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Abstract

The analysis of large data sets in physics experiments profits from recent ad-
vances in machine learning techniques based on neural networks. The strength
of this approach relies on the existence of validated calibration data called
ground truth and reliably tested numerical simulations. Especially in recent
years, the widespread use of neural networks gained momentum because of the
continuous supply of software and a substantial increase in computer process-
ing power. This continuous increase also impacts applications based on neural
networks in analyzing data acquired by pixelated semiconductor detectors.
The user at a beamline experiment expects the event parameters such as the
position of the radiation in terms of the point of entry on subpixel level and
the amplitude, which describes the energy deposition, the number of photons,
or the number of electrons. In electron microscopy, energetic electrons pro-
duce three-dimensional tracks in the detector volume and do not deposit their
energy locally at their point of entry. The energy deposition happens along
these tracks, typically extending over several pixels. However, the user is not
interested in the tracks of the primary electrons but in the precise point of
entry. In crystallography experiments, the online indexing of the Laue diffrac-
tion patterns enables new opportunities. That means all sensor and electronics
artifacts need to be analyzed and corrected in real-time.

Four different methods based on neural networks are developed for different
event rates on the detectors to precisely determine the point of entry and the
intensity of the radiation on the detector. The developed methods enable the
reconstruction of positional information and intensity images in real-time at
high frame rates. For further physics analyses, no additional detector correc-
tions need to be performed. For X-rays, subpixel resolution has been achieved
of less than 10% of the pixel dimensions. For 300 keV electrons in transmission
electron microscopy (TEM), the point of entry in the detector was determined
precisely (40 pm), although they produce a track of more than 450 pm in the
silicon.

Crucial for the development and testing of the neural networks are large data
sets containing, on the one hand, the unanalyzed raw data of the detector sys-
tem and, on the other hand, the associated exact entry points of the primary
radiation, e.g., by simulations. The requirement for the unanalyzed dataset
is a physically accurate description of the signal formation in the individual
pixels.

For this purpose, the primary particles’ behavior in the detector volume and
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the signal response of the individual pixels are physically described and mod-
eled. The results are implemented in a Monte Carlo simulation. Numerous
measurements have verified the Monte Carlo data.

Finally, the newly developed neural networks are compared with the previ-
ously used methods in terms of parameters such as spatial precision and anal-
ysis speed based on simulated data and performed measurements. We have
executed a series of measurements with a transmission electron microscope at
different electron intensities and energies to test and verify the developed meth-
ods. The results based on the use of neural networks are in good agreement
with the precisely known points of entry from the TEM and the simulated
data. An X-ray data set with 1.3keV X-rays yielded a position resolution of
better than 3 pm - again, in good agreement with experimental data from an
X-ray microscope. The performance of the developed algorithms paves the
way to real-time data analysis and data reduction.

In this sense, this work provides a basis and fundamental understanding for fu-
ture advanced data analysis applications for pixelated semiconductor detector
systems.
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Zusammenfassung

Die Analyse grofler Datensétze in physikalischen Experimenten profitiert von
den neuesten Fortschritten bei maschinellen Lernverfahren, die auf neuronalen
Netzen basieren. Die Starke dieses Ansatzes beruht auf dem Vorhandensein
von validierten Kalibrierungsdaten, der sogenannten Ground Truth, und
zuverlédssig getesteten numerischen Simulationen. In den letzten Jahren hat
der breite Einsatz von neuronalen Netzen aufgrund der kontinuierlichen
Bereitstellung von Software und einer erheblichen Steigerung der Computer-
leistung an Dynamik gewonnen. Diese Zunahme lédsst sich auch im Bereich
der pixelierten Halbleiterdetektoren wiederfinden.

Die Nutzer an Strahllinienexperimenten erwarten Eventparameter wie Po-
sition der auftreffenden Strahlung auf dem Detektor und die Amplitude,
welche die Energiedeposition, die Photonenanzahl oder die Elektronenanzahl
beschreibt. In der Elektronenmikroskopie erzeugen energetische Elektronen
dreidimensionale Spuren im Detektorvolumen und geben ihre Gesamtenergie
nicht punktformig am Eintrittsort ab. Stattdessen erfolgt die Energiedepo-
sition entlang der ausgebildeten Spuren, welche sich im Allgemeinen iiber
einige Pixel erstrecken. Der Nutzer ist jedoch nicht an den Spuren interessiert
sondern am genauen Eintrittspunkt der Elektronen. In der Kristallografie
erdffnet die Onlineanalyse der Laue Diffraktionsmuster neue Méglichkeiten.
Hierzu miissen alle sensorspezifischen und elektronischen Effekte in Echtzeit
analysiert und korrigiert werden.

Es werden vier verschiedene Methoden fiir unterschiedliche Ereignisraten
auf den Detektoren entwickelt, um den Eintrittspunkt und die Inten-
sitdtsverteilung der Strahlung auf dem Detektor genau zu bestimmen.
Diese Methoden ermoglichen die Rekonstruktion von Positions- und Inten-
sitdtsinformationen in Echtzeit bei hohen Bildraten. Fiir weitere physikalische
Analysen miissen keine zusétzlichen Detektorkorrekturen vorgenommen
werden. Fiir Rontgenstrahlung wurde eine Subpixelauflosung von weniger als
10% der Pixelabmessungen erreicht. Fiir Elektronen mit einer Primérenergie
von 300keV in der Transmissionselektronenmikroskopie (TEM) wurde der
Eintrittspunkt in den Detektor genau bestimmt (40 pm), obwohl sie eine Spur
von mehr als 450 pm im Silizium erzeugen.

Entscheidend fiir die Entwicklung und den Test der neuronalen Netze sind
grofle Datensitze, die zum einen die unanalysierten Rohdaten des Detektor-
systems und zum anderen beispielsweise durch Simulationen die zugehérigen
exakten Eintrittspunkte der Primé&rstrahlung enthalten. Die Voraussetzung
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fiir den unanalysierten Datensatz ist eine physikalisch genaue Beschreibung
der Signalentstehung in den einzelnen Pixeln.

Zu diesem Zweck wurden das Verhalten der Primérteilchen im Detektorvo-
lumen und die Signalantwort der einzelnen Pixel physikalisch beschrieben
und modelliert. Die Ergebnisse wurden in einer Monte-Carlo-Simulation
implementiert. Die Monte-Carlo-Daten wurden durch zahlreiche Messungen
verifiziert.

Abschliefend werden die neu entwickelten neuronalen Netze mit den bisher
verwendeten Methoden in Bezug auf Parameter wie rdumliche Auflésung
und Analysegeschwindigkeit anhand von simulierten Daten und durch-
gefiithrten Messungen verglichen. Zur Uberpriifung und Verifizierung der
entwickelten Methoden haben wir eine Reihe von Messungen mit einem
Transmissionselektronenmikroskop bei verschiedenen Elektronenintensitéten
und -energien durchgefiihrt. Die auf der Verwendung neuronaler Netze basie-
renden Ergebnisse stimmen gut mit den genau bekannten Eintrittspunkten
aus den experimentell gemessenen und den simulierten Daten iiberein. Ein
Rontgendatensatz mit 1.3 keV Rontgenstrahlung ergab eine Positionsauflosung
von besser als 3 um - ebenfalls in guter Ubereinstimmung mit experimentellen
Daten aus einem Roéntgenmikroskop. Die entwickelten Algorithmen bieten das
Potential fiir Datenanalyse und Datenreduktion in Echtzeit.

In diesem Sinne bietet diese Arbeit eine Basis und ein grundlegendes
Verstandnis fiir zukiinftige fortschrittliche Datenanalyseanwendungen fiir
pixelierte Halbleiterdetektorsysteme.
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Important Technical Term
Definitions and Abbreviations

Accuracy

The spatial accuracy is defined as the average distance between the mean
position of the individual reconstructed points of entry (PoEs) and its ground
truth.

Activation Function

In a neural network, the activation function of a neuron defines the output
of the neuron. For the last layer of a neural network, the activation function
defines the output range of the neural network and has to be problem-related.

Charge Cloud

In semiconductors, primary particles create electron-hole pairs that are
separated. The electrons form charge clouds. It increases during the drift
process into the pixel structure due to repulsion and diffusion.

CNN
A convolutional neural network (CNN) is a neural network that consists of
convolutional layers and is typically used for frames and images.

Counting Detector System

A counting detector system describes a detector system that outputs only
the positional information of a PoE but no information about the amount of
deposited energy.

Cross-entropy

The cross-entropy measures the difference between two probability distribu-
tions and can be used as a loss function to train a neural network. Depending
on the number of classes of the classification task, the binary cross-entropy or
the weighted cross-entropy can be used.
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Diffusion
Diffusion describes the increase of the charge cloud size due to thermal effects.

Drift

The generated charge clouds move due to the local electric field in the detector
volume into the pixel structure located at the backside of the detector volume.
This process is called drift.

Event Pattern
The pixels of a frame that contain an energy deposition and are spatially
connected are called event patterns.

Feature Map

A feature map describes the position of a particular feature (property) in the
data. The feature maps of the input and the output layers represent physical
properties. These properties have to be problem-related. The features
described by the feature maps of the hidden layer of a convolutional neural
network can be very complex and physically not meaning full.

Ground Truth
Ground truth is data that is known to be authentic or true. The neural
network is trained to reconstruct the ground truth as best as possible.

Intensity Image

For very high primary particle rates, the energy depositions of individual
particles can not be separated anymore. In nearly every illuminated pixel
and its neighbors, energy depositions of at least one primary particle can be
detected. The resulting image is called an intensity image.

Layer of a Neural Network

A neural network consists of several neurons. These neurons are organized
in layers. The first layer of a neural network is called the input layer, the
intermediate layers are called the hidden layers, and the last layer of a neural
network is called the output layer.

Loss Function

The loss function maps the difference between the predicted result and the
ground truth to a real number. The neural network is optimized during the
training process to minimize the loss function.
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MISR Approach
The multi-image super-resolution (MISR) approach increases the resolution
and denoises using multiple images of the same scenario.

MTF
The modulation transfer function (MTF) describes how much contrast of the
object function is transferred by the imaging process.

Neuron

The neurons are the basis for neural networks. A neuron receives one or
more inputs, separately weights them, and sums them up. To this weighted
sum, a bias is added and the result is passed to a non-linear activation function.

Neural Network
The neural network is an arrangement of many neurons and can be trained to
solve complex tasks.

Particle Track

Charge particles deposit their energy by multiple scattering in the detector
volume. Therefore, the energy deposition is randomly distributed along the
particle trajectory, called the particle track.

Pattern Pile-up Event

A pattern pile-up event is an event pattern where the energy deposition of two
or more different primary particles is combined to one cluster and recognized
as one event pattern by the event pattern analysis algorithm.

PoE
The point of entry (PoE) denotes the point where the primary particle crosses
the surface of the detector.

PoENN
The point of entry neural network (POENN) reconstructs the PoE of primary
particles frame-wise on pixel or subpixel level.

PnCCD
The pn charge-coupled device (pnCCD) is used as detector for the reference
measurements presented in this thesis.

Precision
The spatial resolution is defined as the average Euclidean distance between
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the individual reconstructed PoEs and their ground truth.

Primary Particle
The primary particle is the particle that the detector system should detect.

Repulsion
Repulsion describes the charge cloud size increase due to electrostatic repul-
sion of the signal electrons.

Resolution
The spatial resolution is defined as the average Euclidean distance between
the individual reconstructed PoEs and their ground truth.

Signal Electron
Signal electrons are the electrons of the electron-hole pairs created by energy
deposition in the detector volume.

Single Pattern Event
Event pattern to which only one primary particle contributes.

SISR Approach
The single image super-resolution (SISR) approach increases the resolution
and denoises using a single image.

Subpixel
A physical pixel can be divided into several virtual pixels. These virtual pixels
are called subpixels.

Super-Resolution
Super-resolution is a technique that increases the resolution of an image,
typically providing images on a subpixel level.

Supervised Learning
Supervised learning is a type of machine learning that learns a function that
maps a result to a corresponding input by examples.

Tracking Detector System
A tracking detector system describes a detector system that outputs the
amount of energy deposition, its shape, and its spatial location.
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Training

The training describes the optimization process of a neural network with a
training data set. This training data set contains the input and the corre-
sponding ground truth.






Chapter 1

Introduction

Advancements in the semiconductor fabrication make it possible to produce
more powerful and performing pixelated detectors based on silicon technology.
The detector systems can be readout faster, the signal-to-noise ratio is getting
closer to the physical limit, and the active area of the detector becomes
larger, whereas a smaller feature size enables finer pixel structures and more
sophisticated electronics [1]. This enables applications that were unimaginable
a few years ago.

However, better detector hardware is only one part. The analysis of raw
data collected with the detector system is crucial as well for reaching the
physical limits of spatial and energy resolution. Moreover, the amount of data
generated with the new detector systems increases significantly because of the
smaller pixels and the faster readout per unit area [2].

With the detector hardware being significantly improved over the last

decades, new demands for high-performance data analysis software arise.
Those demands can be divided into challenges originating from the detector
operation principles and challenges given by the signal generator’s physical
behavior in the detector volume.
One of the biggest technical challenges is handling, storing, and processing
large amounts of data. For example, particle accelerators such as the Large
Hadron Collider at CERN produce around 250 TByte per day [3]. The data
rates have increased in consumer applications and equally in many fields of
science. For example, a two-dimensional detector at synchrotron light sources
can generate tens of GByte per second [4].

In some applications, it is not possible to handle such large amounts of raw
data. For example, satellite-based missions are limited due to the downlink
bandwidth from the satellite to ground control [5]. One way of dealing with
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this issue is to reduce the amount of data without losing any important
information. One method is to reduce the number of pixels within the same
total active area of the detector, which reduces the data rate at the cost of
spatial resolution. To some extent, complex subpixel algorithms must be used
afterward to restore the original spatial resolution.

Alternatively, one can process and analyze the data directly and send only an-
alyzed results back to earth. This requires fast and energy-efficient algorithms.

Most of the current analysis methods process, validate, and analyze the
data after an experiment measurement time due to computational limitations.
Due to this, experimental constraints and errors are not immediately detected
and cannot be solved ad-hoc. Processing the data in real-time can enable
the detection of errors and unwanted imperfections during the experiment.
This allows intervening and solving problems and optimizing data acquisition.
Real-time data analysis can enable both detection of and recovery from
problems and data acquisition optimization. [4]

The physical nature of the signal generation in the detector volume
represents the other major challenge. The particles that should be detected
are called primary particles in the following. Primary particles deposit their
energy depending on their type and energy. In this work, electrons and photons
in particular are referred as primary particles. Charged particles like electrons
of hundreds of kilo electron volts deposit their energy in the detector volume
along traces with a length of up to several hundred micrometers depending
on their energy. In contrast, photons deposit their energy in a small detector
volume. In both cases, the energy is deposited into the semiconductor-based
detector volume via the creation of electron-hole pairs. The electrons of these
electron-hole pairs are separated from the holes, form charge clouds, and drift
due to the detector volume’s local electric field into the pixel structure. The
created holes drain at negatively biased electrical contacts and are not used
for signal analysis. During the drift time, the electron charge clouds expand
by diffusion and electrostatic repulsion. Therefore, the charge cloud can
spread over several pixels. In addition, there is a large spread in the case of
electron tracks due to the created traces. The detector system’s output is the
pixelated two-dimensional projection of the charges in the individual pixels.
(6]

The quality of many applications is related to the spatial resolution of the
detector system. These applications are widespread and are used, for example,
in the fields of high energy physics [7], medicine [8], material science [9], or
transmission electron microscopy [10]. However, to provide a good spatial
resolution, not the energy deposition into the individual pixels is of interest



but the point of entry (PoE) into the detector volume. The PoE denotes the
point where the primary particle crosses the surface of the detector. The
spatial resolution is mainly limited by algorithms that convert the individual
energy depositions into PoEs and not only by the pixel size. Ryll et al. [11]
and Thle et al. [12] show such state-of-the-art algorithms for pnCCD detector
systems. In the following, these algorithms are called classical approaches.

Summarized, modern detector systems’ developments demand high-perfor-
mance software that can cope with the operational challenges and high data
rates. Additionally, this software can enable new analysis methods and
techniques. In general, classical algorithms developed to solve these challenges
are very complex and often produce results far away from physical limits
[13]. Hence, classical algorithms struggle to meet the increasing demands.
Emerging machine learning algorithms show a way into the future.

In the last years, approaches based on neural networks have been es-
tablished in many fields and show their potential, especially for pattern
recognition and complex problems with a large amount of data. [14]

There are mainly three fields in the area of machine learning in which the
most rapid progress is currently taking place.

e First, the processing of speech, images, videos, and texts. Prominent ex-
amples are virtual assistants such as Siri by Apple Inc. [15] or Alexa by
Amazon.com Inc. [16], the colorization of grayscale images [17], or trans-
lators such as Google translate by Google LLC [18] or DeepL translator
[19].

e Second, the analysis of a large amount of data, also known as big data,
and its representation. Machine learning applications are very powerful
in finding patterns or clusters in big data structures. This work repre-
sents an example in this field.

e Third, the construction of semi-autonomous and autonomous machines.
The best-known example here is self-driving cars [20].

These three segments are increasingly growing together.

The concept of machine learning is not new. The first research project
on artificial intelligence, of which machine learning is a subcategory, was
carried out in 1956 [21]. However, the rapid development of applications
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based on machine learning has only recently started. The growth can mainly
be attributed to three factors that positively influence each other.

e The biggest factor is the performance enhancement of the computer

hardware. 25 years ago, the most powerful supercomputers managed
about 100 billion operations per second. Today, any state-of-the-art
smartphone can handle this performance. At the same time, costs have
dropped by a factor of 10°000. [14]
Following Moore’s law, the number of transistors doubles about every two
years [22]. Besides, entirely new approaches such as quantum computing
are being developed to create powerful hardware [23, 24]. Additionally,
cameras, microphones, and sensors of all kinds such as gyroscopes, ac-
celerometers, and light imaging detection and ranging (lidar) are getting
smaller and cheaper [14]. These sensors are used for data acquisition,
which can be used as input for the machine learning application.

e The next factor is the optimization of the algorithms used behind ma-
chine learning. These include, above all, much deeper neural networks
(deep learning) with significantly more neurons. One can imagine the
neural network as a non-linear function. The variable of this function is
the input of the neural network. The function additionally has parame-
ters, which are optimized for the problem. Deeper neural networks with
more neurons have more parameters. This makes it possible to fulfill sig-
nificantly more complex tasks, but also requires more computing power.
Moreover, the architecture of neural networks is getting more and more
problem-specific. [25]

e The third factor is a large number of data sets that are public and freely
available [26]. These larger data sets are required to train the neural
networks. For example, the MNIST [27] data set is one of the most used
machine learning data sets. It contains hand-written digits and con-
sists of 60’000 examples and a test set of 10’000 examples. Another big
database is the open image data set [28]. It contains around 9 million
real images notated with image-level labels, object bounding boxes, ob-
ject segmentation masks, visual relationships, and localized narratives.
These data sets are excellent for the training and validation process.

In scientific context, especially in the reconstruction, restoration, and
analysis of images, neural networks have an extreme potential. In particular,
biomedical applications such as denoising [29], super-resolution [30], Radon
transform for computed tomography [31], tissue classification and segmenta-
tion [32], and diagnostic [33] are worth mentioning.
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Machine learning is currently being tested for problems where complex
algorithms would be required to solve the problem. The advantages of
machine learning based approaches lead to more precise scientific results and
accelerate the analysis processes. [34] Applications are, for example, the
acceleration of data generation for fluid dynamic simulations [35], triggering
decisions for large detector systems [36], or data analysis [37].

In this work, new methods for analyzing data produced by semiconductor
tracking and spectroscopy imaging detectors are developed and investigated.
Those methods are based on neural networks.

The goal in this thesis is to improve the spatial resolution, increase the
analysis processes’ speed, and, thus, enable data analysis in real-time.
This work begins with a review of the fundamentals of the photons” and elec-
trons’ interaction with matter (Chapter 2). Chapter 3 introduces the concept
of pixelated semiconductor detectors and their signal response. In particular,
the pnCCD detector system is introduced since it is used for this work’s refer-
ence measurements.
Crucial for the development and testing of neural networks are large data sets
containing, on the one hand, the unanalyzed raw data of the detector system
and, on the other hand, the associated precise PoE of the primary particle. The
requirement for the unanalyzed data set is a physically accurate description of
the signal distribution in the individual pixels. For this purpose, the interac-
tions of the primary particles in the detector volume and the signal response
of the individual pixels are physically described and modeled. The results are
implemented in a Monte Carlo simulation and validated (Chapter 4). Using
the data generated by the Monte Carlo simulation, the new approaches can be
developed independently of other existing data analysis methods. The Monte
Carlo simulation provides the basis for the training data set for the neural
networks. The results of these simulations explain relationships between the
recorded signals and properties of the detector system and the primary par-
ticles. Therefore, a detailed understanding of the physics behind the signal
response and simulated data is necessary for a successful training process of
the neural networks.
In order to provide the necessary fundamentals for the development of an ap-
proach based on neural networks, the main terms, and components of neural
networks are introduced in Chapter 6.
Based on the application purpose, the developed neural networks are divided
into three parts:

e A compact neural network (CoNN) that requires a classical event pattern

11



Chapter 1. Introduction

analysis is presented in Chapter 7. The compact neural network can
reconstruct the PoE by using the output of a classical event pattern
analysis on subpixel level.

A convolutional neural network to reconstruct the PoE (PoENN) with-
out a previous event pattern analysis is presented in Chapter 8. The
convolutional neural network is applied frame-based and is applicable up
to primary particle rates where energy depositions of individual primary
particles are identifiable. The main advantage of this approach is that
PoENN can separate overlapping electron traces. The classical methods
cannot handle overlapping traces. Consequently, the primary particle
rate can be increased, but all PoEs of the individual primary particles
can still be reconstructed. Another advantage of this approach is that
no additional data analysis is required. This fact leads to improving the
reconstruction rate and, therefore, enables real-time applications. The
approach can provide subpixel resolution for electrons with primary low
energies below approximated one hundred kilo electron volt and X-ray
photons.

In Chapter 9, a framework for super-resolution also known as subpixel
resolution of intensity images and denoising is presented. In this con-
text, intensity images are recorded with very high primary particle rates.
Consequently, the traces of individual particles can not be separated any-
more. Super-resolution enhances the spatial resolution, whereas denois-
ing reduces unwanted noise.

To investigate the accuracy with regard to physical parameters and per-
formance of the developed neural networks, they are compared with
state-of-the-art methods in Chapter 10. For comparison, data obtained by
measurements are used.

The developed models lead to a significant improvement of the data analysis
process approaching closer to the physical limits compared with the classical
methods.

Chapter 11 closes with a conclusion and an outlook for the future.

12



Chapter 2

Radiation Interaction with Matter

In order to detect particles with a detector, the particles must interact with
the detector material and deposit their energy in the detector volume. These
interaction processes are described for photons and charged particles in this
Chapter. The interaction processes are introduced using silicon as an example
detector material without the loss of generality. They are the basis of the
simulations implemented in GEANT4.

2.1 Photons

In the following, the interactions of photons with the detector material are
described.

2.1.1 Physical Processes

Photons interact with matter to deposit energy mainly in three ways. These
effects are the photoelectric effect, the Compton effect, and pair production.
[38] Figure 2.1 shows the cross-sections for silicon. The total cross-section is
the sum of the cross-sections of the individual processes. For energies below
approximately 50keV, the photoelectric effect is the dominating effect in
silicon. The cross-section rapidly increases as soon as the photon’s energy is
sufficient to ionize an electron from an energetically higher shell. [39]

These edges are named after the shells of the ionized electron. The K-edge
(1839eV) and the L-edge (149.7¢eV) of silicon can be seen in Figure 2.1 [40].
At energies between 60 keV and 10 MeV, the Compton scattering provides the
main contribution to the photon’s energy loss. For even higher energies, the
pair production process is dominant. For the pair production process, at least
a primary energy of the rest mass of an electron and a positron is necessary.

13



Chapter 2. Radiation Interaction with Matter

Rayleigh scattering describes the elastic scattering of photons with atoms
and molecules. Therefore, only the direction of the primary photon is changed,
and the atom is neither excited nor ionized. The photon conserves its total
energy. It is only relevant for primary energies below a few tens kilo electron
volts. The average deflection angle decreases with increasing energy. As a
consequence, the influence is further restricted to low energies. [39]

105 —— Rayleigh i
3 \ —— Photo effect

10% ~ Compton 5
s ] \I\ Pair creation

10 E \ — total

102 \

o N\

100 | )M

10"

e =T

102 103 104 10° 1060 107

energy ineV

cross section per volume in cm

Figure 2.1: Cross-section of the processes which are dominant for the photon
in silicon with a density of 2.33g/cm? as a function of the primary energy. The
photoelectric effect dominates for lower energies. The L-edge (149.7eV) and the K-
edge (1839keV) can be seen as a kink in the cross-section. The Compton scattering
is dominant for intermediate energies, and the pair production process becomes
relevant for energies above two times the rest mass of the electron. The plotted
data was obtained from the cross-sections, and the stopping power was used by the
simulation with Geant4 and extracted directly from the physics tables and not from a
Monte Carlo simulation [41, 42]. Rayleigh scattering describes the elastic scattering
of photons by particles much smaller than the wavelength of the radiation. The
plots in this work are created by using Matplotlib [43].

2.1.1.1 Photoelectric Effect

The photoelectric effect describes the process where the incoming photon
is fully absorbed and does not exist after the interaction anymore [44]. A
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schematic drawing of the photoelectric effect is shown in Figure 2.2. Here A
is an atom, and A* is the ionized atom. In silicon, the photon’s energy Ey

Y e

A A*

Figure 2.2: Schematic drawing of the photoelectric effect. A photon v ionizes an
atom A. The time axis is horizontal.

excites an electron over the band gap with a gap energy Eg,, ~ 1.12eV [45].
The remaining energy goes into the kinetic energy of the electron Ey;, [39]:

Ekin = Lph — Egap (21)

The kinetic energy of the electron generates either phonons or additional
electron-hole pairs. Some of the photon’s energy dissipates into the crystal
lattice, which leads to an average energy of approximated 3.68 eV per created
electron-hole pair at room temperature for photon energies above 50eV [46].
Except for deviations for photons with an energy near the band gap energy, this
value is independent of the incoming photon’s energy [39]. The cross-section
of the photoelectric effect depends on the energy of the incoming photon E,y
and the atomic number of the detector material Z [38]:
ZTL

oo (2.2)
The exponents vary for different approximations. Here, the Born approxima-
tion is used, and the exponent n of the atomic number is between 4 and 5. The
exponent of the energy m is smaller equal to 3.5, and becomes one for high
energetic photons (energy much higher than the rest mass of the electron)[38].
The angular distribution of the emitted electron is, in the non-relativistic case,
proportional to sin® 6@ [38]. Here, @ is the polar angle of the emitted electron
relative to the direction of the incoming photon. With increasing energy, the
electron follows more and more the direction of the photon.

2.1.1.2 Compton Effect

The Compton effect is an incoherent scattering process between the incoming
photon and a quasi-free electron. An electron of the atomic shell is called
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Chapter 2. Radiation Interaction with Matter

quasi-free when the photon’s energy Ep, is much larger than the electron’s
binding energy F,; (Figure 2.3).

Eph > Eyy; (23)

The photon loses a part of its energy during the scattering process, which is
transferred to the electron. [47]
The photon’s energy E,;, after the collision can be calculated as a function of

v Y

e e

Figure 2.3: Feynman diagram of the Compton effect. The photon v scatters with
an electron e~ and transfers a fraction of its energy. The time axis is horizontal.

the scattering angle 6, and the photon’s energy E,;, before the collision [38]:

X E
Eyn = ph (2.4)
1+

E
mepé; (1 —cosbpp)

Here, m, is the rest-mass of the electron and ¢ the speed of light in vacuum.
The Klein-Nishina formula describes the differential cross-section per solid
angle ) for free electrons [48]:

B \? 02
dO’C Tg 2 (meCQ) (1 — COS ph)
= 5 | 1+ cos” Oy, + %
dQ 2[1+4 Ey (1 — cosfy)] 1+ 25 (1 — cos Opp)

(2.5)
Here, r, is the classical electron radius, with €3 being the vacuum permittivity
[39]:

62

(2.6)

To= ———
4megmec?

Figure 2.4 depicts the probability distribution of the differential cross-section as
a function of the photon’s scattering angle. The scattering angles are forward
orientated for higher primary energies.

The cross-section per atom can be approximated by the number of shell
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2.1. Photons

270°

Figure 2.4: Klein-Nishina distribution as function of the scattering angle 6,,. The
unit of the r-axis is barn = 10~2%m?.

electrons times the differential cross-section for one shell electron [38]:

o™ ~ Zog (2.7)
The cross-section is directly proportional to the atomic number because every
electron of the shell contributes to the incoherent scattering process. The
cross-section’s linear dependence on the atomic number holds as long as the
photon energy is higher than the electrons’ binding energy.
The shell electron’s momentum on the scattered photon’s energy leads to a
deviation called Doppler broadening. The scattering process becomes coherent
for lower energies, and the cross-section depends nearly quadratic on the atomic
number. The angle is for low energies proportional to (1 + (cos 6p,)?). [38] The
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Chapter 2. Radiation Interaction with Matter

energy dependence is obtained as follows [38]:

1— 25;,;2) Epn < mec® Thomson limes
oc X Ee (28)
In <2 m:{‘;) + %) Epn > mec®  highly relativistic

The angle 6, between the incoming photon and the moving direction of the
electron after the scattering process can be calculated to [38]:

Ee(Eph + meCQ)
Eon \/Ee2 + 2mec?E,

cos B, = (2.9)

Here, E, is the kinetic energy of the electron. The maximum energy transfer
to the electron is for backscattering (6, = m) of the photon corresponding to
a forward scattering of the electron (6, = 0). In this case, the kinetic energy
of the electron is the maximum kinetic energy. This leads to the so-called
Compton edge at the following energy in the spectrum [38]:

2
Emax _ 2Eph

=— 2.10
¢ QEph + 77”L,302 ( )

Figure 2.5 shows the maximal transferable energy and the mean transferred
energy as a function of the photon’s primary energy. The mean transferred
energy is the expected value of the product of the Klein-Nishina formula and
the angle-dependent energy transfer to the electron:

[ [ % (Bon — Epn)dQ [ 92 (B, — Epp) sin (01,)d0,,
(By) = —=2 =2 (2.11)

J ] a0 [ 99 sin (6,1)d0n
0

2.1.1.3 Pair Production

A photon can convert into an electron-positron pair in the presence of a charge
and, therefore, a corresponding electric field. The photon’s energy has to be
larger than twice the electron’s mass plus the recoil energy of the charge with
mass m, (eq. 2.12). This charge is typically a nucleus. [49]

In general, the mass m, of the nucleus is much bigger than the rest mass of
the electron, and therefore, the second term can be neglected [38]:

Eyp > 2mec? (1 + ﬁ) ~ 2mec? (2.12)

My
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Figure 2.5: Transferred energy from incoming photon to electron during the Comp-
ton effect.

et

N

Figure 2.6: Schematic view of the pair production. A photon ~ creates an electron
e~ and a positron e™. N is the nucleus whose electric field is required to preserve
the conservation of momentum. The time axis is horizontal.

The pair production quadratically depends on the atomic number and is for
high energetic photons (energy is much higher than the rest mass of the elec-
tron) nearly constant for different energies of the photon. [3§]
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2.1.2 Lambert—Beer Law

Due to the described effects in Section 2.1.1, photons are absorbed or deviated
from their original path with a probability proportional to the distance dz.
The attenuation coefficient p describes the probability of absorption per path
length and is connected to the cross-section o via the density of atoms n in
the detector volume [38]:

p=———=n0o (2.13)

Here, N is the number of photons. After a certain path length, the number
of remaining photons is derived from solving this differential equation and is

called Beer-Lambert-law.
N(z) = Noe™#* (2.14)

Ny is the original number of photons. Another often used quantity is the
mean free path A, the inverse attenuation coefficient. The mean free path is
the average distance traveled by a photon between two successive interactions
with the detector material. Figure 2.7 shows the relative absorption A(z) as
a function of the layer thickness for various primary energies for silicon. Eq.
2.15 describes the relative absorption.

A(z)=1—e 0 =1—et (2.15)

2.2 Electrons

The electron is an elementary particle of the standard model. Its rest mass
is 511keV, and it is charged with one negative elementary charge. Its energy
loss in the detector material can be divided into three groups. These are ion-
ization and excitation, which describe the interactions with the atomic shell’s
electrons, and Bremsstrahlung, for higher primary energies and the scattering
processes with the nuclei. [38]

2.2.1 Physical Processes

The physical interactions between electrons and matter can be divided into
interactions with the atomic shell and with the atomic nucleus. Figure 2.8
depicts the schematic interactions with the atomic shell (Figure 2.8a, 2.8b,
and 2.8c) and the interactions with the atomic nuclei (Figure 2.8d, and 2.8¢).
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Figure 2.7: The relative absorption for photon beams with different primary en-
ergies as a function of the silicon’s penetration depth is shown. The intensity after
a layer of silicon with a given thickness corresponding to the penetration depth in
this plot is one minus the relative absorption. The data are obtained from the cross-
sections and stopping power used by the simulation with GEANT4 [41, 42] and are
extracted directly from the physics tables and not from a Monte Carlo simulation.

2.2.1.1 Scattering at the Atomic Shell

The electron can lose some of its energy by scattering at the electrons in the
shell of the atomic nuclei. The electron can scatter elastically to Coulomb
interaction with the total atomic shell (Figure 2.8a). In this case, the charge
distribution in the shell is deformed and polarized. The primary electron loses
only a small amount of energy during this interaction. [38]

If, on the other hand, the interaction with the total atomic shell leads to exci-
tation (Figure 2.8b) or ionization (Figure 2.8¢c) of an electron of the outer shells
of an atom, the scattering process is inelastic. The primary particle deposits
the amount of energy necessary to ionize, respectively, excite an electron of
the outer shells of an atom. This amount of energy is in the order of a few
electron volts. The released secondary electron has a small amount of energy
and deposits it in the immediate environment. These two scattering processes
lead only to a small energy deposition and are called soft collisions. Soft colli-
sions make approximately 50 % of the energy deposition [50]. Because of the
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small energy loss per interaction, the incoming particles are decelerated quasi
continuously, which is called continuous slowing down. [3§]

Inelastic scattering with a single electron of the atomic shell leads to ionization
or excitation of the atom, leading to a larger energy transfer. These interac-
tions are called hard collisions. These emitted secondary electrons are called
0-electrons if their energy is high enough to ionize other atoms themselves. The
scattering angles of d-electrons are bigger, and their energy is much higher than
it would be with secondary particles generated by soft collisions. The tracks
of the J-electrons leave the primary particle track laterally. [38]

(a) (b) (c)

(d) (e)

Figure 2.8: Schematic view of the interactions between the electron and matter.
The atom shell’s interactions are shown on the top, and the interactions with the
atomic nucleus are shown below. The processes are (a) elastic scattering, (b) ex-
citation of a shell-electron, (c) ionization, (d) elastic Coulomb-scattering, and (e)
inelastic scattering (Bremsstrahlung). Figure adapted from [50].
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2.2.1.2 Scattering at an Atomic Nucleus

In the first approximation, charged particles like electrons are scattered ac-
cording to the Rutherford cross-section at the nuclei’s Coulomb field (Figure
2.8d). The Rutherford cross-section is as follows [51]:

d 1 1
G9R _ 2272ah

dQ B2p? 4sin* (6/2)) (2.16)

Here, 6 is the scattering angle relative to the incoming electron’s direction, z is
the charge of the scattered particle, Z the atomic number of the nucleus, « the
fine-structure constant, i the Planck constant, 5 the velocity of the scattered
particle as the ratio of the speed of light, and p the momentum. The quadratic
dependence on the atomic number is due to the coherent scattering at the
entire nucleus. In comparison, ionization processes are incoherent and propor-
tional to the atomic number since the contributions of the shell’s individual
electrons have to be summed up. Compared to scattering processes with the
shell’s electrons, the transfer of momentum and, therefore, energy is small for
light projectiles. For energies much higher than the rest mass of the electron,
the scattering processes with the nucleus dominate over scattering processes
with electrons in the atomic shell. [38] The maximum electron energy used
throughout this thesis is 300 keV and, therefore, the energy loss is dominated
by scattering processes at the atomic shell.

