ ε2, (A.4.2)

where ‖·‖x denotes the `x norm,

h (s) = ‖As− y‖22

is the residual error, and ε2 ≥ ‖n‖22 is some constant noise energy. Unfortunately problem (A.4.2)

is NP-hard to solve. In order to make the recovery tractable we may approximate the quasi `0
norm by a suitable function. A very well known relaxation of A.4.2 is the basis pursuit denoise

(BPDN) approach which is [39]

min
s
‖s‖1 subject to h (s) ≤ ε2. (A.4.3)

The `1 norm is known to be the tightest convex relaxation of the original CS problem (A.4.2).

However, despite the convexity of the BPDN approach, there is a large gap between the sufficient

conditions for the robust recovery of sparse vectors using (A.4.2) and (A.4.3)3. In order to narrow

this gap while making the recovery tractable we may approximate the `0 norm by a smooth

function.

The `0 norm of s =
[
s1 · · · sNsc

]T
is defined as the number of non zero elements in s. Let

δ(x) =

1 if x = 0

0 else
(A.4.4)

be the Kronecker delta function, then we can define the `0 norm of s as

‖s‖0 =

Nsc∑
i=1

[1− δ (|si|)] , (A.4.5)

3This means the problem at hand must be less difficult in terms measurement ratio M/Nsc, sparsity ratio κ/Nsc,
restricted isometry property (RIP) condition etc. if solved by use of an `1 approach compared to an `0 approach.
Hence, the reconstruction performance may be improved if an `0 solution is approximated.
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where |si| denotes the magnitude of si. To make (A.4.5) smooth we may approximation it by

1− δ(|s|) ≈ 1− exp

(
−|s|
γ

)
= fγ (|s|) .

The function fγ (|s|) converges point wise to 1− δ (|s|) as

lim
γ→0+

fγ (|s|) =

1 if |s| = 0

0 else
.

Thus we can define

‖s‖0 ≈
Nsc∑
i=1

fγ (|si|) = Fγ (|s|) , (A.4.6)

where |s| denotes a vector which holds the magnitudes of the elements of s. The optimization

problem (A.4.2) may now be relaxed to

min
s
Fγ (|s|) subject to h (s) ≤ ε2. (A.4.7)

The constrained optimization problem (A.4.7) can be converted to an unconstrained one by use

of regularization. This yields

min
s
λγFγ (|s|) + h (s) , (A.4.8)

where λγ is a regularization parameter which may depend on γ. Program (A.4.7) is of the form

min
s
λρ (s) + h (s) , (A.4.9)

where h (s) is convex and differentiable with Lipschitz continuous gradient and λ > 0 is some

regularization parameter. In case of a least absolute shrinkage and selection operator (LASSO)

or `1 approach ρ (s) is convex and non smooth. For the approach considered in (A.4.8) ρ (s) is

concave, smooth but not differentiable at s = 0. In both cases the iterative thresholding (IT)

method can be utilized to conduct the desired minimization. For a fixed γ, a solution to program

(A.4.8) can be obtained by iteratively solving

sl+1 = arg min
s

{
(s− sl)H∇h (sl) +

1

2µ
‖s− sl‖22 + λγFγ (|s|)

}
(A.4.10)

until convergence, where µ > 0 is some step size. This program can be viewed as a proximal

regularization of the linearized function h (s) [41].

Solution to Unconstrained Minimization Problem for a Fixed γ

Program (A.4.10) can be simplified to

sl+1 = arg min
s

{
1

2µ
‖s− (sl − µ∇h (sl))‖22 + λγFγ (|s|)

}
(A.4.11)

ignoring constant terms unimportant regarding the minimization. For the special case of choosing

Fγ (|s|) as done in (A.4.6), it is possible to derive a close form solution of (A.4.11). For a given sl
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we can further simplify (A.4.11) to

sl+1 = arg min
s

{
1

2µ
‖s− sl0‖22 + λγFγ (|s|)

}
. (A.4.12)

Noticing that Fγ (|s|) is a separable function the minimization in (A.4.12) can be conducted

element wise and as such we only need to solve

sl+1,i = arg min
s

{
1

2µ
|s− sl0,i|2 + λγfγ (|s|)

}
︸ ︷︷ ︸

L(s,sl0,i)

. (A.4.13)

The scalar function L(s, sl0,i) in (A.4.13) as such is not holomorphic4, however, since we are only

interested in minimizing L(s, sl0,i) we utilize the Wirtinger derivatives listed in Appendix A.1 to

calculate the root of the gradient

∇sL (s, sl0,i) =
∂L(s, sl0,i)

∂s∗
, (A.4.14)

where ·∗ denotes complex conjugation. The derivative needed in (A.4.14) is

∂L (s, sl0,i)

∂s∗
=

1

2µ

∂ |s− sl0,i|2

∂s∗︸ ︷︷ ︸
T1

+ λγ
∂fγ (|s|)
∂s∗︸ ︷︷ ︸
T2

, (A.4.15)

where the term T1 in (A.4.15) results to

T1 =
∂ |s− sl0,i|2

∂s∗
=
∂ (s− sl0,i)∗ (s− sl0,i)

∂s∗

=
∂ (s− sl0,i)∗

∂s∗
(s− sl0,i) + (s− sl0,i)∗

∂ (s− sl0,i)
∂s∗

= s− sl0,i (A.4.16)

4A holomorphic function is a complex-valued function which posses a unique derivative. For this to hold, the Cauchy-
Riemann equations need to hold or equivalently, the Wirtinger derivative requires to be ∂L(s, sl0,i)/∂s

∗ = 0. This
does not hold as shown in (A.4.14) until (A.4.18).
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and term T2 to

T2 =
∂fγ (|s|)
∂s∗

=
∂
(

1− exp
(
− |s|γ

))
∂s∗

= −
∂ exp

(
− |s|γ

)
∂s∗

= −
(
∂ exp(a)

∂a

)−∂ |s|γ
∂s∗

− (∂ exp(a)

∂a∗

)
︸ ︷︷ ︸

a∈R

−∂
(
|s|
γ

)∗
∂s∗


= −2

(
∂ exp(a)

∂a

)(
−1

γ

∂ |s|
∂s∗

)
=

2

γ
exp

(
−|s|
γ

)(
∂ (s∗s)

1
2

∂s∗

)
=

2

γ
exp

(
−|s|
γ

)(
1

2 |s|
∂s∗s
∂s∗

)
=

s

γ |s|
exp

(
−|s|
γ

)
. (A.4.17)

Combining (A.4.14), (A.4.15), (A.4.16), and (A.4.17) yields

∇sL (s, sl0,i) =
1

2µ
(s− sl0,i) + λγ

s

γ |s|
exp

(
−|s|
γ

)
. (A.4.18)

Setting (A.4.18) to zero yields

s− sl0,i
2µ

= −λγ
γ

s

|s|
exp

(
−|s|
γ

)
. (A.4.19)

Since s ∈ C we have to enforce equality of real and imaginary parts of (A.4.19) or its arguments

and magnitudes. Considering the arguments in (A.4.19) we observe

arg (s− sl0,i) = ±π + arg (s) (A.4.20)

or equivalently

arg (sl0,i − s) = arg (s) . (A.4.21)

The structure of (A.4.19) given the insight from (A.4.20) and (A.4.21) is illustrated in Fig. A.4.1.

From (A.4.20) we know that s and sl0,i must lie on a straight line passing through the origin.

Furthermore, from (A.4.21) we know that |sl0,i| ≤ |s|. In summary we can observe that for an

arbitrary sl0,i,

s ∈ A = {x ∈ C|x = βsl0,i, 0 ≤ β ≤ 1} , (A.4.22)

where β ∈ R. From this we can conclude

arg (s) = arg (sl0,i) . (A.4.23)
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arg (s)
arg (s− sl0,i)

s

Re

Im

A

sl0,i
arg (sl0,i − s)

Figure A.4.1.: Structure of equation (A.4.19).

Using (A.4.23) we can simplify (A.4.19) to

|s| ej arg(sl0,i) − |sl0,i| ej arg(sl0,i)

2µ
= −λγ

γ

|s| ej arg(sl0,i)

|s|
exp

(
−|s|
γ

)
⇒
|s| − |sl0,i|

2µ
= −λγ

γ
exp

(
−|s|
γ

)
(A.4.24)

In order to solve (A.4.24) we may use the multi-valued Lambert W function or product logarithm

which is defined implicitly by

W (z)eW (z) = z, (A.4.25)

where in general z ∈ C is possible, however, in this work it is sufficient to restrict z ∈ R. In this real

valued case, the Lambert W function is single valued for z ≥ 0, double valued for z ∈ [−1/e, 0)

and undefined for z < −1/e. The two branches for z ∈ [−1/e, 0) are usually distinguished and

denoted as

W0(z) ≥ −1 (A.4.26)

W−1(z) ≤ −1. (A.4.27)

To apply the Lambert W function we modify (A.4.24) by extending both sides with 2µ/γ exp(− |sl0,i| /γ)

to
|s| − |sl0,i|

γ︸ ︷︷ ︸
W (z)

exp

(
|s| − |sl0,i|

γ

)
︸ ︷︷ ︸

W (z)

= −2λγµ

γ2
exp

(
−
|sl0,i|
γ

)
︸ ︷︷ ︸

z

. (A.4.28)
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The Lambert W function as defined in (A.4.25) can readily be identified within (A.4.28) and as

such the two solutions

|s1| = γW0 (z) + |sl0,i| (A.4.29)

|s2| = γW−1 (z) + |sl0,i| , (A.4.30)

can be found, where

z = −2λγµ

γ2
exp

(
−
|sl0,i|
γ

)
(A.4.31)

and W0 (·) denotes the upper branch and W−1 (·) the lower branch of the multi-valued Lambert

W function. Combining (A.4.23), (A.4.29), and (A.4.30) yields the final solutions

s1 = γW0 (z) ej arg(sl0,i) + sl0,i (A.4.32)

s2 = γW−1 (z) ej arg(sl0,i) + sl0,i. (A.4.33)

Since we require only one solution we check whether (A.4.32) or (A.4.33) results in a lower

L (s, sl0,i) (if possible). Inserting (A.4.32) into L (s, sl0,i) yields

L (s1, sl0,i) =
1

2µ
|s1 − sl0,i|2 + λγfγ (|s1|)

=
1

2µ

∣∣∣(γW0 (z) + |sl0,i|) ej arg(sl0,i) − sl0,i
∣∣∣2 + λγ

(
1− e

−
γW0(z)+|sl0,i|

γ

)

=
1

2µ
|γW0 (z)|2 + λγ − λγe

−
γW0(z)+|sl0,i|

γ

= λγ +
γ2

µ

1

2
W 2

0 (z)−λγµ
γ2

e
− |sl0,i|

γ︸ ︷︷ ︸
z/2

e−W0(z)


= λγ +

γ2

2µ

(
W 2

0 (z) +W0 (z)
)
, (A.4.34)

where we used identity (A.4.25) in the last step. Similar steps yield

L (s2, sl0,i) = λγ +
γ2

2µ

(
W 2
−1 (z) +W−1 (z)

)
. (A.4.35)

Lemma A.1. For any z ∈ [−1/e, 0), W 2
0 (z) +W0 (z) ≤W 2

−1 (z) +W−1 (z).

Proof. Beginning with W0(z), using −1 ≤W0(z) ≤ 0 from (A.4.26) yields

W 2
0 (z) +W0 (z) = (W0 (z) + 1)︸ ︷︷ ︸

≥0

W0 (z)︸ ︷︷ ︸
≤0

≤ 0.

Similar steps for W−1(z) using W−1(z) ≤ −1 from (A.4.27) yield

W 2
−1 (z) +W−1 (z) = (W−1 (z) + 1)︸ ︷︷ ︸

≤0

W−1 (z)︸ ︷︷ ︸
<0

≥ 0.
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Combining both results completes the proof. Lemma A.1 tells us that s2 from (A.4.33) can not

be the minimizer of L(s, sl0,i) from (A.4.13).

Since for z < −1
e , W (z) is not defined, we should have

z ≥ −1

e

−2λγµ

γ2
exp

(
−
|sl0,i|
γ

)
≥ −1

e

or

|sl0,i| ≥ γ
(

1 + ln

(
2λγµ

γ2

))
. (A.4.36)

If (A.4.36) is contradicted, no solution to (A.4.19) exists. In this case we can tell that L (s, sl0,i)

from (A.4.13) is a strict monotonically increasing function in s and as such the minimizer of

L (s, sl0,i) lies at s = 0 since from (A.4.22) we know s = βsl0,i for β ∈ [0, 1].

As a remaining point we need to check for L (s, sl0,i) to be convex in order to ensure s1 from

(A.4.29) is a global minimum. To do so, we first use arg (s) = arg (sl0,i) from (A.4.23) and insert

it into L′ (|s| , |sl0,i|) which yields

L′ (|s| , |sl0,i|) =
1

2µ

∣∣∣|s| ej arg(sl0,i) − |sl0,i| ej arg(sl0,i)
∣∣∣2 + λγfγ (|s|)

=
1

2µ
(|s| − |sl0,i|)2 + λγfγ (|s|) . (A.4.37)

Now L′ (|s| , |sl0,i|) : R→ R and thus it is easy to check its convexity by use of its second derivative

∂2L′ (|s| , |sl0,i|)
∂ |s|2

=
1

µ
− λγ
γ2

e
− |s|
γ ≥ 0. (A.4.38)

From (A.4.38) we can conclude that if

γ2 ≥ λγµ, (A.4.39)

L′ (|s| , |sl0,i|) and thus L (s, sl0,i) is convex for any s = βsl0,i, where β ∈ [0, 1]. If condition

(A.4.39) is contradicted, s1 from (A.4.32) is not necessarily the minimizer of L′ (|s| , |sl0,i|). In

this case the minimizer may also be at s = 0 which becomes clear if we sketch the curve of

L′ (|s| , |sl0,i|). Since ∇sL (s, sl0,i) from (A.4.18) posses two roots at s1 and s2 and further since

lim
s→∞

L′ (|s| , |sl0,i|) =∞

we know that L′ (|s| , |sl0,i|) has three or four extreme values. This is illustrated in Fig. A.4.2a. As

can be seen, |s1|is the minimum, whereas |s2| may be a maximum or a saddle point. All together

we see that the minimizer of L′ (|s| , |sl0,i|) is either at s = s1 or s = 0. The possible additional

case of s1 and s2 being saddle points is sketched in Fig. A.4.2b. In this case the minimizer is s = 0.

It is hard to determine analytically if s = s1 or s = 0 is the minimizer of L (s, sl0,i), however, it

is easy to compare the cost function for both values to find it. In summary, the minimizer of

L (s, sl0,i) and thus the solution to (A.4.13) can be defined as the one dimensional shrinkage
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|s|

L′ (|s| , |sl0,i|)

|s1|

|s2| ∞

0

(a) Minimum at |s1|and maximum or
saddle point at |s2|.

|s|

L′ (|s| , |sl0,i|)

|s1|
|s2| ∞

0

(b) Saddle point at |s1| and |s2|.

Figure A.4.2.: Curve sketching of L′ (|s| , |sl0,i|).

operator

T (γ)
µλγ

(sl0,i) =


0 |sl0,i| < γ

(
1 + ln

(
2λγµ
γ2

))
0 L′ (0, |sl0,i|) < L′ (|s1| , |sl0,i|)

s1 otherwise

, (A.4.40)

where s1 is defined as in (A.4.32) and L′ (·, |sl0,i|) is as defined in (A.4.37). Using this threshold

operator, the solution to (A.4.8) can be acquired by iteratively updating

sl+1 = T (γ)
µλγ

(sl − µ∇h (sl)) . (A.4.41)

Step Width and Convergence

In [58], the proof of convergence of (A.4.41) builds upon the Lipschitz continuity of h (s) and

some upper bound for Fγ (|s|). Here, we derive the required smallest Lipschitz constant ML of

h (s) and the upper bound for Fγ (|s|) for the complex case and leave the rest of the proof to

[58]. Since h (s) is convex and of class C2, we can determine the Lipschitz constant of ∇h (s) as

∇2
sh (s) �MLI ⇔

∥∥∇2h (s)
∥∥

2
≤ML, (A.4.42)

where ‖Z‖2 denotes the spectral norm of Z i.e. the largest singular value of Z. The complex

Hessian is defined as [81]

∇2
sh (s) =

∂2h (s)

∂s∗∂sT
(A.4.43)

and the required derivative for

h (s) = ‖As− y‖22
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results to

∂h (s)

∂s∗
=
∂ ‖As− y‖22

∂s∗
=

(As− y)H (As− y)

∂s∗

=
(s∗)TAH (As− y)

∂s∗
=

(
AH (As− y)

)T
s∗

∂s∗

=
(
AH (As− y)

)T
∂h (s)

∂s∗∂sT
=
∂
(
AH (As− y)

)T
∂sT

=
∂AH (As− y)

∂s

= AHA. (A.4.44)

Combining (A.4.42), (A.4.43), and (A.4.44) yields for the smallest Lipschitz constant

ML =
∥∥AHA

∥∥
2
. (A.4.45)

For the required upper bound of Fγ (|s|) we need to find the smallest number M ′L such that

λγ∇2
sFγ (|s|) � −M ′LI. (A.4.46)

The required derivatives for complex Hessian ∇2
sFγ (|s|) results to

∂Fγ (|s|)
∂s∗

=
[
∂Fγ(|s|)
∂s∗t

]∣∣∣
t=1,...,Nsc

=

[
∂
∑Nsc
i=1 1−exp

(
−|si|

γ

)
∂s∗t

]∣∣∣
t=1,...,Nsc

=
[

st
γ|st| exp

(
− |st|γ

)]∣∣∣
t=1,...,Nsc

,

which we know from (A.4.17) and

Fγ (|s|)
∂s∗∂sT

=
1

γ
diag

([
∂
st
|st|

exp
(
− |st|

γ

)
∂st

]∣∣∣
t=1,...,Nsc

)
. (A.4.47)

The required derivative in (A.4.47) is

∂ st
|st| exp

(
− |st|γ

)
∂st

=
∂ st
|st|
∂st

exp

(
−|st|
γ

)
︸ ︷︷ ︸

T3

+
st
|st|

∂ exp
(
− |st|γ

)
∂st︸ ︷︷ ︸

T4

. (A.4.48)

From (A.4.22) and as depicted in Fig. A.4.1 we know that we can restrict the domain of Fγ (·)
to the set A = {x ∈ C|x = βst, 0 ≤ β ≤ 1} or in other words we vary st only as such that the

argument of st is constant. Therefore, term T3 in (A.4.48) results to zero

T3 =
∂ st
|st|
∂st

exp

(
−|st|
γ

)
= 0.
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Term T4 in (A.4.48) gives

T4 =
st
|st|

∂ exp
(
− |st|γ

)
∂st

= − st
|st|

s∗t
γ |st|

exp

(
−|st|
γ

)
= −1

γ
exp

(
−|st|
γ

)
, (A.4.49)

where we used (A.4.17) to get the required derivative. Combining (A.4.47), (A.4.48), and (A.4.49)

yields

∇2
sFγ (|s|) = − 1

γ2
diag

([
exp

(
− |st|γ

)]∣∣∣
t=1,...,Nsc

)
= − 1

γ2
diag

([
exp

(
− |st|γ

)])
(A.4.50)

Inserting (A.4.50) into (A.4.46) gives

−λγ
γ2

diag
([

exp
(
− |st|γ

)])
� −M ′LI ⇔ −

λγ
γ2

exp

(
−|st|
γ

)
≥ −M ′L

and results for the smallest value of M ′L to

M ′L =
λγ
γ2
. (A.4.51)

For any step width

µ ∈
(

0,
1

ML +M ′L

)
the sequence {sl} generated by (A.4.10) converges to a stationary point of (A.4.8), where ML is

from (A.4.45) and M ′L is from (A.4.51).

The Regularization Parameter λγ

As derived in [58] we set

λγ = λγ.

Initialization

As pointed out in the graduated non-convexity (GNC) procedure, we initially solve (A.4.8) for

γ →∞. Following the same argumentation as stated above, let ŝ be the unique solution to

min
s
‖s‖1 subject to As = y,

which is the equivalent noiseless optimization problem to A.4.3. In [58] it was shown that, for

γ →∞, the following statement holds

lim
γ→∞

arg min
s
{Fγ (|s|)|As = y} = arg min

s
{‖s‖1|As = y} = ŝ,
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provided that the `1 minimization has a unique solution (which is not strictly convex). We there-

fore conclude, that (A.4.7), for γ →∞, can be optimized by solving the BPDN problem A.4.3. To

do so, the fast iterative shrinkage-thresholding algorithm (FISTA) algorithm or the highly improved

version turbo shrinkage-thresholding (TST) presented in Section 6.1 may be used. Furthermore,

γ0 is set to γ0 = max (|s0|), where s0 is the solution of A.4.3. This is different as done in [58],

where γ0 was set to γ0 = 8 max (|s0|) which is equivalent to the solution obtained by the BPDN

approach. This iteration is not necessary and we start with an already decreased γ0.

The final algorithm is listed in Algorithm 6.2.

Remarks

In the following some remarks on the CSCSA algorithm are stated.

Remark A.1. The CSCSA algorithm acts for big γ like the FISTA algorithm i.e. an `1 minimizer. It

therefore is sensitive to non-normalized columns of the sensing operator A. In case one of the

columns of A has a significant higher `2 norm than the remaining columns, an `1 minimization

algorithm tends to overrate its corresponding sparse entry in s and thus does not tend to minimize

the desired `0 norm any more. The reconstruction of the desired s may fail therefore!

Remark A.2. For the required initial solution s0 any `1 minimizing algorithm may be used e.g.

FISTA, spectral projected gradient for `1 (SPGL1), etc.

Remark A.3. The CSCSA algorithm will attain a relative residual error ‖Asi − y‖2 / ‖y‖
2
2 ' 1/SNR

equal to the signal to noise ratio (SNR) of the signal. In case the initial solution s0 has a relative

residual error smaller than the given SNR the CSCSA algorithm will increase it again until it attains

the signals SNR. In return for this deterioration the squared reconstruction error (SRE) is improved.

A.4.2. Additional Simulation Results

In the following, additional phase transition diagrams are shown. Also, an additional error metric

is introduced, namely the mean support recovery rate (SRR) 1
Nmc

∑Nmc
i=1 card (τ̂ ∩ τ∗) / card (τ∗),

where τ̂ denotes the support set of ŝ, τ∗ the support set of the true solution s∗, and card (·) the

cardinality operator. This error metric tells us how well the algorithm finds the correct position

of the sparse entries. The simulation parameters are the same as introduced in Chapter 3. The

sensing operators used to test the algorithm are:

1. Random matrix whose entries are drawn independently from a zero-mean, unit-variance

complex Gaussian distribution CN (0, 1) with normalized columns.

2. Randomly selected rows of a discrete Fourier transform (DFT) matrix with normalized columns.

3. Rows from a DFT matrix selected in a structured manner, meaning the rows were chosen as

equally spaced as possible.

4. Rows from a DFT matrix selected for sub sampling factors SSF = 1 − 10. For this setup,

with nb = 1024, Nsc = nb + n4 was chosen such that M = Nsc/SSF ∈ N, where n4 was

selected as small as possible.
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Figure A.4.3.: Results of random sensing operator. Top row: results for SPGL1 algorithm and
bottom row: SPGL1-CSCSA combination.

5. DFT matrix with correlated columns. This occurs often in case of beamforming algorithms,

for which a higher angular resolution is desired. In this case, the number of angular bins is

increased which corresponds to zero padding, hence correlated columns in the DFT matrix.

Correlated columns reduce the RIP constant of the sensing operator and therefore the

reconstruction performance. As an illustrative example, reconstructions for a uniform linear

array (ULA) antenna with four antennas but 41 angular directions are shown.

As an additional reference, the SPGL1 algorithm5 was also included. The resulting phase transition

diagrams for a complex random sensing matrix with normalized columns are shown in Fig. A.4.3.