2.2.1.3 Bremsstrahlung

Charged particles can also release energy by being deflected by a field. This is
done by the emission of photons. This radiation is called Bremsstrahlung. In
the detector volume, the field that mainly causes the deflection is the Coulomb
field of an atomic nucleus. [39]

The process is schematically shown in Figure 2.8e. In silicon, Bremsstrahlung
is the dominating process for electrons with a primary energy higher than ap-
proximately 40 MeV [52].

The radiation power is proportional to E/m? in the relativistic limit [53]. A
quantum mechanical approximation of the emitted spectrum can be found in
[54]. The directional distribution depends on the thickness of the detector
volume and the primary particle energy. For low primary energies, the max-
imum of the emission intensity is around 60 to 90 degrees to the direction of
the incoming particle and is radially symmetric. The higher the energy, the
more the radiation is directed forward. For highly relativistic electrons, the
Bremsstrahlung intensity distribution is sharply focused in forward direction
[55].

23



Chapter 2. Radiation Interaction with Matter

For low primary energies, the thicker the material, the more important is the
influence of the Bremsstrahlung’s spatial diffusion. The diffusion leads to a
more isotropic emission of Bremsstrahlung [56]. For the simulation in Chapter
4, the model by Berger and Seltzer is used [57].

2.2.1.4 Non-lonising Energy Loss

Non-ionizing energy loss is the energy deposition due to a permanent displace-
ment damage. Displacement damage could be generated by a so-called primary
knocked-on atom, which means an atom is displaced from its lattice place due
to irradiation. [5§]

The displaced atom and its vacancy in the lattice are called Frenkel pair [38].
The displaced atom could have enough energy to migrate inside the lattice and
displace other atoms of the lattice during further collisions. This displacement
damage changes the bulk characteristics of the detector, which causes degra-
dation called radiation damages. The non-ionizing energy loss due to Coulomb
scattering on the nuclei can be described with the Wentzel-Moliere differential
cross-section. [59]

2.2.1.5 Multiple Scattering

A charged particle usually scatters many times in the detector material. The
overall deflection angle of this multiple scattering process is the sum over the
individual processes. Moliere [60], [61] and Lewis [62] describe the angular
distribution for a finite number of scattering processes. Lewis also describes
the moments of the spatial distribution. The description by Moliere can be
approximated by the Gaussian distribution for small angles. The probability
is larger than the probability of a pure Gaussian distribution for larger angles.

2.2.2 Mean Energy Loss

The Bethe Bloch formula describes the mean energy loss per track length of

the charged primary particle as a function of its kinetic energy Ey, [63, 64]:
de 22et NapZ
dr  4mwedm.c? A

B2 <1.166E;m) (2.17)

Here, § = wv/c is the ratio between the velocity and the speed of light c,
z the charge number of the primary particle, e the elementary charge, Nx
the Avogadro constant, €y the vacuum permittivity, m, the rest mass of the
electron, and c¢ the speed of light. The material-dependent properties are the
density p, the atomic number Z, the atomic weight A, and the mean excitation
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potential /. For silicon, the mean excitation energy is I = 174eV [65]. The
relativistic relationship between particle velocity v and energy E with mg being
the rest mass is as follows [39]:

2
moc?

A detailed derivation of the units can be found in Appendix A.3. For energies
below 1keV, the Bethe Bloch formula fails, especially for light particles like
electrons. A semi-empirical correction by Joy et al. [66] fixes the energy losses
for small energies modifying the mean excitation potential (Figure 2.9):

I
C1+kL

!/

(2.19)
Substituting eq. 2.19 into the Bethe Bloch formula 2.17 results in an approxi-
mation for lower energies and electrons [66]:

de 22et NapZ
dv — dredmec? A

B7%In (1.166 (2.20)

By + kI
I
The typical value for electrons in silicon is k& = 0.822 [66]. This modified
model shows a good agreement with experimental data [67].

2.2.2.1 Path Length

The path length is the distance a charged particle travels until it has deposited
all its energy. In the continuous slowing down approximation, this length [ can
be calculated by integrating the inverse of the energy loss per unit way length
with respect to the energy:

Ekin Ekin

dx dx
0 E

min

For the continuous slowing down approximation, it is assumed that the charged
particle deposits its energy continuously to the detector material exactly with
the mean energy deposition. Since energy deposition is a statistical process,
only the mean path length and the path length of individual particle tracks
can vary. A practical approximation for the lower integration limit F,;, is
200eV. For silicon applies I(Fuyin = 200eV) < 2nm =~ 0. Figure 2.10 shows
the integrated length as a function of the previous energy. For energies above
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Figure 2.9: Energy deposition as a function of the energy. The dashed blue line
shows the energy deposition according to the Bethe Bloch formula. The orange line
shows the Bethe Bloch formula plus the correction for electrons with low energies.

300keV, the mean length of the tracks obtained from the Monte Carlo simu-
lation is slightly longer than the Bethe Bloch formula’s predicted value with
the corrections. The deviation is always smaller than ten percent of the length
and neglectable compared to the statistical spread of the length.

Due to the multiple scattering process, the path length of an individual
charged particle is always longer or at least of the same length as the particle’s
penetrating depth into the detector volume.

The energy deposition along the track of the particle is not constant and
is known as Bragg curve. The highest energy deposition most likely is at
the end of the particle track because the interaction cross-section increases as
the energy of the charged particle decreases. Especially for higher primary
energies, this behavior plays an important role in reconstructing the point of

entry (PoE).

2.2.2.2 Landau Distribution

The above Section describes the mean energy loss per track length. The process
of energy transfer is a randomly distributed process. This leads to a fluctuation
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Figure 2.10: Trajectory length for electrons as a function of the primary energy
in silicon. The orange line shows the theoretical result obtained from the Bethe
Bloch formula with the correction for electrons. The blue dots indicate the results
obtained from the Monte Carlo simulation with GEANT4 (Chapter 4). The error
bars indicate the spread of the simulated events. The standard deviation is used to
determine the spread.

in the amount of energy loss. The distribution of the energy loss fi, passing
a thin absorber is described by the Landau distribution [68]. The Landau
distribution function can be found in Appendix A.4. Its shape resembles a
Gaussian distribution with a long tail at higher energies. This tail results from
the small number of individual collisions, each with a small probability of
transferring comparatively large amounts of energy. Theoretically, the upper
limit is at infinite energies, while the energy deposited by an incoming particle
cannot exceed its own primary energy.

2.2.2.3 Minimum lonizing Particles

The mean energy loss decreases approximately proportional to 1/v? with in-
creasing velocity of the particle. This decrease can be explained by the de-
creasing time of interaction per path length for faster particles. For relativistic
velocities, the stopping power increases again due to several effects: First, the
secondary particle production must be considered at higher energies. Second,
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the Lorentz factor increases with higher velocity, which increases the transfer-
able energy. Furthermore, the electric field of charged particles close to the
speed of light is deformed due to the Lorentz contraction. This deformation
leads to a higher transverse field, increasing the interaction probability be-
tween the primary particle and an electron in the atomic shell. This effect
cannot become arbitrarily large since the particle’s field is shielded by the de-
tector material’s atomic nuclei. The size of the effect depends on the material
properties, e.g., the density. [38]

The minimum of the mean energy loss can be found by derivation of the Bethe
Bloch formula and is at § &~ 0.95. Particles with velocities around this mini-
mum are called minimum ionizing particles. [38]

2.3 Atomic Relaxation
Atomic relaxation can be induced by any interaction that leaves the atom in

an excited state. Excited state in this context means a vacancy in the inner
shell of an atom.

o .

E E
S — A —
ELl \ i ffY ELl \ ! \
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E, E,
(a) Fluorescence (b) Auger Effect

Figure 2.11: Atomic relaxation. The horizontal lines indicate the discrete energy
levels of the atom. The primary particle is shown in green. Vacancies are shown as
red circles and electrons as blue dots. The black sinuous line represents a photon.
Figure adapted from [69].
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2.3.1 Fluorescence

A vacancy in one of the inner shells of an atom is filled by an electron of a
higher shell (Figure 2.11a). The binding energy of the higher shell is lower
than the binding energy of a lower shell. During this transition, this energy
difference is emitted as a photon. Depending on the element and shell number
of the initial and final state, the energy difference is in the range of a few eV
up to tens of keV [50]. The photon’s energy is characteristic of the element,
and the radiation is also called characteristic X-ray.! A special case is when
the photon escapes from the sensitive detector volume and, thus, the energy
of the emitted photon is not detected. The caused peak in the spectrum
is called photo escape peak. The energy of this peak is the energy of the
primary particle minus the energy of the characteristic X-ray. The probability
of releasing energy by emission of an X-ray photon increases with the atomic
number. [39]

2.3.2 Auger Effect

The complementary process to fluorescence is the Auger effect (Figure 2.11b).
Again, a vacancy in one of the inner shells of an atom is filled by an electron of
a higher shell. However, the excess energy is transferred to a second electron
in a higher shell for the Auger effect. The second electron is ejected and called
Auger electron. [38] In Figure 2.11b, the Auger electron’s energy is given as
[38]:

EAuger = (EK - ELQ) — FErs3 (222)

Auger electrons have an extremely short range because of their low energy of
a few eV up to 3keV [40]. Therefore, the Auger electron more likely deposits
its energy in the active detector volume as characteristic X-ray. In contrast
to the characteristic X-ray emission, the emission of Auger electrons decreases
with higher atomic numbers. [38]

Tt is common use not to refer to X-ray emission, which is introduced by an electron as
fluorescence [10]. However, the underlying effect is the same.
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Chapter 3

Pixelated Semiconductor
Detectors

In this Chapter, the principle of semiconductor detectors is introduced. This
thesis’s measurements are performed with pn charge-coupled devices (pnCCD).
Therefore, the following introduction focuses on silicon as detector material.
The further sections describe signal processing and data acquisition. In the
last Section of this Chapter, signal processing is introduced separately for
integrating and counting mode.

3.1 Semiconductors as Detector Material

Semiconductors are characterized by a small band gap from around 0.1eV to
4 eV between the valence band and conduction band at room temperature[70].
Valence electrons are bound to individual atoms and can not contribute to an
electrical current, whereas electrons in the conduction band can freely move
within the atomic lattice. The energetic location of the valence band is below
the conduction band. Due to the band gap, a valence band electron must be
excited to enter the conduction band and contributes to the conductivity. This
excitation can, e.g., be due to thermal or external irradiation. An atom in a
pure silicon crystal has four neighbors. To each neighbor, a single covalent
bond is built. If a bond is broken, an electron-hole pair is formed. The free
electron moves to the conduction band and contributes to the conductivity.
After a certain time, it can recombine again with the hole and relax into the
valence band. [6]

An electron from a neighbor bond can fill the broken bond and create a hole
in the new location. The hole can move through the crystal and, therefore,
contribute to the valence band conductivity. The hole can move until it re-
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combines with an electron from the conducting band. [6]
A more detailed discussion of the band structure can be found in [71].

3.1.1 Doping

A semiconductor without any significant impurity atoms is called an intrin-
sic semiconductor. Replacing some of the lattice atoms with other atoms can
modify the properties of the semiconductor. The replacement process of silicon
atoms by impurity atoms is called doping, and the result is an extrinsic semi-
conductor. Depending on the oxidation state of the foreign atoms, doping can
either be n-doping (main group V elements of the periodic system of elements)
or be p-doping (main group III elements). For silicon, the common elements
for n-doping are phosphorus or arsenic and, for p-doping, boron. [6]

Figure 3.1 shows a substrate material of silicon. Figure 3.1a shows the lattice
of an intrinsic semiconductor. In Figure 3.1b, one silicon atom is replaced by a
phosphorus atom resulting in an n-type semiconductor, and in Figure 3.1c, one
silicon atom is replaced by a boron atom resulting in a p-type semiconductor.
The oxidation state of silicon is IV which means each silicon atom has four
valence band electrons to form bonds. Replacing a silicon atom by an atom
of the group V leads to an additional unbound electron, as shown in Figure
3.1b. This electron can be easily excited into the conduction band at room
temperature. In contrast, atoms of group III have only three valence band
electrons. This leads to an unsatisfied bond to a neighbor silicon atom (Figure
3.1c). The there missing electron can be filled with an electron from a neigh-
bor bond, creating a hole. Elements of main group V act like electron donors
and create an additional filled state close to the conduction band. Elements
of main group III act like electron acceptors and create an additional empty
state close to the valence band. [6]

3.1.1.1 The p-n Junction

A p-n junction is a spatial connection on crystal level between a p-doped and
an n-doped region. The additional electrons from the n-doped area diffuse
into the p-doped area and recombine with holes from the p-doped area.
This creates a depletion zone that is free of mobile charge carriers, as shown
schematically in the upper illustration of Figure 3.2. The depletion region
is also called space charge region because this zone contains charges coming
from the fixed unmovable doping atoms in the silicon lattice left during the
diffusion process. These ions create an electric field that counteracts the
diffusion current. In thermal equilibrium, the drift current generated by the
electric field and the diffusion current cancel each other. [6]
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additional
electron

(a) intrinsic semiconductor (b) n-doping (c) p-doping

Figure 3.1: Doping of silicon. (a) In an intrinsic semiconductor for conduction,
an electron has to be excited from the valence band to the conduction band. The
left hole also contributes to the conduction. (b) N-doping adds an additional elec-
tron that can be excited easily to the conduction band. (c) P-doping creates an
unsatisfied bond.

The charge density and the corresponding electrical field are shown in Figure
3.2.

The band structure of the p-n junction, including the size of the space
charge region, can be explained with the concept of the Fermi potential. The
Fermi potential refers to the energy at which the occupation probability of a
state is one-half. Because of the additional filled states, the Fermi potential
of n-doped semiconductors is closer to the conduction band. For the p-doped
semiconductor, it is closer to the valence band. When bringing the n-doped
and the p-doped regions together, both regions’ Fermi potentials match in
thermal equilibrium. This leads to a shift in the band structure. [6]

A diode formed by a p-n junction has two electrical contacts on each of the
doped parts. The width of the space charge region of a diode depends on the
doping level and the applied voltage. [72]

The space charge region becomes larger with higher external reverse bias volt-
age and can be calculated to [6]:

o 2€O€Si<NA =+ ND)
d— \/ A (=) (3.1)

Here, €peg; is the relative permittivity times the vacuum permittivity, N the
acceptor doping concentration, Np the donor doping concentration, e the ele-
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Figure 3.2: The unbiased p-n junction in the one-dimensional model. From top to
bottom, the atomic structure’s schematic drawing, the charge density, the electric
field, and the electrostatic potential are shown. In the depletion zone, the charge
density zone is unequal zero, which results in an electric field. The electric field is
the negative gradient of the electrostatic potential and can be calculated using the
Poisson equation. Figure adapted from [6].

mentary charge, V' the external bias voltage which is applied to the diode, and
Vpi is the built-in voltage [6]:

Vig = BT, (NAND) (3.2)

2
e n

Here, n; ~ 1.45-10%m™3 is the intrinsic charge carrier density at room
temperature, kg is the Boltzmann constant, and 7T is the temperature. For
asymmetric doping, the space charge region expands more into the region of
the lower doping dose. [6]
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3.1.2 Sideward Depletion

Sideward depletion allows it to deplete the same volume of the bulk with a
quarter of the bias voltage, and it allows to decouple the detector area from
the readout anode and, therefore, reduce the readout capacity. [73]

backside frontside backside frontside backside frontside

(a) (b) (c)
- p'-region - n*-region |:| n-substrate |:| n-substrate
( (

undepleted) depleted)

Figure 3.3: Sideward depletion. A schematic cut through the wafer is shown. The
wafer surfaces are right and left at the p*-junctions. (a) Unbiased setup. (b) Fully
depleted setup. The applied bias voltages at the device surfaces are symmetric. This
leads to a parabolic potential with a potential minimum for electrons (dashed green
line) centered at the center of the device. (¢) The potential minimum for electrons
(dashed green line) can be shifted towards a device surface by applying asymmetric
bias voltages. Figure adapted from [73].

Figure 3.3 shows the principle of sideward depletion. The frontside is struc-
tured into a small n-doped and a large p-doped part. The p-doped backside
and the p-doped frontside are biased with negative voltages. The depletion
zones expand from both sides into the low n-doped bulk, as shown in Figure
3.3. When fully depleted, the potential is parabolic from each side with a
potential minimum for electrons in the middle (Figure 3.3b). The position of
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the potential minimum for electrons can be moved by applying the voltages to
the front and back asymmetrically (Figure 3.3c). [73]

The holes move to the p* contact. The electrons move towards the anode by
an additional applied drift field that superpose the depletion field. [73]

3.2 Electron-Hole Pair Generation

Chapter 2 describes the energy deposition in the detector volume. In this
Section, the statistics behind the conversion from this energy deposition to
electron-hole pairs is described. The generation of electron-hole pairs is subject
to Fano statistics. For a given energy deposition E, the mean number of created
electron-hole pairs is given as the energy deposition divided by the mean energy
w, which is needed for the creation of an electron-hole pair [6]:

N = ” (3.3)
For room temperature in silicon, the pair creation energy is w = 3.68 eV [46].
The mean energy w slightly increases for lower temperatures. Since silicon is an
indirect semiconductor, the average energy required to generate an electron-
hole pair is much higher than the band gap energy, which is approximately
1.12eV, with the exact value depending on the doping state at room temper-
ature [45]. The variance of the number of generated charges is

(AN?) = FN = F% (3.4)

with the Fano factor F' = 0.115 at room temperature [45, 74]. The phase
space for generating electron-hole pairs becomes with decreasing energy
smaller. Therefore, the generation of electron-hole pairs is correlated and not
uncorrelated. The Fano factor absorbs the deviation from an uncorrelated
process. [74]

For a perfect detector, the Fano factor and the ratio of scattered particles
exiting the active detector volume, hence only depositing a certain ratio of
energy in the detector, are the energy resolution’s physical limits and the peak
to valley ratio in the energy spectrum. A detailed explanation of the physical
limits can be found in Appendix A.2.

The electron-hole pairs created by incident photons or charged particles are
free charge carriers in the depletion region and are efficiently separated due
to the local electric field. This efficient separation is necessary to minimize
the recombination of the electron-hole pairs. The electrons are called signal
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electrons in the following. Many signal electrons created by high-energy irra-
diation form a charge cloud that drifts to the anode due to the electric field.
During this drift, the size of the charge cloud becomes larger by diffusion and
repulsion. [6]

Both effects are described in detail in Section 4.2.4.

3.3 The pnCCD

For benchmark measurements, a detector based on the concept of pnCCD
is used. The methods presented in this thesis are by default independent
of the detector’s operating principle and are transferable to all pixelated
semiconductor detectors for imaging without further treatment.
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backside pixel structure

depletion
voltage V,

primary
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Figure 3.4: Schematic view of the pnCCD (not to scale). The sectional view is
perpendicular to the shift register direction. The red areas denote p*-junctions,
the dark-blue areas n™-junctions, and the light blue area the n-substrate. Three
adjacent shift registers form one pixel. Figure adapted from [69].

In this Chapter, a short overview of the pnCCD is given. The structure
and working principle of the pnCCD are described in many publications in
detail [6, 75, 76].

Figure 3.4 shows the schematic view of a pnCCD. The pnCCD works
on the principle of sideward depletion (Section 3.1.2). The detector has
to be divided into sections, so-called pixels, to obtain spatial information.
This structuring is achieved by dividing the p-doped frontside into strips,
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so-called shift registers. Every third shift register is connected to the same
voltage. This leads to three different supply voltages 1, o, and ¢3 of the
frontside. Applying a more negative voltage to one of the three shift register
groups yields a local potential minimum for electrons under both other shift
register groups. This leads to pixelation in one dimension of the detector.
Typically, three neighboring shift registers form one pixel indicated by the
green dashed line in Figure 3.4 (three-phase CCD). Additional n-doped stripes
are implanted perpendicularly to the shift register leading to an attractive
potential for electrons. This implantation avoids charge spreading below the
shift registers and forms the second dimension of the pixelation and is called
channel guide. [6]
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Figure 3.5: Schematic view of the pnCCD readout. The active image area is 264
times 264 pixels. The upper half of the active image area is transferred into the
top frame store, and the lower half is transferred into the bottom frame store. At
the readout nodes, one row of the top frame store and one row of the bottom frame
store is read out parallel. Figure adapted from [69].

By switching the supply voltages with a reasonably defined sequence, the
potential minimum for electrons and, therefore, the collected electrons can
be transferred to the detector edge without mixing the electrons from the
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individual minima. The row-by-row readout is achieved by an n-doped anode
at the edge of the frontside and an on-chip amplifier based on field-effect
transistor (FET) for each column. [6]

It can either be processed with an alternating sequence of shifting and readout
or the total image can be fast transferred to a radiation-shielded area called
frame store. During the acquisition of the next frame, the frame store can
then be readout in the same way as the sensitive detector area. The frame
store reduces so-called out-of-time events. Such events occur when an incident
photon or charged particle hits the detector when the electrons are shifted
to the edges. These events are then assigned to a row that is further away
from the readout edge than the actual PoE. Using a frame store requires
additional supply voltages to shift the potential minima in the frame store
area independent of the remaining area of the pnCCD. [6]

Figure 3.5 depicts the readout scheme used in this work with two frame
stores at the top and the bottom of the pnCCD. The two frame stores double
the readout speed compared to using only one frame store. The device is
irradiated from the backside. The thickness of the sensor is 450 pm.

3.4 Conversion from Signal Electrons to a Digital
Signal

The readout chain and signal processing of pixelated detectors can be divided
into two concepts. Figure 3.6 schematically illustrates a random energy depo-
sition in one pixel as a function of the time and the corresponding response
of both detector systems. In integrating mode (Figure 3.6b), the amount
of energy deposited in each pixel is converted into an analog voltage that is
digitized. Therefore, the analog voltage represents the amount of deposited
energy. In counting mode (Figure 3.6¢), individual particle hits are identified
and processed to a binary output. The counting mode is typically used for
monochromatic irradiation.

3.4.1 Integrating Detector Mode

In this detector mode, the total amount of energy deposition during the
integration time is integrated for each pixel. The integration time is the
inverse of the frame rate. If two or more particles deposit their energy
during this time in the same pixel, the deposited energy can not be assigned
to the individual particles, as the system only perceives the overall energy
deposition. The pnCCD used in this work is connected to the input of
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Figure 3.6: Comparison of counting and integrating mode. The graphic schemat-
ically shows the concepts of one pixel in counting mode and the same pixel in
integration mode. The x-axis is for all plots the time. (a) shows the energy depo-
sition as a function of time. (b) shows the signal in the pixel. Note that due to
the frame-based readout, the signal’s shape is not recorded but only the signal at
the time when the detector is readout (vertical gray line). (c¢) shows the output
of a counting system with one threshold. The system’s output is a binary signal
whenever the energy deposition exceeds a certain value. The information about the
magnitude of the energy deposition is lost.

a readout application-specific integrated circuit (ASIC) via wire bonding.
Here, the used ASIC is called CAMEX (CMOS amplifier and multiplexer)
[77]. The CAMEX has one amplification stage for each column of the
detector so that the pixels of every row are readout simultaneously. Each
amplification stage has one output for each column. An on-chip multiplexer
creates a time-coded single output from the multiple lines. A synchronized
analog-to-digital converter (ADC) digitizes the multiplexer’s output and sends
it to a computer. The computer sorts the values obtained from the ADC into
frames and stores them. Each quadrant of the active detector area has its

own CAMEX [69].

At this point, it should be noted that each of the described steps can be
parallelized to achieve higher frame rates. For other detector systems, for
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example, based on DEPFETSs [78], in the fastest cases, each pixel has its
own readout chain, and the signal processing and data acquisition are fully
parallelized.

3.4.2 Counting Detector Mode

In counting detector mode, the systems count the number of times an energy
deposition in a pixel exceeds a certain threshold. In general, this happens
pixel by pixel. It can, for example, be achieved with a discriminator, which
compares the signal with an adjustable voltage or digitally. Using two or
more thresholds enables the possibility of energy windowing. The more
thresholds levels are used, the finer the differentiation of a counted event into
the different energy windows can be achieved. [79]

Modern counting systems such as the Timepix3 [80] also store the
timestamps of the counts. Hybrid counting systems discriminate the sig-
nal not pixel by pixel but count more complex event structures. Therefore,
individual event clusters are identified at the time they reach the detector. [81].

State-of-the-art systems, moreover, measure the actual energy deposition
of the pixels above the threshold level. These energy depositions are directly
processed and analyzed by a high-performance computing system or more
problem-specific hardware such as a field-programmable gate array (FPGA)
or ASICs. The additional information of the energy depositions can be used
to determine the event’s position in the subpixel regime. [82]

Figure 3.7 shows an energy deposition in the different representations.
Figure 3.7a shows the actual PoE of the primary particle, Figure 3.7b the
charge cloud after the drift and diffusion, and Figure 3.7c the energy deposi-
tion in the pixel structure. This energy deposition is the output of a detector
system in integration mode. Figure 3.7d shows the output obtained in count-
ing detector mode, and Figure 3.7e shows the output in a 2 x 2 subpixel regime.

For monochromatic radiation, counting requires that the individual parti-

cles’ tracks do not overlap and, therefore, requires a fast readout electronic or
a low particle rate [83].
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Figure 3.7: Energy deposition in counting detector mode. A detector section of
four by four pixels is shown. The blue dot indicates the PoE (a). An expanded
charge cloud arrives in the pixel structure (b). See Section 4.2.4 for details. The
amount of charges is proportional to the energy deposition. The energy deposition
is detected for each pixel. The values show the fraction of the primary energy in the
individual pixels. In integrating mode, these energy depositions are integrated over
the frame time and stored (c). In counting mode, only a binary response is stored.
This response can either be in the regime of the physical pixel (d) or in the subpixel
regime (e). Figure adapted from [83].
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Chapter 4

Simulation of the Energy
Deposition by Photons and
Electrons

The trajectory of light charged particles with nonrelativistic energies in the
detector material can be approximated as a random walk. Every scattering
process of the particle in the detector material is a statistical process that
follows well-known physical laws, and the trajectory of the particle is created
by a chain of such scattering processes (Section 2.2.1.5). This behavior makes
it impossible to predict the trajectory of a single particle precisely. Directly
measuring the trajectory with a pixelated detector is also not possible because
the detector only measures the accumulated deposited energy in the individual
pixels. This means the three-dimensional trajectory is projected onto two
dimensions and, subsequently, binned in the two-dimensional pixel grid.

Hence, Monte Carlo simulations of many individual particles are performed
to investigate the photons’ and electrons’ physical behavior in silicon and the
corresponding detector response. The obtained knowledge can be used to
optimize parameters such as the pixel size or the detector’s backside voltage
and to understand the particles’ behavior in the detector volume. The results
of the simulations have been carefully verified. No significant deviations
between simulation and measurement have been observed in the energy range
relevant for our study. The results of these Monte Carlo simulations are
required to train the neural networks presented in this work.

Basically, these simulations are divided into two parts: First, the energy

deposition of the particles, and second, the charge carrier creation, separation,
and the formation of the pixel by pixel signal. For simulating the energy de-
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position, the toolkit GEANT4 (version 10.5) [57] implemented in C++ [84]
is used. The second part is implemented in Python 3 [85] and is constructed
modularly. The modules correspond to the different physical effects. It is pos-
sible to save, respectively, load the output (energy deposition, signal electron
distribution, frames) and the used parameters after each module.! This makes
it possible to simulate, for example, different particle rates with exactly the
same individual particle tracks.

The total simulation is implemented scalable. This means the degree of par-
allelization of the individual processes can be adapted to the used machine.

4.1 Energy Depositon

GEANT4 with the low energy electromagnetic library Livermore [88] is used to
individually simulate each event’s energy deposition as a function of the three
space dimensions. Information such as, for example, the time, the physical
process of the energy deposition, and the physical step length are optionally
logged. The physical step length describes the path length the particle has
traveled between two simulated energy depositions. The generated simulation
data are sorted hierarchically. The top-level is a so-called run and has a
unique run identification. A run contains several events. Each of these events
has the same physical settings, such as energy or type of primary particle.
Due to the possible creation of secondary particles, each event can have more
than one particle track. The particle track with the id zero is the primary
particle, and the secondary particles get their identification sorted by the time
they are created. The PoE of the primary particle on the simulated detector
surface always stays the same. The distribution over the detector is done in
a later step. This procedure enables different hit patterns and particle rates
with the same events.

The Livermore model is valid for electromagnetic processes down to 250 eV
and, in principle, usable down to 10eV with a lower accuracy. [8§]
The relevant processes for the energy range used by the Monte Carlo simulation
in this thesis are ionization, bremsstrahlung, and scattering processes
for electrons (Section 2.2) and the photoelectric effect, Compton scat-
tering, and pair production for photons (Section 2.1) [89]. In contrast to
the standard physics list of GEANT4, which uses parameterized data of the
cross-section, the Livermore model uses the energy dependent cross-sections’

!The data handling and analysis are mainly done with the package pandas [86] and
the package numpy [87].
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tabulated data.! Relaxation processes such as atomic deexcitation such as
fluorescence, Auger electron emission, including Auger cascades, and particle
induced X-ray emission (PIXE) are also part of the Monte Carlo Simulation
[92]. A detailed mathematical description of the processes can be found in [93].

The particle trajectories and energy depositions are simulated step by

step. For all processes, the probability of an interaction is calculated and
subsequently used in combination with a random number generator to
randomly decide which interaction process is occurring. GEANT4 uses a
condensed algorithm for the scattering processes resulting in a multiple scat-
tering theory developed by Lewis [59]. This theory describes the individual
scattering events by using Legendre polynomials [62]. After several scattering
events, the analytic solution of the deflection angle is calculated using the
additive properties of the Legendre polynomials. The Lewis theory provides
the moments of the spatial displacement distribution. A simulation of the
single scattering processes would also be possible and is a bit more accurate
but takes a lot more computational power, which is not suitable for higher
numbers of simulated particles and does not increase the precision for our
purpose.
The simulation’s important parameters are the range cut, the low energy
edge, and the lowest electron energy. The range cut decides which secondary
particles are simulated. It is set to 5nm. This means only secondary particles
which travel at least 5nm are simulated, otherwise their energy is directly
deposited. The influence of a range cut of 5nm is neglectable since the size
of the charge cloud arriving in the pixel structure and the size of the pixel
structure of the detector is much larger. The low energy edge is set to 250 eV
and overwrites the range cut if the range cut is equivalent to an energy below
the low energy edge. The lowest electron energy is set to 250eV and forces
full energy deposition at one step independently for electron energies below
this value. The mean path length of an electron with 250eV is approximated
with 5nm. The mean free path for photons with an energy of 250eV in
silicon is approximately 100nm. Both lengths are much smaller than the
pixel structures. For photons, the mean free path for this range of energies
is dominated by the photoelectric effect, which means the complete energy is
deposited and not only a fraction as, for example, by the Compton scattering
process.

A detailed analysis of the performance of the GEANT4 simulation using

!The used data sets are the evaluated atomic data library (EDAL) [90], the evaluated elec-
trons data library (EEDL) [90], the evaluated photons data library (EPDL97, EPICS2014)
[41, 42], and the binding energies are taken from Scofield [91].
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the Livermore model of electrons and photons in semiconductors can be found,
for example, in [94]. In summary, the GEANT4 simulations and experimental
data have an overall good agreement.

4.2 Conversion and Transport of the Generated
Signal Charges

Conversion and transport of the generated signal charges are implemented
in separate modules. The advantage of this modular design is to save com-
putational power and time for sweeps over different parameter sets. The run
identification assigned in the GEANT4 simulation to events created within the
same physical settings will be maintained and supplemented by a conversion
identification. The simulation parameters for these identifications are auto-
matically saved in a database structure. The results of the conversion and the
transport modules are in good agreement with the measurements performed
by Kimmel [95].

4.2.1 Thermalization of Excited Silicon Atoms

The first step in the conversion and transport module is called thermalization.
In this step, the conversion from the incident particle energy deposition to
electron-hole pairs is performed. This conversion is described by the Fano
statistics (Section 3.2). The distribution of the number of electron-hole pairs
N generated from the energy deposit AE can be calculated as [96]:

1
p(N(AE)) = { VorF2E P

0, otherwise

Here, F' is the Fano factor, and w is the pair creation energy. The actual
number of the generated electron-hole pairs for each energy deposition is drawn
from these distributions.

4.2.2 Charge Collection Efficiency

With the charge collection efficiency, effects such as charge loss or recombina-
tion are modeled. This recombination mainly occurs at the detector’s entrance
window because only there, the electric field is too weak to separate the elec-
trons and holes fast enough. Moreover, dangling bonds at the Si-SiO, interface
lead to trapping and recombination. The charge collection efficiency (CCE) is
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a value between zero and one and describes the ratio of collected to generated
charge carriers. Goto [97] describes the CCE with an exponential approach
phenomenologically:

Vs Z

CCE(z) =1— (1 —R)- e (4.2)

Here, v, is the electron saturation velocity, D the diffusion constant, and R
a parameter to describe effects by a finite recombination velocity. The ap-
proximation for the CCE can be rewritten as a parameterized exponential
function [97]:

CCE(z)=1—7y-e 7 (4.3)

To take the charge carrier recombination’s statistical characteristic into
account, this can be implemented as a binomial distribution. The binomial
distribution counts the number of successes (charge carriers do not recombine)
in a series of similar and independent experiments, each with exactly two
possible results (recombine or not recombine). This binomial distribution’s
sample size is the number of charge carriers generated by the point-like energy
deposition, and the probability is the CCE. Typical parameter values for
pnCCDs are v = 0.09 and 7 = 0.1 pm [98].

Since 7 is very small, the CCE effects are only relevant for energy deposi-
tions near the surface. Therefore, the correction is only relevant for photons.
The effect of recombination near the entrance window can be neglected for
energetic electrons penetrating the detector much deeper.

4.2.3 Clustering of Signal Charges

During the drift process, electrostatic repulsion occurs. The strength of this
repulsion depends on the amount of charge per volume. The simulation of the
forces and the movements of the distributed charges is an n-body problem.
In general, no analytical solution for an n-body problem exists for n > 2
[99]. The problem could be solved numerically, but this is computationally
intensive and not necessary in the given context.

Up to this point, each energy deposition obtained from GEANT4 is treated
separately. In this step, for each primary particle, the generated electrons,
which are spatially less separated than 1pm, are clustered.

Clustering is a technique to group similar samples that are more similar to
samples in the same group than samples in another group. Similarity in this
particular case means spatially less distanced.

An efficient approach is to cluster charges close to each other to a point
charge. This point charge’s spatial position is the center of mass of the
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electrons that contribute to the cluster. The amount of charge of the point
charge is the sum of the charges of the contributing electrons. The charge
density of the electrons drifting away from the center of mass over time due
to their electric field is radially symmetric and can be analytically calculated.

In the used clustering algorithm®, each sample is initially treated as an

individual cluster. At each iteration, close clusters are merged. After each
merge, the proximity matrix, which contains all distances between all clusters
in pairs, is calculated. The termination criterion of the iterations can be either
a distance threshold or the number of final clusters. In the Monte Carlo sim-
ulation, the distance threshold is used. The algorithm’s output is an identifier
for each sample that assigns it to a cluster.
The parameters of the used clustering algorithm are the affinity, the distance
threshold, and the linkage. The affinity is the Euclidean distance between two
samples. The distance threshold determines the distance above which clus-
ters will not be merged. Maximum linkage means the distance between two
clusters is obtained from the maximum distance between all electrons of those
two clusters. In the following, those clusters are named charge clouds. The
number of contributing electrons and the weighted centroid are calculated for
each charge cloud.

4.2.4 Drift of Signal Charges

Because of the detector’s negative backside contact, the charge clouds drift
in the direction of the pixel structure located on the opposite side. During
this drift, the charge clouds expand by diffusion and electrostatic repulsion.
Therefore, even a point-like energy deposition can be spread over several
pixels.

The integrated signal in the pixels is the two-dimensional projection of these
expanded charge clouds. The charge cloud’s size mainly depends on the drift
time, temperature, and the number of charge carriers in this charge cloud. In
addition, the drift time depends on the point of the conversion, the charge
separation depth, which denotes the depth at which the charges are separated
into several neighboring pixels, and the applied electric field.

The electric field in the detector volume can be approximated by solving
the one-dimensional Poisson equation. The pnCCD is assumed as a p-n-p
structure [95]. In this approximation, the pixel structure at the detector’s

!Technically, this is done by a hierarchical agglomerative clustering algorithm [100] which
belongs to the unsupervised machine learning methods. In particular, the implementation
of scikit-learn [101] is used.
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frontside is neglected to simplify the internal electric field structure. This
approximation can be made because the pixel structure plays a subordinate
role for the field and the potential in the bulk volume. The additional
implantation for the pixel structure changes the electric field significantly only
near the frontside. However, the electric fields in this region are not relevant
because the charge separation depth parameter introduces their influence in
the simulation process. The charge separation depth in this simulation is set
to 17 um away from the frontside [98].

In a second approximation, the thin p*-doped contacts at the front and back
sides are neglected [96]. This leads to a structure with two regions: The bulk,
which is the original substrate of the silicon wafer and weakly n™-doped, and
an n-doped region near the frontside. The simplified schematic of the pnCCD
bulk is shown in Figure 4.1.

z=0 & d
primary
particles
backside frontside
P, P,
6(2=0)=V, o(z=d)=V,

Figure 4.1: Schematic cut through the approximated model used to calculate the
electric field and electrostatic potential of the pnCCD. The drawing is not to scale.
The p-regions of the p-n-p junction are neglected in this model. The coordinate
system is chosen in a way that the backside is at z = 0, and the frontside is at z = d.
The transition between the bulk with a doping concentration of p,- and the doped
region with doping concentration p, is at z = §. The boundary conditions for the
potential ¢ are shown at the bottom.

The electric field in the z-direction and the potential in the detector volume
are given by the following equations [95]:

EZ(Z) = —2141 cZ— Bi (44)
o(2) =4 22+ By 2+ G (4.5)

The x- and y-component of the electric field is zero. The coefficients A;, B;, and
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C; depend on the thickness d of the detector, the thickness 0 of the n™-doped
region, and the doping concentrations p,- and p,:

A-=—-n 0<2<§
A = " 2¢oesi - (4.6)
An:—zp“A 0<z<d
€0€Si
— ‘/f_Vb ﬁ _ . Pn_pn— d'Qn
B = Bn_ o d + 2d ) 2€p€si + 2€p€si 0<z S 5 (4 7)
re B _ Vi—W + (52'(/)11_,01]*) + d-pn 6 < 5 < d ’
n— d 2d-ep€s; 2epe€s; —
C,-=W 0<z<9
D e AP VAl G YR (48)
n — b—"_TGSl <z <
1250 50
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£ 1 >
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Figure 4.2: Electric field in blue and electric potential in red in a pnCCD with a
thickness of 450 pm as a function of z. The underlying model and the parameters
are described in the text. The charge separation depth is shown in green.

The origin of the coordinate system is the backside, and the z-direction
points into the silicon bulk. A detailed derivation of these equations by
solving the Poisson equation can be found in Appendix A.5. In this thesis, the
following parameters are used: The thickness d is 450 pm, the thickness of the
n-doped bulk ¢ is 441 pm in this approximation, the frontside voltage V; and
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4.2. Conversion and Transport of the Generated Signal Charges

the backside voltage V4, are application-dependent chosen, the space density
of the donors in the bulk p,- is 5+ 10"cm™3, and the space density p, is
9-10%cm3 [96]. Figure 4.2 shows the resulting electric field and electrostatic
potential for a frontside voltage of —15V and two different backside voltages.

For realistic parameters, the electric field vanishes in the n-doped region

at:
B,

24,
In the case of standard operations parameters (V;, = —230V) z, results

in 442 pm. For a different backside voltage setting (Vi, = —420V) 2, reaches
445 pm.

20 =

(4.9)

The drift time ¢4 of an electron at an initial position z; to a final position z¢
is the integral over the inverse drift velocity vy, which depends on the electric
field E(z) and the mobility u(E) [6]:

1 #t 1
td:/z- Ud<z)d2:_Li mdz (4.10)

1

The final position z; is the charge separation depth. At this position,
the charge is confined by the pixelated structure and cannot drift to other
pixels anymore. Figure 4.3 shows the drift time as a function of the initial
position z;. The drift time increases with increasing temperature and decreases
with increasing the absolute value of the backside voltage.

If the mobility was constant, high electric fields and arbitrarily high drift
speeds would be possible. Since this is not physical, there is a maximum drift
velocity called saturation velocity. In the simulation, this is realized by tem-
perature and electric field-dependent mobility. The mobility is implemented
by an empirical model [102], [103], [104]:

1.42 - 1097242

wW(E,T) =
[1 + (E/1.01 - T1.55)2-57~10*2T0466

(4.11)

1/(2.57-10~270-66)

In eq. 4.11, the units of the temperature T is K, of the electric field E is
Vem™!, and the mobility of the electrons y is cm? V=gt

During the drift time (eq. 4.10), the charge cloud expands because of dif-
fusion and repulsion. Drift, diffusion, and electrostatic repulsion are described
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Figure 4.3: Drift time of the charge cloud into the pixel structure as a function of
the depth of the energy deposition for different temperatures. The charge separation
depth is assumed at zy = 433 pm [98].

with the continuity equation[6]:

one
ot
Here, n. is the electron density, p the mobility, E the electric field, and

D, = (kg - T/e) - u the diffusion coefficient. An analytic equation can be found
if either diffusion or electrostatic repulsion is neglected [105]:

=uVn.E + . VE + D.An, (4.12)

e Diffusion: If electrostatic repulsion is neglected, the continuity equation
modifies to
on.

ot

which can be solved by a spherical charge cloud with a Gaussian shape,
which moves with the drift velocity u - E. along the z-axis [105]. The
diffusion does not depend on the number of charge carriers in the charge
cloud. The diffusion into the x-y-plane is perpendicular to the electric
field and, therefore, is free of external forces. The standard deviation of

= uVn.E + D.An, (4.13)
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the Gaussian-shaped charge cloud is given by [105]:

Udiﬂ‘(t) =/ 2De(t + t()) = \/2k:BTT/L(t + to) (414)

Here, t is the drift time, and ¢, takes the charge cloud’s size at the
initial time into account. The projection into the x-y-plane, which is
perpendicular to the electric field and parallel to the pixel structure, is a

two-dimensional Gaussian distribution with the same standard deviation.
[96, 95]

Electrostatic repulsion: In the other case, the diffusion is neglected.
If one integrates the continuity equation in spherical coordinates 6 and
¢ and assuming a zero external electric field, one obtains the following
equation for the charge @ [105]:

oQ(r,t)
ot

L 0Q(r,1) p

or r2 - dmeges;

- Q(tv T)

(4.15)

This partial differential equation can be solved by a sphere with a uniform
charge density of the radius

[Le
4mepes;

R(t) = ¢/3 Nt (4.16)

with IV being the number of electrons in the charge cloud [105]. The
projection n(r, t) into the x-y-plane, which is perpendicular to the electric
field and parallel to the pixel structure, can be calculated by integrating
over the z dimension of the spherical density [96]:

Alr,t) = {MW r < R(t)

21 R3

(4.17)
0, otherwise

It is a disk with sharp edges and an increasing charge density from the
edge to the center. The radius of the charge cloud depends on the number
of electrons in this cloud. The maximum of the charge density is at » = 0
with a value of 3N/(2mw R?). The projected density is half of its maximum
at a radius of 7 = v/3R/2. This relation is used to approximate the
repulsion by a Gaussian distribution, based on the (half) full width at
half maximum (FWHM) and the maximal amplitude. This leads to the
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following sigma of the Gaussian distribution[96]:

Ore t 4.18
() 2\/2111 \/47T€oesl (4.18)

The Gaussian approximation of the overall expansion of the charge cloud o aqjus
is the quadratic addition of the individual effects:

Oradius = \/ Jd1ff + grep (419)

The charge cloud o,,q;0s depends on the electric field, the number of charges
in the cloud, and the drift time.!

The Gaussian approximation of the electrostatic repulsion is valid for
clectrons with higher primary energies (g 100keV) since the dominant effect
on the charge cloud is due to the primary electron’s energy deposition along
the ionization trajectories itself. The energy deposition is spatially very
limited for lower energetic electrons and photons. Therefore, the uncertainty
of the Gaussian approximation is more significant. The deviation from a pure
Gaussian shape is the largest for short drift times and charge clouds with
many charges.

Figure 4.4 shows the cutaway drawing through the center of the charge
cloud for a pure diffusion, a pure repulsion, and the convolution of both
effects. The charge cloud is radially symmetric around the PoE. The Gaussian
approximation overestimates the size of the charge cloud. The kurtosis of the
convolution of the repulsion and diffusion is negative. The normal distribution
has a kurtosis of zero. [106]

The charge cloud’s normalized shape can be interpreted as a probability
distribution for the position of individual electrons that contribute to the
charge cloud. For the simulation of the charge cloud propagation, this fact
is used, and the probability distribution is used to distribute the individual
electrons around the center of mass of the charge cloud.

The charge cloud’s charge distribution cannot be approximated as con-
tinuous distribution for a minimal energy deposition since the charges are
quantized. As a consequence, the simulated result differs from the probability

!The diffusion and the electrostatic repulsion are independent of the assumed mobility
model because the mobility contributes inversely to the drift time.
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Figure 4.4: Shape of the charge cloud as a function of the radius r. The PoE is
at r = 0. The different contributions to the expanded charge cloud are color-coded.
The dashed lines show the Gaussian approximation. For the calculation, a char-
acteristic X-ray photon emitted by copper (E = 8048¢eV [40]) and the parameters
Vo =-230V, V;=—-15V, and T = 253 K are assumed.

distribution, and the charge distribution is no longer point-symmetric.

4.2.5 Pixelation of Signal Charge Clouds

In this step, the charge clouds are collected and binned into the pixel structure
for each event. The collection and binning can mathematically be described as
integral over two spatial dimensions. The signal Sy in the pixel whose center
is located at (x,y) can be calculated with eq. 4.20 [107].

y+Ay/2 z+Ax/2
Su= [ [ elyiaray (4.20)

y—Ay/2 z—Ax/2
Here, Az and Ay are the pixel size in the x- and the y-dimension of the
rectangular pixel, and p(x,y) is the charge density. The integral turns into a

sum over the discrete charges for the discrete charge density obtained from the
drift submodule.
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The PoE of the particles and, therefore, the relative origin of the charge density
with respect to the limits of the pixel structure can be moved over the pixel.
The PoE can either be randomly selected or systematically swept over a two-
dimensional grid. After the binning into the pixels, the deposited charge per
pixel is retransformed in an energy deposit. The conversion factor is typically
the mean energy required to generate an electron-hole pair in silicon. In order
to achieve maximum flexibility with the lowest possible computer effort, no
frames or pattern pile-up events are generated at this point but in a later step.

4.3 Generation of Frames

This step of the conversion module provides the simulated frames. The
affected pixels are obtained from the pixelation step. The input is the particle
rate, the distribution of the particle rate, and spatial distribution of the
PoEs. The spatial distribution can, for example, be related to shapes such
as slanted edges, homogeneous illumination, a single point, or related to a
specific experiment. The distribution of the rate can be constant or Poisson
distributed.

In combination with the spatial distribution and the temporal distribution,
a hit list containing all necessary information of the time and the PoE is
generated and stored. This hit list is used to distribute the events to the
frames. If two or more events contribute to the same pixel in a frame, these
energy depositions are summed up, and a so-called pattern pile-up event is
created. For housekeeping, the shapes and the pixels which contribute to an
event are stored.

For the counting results, the time, the row, and the column of the pixel
which has an energy deposition are stored. Additionally, a different number of
thresholds with different values can be applied. In such a case, not the energy
deposition but the index of the threshold which has been crossed is stored. In
this context, the counting result counts the pixels over the threshold.

4.4 Readout Noise

Additional to the uncertainties obtained from back-scattering or out-scattering
effects and the Fano statistics in this step, an additional noise term can be
added pixel by pixel. With this noise term, readout noise from the signal pro-
cessing can be included in the simulation. This additional noise is Gaussian-
shaped around zero. Its standard deviation can be indicated in units of equiv-
alent noise charges. For the first time, in this step of the simulation process,
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negative values can occur. This can be explained because no offset is simulated
in the simulation. Therefore, the result behaves such as offset corrected data.

4.5 Results for Photons as Primary Particles

In the Monte Carlo simulation for the energy deposition used here, a beam of
monochromatic photons hits a fully sensitive silicon detector with a thickness
of 450 pm. Primary energies over a wide range between 0.5keV and 100 keV
were simulated. For each primary energy, ten million primary photons were
simulated.

Figure 4.5 shows the energy deposition in the silicon for primary energies
of 6keV and 8keV. The x-axis is normalized to the energy of the primary
photon to make the individual spectra comparable.

] —— 6 keV 8 keV signal 5 A
100 — peak [\
3 photo
] escape
102 — peak

103

10"

relative counts

10° —

107 =

! [ ! [ ! [ ! [ ! [ ! [ ! [ ! [ ! [ ! [
0 10 20 30 40 50 60 70 80 90 100
energy in % of primary energy

Figure 4.5: Simulated spectrum of deposited energy in silicon for photons. A beam
of monochromatic photons hits a fully sensitive silicon detector with a thickness of
450 pm. The different colors indicate the primary energies.

The most prominent peak is at the primary energy itself. This peak is
called signal peak in Figure 4.5. Here, the full energy of the primary photon
is deposited in the silicon. The peak is not sharp but is widened by the
ionization statistics described by Fano. The best achievable energy resolution
for a given primary energy can be found in Appendix A.2.2.
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Figure 4.6: Energy distribution of the backscattered particles leaving the silicon.
The different colors indicate the primary energies.

All spectra show the characteristic escape peak at the primary photon energy
minus the energy of the escaping X-ray photon. The escape peak is produced
when an electron of a higher shell relaxes into a created vacancy in the K-shell.
The released energy is most probable in the form of a K, X-ray photon which
is generated and escapes the detector material. The energy of this photon is
1740V in silicon [40].

The other features of the spectrum highlighted with the numbers 1, 2, and
3 can be better understood by looking at the spectrum of the out-scattered
particle leaving the detector volume. Since energy conservation applies,
for each incoming photon, the deposited energy plus the escaping particle’s
energy has to be equal to the primary energy.

For low primary energies!, the ratio of forward-scattered particles leaving the
sensitive detector volume at the frontside can be neglected (Figure A.4 on
page 215), and the energy distribution of the backscattered particles (Figure
4.6) mainly influences the spectrum. The backscattered particles are mainly
electrons. An exception are the silicon characteristic X-ray photons at 1740 eV
which cause the escape peak. The characteristic edges (1,2, and 3 in Figure
4.5) are caused by the energy-dependent cross-section (Figure 2.1 on page 14)

!This energy range increases with the thickness of the sensitive silicon bulk and is for a
thickness of 450 pm in the order of 15keV.
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and are explained by combining several effects:

The first effect is the photoelectric effect. The produced free electron from
the K-shell has the energy of the primary energy minus the K-shell’s binding
energy (1839eV [40]). This electron either escapes the detector without any
additional energy deposition, which produces the edge 1 in Figure 4.6 or
deposits a fraction of its energy. The more energy is deposited, the less likely
it is for the electron to escape the detector. As a consequence, the energy
distribution decreases from the edge towards lower energies.

The vacancy in the K-shell can be filled by emitting a characteristic K, X-ray
photon. This photon has not enough energy to perform a second photoelectric
effect with a K-shell electron, but it has enough energy to perform a less
probable photoelectric effect with an L-shell electron. The energy of the
emitted electron is 1590eV = 1740eV — 150eV [40]. This electron can again
either escape the detector without any additional energy deposition, which
produces the edge 2 in Figure 4.6, deposit a fraction, or all of its energy.
In the spectrum of the energy deposition, the edge is overlaid by the photo
escape peak, but one can see it indirectly by comparing the levels of the valley
at a slightly lower and a slightly higher energy than the escape peak.

The edge at energies close to the primary energy 3 in Figure 4.6 is generated
by the photo escape peak of a characteristic L X-ray photon and an escaping
electron from the L-shell. Its maximal energy is the primary energy minus
the binding energy of the L-shell.

In this Section, a fully sensitive silicon bulk was assumed. Insensitive layers
on the top of the sensitive silicon bulk lead to a deviation between a measured
and the simulated spectrum. For details, see the work of Granato [98]. The
insensitive layers are often called entrance windows. A finite entrance window
smears out the silicon characteristic structures to a flat shelf. The level
of the smearing depends on the properties of the entrance window. How-
ever, this deviation is neglectable since the reconstruction methods presented
in this work’s framework are mainly sensitive to the spatial charge distribution.

With higher primary energies, forward-scattered particles which escape the
detector on the opposite side also play a more significant role. Therefore, the
characteristics of the detector material are superimposed by characteristics
from forward scattering.

Figure 4.7 shows the average number of pixels with an energy deposition by
one primary X-ray photon. Diffusion and repulsion were taken into account.
As expected, from the size of the charge cloud (Figure 4.19), the number
of pixels containing an energy deposition first increases up to approximately
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Figure 4.7: Averaged single event pattern size as a function of the primary energy.
The different colors denote different sizes of the pixel structure. The error bars
indicate the standard deviation over the used event patterns.

10keV and subsequently drops again. Because the dimensions of the charge
clouds are independent of the pixel size, the number of pixels containing an
energy deposition decreases with increasing pixel size.

4.6 Results for Electrons as Primary Particles

In contrast to photons, electrons deposit their energy not point-like but
energy-dependent by producing three-dimensional tracks in the detector
volume. The energy deposition happens along the track. Figure 4.8 and
Figure 4.9 show arbitrarily selected tracks for different primary energies.
Figure 4.8 shows the projection into the x-z plane, and Figure 4.9 the
projection into the x-y plane parallel to the detector surface. The colors in
both Figures refer to the same individual tracks. The shapes of the tracks are
stochastic and created by multiple scattering processes. However, due to the
electron’s initial momentum, the first scattering processes are preferably in a
forward direction. Tracks of electrons with lower primary energies are more
concentrated around the PoE.
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Figure 4.8: Projection of the energy deposition of ten randomly selected primary
electrons into the x-z-plane. The electrons enter the sensitive detector volume at
the origin (0,0,0). The primary momentum is parallel to the z-axis. The different
tracks are color-coded, and the dots’ size indicates the amount of deposited energy
in arbitrary units.
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Figure 4.9: Projection of the energy deposition of ten randomly selected primary
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To get an idea that is independent of the statistics of individual electrons,
one has to average over the behavior of many electrons. Therefore, for every
individual primary particle, the average over the z-coordinate weighted by the
corresponding energy deposition was calculated. The result is one weighted
average for each primary particle. These individual, weighted averages were
binned in a histogram and are shown in Figure 4.10. The histogram can
be interpreted as the probability distribution pflze)p, which can be written as a

function of the projection of the energy deposition Eéz)(z) on the z-coordinate:
(2)

o 1 dEdep (Z)
JEg@(z)d= d2

P (2) (4.21)

E(SZCL(Z) ://Edep(ﬂf,y,z)dydﬂ? (422)

The maximum of péze)p(z) depends on the primary energy. The higher the
primary energy, the further inside the silicon material is the maximum of the
penetration depth. As a consequence, the influence of surface effects and the
detector entrance window becomes less pronounced with increasing energy.
For higher energies, the distribution becomes broader. The energy deposition
is less concentrated to one slice parallel to the detector surface but more
spread out over the depth.

(x)

Figure 4.11 shows the probability distribution pg,

(x) of the lateral energy

deposition. The calculation is similar to the calculation of péze)p(z):
dBS) (x)
() 1 dep ¥

pdep<x) = fE((;;) (2)de du (4.23)

Eé’;;(a:) ://Edep(l’,y, z)dzdy (4.24)

Averaging over many particles, an energy deposition at the same x-position
as the PoE is most probable. However, this is not valid for individual parti-
cles. The probability distribution indirectly includes the particle density. The
particle density decreases radially around the PoE. Even if the largest energy
deposition is far from the PoE for individual particles, a high average energy
deposition occurs at the PoE, caused by the summation of all particles.

The higher the primary energy, the less concentrated is the energy deposition
around the PoE.

Because of the rotation invariance along the z-axis, p(Y)

dop(y) is the same as
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Figure 4.10: Relative energy deposition as a function of the depth z for various
energies of the primary electrons.

pggp(a:). To use this symmetry, instead of the coordinates x and y, the radius

r is used to describe the lateral component. The PoE is at » = 0. The radius
r is calculated as the two-dimensional Euclidean distance:

=22+ y? (4.25)

Figure 4.12 shows the range of the primary electrons and secondary
particles in the detector volume as a function of the primary electron’s energy.
The orange curves correspond to the depth z parallel to the electron’s primary
momentum, and the blue curves to the radius on a plane parallel to the
detector surface.

First, for every individual particle, the maximal depth, respectively, the
maximal radius of the energy depositions is determined. It does not matter
how large this energy deposition is. The continuous line shows the averaged
ranges over all individual particles.

Second, for every individual particle, the average of the positions of the
deposited energy weighted with the energy deposition is determined. The
dashed lines show the depth, respectively, the radius of the mean of these
weighted averages over all particles.

For all primary energies, the position of the mean energy deposition is closer
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Figure 4.11: Relative energy deposition as a function of the lateral coordinate x
for various energies of the primary electrons.

to the PoE as the maximal range. The lateral range and the penetration
depth are similar and increase with the primary energy. The mean range in
three dimensions is on a hemisphere with the PoE in the center. The radius
of the hemisphere is the same as the lateral range and the penetration depth.
Since the electrons do not form straight tracks but trajectories dominated
by multiple scattering, this hemisphere’s radius is always smaller or at most
equal to the trajectory lengths. The trajectory length as a function of the
primary energy can be found in Figure 2.10 on page 27.

The mean depth over the weighted energy depositions is larger than the lateral
mean for all primary energies. This is a result of the fact that a particle that
deposits a part of its energy laterally far away from the PoE has to scatter
several times.! During these scattering processes, it loses parts of its energy.
As a consequence, the remaining energy of the particle is smaller than the
remaining energy of a particle that travels the same length but parallel to the
z-axis.

Figure 4.13 shows the spectrum of the deposited energy in a silicon
detector with a thickness of 450 pm. A fully sensitive volume is assumed. A

1Small scattering angles are more likely than larger angles [108].
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Figure 4.12: Lateral range (blue) and depth (orange) as a function of the energy of
the primary electron. The solid line describes the average range of the primary and
secondary particles. The dashed lines describe the averaged position of the energy
deposition.

finite entrance window leads to a small deviation between a measured and the
simulated spectrum. The entrance window can be considered as a thin layer.
The energy loss of an electron passing through a thin layer can be described
by the Landau distribution (Appendix A.4). The energy loss leads to an
asymmetric broadening of the signal peak. The tail to lower energies is larger
than the tail to higher energies. However, this deviation can be neglected
since the reconstruction methods presented in this work’s framework are
mainly sensitive to the spatial energy distribution and not the amount of total
energy deposited. A detailed study of the spectrum’s features can be found in
[69].

The dominant peak in Figure 4.13 of all spectra is at 100 %, corresponding
to full energy deposition. The width of the peak is mainly caused by Fano
statistics.

Additionally, all spectra show the characteristic escape peak at the primary
electron’s energy minus the energy of the escaping X-ray photon. The escape
peak is produced when an electron of a higher electron shell occupies a created
vacancy in the K-shell. The released energy is most probable in the form of a
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Figure 4.13: Simulated spectrum of deposited energy in silicon for primary elec-
trons. A beam of mono-energetic electrons hits a fully sensitive silicon detector with
a thickness of 450 pym. The different colors indicate the primary energies.

K, X-ray photon which is generated and escapes the detector material. The
energy of this photon is 1.74keV [40].

The broad distribution with a lower energy than the primary energy is caused
by electrons scattered out of the detector material. The electrons deposit only
a fraction of their primary energy and leave the sensitive detector volume.
Figure 4.14 shows the energy distribution of the backscattered particles. The
sharp lines are caused by the photon escape peaks. The shape of the broad
distribution is given by two effects [69]:

First, small scattering angles are more probable than large ones due to the
differential cross-section [108]. Therefore, the probability of being backscat-
tered increases with the number of scattering processes. The primary particle
loses a fraction of its energy during each scattering process. As a consequence,
the probability of being backscattered increases with decreasing energy of
the escaping particle. Because the distribution of scattering angles is more
narrow for higher primary energies [108], the effect is more dominant for
higher primary energies.

Second, the probability of escaping the detector volume at the backside
decreases with the increasing detector depth the primary electron reaches. On
average, the lower the particle’s remaining energy, the longer the previously
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traveled distance and, therefore, the penetration depth. As a consequence, for
low remaining energies, it becomes less probable to escape the detector, and
the probability distribution decreases to lower energies of the backscattered
particle.

The amount of forward-scattered particles depends on the thickness of the
used detector. For a detector thickness of 450 pm, forward-scattering becomes
relevant for primary energies above around 350keV. A detailed study of the
fraction of back- and forward-scattered particles can be found in Appendix
A.2.3.

In addition to the broadening of the backscattered electron spectrum, also
the spectrum of forward-scattered particles is broadened. This is due to the
fact that the forward-scattered particles deposit a fraction of their energy in
the detector volume and then leave the detector. Because the probability
for forward-scattered particles increases with higher primary energies, the
broad distribution is more pronounced for higher primary energies. For higher
energies, the tail’s left position moves to lower relative energies as the relative
energy of the forward-scattered particles increases (Figure 4.13). The higher
the primary energy or the thinner the detector volume, the higher is the
probability of only a small relative energy loss.
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Figure 4.14: Energy distribution of the backscattered particles leaving the silicon.
The different colors indicate the primary energies.
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Figure 4.15 shows the averaged number of pixels with an energy deposition
by one primary electron. Diffusion and repulsion were taken into account. As
expected from the lateral range (Figure 4.12), the number of pixels containing
an energy deposition increases with higher primary energies. Because the size
of the tracks is independent of the pixel size, the number of pixels containing
an energy deposition decreases with increasing pixel size.

The comparison between the measured and simulated data is performed
not frame-based but event-based. Instead of looking at individual frames, the
comparison is focused on investigating extracted event patterns. The event-
based comparison focuses on the event patterns’ size, shape, and structure
since these properties are relevant for the training process of the neural net-
works in this thesis’s framework and their evaluation. Table 4.1 shows the
average single event pattern size obtained from the conventional event anal-
ysis with a primary threshold of 50 and a secondary threshold of 20 of the
pixel-wise noise for various primary energies (Appendix B.1). Using only one
threshold of 20 would lead to too many noise events not associated with a
signal generated by a primary particle. Using 50 determines correct events,
and a subsequent lower secondary threshold avoids detecting false events and
characterizes correct events better.

The uncertainties describe the variation of the pattern size within the data
sets caused by the statistical behavior of the electron tracks. The measured
data are referenced in Appendix D.2 and offset and gain corrected.

Table 4.1: Average single event pattern size obtained from the conventional event
analysis for various primary energies. The ENC is determined by the measured data
and used for the simulation. Due to different detector settings, the ENC varies for
different primary energies. The data reference is shown in Table D.3.

primary energy simulation measurement ENC per pixel

keV pixel pixel e~
20 23+1.0 2.1+0.7 14
40 26+1.2 2.8 +1.2 14
60 3.4+1.0 3.7+0.9 19
80 3.8+ 0.7 4.2+0.8 19
120 4.6 +£1.2 4.8+1.2 19
200 73+19 75+21 30
300 11.4+3.2 11.4+3.1 44

Figure 4.16 shows the multiplicity for electrons with a primary energy of
300keV and a quadratic pixel size of 48 x 48 pm?. The multiplicity (m) mea-
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Figure 4.15: Averaged single event pattern size as a function of the primary energy.
The different colors denote different sizes of the pixel structure. The error bars
indicate the standard deviation over the used event patterns.

sures for how many pixels the energy deposition is above a certain threshold
on average [109] and is related to the event pattern size for single events where
only one primary particle contributes to the energy deposition. In the case of
the event pattern analysis described in Appendix B.1, the secondary threshold
would correspond to the above-described threshold.

The multiplicity can be calculated as the ratio of pixels above the threshold
(triggered pixel) Ny and the incident particles Nipye.

) = N T TR T2 (4.26)

The number of triggered pixels Ni;g is the sum of the particles weighted with
the event pattern size. p; denotes the probability that a primary particle
triggers ¢ pixels. In Figure 4.16, the blue distribution shows the relative
amount of single event patterns for one incident particle. The orange curve
shows the distribution of the relative amount of double event patterns for
one incident particle times two. The other colored distributions show the
probability for one incident particle with an accordingly higher number of
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hits times the number of hits. The averaged multiplicity is the envelope of
the individual distributions.

The higher energy limit of the individual distributions has to be smaller
than the total primary energy divided by the number of hit pixels because
the sum of the energy depositions of all hit pixels has to be the total primary
energy. The multiplicity diverges for low thresholds in the order of the detector
system’s intrinsic noise since the number of pixels triggered but only containing
noise and no primary particle’s energy deposition becomes larger.
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Figure 4.16: Multiplicity for electrons with a primary energy of 300keV and a
pixel size of 48 x 48 pm?. The colored distributions show the contribution of the
different amounts of triggered pixels per incident electron to the multiplicity.

4.7 Numerically Generated Data Set For Photons

According to the scattering cross-section (Figure 2.1 on page 14), the energy
deposition for lower energies mainly is caused by the photoelectric effect. This
process transfers the complete energy of the photon to an electron. For low en-
ergies, the range of this generated free electron is, according to the integrated
Bethe-Bloch equation (Figure. 2.10 on page 27), short in comparison to the
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size of the generated charge cloud due to repulsion and diffusion (Section 4.2.4).
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Figure 4.17: Penetration depth of photons as a function of the primary energy. The
primary photons penetrate the detector perpendicular to the surface. The thickness
of the sensitive silicon bulk is 450 pm. Points indicate the results obtained from
the Monte Carlo simulations. The lines and the dashed lines show the theoretical
result obtained from the total cross-section, respectively, the cross-section of the
photoelectric effect, which dominates the total cross-section for the low energy range.
The colors indicate different analytical methods.

Without scattering and with a full energy deposition localized at one
point, the depth of the primary photon’s absorption is the penetration depth.
The depth and the mean amount of the energy deposition can be described
by the Lambert-Beer law (Section 2.1.2). Figure 4.17 shows the depth of
conversion as a function of the energy of the primary photon.

The blue curve shows the behavior for an infinite thick detector volume.
The median of the penetration depth can be expressed by the half-value thick-
ness 01 /s:

In (2)
12 =
)

The half-value thickness describes the thickness where only half of the inten-
sity remains. The attenuation coefficient p(E) decreases with the photon’s

(4.27)
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energy E and is linearly related to the cross-section (eq. 2.13 on page 20).
The increase of the depth of absorption around 1.8keV is related to the
K-edge of silicon.

The other curves in Figure 4.17 show the behavior for a detector’s finite
thickness of 450 um. The finite analyses of the depth of absorption handle
either all photons (also those which are not absorbed and traverse the silicon
bulk) or only the photons absorbed in the silicon bulk.

e The median of the penetration depth for all photons dal (orange line in
Figure 4.17) in a silicon bulk of the thickness d is composed of two parts:

- ) b0 < d
ar =14 P 2= (4.28)
d else

The median of the penetration depth for all photons du describes the
depth after which only half of all primary photons remain. At a depth
of 450 pm, which is in our case the thickness of the sensitive silicon bulk,
the slope of the penetration depth’s median shows a discontinuity with
a pronounced kink following a saturation.

e The median of the penetration depth dapsorbed (green line in Figure 4.17),
which takes only the photons into account which are absorbed in the
silicon bulk, can be calculated as follows:

2
- In <—1+exp(—_u(E)d)>

5absorbed -
n(E)

(4.29)

Oabsorbed CAIl pe calculated as the half-value thickness of the modified
distribution N(z), which can be derived from eq. 2.14 on page 20:

efﬂ(E)Z — 67/"‘(E)d
NG ={ 1= emma ~ *=P (4.30)

0 else

A

Like N(z) in eq. 2.14 on page 20, N(z) expresses the ratio of remaining
photons after a certain depth but takes only the photons absorbed in
the silicon as reference. The photons’ probability of escaping the silicon
bulk through the backside is very low for low energies. Therefore,
Sabsorbed can be approximated by 5311 for primary energies below 10keV.
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74

As the primary energy increases, this approximation is no longer valid,
and the ratio of photons that pass through the silicon bulk increases. For
higher energies, u(E) becomes smaller, and N(z) can be approximated
over the silicon bulk’s thickness as a constant. Therefore, Sabsorbed
converges to D /2.

The mean penetration depth of all photons .y (red line in Figure 4.17)
in a silicon bulk of the thickness d is the expectation value of the distri-
bution, which describes the probability for a photon being absorbed at
a certain depth:

d 0o
- 1 dN dN
5all :<Z> = /52d2+d/5d2
f%dz 0 d
0
P T AN (4.31)
=— [Nz —/Ndz—l—d/—dz
0 dz
0 d
1 — e(_ud)
o

The Lambert-Beer law’s derivative describes the probability distribution
of a photon being absorbed in a certain depth. In eq. 4.31, the prefactor
of the integral normalizes the integral of the probability distribution to
one and is minus one.

The first integral in the squared bracket treats the expected value of
the penetration for primary particles absorbed in the silicon bulk. The
integral can be solved by an integration by parts.

The maximum penetration depth of primary particles is the thickness
of the silicon bulk. The second integral in the squared bracket describes
the contribution to the mean penetration depth of the particles which
traverse the silicon bulk. For primary energies below approximately
14keV, the mean of the penetration depth (red line in Figure 4.17) is
larger than the median (orange line in Figure 4.17). The distribution
of the penetration depth is skewed to larger values for low primary
energies. For higher primary energies, the second integral in the squared
bracket becomes more and more dominant, and therefore, the mean
approaches asymptotically to d.

e The mean penetration depth Sapsorbed (purple line in Figure 4.17), which
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takes only the photons that are absorbed in the silicon bulk into account,
can be calculated with a similar approach to eq. 4.31:

_ 1 [dN
5absorbed = <Z> = = /52(?12
f %dz 0
0
d dN d
1 . qd
_ /—zdz _— Nz‘ —/Ndz (4.32)
jng dz 0
—-—az o0 0
0

Eq. 4.32 calculates the expected value of the modified distribution
N (eq. 4.30). For low primary energies, the mean is larger than the
median. Again, dapsorbed Can be approximated by &, below 10 keV.

For higher energies, u(E) becomes smaller, and N(z) can be approxi-
mated over the thickness of the silicon bulk as a constant. The mean
of the absorption converges for higher primary energies to d/2. For the
numerically generated data set, a conversion depth calculated by eq.
4.32 is used.

An approximation of the mean deposited energy for many photons (Figure
4.18) can be calculated by multiplying the equation for the relative amount
of absorption (eq. 2.15 on page 20) with the mean transferred energy per
interaction. The ratio between the transferred energy and the photon’s
primary energy is one for the photoelectric effect. Eq. 2.11 on page 18 ap-
proximates the mean energy transfer of the Compton scattering process. The
photoelectric and Compton effects are both dominant effects for the energy
transfer in the selected energy range. Other energy transfer mechanisms are
neglected in this approximation.

In Figure 4.18, the sum of the mean transferred energy by the photoelectric
effect and the Compton effect is indicated as total energy transfer. For higher
primary energies (g 35keV), the Compton process’s contribution to the total
energy transfer results in a slightly higher total energy transfer than the pure
contribution of the photoelectric effect. This contribution increases with the
primary energy.

For low primary energies, the energy transfer is linear with energy because the
probability of a photon being not absorbed in the silicon bulk is very small.
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The maximum of the deposited energy is around a primary energy of 14 keV.
For higher energies, the ratio of photons that are not absorbed becomes larger,
and, therefore, the mean deposited energy becomes smaller. However, individ-
ual photons either deposit their total energy due to the photoelectric effect or
pass the silicon bulk without an energy deposition. A detailed study of the ra-
tio of the photons which are forward-scattered can be found in Appendix A.2.3.
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Figure 4.18: Mean deposited energy for photons with a low primary energy in a
silicon bulk with a thickness of 450 pm.