As can be seen, the CSCSA algorithm improves the results of the SPGL1 algorithm for a sparsity

ratio of κ/M ≤ 0.7. Above this value, the reconstruction performance deteriorates. Further

evaluations have shown, that the complex random sensing matrix is responsible therefore, yet

the precise reasons are subject to further investigation. This aforementioned deterioration does

not occur in the DFT sensing case which is shown in the following Fig. A.4.4 As can be seen, for

the DFT sensing operator with randomly chosen rows, the CSCSA algorithm uniformly improves

upon the SPGL1 results. Its success heavily depends on the random nature of the selected rows.

In case of a structured selection strategy, the reconstruction performance deteriorates significantly.

This is shown in in Fig. A.4.5, where the rows were equidistantly chosen selected. As can be seen,

the CSCSA algorithm can not improve upon the SPGL1 results.

An even more severe case is regular sub sampling where e. g. only 1/2, 1/3, etc. samples are

5Available at https://github.com/mpf/spgl1
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Figure A.4.4.: Results of random row DFT sensing operator. Top row: Results for SPGL1 algorithm
and bottom row: SPGL1-CSCSA combination.
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Figure A.4.5.: Results for structured DFT sensing operator. Top row: results of SPGL1 algorithm
and bottom row: SPGL1-CSCSA combination.
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Figure A.4.6.: Results for SSF = 1 − 10 of DFT sensing operator. Top two: results of SPGL1
algorithm and bottom row: SPGL1-CSCSA algorithm.

used. The reconstruction performance is shown in Fig. A.4.6. As can be seen, not even SSF = 1/2

can be reconstructed successfully. The last example shows reconstruction results for a beam-

former for a ULA with four antenna elements but 41 angular directions. This corresponds to a

DFT sensing operator with highly correlated columns. In this case, only very sparse scenes can

be successfully reconstructed, hence a phase transition diagram is not of use. Hence, a different

simulation was set up, where the sparsity was fixed to κ = 2 and the position of one sparse entry

was swept trough all possible indices. This illustrates the resolution performance of the CS beam-

former approach. This simulation is shown in Fig. A.4.7 and Fig. A.4.8. Figure A.4.7a shows the

true location of the two targets, where target two is shifted through all angular positions. The

auto-correlation matrix of the DFT sensing matrix is shown in Fig. A.4.7b. Evidently, consecutive

columns are highly correlated. Figure A.4.7c to Fig. A.4.7j show the reconstructed scenes for dif-

ferent reconstruction algorithms and phase differences between the two targets. As can be seen,

the reconstructed positions of the SPGL1 algorithm appears blurred, yet the CSCSA algorithm sig-

nificantly cleans the scenes up. As a reference, Fig. A.4.8 shows the results in case of a classical `2
reconstruction a. k. a pseudo inverse. Evidently, the CS approach including the CSCSA algorithm

show superior performance. The simulation was repeated with even higher correlated columns

for which the results are shown in Fig. A.4.8 and Fig. A.4.8. The improvements of CSCSA upon

SPGL1 with respect to resolution performance are evident.
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Figure A.4.7.: Results for correlated columns DFT sensing operator for κ = 2 sparse entries swept
along Nsc = 41 with M = 4 measurements.
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Figure A.4.7.: Results for correlated columns DFT sensing operator for κ = 2 sparse entries swept
along Nsc = 41 with M = 4 measurements.

A.5. Complex smoothed rank approximation

In this chapter, based on the smoothed rank function (SRF) algorithm [61] and the smoothed rank

approximation (SRA) approach in [62], we derive a new algorithm called complex smoothed rank

approximation (CSRA) for the recovery of complex low-rank matrices in the field of affine rank

minimization (ARM). The following section covers the derivation of the CSRA algorithm.

A.5.1. Derivative of the CSRA algorithm

The primary objective is to recover an unknown low-rank matrix L̃ ∈ CN1×N2 , where the rank

rank
(
L̃
)

= r � nmin = min (N1, N2), from a limited number of noisy observations of the form

y = A
(
L̃
)

+ n, (A.5.1)

where A ∈ CM×N1×N2 (M < N1N2) is a known affine transformation, y ∈ CM is a measurement

vector, and n ∈ CM is additive noise with zero mean and variance Pn. To find a solution to this

under-determined linear system, we seek the closest low-rank solution which is consistent with

the measurements via

min
L

rank (L) subject to ‖A (L)− y‖22 ≤ ε
2, (A.5.2)

where ‖·‖x denotes the `x norm and ε2 = ‖n‖22 is some constant error energy. Unfortunately

problem (A.5.2) is NP-hard to solve. In order to make the recovery tractable we may approximate

the rank by a suitable function. A very well known relaxation of (A.5.2) is the nuclear norm

minimization (NNM) approach which is

min
L
‖L‖∗ subject to ‖A (L)− y‖22 ≤ ε

2, (A.5.3)

where ‖L‖∗ is the nuclear norm of L which is the sum of the singular values of L [45]. The

nuclear norm is known to be the tightest convex relaxation of the original rank minimization
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Figure A.4.8.: Results for different correlated columns DFT sensing operator for κ = 2 sparse
entries swept along Nsc = 41 with M = 4 measurements.
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Figure A.4.8.: Results for correlated columns DFT sensing operator for κ = 2 sparse entries swept
along Nsc = 41 with M = 4 measurements.

problem (A.5.2). However, despite the convexity of the NNM approach, there is a large gap

between the sufficient conditions for the robust recovery of low-rank matrices using (A.5.2) and

(A.5.3) [82].

In order to narrow this gap a different replacement for the rank function is proposed. The rank

of L = UΣV H, where Σ = diag (σ), is defined as the number of non zero elements in σ, where

the vector σ =
[
σ1 · · · σnmin

]T
holds the singular values of L. We thus can define the rank of

L as

rank (L) = ‖σ‖0 =

nmin∑
i=1

[1− δ (σi (L))] , (A.5.4)

where ‖·‖0 is the number of non-zero elements6 a. k. a. pseudo-zero-norm, σi (L) is the ith

largest singular value of L, and δ (x) is the Kronecker delta function defined in (A.4.4). To make

(A.5.4) smooth we may apply the same idea as used in A.4

fγ (x) = 1− δ(x) ≈ 1− exp

(
−|x|
γ

)
.

Thus we can define

rank (L) ≈
nmin∑
i=1

fγ (σi (L)) = F ′γ (σ (L)) = Fγ (L) , (A.5.5)

where σ (X) yields the singular values of X arranged as a vector. The rank approximation

function F ′γ (x) defined in (A.5.5) is absolutely symmetric, which means F ′γ (x) is invariant un-

der arbitrary permutations and sign changes of the elements of x. Based on this property, the

following theorem from [83] can be applied.

Theorem A.1. The function F (Z) is unitarily invariant if F (Z) = F ′ (σ (Z)) = F ′ ◦ σ (Z)

provided F ′ (z) is absolutely symmetric [83].

This property is useful when we try to minimize the rank approximation function (A.5.5). The

6Well known from compressive sensing (CS), see Chapter 3.
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optimization problem (A.5.2) may now be relaxed to

min
L
Fγ (L) subject to ‖A (L)− y‖22 ≤ ε

2. (A.5.6)

The constrained optimization problem (A.5.6) can be converted to an unconstrained one by use

of regularization. This yields

min
L
λFγ (L) + ‖A (L)− y‖22 , (A.5.7)

where λ is a regularization parameter. Program (A.5.7) is of the form

min
L
λρ (L) + h (L) , (A.5.8)

where h (L) is convex and differentiable with Lipschitz continuous gradient. In case of the NNM

approach (A.5.3), ρ (L) is convex and non smooth. For the approach considered in (A.5.7), ρ (L)

is not concave nor convex (since fγ (x) is defined also for negative numbers) and not smooth

i. e. not differentiable at the origin. Nevertheless, the iterative thresholding (IT) method can be

utilized to conduct the desired minimization. For a fixed γ, a solution to program (A.5.7) can be

obtained by iteratively solving

Lj+1 = arg min
L

{
〈L−Lj ,∇h (Lj)〉F +

1

2µ
‖L−Lj‖2F + λFγ (L)

}
(A.5.9)

until convergence, where µ > 0 is some step size.

Solution to unconstrained minimization problem for a fixed γ

Program (A.5.9) can be simplified to

Lj+1 = arg min
L

{
1

2µ
‖L− (Lj − µ∇h (Lj))‖2F + λFγ (L)

}
(A.5.10)

ignoring constant terms unimportant regarding the minimization. For a given Lj we can further

simplify (A.5.10) to

Lj+1 = arg min
L

{
1

2µ
‖L−L0j‖2F + λFγ (L)

}
, (A.5.11)

where

L0j = Lj − µ∇h (Lj) (A.5.12)

is the result of the gradient update step. In order to minimize (A.5.11) we can use Theorem 2 of

[83].

Theorem A.2. For unitarily invariant functions F (Z) = F ′ ◦ σ (Z) the optimal solution to the

problem

min
Z

F (Z) + c ‖Z −A‖2F

is

Ẑ = UΣ̂ZV
H,

where A = UΣAV
H is the singular value decomposition (SVD) decomposition of A and Σ̂Z =
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diag (σ̂) is obtained by solving the separable minimization problem

σ̂ = arg min
{
λF ′ (σ) + c ‖σ − σA‖22

}
,

where σA = σ (A) [83].

It shall be noted, that theorem A.2 also works if F (Z) would not be a unitarily invariant

function, provided F (Z) = F (ΣZ), where ΣZ = diag (σ (Z)), which is inherently fulfilled since

ΣZ is a real positive diagonal matrix. We therefore can use theorem A.2 to obtain

Lj+1 = U0jΣ̂LV
H

0j , (A.5.13)

where

L0j = U0jΣ0jV
H

0j (A.5.14)

is the SVD of L0j , Σ̂L = diag (σ̂), and

σ̂ = arg min
σ≥0

{
λF ′γ (σ) +

1

2µ
‖σ − σ0j‖22

}
, (A.5.15)

where σ0j = σ (L0j). In (A.5.15) we additionally demand σ ≥ 0 since singular values are always

positive. The objective function (A.5.15) is the sum of a concave and convex function (since

σ ≥ 0). To the contrary of [62], we do not solve (A.5.15) by applying a differenct of convex (D.C.)

optimization strategy. A better approach, first shown in [58], is to utilize the Lambert W function

W (z)eW (z) = z, (A.5.16)

which allows for a closed form solution of (A.5.15). We start by noticing that the minimization in

(A.5.15) is separable and as such can be conducted element wise as

σ̂i = arg min
σ≥0

{
λfγ (σ) +

1

2µ
(σ − σ0j,i)

2

}
. (A.5.17)

Defining the argument of (A.5.17) as

L (σ, σ0j,i) = λfγ (σ) +
1

2µ
(σ − σ0j,i)

2 , (A.5.18)

taking its derivative with respect to σ and setting it to zero yields after short manipulation

σ − σ0j,i

µ
= −λ

γ

σ

|σ|
exp

(
−σ
γ

)
= −λ

γ
exp

(
−σ
γ

)
, (A.5.19)

where we used the fact that σ ≥ 0. To apply the Lambert W function we modify (A.5.19) to

σ − σ0j,i

γ
exp

(
σ − σ0j,i

γ

)
= −λµ

γ2
exp

(
−σ0j,i

γ

)
. (A.5.20)
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Applying the Lambert W function on both sides of (A.5.20) gives two solutions

σ1 = γW0 (z) + σ0j,i (A.5.21)

σ2 = γW−1 (z) + σ0j,i, (A.5.22)

where

z = −λµ
γ2

exp

(
−σ0j,i

γ

)
(A.5.23)

and W0 (·) denotes the upper branch and W−1 (·) the lower branch of the multi-valued Lambert

W function. The rest of the derivation is left to look up in [58]. The solution to (A.5.17) is the

shrinkage operator

T (γ)
µλ (x) =


0 x < γ

(
1 + ln

(
µλ
γ2

))
0 L (0, x) < L (σ1, x)

σ1 otherwise

, (A.5.24)

where σ1 is (A.5.21) and L (·, ·) is (A.5.18). The solution to (A.5.11) is therefore

Lj+1 = U0j diag
(
T (γ)
µλ (σ0j)

)
V H

0j ,

where T (γ)
µλ (σ0j) =

[
T (γ)
µλ (σ0j,1) · · · T (γ)

µλ (σ0j,nmin)
]T

is the vector operator version of (A.5.24),

σ0j = σ (L0j), L0j is (A.5.12), and U0j and V H
0j are defined in (A.5.14).