Since for primary energies below 35keV, the Compton effect’s energy
deposition can be neglected, and since the photoelectric process transfers the
total energy of the primary photon, the deposited energy can be approximated
as a constant.! In this model, the charge cloud arriving at the pixel structure
looks similar for all events and is independent of the energy deposition
mechanism but only depends on the drift process, the primary energy, the
depth of the energy deposition, the backside voltage of the detector, and the
temperature. The required drift time is calculated from the mean penetration
depth dapsorbea (€q. 4.32).

1Other effects such as those introduced by the entrance window or the photo escape peaks
are neglected in this model.
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Figure 4.19: Size of the charge cloud as a function of the primary photon’s energy.
The colors indicate the different effects. The green curves labeled with ” combined”
result from the convolution of the individual effects. The FWHM for repulsion is
due to its definition the same for the actual shape and the Gaussian approximation.
The parameters V;, = =230V, V; = —15V, and T = 253 K are assumed.

Figure 4.19 shows the average size of the charge cloud as a function of the
primary photon’s energy. The combined size results from the convolution of
diffusion and repulsion. The combined charge cloud size becomes larger for
higher primary energies.

The charge cloud size decreases due to diffusion with higher primary energies.
The average depth of the energy deposition is deeper for higher energies.
As a consequence, the drift time into the pixel structure decreases and,
therefore, the spread of the charge cloud due to diffusion. For higher primary
energies, the penetration depth becomes independent of the primary energy
in this model’s scope. The spread of the charge cloud becomes constant due
to diffusion. The small kink at an energy around 1.8keV results from the
K-edge of silicon. At this energy, the cross-section increases, and the mean
penetration depth decreases.

The effect of repulsion increases with the primary energy because the increas-
ing number of electrons in the charge cloud dominates over the decreasing
drift time.
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The numeric generation of the data set for photons uses the projection of
the initial position of the energy deposition parallel to the detector surface,
the drift time, and the number of electrons in the charge cloud as parameters.
The systematic generation of the data set contains the following steps if the
Gaussian approximation for repulsion is not applied:

e Calculation of the charge density as a function of the radius:
The first step is to calculate the charge density as a function in the polar
coordinates domain. It is radially symmetric and, therefore, independent
of the polar angle. The polar coordinate system’s origin is the projected
initial position of the energy deposition onto a plane parallel to the de-
tector surface.

The charge density is calculated by a numerical convolution of the Gaus-
sian-shaped diffusion and the distribution of the repulsion, which are
both described in Section 4.2.4. The spacing of the r-coordinate is 0.1 pm.

e Coordinate transformation from polar coordinates to Cartesian
coordinates: In this step, the charge density, which is calculated on a
polar coordinate grid, is converted to a Cartesian grid via interpolation.
The result is the charge density on a Cartesian grid as a function of the
x- and the y-coordinate. The spacing of the grid is 0.1 pm for the x- and
the y-coordinate.

e Varying the charge cloud over the pixel structure: The charge
density is positioned relative to the grid to simulate results for different
PoEs relative to the pixel structure. The result is a list of charge clouds
in the Cartesian domain and their corresponding position of the PoE.

e Pixelation: In this step, the actual amount of charge carriers in the
pixels is calculated. Therefore, the fine grid is down-sampled to a coarser
grid by local averaging [110]. The coarser grid is chosen in a way that it
represents the pixel structure. The coarser grid’s spacing is the pixel size
in each dimension, and the number of grid points is seven times seven.
Mathematically this procedure is described with eq. 4.20. A seven times
seven pattern is large enough that all non-neglectable amounts of charges
are represented.! The PoE is scanned across the central pixel of the
seven times seven pixel array with a spacing of the fine grid (0.1 pm).
The result is a list of seven times seven patterns and their corresponding
PoEs. Optionally, random noise can be added to each pixel.

IThe Gaussian distribution is never zero but for the range of the used parameters outside
the seven times seven pattern smaller than one percent of the total charge and, therefore,
neglectable.
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4.8. Summary

The created data are used to generate the correction map to the center of
gravity method in Appendix B.2 and to train the neural network in Chapter 7.
To calculate the correction map for the center of gravity method, it is, due to
symmetry, sufficient to push the charge cloud over the pixel structure in only
one dimension.

4.8 Summary

The distribution of the signal in the individual pixels strongly depends on the
primary radiation’s type and energy.

For photons, the energy deposition in the detector volume is very con-
centrated. The charge cloud’s projection to a plane parallel to the detector
surface can be approximated as radially symmetric. The charge cloud’s size
slightly depends on the primary photon’s energy but is mainly influenced by
detector parameters such as the backside voltage or the temperature. The
signal distribution is dominated by the repulsion and diffusion of the electrons
in the charge cloud and is, therefore, deterministic.

Electrons deposit their energy along tracks. The shape of the tracks is
caused by multiple scattering processes and, therefore, stochastic. The length
of the tracks increases with the primary energy and, therefore, the charge
distribution’s size strongly increases with the primary energy. Especially for
higher primary energies, the electrons’ repulsion and diffusion in the charge
distribution play a subordinate role. The signal distribution is dominated by
the energy loss of the primary particle and is therefore stochastic.
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Chapter 5

Classical Data Analysis Methods

This Chapter introduces the classical data analysis methods to reconstruct
the PoE of primary particles. A detailed description of the classical analysis
methods and the state-of-the-art algorithms to determine the PoE of primary
particles can be found in Appendix B. The used methods are defined in
Appendix B.1.4. A good understanding of these classical methods is necessary
to understand, on the one hand, the physics and the mechanisms behind the
data reconstruction and, on the other hand, provide the benchmark for this
thesis’s framework introducing neural networks.

All introduced classical analysis methods have in common that they
need, as in the previous step, an event pattern analysis (Appendix B.1) and
cannot handle pile-up events. This has the consequence that, in contrast to
the methods based on neural networks, the conventional methods are only
applicable for low particle rates. As a criterion for a single event or pile-up
event, the simple summation of the energy depositions can be used.

The center of gravity method (with corrections) (Appendix B.1.4) performs
best for photons and electrons with low primary energies, whereas the furthest
away method (Appendix B.1.4) leads to the best results for electrons with
higher primary energies and strong directional behavior of the track. The
achievable resolution depends on the noise of the detector system as well as
the type and energy of the primary particle. A mathematical derivation and
calculation of the systematical error made by the center of gravity method
can be found in Appendix B.2.

Figure 5.1 shows the normalized hit-map and the resolution map over one

pixel for simulated photons. Due to the presence of noise, the normalized
hit-map (Figure 5.1a) shows a slightly lower probability of a central hit for
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the x- and the y-dimension and a slightly higher probability near the axes.
This inhomogeneity can be explained by looking at the distributions for
the individual PoEs in Figure B.13 on page 252. The contribution of PoEs
near the axes shows an asymmetric spatial distribution. This leads to an
inhomogeneous distribution. The resolution map (Figure 5.1b) is defined as
the averaged distance between the true PoE and the reconstructed PoE and
shows a worse resolution in the center of the pixel, as expected from the
theoretical description (Appendix B.3 and Appendix B.2.4).

The inhomogeneity can be corrected with the method described in Appendix
B.2.3. The result is a homogeneous image (Figure 5.1c). However, the spatial
precision worsens by applying this second correction since the reconstructed
center of gravity method (with corrections) already describes the best guess
of the true PoE (Figure 5.1d).

Figure 5.2 shows the Euclidean distance between the reconstructed PoE
and the true PoE for electrons. All methods have in common that they do
not consider the statistical energy deposition behavior of charged particles
in the detector volume. The center of gravity method (with corrections)
(Appendix B.1.4) performs best for electrons with low primary energies. The
furthest away method (Appendix B.1.4) leads to the best results for higher
primary energies. For the furthest away method, the large difference between
the mean and the median can be explained by the shape of the Euclidean
distance’s distribution: An average that is larger than the median suggests a
right-skewed distribution. The median is more robust against outliers than
the mean. [111] Due to the furthest away method algorithm it is more likely
that an error in the reconstruction is larger than an average error made
by the other reconstruction methods. For the furthest away method, the
reconstructed PoE is always at a border of the event pattern, whereas for the
other methods, the reconstructed PoE is, in most cases, more central. Under
the assumption that the true PoE is in the event pattern, for a made error,
the Euclidean distance between the reconstructed PoE and the true PoE can
be larger for the furthest away method.

However, the probability of making such an error is relatively low, and,
therefore, the median of the distance between the reconstructed PoE and the
true PoE is small.

The classical reconstruction of a PoE requires, in general, a preceding event

pattern analysis. This event pattern analysis usually represents the bottleneck
of performance and, thus, limits the speed of reconstruction.
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Figure 5.1: Normalized hit-map and resolution map for the center of gravity with
corrections obtained from a simulated homogeneous illumination with around two
million simulated primary particles. The physical pixel size is 48 x 48 pm? with (0,0)
in the center of the pixel, and the energy of the primary photons is 8048 eV. A non-
correlated Gaussian distributed pixel-wise noise with a mean of 11.3eV is assumed.
These are the same parameters as for the presented measurement in Section 10.1.2.
The hit-map’s color scale is unitless due to the normalization, and the color scale’s
unit of the resolution map is pm.
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Figure 5.2: Euclidean distance between the reconstructed PoE and the true PoE
as a function of the primary energy of the electron. The mean, the median, and the
25% and 75% quantile are shown. The simulated pixel size is 48 x 48 pm?.
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Chapter 6

Artificial Neural Networks

The following Chapter introduces the main terms and components of artificial
neural networks used in this thesis and briefly explains the operating principle
behind them. In literature, the principle and structure of machine learning
and especially artificial neural networks are described in detail [112, 113, 26].
Artificial neural networks are named neural networks in the following. Neural
networks are common tools to approximate an unknown complex function
by investigating the structure of large amounts of data. The optimization
process of the parameters which approximate this complex function is called
training. [114]

In contrast to the parameters optimized during the training process, there
are also parameters called hyper-parameters. The hyper-parameters define
the structure and properties of the neural network. These hyper-parameters
are defined before the neural network’s actual training and optimization
process. Their choice is crucial for a functional neural network. [112]

All neural networks in this thesis are implemented using Keras [115] with
the TensorFlow backend [116].

6.1 Introduction

Approaches based on artificial intelligence (AI) have been established in many
fields in recent years and especially show their potential in complex problems
with large amounts of data [114]. Famous examples are voice assistants [15],
autonomous driving [20], or image recognition [117]. Al refers to the ability of
a machine to mimic the skills of the human brain. For example, the imitation
can be done by learning from examples, understanding and responding, and
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making decisions to solve problems [118].

Machine learning is a part of Al and describes the ability to learn and
adapt a model based on data instead of explicitly defining and programming
the solution to a problem. Neural networks are a special kind of machine

learning. [119]
Data [ Classical
. Answers
Rules — Programming

(a)

{ Unsupervised
L : Answers
earning
(b)
Supervised Trained A
Learning Model (Rules) nswers

Data

Data

Training Data
Answers

(c)

Figure 6.1: Conceptual approach of machine learning. As a comparison, the con-
cept of classical programming is shown in (a). (b) shows the concept behind unsu-
pervised learning and (c) the concept behind supervised learning. The goal of all
approaches is to find the desired answer for the data. The learning data are data
with the same properties and features such as the data to be analyzed and help the
algorithm learn the desired task.

6.1.1 Types of Machine Learning Algorithms
Machine learning algorithms can be divided into three types.
First, unsupervised learning, where the algorithm runs on an unlabeled

data set. Unlabeled data sets are data sets in which samples are not tagged
with labels. Those labels can be characteristics, properties, or classifications.
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L Environment }

State Reward Action
[ Policy j

|

| Agent }

Figure 6.2: Conceptual approach of reinforcement learning. The required parts
are an environment and an agent which interact with each other. The environment
gives a state to the agent. The agent acts with an action and gets a reward for this
action and the new state. The goal for the agent is to maximize the reward. The
rules for the actions are given by the policy.

Understanding an affiliation or a sorting behind the data is the goal of
unsupervised learning. The algorithm progressively predicts patterns in the
data and organizes and clusters them accordingly. The number of clusters
can either be predefined or predicted by the model itself. Figure 6.1b shows
the conceptual approach. For better comparison, the concept of classical
programming is shown in Figure 6.1a. The algorithm based on unsupervised
learning can be directly applied to the data and discover the structure behind
the data during the clusterization. [114]

The second type is supervised learning. Here, an algorithm tries to
find a complex hypothesis that makes accurate predictions. A hypothesis
is a mapping that assigns an assumed output value to each input value.
The difference between unsupervised learning and supervised learning is
the algorithm’s optimization process called training. The concept is shown
in Figure 6.1c. The algorithm learns on samples and their corresponding
pre-defined answers to the hypothesis during the training. The samples and
their corresponding pre-defined answers are called labeled data sets. The
algorithm gradually learns to predict the correct answer to a sample. The
learning process results can be compared with the known, correct answers,
i.e., "supervised”. After finishing the training, the algorithm is able to predict
answers of unlabeled data sets whose content is similar to the labeled data
sets. [114]

The third type is reinforcement learning. Reinforcement learning

conceptually differs from unsupervised and supervised learning because the
algorithm is not trained with sample data. The concept of reinforcement
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learning is shown in Figure 6.2. An algorithm (agent) takes an action in an
environment to maximize a reward. The environment can be abstract or a
physical world. The agent learns by trying different actions (trial and error).
The goal of the agent is to perform a sequence of actions to solve the task.
The reward can be designed to be short-term or long-term. Short-term means
the reward appears quickly after the action. A long-term reward appears
some steps delayed. The agent tries to find a balance between exploration
and exploitation of the current knowledge. The knowledge is stored in the
policy, which recommends a particular action for a given state. [114]

An example for reinforcement learning is balancing an inverted pendulum by
a cart [120].

The frameworks presented in this thesis use supervised learning since the
goal is to predict the point of entry of the primary particles for new data
while knowing upfront the type of results to expect. The data set for the
training process was generated with Monte Carlo methods.

6.1.2 Types of Neural Networks for Image Analysis

Another way to classify neural networks refers to the task they perform. In
the context of this thesis, models in the area of image analysis are used. These
are typically divided into three classes. An example of these three classes is
shown in Figure 6.3.

Classification Object detection Segmentation

marmot marmot, rock marmot, rock,
grass

Figure 6.3: Types of image analysis. The first type is classification, the second
type is object detection, and the third type is segmentation. The labels are shown
under the images.

The first class is classification. Here, each image contains only one object
which shall be classified. The output of such a neural network is the class of
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the object. The neural network neither makes a prediction concerning the
object’s location in the image nor any other objects’ prediction within the
image. [121]

The second class is object detection, which is sometimes called tracking
in the literature. Here, the model predicts the class of the object and the
position in the image. Normally, this position is predicted by a rectangular
box. Tracking models can predict the classes and positions of multiple objects
per image. [122]

The last category is segmentation. In image segmentation, every pixel
of the image is labeled with a class. Segmentation models predict not only
the class and the position of an object, but also the shape in pixel precise
resolution. [123]

In the context of this work, the concept of segmentation is adapted to
predict the point of entry of the incoming particle on pixel and subpixel, re-
spectively.

6.2 Neurons

In this Section, the basic elements of a neural network are introduced. These
basic elements are called neurons [119]. A neuron has one or more inputs and
one output. Exemplary, Figure 6.4 shows a neuron with n inputs. Between

O,
f (b + Xn: wk$k)

k=1

Figure 6.4: Schematic of a neuron with n input nodes 1 to x, with weights wy to
Wy, bias b, and an activation function f.

the input and the output, three mathematical steps are performed [124, 125]:

e Each input is multiplied by a weight wy. This weight can be a positive
or a negative real number. The letter k describes the index of the input
to the neuron.

Tk — Tk * Wk (61)
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e The next step is to sum up all weighted inputs and, optionally, add a

bias b.
b+ Z T Wy (6.2)
k

e In the last step, this sum is used as an argument for the function f,
which is called activation function. In general, the activation function
can be arbitrary. A detailed introduction to commonly used activation
functions can be found in Section 6.4.

y=1r <b + Z wkwk) (6.3)

The output y of the neuron is called activation.

6.3 Topology of a Neural Network

A neural network is a combination of connected neurons. These neurons are
organized in layers. Every neural network has at least two layers. These are
called input layer and output layer. Between the input layer and the output
layer, there can be a varying number of so-called hidden layers. Figure 6.5
shows an example neural network with one hidden layer and no additional
bias. [113]

Input Hidden Output
layer layer 1 layer

Figure 6.5: Architecture of a simple neural network with three input nodes, one
hidden layer with four nodes, and two output nodes. For simplicity, the bias is zero.

Mathematically, the activation x} of the j*" neuron in the i*" layer can be
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described in the more general form of eq. 6.3 as [113]:

:1:; =f (b; + Zw}kx{f) (6.4)
k

In this notation, b} is the bias of the j'" neuron in the i*" layer and w;k is the
weight from the k' neuron in the (i — 1) layer to the j'' neuron in the ih
layer.

The weights of one layer could also be represented by a matrix. In this notation,
the neurons’ bias and activation in one layer are vectors. Then the activation
function f acts element-wise on each entry element of the vector. This leads
to a description in a vectorized form of eq. 6.4 [113]:

T = f (b +wa) = f(2) (6.5)

Here, w' is a matrix. The number of columns is the number of neurons in the
(i — 1™ layer and the number of rows is the number of neurons in the i,
The argument z' is called weighted input to the neurons of the layer i.

Neuronal networks are generally named according to the type and amount
of hidden layers. Solving a problem with a neural network with multiple
hidden layers is called deep learning [126]. There is no definite answer at
which number of hidden layers a neural network is considered as deep [127,
128]. The output of a hidden layer is increasingly abstract with increasing
deepness of the position in the network. In the standard case, neurons in one
layer are only connected with neurons in the previous and the next layer.
An exception are the so-called residual neural networks, which have skip
connections or shortcuts to jump over a layer or several layers [129]. In this
thesis, skip connections are used in Section 9.1.1.

If all neurons in one layer are connected with all neurons in the previous layer,
the layer is called fully-connected. Fully-connected layers are also referred to
as dense layers in literature [130].

One physical representation of a neural network relevant for this thesis is a
neural network in which each neuron of the input layer represents one pixel of a
frame or the detector. However, the output of neurons of the hidden layers can
be very abstract and not necessarily have an obvious physical meaning. The
output of the last layer again has a physical meaning. This meaning depends
on the network’s task and can describe, for example, a hit-map, a frame with
higher resolution as the input, the x- and y-coordinate of a point of entry, or
a binned energy spectrum.
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6.4 Activation Function

The activation function calculates each neuron’s activation and usually takes
only the neuron’s weighted input as an argument. It is common for the output
layer to also use the other neurons’ output of the layer as input to enable the
normalization of the predicted result. The activation function can be defined
individually for each neural network layer. In most cases, the activation
functions are the same for the input layer and the hidden layers. Typically,
the activation function of the output layer is different. In general, activation
functions can be divided into binary, linear, and nonlinear activation functions.

The binary activation function activates the neuron if the weighted input
is above a threshold; otherwise, the neuron is inactive. Instead of continuous
values, binary activation functions allow only two discrete values at the
output. The neuron is either active (1) or inactive (0). This behavior has a
low flexibility.

The simplest possible linear activation function is the identity function.
However, using only identities as activation functions leads to a collapse of
the hidden layer. In this case, the input of the output layer is always a linear
function of the input. This is because a linear combination of linear functions
is still a linear function. A network simply transforms into a linear regression
model that is not able to predict more complex problems. In addition, linear
functions cannot be optimized with backpropagation (Section 6.6.3) because
the derivative is a constant and independent of the input of the neuron. It is
not possible to retrieve the inputs and understand their influence. [131]

State-of-the-art neural networks use nonlinear activation functions. They
allow to create complex relations between the input and the output of the
neural network and allow to stack together multiple layers to a deep neural
network. This is necessary to learn and predict advanced problems. In
principle, every function can be used as an activation function. However,
the choice of the activation function of the last layer should be problem-
related. Especially, the co-domain of the activation function of the output layer
should be problem-related. For example, if the output represents a probability,
the co-domain of the activation function should be between zero and one. [131]

Commonly used functions are shown in Table 6.1. For Leaky ReLU, the
typical value for a, which describes the slope for negative weighted inputs, is
0.3. For ReLU, « is zero. For the SoftMax activation, the sum in the de-
nominator sums over all output layer neurons. The sum ensures normalization

92



6.4. Activation Function

F "z e |
o) (@5 (10 (=9 = S gy Kepas
ﬁ =2+ 1 T
SoA SoA (00 0) ; =(z),f (2+T1)ur= (7)) SN[ 3OS
ou sof (1) () —1=(2),f (w)quey = (2)f ;‘ HueT,
ﬁ e 9+ 1 \
ou  so 10 (@) - D@ = ()4 = )y prowsig
0< i} T 0<z10]
£ £ ‘00— = = £
oL sk (otoo) e e o T s o T O N7y Aear
(z‘p)xewr = ( v
N1°Y) 3un
0<TIof T 0<Ti] T
SoA SoA o0 ¢ _ = (x _ = (x ITedUI] PayI}09
0l sy of T gsap of =@ [ PoY1oaY
SoA SoA (00 ‘co—) 1=(x),f r=(x)f Ieaulr]
,OUOJ\ OUOJN asuey] QATYRALI(] uoryenbr] 101d aureN

93

[0€T] "s101d [[R 10} SUO ST PLI3 8Y} UsM]ID] SDOURISIP A, "SAIIRALIOD ST SAIND MO[[0A |1} pUR ‘UOI}OUNJ
uorjeArjor o) smoys jo[d oY) ul oAIND oniq oYJ, (,0UOJN) OAIJRALISP T3 JO IOIARID( DIUOJOUOW pue ‘(OUOJN) IOlARYD(
druojouowW ‘9fuel ‘oArjeAlIop ‘uorjenbe [eorjewayjewt ‘jord IOY) YHM ‘SUOIIOUNJ UOIPRAI}dR posn A[uowrmio)) :1°9 I[qe],



Chapter 6. Artificial Neural Networks

of the output, which is, for example, necessary for multi-class classification,
which is presented in Figure 6.8.

6.5 Training Process

In this Section, the training process is described. Before the training process,
the training data have to be prepared. The essential thing about the data set
used in the training process is that it contains typical data to be predicted
and the corresponding result called ground truth. The training data set,
therefore, has to be a labeled data set. It is crucial to have good labeled data
because the neural network is trained on them.

6.5.1 Training Data Set

The neural networks described in this thesis were trained with simulated data.
The input data are normalized or standardized to make different data more
comparable, and, therefore, the training faster. Standardization reduces the
influence of outliers and is calculated as [132]

0

l’ J—
¥« A
o

(6.6)

where 4 is the mean of the samples, and o is the standard deviation. After
the standardization process, the standardized sample’s mean is zero, and the
standard deviation is one. Normalization does not reduce the influence of
outliers and is calculated as [133]

2% — min(zY)

— shift | .
|max(z0) — min(z0)] S )

2" < factor - ( (6.7)

The minimum min(z°) and the maximum max(z°) are the extrema of the
sample. The factor and the shift of the data are an optional hyper-parameter
and depend mainly on the range of the input layer’s activation function. The
factor changes the scale of the variable, whereas the shift changes its position.
The method of this scaling is another important hyper-parameter. The same
scaling used during the training is applied to the data fed into the neural
network.
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6.5.2 Training Algorithm

The training algorithm is outlined in the following and contains eight steps:

1.

Random initialization: The weights of the neural network are initial-
ized randomly. The distribution of random data depends on the layer.
The biases are initialized with zeros.

Split of labeled data: Before training, the labeled data are split into
a so-called validation data set and a training data set. It is essential
to separate these data. The ratio of validation data to training data is
typically around 10% to 20%. The validation data set is used to check
the accuracy of the prediction. The training data set is used for the
actual optimization.

. Forward propagation: In this step, one sample of the training data

set is passed through the neural network, and thus, a prediction of the
neural network is calculated. The result is the predicted output of the
neural network to the corresponding sample.

Calculation of loss: The predicted output of the neural network is
compared with the expected output, called ground truth for this sample.
This comparison is done by the loss function (Section 6.5.3). The closer
the loss function is to zero, the better is the prediction. The goal of the
training is to minimize the loss function for all samples. The accuracy is
also calculated. Even if it is not necessary for the training algorithm, it
provides good monitoring for the user.

. Backpropagation: The loss is propagated backward to the neural net-

work starting from the output layer. In this step, every neuron of every
layer receives a fraction of total loss, based on the relative contribution
of each neuron to the output. This relative contribution depends on the
weights and the connection of the neurons of the following layers. A
detailed description of backpropagation can be found in Section 6.6.3.

Updating parameters: Weights and biases are updated in a way that
their contribution to the loss and, therefore, the total loss is reduced. Up-
dating the parameters is not done for each training sample individually
but in batches of a certain size. This batch size depends on the machine’s
available amount of memory on which the training is performed.

Validation Loss: After each sample of the training data set has been
passed through the neural network once, the validation data are used to
test how successful the training step was. To get a valid statement, it
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is important that the neural network does not know these data, i.e., has
not been optimized for it. Typically, the accuracy and the loss function
for the validation are the same as for the training.

8. Iteration: Each round of the whole set of training data is called an
epoch. The amount of epochs is another hyper-parameter. Again, it is
crucial that only the training data, not the validation data, is passed
through the neural network again. It is possible to set up a so-called
early stopping criterium to avoid unnecessary epochs, as the result is
already good enough. This criterion is usually defined by a threshold of
the loss function or the validation data set accuracy. The pure sequence
with which the samples are passed again through the neural network is
shuffled to avoid correlation by successive samples.

The amount of epochs is an important hyper-parameter. Using fewer
epochs could result in a not well-trained neural network. Whereas using too
many epochs could lead to overfitting. Overfitting means the neural network
is able to predict the training data very well but does not understand the un-
derlying structure (Figure 6.6). A larger amount of training data can help to
reduce overfitting.

6.5.3 Loss function

The loss function £ compares the predicted output of each individual sample
with the ground truth. The goal of the training and the optimizer is to update
the neural network’s parameters in a way that the loss function is minimized
for all samples of the training data set. The loss function has to be problem-
related. It is crucial to understand its behavior for a successful training and,
therefore, a reliably working neural network. The only arguments to the
loss function are the ground truth Y and the prediction of the neural net-
work Ypedict = 2. Here, 2! is the output of the last layer of the neural network.

A detailed view of the loss functions included in the TensorFlow framework
can be found at the TensorFlow’s online documentation [130]. Often used
loss functions are mean squared error, binary cross-entropy, and categorical
cross-entropy.

One of the intuitive loss functions £ is the mean squared error which is
mathematically defined as follows [134]:

n-1

1 1
L= E”Ygt - Ypredict“% = E Z (}/ét, i erredict7 1)2 (68)

i=0
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Figure 6.6: Ideal amount of epochs. The graph shows the amount of epochs on
the horizontal axis and the accuracy and the loss after each epoch on the vertical
axis. At a certain point, the accuracy of the validation data decreases again. This
is the best point to stop the training process.

Here, ||-||2 is the Euclidean norm, also known as L2 norm. n is the output size,
and i denotes the index within the output, which can be interpreted as vector.
The mean squared error calculates the square of the difference between each
output of the output layer neurons and the ground truth (gt) individually and
then takes the arithmetic mean.

To use the loss functions binary cross-entropy and categorical cross-
entropy, the labels of the data set have to be one-hot encoded. Figure 6.7
shows the idea behind one-hot encoding. If there is one output node that
can have different values (e.g. 0,1,2 for three classes), the classification is not
one-hot encoded. The one-hot encoding transfers this classification problem
to four output nodes where every node represents one class and can take
either one for being in the class or zero for not being in the class.

To understand the principle of the loss functions binary cross-entropy (eq.
6.9) and categorical cross-entropy (eq. 6.10), one must think about binary
classification, multi-class classification, and multi-label classification. Figure
6.8 shows an example for the different types of classifications:
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decimal classes one-hot encoded classes

one-hot encoding

Bk

Figure 6.7: Principle of one-hot encoding with four classes. On the left are the
not encoded classes in decimal notation. The required amount of output neurons to
represent the different classes is one, and the output represents the class in decimal
notation. On the right, the same classes are shown after one-hot encoding. The
required amount of output neurons is one neuron per class. If the class is active, the
corresponding neuron’s value is one; otherwise, the value is zero.

e Binary classification divides the elements of a data set into two classes.
These classes are complimentary. [101]

e Multi-class classification means that the classification task has at
least three classes, and a sample can only be assigned to one class. Due
to the conservation of probability, the sum over all output nodes for
multi-class classification has to be one. [101]

e Multi-label classification means one example can be assigned to more
than one class.

Binary cross-entropy is used for multi-label classification, whereas categori-
cal cross-entropy and spares categorical cross-entropy are used for multi-class
problems where only one result can be correct. Multi-class problems can be
one-hot encoded. [101]

Multi-label classification cannot be represented by the decimal classes but only
by one-hot encoded classes. Therefore, it is possible that more than one output
node has a high output value. The sum over all output nodes for multi-label
classification can be higher than one. The mathematical computation of the
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Binary C=3 Multi-class Multi-label
classification classification classification
* Samples Labels Samples Labels
()
(1.0.0) ¥ (1,0, 0) * * (1,0, 1)
(0,1, 0) i\( (0,0, 1) * (0,0, 1)
Spam
No spam * (0,1, 0) ** (1,1,1)
(0,0, 1)

Figure 6.8: Types of classification. The three types are binary classification,
multi-class classification, and multi-label classification. Binary classification can,
for example, decide whether an e-mail is spam or no spam. In this example are
three classes (C=3). The classes are one-hot encoded into (1, 0, 0) for the red sun,
into (0, 1, 0) the blue moon, and into (0, 0, 1) for the yellow star. Three sample
images and their corresponding labels are shown for both multi-class and multi-label
classification. For multi-class classification, each sample contains exactly one class.
For multi-label classification, the number of classes per sample can vary. Figure
adapted from [135] and [136].

binary cross-entropy is done by [134]:

n-1

1

_ Z gt, i 108; predict, 1) + (1 - ngt, i) : log (1 - (Ypredict, 1)] (69)
i=0

3

Here, n is the output size, and i denotes the i*" index within the output.
Whereas the ground truth Yy is zero or one, the prediction Yjegict of the
neural network contains values from zero to one for each class to represent
the corresponding possibility.

For binary cross-entropy, the activation function of the last layer has to be
the sigmoid function (Table 6.1). The equation takes the arithmetic mean
over all output nodes. The first part of the arithmetic mean represents the
error made by the model of the labels, which should actually be true, whereas
the second part handles the error of the nodes that should be actually false.
The ground truth labels can either be one or zero.
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The categorical cross-entropy is described by the following equation [134]:

1 n-1 C
L= _E Z {Z [Ygt, IR IOg (varedict7 i,c)]} (610)

i=0 c=0

Here, n is the output size, and i denotes the i*" index within the output, and
¢ denotes the one-hot encoded classes. The equation sums the error for the
different classes, and in a second step, it sums these errors over the output
size. Due to the logarithm, the categorical cross-entropy is minimized for
Ypredict,i = 1, which does not describe physical systems correctly. Therefore,
the activation function of the last layer has to be SoftMax. The SoftMax layer
guarantees to preserve the probability of one. The definition and properties
of the SoftMax activation can be found in Table 6.1.

For multi-label classifications, binary cross-entropy like eq. 6.9 can
be used. Each class can be treated separately as an independent binary
classification. Therefore, multi-label classifications can be interpreted like
many binary classifications.

The previous considerations about the loss function were only for single
samples of the training data set. Using batches with a batch size greater than
one, the used loss £ for the optimization is the average over the values of the
loss function of all samples in the batch:

£= (L) (6.11)

These loss functions are a good point to start, but a user-defined loss function
has to be implemented in many cases.

6.5.4 Metric

A metric is used to quantify the model’s performance and calculate the accu-
racy. While the loss function is used for optimization, the metric is a measure
to help the user estimate how good the model is working. Typically, met-
rics are defined in a way that better predictions result in higher values. The
TensorFlow framework provides some predefined metrics, but also user-defined
problem-specific metrics are possible. The metric does not influence the neural
network and is only a tool for the user.
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6.5.5 Transfer Learning

Transfer learning is a method that improves the learning of a new problem
by transferring already learned knowledge from a related problem [137]. It is
a common method to save computation power and time during the training
process. The intention behind transfer learning is that a network is trained
for general purposes with a large amount of data. The resulting network
can then be refined with a small modification of the network parameters
for similar or more special tasks. For transfer learning, a pre-trained neural
network is required. Typically, this model is trained with a large data set.
Transfer learning can be implemented in two ways:

e Full model retraining, where each layer of the neural network is re-
trained with the new data set, can take a significant amount of time and
requires a big new data set to avoid overfitting. Full model retraining
can be performed similarly to the normal training process. The only
difference is that the initial parameters are not chosen randomly but are
loaded from the pre-trained model. [138]

e Last layer only retraining, where only the last layer with the final
classification is altered. The last layer only retraining is less computa-
tion power-intensive and requires a smaller new data set. Moreover, the
topology of the last layers could be changed, and additional layers can
be added at the end of the neural network. This is, for example, used in
this thesis to vary the number of subpixels without changing the neural
network’s main task (Section 8.4.3). Only the last layers and the amount
of output nodes is modified. [138]

For the last layer only retraining, two steps have to be processed [138]:

— Feature extraction: The pre-trained model is loaded, and the
parameters of the layers which should not be retrained are kept
constant during the retraining. Optionally, a new classifier trained
completely new can be added on top of the existing pre-trained
model. Typically, the total pre-trained network is kept constant
if new layers are added. The complete neural network is part of
the retraining process because the layers which should be modified
depend on the frozen layers’ specific output.

— Fine-tuning: This step is only necessary if additional layers are
added to the end of the pre-trained neural network. A few of the last
layers of the pre-trained models are subject to alterations. These
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layers and the new layers are retrained jointly. This allows fine-
tuning of the higher-order feature representations in the pre-trained
model.

6.6 Optimizer

Training a neural network is an optimization problem. The algorithm which
does the optimization process is called optimizer. In this subsection, the used
optimization algorithm is introduced and shortly explained. One important
step of all optimization algorithms is to calculate the function’s gradient, which
should be optimized. The gradient describes the direction in which the param-
eter should be updated to reach a minimum of a function. For neural networks,
a commonly used method is called backpropagation. These update-rules are
implemented in different optimizers. The optimizers should be problem-related
and vary in stability and convergence speed. In this thesis, two of them are
presented:

e The gradient descent optimizer GD [139] is a simple optimizer that
is well suited for easy understanding and can be used as a showcase for
the optimizer principle.

e The state-of-the-art Adam optimizer [140]. The Adam optimizer is
used within the framework of this thesis. The pseudo-code of the algo-
rithm can be found in Appendix C.1.

More information on other optimizers can be found in [134].

6.6.1 Gradient descent optimizer

The gradient descent (GD) uses only the function’s first derivative (gradient)
gi =~ Vo fi(0i1) to optimize the function. The gradient always points in the
direction in which the value of the function increases. Therefore, the negative
of the gradient is used to obtain the direction in which the parameters should
be updated. The size of this step is determined by the value of the gradient
and by the learning rate. Eq 6.12 shows the update rule for the parameter
vector 6. [130]

Ot = 0‘5—1 — Q- gy (612)

Here, « is the global, defined learning rate.
A slight modification is the momentum optimizer. The momentum optimizer’s
concept accelerates the gradient descent optimizer by adding a fraction ~ of
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the update vector of the previous time step. Eq. 6.13 and eq. 6.14 show the
modified update rules. Vector v is called velocity, and v > 0 is the global,
defined momentum. [130]

Vy = YUt1 — O - Gy (613)

Ot = Ot—l — - Vg (614)

The frequently used stochastic gradient descent (SDG) works similarly to
the gradient descent but is unlike the ordinary gradient descent stochastic.
Instead of using all training data set samples, the stochastic gradient descent
uses a subset of the training data set. This subset is called batch!. As a
consequence, the direction of the velocity v, which describes the update
of weights, has not to be perpendicular to the equipotential lines in the
parameter space. However, many little steps of the stochastic gradient descent
approximate the gradient over all samples [141].

The convergence behavior under mild conditions [142] can be found in [143]
by using the Robbins-Siegmund theorem [144].

6.6.2 Adam Optimization Algorithm

The Adam [140] optimization algorithm has been designed specifically for
training deep neural networks. It needs the gradient g; ~ Vg f;(0y.1), which
can be obtained from backpropagation (Section 6.6.3). Here, ¢ is the index of
the iteration. It takes advantage of the moving average of the gradient instead
of the gradient itself. It also uses the variance, often referred to as second
moment, of the gradient to scale the learning rate. Therefore, the corrected
learning rate is computed for each parameter individually. The pseudo-code
of the algorithm can be found in Appendix C.1. Adam uses the exponential
moving average to approximate the first moment m; and the second moment
v, of the batch with the gradient g;:

my = B -mey + (1= B1) - g (6.15)

vy = B2 - v + (1 — Ba) 'gt2 (6.16)

The moving average vectors are initialized with zero, and the hyper-parameters
[y and [y have default values of 0.9 and 0.999. The iterative equation can be

! Traditionally, the stochastic gradient descent was used with only one sample. The batch
size was one. However, today the stochastic gradient descent is used to get an approximation
to the gradient on a subset of the training data.
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rewritten as [145]:

my=(1-051)) (5" a) (6.17)

i=0

) Sy (6.15)

The expectation value of g; is then a function of the first moment [145]:

t

Elm] = E (1= 5) 3 (5" 9) (6.19)
Elm] = Elg]-(1-6)) 5 +€ (6.20)
E[m]=FElg](1-5})+¢ (6.21)

Note that the superscripts of the parameters 8; and [ are exponents and not
upper indices. In eq. 6.20, the gradient g; is approximated with the gradient
of the last step g;. The additionally made error is absorbed in &.

To obtain eq. 6.21, we apply the geometric series [146] to eq. 6.20. The
equation for the second momentum can be derived in the same way.

Comparing the expectation value of the gradient’s mean E[g;] and the
gradient’s variance E[g?], which are the first and the second moment to E[rm]
and F[vi], m; and v, have to be corrected by a factor. After the correction,
estimators can be written as [145]:

my =my/ (1 - ) = E gy (6.22)

b =v/ (1-p5) =~ E [g]] (6.23)

Finally, we update the parameter vector @ with those bias-corrected moving
averages [145]:

0. = 0.1 — a1/ (\/v_t + e) (6.24)

The first moment representing the mean of the gradient is scaled by the inverse
square of the second moment. Here, o = 1072 is the user-defined global
training rate and € = 1078 a parameter that avoids the division by zero. The
specified values of o and € are good default settings [140]. These steps are
repeated until the parameter 8; converges. A detailed proof that the Adam
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algorithm converges can be found in the Appendix of [140]. The pseudo-code
of an implementation of the Adam optimization algorithm can be found in the
Appendix C.1.

6.6.3 Backpropagation

The task of backpropagation is to obtain expressions for the partial deriva-
tives of the loss function with respect to the weights and the biases of the
neural network. The algorithm is called backpropagation because the error (SJi
is calculated backward, starting with the output layer. A detailed derivation
and mathematical proof can be found in [112]. A derivation of the gradient
can be found in Appendix C.2. To use backpropagation, one has to make two
assumptions about the loss function [113]. First, the loss function is averaged
for individual training sets m:

1
L= Ln (6.25)

Second, the loss function can be written as a function of the output x! of the

neural network with I layers:
L=L(x" (6.26)

The loss function also depends on the desired output. But similar to the
input to the neural network, the desired output is a fixed parameter and not
a variable that the training process can change. To calculate the gradient, an
intermediate step is required. In this intermediate step, the error 5; of the j*™®
neuron in the i** layer is calculated. A little perturbation Az} of the weighted
input to the j'" neuron in the i*" layer changes the weighted input of the j*®
neuron in the i*" layer:

wh=f(2) = 2+ Azl = f (2] + Az)) (6.27)

Using eq. 6.27 in eq. 6.26 we obtain eq. 6.28.

L— L+ a—ﬁ.Az.i (6.28)

Oz
Eq. 6.28 is similar to a Taylor expansion up to the first order[146]. However,
zji is not a variable but a complex function that depends on the neurons of the
previous layers. A perturbation of a neuron in layer i influences the inputs
of the neurons of layer (i + 1)™ and the following layers and, therefore, the
perturbation propagates through the neural network and causes an overall
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change of the loss function. The goal is to choose 5ji in a way that the loss
function is minimized. Here, two cases are possible:
o [55/>0
j .
Here, Az; with an opposite sign in comparison to the derivative makes
the loss smaller.
IL |~
A change Azji has no big influence on the loss function. In addition, the
weighted input 2! is chosen in a way that the loss function is already

]
close to the extremum for a variation of this weighted input.

This leads to the assumption that the partial derivative of the loss function
with respect to the weighted input is a good quantity to measure the error
indicated by a neuron. This motivates the following definition of the error (5}
influenced by the activation of the j*® neuron in the i layer:

. oL
5= (6.29)

J

In the following, the vector notation is used:

oL
-0z

' (6.30)

For the backpropagation algorithm, four equations are needed where the index
I describes the last layer of the neural network [147]:

d I
s —vacod d(; ) (6.31)
. . : df (2!

6 = ((wl+1)T) 5o 4 (=) dif ) (6.32)

oL
- =4} (6.33)

obi
% =z 0} (6.34)

J

® is the so-called Hadamard product [148]. It is defined as the element-wise
product of two vectors or matrices with equal dimensions. The result of
the Hadamard product has the same dimensions as its inputs. f (zi) is the
activation function of the i*® layer, z' is the weighted input of the i layer,
b} the bias of the j* neuron in i layer, z} the bias of the j** neuron in i"
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layer, and w) is the weight from the k" neuron in the (i — 1) layer to the
j*" neuron in the i" layer.

Eq. 6.31 describes the influence of an error of the output layer on the loss
function. The gradient V. is defined as a vector whose components are
the partial derivatives 0/ 8%1 with respect to the output of the output layer.
Equation 6.31 can be interpreted as a component-wise use of the chain rule
because the activation xJI is the same as the output of the activation function
applied on the weighted input f (2').

Eq. 6.32 describes the error §' in terms of the error of the next layer 1.
(wi“)T is the transposed matrix of w'*!. Supposing the error §', eq. 6.32
moves the error backward by multiplying the transposed weights. The influ-
ence of the activation function of layer i is absorbed in the derivative, which
is component-wise multiplied with the Hadamard product. The Hadamard
multiplication propagates the error backward through the activation function.
This leads to an expression for the error at the weighted input into layer i.
The influence on the error §' of the weighted input of every layer can be
calculated by combining eq. 6.31 and 6.32. First, the error §' is calculated,
then by applying the second equation recursively, the errors §™% 1210 are
calculated.

Eq. 6.33 describes the rate of change of the loss function with respect to any
bias in the network. The right side of eq. 6.33 is already known from eq. 6.31
and 6.32.

Eq. 6.34 describes the rate of change of the loss function with respect to any
weight in the network. The right side can be interpreted as a multiplication
of the activation of the input times the errors of the output of layer i. As
a consequence, small activation leads to a small gradient. The optimization
process of the weight with a small activation is slow.

The loss function depends directly on the output of the neural network. To
calculate the influence of the weights and the biases of the hidden layer or the
input layer, one has to apply the chain rule. A pseudo-code implementation
of the backpropagation algorithm can be found in Appendix C.3.

6.6.4 Learning Rate

The learning rate is one of the most important hyper-parameters. The learn-
ing rate describes the change of the weights and biases after each batch. Low
learning rates yield highly reliable results but slow down the training process
because more steps are needed to reach the minimum. Too high learning rates
can lead to large changes in the parameter in one step. This can lead to the
optimizer overshooting the minimum and leads to a not converging or even
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diverging training. An optimum training process uses relatively high learning
rates at the beginning with a continuous decay during the optimization. This
accelerates the training process while still allowing fine-tuning of the parame-
ters at the end. Typically, an exponential decay or a repeated sequence from
high to low rates of the learning rate is used. A repeated sequence of sawtooth
patterns could lead to an additional improvement [149].

6.6.5 Visualisation of the optimization process

A simple classification problem with two features and two classes is assumed
to get a visual impression of the different optimizers’ behavior. The dots
in Figure 6.9 show the training data set. Because the problem is linearly
separable, no hidden layers are necessary. The input layer has two neurons
representing the two features, and the output has one neuron. Since the bias
is constant at zero, the number of trainable parameters is two. The colormap
in Figure 6.9 indicates the prediction of the neural network. This very simple
neural network is able to classify the training data correctly.

Instead of finishing the training process after several epochs or with an early
stopping criterion as used in the normal training processes, the training is
finished if the loss function is below 0.03. This fixed value enables a better
comparison of the required iterations.

Figure 6.10 shows the visualization of the different optimizers in the pa-
rameter space.
The gradient descent (GD) steps with a momentum equal to zero update the
weights perpendicular to the equipotential lines in the parameter space. Be-
cause one step of the gradient descent algorithm requires a prediction for each
sample of the training data set, it can take a long time.
For a batch size of one, the gradient descent and the stochastic gradient de-
scent are the same.
The gradient descent with a momentum larger than zero (GDwM) accelerates
the optimization process compared to the GD but tends to overshoot the opti-
mum due to its update rules. In the parameter space, this leads to oscillations
near the minimum.
The Adam optimizer needs fewer iterations than the GD optimizer. Due to
the adaptable adjustment of the learning rates, the Adam optimizer does not
overshoot the minimum such as the momentum optimizer but requires a few
more iterations.
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Figure 6.9: Representation of the training data set in the feature space. The dots
describe the data of the training data set. A grey dot indicates data belonging to
class 1. A red dot indicates data belonging to class 0. The colormap visualizes the
prediction of the trained neural network.

6.7 Special Layers

Neural networks with dense layers are very powerful, but many parameters
are required. The use of problem-related special layers increases the neural
network’s efficiency and accuracy, saving computation power and time. A list
comprising all layers with their corresponding hyper-parameters used in this
thesis” framework can be found in Appendix C.4.

In the case considered so far, the layers of the neural network are one-
dimensional. In the following, the neurons will be arranged in a two- or
three-dimensional structure to illustrate the utilized additional layer struc-
tures better. For example, the input layer’s two dimensions are the pixel’s
two-dimensional position, represented by the corresponding neuron. In the
case of color pictures, the third dimension of the data structure could be the
magnitudes for red, green, and blue (RGB) values. One slice in the third
dimension is called a feature map or channel. [150]
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Figure 6.10: Optimization process in the parameter space. The colormap visualizes
the loss function as a function of the two parameters, weight 1 and weight 2. The
quiver plot shows the optimization results converging towards the minimum of the
loss function with a learning rate of 0.5

6.7.1 Convolution

For image analysis, one of the commonly used operations are convolutions
since they can be used for translation invariant structures.! An example of a
two-dimensional convolution is illustrated in Figure 6.11. For simplicity, the
example’s bias is zero, and the activation function is the identity function.
Here, we apply the same weights to multiple nodes of the input I. Their
usage is very common in image processing. The light blue matrix is called
the kernel K and is moved across the input feature map. Each element of
the kernel is multiplied with the corresponding input node, summed up with
a bias, and then used as an argument in the activation function. The bias
is the same for all elements of one kernel. This procedure is done for each
kernel position on the input feature map. For multiple input feature maps, a
three-dimensional kernel is used. This means every input feature map has its
own two-dimensional kernel, slid across the width and the height. [150]

'An object or a feature in an image should be treated similarly no matter at which
position it is located in the image.
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The step size of the kernel moving across the input feature map is called
stride and a hyper-parameter of the convolution. It can be a single value
for the width and the height or can be individual for each dimension. Since
particle tracks have no preferred direction, a single value for all dimensions is
chosen in the following. [151]

Figure 6.12a shows the two-dimensional convolution for an input with four
feature maps. For an input with multiple feature maps, the third dimension
of the kernel has the same size as the number of feature maps of the input.
The kernel is moved in the two spatial dimensions across the input.

Multiple convolutions with individual kernels are applied to generate
multiple feature maps at the output. Figure 6.12b shows a generation of an
output with six feature maps. Therefore, six kernels of the same size but with
individual weights are used. The number of feature maps at the output is an
additional hyper-parameter. In general, the individual feature maps of the
hidden layers represent abstract features.

The last important hyper-parameter for convolutions is called padding.
Padding describes the behavior at the edges of the input feature map of the
kernel. For so-called same padding, the width and the height of the input and
the output feature map are the same. This is achieved by adding (padding)
rows and columns to the input. Preferentially, the rows and columns are
added evenly at the edges of the input feature map. If this is not possible,
the right or bottom edge gets one extra column or row. The entries of these
additional rows and columns are usually zeros. In such a case, the padding is
called zero padding. It is important to mention that by applying two or more
convolutions behind each other, zero padding can lead to artifacts (Section
8.2). To avoid such artifacts, mirror padding or mean padding is used. Mirror
padding is realized in two ways, either reflected or symmetric. In reflect mode,
the padded regions do not include the borders, while in symmetric mode, the
padded regions do include the borders. In mean mode, the average of each
input feature map is used. [130, 151, 152

The output feature layer size depends on the input feature layer’s size, the
size of the kernel, the stride, and the padding. A detailed description can be
found in [153].

LOf course, all other numbers and distributions of adding columns and rows are possible
but unusual.
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The convolution can be one-, two-, or three-dimensional. The dimension
describes the number of slide directions. Three-dimensional convolutions ad-
ditionally slide the kernel along the axis of the feature maps.
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Figure 6.11: Computing the output values of a convolution. The input matrix
I is shown on the top left corner, whereas K denotes the so-called kernel, which
is multiplied. The sum of the multiplication produces the output indicated by the
green square. The kernel is moved over the input matrix I producing the output O.
In the example, the kernel size is (3,3), the strides that describe the step size are
(1,1), and the bias is zero. The activation function is the identity function. There
is no padding.

Another more practical description of a convolution layer is in the form
of one matrix multiplication. For this, the input feature map and the output
feature map, which are matrices, are written as vectors. The reshaping happens
from left to right and then from top to bottom. The convolution can be written
as a matrix. The width of matrix w is

w = input height - input width (6.35)
and the height of the matrix h is
h = output height - output width. (6.36)

After the matrix multiplication, the output vector is reshaped to the output
feature map. The corresponding matrix C' to the in Figure 6.11 shown convo-
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lution is as follows:

w0 Wo1 Wo2 0 wip w1 wie 0 wag woy wpe 0 0 0 0 0
0 Wp,0 Wo,1 Wo2 0 W10 Wi W12 0 W20 W21 W22 0 0 0 0
0 0 0 0 wop won woe 0 wip win wiz 0 weg wor wyy 0
0 0 0 0 0 woo w1 woe 0 wig win wip 0wy wo1 wap
(6.37)

For reasons of clarity, not the values of the weightings but w;; were taken. i
and j are the index of the row and the column of the kernel.

8- n

()

3 -9

(b)

Figure 6.12: Two-dimensional convolution with same padding and multiple feature
maps at the input. (a) One kernel creates one feature map. (b) To get multiple
feature maps at the output, multiple kernels with individual weights and biases are
used. In the example, six feature maps at the output are created. Therefore, six
kernels with individual weights are needed.

6.7.2 Separable Convolutions

Separable convolutions do the same operation as the discrete convolution with
significantly fewer multiplications and parameters. This leads to a reduced
computing time of the neural network. The number of multiplications #
for all convolutions, no matter whether separable or not, is the following prod-
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uct[154]:
#multi = Wkernel * hkernel : #kernel : #feature maps ° #Vertical : #horizontal (638>

Here, Wiernel and hyemel are the width and the height of the #eature maps kernels,
and #yertical aNd Frorizontal are the number of vertical and horizontal slides of
the kernel. The smaller number of parameters of the separable convolution
leads to much faster predictions but could lead to lower accuracy. There are
two types of separable convolutions which will be discussed in the following
[155].

6.7.2.1 Spatial Separable Convolutions

This kind of separable convolution is called spatial because it separates the
spatial dimensions (width and height) of the feature maps and the kernel. It
divides the kernel into smaller kernels. An N x M kernel is divided into an
N x 1 and an 1 x M kernel. Here N is the width, and M is the height of the
kernel:
—1
-2
-1

o O O

1 1
2] =(2]-(-1 0 1) (6.39)
1 1

As one can see from the example, the matrix has to have a special character-
istic, and not all matrices can be separated via spatial separation. This is a
significant restriction during the training process, costing a lot of flexibility.
Thus, spatial separable convolutions are typically not used for neural networks,
but they are a simple example to understand the separations’ concepts.

6.7.2.2 Depth-Wise Separable Convolutions

Figure 6.12 shows a simple convolution, and Figure 6.13 shows the same convo-
lution performed as separable convolution. Depth-wise separable convolutions
are not factorized into smaller kernels but split the kernel into two kernels in
another way. The convolution is split into the so-called depth-wise convolution
and point-wise convolution [155]:

e Depth-wise convolution: The three-dimensional kernel with dimen-
sions N x M x L is separated channel-wise to L times N x M kernels
(Figure 6.13a). Here, N is the width, M is the height of the kernels, and
L is the number of feature maps of the previous layer. Each of the new
kernels iterates over only one of the feature maps of the previous layer.
In contrast to the discrete convolution, the result of the multiplication
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with the kernel has the same amount of feature maps as the input and
not only one.

e Point-wise convolution: The result of the normal convolution always
has the same number of feature maps as the input. A second convolution
has to be applied to change the number of feature maps. This point-wise
convolution has a kernel with the size 1 x 1 x L and iterates over every
single node (Figure 6.13b). The number of output feature maps can be
selected by the number of used kernels for the point-wise convolution
(Figure 6.13c).

There are six kernels with a size of 3 x 3 x 4 that moves I x I times for the
normal convolution. This leads, for example, for I = 64 to

6-3-3-4-64-64 = 884736 (6.40)

multiplications. The number of multiplications for the separable convolutions
is the sum of the multiplications for the depth-wise convolution and the mul-
tiplications of the point-wise convolution. There are four 3 x 3 x 1 kernels and
six 1 X 1 x 4 kernels which are both slid I x I times. This leads only to

(4-3-3-14+6-1-1-4)-64-64 = 147456 4 98304 = 245760 (6.41)

multiplications which is more than a factor of three less multiplications com-
pared to the normal convolution in eq. 6.40.

This strongly reduces the computing time resulting in a faster training
process.

6.7.3 Pooling

The advantage of pooling layers is to reduce the amount of storage of the model
and, therefore, increase the speed. The pooling does not reduce the accuracy
of the network despite the data reduction. However, deeper networks can be
created due to the low memory requirements. The deeper networks sometimes
lead to better accuracy and allow to solve even more complex tasks. The main
idea of pooling layers is to combine the output of neighboring neurons. The
hyper-parameter for the number of combined neurons is called pool size. The
hyper-parameter strides and padding can be chosen in the same way as for a
discrete conventional layer. The combination of the outputs of neurons can
be, for example, done by taking the maximum or the average, which is called
maximal pooling or average pooling. An example of maximal pooling is shown
in Figure 6.14. [156, 112]
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(a) Depth-wise convolution

(b) Point-wise convolution

(c) Mulitple point-wise convolution

Figure 6.13: Two-dimensional separable convolution with same padding. (a)
Depth-wise convolution with four kernels. Each kernel corresponds to one feature
map at the input. (b) A point-wise convolution with one kernel results in one feature
map at the output. (c) To get multiple feature maps at the output, multiple kernels
with individual weights and biases are used.

6.7.4 Dropout

Dropout is a regularization technique to reduce overfitting (Section 6.5) dur-
ing the training process. When training the network, a specified amount of
neurons in each layer of the network are switched off and not considered for
the batch [157]. These "dropped out” neurons are varied for each batch. The
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Figure 6.14: Maximal pooling with a pool size of two times two and a stride of
the same size as the pooling.

dropout layer is only active during the training process and inactive during the
prediction phase. This can lead to the effect that the validation set’s accuracy
during training is higher than the training set’s accuracy. Conversely, there
could be a smaller value of loss function (Section 6.5.3) for the validation set
compared to the training set.

6.7.5 Transposed Convolution

Transposed convolutions are used to upscale an input and increase the number
of neurons in each feature map. This means the spatial dimensions of the fea-
ture maps are increased. They are the transposed operation of the convolution
[158]. As convolutions, transposed convolutions have a kernel size, strides, and
padding as hyper-parameters. There are two conceptional descriptions' and a
mathematical description to understand transposed convolution discussed in
the following Sections [159].

6.7.5.1 Distributing Values Model

Interpreting Figure 6.11 from right to left results in the interpretation of a
transposed convolution of Figure 6.15a, which shows this model schematically.
In this interpretation of transposed convolution, the input in this Figure 6.15a
is the output of Figure 6.11 and vice versa. In this conceptional model, the
point of view is a single input value. In this case, the kernel describes how the
value should be distributed in its neighborhood in the output. This is done
for every input node. The individual amounts of different input nodes for the
same output node are summed up.

INote that both conceptional models describe the same operation but from another point
of view.
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6.7.5.2 Collecting Values Model

The interpretation of a transposed convolution of Figure 6.15b shows the idea
of the distributing values model. In contrast, in this interpretation, the point
of view is a single output value. This interpretation is very similar to a dis-
crete convolution. A single output cell sums up the weighted inputs that are
distributed into it. The kernel again gives the rules and the weights for the
distribution. Compared to the distributing values model, the kernel is flipped
point symmetrically about the center. The flipped kernel is not a transpose
of the kernel of the distributing values model, despite the name transposed
convolution.

1111
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(a) Distributing values model
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(b) Collecting values model

Figure 6.15: Computing the output values of the same transposed convolution
with the two mental models.

6.7.5.3 Mathematical Description

For a discrete convolution matrix C' (eq. 6.37), the corresponding transposed
convolution matrix is labeled CT. C7T is obtained from the mathematical
operation of transposing C. To apply C, a similar reshaping as described in
Section 6.7.1 is used.
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6.7.6 Batch Normalization

The batch normalization layer normalizes its input. The mean of the layer’s
output is close to zero and the standard deviation close to one. [134]

Batch normalization works differently during the training process and the
prediction interface.
During the training process, the batch normalization layer uses the mean
p(z?) and the standard deviation o (z') of the current batch of inputs to
normalize its output [130]:

v — ()

P :
v 70(%'1)4-6

+p (6.42)
Here, z' is the input to the batch normalization layer of the current batch, v is
a learned scaling factor, [ is a learned offset factor, and € is a small constant
used to avoid a division by zero. The parameters § and v are trainable
parameters.

For the prediction process after the training, the batch normalization layer
uses the moving average fi of the mean and the moving average of the standard

deviation & of the batches used during the training to normalize its output
[130]:

i T —

x<—7&+6+6 (6.43)
it and ¢ are non-trainable parameters, which are updated each time the
layer is called during the training process and are frozen for the prediction
process. Their updating rules are shown in equation 6.44 and 6.45, with m
being the momentum of the moving average, which is typically 0.99. As a
consequence, only data with similar statistics to the data used for the training

process are normalized correctly. [130]

fis—m-ja+(1—m)-p(z)) (6.44)
G m-6+(1—m)-o(z)) (6.45)

If the variance across the data samples is too high, the gradient of a small
input is completely suppressed by a high input. Applying batch normalization
ensures a constant mean and standard deviation. Therefore, the amount of
variation over the different inputs is reduced, which potentially leads to a
better and faster training process. [160] [161]

However, batch normalization adds extra noise to the training sample because
any sample depends on the other samples of the batch. This additional
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noise can have either positive or negative effects, depending on the neural
network.  The positive effect is a regularization effect. The optimizer
always observes slightly different noise because the batch normalization
is computed and applied over batches and not the entire training data
set during the training process. This different noise acts as regulariza-
tion and helps to avoid overfitting (Section 6.5). Since the noise is small,
additional dropout layers as described in Section 6.7.4 are typically used. [161]

Batch normalization in combination with convolution layers works in a very
similar way. The normalization is applied along the axis of feature maps to
take the convolution character into account. As a consequence, each feature
map has a single mean and a single standard deviation. [161]

6.8 8-Bit Quantization

To improve the storage and memory requirements and the speed of the neural
network, a so-called 8-bit quantization is common after the training process.
8-bit quantization approximates the floating point values using the formula
[162]:

real value = (int8 value — zero point) - scale (6.46)

A distinction is made between per-axis (also known as per-channel) and per-
tensor quantization. Per-tensor quantization has one scale and one zero point
for the complete tensor. Per-axis quantization has one scale and one zero point
for each slice in the so-called quantized dimension. The arrays’ size where the
scales and the zero points are stored depends on the matrix, which should
be quantized itself, but also on the quantized dimension. A post-training
quantization could lead to a smaller accuracy of the model. Up to a certain
point, this phenomenon can be counteracted by separating the last layer of
the model and train only the last layer after the post-training quantization,
similar to transfer learning. The last layer’s retrained weights and biases soften
the inaccuracy of the quantization of the previous layers. After this second
training, the last layer is also quantized, and the layers are merged into one
model.

However, for the in this work presented neural networks, the deterioration is
not significant.
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6.9 Edge Tensor Processing Unit

The edge tensor processing unit (edge TPU) is a specially designed ASIC op-
timized for the requirements of neural networks and low power consumption.
The current generation can perform 4 trillion (fixed-point) operations per sec-
ond (4 TOPS) per ASIC with a power consumption of 2 watts [163]. The
edge TPU has roughly 8 MB of static random-access memory (SRAM) that
can cache the model’s parameter data. Ideally, the model’s parameters, such
as the topology, the weights, and the biases, should all be saved on the TPU
SRAM, which ensures faster speed than fetching the parameter data from ex-
ternal memory. The ASIC’s architecture requires an 8-bit quantized model, an
8-bit quantized input, and provides an 8-bit quantized output. The quantiza-
tion of the input and dequantization of the output are not done by the TPU
but by the host system. Since the edge TPU and the corresponding framework
are in an early phase of development, not all kind of layers are supported to
be run on it. If the neural network contains unsupported layers, it can still
compile, but only a portion of the model will execute on the edge TPU. At
the first point in the neural network graph where an unsupported operation
occurs, the compiler partitions the neural network into two parts. The first
part runs on the edge TPU, and the second part is executed on the CPU.
This means not the ratio between the supported and unsupported operation
of the neural network determines the speed, but the first unsupported layer’s
position. [163]

6.10 Workflow

In this Section, the workflow used for modeling a neural network is described.
The necessary steps are shown in Figure 6.16. The first step is the design of the
problem-related topology of the neural network. In this step, it is important to
include the dimensions of the input data and to consider the desired output of
the neural network. The topology should be kept complex enough to achieve
good accuracy. However, more complex typologies lead to more parameters.
This reduces the speed of the training process and, more importantly, the speed
of the prediction. The choice between complexity and speed should be made
problem-related. Next, one has to define the hyper-parameters. Especially,
the loss function should be adjusted to the problem to ensure successful train-
ing. The trainable parameters such as weights and biases are now randomly
initialized as 32-bit float numbers and must be optimized during the training
process. The training data must be prepared for the training process. A de-
tailed procedure of the training can be found in Section 6.5. It is important
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Figure 6.16: Typical workflow to provide a problem-related neural network. Figure
adapted from [163].

to note that the training process is only necessary once per problem, apart
from optimization processes to optimize the neural network’s topology and
hyper-parameters. Small changes in the settings that do not affect the whole
network, such as the number of subpixels, can be realized by transfer learning.
Since transfer learning does not require all parameters to be re-optimized, it
is much faster. In principle, after this step, the model is ready to be used or
tested, and we can start to optimize the accuracy. This optimization process
is an iterative process that combines the knowledge of the topology, the hyper-
parameters, and the accuracy from the last training processes.

The model with all parameters and important information is stored in two files
to extend the model to other systems and other program languages (interfaces
with existing analysis tools). This is done in a binary hierarchical data format
(hdf5) file for the weights and the biases and a human-readable JavaScript ob-
ject notation (JSON) file with the topology and other important information.
The next steps are necessary to use the model on smaller devices, e.g., mobile
devices or special hardware such as edge TPUs. The stored model is converted
from two files to one binary file, which can be used by the TensorFlow lite
framework [162].) An 8-bit quantization is performed during the conversion,
which may require an additional training step (Section 6.8). This is necessary
because the edge TPU only supports 8-bit fixed numbers [163]. The Tensor-
Flow lite model can be compiled to an edge TPU model, which is a TensorFlow
Lite model with edge TPU support. The model is deployed to the edge TPU

!TensorFlow Lite is a framework for running the deep learning models on mobile devices,
microcontrollers, and embedded devices with low latency [162].
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during the first prediction. Therefore, the first inference on the edge TPU is
slower because it includes loading the model into the edge TPU memory [163].
It should be noted that the reconstruction process is nothing else than a mul-
titude of matrix multiplications, which can be parallelized easily to increase
the performance.
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Chapter 7

Reconstruction of the Point of
Entry with a Compact Neural
Network

In this Chapter, a lightweight neural network to reconstruct the PoE for event
patterns is introduced. An event pattern analysis is required before the neural
network can be applied to the data. This event analysis can be similar to
the event analysis explained in Section B.1 or, in principle, also based on a
neural network. The compact neural network (CoNN) can only handle single
events. Compared to the classical analyses presented in Appendix B, this is
not a limitation, as those can also only handle single events and not so-called
pattern pile-up events.

The goal of the CoNN is to produce a hit-map in the subpixel regime, as shown
in Figure 3.7e on page 42.

7.1 Network Architecture

The input to the CoNN is a stack of event patterns. The size of the pattern
is uneven and typically three times three pixels for photons and low energetic
electrons. Since the clusters for higher energetic primary electrons are larger,
the pattern size for higher energetic electrons has to be larger. The pixel
with the maximal energy deposition is the central pixel of the pattern, and all
neighboring pixels are taken into account.

Before feeding the neural network with the patterns, the mean of each
pattern is subtracted and afterward divided by its standard deviation. The
standardization is described with eq. 6.6 on page 94. This standardization is
reasonable as the reconstructed PoE should depend on the ratio between the
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number of single events in the individual pixels and should not depend on the
absolute energy deposition in a pixel.

The output layer of the CoNN for single events contains two output
neurons. One neuron represents the normalized x-coordinate of the PoE,
and the other one the y-coordinate within the central pixel of the pattern!.
The activation function of the last layer is the sigmoid function with a range
between zero and one. The output of the first neuron represents the projection
between the left edge and right edge of the central pixel to the range between
zero and one. The normalization can be described with eq. 6.7 on page 94.
For the normalization, the minimum is zero, and the maximum is the pixel
size. Because the range of the sigmoid function is between zero and one, the
normalization factor of eq. 6.7 on page 94 has to be one and the shift zero.
This applies analogously to the upper and lower boundary and the second
neuron.

A neural network that reconstructs event patterns analogously with two
primary particles needs four neurons at the output layer. In general, two
neurons at the output are required for each primary particle that contributes
to an event pattern. This leads to several drawbacks of this neural network
architecture.

First, every category of events needs its own trained neural network in this
representation. This is computational power-intensive but achievable as it has
to be done only once.

The second issue occurs during the training process and can not be fixed for
events containing multiple particles.

Due to the neural network’s structure, it is not invariant under the exchange
of two incoming particles of one pattern. This can be understood by looking
at the training process in detail. Assume we have an event pattern with two
incoming particles. One of the particles hits the detector at the upper left of
the event pattern and the other at the lower right. Due to the ground truth,
the upper left particle is labeled with the first two neurons and the lower right
with the last two neurons. With this sample, the neural network learns that
the first PoE is in the upper left corner and modifies the weights. The same
goes for the second PoE.

The next event pattern looks similar to the first one, but now the assignment
of the ground truth is exchanged. For this sample, the first PoE is at the
lower right border of the pattern. During the forward propagation of the

!The PoE for photons and low energetic electrons is located in the pixel with the max-
imum energy deposition. Therefore, a representation limited only to the central pixel and
not the complete pattern is sufficient.
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second training step, the neural network predicts the PoE of the first particle
in the upper left region as it learned from the training step with the first
sample. It learns that the first particle has arrived at the bottom right when
adjusting the weights. It changes the weights in a way that the predicted
PoE moves from the upper left in the lower right direction. As a consequence,
the predicted PoEs tend to be more centered in the middle of the pattern in
comparison to the ground truth.

This behavior can be fixed partially by a different training data preparation.
For example, the first particle always has the smaller x-coordinate of the
ground truth. This solves the issue for the x-coordinate but not necessarily
the issue for the y-coordinate. An example of a pattern that still leads to
issues is a PoE at the lower left and an upper right PoE. There is no general
preparation or representation of the training data, which can resolve this
issue; hence it always leads to a loss of accuracy for multiple events.
Nevertheless, the CoNN has its applicability: Because of its low number of
parameters, it is fast and leads to very good accuracy for single events.
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Figure 7.1: Schematic of the CoNN. The CoNN can be divided into a block that
contains convolutional layers and a flat block. The convolutional layers can be
optionally separated by a max pooling layer. The number of features of each con-
volution layer is 64, the number of neurons of the first dense layer is 100, and the
number of neurons in the second dense layer is two.

The schematic of the CoNN is depicted in Figure 7.1. The network
structure is a combination of a convolution part and a flat, dense part.
The first block contains two convolution layers (Section 6.7.1). These two
convolution layers extract the ratio of relative energy deposition of the
individual adjacent pixels of the event patterns.
The second part contains several fully-connected layers. The number of
neurons of the fully-connected layers decreases from layer to layer down
to two neurons for the output layer. The intermediate part consists of a
dropout layer (Section 6.7.4) to avoid overfitting, and a flatten layer that
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reduces the dimensions of the feature maps to one. A detailed list of the used
hyper-parameters can be found in Table C.3 in Appendix C.5.

Except for the output layer, which uses the sigmoid function, the hyper-
bolic tangent is used as an activation function because it leads to the best
results compared to the other activation functions. The hyperbolic tangent
can be found in Table 6.1 on page 93, referenced as TanH.

The normalized output of the CoNN can be transferred back to physical
coordinates in the frame with two steps. The first step is to apply the inverse
function of the normalization. The output of this transformation is the
physical coordinates of the PoE in the reference systems of the individual
pixels. In the second step, these PoEs are transferred to the global reference
system of the frame. Therefore, the positions of the patterns are required,
which are stored by the housekeeping of the classical event analysis. The
result is a list of the absolute positions and the frame identifier of each PoE
in the reference system of the frame.

The individual PoEs are binned into virtual pixels and summed up over
all frames to create an intensity image. The size and position of these virtual
pixels are independent of the physical pixels. However, it is common to align
the positions of the virtual pixels to the physical pixels. The size of these
virtual pixels is independent of the compact network itself and limited by the
amount of data and the accuracy of the reconstruction.

7.2 Training

The training and optimization process is implemented in a highly automated
pipeline that is scalable to different machines. The data used for the training
are analytically generated (Section 4.7). The analytically generated training
data set consists of approximately 15 million event patterns and their corre-
sponding PoEs. The samples are different in their PoE position and pixel-wise
noise. Data obtained by measurements were not used for the training because
their actual PoE is not easy to be obtained. Therefore, it is not possible to
create an accurately labeled experimental data set.

The loss function is the mean square error since its square root is also the

quantity that should be as small as possible at the benchmark.
Compared to the mean absolute error, the mean square error penalizes large
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errors more. The optimization process focuses on reducing large errors. The
mean square error could lead to the behavior that many small errors are
acceptable if this reduces the number of large errors. [164]

Especially, the treatment of events whose true PoE is close to the central
axis is influenced by the selection of the loss function. The distributions of
those events’ reconstruction are asymmetric, with a large tail towards the
pixel center. The selection of the loss function determines the influence of
the events in the tails on the optimization process. The mean square error
reduces the asymmetry and the tail and, therefore, increases the accuracy
for larger uncertainties. A smaller asymmetry leads to a more homogeneous
reconstruction (Section B.2.4).

7.3 Validation

In this Section, the validation for the CoNN is presented. For the validation,
a simulated data set that was not used for the training process of the neural
network is used. The same data set as in Chapter 5 is used to make the results
comparable. The validation is divided into the accuracy and the performance of
the CoNN. A detailed comparison with the classical methods and the accuracy
with measured data can be found in Chapter 10.