The regularization parameter λ

A short remark at the beginning: The approach in [58] to choose λ=̂λγ = λγ did not work well in

our case. Simulations showed better results by simply taking λγ = λ. If the first choice λγ = λγ

was used, the singular value vector was made non sparse. This did not happen by using λγ = λ.

For the CSRA algorithm the regularization parameter λ may be determined by

λ = 2cr

√
PnΦ−1

(
1− αr

2n

)√
max (N1, N2), (A.5.25)

as introduced in Section 6.3.

The step size µ

For this particular approach there is no easy way to find a valid step size. Since the function

Fγ (L) defined in (A.5.5) is not convex or concave a Lipschitz approach does not work in general.

A step size found to be working well is µ ∈
(

0, 1
ML

)
, where ML = ‖A‖22, which is a guaranteed

stable step size for the singular value thresholding (SVT) algorithm [45]. This seems reasonable

considering the similarities of SVT and the algorithm presented here since both follow the IT

approach. It would be also possible to apply a line search strategy as presented e. g. in [84].

However, simulations showed that it is sufficient to use a step size of µ = 0.99/‖A‖22. This is

guaranteed stable step size and the convergence speed does not suffer considerably.
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Unique solution

In general, it is very difficult to prove a unique solution to problem (A.5.2) can be acquired by

solving (A.5.6) consecutively as we let γ → 0+. However, we use the same approach as in [58],

where for an equivalent sparse problem such a convergence was proven not for a noisy but

for an equivalent noiseless optimization problem. In [58] it was shown by simulations, that this

convergence property also holds in the noisy case. In this work here, we therefore also only show

the desired convergence property to a unique solution for an equivalent noiseless optimization

problem.

Let L̃ be the unique solution to

min
L

rank (L) subject to A (L) = y, (A.5.26)

which is the noiseless equivalent to (A.5.2) and let Lγ denote, for a specific γ, a solution to

min
L
Fγ (L) subject to A (L) = y, (A.5.27)

which is the noiseless equivalent to (A.5.6). Since (A.5.26) and (A.5.27) are the same optimization

problems as discussed in [82], we can directly follow their conclusion concerning a unique solution

which states

lim
γ→0+

Lγ = L̃.

This result shows that the solutions Lγ of (A.5.27) tend towards the minimum rank solution of

(A.5.26) for γ → 0+. We therefore conclude that consecutive solutions of (A.5.6) approximate

the solution to (A.5.2).

Convergence

A convergence analysis can be found in [62] which is directly applicable to the approach presented

in this chapter. Remark: In [62], the unitarily invariant function property is also stated for functions

whose domain is only the positive orthant R+. This relaxation allows for F ′ (σ) to be concave

and more important to be differentiable at the origin. This is used in the convergence analysis. If

this would be wrong, we could not use the convergence analysis any more. Nevertheless, since

Lemma A.2 is also valid for non unitarily invariant functions, the minimization approach used here

is still valid. Remark 2: The convergence analysis uses a decreasing step size of ρ← cρ for a c < 1.

Since we use a static step size, the convergence proof does not hold for us any longer.

Initialization

As pointed out in the graduated non-convexity (GNC) procedure, we initially solve (A.5.6) for

γ →∞. Following the same argumentation as stated above, let L̂ be the unique solution to

min
L
‖L‖∗ subject to A (L) = y,

which is the equivalent NNM noiseless optimization problem to (A.5.3). In [82] it was shown that,

for γ →∞, the following statement holds

lim
γ→∞

arg min
L

{Fγ (L)| A (L) = y} = arg min
L

{‖L‖∗| A (L) = y} = L̂,
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provided that NNM has a unique solution. We therefore conclude, that (A.5.6), for γ → ∞, can

be optimized by solving (A.5.3). For solving (A.5.3) we may use the SVT algorithm or the highly

improved version turbo singular value thresholding (TSVT) presented in Section 6.1. Furthermore,

γ0 is set to σ1 (L0) = ‖L0‖2, where L0 is the solution of (A.5.3). This is different as done

in [82], where γ0 was set to 8σ1 (L0). Since, as explained in [82], 8σ1 (L0) is equivalent to the

solution obtained by the SVT algorithm, this iteration is not necessary and we start with an already

decreased γ0. The final algorithm is listed in Algorithm 6.4.

A.6. Optimal Step Size Determination for Finding Low-Rank

Solutions via Non-Convex Bi-Factored Matrix Factorization

Low-rank matrices appear frequently in signal processing applications e.g. in the field of remote

sensing, machine learning, etc. The fundamental problem is to recover an unknown low-rank

matrix L ∈ CN1×N2 from a limited number of noisy observations of the form

y = A(L) + n,

where A : CN1×N2 → CM is a known affine transformation, y ∈ CM is a measurement vector,

and n ∈ CM is additive noise. This problem can be cast as affine rank minimization (ARM)

problem:

min
L
f(L) :=

1

2
‖y −A(L)‖22

s.t. rank(L) ≤ r,
(A.6.1)

where ‖·‖2 denotes the `2 norm [85]. One method to solve (A.6.1) is an iterative procedure called

the bi-factored gradient descent (BFGD) algorithm [43]. The algorithm is of the form

Ut+1 = Ut − µU∇UF (Ut,Vt) (A.6.2)

Vt+1 = Vt − µV∇V F (Ut,Vt) , (A.6.3)

where the matrix L was factorized as L = UV H with U ∈ CN1×r, V ∈ CN2×r, µU and µV

denote the step sizes, t indicates the iteration step, and ∇Z denotes the gradient with respect to

Z. For the specific case of the original objective function f (·) in (A.6.1) being both (restricted)

strongly convex and smooth, an additional convex regularizer g : Cr×r → C is required as

F (U ,V ) = f
(
UV H

)
+ λg

(
UHU − V HV

)
, (A.6.4)

where λ ∈ R+ determines the weighting of the regularization term. The additional regularizer is

necessary in order to prevent Ut and Vt obtaining large condition numbers in any iteration step

which is required by the BFGD algorithm to ensure convergence. It is required that:

1. g is convex and minimized at zero point i.e. ∇g(0) = 0.

2. The gradient, ∇g
(
UHU − V HV

)
∈ Cr×r, is symmetric for any such pair.

3. g is µg-strongly convex and Lg-smooth [43].
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Of particular interest is the question of how to choose the step sizes µU and µV . The existence of

an optimal step width was shown in [43, 63, 53, 64], however, no equations based on parameters

known in practice are given. For the special case of g (·) being the quadratic Frobenius norm

g (·) = ‖·‖2F

we develop an optimal step size calculation here. The step sizes µU and µV are chosen such that

the objective function (A.6.4) is minimized in every step subject to given gradients

GU = ∇UF (U ,V ) (A.6.5)

GV = ∇V F (U ,V ) (A.6.6)

as such

µU = arg min
µ

F (U − µGU ,V ) (A.6.7)

µV = arg min
µ

F (U ,V − µGV ) . (A.6.8)

We conduct the minimization by setting the derivatives to zero

∂F (U − µGU ,V )

∂µ
= 0 (A.6.9)

∂F (U ,V − µGV )

∂µ
= 0. (A.6.10)

The derivatives in (A.6.9) and (A.6.10) are third order polynomials in µ and as such have in general

three arbitrary roots which may be real positive, real negative, or complex. However, for valid

step sizes, a single positive real root is needed. In the following we first illustrate the derivation

of (A.6.9) and (A.6.10) regarding µU and µV . Thereafter prove only one unique real positive root

exists in the framework of the BFGD algorithm.

Derivative regarding µU

The regularized objective function (A.6.4) using the Frobenius norm for g (·) is in extended form

F (U − µGU ,V ) =
1

2

∥∥y −A ((U − µGU )V H
)∥∥2

2︸ ︷︷ ︸
DU

+ λ
∥∥∥(U − µGU )H (U − µGU )− V HV

∥∥∥2

F︸ ︷︷ ︸
SU

(A.6.11)

and its gradient is

GU = −A∗ (ỹ)V + 4λUX (A.6.12)

ỹ = y −A
(
UV H

)
(A.6.13)

X = UHU − V HV , (A.6.14)
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where AH (·) is the Hermitian adjoint operator of A. We first treat the data fidelity term DU of

(A.6.11), which we simplify by use of (A.6.13) to

DU =
1

2

∥∥y −A ((U − µGU )V H
)∥∥2

2
=

1

2

∥∥y −A (UV H
)

+ µA
(
GUV

H
)∥∥2

2

=
1

2

∥∥ỹ + µA
(
GUV

H
)∥∥2

2
(A.6.15)

Its derivative is

∂DU
∂µ

=
∂

∂µ

1

2

(
ỹHỹ + 2µRe

{
ỹHA

(
GUV

H
)}

+ µ2
∥∥A (GUV H

)∥∥2

2

)
= Re

{
ỹHA

(
GUV

H
)}︸ ︷︷ ︸

T0

+ µ
∥∥A (GUV H

)∥∥2

2
, (A.6.16)

where we may simplify the term T0 further by utilizing the sum notation as

T0 = ỹHA
(
GUV

H
)
⇔ ỹ∗i a

∗
ijbv
∗
brgUjr (A.6.17)

and noticing that (A.6.12) in sum notation can be expressed as

(GU )jr = − (A∗ (ỹ)V )jr + 4λ (UX)jr

, gUjr = −aijpỹivpr + 4λujmxmr, (A.6.18)

where gUjr = (GU )jr is the entry of GU at index (j, r). From (A.6.18) we can isolate the term

ỹiaijpvpr = −gUjr + 4λujmxmr

and insert it into (A.6.17) as

T0 =
(
−g∗Ujr + 4λu∗jmx

∗
mr

)
gUjr

= −g∗UjrgUjr + 4λu∗jmx
∗
mrgUjr

, −‖GU‖2F + 4λ 〈UX,GU 〉F
= −‖GU‖2F + 4λ

〈
X,UHGU

〉
F
, (A.6.19)

where 〈·, ·〉F denotes the Frobenius product. Inserting (A.6.19) into (A.6.16) yields

∂DU
∂µ

= −‖GU‖2F + 4λRe
{〈
X,UHGU

〉
F

}
+ µ

∥∥A (GUV H
)∥∥2

2
. (A.6.20)

Next we treat the scale difference term SU of (A.6.11), which we simplify as

SU =
∥∥∥(U − µGU )H (U − µGU )− V HV

∥∥∥2

F
=
∥∥U ′HU ′ − V HV

∥∥2

F

=
∥∥X ′∥∥2

F
, (A.6.21)
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where

U ′ = U − µGU .