7.3.1 Accuracy of the Neural Network

The accuracy of the CoNN is divided into two applications. These appli-
cations are the reconstruction of a sharp beam’s position and a (summed)
intensity image of many individual PoEs caused by a structure such as a grid.
The evaluation for both applications is split into a normalized hit-map for
homogeneous illumination and a spatial resolution map.
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Figure 7.2: Accuracy of CoNN in terms of normalized hit-map, spatial accuracy,
spatial precision, and resolution. The physical pixel size is 48 x 48 pm? with (0,0)
in the center of the pixel, and the energy of the primary photons is 8048 eV. A non-
correlated Gaussian distributed pixel-wise noise with a mean of 11.3 eV is assumed.
The peaks near the pixel borders compensate for the normalized hit-map of zero on
the pixel borders. A detailed description of the legend can be found in the text.
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Like for the conventional methods in Section B.2.4, Figure 7.2 depicts the
accuracy for CoNN. The legend refers to the data fed to CoNN during the
training process.“n” means that n corrected values are used as ground truth,
and “PoE” denotes the usage of the simulated PoEs for the training process.
“w /o noise” means no noise is added to the training data, and “w noise” means
a non-correlated Gaussian distributed pixel-wise noise with a mean of 11.3eV
is added to the three times three pattern during the training process!'. “all”
describes a training process where all pixels of the pattern are used, and “>0"
means that negative values are set to zero during the training and the predic-
tion process.

Due to the design of the CoNN, the plotted quantities are not necessarily
symmetric around the pixel center. However, these asymmetries are on a sub-
micrometer level and are introduced by the training samples fed to the CoNN
during the training process. Consequently, the asymmetries are different for
different training processes, but the overall structure is independent of the
training process and the same for all training processes.

Especially, the hit-map (Figure 7.2a) is sensitive to checkerboard artifacts in-
troduced by the CoNN, but due to the binning of the subpixel structure,
these fine checkerboard artifacts are averaged over the virtual pixel’s area and,
therefore, reduced (Figure 10.7 on page 195). Since the CoNN is not able to
correctly handle PoEs located exactly on the pixel border due to the sigmoid
activation function, the number of hits is zero at the pixel borders. These
PoEs are reconstructed near the pixel borders leading to a high number of hits
of approximated three near the pixel borders. The peak at the pixel centers
results from events that deposit their energy only in one pixel. Therefore,
reconstruction at the pixel center is the best guess for the PoE. Except for
the training, which neglects noise during the training process, the groud truth
corrected by 7 leads to a homogeneous result in the pixel center.

The spatial precision is defined as the standard deviation of the individual
reconstructed PoEs. The spatial accuracy is defined as the average distance
between the mean position of the individual reconstructed PoEs and their
ground truth. The resolution is defined as the average Fuclidean distance be-
tween the individual reconstructed PoEs and their ground truth. A detailed
comparison between the spatial precision, spatial accuracy, and resolution can
be found in Appendix A.1.

The spatial precision (Figure 7.2b) and resolution (Figure 7.2d) are worse near
the central axes of the pixel. As expected, CoNN leads to the best results in
terms of resolution by using a training data set which is as close as possible to

!Since a 7 correction is not necessary for noise-free data, the result of CoNN is the same
as using no 7 correction neglecting fluctuations during the training process.
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the measured data. The CoNNs trained with noise-free data show peaks with
a spatial precision higher than 2 pm and a resolution higher than 1.75 pm. In
comparison, CoNNs trained with noise are approximately 25% better in terms
of resolution.

Since the accuracy (Figure 7.2¢) averages over many samples, the noise con-
tribution is reduced by the number of samples. Therefore, the reconstruction
of individual PoEs plays a minor role and the statistic average approximated
by the noise-free PoE is of interest.

As expected, using 7 corrected values during the training leads to a worse
result compared to the uncorrected values in terms of spatial precision, spa-
tial accuracy, and resolution. However, using n corrected values with noise
during the training leads to a homogeneous response and is, therefore, used
for intensity images. The best result for intensity images is obtained using all
values of the three times three pattern. For individual beam positions, using
uncorrected PoEs with noise contribution leads to the best results. The best
precision is obtained by applying no noise during the training.

The structures of the results created by CoNN look similar to the conventional
methods (Section B.2.4). However, the results for the spatial accuracy, spatial
precision, and resolution are better than the conventionally obtained results.

7.3.1.1 Individual Beam Positions

Figure 7.3a shows the normalized hit-map. Similar to the classical method
(Figure 5.1a on page 83), the normalized hit-map shows a higher probability
of a central hit for the x- and the y-dimension and a slightly lower probability
near the axes. The inhomogeneity is more pronounced than for the classic
method but spatially more localized.

The inhomogeneity occurs due to the presence of noise and can be explained
analogously to the inhomogeneity in the classical method (Chapter 5). It is
more pronounced since, due to the sharper distributions, the skewness of the
reconstructed distributions is more significant. Figure 7.4 shows the distribu-
tion of the reconstructed positions for five different PoEs. The skewness is
introduced by the same effects as for the classical methods (Section B.2.4).
Due to the sigmoid activation of the last layer, the CoNN is not able to
predict a PoE directly on the pixel border. As a consequence, the normalized
hit-map is zero direct on the borders, and reconstructed PoEs are slightly
shifted towards the pixel center resulting in a frame with higher hit density
around each frame. This is expressed by a frame around the pixel containing
zero hits and a slightly smaller inner frame around the pixel with a higher
number of hits (Figure 7.3a). Since this effect is on sub-micrometer level,
it normally introduces no artifacts for a subpixel reconstruction due to binning.
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Figure 7.3: Normalized hit-map and resolution map for the CoNN obtained from
a homogeneous illumination with approximately two million simulated primary par-
ticles. The physical pixel size is 48 x 48 ym? with (0,0) in the center of the pixel,
and the energy of the primary photons is 8048 eV. A non-correlated Gaussian dis-
tributed pixel-wise noise with a mean of 11.3eV is assumed. These are the same
parameters as for the presented measurement in Section 10.1.2. The hit-map’s color
scale is due to the normalization unit-less, and the color scale’s unit of the resolution
map is pm.

The resolution of the neural networks is measured spatially resolved
within the pixel structure. Therefore, the Fuclidean distance in the x-
and y-dimension between ground truth and predicted PoE is calculated
individually for each event. Since each event pattern contains exactly one
primary particle and since the CoNN predicts exactly one PoE per event
pattern, the assignment is unique. The obtained distances are averaged over
events with the same true PoE and binned into a two-dimensional histogram
(Figure 7.3b). In comparison to the classical method (Figure 5.1b on page
83), the spatial resolution obtained with the CoNN is better. Due to the
skewness of the reconstructed distributions near the central axis (Figure 7.4),
outliers exist, which are reconstructed. These outliers increase the averaged
Euclidean distance between the ground truth and the predicted PoE, leading
to a worse spatial resolution than central hits.

Figure 7.5 shows the reconstruction of 50 randomly chosen PoEs within

the pixel structure by the CoNN. For every PoE, approximately 4000 event
patterns are created. The only difference between those event patterns is the
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Figure 7.4: Reconstruction with CoNN of five chosen PoEs within the pixel struc-
ture. The physical pixel size is 48 x 48 m? with (0,0) in the center of the pixel,
and the energy of the primary photons is 8048 eV. A non-correlated Gaussian dis-
tributed pixel-wise noise with a mean of 11.3eV is assumed. The color code refers
to the different PoEs. For the sake of clarity, only the central area of the pixel is
shown.

contribution of the noise to the different pixels. Consequently, the histogram of
the reconstructed PoE of the event pattern leads to broad distribution and not
a sharp spot for each PoE position. The structure can be explained similarly to
the classical reconstruction (Figure B.12 on page 251). Positions near the edges
of the pixel structure are less sensitive to noise. Therefore, the spot created by
many individual particles at the same PoE with different noise contributions
is sharp (1 in Figure 7.5). Distributions of PoEs near the central axes are
broad in the dimension in which they are near the central axis and sharp in
the other dimension (2 in Figure 7.5). Distributions of PoEs in intermediate
positions between the pixel border and the central axis cause a medium spread
(3 in Figure 7.5). Distributions of PoEs near both central axes are broad in
both dimensions (4 in Figure 7.5). In general, the distributions are broad in
the dimension in which their position is near the central axis. The shape of
those distributions depends on the relative position of the PoE within the pixel
structure.

Especially the distributions of central hits are sharper than with the classical
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reconstruction (Figure B.12 on page 251). However, the position-dependent
shapes of the distribution look similar to the classical method since two events
with different PoEs can have a similar event pattern due to the presence of
noise. Therefore, event patterns can not be uniquely assigned to a PoE. The
validation of the accuracy of the CoNN with measured data can be found in
Section 10.1.1.
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Figure 7.5: Reconstruction by CoNN with correction of 50 randomly chosen PoEs
within the pixel structure. The physical pixel size is 48 x 48 pum? with (0,0) in
the center of the pixel, and the energy of the primary photons is 8048 ¢eV. A non-
correlated Gaussian distributed pixel-wise noise with a mean of 11.3 eV is assumed.
For each PoE position, approximately 4000 primary particles are simulated. The red
crosses indicate the positions of those PoEs, and the color map shows the amount
of individually reconstructed PoEs on a virtual grid with a spacing of 0.1 pm in
percent. The structure of the reconstructed distribution is exemplarily explained
with the help of the four numbered PoEs in the text.

7.3.1.2 Intensity image of a structure

If the PoE of individual photons is not of interest but an intensity image of
many photons without artifacts, the CoNN can be trained alternatively not
with the actual PoEs but with PoEs shifted by n(z) (Appendix B.2.3). n(z)

can be determined either by simulated or measured data with a homogeneous
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Figure 7.6: Normalized hit-map and resolution map for the CoNN obtained from
a homogeneous illumination with approximately two million simulated primary par-
ticles. The training data are not the PoEs but the by n(x) corrected PoEs. The
physical pixel size is 48 x 48 pm? with (0,0) in the center of the pixel, and the energy
of the primary photons is 8048 eV. A non-correlated Gaussian distributed pixel-wise
noise with a mean of 11.3eV is assumed. These are the same parameters as for the
presented measurement in Section 10.1.2. The hit-map’s color scale is due to the
normalization unit-less, and the color scale’s unit of the resolution map is pm.

illumination. Like for the conventional methods, the result is a homogeneous
image. However, the spatial accuracy worsens by applying this second
correction since the reconstructed center of gravity method (with corrections)
already describes the best guess of the true PoE. Figure 7.6 shows the
normalized hit-map and the spatially resolved resolution map. In comparison
with the CoNN, which is trained by the ground truth PoEs (Figure 7.3), the
normalized hit-map is more homogeneous, but as expected, the resolution
is worse. In comparison with the classical approach (Figure 5.1c on page
83 and Figure 5.1d on page 83), CoNN leads to a better spatial resolution
but a slightly worse homogeneity. These artifacts in the homogeneity mainly
occur at the pixel borders and become not so pronounced towards the center.
However, this inhomogeneity is on sub-micrometer level and, therefore, in-
troduces no artifacts for a subpixel reconstruction with a reasonable binning.
Reasonable in this sense means a subpixel reconstruction in the order of 8 x 8
subpixels per physical pixel. The validation of the accuracy of the CoNN with
measured data can be found in Section 10.1.2.
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7.3.2 Performance

The evaluation of the performance of the CoNN can be divided into two parts.

The first part is the performance of the training process. Because the

training process has to be done only once, the performance of the training
process plays a minor role.
A suitable value is 60 epochs of training. On the GPU NVIDIA® GeForce®
GTX 960 [165], one epoch with approximately 15 million samples and a batch
size of 128 takes approximately 30 seconds, which leads to an overall training
time of approximately half an hour. This short training time enables an easy
and fast adjustment to other primary energies or other detector parameters.

Second, the performance and the associated computing time of the recon-

struction process. Since the event analysis is part of both the classical analysis
methods as well as the reconstruction with the CoNN, the necessary compu-
tational time is not considered. Only the PoE from the patterns is taken into
consideration. On a NVIDIA® GeForce® GTX 960 [165] the reconstruction
rate is approximately 11 MHz and on the edge TPU [163] the rate is approxi-
mately 10 kHz!.
The model was run with TensorFlow lite [162] on a Raspberry Pi 3 Model
B [166] to demonstrate the small resource requirements of the CoNN. On the
Raspberry Pi 3 Model B, the reconstruction rate is approximately 1 kHz, which
is faster than the conventional event pattern analysis (Section B.1). There-
fore, even if the neural network is running on a Raspberry Pi 3 Model B, the
bottleneck for the performance is the event pattern analysis. In Chapter 8,
an approach based on a convolutional neural network that does not require an
event pattern analysis in a previous step is presented.

'The edge TPU and the TPU first need the model to be deployed. As a consequence,
the reconstruction of the first batch is slower, since it also contains the step of deployment.
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Chapter 8

Reconstruction of the Point of
Entry with Convolutional Neural
Networks

The reconstruction of the PoE for particles on pixel-level or subpixel-level
without a previous event analysis can be achieved with a convolutional neural
network (CNN). Due to the connectivity of the individual layers of the CNN,
it is well suited for image processing [167]. The CNN enables the similar
treatment of features, e.g. particle tracks, independent of their position in
the frame!. This is physically valid as the behavior of a particle should be
independent of its position in the detector volume. The second advantage
is due to the shared weights in one convolutional layer. As a consequence,
all events, no matter what their positions are in the frame, contribute to the
optimization of the same weights. This significantly reduces the training effort.

The output of the introduced point of entry neural network (PoENN),
which is based on a CNN;, is a hit-map representing the probability of a hit for
each pixel in each frame. This automatically leads to a very unbalanced data
set for the training process. Unbalanced data set in this context means that
the probability of a pixel containing a PoE is much lower than the probability
of a pixel containing no PoE. Especially for particles with higher primary ener-
gies, the energy deposition is distributed over many pixels (Figure B.1 on page
227). This means that if only events with one particle or pile-up events with
a few particles are allowed, significantly more pixels have no PoE than a PoE.
It becomes even more significant for smaller pixel sizes and subpixel resolution.

L An exception is the border pixels of the active detector volume. Here, particle tracks
can occur whose energy deposition is only partially detected.
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Applying a threshold to the hit-map representing the probability leads
to a binary hit-map. In this binary hit-map, each pixel can take two values.
Zero if there is no PoE in the pixel predicted and one if there is a PoE
predicted. The binary hit-map is similar to the output of a detector in
counting mode as described in Chapter 3.4.2 and schematically looks like
Figure 3.7d respectively Figure 3.7e on page 42 if super-resolution is enabled.

In terms of machine learning, the creation of hit-maps is a typical segmen-
tation problem with two classes. Each pixel of each frame can contain or can
not contain a PoE of a primary particle. For segmentation problems, the most
commonly used loss functions are pixel-wise binary cross-entropy or pixel-wise
categorical cross-entropy [168]. However, they can not handle this very unbal-
anced data set. Without high effort, the neural network learns that the loss
function is small if it predicts that no pixel contains a PoE. But this does not
achieve the desired result. Therefore, a newly developed loss function based
on the confusion matrix is presented in Section 8.3.

8.1 Network Architecture

In this Section, the architecture of the developed PoENN is presented. The
architecture is designed modularly to keep the structure flexible and simple.
The core of the POENN (Figure 8.1) is the u-net module that is built itself from
nested submodules presented in Section 8.1.1. The u-net module is embedded
by several layers described in Section 8.1.2 to realize a useful interface.

[ input module ]
v
(_u-net module |
v

[ output module J

Figure 8.1: Architecture of the POENN that contains the u-net module and the
embedding. The individual modules are sequentially connected.

8.1.1 U-net Module

The structure of the developed PoENN is based on the u-net [152], which
was initially developed to detect two-dimensional borders of structures for
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biomedical imaging'. The u-net consists only of convolutional parts and not
fully connected layers to ensure the handling of images of nearly arbitrary size.
Figure 8.2 shows the simplified structure of the u-net. In this example, its
depth is four. The basic structure can basically be divided into three parts[152]:
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Figure 8.2: Simplified schematic of the u-net. The width and the height of the
input image is I. The number under the layer denotes the number of features. In
the shown example, the initial number of features is 64. The tilted number is
the spatial width and height of the layer. The yellow layers denote two-dimensional
convolutions, the red layers denote down sample processes, and the blue layers denote
the upsampling processes. The blue lines show the shortcuts for the spatial allocation
of the extracted features. The repetitive block structure is clearly visible. Figure
adapted from [13].

In the following, the approaches aim to predict points. However, the architecture of
the u-net is suitable since the prediction should be translation invariant and local. This
means every pixel should be treated in the same way independent of its position within
the detector, and only pixels spatially close to each other influence the prediction. The
translation invariance is a valid assumption if the pixel-to-pixel variation caused by the
detector system is small in comparison to the signal caused by the energy deposition.
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The encoder is the first submodule of the neural network. It encodes the
input and extracts features stepwise by repeated blocks. The deeper the block,
the more abstract the features are. The number of feature maps is doubled
with each repetition, whereas the spatial size is decreased. For the original
u-net, the initial number of features is 64, such as shown in Figure 8.2 [152].
However, it turned out that using only 16 feature maps is sufficient (Section
8.5).

The bottleneck is the deepest point of the neural network. This layer
has the most feature maps and the smallest spatial size. At this point, all
information of the features is extracted, but only very little information where
these features in the original frame occur is left. It connects the encoder with
the decoder.

The decoder combines the extracted features with its spatial position.
This is also done stepwise to enable a symmetric architecture. The number
of feature maps is halved with each repetition, whereas the spatial size is
doubled. The shortcuts between the decoder and encoder (blue arrows in
Figure 8.2) guarantee the correct local allocation of the extracted features.

The structure of the u-net makes two requirements to the shape of the
input. First, the number of rows and columns of the input must be a power
of two, and second the spatial dimensions of the input must be large enough
to perform all encoder steps.

One of the big advantages of a u-shape in comparison to other architectures
is the relatively small amount of labeled data needed for the training process.
This is due to of the efficient use of the training data set [152].

The following paragraph explains the technical realization of the u-net
module. A list of the hyper-parameters used to define the network structure
can be found in Table C.4 in Appendix C.5. Figure 8.3 shows the sequences
used to build the u-net module. The encoder and the decoder are constructed
from repeated submodules. The number of repetitions of the encoder sub-
module and the decoder submodule defines the depth of the u-net module.
The submodules again are built from convolution blocks (Section 8.1.3). Each
block consists of the same arrangement of layers. These convolution blocks
are supplemented by specific layers completing the submodules.

Figure 8.4a shows the sequence used for the encoder submodule. The max
pooling has a pooling size of two times two and ensures a reduction of the
spatial dimensions by a factor of two.

The bottleneck consists of a number of repeated convolution blocks, each
followed by a batch normalization (Figure 8.4b). The number of feature
maps and the spatial size of the feature maps stays constant over the whole
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Figure 8.3: Architecture of the u-net module. Such as the u-net by Ronneberger
et al. [152], the u-net module consists of an encoder, a bottleneck, and a decoder.
The encoder and decoder consist of repetitive submodules. To ensure the symmetry
of the u-net module, the number of submodules is the same for the encoder and
decoder. This number is a hyper-parameter of the POENN and by default two.

bottleneck.

The decoder submodule (Figure 8.4c) has two tasks. First, increasing
the spatial size of the feature maps. This is achieved by upsampling
(Section 8.1.5.2).  Second, the merging of the extracted features with
their corresponding spatial position, which is done by concatenating the
feature maps from the corresponding encoder submodule with the feature
maps of the previous decoder submodule. After each decoder submodule,
the number of feature maps halves to maintain the symmetry with the encoder.

The depth of the original u-net is four which leads to a minimal input size
of 16 times 16 [152]. However, in the framework of this thesis, a depth of two
is sufficient (Section 8.5). A depth of two leads to four convolution layers (two
times two) in the encoder plus at least two additional convolution layers in
the bottleneck. Due to the limited spatial expansion of the individual events’
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(a) Encoder submodule (b) Bottleneck (c) Decoder submodule

Figure 8.4: Architecture of the u-net’s submodules. The u-net’s submodules are
the encoder submodule, the bottleneck, and the decoder submodule. The layers and
blocks in each submodule are sequentially connected.

energy deposition, a deeper u-net structure and, therefore, the capability to
investigate larger structures is unnecessary and requires only additional per-
formance. The minimum input size of the u-net with a depth of two is four
times four. However, smaller input sizes and, respectively, smaller frame sizes
lead to an increased ratio between border pixels and not-border pixels of the
frame. Events near the frame’s border potentially deposit a fraction of their
energy outside the frame. This undetected energy is not taken into account
by the neural network and leads to a lower accuracy. [169]

8.1.2 Embedding of the u-net Module

The u-net module is embedded by several layers, which handle the interface
between the input of the neural network and the input of the u-net module
and the output of the u-net module and the output of the neural network.

The input to the neural network has a dimension of three (batch size,
frame width, frame height). However, the convolution layers require a
four-dimensional tensor (batch size, frame width, frame height, feature maps).
Therefore, the input module of the neural network expands the dimension by
one (Figure 8.5a).

The output module contains two layers plus an activation function (Figure
8.5b). The first layer reduces the number of feature maps to one. The
activation of the last layer is sigmoid (Table 6.1 on page 93). Therefore,
the range of the output neurons is between zero and one, representing the
probability of containing a PoE for the individual pixels. The third layer of
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Figure 8.5: Architecture of the necessary embedding modules. These modules are
necessary to ensure a smooth 0.
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Figure 8.6: Architecture of the optional embedding modules. These optional em-
bedding modules surround the u-net module.

the output module reduces the dimension by removing the feature dimen-
sion to get a three-dimensional output (batch size, frame width, frame height).

Additionally, a preamble can be used.! This preamble adds an additional
convolution block in front of the u-net module to increase the number of
channels at the neural network’s input. To keep the neural network symmetric
with the preamble, also a postamble is added after the u-net module. The
sequence of the preamble and postamble is shown in Figure 8.6. The
preamble and the postamble are deactivated by default and activated if the
super-resolution module is used (Section 8.1.4).

!See Table C.4 in Appendix C.5 for the hyper-parameter for the POENN implemented in
the framework of this thesis.
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8.1.3 Convolution Block

The convolution blocks always have the same structure (Figure 8.7) and differ
only by the number of feature maps. The convolution block consists of two
convolution layers as discussed in Section 6.7.1 with a default kernel size of
three times three, followed by a rectified linear unit (ReLU) activation (Table
6.1 on page 93). By default, the two convolution layers are separated by a
batch normalization (Section 6.7.6) and a dropout layer (Section 6.7.4), which
is only active during training.

The hyper-parameters of the convolution block are the applied activation
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Figure 8.7: Schematic of the convolution block.

function and the kernel size of the convolution layers (Table C.4 in Appendix
C.5). Additionally, the batch normalization can be switched off and on, and
separable convolutions can replace the convolution layers (Section 6.7.2).

8.1.4 Super-Resolution Module

One way to achieve a better spatial resolution is to introduce subpixels. This
means dividing the physical pixel into smaller virtual pixels. The dividing
process is called upsampling. In the context of CNNs, this upsampling can
be realized by combining several layers (Section 8.1.5.2). In the context of
neural networks, increasing the resolution by using subpixels is known as
super-resolution (SR) [170].

The SR module handles the upsampling process and extends the u-net
module on the right side with several layers, and makes it asymmetric around
the bottleneck. It acts similar to the decoder of the u-net module, but the
corresponding counterpart of the encoder is missing. In the overall neural
network structure (Figure 8.1), the SR module is supplemented between the
u-net module and the output module, as shown in Figure 8.8. The additional
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Figure 8.8: Architecture of the neural network for POENN with super-resolution
extension. The SR module gets the output of the postamble (A) and the output of
the preamble (B) as inputs.

hyper-parameters can be found in Table C.5 in Appendix C.5.
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Figure 8.9: Architecture of the SR module and the SR submodule. In this example,
two SR submodules are repetitively applied to build the SR module. The input at
(A) is from the postamble or a previous SR submodule, respectively. The input (B)
is the output of the preamble.

The splitting of the physical pixel into the virtual subpixels can be done re-
cursively step by step by using multiple repetitive SR submodules or in one big
step by using one SR submodule. The idea behind the step-by-step approach
is that performing many simple steps is easier learnable than performing only
one complicated step.
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Technically, this is achieved by the SR module [169]. In the case of a recursive
expansion into the subpixel regime, the SR module consists of repetitive se-
quences of SR submodules. In the case of an upsamling in one step, only one
SR submodule is used.

The SR module takes as input the postamble’s output (A in Figure 8.8). The
SR module additionally gets output of the preamble (B in Figure 8.8) to enable
the spatial allocation. This can also be seen as a very large shortcut over the
total u-net module.

The first SR submodule takes the same inputs as the SR module (Figure
8.9). Each subsequent SR submodule takes the output of the previous one as
input as schematically shown as input A in Figure 8.9a. The inputs to the
SR submodule are upsampled (Section 8.1.5.2). The factor of the individual
upsamplings has to be accordingly adjusted. Therefore, a preceeding con-
catenation before the upsampling is, in general, not possible. The upsampled
feature maps are merged via concatenation. The concatenation is followed by
two convolution blocks (Section 8.1.3) by default.

8.1.5 Upsampling

The goal of upsampling is to increase the spatial size of a feature map. Upsam-
pling is required in the decoder of the u-net module and the super-resolution
module.

8.1.5.1 Conventional Upsampling Methods

The conventional counterpart of super-resolution in machine learning ap-
proaches is interpolation.

Many of the upsampling methods in the context of neural networks make use
of these conventional approaches.

All upsampling operations implemented as interpolation methods are algo-
rithms that expand discrete data from an old grid to a new finer grid. Figure
8.10 shows the pixel structures of the different subpixel levels and their
corresponding grids. The original grid is fixed due to the pixel structure of
the detector system. Typically, each pixel is divided into an even number of
subpixels in each dimension. Therefore, the new grid does not contain the
grid points of the old grid.

The nearest neighbor interpolation is the simplest approach. This

method simply determines the nearest neighbor in the old grid of a grid point
in the new grid and assumes the value is also valid for the new grid point.
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Figure 8.10: Pixel structure and grids for different subpixel levels. The squares
indicate the pixel structure and the corresponding grid points as circles. The red
pixel structure is fix due to the pixel structure of the detector system. The blue
pixels have a 2 x 2 subpixel representation, the green structure has a 4 x 4, and the
orange has an 8 x 8.

The bilinear interpolation is the extension of the linear interpolation for
two-dimensional grids. It is a sequence of two linear interpolations in each
dimension with one linear interpolation for each dimension. Although the
individual operations are linear, the result of the bilinear interpolation is not
linear. The bilinear interpolation takes the nearest neighbor and the second
nearest of each of the two dimensions into account. The weighting of the four
used values results from the distance between the new grid point and the old
grid points.

The bicubic interpolation takes 16 pixels (four times four pixels) into
account. The bicubic interpolation consists of 16 determined coefficients for
each reconstructed point. These coefficients can be determined by solving a
linear system of equations. The system of equations can be built by using
the values, the first and the second (mixed) partial derivatives, which are
evaluated at the physical adjacent pixel positions. Compared to the nearest
neighbor interpolation and the bilinear interpolation, the bicubic interpolation
is more computationally intensive, but the result is smoother and has fewer
interpolation artifacts. [171]

There are also kernel-based upsampling methods. The kernel determines
the weight of the surrounding points of the old grid. The window describes the
used points in the old grid for each point in the new grid. Three kernel-based
upsampling methods are briefly discussed in the following. For a detailed
discussion, the reader is referred to [172]. The used Gaussian interpolation
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uses a Gaussian kernel with a window of three and a sigma of 0.5 [130].

The Mitchell-Netravali Cubic filter is designed especially for lacking
proper prefiltering synthetic images [173].

For the Lanczos kernel, the normalized sinc function' multiplied by the
window is used [175]. The used size of these windows is a radius of three
(Lanczos3) or a radius of five (Lanczos5). The Lanczos filer leads to good
results but may lead to the so-called ringing artifact. This artifact appears
near sharp transitions. It causes overshoots and oscillations. Near the edges of
the physical frame, parts of the kernel may be outside the image boundaries.
In this case, only the pixels inside the image are included in the filter sum
and afterward appropriately normalized. [176]

TensorFlow also enables the use of even more complex scaling methods such
as Area interpolation that uses polygons [130].

A convolutional layer follows these upsampling methods in the convolu-
tional neural network. The convolutional layer compensates for the conven-
tional upsampling methods’ strengths and weaknesses, leading to no significant
differences between the results. An exception is Area interpolation which is
conceptional not suited for a detector with quadratic pixels. A more detailed
discussion can be found in Section 8.4.2.

8.1.5.2 Upsampling Methods in the Context of Neural Networks

Upsampling methods in the context of neural networks increase the number
of neurons per layer. The three common layers or combinations of layers to
achieve upsampling are as follows:

e Transposed convolution is the most common method to achieve super-
resolution (Figure 8.11a). The basic idea is described in Section 6.7.5. It
can be implemented in only one additional layer. The major disadvantage
of the transposed convolution is the tendency to periodical artifacts in
the reconstructed frame. This tendency becomes more pronounced for a
larger number of subpixels per physical pixel. [177]

Reducing these artifacts is one of the main challenges for the neural
network’s design and training process. A detailed discussion can be found
in Section 8.2.

e Resize convolution is a combination of a conventional upsampling pro-
cess followed by one or more convolution layers (Figure 8.11b). The
padding of these convolutions is chosen to guarantee that the output of

Lsine(x) := sin (x) /z [174]
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the convolution has the same size as the output of the upsampling pro-
cess. The accuracy of the neural network strongly depends on the choice
of the conventional upsampling method. There is a trade-off between per-
formance and accuracy. Simple upsampling methods are fast but lead
to lower accuracy, whereas interpolation methods that take more values
of the feature map into account could lead to better accuracy but are
more computationally intensive and, therefore, slower. Since the conven-
tional upsampling methods are not necessarily used on physical images
but on very abstract feature maps, nothing can be concluded about their
applicability from the comparison with classical pictures. [177, 178]

e Subpixel convolution is performed in two steps (Figure 8.11¢). Figure
8.12 schematically shows the idea of the subpixel convolution. The first
step is a convolution in two dimensions. The padding of this convolution
is chosen in a way that conserves the spatial dimension of the input. The
number of feature maps is chosen as the number of new subpixels per
pixel times the amount of desired output feature maps. In the second
step, the output of the convolution is reshaped in a way that reduces the
number of feature maps to one. The sorting of the individual entries of
the feature maps ensures that each feature map describes one fix subpixel
position in relation to the old pixel structure. For example, the first
feature map describes the upper right subpixel. This method shows
less pronounced artifacts in comparison to the transposed convolution
(Section 8.2). [179]

Especially for super-resolution, the usage of transposed convolution tends to
checkerboard artifacts. Resize convolution and subpixel convolution leads to
a more homogeneous response. However, due to the depth to space layer in
subpixel resolution, the frame size and, therefore, the size of the used detector
must be constant during the prediction process. This is only a minor limitation
since the size can be set before the prediction process individually instead of
before the training process. A detailed comparison of the methods can be
found in [180] and [181].

8.2 Checkerboard Artifacts

One of the major challenges of super-resolution tasks is to avoid checkerboard
artifacts. Checkerboard artifacts are spatially periodical patterns caused by
the neural network’s architecture. [180]
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Figure 8.11: Schematic viewing of the different upsampling methods in the context
of neural networks. LR denotes low resolution and HR high resolution and refer to
the spatial size of the feature maps.

low-resolution feature maps r? feature maps high-resolution output

Figure 8.12: Schematic view of a subpixel convolution. The viewed subpixel
convolution increases the resolution by a factor of » = 2. The input are three low-
resolution feature maps. The convolution conserves the spatial dimensions and has
r2 = 4 output feature maps. The sorting ensures that each feature map describes a
fix subpixel position in the context of the old pixel structure.

Due to the checkerboard artifacts’ nature, they are constructively reinforced
for a generated image which is typically obtained by summing over many
individual frames [169].

The detector is homogeneously illuminated in order to investigate checker-
board artifacts. The normalized counting rate ¢,y is defined as follows [169]:

c o Zframes ﬁivxry — Gixy (8 1)
X,y — .
Y Zframes gi,x,y

Here, p; « is the prediction of the pixel of the i frame at position (x,y) after
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applying the threshold. The nomenclature for the ground truth ¢ is similar.
An example can be found in [13].

Due to the periodical character, the checkerboard artifacts can also be
investigated by comparing the ground truth’s spatial frequency spectrum with
the predicted result’s spectrum.

Since checkerboard artifacts spatially repeat themselves, a Fourier analysis in
one or two dimensions can also help during the optimization process of the
neural network structure to investigate the nature of the artifacts.

The presence of these artifacts strongly depends on the used layers and is

most pronounced for certain transposed convolution layers. Transposed con-
volution layers can transform a homogeneous input to an output with checker-
board artifacts due to uneven overlap [182]. For example, a two-dimensional
transposed convolution with a stride of two and a kernel size of three has some
outputs with four times the input, some outputs with twice the value of the
input, and some outputs which are the identity function of the input. These
differences become more pronounced and the pattern even more complex for
two or more transposed convolutions after each other. [182]
In principle, the neural network could learn to compensate these artifacts,
but in practice, this is very complex, and most neural networks struggle to
compensate them completely [182, 183]. Resize convolution and subpixel con-
volutions do not show this behavior intrinsically. But checkerboard artifacts
can also occur during the training process, for example, due to the training
data structure. If some pixels in the training data are hit more often than
others, this can lead to an inhomogeneous result. Hence training data needs
to be selected carefully.

8.3 Loss Function

The introduced loss function is optimized for unbalanced data sets, and the
focus on which the neural network should be optimized can be varied with
three parameters. It is necessary to handle unbalanced data sets, since on
average, especially for super-resolution, the ratio of pixels with a PoE (#PoE)
to pixels with no PoE (#PoE) is even for higher rates much smaller than one:

#PoE
#PoE

<1 (8.2)

For example, the pixel-wise binary cross-entropy, which is typically used for
binary segmentation, the optimization process would result in no PoE being
predicted. In most cases, the neural network is correct in predicting no PoE.
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The loss function shows a local minimum for predicting no PoE at all. But
this is not the desired result. Nevertheless, the idea behind binary cross-
entropy is also applicable to this problem. But additional weightings have to
be introduced, showing the optimization process on what the focus should be.
The basis of the definition of the loss function is the confusion matrix shown
in Table 8.1.

Table 8.1: Confusion matrix. PoE denotes a PoE and PoE no PoE.

Ground truth
PoE PoE
PoE | True Positive (TP)  False Positive (FP)
PoE | False Negative (FN) True Negative (TN)

Prediction

The loss function (eq. 8.3) is calculated frame by frame and contains three
components [13]. Each of these three components controls a particular prop-
erty to ensure an optimal optimization process with the desired focus.

L(g,p) =a-TPR(g,p) +b-TNR(g,p) +c-Alg,g,p) (8.3)

Here, T PR is derived from the true positives of the confusion matrix, TN R
from the true negatives, and A explicitly handles the number of points of
entry per frame. The positive prefactors a, b, and ¢ can be individually
adjusted to the used training set. A detailed discussion of the individual
components is presented in the following.

The only two arguments to the loss function are the ground truth frame
g, and the from the model predicted frame p. The entries of the ground truth
frame can be zero for no PoE or one for a PoE in the corresponding pixel.
The values of the pixels of the predicted frame are between zero and one,
representing the probability of a PoE in this pixel. In addition, the inverse is
always specified for each frame, which is called dark-class here. The to the
ground truth frame corresponding dark-class is g =1 — ¢g. For the predicted
frame, the dark-class is p =1 — p. 1 is the matrix with the same shape as a
frame, and each entry of it contains a one. The sum of the value of each pixel
and its corresponding dark-class is due to the conservation of probability
always one. The contribution of a pixel to the loss function depends only on
its value and not its position within the frame.

The dark class can be calculated at each training step or can be explic-
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itly integrated into the output layer of the neural network. For an explicate
formulation, the number of neurons of the output layer has to be doubled.
The explicit formulation is based on one-hot encoding, which is introduced in
Section 6.5.3. In this case, the number of feature maps at the output has to
be two. One feature map represents the probability for each pixel containing
a PoE, and the other feature map represents the dark-class for each pixel.
For the explicit formulation of the dark-class, the activation function of the
last layer has to change from sigmoid to softmax activation (Table 6.1 on page
93). The softmax activation ensures the conservation of probability for each
pixel over the different feature maps. However, during the optimization pro-
cess, it turns out that a calculation of the dark-class and for every training
step, a sigmoid activation leads to a slightly better accuracy than the explicit
formulation of the dark class.

In eq. 8.3, the small letters a, b, c are positive factors that control the
priorities of the optimization process. Because of the unbalanced data set for
the training process, these factors have to be chosen asymmetrically. The
ratio between a and b should be similar to the ratio between pixels with a PoE
to pixels without PoE [184]. Deviations from this ratio shift the sensitivity of
the model. If the ratio of a and b favors the contribution to the loss of the
true positive rate, the model is trained to predict a PoE rather than no one at
all, thus, increasing the multiplicity. In contrast, if the ratio of a and b favors
the contribution to the loss of the true negative rate, the model predicts fewer
PoEs. The choice of ¢ is in principle not restricted but should be between a
and b or smaller. A too-large factor ¢ potentially leads to a disregard of the
terms with the factors a and b. [13]

The explicit formulas for calculating the three parts of the loss function are
the true positive rate (TPR), true negative rate (TNR), and A, which handles
the ratio between the number of predicted PoEs and the number of PoEs in
the ground truth [13]:

_ _Z (g ©logp)
TPR =-S5 2 (8.4)
TNR — 2 (gOlogp) (8.5)

2.9
A = —log (1 _ |Zg_—2}_9|> (8.6)
2.9+2.7
Here, ® is the so-called Hadamard product [148], g the ground truth, p
the prediction of the neural network, and g the inverse ground truth. The
structure of the three parts is discussed in the following.
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Figure 8.13: Behavior of logarithmic function

The normalization factor is the ground truth because it is independent of
the prediction or the used model. The contribution to the loss of the true
positive rate TPR (eq. 8.4) handles the true positive pixels. True positive in
this context means that the positive result is used. Therefore, the probability
for a PoE in the predicted pixel is taken into account, and the statement
is true, respectively, the ground truth contains a PoE. The first step is to
calculate the logarithm of the probability of the prediction pixel by pixel.
In comparison with, i.e., a linear or polynomial function, the logarithm has
some advantages (Figure 8.13) and is also used to define cross-entropy [130].
Compared to a linear response, larger errors have a bigger impact on the
loss than small errors. This is necessary for a fast optimization process. The
logarithm has no vanishing gradient in the domain of definition between zero
and one, which is necessary to ensure a successful use of the backpropagation
algorithm. For the best prediction of the PoE, denoted with a one, the
logarithm is zero and makes no contribution to the loss. For predictions close
to zero, which is the biggest possible error for a ground truth pixel with a
PoE, the logarithm diverges to minus infinity. In combination with the minus
sign in front of the fraction, the loss becomes very large. The next step is to
multiply the logarithm component by component with the ground truth frame
via the Hadamard product [148]. In a less computing power-intensive step,
this ensures to consider only the positive pixels. The result of the Hadamard
product is a matrix with the same size as the input matrices. However, the
loss function should be a scalar. To achieve this, the individual results for each
pixel are summed up. The sum over the ground truth frame in the denomina-
tor is for normalization. It makes the contributions of the true positive rate to
the loss function independent of the amount of PoEs in the investigated frame.

The contribution to the loss of the true negative rate TN R (eq. 8.5) han-
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dles the true negative pixels. The definition is analog to the definition of the
contribution to the loss of the true positive rate. The dark class is used because
this component of the loss handles the pixels with no PoE in the ground truth.
True negative pixels are pixels where the ground truth pixel contains no PoE.
This means the loss should be small for high values of the predicted dark-class.

The last component named A (eq. 8.6) explicitly handles the absolute
difference between the predicted number of particles in a frame and the
ground truth number of particles in this frame. The difference is also handled
implicitly with the contributions to the loss of the true positive rate and the
true negative rate. However, an explicit term enables a more detailed control
by the user. The numerator describes the difference between the ground
truth and the prediction. The denominator is the total number of pixels per
frame. The averaged difference is in the best case zero and in the worst case
one. The optimal model should have a small loss. As a result of this fact in
combination with the behavior of the logarithmic function, the argument of
the logarithm should be one minus the averaged difference (Figure 8.13).

The false negatives and the false positives are also part of the confusion
matrix but are not considered explicitly for the loss function. Since their
contributions are already considered implicitly, an explicit formulation would
be redundant and only require unnecessary computing power. This would
result in a slower optimization process. Analog to the contribution to the loss
of the true rates, the contribution to the loss of the false negative rate is:

S [g@log (1 — )]
2.9

With the same argumentation as for A, the argument of the logarithm is one
minus the dark-class in eq. 8.7.

FNR = —

(8.7)

Substituting the relation between the predicted frame and its corresponding
dark-class leads to the result that in this definition, the contribution to the
loss of the false negative rate F'N R equals the contribution to the loss of the
true positive rate TPR:

Npo _2lg@log(1-(A-p))] > (9Ologp) _ ,pp (8.9)

2.9 2.9

An analog argumentation leads to the equality of the false positive rate
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FPR and the true negative rate TN R:

FPR=TNR (8.9)

Figure 8.14a shows the total loss function with parameters a =b=c =1
for a frame with two pixels. The ground truth of pixel 1 contains a PoE, and
the ground truth of pixel 2 contains no PoE. The symmetry of the parameters
a and b leads to a symmetric contribution of pixel 1 and 2 to the loss. The
loss function has a global minimum for a value of pixel 1 of one and for a
value of zero for pixel 2. Figure 8.14b shows the gradient of the loss function.
The derivative becomes larger for values further away from the minimum. In
combination with the Adam optimizer described in Section 6.6.2, the behavior
of the gradient leads to a faster and, therefore, less computing power-intensive
optimization.
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N
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0.0 0.5 1.0 0.0 0.5 1.0
pixel 1 pixel 1
(a) Loss (b) Gradient of loss

Figure 8.14: Loss function based on the confusion matrix for two pixels. The
ground truth of pixel 1 is one, and the ground truth of pixel 2 is zero. (a) shows the
loss function with equipotential lines with a distance of 0.5 starting at 0.5. (b) shows
the gradient of the loss function. The arrows denote the direction of the negative
gradient. The length of the arrows indicates the magnitude of the gradient.

8.4 Training

As for the compact neural network, the training and optimization process is
highly automated in a pipeline. It works exactly such as the process for the
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compact network, except that no event analysis is implemented. This means
there is no housekeeping of the events and the events do not need to be assem-
bled into frames after passing through the neural network for validation. The
highly automated pipeline allows testing many hyper-parameters and design
variations. The preparation of the training data set should be problem-related.

The data set used for the training is either obtained from a Monte Carlo
simulation or analytically generated. The amount of training data is increased
by additional mirroring and rotating the analytically generated data set. Data
obtained by a measurement were not used for the training as their actual PoE
is unknown, and, therefore, it is not possible to create an accurately labeled
data set.

A Monte Carlo simulation of the energy deposition is required whenever
the energy deposition is dominated by many small energy depositions
over a large spatial area. Random processes generate these small energy
depositions, and it is impossible to predict the track of an individual parti-
cle. This is the case for electrons. Therefore, the training data set to train
the model for electrons is obtained from the simulation described in Chapter 4.

For photons that penetrate the detector perpendicular to the entrance
window, the energy deposition of low energetic photons up to several tens
kiloelectronvolts is very selective in the dimensions parallel to the detector
surface and not spread over a wide range. Therefore, the shape of the event
pattern mainly depends on the drift processes of the generated charges in the
detector volume and not on the energy deposition of the primary photon into
the silicon bulk. The generation of the numerically generated data set for
photons is described in Section 4.7.

For the optimization process and evaluation of the different neural network
configurations, simulated data and their ground truth, which the neural
network did not see during the training, are used. The optimization of the
hyper-parameters is done with electrons at a primary energy of 300 keV and
60keV for super-resolution. The upper limit of the choice of the primary
energies is made in such a way that with a high probability, the primary
particle or secondary particles do not escape on the front side of a detector
with a thickness of 450 pm under backside illumination (Figure 4.12 on page
66). The tracks of the electrons become longer and more complex for higher
energies (Section 4.6). Therefore, a high primary energy of 300keV is used
for optimization.
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8.4.1 Statistical Validation Parameters

Before checking the model’s functionality with physical quantities, a statistical
validation is performed. Therefore, statistical quantities such as the accuracy,
precision, recall (sensitivity), and the F1 score is used. All these quantities can
be calculated using the confusion matrix shown in Table 8.1. The accuracy
describes the ratio of correctly classified pixels [134]:

TP+TN TP+TN
TP+FP+FN+TN all
The dominant class has much more influence on the accuracy than the
rare class. In the context of the PoE prediction, this means for low rates,
predicting no PoE at all leads to a good accuracy but not to a good physical
result. [185] This effect is referred to as high accuracy paradox [186].

(8.10)

accuracy =

The precision specifies the accuracy of a positive outcome predicted cor-

rectly [187]:
TP

TP+ FP

The recall (also known as sensitivity) measures the ability of the model to
predict a positively predicted pixel correctly [187]:

precision = (8.11)

P (8.12)
reca _TP+FN .

The F1 score is a combined metric from precision and recall [188]:

precision - recall

F1=2 (8.13)

precision + recall

The F1 score is only high if the precision and the recall are high. All quantities
can have values between zero and one, where one denotes a good result.

The neural network’s output is a hit-map representing the probability of
a hit for each pixel in each frame. A threshold ¢ is applied to analyze the
statistical validation parameters, which converts the probability maps into

binary maps:
inar 0 Si xy < t
Sl(t))( Y) — XY (814)
Xy 1 Si’ny Z t

Here, t is the applied threshold, S;« the probability for a PoE in the pixel of
S.(binary

) :
ixy  the binary response.

the i" frame at position x and y, and
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Figure 8.15: Various statistical validation parameters as a function of the applied
threshold. Accuracy is plotted in blue, precision in orange, recall in green, F1 score
in red, and multiplicity in purple.

Figure 8.15 shows the statistical validation parameters as a function of the
applied threshold for the validation data set.
An applied threshold of approximated 50% aims to set the multiplicity (eq.
4.26 on page 70) to one. The multiplicity describes the ratio between predicted
PoEs in the binary map and actual PoEs. This threshold is determined by the
validation data set and kept constant for later analyses. Since the value of the
threshold is indirectly correlated with the number of pixels above the thresh-
old, the multiplicity decreases with the value of the applied threshold. For a
threshold of zero, multiplicity is the number of pixels per frame divided by the
average number of primary particles per frame. For a threshold of one, the
multiplicity is zero.
The accuracy is close to one and, therefore, not suitable as a statistical vali-
dation parameter for all applied thresholds due to the unbalanced data set.
As expected from the definition (eq. 8.11), the precision decreases with in-
creasing threshold, since for low thresholds, the probability to label all positive
pixels (pixels that contain an actual PoE) is high. Predicting that all pixels
contain a PoE leads to a high precision but is not meaningful in physical terms.
The recall (eq. 8.12) increases with increasing threshold since it is sensitive to
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false negatives. Predicting that very few pixels contain a PoE leads to a high
recall because the model is very confident that a pixel which is predicted to
contain a PoE actually contains a PoE.

As a consequence, a high precision or a high recall are not meaningful on their
own. The F1 score combines both parameters, and maximizing the F1 score
aims for an optimal balance of recall and precision.

8.4.2 Optimization Process
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Figure 8.16: Multiplicity and MTF as a function of the applied threshold for a
primary energy of 300keV and a primary particle rate of 0.01 e /pixel/frame. The
MTTF is obtained via the slanted edge method and graphed at 0.5 times the Nyquist
frequency.

Besides, the architecture of the neural network hyper-parameters can be
varied to obtain the best result. One key hyper-parameter is the method
used for upsampling (Section 8.1.5.2). The most important characteristic
for the different methods is the reduction of checkerboard artifacts (Section
8.2). For the different upsampling methods, the modulation transfer function
and the multiplicity as a function of the applied threshold to the neural
network’s output are determined, such as shown exemplarily in Figure
8.16. A multiplicity of one is obtained for all upsampling methods with
a threshold between 47% and 53%. The primary particle rate was for all
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trainings 0.02 e /pixel /frame, and except for the upsampling method, all
hyper-parameters were kept constant. Except for the Area Interpolation, all
methods lead to a modulation transfer function (MTF) at a ratio of 0.5 of the
Nyquist frequency between 0.76 and 0.77.

Especially for super-resolution approaches, using subpixel convolution leads
to results with fewer artifacts [182]. In combination with the obtained results
for the multiplicity and the MTF, subpixel convolution is used in the following.

The other two important hyper-parameters are the number of features of
the convolution layers and the depth of the neural network (Section 8.1.1).
More features of the convolution layers and deeper neural networks lead to
more trainable parameters. The result is a neural network that is more pow-
erful but requires more computational resources and, therefore, the prediction
process requires more time. However, due to physical limits, the improvements
by more parameters are limited at a certain point, and the accuracy can not
be significantly increased anymore.

To test the neural network approach for a different number of features and
depths, the number of features was varied between 2, 4, 8, 16, 32, 64, and 128
for a depth of two, and the depth was varied between 1, 2, 3, 4 for 16 features.
A PoENN with only 2 or 4 features does not have enough free parameters to
train on the complicated tracks produced by primary electrons and, therefore,
leads to non-useful results. Eight features lead to an MTF at a ratio of 0.5 of
the Nyquist frequency of 0.72 and 16 features to 0.77. For more than 16 fea-
tures, the MTF increases only slowly and not significantly. As a consequence,
and as a trade-off between performance and resolution, a POENN with 16 fea-
tures is selected.

A depth of one leads to an MTF at a ratio of 0.5 of the Nyquist frequency
of 0.59. For deeper depths, the MTF saturates at 0.77. Compared to the
number of free parameters, therefore, it is better to use more features instead
of making the neural network deeper.

8.4.3 Transfer Learning

In this Section, the applicability of transfer learning is investigated. The idea
behind transfer learning and the working concept are explained in Section 6.5.5.

The training process of optimizing the PoENN is computational power
intensive compared to the training process of the neural network described
in Chapter 7. Training the compact neural network only takes a few hours,
whereas training the POENN needs time in the order of a few days. Therefore,
transfer learning should be used to optimize the PoENN for the different
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applications.

Transfer learning focuses on transferring stored knowledge to different but
related problems [189]. This concept is used for three tasks in this thesis.
The first scenario is the extension to different subpixel levels. A detailed
explanation of the architecture can be found in Section 8.1.4. Due to the
neural network’s architecture, only the last layers handle the extension to
super-resolution applications. Therefore, the weights and biases of the first
layers, which are u-shaped, are independent and universally applicable to
the various super-resolution applications. This means the basis of the neural
network can be reused for the various super-resolution applications without
modifying or retraining the weights and biases of the basis. Therefore,
the training process of the various super-resolution applications needs less
computational power and is faster, leading to equivalent accuracy results.
The other two scenarios of using transfer learning instead of training the
model from scratch are transferring the model to other pixel sizes or to other
primary energies of the incoming particle. Training from scratch requires
more iterations and, therefore, more epochs, more data for the training
process, more computational power, and time. However, other pixel sizes or
other primary energies lead to a different task. For small variations in the
pixel size or the primary energy, this task is related and comparable to the
original task of the previously trained model. The new task needs a slightly
modified model. Due to the different boundary conditions, the modification
has to be in all layers of the neural network and not only in the last layers.
As a consequence, full model retraining is required.

8.5 Validation

The following Section is divided into two parts. The first part describes the
accuracy in physical terms such as the MTF obtained by a slanted edge (Ap-
pendix D.1) and the multiplicity as a function of the applied threshold to the
neural network’s output and the primary particle rate. The second part de-
scribes the neural network’s performance by analyzing the reconstruction frame
rate for different hardware approaches. The topology of the neural networks
can be found in Appendix C.5.
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8.5.1 Accuracy of the Neural Network

In this Section, the accuracy of the results is described with two physically
accessible quantities. On the one hand, the MTF, which provides information
about the obtained resolution, and on the other hand, the multiplicity, which
describes the number of reconstructed PoEs in comparison to the ground
truth number of PoEs. Figure 8.16 shows the MTF and the multiplicity
as a function of the applied threshold to the neural network’s output. As
expected, the multiplicity decreases with the applied threshold and is zero
for a threshold of one. A multiplicity of one means that, on average, each
primary electron creates one reconstructed PoE. The MTF behaves in the
opposite way and increases with the threshold. If the neural network’s output
is interpreted as a probability for each pixel containing a PoE, this behavior
is to be expected. With a higher threshold, only pixels are taken into account
where the probability is high that the pixel actually contains a PoE. As a
consequence, the MTF is higher for higher thresholds. For thresholds close
to zero and close to one, the contrast and the statistic become worse, and as
a consequence, the MTF cannot be calculated properly via the slanted edge
method. For the presented results, these limits are 0.01 and 0.85.

However, the ideal threshold depends on the application. A higher threshold
leads to a higher resolution. However, the statistic of the measurement has to
be high enough that it is acceptable to throw away pixels with a PoE where
the probability for a PoE is lower.

Figure 8.16 shows the MTF and the multiplicity for a constant average
primary particle rate of 0.01 e /pixel/frame. According to Figure B.3 on page
233, a rate of 0.01 e /pixel/frame leads to a probability for a single pattern
event of approximately 63 % .

Besides the applied threshold, another important parameter is the average pri-
mary particle rate. Ideally, the multiplicity is high and close to one over a wide
range of average primary particle rates, and the MTF decreases only for a high
average primary particle rate.

Figure 8.17 depicts the multiplicity and the MTF at 0.5 times the Nyquist
frequency as a function of the primary particle rate. The multiplicity is one

!Figure B.3 on page 233 shows the probability for a single pattern event as a function
of the primary electron rate. Since the classical methods are only able to reconstruct single
event patterns reasonably, the probability for single event patterns can be directly compared
with the multiplicity for the neural network approach. As the classical approach can use only
single event patterns, the MTF, and, therefore, the resolution is independent of the primary
particle rate as long as enough single event patterns occur. However, even for a primary
particle rate of 0.02 ¢ /pixel/frame, the probability of getting a required single pattern event
is below 50 %.
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Figure 8.17: Multiplicity and MTF as a function of the primary electron rate for
a primary energy of 300keV and an applied threshold of 0.5. The MTF is obtained
via the slanted edge method and graphed at 0.5 times the Nyquist frequency.

for very low particle rates since the event patterns are easily separable. With
increasing rate, more overlapping events occur and, therefore, the ratio of pat-
tern pile-up events increases. The probability for a pattern pile-up event is
shown in Figure B.3 on page 233. The consequence of pattern pile-up events is
a decreasing multiplicity. The multiplicity is for low rates higher than one to
compensate for the decrease. This ensures a multiplicity of one at the average
primary particle rate of the training data set. The shape of the multiplicity
as a function of the primary particle rate looks similar for reasonably applied
thresholds and changes only slightly. Reasonably in this context are thresh-
olds between approximately 0.3 and 0.7. However, a higher threshold shifts the
curve towards zero. The multiplicity decreases with increasing primary rate.
However, in comparison to the classical approach, this decrease is slow. Even
for a primary particle rate of 0.06 e /pixel/frame, the multiplicity is higher
than the multiplicity of the classical approach at 0.01 e /pixel/frame. This
means the neural network is able to handle a more than six times higher pri-
mary particle rate than the classical approach to provide the same multiplicity
and resolution.

A multiplicity higher than the probability to get a single event pattern is only
possible because the approach based on a neural network can handle pattern
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pile-up events and reconstruct more than one PoE for a pattern pile-up event.
The MTF is constant up to a rate of 0.04 e /pixel/frame. Even for rates up to
0.08 e /pixel /frame, the approach of the neural network leads to a better MTF
than the classical approach, which uses only single event patterns and achieves
an MTF at 0.5 times the Nyquist frequency in the order of 0.3 (Figure 10.13
on page 201). [13]

The validation of the accuracy of the POENN with measured data can be found
in Section 10.2.

8.5.2 Performance

The reconstruction rate of the used POENN with 16 features and a depth of
two (Appendix C.5) is presented in Table 8.2. To make the results best possi-
ble classifiable, different environments are used. A standard workstation with
a CPU (Intel Core i5-8400 with 6 cores and a clock of 2.8 GHz), a NVIDIA®
GeForce® GTX 960 [165], a server with 24 CPUs (Intel Xenon Gold 6128 with
6 cores and a clock of 3.4 GHz) is used. To get at the state-of-the-art limits, the
performance is additionally tested in the environment of Google Colab [190]
with TPU [191] hardware acceleration, respectively GPU (NVIDIA® Tesla®
P100 [192]) hardware acceleration.

The performance of the presented POENN strongly depends on the used hard-
ware. Using GPUs and specially designed ASICs (TPUs) leads to the best
performance. For the tested frame sizes, the scaling of the performance with
the frame size is in the order of one.

Table 8.2: Reconstruction rate in Hertz with PoENN [13]. The batch size for
32 x 32 pixel is 1000 frames, and for 256 x 256 pixel 100 frames. The edge TPU
is not supported since the depth to space operation can be currently not quantized
[162]. Quantization is necessary for the deployment to the edge TPU. Since the
parallelization of POENN is limited, the difference between i5 and Xenon is marginal.

j15) GTX 960 Xenon TPU P100
(CPU) (GPU) (CPU) (TPU) (GPU)

3000 15000 3000 17000 43000
50 250 60 250 900

frame size

32 x 32 pixel
256 x 256 pixel
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Chapter 9

Super-Resolution of Intensity
Images

For very high primary particle rates, the energy depositions of individual
particles can not be separated anymore. In nearly every illuminated pixel
and their neighbors, energy depositions of at least one primary particle can
be detected. The resulting image is called an intensity image. This makes
it impossible to reconstruct PoEs of individual primary particles even with
convolutional neural networks. In the following, two approaches to handle
intensity images will be discussed.

The first approach is called single image super-resolution (SISR). SISR
increases the sharpness of edges and points and provides a higher resolution
by introducing subpixels. The SISR also reduces the noise, a concept which
is known as denoising. Single image super-resolution is widely used in
photography and medical imaging analysis but can also be applied to electron
imaging in TEM or X-ray applications. [193, 194]

In information theory, a theorem exists called data processing inequality.
This theorem states that the content of information of a signal can not be
increased by local physical operations [195].) A consequence of this is that
a data analysis step can not generate information that was not already in
the data set. However, this does not effect the single image super-resolution
as this approach has an additional source of information to the image. The
additional information originates from the training process with a large
data set. Therefore, the data processing inequality is not violated by adding
information to the image. However, there are limits due to the data processing

LA global physical operation that takes more information into account can increase in-
formation content. An example of a global physical operation is the offset correction of the
raw data obtained by the detector.
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inequality [196]. For example, suppose the high-resolution image only contains
uncorrelated noise in every pixel. In that case, it is obviously impossible to
reconstruct the noise in every pixel by using its corresponding low-resolution
image. Only certain correlated structures in the image enable the recon-
struction of the high-resolution image from its low-resolution representation.
Without this correlation, denoising is not possible too. There is no difference
between the initial noise, which should be reconstructed and added noise that
should be removed.

The second approach for intensity imaging is multi-image super-resolution

(MISR). The idea behind MISR is to use more than one image of the same
scene and feed them into the neural network in parallel. Ideally, the only
difference between these multiple images is the noise of the detector system.
The neural network can combine the individual images to reduce the noise,
which leads to a better result. [197]
The classical analogy is combining many images and using the average. If
the noise is Poisson distributed, the averaging process reduces the noise by a
factor of 1/4/n in comparison to the individual images. In this context, n is
the number of averaged images. [38]

9.1 Single Image Super-Resolution

The first approach is a neural network for single image super-resolution (SISR).
This means the neural network takes one image as input and returns the same
image with a finer segmentation. A detailed survey of the different state-
of-the-art approaches for single image super-resolution SISR can be found in
[198].

0.1.1 Network Architecture

The architecture of the SISR network is adapted from the PoENN with
super-resolution extension introduced in Chapter 8.

The main difference is the loss function applied during the training process.
The loss function has to be modified because the neural network’s output for
SISR is not binary but represents different intensities. However, the output
range is between zero and one due to normalization (eq. 6.7 on page 94). The
normalization is no restriction because the neural network’s output for SISR
can be scaled with the input.

The modular architecture of the SISR is similar to the architecture of
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PoENN with super-resolution extension and shown in Figure 8.8 on page 147.
The input module (Figure 8.5a on page 145) does the data preparation, which
takes place in the neural network and expands the dimension of the input
tensor by one. The preamble (Figure 8.6a on page 145) contains a first convo-
lution block to increase the number of channels. The next block in the SISR
module is the u-net module (Section 8.1.1). A convolution block follows the
u-net module in the postamble (Figure 8.6b on page 145) to do the adaption
for the SR module (Section 8.1.4). The output module of the SISR module
decodes the abstract feature maps of the SR module to a physical hit density
map and reduces the dimension.

9.1.1.1 Residual network

The u-net module and the SR module are adopted from Section 8.1.1 respec-
tively 8.1.4 and supplemented by the idea of residual networks. Residual net-
works contain skip connections also called shortcuts to provide the option to
jump over some layers. These shortcuts have some advantages. Until the layer
learns its weights, the activation of the previous layer can be reused to avoid
the problem of vanishing gradients during the training process. Shortcuts ef-
fectively simplify deep neural networks and make them, therefore, simpler to
optimize. This automatically leads to an acceleration of the training process.
The optimization process gradually restores the skipped layers to learn more
complex features. [129]

(a) Dilation rate = 1 (b) Dilation rate = 2 (c) Dilation rate = 3

Figure 9.1: Dilated convolution with a kernel size of three times and three and
various dilation rates. The kernel is shown in blue. A higher dilation rate covers a
larger spatial area without increasing the number of trainable parameters. A dilation
rate of three is only shown for clarity but not used in this thesis’s framework.

The kernel size of the convolution is three for each spatial dimension.
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Nevertheless, a combination of two or more convolutional layers indirectly can
cover larger areas. The training data and the data that should be processed
have patterns of very different sizes. The shortcuts may help the neural
network to handle these different sizes easier since using them or not using
them effectively changes the number of sequential convolutional layers.

Additionally, each convolution block is bypassed by a convolution block
with a dilation rate of two for the spatial dimensions. The dilation rate defines
the spacing between the values in a kernel (Figure 9.1). The kernel size stays
the same. This enables the explicit handling of larger areas. The three times
three kernel with the dilation rate of two has the same field of view as a
five times five kernel but needs only nine (plus one) instead of 25 (plus one)
parameters. The one extra parameter comes from the bias. A small number
of parameters reduces the number of calculations in the neural network and,
therefore, leads to a better performance in terms of reconstruction speed.
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Figure 9.2: Residual block

The shortcuts and bypasses are combined by a layer that sums (adds) a list
of inputs. The dimensions of the inputs in this list have to be equal. This sum-
mation is implemented in a residual block (Figure 9.2). The shortcuts should
change the input as little as possible. However, the number of feature maps
has to be adapted to enable the summation. This is achieved by a convolution
layer with a kernel size of one in each dimension and linear activation.

9.2 Multi-lmage Super-Resolution

A further development is the proposed network for multi-image super-
resolution MISR. This neural network does not contain fully-connected layers,
which allows large flexibility regarding the number of input images. This
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neural network can combine any number of images from one scene. One scene
means that the only difference between these multiple images is artifacts that
should be removed originating, for example, from the noise of the detector
system. The combination of many images of the same scene reduces the noise
of the output because the neural network has more information about what
is a real feature and what is detector noise. [197]

0.2.1 Network Architecture

Figure 9.3 shows the schematic arrangement of the modules used in the MISR
neural network. The arrangement is similar to the SISR (Section 9.1) and
consists of the same structure and modules, but an additional fusion module is
added. The special feature here is that the u-net module and the SR module
parameters are shared in parallel for multiple images. This concept is based
on Siamese networks [199]. Technically, this is realized with three-dimensional
convolutions with a kernel size of one in the third dimension. The fusion
module described in Section 9.2.1.1 is inserted between the SR module and
the output module. The fusion compares the multiple images.

In the case of MISR, the output module (Figure 8.5b on page 145) has to
be supplemented by a global averaging pooling (Section 6.7.3) over all images
in the image stack to combine the multiple images into one image. Global
average pooling averages the entries over the pixels with the same spatial
position. Figure 9.4 shows the modified output module.
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Figure 9.3: Architecture of the neural network for MISR. Compared to the SISR
network, an additional submodule called fusion net is implemented between the SR
net and the output. The SR module gets the output of the postamble (A) and the
output of the preamble (B) as inputs.
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Figure 9.4: Architecture of the modified output module for MISR

9.2.1.1 Fusion Module

The fusion module (Figure 9.5) combines the high-resolution outputs of the
SISR for the multiple images to one high-resolution output with lower noise.
The individual images are step-wise combined via repetitive fusion submodules
(Figure 9.5a).
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(a) Fusion module (b) Fusion submodule

Figure 9.5: Architecture of the fusion module and the fusion submodule. In this
example, two fusion submodules are repetitively applied to build the fusion module.

The fusion submodules (Figure 9.5b) consist of three-dimensional convolu-
tion layers with ReLU activation (Table 6.1 on page 93) by default. Optionally,
batch normalization (Section 6.7.6) is applied. The third dimension of the ker-
nel is in the direction of the image stack and has a size of two. The size of two
results from physical considerations: A kernel size of one handles each image
separately and has no combining effect. Kernel sizes that are three or larger
would combine the individual images but can also introduce artifacts in terms
of temporal correlation. A larger kernel is able to find a correlation between
images and their relative position to each other in the image stack. This is
not desired since the arrangement of the images in the image stack is purely
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random and does not contain any physical information.

The stride in all dimensions is one. This ensures that not every second image
of the stack is treated special and guarantees that each image is handled in
the same way.

Like for the u-net module and the SR module, a residual network option is
available (Section 9.1.1.1), which shortcuts the fusion blocks and adds convo-
lutions with a dilation rate of two in the spatial dimensions. The dilation rate
over the image stack remains one.

9.3 Training

Like the other presented approaches based on neural networks, the quality of
the reconstruction by the neural network strongly depends on the features of
the training data set and its understanding.

Generating the training data for intensity images from Monte Carlo
simulations is very computational intensive as many individual primary
particles contribute to one image. However, it is not necessary to generate
the images by simulating individual particles because the individual particle’s
energy depositions are not of interest but the intensity distribution of many
particle’s energy depositions. The important parameters for the training data
set are the blur at the edges of the structures in the image and pixel-wise noise.'

The training data set is generated by producing images with random
shapes and intensity distributions in high resolution. These high-resolution
images are used as ground truth.

The low-resolution images to the neural network are created by down-sampling
the high-resolution images by local averaging [110]. The blurring introduced
by the character of the energy deposition is taken into account by applying a
Gaussian filter.

For the Gaussian filter, the standard deviation is obtained by a slanted edge
measurement of experimental data, described in detail in Chapter 10.2.

The pixel-wise noise represents the noise by the detector system, including
the readout chain, and is assumed to be Gaussian distributed. Technically, a
training data generator is used, which generates the training data by adding
individual pixel-wise noise for each image directly at the time when the

!The pixel-wise intensity distribution must be as general as possible to train the neural
network for all possible intensity distributions. The amplitude can be arbitrary since the
input data to the neural network are normalized.
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training process requires the training sample. The training data generator
uses one low-resolution training sample and generates multiple low-resolution
images that only differ in their pixel-wise noise. The number of low-resolution
images is typically between two and 100 for MISR.

This in-time generation has two advantages. First, the pixel-wise noise is
different for every training sample, even over more epochs. Second, for MISR,
the required memory is lower using the training data generator since only
one low-resolution image for each training sample is required. The other
frames that only differ in noise are generated directly by the training process.
Additionally, the training generator enables flexible numbers of low-resolution
images for every training step. Therefore, the MISR is not trained to a fixed
number of input frames but to a variable one.

9.3.1 Loss Function

The loss function proposed in Section 8.3 is not applicable to super-resolution
problems. Due to its design, it can only handle values of zero and one in the
ground truth. Therefore, it is not capable to handle intensity images.
Additionally, compared to the data set for the PoE reconstruction, the data
set for training the super-resolution networks has the advantage that they can
be designed in a balanced data set.

This means that the intensity distribution over the training data set can be
distributed equally, which allows to use a simpler standard loss function. The
used loss functions are the mean square error and mean absolute errors [130].
The mean square error penalizes large errors more than the mean absolute
error.

The optimization process focuses on reducing small errors. The mean square
error could lead to the behavior that many small errors are acceptable if this
reduces the number of large errors. [164]

Which loss function should be preferred depends on the training data set and
the neural network’s task.

Both loss functions compare only the values of individual pixels with each
other but do not make a statement about the pattern or other structures. The
introduced structure similarity loss is a perceptual loss function ! based on the

IPerceptual loss functions are used when comparing two different images. The function
is used to compare high level differences, like structures in the images.[200]
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structure similarity SSIM [201]:

(2ptapty + €1)(20ay + ¢2)
(13 + 1y + c1)(0F + 0y + ¢2)

SSIM(z,y) = (9.1)

x and y denote the images or windows of the images that should be compared.
p1; is the average amplitude over the image j € {x,y}, o7 is the variance of the
amplitude over the image j € {z,y}, 0., is the covariance between image x and
image y, and ¢; are variables to stabilize the division for small denominators.
The variables ¢; are defined for i € {1,2}:

¢i = (k; - L)? (9.2)

ky is typically 0.01, ks, is typically 0.03, and originally [ = 27 bits per pixel _ 1
denotes the dynamic range for each pixel.

The structure similarity can have values between minus one and one [130].
A value of one corresponds to the best similarity. Therefore, a possible loss
called structural similarity loss in the following can be defined as:

SSIM(z, y) + 1)
2

Lssim = — log ( (9.3)

The argumentation for using the negative logarithm is analog to the argu-
mentation in Section 8.3.

The structure similarity is more a perception-based model than a pure
mathematical description. This leads to a visually better result but not nec-
essarily to a better result in mathematical terms.

The best results are obtained from a loss which is a linear combination of the
mean square error and the structural similarity loss. This linear combination
optimizes the model in mathematical terms and visual properties.

0.3.2 Generative Adversarial Networks

For the training of SISR and MISR, the concept of generative adversarial
networks (GAN) is used. GANs have achieved, among other things, great
success in the creation of photorealistic images. GANs are predestined for
producing a good visual result. This may lead to a worse result compared to
a traditional loss function in physical terms because the focus of the training
process is not on physical terms. GAN consist of two separate neural networks
which perform a zero-sum game [202] also called a strictly competitive
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game [203]. A zero-sum game means that one neural network’s advantage
automatically leads to a loss of the other one and vice versa. Figure 9.6 shows
the schematic of one optimization step. [204]

The first neural network called generator creates images from a given
input. The second neural network, which is the discriminator, tries to
distinguish the generated image from the ground truth. In the training
process, both networks iteratively learn. This arrangement makes a loss
function for the generator network unnecessary. The loss function of the
discriminator is the binary cross-entropy since its output is binary and
represents the probability for a real image. Checkerboard artifacts and other
artifacts make it easy for the discriminator to determine whether an image
is fake. Therefore, this type of optimization leads to nearly artifact-free results.
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Figure 9.6: Working principles of generative adversarial networks (GANs). Blue
boxes denote neural networks, grey boxes denote data, and orange boxes denote
training mechanisms. The real samples represent the ground truth. The input of
the discriminator toggles between the generated samples and the real samples.

Like the training process with a loss function, each training step requires
input images and the ground truths. However, the ground truth does not
have to be the corresponding ground truth to the input images. First, the
generator creates its predictions for the input images. This output is then
combined with the ground truths to one image stack. Matching this image
stack, a vector is produced, containing a one at the indices of the ground truth
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and containing a zero at the indices of the predicted images. The image stack
and the vector are shuffled to avoid unwanted correlation and patterns. The
image stack is the training data for the discriminator network. The vector
containing the ones and zeros is the ground truth for the discriminator.®

In the next step, the discriminator makes its prediction to the image stack.
These predictions are values between zero (fake) and one (real) which
describes the probability of the authenticity for each image of the stack.
A common optimizer then updates the weights of the discriminator with a
binary cross-entropy loss function (Section 6.5.3).