From (A.6.21) and (A.6.14) we also find

X ′ = X − µ
(
UHGU +GH

UU
)

+ µ2GH
UGU . (A.6.22)

At this point we introduce some abbreviations to further simplify (A.6.22) as

A = GH
UU +UHGU (A.6.23)

B = GH
UGU , (A.6.24)

so

X ′ = X − µA+ µ2B (A.6.25)

Due to a better handling of the Frobenius norm we we again utilize the sum notation

(
X ′
)
ij

= x′ij = u′∗siu
′
sj − v∗tivtj

to find the derivative as

∂SU
∂µ

= λ
∂

∂µ

∥∥X ′∥∥2

F
= λ

∂x′∗ijx
′
ij

∂µ

= λ

(
∂x′∗ij
∂µ

x′ij +
∂x′ij
∂µ

x′∗ij

)
= 2λRe

{
∂x′ij
∂µ

x′∗ij

}
(A.6.26)

since
∂x′∗ij
∂µ

=

(
∂x′ij
∂µ

)∗
because µ ∈ R. The required derivative is

∂x′ij
∂µ

=
∂u′∗siu

′
sj

∂µ
=
∂ (U∗ − µG∗U )si (U − µGU )sj

∂µ

=
∂ (U∗ − µG∗U )si

∂µ
(U − µGU )sj + (U∗ − µG∗U )si

∂ (U − µGU )sj
∂µ

= − (G∗U )si (U − µGU )sj − (U∗ − µG∗U )si (G∗U )sj

= −
(
GH
U (U − µGU )

)
ij
−
(

(U − µGU )HGU

)
ij

=
(
−GH

U (U − µGU )− (U − µGU )HGU

)
ij

=
(
2µGH

UGU −GH
UU −UHGU

)
ij

= (2µB −A)ij , (A.6.27)
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where at the last step we inserted the abbreviations (A.6.23) and (A.6.24). Inserting (A.6.27) into

(A.6.26) yields

∂S

∂µ
= 2λRe

{
x′∗ij (2µB −A)ij

}
= 2λRe

{〈
X ′, 2µB −A

〉
F

}
. (A.6.28)

By combining (A.6.20) and (A.6.28) we have in total

∂F (U − µGU ,V )

∂µ
=
∂DU
∂µ

+
∂SU
∂µ

= −‖GU‖2F + µ
∥∥A (GUV H

)∥∥2

2

+ 4λRe
{〈
X,UHGU

〉
F

}
+ 2λRe

{〈
X ′, 2µB −A

〉
F

}︸ ︷︷ ︸
T1

. (A.6.29)

We may further simplify the term T1 as

T1 = 4λRe
{〈
X,UHGU

〉
F

}
+ 2λRe

{〈
X ′, 2µB −A

〉
F

}
= 2λRe

{
2
〈
X,UHGU

〉
F

+
〈
X ′, 2µB −A

〉
F

}
and insert (A.6.22) as

T1 = 2λRe
{

2
〈
X,UHGU

〉
F

+
〈
X ′, 2µB −A

〉
F

}
= 2λRe

{
2
〈
X,UHGU

〉
F

+
〈
X − µA+ µ2B, 2µB −A

〉
F︸ ︷︷ ︸

T2

}
. (A.6.30)

Next we expand term T2 and further simplify it which yields

T2 =
〈
X − µA+ µ2B, 2µB −A

〉
F

= 2µ3 ‖B‖2F − µ
2(2 〈A,B〉F + 〈B,A〉F)︸ ︷︷ ︸

T3

+ µ
(

2 〈X,B〉F + ‖A‖2F
)
− 〈X,A〉F . (A.6.31)

The term T3 can be combined as

T3 = 2 〈A,B〉F + 〈B,A〉F
= 3 Re {〈A,B〉F}+ j Im {〈A,B〉F} , (A.6.32)

where the imaginary part can be skipped since only the real part is taken in (A.6.30). Inserting

(A.6.31) and (A.6.32) into (A.6.30) yields

T1 = 2λRe
{

2µ3 ‖B‖2F − µ
23 〈A,B〉F + µ

(
2 〈X,B〉F + ‖A‖2F

)
+ 2

〈
X,UHGU

〉
F
− 〈X,A〉F︸ ︷︷ ︸

T4

}
.

(A.6.33)
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Finally we can combine term T4 as

T4 = 2
〈
X,UHGU

〉
F
− 〈X,A〉F

= 2
〈
X,UHGU

〉
F
−
〈
X,GH

UU +UHGU
〉

F

=
〈
X,UHGU −GH

UU
〉

F

= 〈X,C〉F , (A.6.34)

where in addition to (A.6.23) and (A.6.23) the abbreviation

C = UHGU −GH
UU (A.6.35)

was introduced. Combining (A.6.34), (A.6.33), and (A.6.29) yields the final form

∂F (U − µGU ,V )

∂µ
= −‖GU‖2F + 2λRe

{
2µ3 ‖B‖2F − 3µ2 〈A,B〉F

+ µ

(
2 〈X,B〉F + ‖A‖2F +

1

2λ

∥∥A (GUV H
)∥∥2

2

)
+ 〈X,C〉F

}
. (A.6.36)

Derivative regarding µV

The derivative regarding µV from (A.6.10) is computed in an analogous manner to that of µU
from (A.6.9), however, some minor differences exist. Therefore the derivation is again shown

step by step. The regularized objective function (A.6.4) using the Frobenius norm for g (·) is in

extended form

F (U ,V − µGV ) =
1

2

∥∥∥y −A(U (V − µGV )H
)∥∥∥2

2︸ ︷︷ ︸
DV

+ λ
∥∥∥UHU − (V − µGV )H (V − µGV )

∥∥∥2

F︸ ︷︷ ︸
SV

(A.6.37)

and its gradient is

GV = − (A∗ (ỹ))HU − 4λV X. (A.6.38)

We first treat the data fidelity term DV of (A.6.37), which we simplify by use of (A.6.38) as

DV =
1

2

∥∥∥y −A(U (V − µGV )H
)∥∥∥2

2
=

1

2

∥∥y −A (UV H
)

+ µA
(
UGH

V

)∥∥2

2

=
1

2

∥∥ỹ + µA
(
UGH

V

)∥∥2

2

Its derivative is

∂DV
∂µ

=
∂

∂µ

1

2

(
ỹHỹ + 2µRe

{
ỹHA

(
UGH

V

)}
+ µ2

∥∥A (UGH
V

)∥∥2

2

)
= Re

{
ỹHA

(
UGH

V

)}︸ ︷︷ ︸
T5

+ µ
∥∥A (UGH

V

)∥∥2

2
. (A.6.39)
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We may simplify the term T5 in (A.6.39) further as

T5 = ỹHA
(
UGH

V

)
⇔ ỹ∗i a

∗
iokuorg

∗
V kr (A.6.40)

and noticing that (A.6.38) in sum notation can be expressed as

(GV )kr = −
(

(A∗ (ỹ))HU
)
kr
− 4λ (V X)kr

, gV kr = −a∗iokỹ∗i uor − 4λvkmxmr. (A.6.41)

From (A.6.41) we can isolate the term

ỹ∗ia
∗
iokuor = −gV kr − 4λvkmxmr

and insert it into (A.6.40) as

T5 = (−gV kr − 4λvkmxmr) g
∗
V kr

= −g∗V krgV kr − 4λg∗V krvkmxmr

, −‖GV ‖2F − 4λ 〈GV ,V X〉F
= −‖GV ‖2F − 4λ

〈
V HGV ,X

〉
F
. (A.6.42)

Inserting (A.6.42) into (A.6.39) yields

∂DV
∂µ

= −‖GV ‖2F − 4λRe
{〈
V HGV ,X

〉
F

}
+ µ

∥∥A (UGH
V

)∥∥2

2
. (A.6.43)

Next we treat the scale difference term SV of (A.6.37), which we simplify as

SV =
∥∥∥UHU − (V − µGV )H (V − µGV )

∥∥∥2

F
=
∥∥UHU − V ′HV ′

∥∥2

F

=
∥∥X ′′∥∥2

F
, (A.6.44)

where

V ′ = V − µGV .

From (A.6.44) and (A.6.14) we also find

X ′′ = X + µ
(
GH
V V + V HGV

)
− µ2GH

VGV . (A.6.45)

At this point we introduce some abbreviations to further simplify (A.6.45) as

D = GH
V V + V HGV (A.6.46)

E = GH
VGV , (A.6.47)

so

X ′′ = X + µD − µ2E. (A.6.48)
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Due to a better handling of the Frobenius norm we use the sum notation

(
X ′′
)
ij

= x′′ij = u∗siusj − v′∗tiv′tj ,

where

v′xy =
(
V ′
)
xy
,

to find the derivative as

∂SV
∂µ

= λ
∂

∂µ

∥∥X ′′∥∥2

F
= λ

∂x′′∗ij x
′′
ij

∂µ

= λ

(
∂x′′∗ij
∂µ

x′′ij +
∂x′′ij
∂µ

x′′∗ij

)
= 2λRe

{
∂x′′ij
∂µ

x′′∗ij

}
(A.6.49)

since
∂x′′∗ij
∂µ

=

(
∂x′′ij
∂µ

)∗
because µ ∈ R. The required derivative is

∂x′′ij
∂µ

= −
∂v′∗tiv

′
tj

∂µ
= −

∂ (V ∗ − µG∗V )ti (V − µGV )tj
∂µ

= −
∂ (V ∗ − µG∗V )ti

∂µ
(V − µGV )tj − (V ∗ − µG∗V )ti

∂ (V − µGV )tj
∂µ

= (G∗V )ti (V − µGV )tj + (V ∗ − µG∗V )ti (G∗V )tj

=
(
GH
V (V − µGV )

)
ij

+
(

(V − µGV )HGV

)
ij

=
(
GH
V (V − µGV ) + (V − µGV )HGV

)
ij

=
(
−2µGH

VGV +GH
V V + V HGV

)
ij

= (−2µE +D)ij , (A.6.50)

where at the last step we inserted the abbreviations (A.6.46) and (A.6.47). Inserting (A.6.50) into

(A.6.49) yields

∂SV
∂µ

= 2λRe
{
x′′∗ij (−2µE +D)ij

}
= 2λRe

{〈
X ′′,−2µE +D

〉
F

}
. (A.6.51)

By combining (A.6.43) and (A.6.51) we have in total

∂F (U ,V − µGV )

∂µ
=
∂DV
∂µ

+
∂SV
∂µ

= −‖GV ‖2F + µ
∥∥A (UGH

V

)∥∥2

2

−4λRe
{〈
V HGV ,X

〉
F

}
+ 2λRe

{〈
X ′′,−2µE +D

〉
F

}︸ ︷︷ ︸
T6

. (A.6.52)
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We may further simplify the last two terms of the latter as

T6 = −4λRe
{〈
V HGV ,X

〉
F

}
+ 2λRe

{〈
X ′′,−2µE +D

〉
F

}
= 2λRe

{
−2
〈
V HGV ,X

〉
F

+
〈
X ′′,−2µE +D

〉
F

}
and insert (A.6.45) as

T6 = 2λRe
{
−2
〈
V HGV ,X

〉
F

+
〈
X ′′,−2µE +D

〉
F

}
= 2λRe

{
−2
〈
V HGV ,X

〉
F

+
〈
X + µD − µ2E,−2µE +D

〉
F︸ ︷︷ ︸

T7

}
. (A.6.53)

Next we expand term T7 and further simplify which yields

T7 =
〈
X + µD − µ2E,−2µE +D

〉
F

= 2µ3 ‖E‖2F − µ
2(2 〈D,E〉F + 〈E,D〉F)︸ ︷︷ ︸

T8

+ µ
(
−2 〈X,E〉F + ‖D‖2F

)
+ 〈X,D〉F . (A.6.54)

The term T8 can be combined as

T8 = 2 〈D,E〉F + 〈E,D〉F
= 3 Re {〈D,E〉F}+ j Im {〈D,E〉F} , (A.6.55)

where the imaginary part can be skipped since only the real part is taken in (A.6.53). Inserting

(A.6.54) and (A.6.55) into (A.6.53) yields

T6 = 2λRe
{

2µ3 ‖E‖2F−3µ2 〈D,E〉F+µ
(
−2 〈X,E〉F + ‖D‖2F

)
−2
〈
V HGV ,X

〉
F

+ 〈X,D〉F︸ ︷︷ ︸
T9

}
.

(A.6.56)

Finally we can combine term T9 as

T9 = Re
{
−2
〈
V HGV ,X

〉
F

+ 〈X,D〉F
}

= Re
{
−2
〈
X,V HGV

〉
F

+
〈
X,GH

V V + V HGV
〉

F

}
= Re

{〈
X,GH

V V − V HGV
〉

F

}
= Re {〈X,F 〉F} , (A.6.57)

where we introduced an additional abbreviation

F = GH
V V − V HGV . (A.6.58)

Please note that switching the entries in the Frobenius product as done above is only possible

since we are only interested in the real part. Combining (A.6.57), (A.6.56), and (A.6.52) yields
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the final form

∂F (U ,V − µGV )

∂µ
= −‖GV ‖2F + 2λRe

{
2µ3 ‖E‖2F − 3µ2 〈D,E〉F

+ µ

(
−2 〈X,E〉F + ‖D‖2F +

1

2λ

∥∥A (UGH
V

)∥∥2

2

)
+ 〈X,F 〉F

}
(A.6.59)

Unique solutions for µU and µV

As can be seen from (A.6.36) and (A.6.59), the derivatives are third order polynomials in µ and as

such have in general three arbitrary roots. However, for valid step sizes, we need a single positive

real root. We prove that this is always the case in the framework of the BFGD algorithm by first

showing that only one real root exists and second that this real root is positive.

Single real root Since the regularized objective function (A.6.4) is the sum of two functions

f (·) and g (·) which are convex in U and V , (A.6.4) is convex in U and V too. Therefore it

has only one global minimum and thus only one real point where its derivative is zero. The same

holds for the restricted functions in (A.6.7) and (A.6.8). The derivatives (A.6.36) and (A.6.59) thus

can only have one real and two complex roots.

Positive real root To prove this single real root is positive, we take a closer look at the polyno-

mial´s coefficients. The polynomial has the general form

aµ3 + bµ2 + cµ+ d = 0.

By use of Descartes’ rule of signs we can determine the sign of the roots, for which we only need

to know the signs of the coefficients [86]. Those are shown in Tab. A.6.1. The coefficient a is

positive. The sign of coefficient b is unknown because A and D are indefinite matrices. The

matrices B and E are positive semidefinite, however, this is not of use here. Coefficient c is

almost surely positive since X = UHU − V HV is the difference of almost identical covariance

matrices. Since U and V stem from a singular value decomposition (SVD) as L = ŪΣV̄ H and

U = ŪΣ1/2 and V = V̄ Σ1/2, X has only entries close to zero. We thus may neglect 〈X,B〉F
and 〈X,E〉F compared to the remaining terms in (A.6.36) and (A.6.59). The same argument

holds for coefficient d where we may neglect 〈X,C〉F and 〈X,F 〉F. In summary we have

+ |a|µ3 ± |b|µ2 ± |c|µ− |d| = 0

which yields either one or three change of signs. According to Descartes’ rule we have for

1 change of signs: 1 positive real root and 2 negative or complex roots

3 changes of signs: 1 or 3 positive real roots, 2 or 0 complex roots, and 0 negative roots

In either case we are guaranteed to have at least one positive real root Q.E.D. In case of three

changes of signs we are guaranteed to only have one positive real root due to the convex objective

function. By taking care that d < 0, we ensure to have a positive real root. The sings of b and c

do not matter.
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Since we can neglect the impact of X due to the reasons stated above, we may simplify

(A.6.36) and (A.6.59) as

∂F (U − µGU ,V )

∂µ
' 4λµ3 ‖B‖2F − 6λµ2 Re {〈A,B〉F}

+ µ
(

2λ ‖A‖2F +
∥∥A (GUV H

)∥∥2

2

)
− ‖GU‖2F = pU (A.6.60)

∂F (U ,V − µGV )

∂µ
' 4λµ3 ‖E‖2F − 6λµ2 Re {〈D,E〉F}

+ µ
(

2λ ‖D‖2F +
∥∥A (UGH

V

)∥∥2

2

)
− ‖GV ‖2F = pV . (A.6.61)

The optimal step sizes (A.6.7) and (A.6.8) are thus

µU = real root of (pU ) (A.6.62)

µV = real root of (pV ) , (A.6.63)

where real root of (·) denotes an operator which yields only the pure real root of the three possible

roots of (A.6.60) and (A.6.61).

Coefficient (A.6.36) or (A.6.59) Sign

a 4λ ‖B‖2F or 4λ ‖E‖2F ≥ 0

b −6λRe {〈A,B〉F} or −6λRe {〈D,E〉F} ≷ 0

c
2λRe

{
2 〈X,B〉F + ‖A‖2F

}
+
∥∥A (GUV H

)∥∥2

2
or

2λRe
{
−2 〈X,E〉F + ‖D‖2F

}
+
∥∥A (UGH

V

)∥∥2

2

? 0

d
−‖GU‖2F + 2λRe {〈X,C〉F}

or
−‖GV ‖2F + 2λRe {〈X,F 〉F}

. 0

Table A.6.1.: Signs of coefficients of (A.6.36) and (A.6.59).

Simulation Results

A Matlab program was designed to test the proposed step size calculation. The BFGD algorithm

was used to solve (A.6.1), where the step sizes were calculated in every iteration step using

(A.6.62) and (A.6.63). The dimension size was set exemplarily to N1 = N2 = 70, the rank to

r = 14, the number of measurements to M = N1N2/2 = 2450, λ = 1/8, and the entries of the

affine transformation A, Utrue, and Vtrue were drawn from complex standard normal distributed

random samples. The columns of the matrices Utrue and Vtrue were further orthogonalized and

their respective `2 norms were equalized such as if Utrue and Vtrue would stem from an SVD. The

initial solutions U0 and V0 were obtained by perturbing Utrue and Vtrue by adding substantial

complex standard normal distributed noise followed by the orthogonalization and equalization

procedure described before. The results are shown on the left of Fig. A.6.1 where the relative

square data fidelity error ‖ỹ‖22 / ‖y‖
2
2 for a fixed step size of µU = µV = 0.001 and for the

proposed step size determination are shown. It can be seen that the error drops at a faster rate
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Figure A.6.1.: Left: Relative square data fidelity error. Right: Step sizes.

using the proposed step size determination. The determined step sizes in every iteration step are

shown on the right of Fig. A.6.1. One may deduce from the similarity of the two graphs that it

is possible to reduce the computational burden of the step size determination by using the same

step size for both µU and µV accepting a slightly worse convergence rate. Furthermore, one may

determine an optimal fixed step size from a reasonably converged step size sequence as apparent

in Fig. A.6.1 (right).

A.7. Derivation of Some Useful Gradients

In this section some useful gradients are derived required for compressive sensing (CS), affine

rank minimization (ARM), and the auto-clutter focus algorithm.

A.7.1. The Gradient ∇sh and ∇Lh

These gradients are required for CS and ARM algorithms. Since their mathematical structure is the

same, the gradient is derived for ∇Xh. As the arguments are complex elements, the Wirtinger

derivatives listed in Appendix A.1 are used to determine the required gradients. At first notice,

that h(X) : Cn1×n2 → R is not a holomorphic function which can be seen by noticing that

∂ |f(X)|2

∂f(X)∗
=
∂f(X)f(X)∗

∂f(X)∗
= f(X) 6= 0,

which is the required condition. Nevertheless, a gradient indicating a descendant direction in the

real and imaginary domain can be found as7

∇Xf(X) =

(
∂f(X)

∂X∗

)T

.

7It is also possible to choose ∇Xh(X) = 2
(
∂h(X)
∂X

)T

as a gradient, however, this is not the common form usually

chosen in the literature.
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As such, the desired derivative of the residual error term is

∇Xh(X) =

(
∂ ‖y −A (X)‖22

∂X∗

)T

=
∂ ‖y −A (xkl)‖22

∂x∗ij
, (A.7.1)

where X ∈ Cn1×n2 , A : Cm → Cn1×n2 is an affine linear transformation, and y ∈ Cm. Using the

chain rule, (A.7.1) can be expanded by

∂ ‖y −A (xkl)‖22
∂x∗ij

=
∂a2

∂a

∂ ‖b‖2
∂b

−∂A (xkl)

∂xij

∂xij
∂x∗ij︸ ︷︷ ︸

T1

+
∂a2

∂a∗
∂ (‖b‖2)∗

∂b∗
−∂ (A (xkl))

∗

∂x∗ij

∂x∗ij
∂x∗ij︸ ︷︷ ︸

T2

,

with the intermediate variables

a = ‖y −A (xkl)‖2
b = y −A (xkl) .

The first term T1 is zero since
∂xij
∂x∗ij

= 0.

Within the second term T2, the following results emerge

∂a2

∂a∗
=
∂a2

∂a
= 2a

∂ (‖b‖2)∗

∂b∗
=

(
∂ ‖b‖2
∂b

)∗
=

(
∂
(
bHb

)1/2
∂b

)∗
=

(
1

2 ‖b‖2
∂bHb

∂b

)∗
=

(
bH

2 ‖b‖2

)∗
=

bT

2 ‖b‖2
−∂ (A (xkl))

∗

∂x∗ij
= −

∂A∗ (x∗kl)
∂x∗ij

=
∂
∑

k,lA∗hklx∗kl
∂x∗ij

= A∗hij .

Combining them together yields

∂ ‖y −A (xkl)‖22
∂x∗ij

=
∑
h

[
(y −A (xkl))

T
]
h
A∗hij

= AH (y −A (X)) .

As such, in case of CS the desired gradient is

∇sh =
∂ ‖y −A (s)‖22

∂s∗
= AH (y −A (s))

and like wise for the ARM case

∇Lh =
∂ ‖y −A (L)‖22

∂L∗
= AH (y −A (L)) . (A.7.2)
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A.7.2. The Gradient ∇βh

The residual error term is given by (7.2.13) as

h(L;β, ϕm) = ‖y −A (L;β, ϕm)‖22 .

Since β ∈ R, the required gradient is

∇βh (L;β, ϕ) = 2 Re

{
(A (L;β, ϕm)− y)H ∂A (L;β, ϕm)

∂β

}
. (A.7.3)

The sensing operator is given by (7.2.4) as

A (L;β, ϕm) = vec
(
AD−1(L;β, ϕm)BT

)
,

hence

∂A (L;β, ϕm)

∂β
=
∂ vec

(
AD−1(L;β, ϕm)BT

)
∂β

= vec

(
∂AD−1(L;β, ϕm)BT

∂β

)
= vec

(
A
∂D−1(L;β, ϕm)

∂β
BT

)
.

Next, the shifting operator D−1 is

D−1(L;β, ϕm) = F1

(
U∗4(β, ϕm)�

(
F−1

1 L
))

with the shift matrix U4(β, ϕm) being

U4(β, ϕm) = exp
(
j2πnūū

T
4(β, ϕm)

)
.

The required run and shift vectors are

nū = [0, 1, . . . , Nu − 1]T

ū4(β, ϕm) = [4ū (i/ND;β, ϕm)]
ND/2−1
i=−ND/2

(A.7.4)

and the shift amount 4ū is given by (7.1.14) as

4ū(f̄D;β, ϕm) = − f̄D

β
cos(ϕm) +

√∣∣d̄2 sin2 (ϑ)− f̄D
2/β2

∣∣ sin (ϕm) . (A.7.5)

As such, the required derivation of the shifting operator is

∂D−1(L;β, ϕm)

∂β
=
∂F1

(
U∗4(β, ϕm)�

(
F−1

1 L
))

∂β

= F1

(
∂U∗4(β, ϕm)

∂β
�
(
F−1

1 L
))

.
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The derivation of the shift matrix is

∂U∗4(β, ϕm)

∂β
= −j2π

(
nū

∂ūT
4(β, ϕm)

∂β

)
�U∗4(β, ϕm)

and the required derivation of the shift vector

∂ū4(β, ϕm)

∂β
=

[
∂4ū (i/ND;β, ϕm)

∂β

]ND/2−1

i=−ND/2

. (A.7.6)

Finally, the derivation of the shift amount is

∂4ū
(
f̄D;β, ϕm

)
∂β

=
f̄D

β2
cos(ϕm) +

f̄D
2 sin (ϕm)

(
d̄2 sin2 (ϑ)− f̄D

2/β2
)

β3
(
d̄2 sin2 (ϑ)− f̄D

2/β2
)3/2 . (A.7.7)

For the special case of

d̄ sin (ϕ) = f̄D/β, (A.7.8)

which may occur only if β < 1, the derivation (A.7.7) does not exist. In this case, the derivation is

simply defined to be zero as

∂4ū
(
f̄D;β, ϕm

)
∂β

=


f̄D

β2 cos(ϕm) +
f̄D

2 sin(ϕm)(d̄2 sin2(ϑ)−f̄D
2/β2)

β3(d̄2 sin2(ϑ)−f̄D
2/β2)

3/2 if d̄ sin (ϕ) 6= f̄D/β

0 else

.

This is not of concern as long as ND � 2. If the special case (A.7.8) occurs, exactly two zeros

emerge in the vector (A.7.6). If ND � 2, the artificially introduced zeros do not disturb the

gradient result (A.7.3) as sufficient other Doppler bins where the derivation exists are available.

This was verified by numerical simulations. In summary, the derivation of the sensing operator is

∂A (L;β, ϕm)

∂β
= vec

(
−j2πAF1

((
nū

∂ūT
4(β, ϕm)

∂β

)
�U∗4(β, ϕm)�

(
F−1

1 L
))
BT

)
.

(A.7.9)

A.7.3. The Gradient ∇ϕmhϕm

The objective function used to estimate ϕm is given by (7.2.10) and can be formulated as

hϕm(L;β, ϕm) = f(L;β, ϕm)2

with

f(L;β, ϕm) =

∥∥l̄cr

∥∥
2

l̄TcrgaplTcrlcr
.
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The mean free clutter ridge row given by (7.2.8) can also be reformulated to

l̄cr = lcr − µlcr1

= lcr − 1⊗ 1Tlcr

ND
,

where

lcr =
∣∣∣[L′]icr:

∣∣∣T
with

L′ = L− µ∇Lh (L;β, ϕm) . (A.7.10)

The required gradient therefore is

∇ϕmhϕm(L;β, ϕm) =
∂hϕm(L;β, ϕm)

∂lcr︸ ︷︷ ︸
T1

Re

{
∂lcr

∂
(
[L′]icr:

)T︸ ︷︷ ︸
T2

∂
(
[L′]icr:

)T
∂ϕm︸ ︷︷ ︸
T3

}
. (A.7.11)

The term T1 results to

∂hϕm(L;β, ϕm)

∂lcr
= 2f(L;β, ϕm)

∂f(L;β, ϕm)

∂lcr︸ ︷︷ ︸
T4

. (A.7.12)

Using the quotient rule, the required derivative T4 is

∂f(L;β, ϕm)

∂lcr
=

∂‖l̄cr‖2
∂lcr

l̄Tcrgapl
T
crlcr −

∥∥l̄cr

∥∥
2
∂ l̄TcrgaplTcrlcr

∂lcr(
l̄TcrgaplTcrlcr

)2 . (A.7.13)

The first derivative in T4 is

∂
∥∥l̄cr

∥∥
2

∂lcr
=

1

2
∥∥l̄cr

∥∥
2

∂ l̄Tcrl̄cr

∂lcr

=
l̄Tcr∥∥l̄cr

∥∥
2

Ñ , (A.7.14)

where

∂ l̄Tcrl̄cr

∂lcr
= 2l̄Tcr

∂ l̄cr

∂lcr
= 2l̄TcrÑ

Ñ =
∂ l̄cr

∂lcr
=
∂
(
lcr − 1⊗ 1Tlcr

ND

)
∂lcr

= I −
∂1⊗ 1Tlcr

ND

∂lcr
= I − 1

ND
� 1ND×ND

∂1⊗ 1Tlcr
ND

∂lcr
=

[
∂ 1Tlcr

ND

∂lcr,j

]ND

j=1

= 1⊗
∂ 1Tlcr

ND

∂lcr
= 1⊗

(
1T ⊗ 1

ND

)
=

1

ND
� 1ND×ND
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was used. The second derivative in T4 is

∂ l̄Tcrgapl
T
crlcr

∂lcr
= lTcrlcr

∂ l̄Tcrgap

∂lcr
+ l̄Tcrgap

∂lTcrlcr

∂lcr

= lTcrlcrg
T
apÑ + 2l̄Tcrgapl

T
cr, (A.7.15)

where
∂ l̄Tcrgap

∂lcr
=
∂gT

apl̄cr

∂lcr
= gT

ap

∂ l̄cr

∂lcr
= gT

apÑ

and
∂lTcrlcr

∂lcr
= 2lTcr

was used. Inserting (A.7.13), (A.7.14), and (A.7.15) into (A.7.12) yields for the first term T1 after

some manipulations

∂hϕm(L;β, ϕm)

∂lcr
=

2(
l̄TcrgaplTcrlcr

)2
l̄TcrÑ −

l̄Tcrl̄cr

(
lTcrlcrg

T
apÑ + 2l̄Tcrgapl

T
cr

)
l̄TcrgaplTcrlcr

 . (A.7.16)

The second term T2 in (A.7.11) is

∂lcr

∂
(
[L′]icr:

)T =

(
∂
∣∣[L′]icr:

∣∣
∂ [L′]icr:

)T

=

[
∂ |l′i|
∂l′j

]T

(A.7.17)

where [
L′
]T
icr:

=
[
l′k
]
k∈Ωcr

was used with i, j, k ∈ Ωcr denoting the clutter ridge index set. The required derivative is

∂ |l′i|
∂l′j

=
∂ (l′∗i l

′
i)

1/2

∂l′j

=
∂ (l′∗i l

′
i)

1/2

∂l′∗i l
′
i

∂l′∗i l
′
i

∂l′j
+
∂ (l′∗i l

′
i)

1/2

∂ (l′∗i l
′
i)
∗
∂l′∗i l

′
i

∂l′∗i

= 2
∂ (l′∗i l

′
i)

1/2

∂l′∗i l
′
i

∂l′∗i l
′
i

∂l′j

=
1

|l′i|
δijl
′∗
i

= diag

([
l′∗i
|l′i|

]ND

i=1

)
∈ CND×ND . (A.7.18)

where the Wirtinger derivatives need to be used since l′i ∈ C. Substituting (A.7.18) into (A.7.17)

yields for the term T2

∂lcr

∂
(
[L′]icr:

)T = diag

([
l′∗i
|l′i|

]ND

i=1

)
. (A.7.19)
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The last term T3 is
∂
(
[L′]icr:

)T
∂ϕm

=

([
∂L′

∂ϕm

]
icr:

)T

. (A.7.20)

The required derivative is

∂L′

∂ϕm
=
∂ (L− µ∇Lh (L;β, ϕm))

∂ϕm

= −µ∂A
H (A (L;β, ϕm)− y)

∂ϕm

= µAH

(
∂A (L;β, ϕm)

∂ϕm

)
where (A.7.10) and (A.7.2) was used. The derivative of the sensing operator is similar to (A.7.9),

however, with a different inner derivative as

∂A (L;β, ϕm)

∂ϕm
= vec

(
−j2πAF1

((
nū

∂ūT
4(β, ϕm)

∂ϕm

)
�U∗4(β, ϕm)�

(
F−1

1 L
))
BT

)
(A.7.21)

with
∂ū4(β, ϕm)

∂ϕm
=

[
∂4ū (i/ND;β, ϕm)

∂ϕm

]ND/2−1

i=−ND/2

and
∂4ū

(
f̄D;β, ϕm

)
∂ϕm

=
f̄D

β
sin(ϕm) + cos (ϕm)

√∣∣d̄2 sin2 (ϑ)− f̄D
2/β2

∣∣,
where (A.7.4) and (A.7.5) was used. Recapturing (A.7.11), the wanted derivative is

∇ϕmhϕm(L;β, ϕm) =
∂hϕm(L;β, ϕm)

∂lcr︸ ︷︷ ︸
T1

Re

{
∂lcr

∂
(
[L′]icr:

)T︸ ︷︷ ︸
T2

∂
(
[L′]icr:

)T
∂ϕm︸ ︷︷ ︸
T3

}

with T1 given by (A.7.16), T2 by (A.7.19), and T3 by (A.7.20).

The Jacobi derivative required for the Levenberg-Marquardt (LM) step size determination in

Chapter 7.2.2 is

∂f(L;β, ϕm)

∂ϕm
=
∂f(L;β, ϕm)

∂lcr︸ ︷︷ ︸
T4

Re

{
∂lcr

∂
(
[L′]icr:

)T︸ ︷︷ ︸
T2

∂
(
[L′]icr:

)T
∂ϕm︸ ︷︷ ︸
T3

}
(A.7.22)

with T2 given by (A.7.19), T3 by (A.7.20), and T4 by (A.7.13).

232|255 Fraunhofer FHR



Publications

Some ideas and figures have appeared previously in the following publications:

• Reinhard Panhuber and Ludger Prünte. “Step Size Determination for Finding Low-Rank

Solutions Via Non-Convex Bi-Factored Matrix Factorization.” In: 2020 28th European Signal

Processing Conference (EUSIPCO). 2021, pp. 2100–2104.

• Reinhard Panhuber and Ludger Prünte. “Complex Successive Concave Sparsity Approxi-

mation.” In: 2020 21st International Radar Symposium (IRS). 2020, pp. 67–72.

• Auto-Clutter Focus Algorithm was filed for patent
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Acronyms

ABW antenna beam width - symbol: ABW

ACE adaptive coherence estimator

ACF auto-clutter focus

AF ambiguity function - symbol: A

AMF adaptive matched filter

APSF alternating projection sub sample filtering

ARM affine rank minimization

BFGD bi-factored gradient descent

BPDN basis pursuit denoise

CDF cumulative density function

CFAR constant false alarm rate

CL correlation loss - symbol: CL

CNR clutter to noise ratio - symbol: CNR

CPI coherent processing interval

CRPCA compressed robust principal component analysis

CS compressive sensing

CSCSA complex successive concave sparsity approximation

CSRA complex smoothed rank approximation

CUT cell under test

CW continuous wave

D.C. differenct of convex

DFT discrete Fourier transform

DL diagonal loading

DPCA displaced phase center antenna

DSB delay and sum beamforming
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EM electromagnetic

FFT fast Fourier transform

FIR finite impulse response

FISTA fast iterative shrinkage-thresholding algorithm

FT Fourier transform

GLRT generalized likelihood ratio test

GMTI ground moving target indication

GNC graduated non-convexity

GPS global positioning system

HT hard thresholding

ICM internal clutter motion

IDFT inverse discrete Fourier transform

IFT inverse Fourier transform

IMU inertial measurement unit

IT iterative thresholding

KA STAP knowledge-aided STAP

LASSO least absolute shrinkage and selection operator

LFM linear frequency modulation

LIDAR light detection and ranging

LM Levenberg-Marquardt

LO local oscillator

LOS line of sight

MC Monte Carlo

MDV minimum detectable velocity

MF matched filter

MS matched subspace
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MVDR minimum variance distortionless response

NIHT normalized iterative hard thresholding

NMF normalized matched filter

NN neural network

NNM nuclear norm minimization

PCP principal component pursuit

PFA probability of false alarm - symbol: pFA

PRF pulse repetition frequency - symbol: fp

PRI pulse repetition interval - symbol: tp

RCS radar cross section - symbol: σr

ReLU rectified linear unit

RF radio frequency

RIP restricted isometry property

RMB Reed, Mallot, and Brennan

ROIL right-orthogonally invariant linear

RPCA robust principal component analysis

RRIP restricted rank isometry property

RTDT round trip delay time - symbol: τ

RV random variable

RX receive

SAR synthetic aperture radar

SCM sample covariance matrix

SCSA successive concave sparsity approximation

SINR signal to interference and noise ratio - symbol: SINR

SIRV spherically invariant random vector

SNR signal to noise ratio - symbol: SNR

SPGL1 spectral projected gradient for `1

SRA smoothed rank approximation

SRE squared reconstruction error - symbol: SRE

SRF smoothed rank function
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SRR support recovery rate

SSF sub sampling factor - symbol: SSF

ST soft thresholding

STAP space-time adaptive processing

STAR space-time autoregressive

SVD singular value decomposition

SVP singular value projection

SVT singular value thresholding

SVT-Turbo-CS singular value thresholding-turbo-compressive sensing

TARM turbo affine rank minimization

TCRPCA turbo compressed robust principal component analysis

TEM transverse electromagnetic

TST turbo shrinkage-thresholding

TSVT turbo singular value thresholding

TX transmit

ULA uniform linear array

WSS wide-sense stationary
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1A Indicator function 1A : X → {0, 1} as 1A(x) =1 if x ∈ A

0 else

with A being a subset of X

x Scalar variable

x Column vector in CN comprised from scalar entries

x = [x1, · · · , xN ]T

~x Geometrical 3D vector

X Matrix in CN1×N2 comprised from column vectors

X = [x1, · · · ,xN2 ]

X Tensor, operator, or set

xi = [x]i The i-th entry of vector x

xi = [X]:i The i-th column of matrix X

yi = [X]i: The i-th row of matrixX ∈ CN1×N2 where yi ∈ CN2×1

is a column vector. Instead of yi any other lower case

letter but that of the matrix may be used as it is espe-

cially reserved for its column vector

xij = [X]ij The (i, j)-th entry of matrix X

xij···k = [X ]ij···k The (i, j, · · · , k)-th entry of tensor X

card {S} Cardinality of set S

CN (µ, σ2) Complex normal distributed e. g. x is a complex nor-

mal distributed RV with mean µ and variance σ2 as

x ∼ CN
(
µ, σ2

)
x∗ Complex conjugate

(f1 ∗ f2)(t) Convolution of f1(x) and f2(x) as´∞
−∞ f1 (τ) f2 (x− τ) dτ

corr {f1, f2} (τ) Correlation of f1(x) and f2(x) as´∞
−∞ f

∗
1 (x) f2 (x+ τ) dx

diag {x} Matrix with diagonal entries from x and zero else-

where
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diag {X} Vector from the diagonal entries of X

E{x} Expectation value of random variable x

XH Hermitian adjoint - if applied onto a matrixX or vector

x this coincides with Hermitian transpose or conjugate

transpose

Im {x} Imaginary part of number

δij Kronecker delta function δij = 1 if i = j

‖~x‖ `2 norm of geometric vector

‖X‖F Frobenius norm

|X|∞ Infinity norm denoting the biggest entry in magnitude

from X

|x| Magnitude of scalar value

‖X‖∗ Nuclear norm

‖X‖ Spectral norm a. k. a. operator norm

‖x‖p `p norm

‖x‖0 `0 quasinorm i. e. number of non zero entries in x

〈X,Y 〉F Frobenius product

X � Y Hadamard product

〈~x, ~y〉 Inner vector product

X ⊗ Y Kronecker product

rank {X} Rank of matrix X i. e. number of linear independent

rows or columns. Equivalent to the number of non

zero singular values of X

Re {x} Real part of number

bxc Round off to next integer value

bxe Round to closest integer value

dxe Round up to next integer value

sgn(z) Complex sign function sgn : C → C defined as

sgn (z) =

0 if z = 0

z
|z| else

x̂ Estimated value of variable x

x̃ True value of to be estimated variable x

supp(X) Support of matrix X i. e. a list of indices of the non

zero entries of X
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XT Matrix transpose

vec {X} Vectorization of matrix X ∈ Cn1×n2 by stacking

all columns on top of each other i. e. vec {X} =[
xT

1 , · · · ,xT
n2

]T
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Symbol Description Unit

A Ambiguity function (AF)

ABW Antenna beam width (ABW) deg

αr Reflectivity coefficient

A Space matrix formed by space steering vectors as A = [a (nu/Nu)]Nu−1
nu=0 ∈

CNrx×Nu

A Linear map A : CN1×N2 → CM from scene into measurement domain

a Space vector a. k. a. angular steering vector corresponding to a point target

β Slope of clutter ridge in case of no missalignment i. e. β = f̄D/ū =

2vp/fp/d

B Time matrix formed by time steering vectors as B = [b (nD/ND)]ND−1
nD=0 ∈

CNp×ND

br Range/fast time bandwidth Hz

b Time vector a. k. a. temporal steering vector corresponding to a point target

c0 speed of light m/s

Cdn Complex down conversion coefficient with respect to given base band fre-

quency fb

CL Correlation loss (CL)

CNR Clutter to noise ratio (CNR) after pulse compression and integration over

pulses and channels

Cup Complex up conversion coefficient with respect to given base band fre-

quency fb

d Distance between consecutive channels for a ULA antenna m

δr Range resolution as δr = c0
2br

m

δu Angular array resolution which for a ULA phased array is δu = Nrx/d̄

dF Fraunhofer distance dF = 2D2/λr with D > 2.5λr denoting biggest an-

tenna apperture size

m

d̄ Normalized distance between consecutive channels for a ULA antenna i. e.

d̄ = d/λc
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Symbol Description Unit

~esc EM wave scattered by a target

~etx EM wave transmitted by a TX antenna

ε0 Vacuum permittivity ε0 = 8.8541878128(13) · 10−10 F/m

ηw Impedance of free space ηw = 376.730313668(57) ≈ 120π Ω

fb Instantaneous base band frequency of the radar signal Hz

fc Center frequency of radar signal Hz

fD Doppler frequency Hz

fDc Clutter Doppler frequency Hz

f̄Dc Normalized clutter Doppler frequency f̄Dc = fDc/fp

f̄D Normalized Doppler frequency f̄D = fD/fp

fDt Target Doppler frequency Hz

f̄Dt Normalized target Doppler frequency f̄Dt = fDt/fp

fp Pulse repetition frequency (PRF) Hz

fr Instantaneous frequency of radar signal fr = fc + fb Hz

g Space-time sample denoting the deterministic signal part of the radar signal

model

G Space-time matrix corresponding to a point target i. e. G = abT

Grx RX antenna gain 1

Gtx TX antenna gain 1

g Space-time vector corresponding to a point target i. e. g = b⊗ a

gc Space-time vector corresponding to a single clutter patch xc

Hb,rx Base band transfere function of an RX path

Hb,tx Base band transfere function of a TX path

hp Flight altitute above ground m

Hr,rx RF band transfere function of an RX path excluding antenna

Hr,tx RF band transfere function of a TX path excluding antenna

κ Number of sparse or non-zero entries

kb Wave number corresponding to instantaneous base band frequency of

radar signal i. e.

kb = 2π/λb

rad/m

kc Wave number corresponding to center frequency of radar signal i. e.

kc = 2π/λc

rad/m

kr Wave number corresponding to instantaneous frequency of radar signal i. e.

kr = 2π/λr

rad/m
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Symbol Description Unit

L Low rank matrix

Λ Triangular or tent function Λ(x) = max(1− |x|, 0)

λb Wave length corresponding to instantaneous base band frequency of radar

signal λb = c0/fb

m

λc Wave length corresponding to center frequency of radar signal λc = c0/fc m

λr Wave length corresponding to instantaneous frequency of radar signal λr =

c0/fr

m

M Number of measurements

µ0 Magnetic permeability of free space µ0 = 1.25663706212(19) · 10−6 ≈
4π × 10−7

N

n Noise vector

Nc Number of clutter patches

ND Number of Doppler bins

Nmc Number of Monte Carlo runs

Np Number of pulses

Nrx Number of RX channels

Nt Number of targets in radar scene

Ntx Number of TX channels

Nu Number of cone angle or looking direction bins

ωb Instantaneous base band angular frequency of the radar signal i. e. ωb =

2πfb

s-1

ωc Center angular frequency of radar signal i. e. ωc = 2πfc s-1

ωD Angular Doppler frequencey i. e. ωD = 2πfD s-1

ωr Instantaneous radio angular frequency of the radar signal i. e. ωr = 2πfr s-1

~p Vector pointing to phase center of RX channel m

Pc Clutter power defined as Pc = E
{
|xc|2

}
W

pD Probability of detection

pFA Probability of false alarm (PFA)

φc Phase offset corresponding to fc rad

φdn Phase offset occuring during down-mixing from radio frequency (RF) band

into base band

rad

ϕm Missalignment angle between platform velocity vector and antenna x axis

ϕm = ∠(~vp, ~xant)

rad

φup Phase offset occuring during up-mixing from base band into RF band rad
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Symbol Description Unit

ϕ Azimuthal angle - part of spherical target coordinates rad

Pn Noise power W

ψ Cone angle between the LOS vector and antenna y axis ψ = ∠(~u, ~yant) rad

Pt Target power defined as Pt = E
{
|xt|2

}
W

Ptx Transmit signal power W

~q Vector pointing to phase center of TX channel m

R Covariance matrix

r Range m

Rc Clutter covariance matrix

ρ Rank of matrix

S Sparse matrix

s Deterministic signal

σr Radar cross section (RCS) m2

SINR Signal to interference and noise ratio (SINR)

SNR Signal to noise ratio (SNR) after pulse compression and integration over

pulses and channels

SRE Squared reconstruction error (SRE)

SSF Sub sampling factor (SSF)

τ Round trip delay time (RTDT) s

θ Cone angle between the LOS vector and antenna x axis θ = ∠(~u, ~xant) rad

ϑm Polar angle between platform velocity vector ~vp and antenna z axis in an-

tenna reference frame a. k. a. polar misalignment angle with respect to a

ULA oriented along the x axis

rad

ϑ Polar angle - part of spherical target coordinates rad

Tp pulse length s

tp Pulse repetition interval (PRI) s

u Directional cosine i. e. cosine of cone angle u = cos(θ)

ū Normalized directional cosine ū = ud̄

~u LOS unit vector pointing from the antenna center to scatterer

~ut LOS unit vector pointing from the antenna center to target

v y axis component of LOS vector ~u and likewise v = cos(ψ)

vp Platform velocity relative to the earth surface fixed reference frame m/s

~vp Platform velocity vector relative to earth surface fixed reference frame m/s
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Symbol Description Unit

vr From the radar observed radial velocity i. e. relative to antenna reference

frame

m/s

vrt From the radar observed radial velocity of a target i. e. relative to antenna

reference frame

m/s

vt Target velocity relative to the earth surface fixed reference frame m/s

~vt Target velocity vector relative to the earth surface fixed reference frame m/s

w z axis component of LOS vector ~u and likewise v = cos(ϑ)

w Filter vector

X Radar scene a. k. a. reflectivity or scatter map in angle-Doppler domain

X ∈ CNu×ND

xc Amplitude of a single clutter patch

xc Vector of clutter amplitudes xc(u) corresponding to Nc clutter patches

equally distributed on the interval [−1, 1)

Xt Radar scene comprised from target contributions only

xt Amplitude of a single target in angle-Doppler domain

Y Measurement matrix in channel-pulse domain Y ∈ CNrx×Np

y Measurement vector y ∈ CM

Yc Measurement matrix comprised from clutter contributions only

yc Clutter measurement vector

yt Target measurement vector
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Affine Rank Minimization (ARM) In affine rank minimization, one observes M measurements

as y = A (L) + n, where A : Cn1×n2 → CM is a known linear map, L ∈ Cn1×n2 is

an unknown low rank matrix, and n ∈ CM is an error vector. The goal of affine rank

minimization (ARM) is to reconstruct L from the observed M measurements, where the

dimension n1 × n2 is usually much larger than the number of measurements.

Antenna Beam Width (ABW) The horizontal half power or 3 dB width of the antenna main

beam - symbol: ABW.

Compressed Robust Principal Component Analysis (CRPCA) Compressed robust principal

component analysis is a signal processing technique that allows for the reconstruction of

a low-rank matrix L and a sparse matrix S from noisy measurements as y = A (S +L)+

z. This is possible, if the so called rank-sparsity incoherence is fulfilled.

Compressive Sensing (CS) Compressive sensing is a signal processing technique that allows for

signals to be reconstructed with lower sampling rate than with Nyquist´s Law. This is

possible if the signal is sparse under some transformation and thus allows for finding

solutions to underdetermined linear systems through optimization techniques .

Ground Moving Target Indication (GMTI) The aim of GMTI is to detect targets moving relative

to the earth surface and to estimate their positions, velocities, and moving directions.

The fundamental difficulty of GMTI is the successful suppression of clutter i. e. reflections

from the earth’s surface. This is especially challenging in heterogeneous terrain e. g. if

land-water transitions, strong single scatterers such as poles and buildings, etc. occur in

the radar scene .

Internal Clutter Motion (ICM) ICM refers to interfering reflections from slightly moving objects

e. g. Trees or fields in the wind, waves in the sea, etc. This additional clutter complicates

the detection of moving targets as it increases the MDV .

Rectified Linear Unit (ReLU) In the context of neural networks, ReLU is an activation function

defined as f(x) = max(0, x) [87].

Right-orthogonally Invariant Linear (ROIL) Consider a linear operator A with matrix form A,

the SVD of A is A = UAΣAV
H
A . If VA is a Haar distributed random matrix independent

of ΣA, we say that A is a right-orthogonally invariant linear (ROIL) operator.

Robust Principal Component Analysis (RPCA) Robust principal component analysis is a signal

processing technique that allows for the decomposition of a matrix M into a low-rank

matrix L and a sparse matrix S as M = S + L. This is possible, if the so called rank-

sparsity incoherence is fulfilled .
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Round Trip Delay Time (RTDT) The time a wave needs to travel to a target and return - symbol:

τ .
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