In a last step, the weights of the generator are updated. Therefore, only the
predictions of the discriminator from the generator-generated images are used.
The generator should be optimized in a way that the discriminator always
predicts one (real). For this reason, the binary cross-entropy between the
values predicted by the discriminator and a vector containing only the value
one is calculated. The generator is optimized based on this loss function. The
weights of the discriminator are not updated in this step. [204, 205]

Potentially, a small batch size leads to a better result as the discriminator
does not get many examples in the first training step before initially optimiz-
ing the generator. Many examples in the first training step might overpower
the discriminator over the generator, which leads to a worse quality of the
accuracy of the neural networks. The best result is achieved for optimizing
and learning in the same order for the discriminator and the generator.
In most cases, the task of the discriminator is easier than the task of the
generator. As a consequence, the discriminator learns and converges faster
than the generator [206]. To compensate for this imbalance and to support
the generator, the loss function for the generator is supplemented by the
structure similarity loss and mean square error loss (Section 9.3.1).

9.4 Validation

In this Section, the results for the SISR neural network and the MISR neural
network are presented and discussed. In the shown case, a quantitative analysis
by the MTF of a slanted edge is only of limited significance because SISR
and MISR are trained on edges. Instead, the structural similarity and the
mean square error between the ground truth and the high-resolution output
is calculated, and its average over ten thousand frames is taken. Like for the

Tt is a common trick to add additional noise to the binary entries of the vector to obtain
better results. [204]
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other neural network approaches in Chapter 7 and Chapter 8, the validation
Section is split into accuracy and performance.

9.4.1 Accuracy of the Neural Network

The accuracy is separately shown for SISR and MISR. Figure 9.7 shows in
the top row the low-resolution input to SISR, in the middle row the ground
truth, and in the bottom row the reconstructed high-resolution prediction by
SISR. The structures shown in the frames are random and not seen by the
SISR during the training process. In the examples shown, SISR produces an
8 x 8 subpixel reconstruction. The structure of the data is described in de-
tail in Section 9.3. A pixel-wise and Gaussian-shaped noise is assumed. The
signal-to-noise ratio is chosen in a way that the signal-to-noise ratio for the
pixel containing the highest intensity of the image intensity is one over 10 %.
Since the input to SISR is an intensity image, a signal-to-noise ratio of 10 is
very low for applications but shows the strength of the approach.

Each column represents one example frame. The left example contains coarse
structures in comparison to the low-resolution pixel size. The right example
also contains finer structures. The SISR reconstructs the coarse structures
and the intensity distribution within the structures. Compared to the low-
resolution input, the noise decreases, and the resolution increases. As shown
in the right column, finer structures are partially reconstructed by SISR. For
example, the round structure on the upper left side in Figure 9.7d is recon-
structed in the high-resolution output (Figure 9.7f), even if it is not strongly
pronounced in the low-resolution input (Figure 9.7b). Fine structures such
as the separation of the two oval structures in the upper right side in Figure
9.7d are not reconstructable by SISR. Here, only a constriction is visible in the
high-resolution output (Figure 9.7f). Overall, SISR is capable of performing
denoising and increasing spatial resolution.
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Figure 9.7: Two examples for SISR prediction. A pixel-wise and Gaussian-shaped
noise is assumed. The signal-to-noise ratio is chosen in a way that the signal-to-noise
ratio for the pixel containing the highest intensity of the image intensity is one over
10 %. Ome column depicts the same scene. 181
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Figure 9.8: Input and ground truth examples for MISR prediction. The signal-to-
noise ratio is three. (a) presents an example input frame. The other input frames
contain the same structure but differ by noise. (b) presents the corresponding high-
resolution ground truth.

Another more powerful approach is MISR. Here, many frames with the
same intensity distribution but different noise contributions are fed to the
neural network. Since the basic structure of the input frames is always the
same, the neural network is equally able to reduce the noise like classical
averaging over many images. The accuracy increases with the number of used
frames. A very noisy input is used to show this behavior. Figure 9.8 shows
the noisy low-resolution input and the high-resolution ground truth. The
signal-to-noise ratio is 3 to show the impact of using multi images. Figure 9.9
presents the high-resolution output of MISR for various numbers of frames at
the input of the neural network. In our case, MISR provides an 8 x 8 subpixel
reconstruction. As expected, the quality of the reconstruction increases with
the number of input frames. The quality increases very fast for a low number
of frames and saturates for a larger number of frames. The improvement
between one and ten frames is significant, whereas an improvement between
50 and 100 frames is neglectable for the used signal-to-noise ratio.

In Figure 9.9, it is clearly visible that MISR is able to reconstruct intensity
distributions, and its accuracy is increased with the number of available
frames fed into the neural network.

Because of missing information at the frame’s borders, SISR and MISR
introduces artifacts at the frame’s borders. These artifacts are, for example,
clearly visible in the form of a spatially repeating pattern at the center of the
lower border of the reconstructions (Figure 9.9). These border effects can be
avoided using only inner pixels. The validation of the accuracy of the MISR
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with measured data can be found in Section 10.2.

For a quantitative analysis of SISR and MISR, the structural similarity
(SSIM) [201] and the mean square error (MSE) [130] between the ground
truth and the high-resolution output are calculated, and its average over 10000
frames is taken. The SSIM and MSE are calculated from normalized frames. A
higher SSIM represents a better result. A lower MSE represents a better result.
The SSIM and MSE between the low-resolution input and the ground truth are
calculated as a reference value. Therefore, the low-resolution is upsampled by
nearest-neighbor interpolation. For multiple images, the images are averaged
before the interpolation step. SISR and MISR lead to a significant quality

Table 9.1: Accuracy of of SISR and MISR. The shown parameters are the structure
similarity (SSIM) and the mean square error (MSE) between the ground truth and
the result obtained by the neural network. The MSE is normalized to the maximal
intensity. A detailed description of the reference value can be found in the text. The
S/N refers to the signal to noise ratio of the pixel with the highest intensity in the
image. For an S/N of 10, SISR is used, and for all other results MISR.

number of images S/N | SISR/MISR  reference
SSIM  MSE SSIM MSE
1 10| 0.87 0.7% 0.30 3.6%
1 31 075 41% 020 6.4%
2 3] 076 4.0% 024 5.5%
5 31 077 39% 028 5.1%
10 31 077 38% 0.29 4.9%
50 31 077 39% 032 4.8%
100 3] 078 37% 032 4.8%

improvement of the reconstructed images compared with the reference recon-
struction and the raw images. SISR and MISR increase the images’ spatial
resolution and decrease the noise. Especially the SSIM is increased by using
multiple images. The classical averaging process cannot reconstruct subpixel
information. Consequently, the MSE decreases for the reference reconstruction
slower than 1/4/n for using many images.!

IThe classical averaging process reduces the noise by a factor of 1/4/n in comparison to
the individual images if no subpixel resolution is applied. In this context, n is the number
of averaged images. [38]
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Figure 9.9: Example for MISR prediction. The number of used low-resolution
input frames is varied between the figures. Input and ground truth are shown in
Figure 9.8.
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9.4.2 Performance

The reconstruction rate of the used SISR and MISR. (using five frames') with
16 features and a depth of two (Appendix C.5) is presented in Table 9.2.
Different environments are used to allow a classification of the results. A stan-

Table 9.2: Reconstruction rate in Hertz with SISR and MISR (using five frames).
The batch size is limited by the available memory. A deployment to TPUs is not
possible for SISR and MISR due to the architecture of the networks. Currently,
TPUs do not support three-dimensional convolution and the merging required by
the resnet option [190]. The batch size describes how many images are reconstructed
in one step. A larger batch size increases the performance but requires more RAM.
The GTX 960 has not enough RAM to perform a prediction for MISR with 2562
pixels.

network image size batch size i5 GTX 960 Xenon P100
(CPU) (GPU) (CPU) (GPU)

SISR 322 pixels 100 30 140 30 1300
2562 pixels 5 0.3 2.1 0.3 20
322 pixels 10 1.2 4.5 1.2 25

MISR 2562 pixels 1 0.02 0.02 0.3

dard workstation with a CPU (Intel Core i5-8400 with 6 cores and a clock of
2.8 GHz), a GPU of type NVIDIA® GeForce® GTX 960 [165], a server with
24 CPUs (Intel Xenon Gold 6128 with 6 cores and a clock of 3.4 GHz) are com-
pared. To get at the state-of-the-art limits, the performance is additionally
tested in the environment of Google Colab [190] with GPU (NVIDIA® Tesla®
P100 [192]) hardware acceleration.

The performance of the presented approaches strongly depends on the used
hardware. Using GPUs leads to the best performance. The rapid progress
in developing new technologies and basics will lead to a higher reconstruction
rate in the next years. The performance for MISR is in comparison to SISR
lower. However, this is not a bottleneck since the detector must capture many
individual low-resolution frames for each image generated. If, for example,
100 low-resolution frames are taken for each reconstructed high-resolution im-
age, the detector should have a frame rate a hundred times higher than the
reconstruction rate by MISR.

IThe usage of five frames is a compromise between performance and accuracy.
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9.5 Summary

With the help of SISR and MISR, the resolution of intensity images can be
increased, and the pixel-wise noise can be decreased. SISR and MISR do not
use the physical effects behind the signal generation of individual primary par-
ticles but mainly use statistical effects. Especially at borders of the depicted
structures, the statistical behavior of many individual energy depositions can
be used to reconstruct the border precisely. The other feature of SISR, partic-
ularly MISR, is denoising. MISR can significantly reduce noise by combining
many images of the same scene.
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Analysis of Photon Detection and
Electron Tracks

In this Chapter, the different approaches based on neural networks are com-
pared with each other and with conventional methods. Additionally to sim-
ulated data, data measured with a pnCCD camera with 264 x 264 pixels is
used (Section 3.3). Due to the structure of the neural network at each border,
four pixel rows and columns are removed for the measurements with electrons
presented in Section 10.2. Only the inner 256 (2% pixel) times 256 pixel are
used as input to the neural network. For the previous simulations and the mea-
surements, the pixels are quadratic with a size of 48 x 48 pm?. The analysis
is divided into applications for photon detection and applications for electron
detection.

10.1 Photon Detection

In this Section, approaches based on neural networks and conventional
approaches with photons as primary particles are compared. For the recon-
struction of the data obtained with photons, the CoNN as a neural network
is used (Chapter 7).

The measurements for photons are performed with two experimental se-
tups. First, direct spot illumination of the detector surface, and, second, X-ray
fluorescence of a copper grid aiming for a summed intensity image.

10.1.1 Low Energy X-ray Pencil Beam

The second experimental setup for X-ray photons is a spot illumination
with photons of an energy of 1320eV. The equivalent noise charge is 3.7
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electrons. For the spot illumination, the spatial resolution can be directly
derived from the distribution of the reconstructed PoE. The monochromatic
spot illumination on the detector surface is achieved by a parallel X-ray beam
that passes a monochromator and a Fresnel zone plate. Figure 10.1 shows
the experimental setup. The diameter of the spot at the detector surface
is about 0.8 pm [12]. The reference to the used data can be found in Table D.2.

beam path to 0 order
illumination

&

¥ beam path to 1 order
_ spot

zone plate =%

0™ order 1% order spot
illumination

Figure 10.1: Experimental setup of the measurement with low energy X-ray. The
beam is focused via a zone plate onto the pnCCD. The 0 order illumination is
caused by the undiffracted part of the beam and illuminates a wide area. The 1t}
spot is due to the tilt of the zone plane next to the 0 order illumination. Figure
adapted from [12].

The width of the center spot of the zone plate is limited due to re-
quirements of a large working distance. As a consequence, the number of
non-diffracted photons (0" order) is not zero. The zone plate is mounted
slightly tilted to separate the 0 order and the focused 1'" order photons
spatially on the detector surface. The focused 1" order photons are used in
the following for obtaining the spatial precision. [12]

To get different focal spot positions relative to the pixel structure, the spot
position is moved on a two-dimensional grid over the pixel structure. The
grid has 22 times 7 positions with a spacing of 3 pm in the x-dimension and a
spacing of 10 pm in the y-dimension. The illumination intensity is chosen in a
way that the number of single event patterns is maximized.
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A detailed description of the experimental setup and the conventional
reconstruction method can be found in [12].
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Figure 10.2: Two-dimensional histogram of the reconstructed PoEs. An area of
4 x 4 pixels is shown. The reconstructed 1! order spot position is at (0,0). The
PoEs caused by 0*" order photons are clearly separated from the 1" order spot. The
z-axis and the color bar show the relative amount of reconstructed PoEs. The bins
are quadratic and have a size of 1pm?.

Figure 10.2 shows a two-dimensional histogram of the reconstructed PoEs
with the CoNN (Chapter 7). The two-dimensional histogram shows all recon-
structed PoEs for all beam spot positions. The registration and, therefore, the
spatial alignment of the relative beam spot positions to each other is based
on the reconstructed 1" order beam spot positions. As reconstructed 1"
order beam spot position, the peak position of the individual measurements
for the different scan positions within the pixel structure is used. Incorrect
registrations of 1*" order beam spots on the pixel border are neglectable since
the introduced systematical error is only around 1pm and, therefore, not
visible in Figure 10.2.

The PoEs caused by 0" order photons are clearly spatially separated from
the 1*® order spot. Therefore, a distinction between the 0" order photons
and the 1™ order photons is possible. For calculating the spatial precision, a
Gaussian shape of the 1" order peak is assumed, and the standard deviation
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in each dimension is used.
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Figure 10.3: Reconstructed beam spot positions. The blue dots indicate the
reconstructed beam spot positions. The error bars represent the standard deviation
of the reconstructed positions down-scaled by a factor of two. The solid red lines
mark the physical pixel borders and the gray dashed lines the physical pixel centers.

Figure 10.3 shows the reconstructed beam spot positions and their corre-
sponding uncertainties for the CoNN (Chapter 7) and the center of gravity
method with corrections (Appendix B.2). A two-dimensional Gaussian fit
over the reconstructed PoEs obtains the position and the uncertainties for
both methods.

Since the primary energy of the photons is only 1320 eV, the common-mode of
the detector system plays a significant role and has to be corrected prior to the
CoNN and the classical approach. Due to the readout scheme of the detector
system (Section 3.4.1), the pixels of each row are read out simultaneously.
Therefore, the common-mode mainly affects the spatial resolution in the
y-direction and not in the x-direction.

The amount of contributing PoEs to the individual beam spot positions is in
the order of 70 000 events.

As predicted by the theory (Appendix B.2.4) and obtained by the simulation
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(Section 7.3.1), the spatial resolution depends on the position within the pixel
structure and is the best near the physical pixel borders. The CoNN leads for
all pencil beam positions to better spatial precision than the center of gravity
method with corrections.
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Figure 10.4: Spatial precision in x- and y-dimension obtained by the CoNN for a
low energy X-ray pencil beam. The crosses show the reconstructed spatial precision
(standard deviation) as a function of the x- and y-position. The pencil beam’s
width of the measurement is o = 0.8 pm [12]. The solid line shows the resolution for
the x- and y-dimension obtained from the Monte Carlo simulation. For the results
obtained by measurement, due to the presence of common-mode, the resolution in
the y-direction is slightly worse than the simulated results.

Table 10.1 shows the spatial precision in both spatial directions for the
CoNN;, the weighted centroid method with corrections, and an approach using
a lookup table described in [12]. Basically, the approach using the lookup table
calculates the PoE by using the weighted centroid method with corrections,
but the selection which pixels of the event patterns are used to obtain the
weighted centroid is not done by an event pattern analysis but by a lookup
table. This lookup table is obtained by a Monte Carlo simulation. [12]

For all approaches, the spatial precision in the x-direction is better than
the spatial precision in the y-direction. This behavior could be caused by a
not-perfect common-mode correction applied before the event pattern analy-
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Table 10.1: Spatial precision determined by a low-energy X-ray pencil beam. The
units are micrometers. The spatial precision of the CoNN and the weighted centroid
method with corrections (¢) is obtained by a two-dimensional fit. The pencil beam’s
width is o = 0.8 pm [12]. The results for using the lookup table are adapted from
Ihle et. al. [12].

‘ CoNN §  lookup table

x-direction | 1.58 1.98 1.66
y-direction | 2.00 2.44 1.94

sis. The CoNN leads to the best spatial precision in the x-direction and a
comparable spatial precision to the lookup table in the y-direction. The data
preparation can explain the slightly worse spatial precision of CoNN in the y-
direction. In this thesis, a simplified common-mode correction which subtracts
the median for each row (Appendix B) is used.

Figure 10.4 depicts the spatial precision, which is defined as the standard
deviation for each pencil beam position and the spatial resolution that
describes the Euclidean distance between the ground truth and the predicted
PoE by the CoNN.! The precision is, like theoretically described, worst in
the center of the pixel and gets better towards the pixel borders. Since the
signal-to-noise ratio of the pencil beam is much lower than for X-rays created
by copper as mentioned in Section 10.1.2, the noise term is not neglectable
during the training process. This results in the two characteristic peaks in the
center (Figure 7.2b on page 130 and Figure 7.2d on page 130). The spatial
precision is obtained from the measurement since the resolution is not a
directly accessible quantity as the ground truth PoEs are unknown. However,
the spatial precision and the resolution are comparable if the accuracy is
good. Due to the architecture of the CoNN, the neural network is not capable
to reconstruct PoEs which are on the pixel border. The consequence is a
slightly worse spatial accuracy on the pixel borders. The CoNN shifts PoEs
on the pixel border towards the center (Figure 10.3). Therefore, the spatial
resolution which is influenced by the spatial accuracy is worse than the spatial
precision.

In comparison to the classical methods, CoNN has the advantage that it
can be trained with systematically measured data by an experiment planned
in a further step. The measured data describe all effects introduced by the
detector system. Therefore, a training data set obtained by measured data

TA detailed description of the spatial precision and the spatial resolution can be found
in Appendix A.1.
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contains all detector-specific effects, which is not possible for simulated data.
The more accurate training data lead to better accuracy of the CoNN.

10.1.2 X-ray Fluorescence

In this Section, a simple experiment to show summed intensity images with
CoNN is presented.

® —— pnCCD

X-ray source

polycapillary
focusing
optic

sample

Figure 10.5: Experimental setup of the XRF measurement. A sample is excited
by an X-ray source. Fluorescence X-ray photons emitted by the sample pass the
1:1 polycapillary optic with a capillary diameter of 22 pm and a length of 38 mm
before the pnCCD detects them. The exit divergence A of the polycapillary optic
is between 0.2° and 0.3° [207] at 8048eV. The distance between the polycapillary
optic and the pnCCD is approximately 1.3 cm.

The schematic experimental setup for measuring the X-ray fluorescence
(XRF) is shown in Figure 10.5. Figure 10.6 shows a light microscope image
of the copper grid, which is used as a sample. The reference to the used data
can be found in Table D.1.

The detailed processes in copper atoms can be found in Section 2.3.1. The
copper grid emits characteristic photons with an energy of EFk,, = 8048eV
[40]. Only X-ray photons parallel to the beam axis pass the polycapillary
optic and are detected by the pnCCD. The used 1:1 polycapillary optic has
a capillary diameter of 22pum and a length of 38 mm. In the experimental
setup, the polycapillary optic’s properties are the spatial resolution’s limiting
factors. The measurement was recorded with a pnCCD backside voltage of
—230V. The measured equivalent noise charge is 3.1 electrons.

Figure 10.7a shows the reconstruction via the maximum method (Appendix
B.1.4) for comparison. For summing the maximum method, the visualized
pixels are the physical pixels of the detector with a size of 48 x 48 pm?.
Figure 10.7b presents the reconstruction with the CoNN presented in Chapter
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Figure 10.6: Light microscope image of the copper grid. The mesh size is 150 lines
per inch. The pitch P is 165 pm, the bar width B is 40 pm, and the hole width H is
125 um [208).

7. A binning to a virtual pixel size of 6 x 6 um? is used. This means that

each physical pixel is divided into 8 x 8 virtual subpixels. Only single event
patterns selected via an energy filter are used. Since CoNN predicts exactly
one PoE for each event pattern, the multiplicity that is the ratio between
reconstructed PoEs and event patterns of both images has to be the same
and is by a factor of 64 lower than the image using no subpixel reconstruction
(Figure 10.7a). CoNN introduces no visible artifacts to the reconstructed
cooper gird. In comparison with the maximum method, the spatial resolution
is increased.

Figure 10.8 depicts a line scan through the copper grid for the various
methods. To increase the statistic, for the reconstructions on subpixel level,
not a single line of pixels is depicted, but the sum over 12 physical pixels (96
virtual subpixels) between two horizontal grid lines is depicted.

The spatial resolution of the experimental setup is limited by the used polycap-
illary optic and the distance between the polycapillary optic and the detector,
and not limited by the properties of the detector system or the reconstruction
method. The green dashed line shows the simulated signal distribution on the
detector. Consequently, the classical 1 correction method leads to a similar
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(b) Reconstructed copper grid in 8 x 8 subpixel regime with the CoNN.

Figure 10.7: Reconstructed image of the copper gird.
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Figure 10.8: Line plot of the copper grid for different reconstruction methods.
The line plot of max is divided by eight to get the same intensity as for subpixel
resolution. In green, the approximated spatial resolution limit of the polycapillary
optic and the experiment geometry is depicted.

spatial resolution.
The result obtained by CoNN improves the spatial resolution compared to the
maximum method, and it is in good agreement with the simulated signal dis-
tribution on the detector surface. Due to the summation over many individual
frames and, therefore, over many reconstructed PoEs, the intensity image is
very sensitive to checkerboard artifacts. The small artifacts introduced by
CoNN are on a sub-micrometer level (Section 7.3.1) and, therefore, in an 8 x 8
subpixel resolution representation not visible and neglectable.

CoNN provides reconstructed images in subpixel resolution. The recon-
structed intensity images are checkerboard artifact-free.

10.2 Electron Detection

Electrons as primary particles are used as second example for comparison
between the reconstruction methods. The reference to the used data can be
found in Table D.3. All presented results created by approaches with neural
networks in this Section require no previous event pattern analysis.
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Figure 10.9: Experimental setup of the TEM measurement. The primary electrons
are accelerated on a beam blanker which is used as a sample. The beam blanker has
a triangle’s shape and totally absorbs primary electrons that hit it. The primary
electrons which pass by the beam blanker are detected by a pnCCD.

The measurements for electrons are performed with a transmission elec-
tron microscope (TEM) [10] at an FEI Titan 80/300 G1 at the University of
Bremen [209]. A schematic of the experimental setup is shown in Figure 10.9.
The primary electrons are accelerated to various primary energies between
60keV and 300keV. A detailed list of the used data sets can be found in
Table D.3. All measurements were recorded with a backside voltage of —420V
at the pnCCD (high charge handling capacity mode). An electron optics
focuses the primary electrons on the sample. The sample of the measurements
is a beam blanker that absorbs the primary electrons. The shape of the
beam blanker is a triangle. The edges of the triangle are not completely
smooth on a microscopic scale. Figure 10.10 depicts the fine structure of the
beam blanker obtained by the weighted centroid method with n correction
using an 8 X 8 subpixel resolution. It can be seen that the lower edge of
the triangle is smoother than the upper edge. Therefore, the lower edge is
used to obtain the MTF via the slanted edge method in this Section. The
detailed procedure is described in Appendix D.1. Since the tracks of the
electrons become longer and more complex with increasing primary energy,
the obtained results are more useful for higher primary energies. Typically,
measurements with transmission electron microscopes are performed up to
300keV. The improvement of the spatial resolution by POENN in comparison
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Figure 10.10: Fine structure of the beam blanker measured with a primary energy
of 60keV. An 8 x 8 subpixel resolution is applied using the 7 correction method.
Not the whole image is shown, but only the region of interest. The reference to the
used data is PID_e_060_1 (Table D.3).

to the classical methods increases with higher primary energies. Therefore, in
the following, the results for electrons with a primary energy of 300keV are
presented in more detail.

Figure 10.11 shows the offset corrected raw data summed up over 150000
taken frames for a primary energy of 300keV. The color scale denotes the
energy deposition in arbitrary units. For clarity, not the whole image is shown
but only the region of interest with 120 x 100 pixels containing the beam
blanker. [11, 13] The input to the conventional reconstruction methods is
offset corrected. Additionally, a gain correction with one value per octant
is applied, corresponding to one value per ADC channel (Appendix B). The
values for the gain correction are obtained from a homogeneous illumination
with the same rate and energy of the primary electrons. The ratio between
the common-mode and the signal generated by the primary electron is
smaller than 0.1% and can be neglected. Consequently, the influence of
the common-mode noise introduced by the column-parallel readout of the
CAMEX can be neglected.
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Figure 10.11: Offset corrected raw data for a primary energy of 300 keV summed
up over all frames in Arbitrary Digital Units (ADU). The reference to the used data
is PID_e_300_2 (Table D.3). Not the total field of view is shown, but only the region
of interest (120 x 100 pixels). The readout nodes of the shown region of interest are
located on the left side. Figure adapted from [13].

Figure 10.12 depicts the summation over the output of PoENN after
applying a probability threshold of 0.5 (Chapter 8). The used data are the
same as for Figure 10.11. The PoENN visibly improves the edges’ sharpness
of the beam blanker and reconstructs hidden features in the edges’ structure.
At the top of the beam blanker’s tip, a bulge is clearly visible. Even the
bulge’s structure, invisible in the offset corrected raw data (Figure 10.11), is
reconstructed by the POENN. The beam blanker’s upper edge is not straight
and shows a structure in Figure 10.10. The POENN can reconstruct the coarse
curvature, whereas the curvature is hidden in the offset corrected raw data.

A quantitative measurement is the modulation transfer function (MTF).
The MTF measures how much contrast of an object is transferred by the
imaging process. This image process includes the behavior of the primary
electrons in the silicon bulk of the pnCCD but, moreover, effects introduced
by the electron optics and the electronics of the detector system. It can be
obtained from the slanted edge produced by the beam blanker. A detailed
description of the used process obtaining the MTF can be found in Appendix
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Figure 10.12: Summation over the binary output of the proposed neural network
PoENN after applying the threshold of 0.5, which determines whether a pixel in the
output contains a PoE. The primary energy is 300 keV. The reference to the used
data is PID_e_300_2 (Table D.3). Not the total field of view is shown, but only the
region of interest (120 x 100 pixels). The region of interest is the same as in Fig.
10.11. Figure adapted from [13].

D.1. Figure 10.13 shows the MTF for various reconstruction methods as a
function of the spatial frequency. The basis of the conventional event pattern
analysis is an event pattern detection with a threshold of 50 of the pixel-wise
noise. The simulated ground truth is the best achievable result of the MTF
in a representation with a pixel size of 48 x 48pm?2. A distinction is made
between simulation and measurement. The simulation does not contain effects
of the electron optics of the TEM or effects of the detector system’s electronics
further to the uncorrelated noise in the individual pixels. Therefore, the
MTF of the measured data is always expected to be worse than the MTF
obtained from the simulation data. However, the results are for all methods
in a good agreement between the simulation and measurement. The best
conventional method for 300keV is the furthest away method (FAM). The
MTF obtained by PoENN is between FAM and the ground truth and shows

a large improvement of the spatial resolution.

Figure 10.14 depicts the reconstructed image for 60keV using PoENN
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Figure 10.13: MTF based on the slanted edge method as a function of the spatial
frequency for the ground truth (GT) which denotes the best achievable result, the
proposed neural network (CNN), the furthest away method (FAM), the weighted
centroid method (WCM), and the summed raw data (raw). The primary electron
energy is 300keV, and the pixel size is 48 x 48 um?. The reference to the used data
is PID_e_300-2 (Table D.3). Figure adapted from [13].

with 4 x 4 subpixel resolution. The structure of the beam blanker’s edge
is clearly visible. However, using POENN with subpixel resolution leads to
slightly pronounced checkerboard artifacts, which are one of the major open
challenges for super-resolution. PoENN with the super-resolution extension
can provide subpixel resolution without an event pattern analysis for low
energetic electrons.

Figure 10.15 shows a reconstructed image by MISR, (Chapter 9). For this, not
individual frames are fed to the neural network but intensity images. These
intensity images are obtained by summing over the individual frames with
the reference PID_e_300_2 (Table D.3). Six intensity images containing 25000
individual frames each are used. An MTF measurement of the slanted edge
is only limited meaningful and, therefore, not presented because the MISR
was trained to find sharp edges. However, the edge’s structure of the beam
blanker compared to Figure 10.11 is clearly visible. The fine structure such as
the one in Figure 10.10 cannot be observed since this information is hidden
by the statistical behavior of the primary electrons and the summation of the
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Figure 10.14: Fine structure of beam blanker measured with a primary energy of
60keV. A 4 x 4 subpixel resolution using POENN is presented. Not the whole image
is shown, but only the region of interest. It is the same region of interest such as in
Figure 10.10. The reference to the used data is PID e 060_1 (Table D.3).

intensity image.

10.3 Summary

In this Chapter, the presented neural networks were applied to experimental
data. For the presented measurements the three presented analyses based on
neural networks CoNN (Chapter 7), POENN (Chapter 8), and MISR (Chapter
9) improve the measured result significantly compared to classical methods.
Especially for electrons with higher primary energies, POENN and MISR show
their full potential compared to the classical methods and increase the spatial
resolution and the level of detail.

The choice of which neural network should be applied depends on the ap-
plication. For low-dose applications with low primary electron energies or pho-
tons, the CoNN should be used. The CoNN requires a preceding event pattern
analysis. This is no limitation compared to the classical methods since all
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Figure 10.15: Output of the proposed neural network MISR. The primary energy
is 300keV. Six intensity images containing 25000 individual frames each are used.
The reference to the used data is PID_e_300-2 (Table D.3). Not the total field of

view is shown, but only the region of interest (120 x 100 pixels).

presented classical methods also require a prior event pattern analysis. If the
computational time plays a major role POENN with a super-resolution module
can be used.

For electrons with higher primary energies, POENN should be used. It was
shown that PoOENN increases the resolution in terms of the MTF in compar-
ison to the presented classical approaches. Furthermore, POENN requires no
computational intensive event pattern analysis.

For higher particle rates, the energy depositions of individual particles are
no longer distinguishable. As a consequence, the classical approaches are not
applicable. PoENN can reconstruct the PoE of pattern pile-up events. For
even higher primary particle rates resulting in intensity images, SISR, partic-
ularly MISR, can increase the spatial resolution and denoise the images where
classical methods reach their limits.
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Chapter 11

Conclusion and Outlook

For many applications in transmission electron microscopy and X-ray applica-
tions such as ptychography, diffraction, and fluorescence analysis, the precise
point of entry (PoE) into the detector volume is of interest. However, modern
detectors like the pnCCD do not detect the PoE but the energy deposited by
the primary particles frame-wise. In the data frames, the energy deposition
appears in the form of event patterns generated by signal electrons.

This thesis discusses primary particles that perpendicularly hit the detector
surface. In this case, the energy deposition for photons is local, and the shapes
of the event patterns are dominated by diffusion and repulsion. Consequently,
except for noise, the obtained event patterns are similar for the same PoE.
For electrons, especially with higher primary energies, the shapes of the event
patterns are dominated by the energy deposition itself. The energy deposition
caused by multiple scattering is randomly distributed along the particle tracks.

This thesis aims to develop a new analysis framework based on deep learn-
ing and neural networks to reconstruct the PoEs from the measured detector
data and evaluate their potential and limits. Therefore, four different ap-
proaches based on the concept of convolutional neural networks were devel-
oped. Table 11.1 shows a comparison of the introduced convolutional neural
networks. With these four approaches, a wide range of applications can be
addressed. The neural networks were tested with data obtained by a simula-
tion framework and several measurements. The measurements were performed
with a detector system based on pnCCDs. However, the neural networks ap-
proach applies to all pixelated detectors and other kinds of particles such as
protons or muons.

The point of entry neural network (PoENN) reconstructs the PoEs of
individual primary electrons with energies above 100 keV on a physical pixel
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Table 11.1: Overview of introduced neural networks. Single events are no pattern
pile-up events, e.g., caused by intersecting particle traces. Individual pattern events
are distinguishable for low rates, but pattern pile-up events are possible. In inten-
sity images, no individual event patterns are identifiable. The obtained resolution
varies from subpixel resolution to a resolution on pixel level, and the reconstruction
speed varies for the different neural networks and used hardware. The requirements
describe the previous corrections and analysis steps. The last column describes the
training effort. The training effort depends on the used machine. It varies from
several hours to several days.

name Ch. particle rate resolution speed requirements  training
PoENN 8 low rate medium medium offset map medium
CoNN 7 single events high high event analysis low
SISR 9.1 intensity low medium offset map medium
MISR 9.2 intensity medium low offset map high

level. For primary electrons with energies below 100keV and photons, the
PoENN can reconstruct the PoE on subpixel level. For a primary energy
of 300keV, the resulting modulation transfer function (MTF) is 0.77 at
a Nyquist frequency of 0.5 obtained from a slanted edge measurement.
Compared to the best classical method used in the benchmark, the MTF at a
Nyquist frequency of 0.5 is increased from 0.3 by a factor of 2.6.
Additionally, the POENN can handle pile-up event patterns, e.g., intersect-
ing particle traces, and reconstruct the PoEs of the contributing primary
electrons. The MTF is constant up to a rate of 0.04 ¢ /pixel/frame'. Even
for a primary electron rate increased by a factor of two, the neural network
approach leads to a better MTF than the classical approach, which uses only
single event patterns and achieves an MTF at 0.5 times the Nyquist frequency
in the order of 0.3.

A reconstruction rate up to 900 Hz for a 256 x 256 pixel large detector was
achieved. Due to its architecture, a computational intensive event pattern
analysis that is required for all classical approaches is no longer necessary.
Consequently, the speed of reconstruction is independent of the primary
particle rate.

The compact neural network (CoNN) reconstructs PoEs on subpixel
level for photons and low energetic primary electrons. The achieved subpixel
resolution is less than 10% of the pixel dimensions. The precision for all

LA primary particle rate of 0.04 " /pixel/frame corresponds to a rate of 5 - 10¢ /s for a
full-frame readout (256 x 256 pixel) with 2000 Hz.

206



positions within the pixel structure was better or at least the same as the
best compared conventional method. The CoNN can create artifact-free
summed intensity images with super-resolution. The CoNN requires, as a
previous step, an event pattern analysis. On the used GPU, an event pattern
reconstruction rate of 10 kHz was demonstrated.

The presented single image super-resolution (SISR) approach and the
multi image super-resolution (MISR) approach, that are based on the
architecture of the PoENN, are presented for intensity images. In these
intensity images, individual energy depositions of primary particles are no
longer distinguishable due to the high primary particle rate. SISR and MISR
provide, on the one hand, ”denoising” and, on the other hand, extension
into super-resolution. The structural similarity between the normalized
ground truth and the normalized high-resolution output of SISR and MISR
is calculated to measure the result’s quality. A higher value represents a
better result and a value of one perfect structural similarity. SISR provides a
structural similarity of 0.87 for a signal-to-noise ratio of ten. The structural
similarity between the low-resolution input to SISR and the ground truth is
0.3. This means SISR improves the image quality by a factor of 2.9.

The MISR combines multiple images of the same scenario to reduce noise
effectively. A signal-to-noise ratio of only three was simulated to demonstrate
the denoising process. The structural similarity increases with the number
of used intensity images and is for using two images at the input 0.75 and
for using 100 images 0.78. Therefore, it is sufficient for many applications
to use only a few images of the same scenario to reconstruct a denoised
high-resolution result.

The classical approach of denoising is averaging over multiple images. The
structural similarity for averaging 100 frames is 0.32. This means MISR

improves the image quality measured by the structural similarity by a factor
of 2.4.

In the present work, the significant potential of deep learning and neural
networks in the field of detector physics using pixelated semiconductor
detectors was demonstrated. New data analysis methods for pixelated semi-
conductor detectors based on neural networks were developed and evaluated.
These new methods provide a more precise and faster data analysis than
conventional methods, improving resolution and enabling real-time analysis.
Additionally, the presented work builds the bridge between data analysis for
pixelated semiconductor detectors and machine learning. It provides the basis
for a new era of data analysis for semiconductor detectors. This basis and
the acquired understanding provide the starting point for future data analysis
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methods.

One crucial parameter besides accuracy is the computation speed of
the data analysis. The PoENN can reconstruct frames in real-time using
GPUs for current detector systems. However, the next generation of detector
systems provides faster readout rates. Therefore, the speed of future neural
networks has to be higher. In addition, the transition from expensive and
high power consumption servers or cloud computing toward edge computing
should be expected. Here, specific hardware (ASICs) plays an important
role. In the present thesis, the first test on a single tensor processing unit
(TPU) was performed. A future step will be to parallelize several TPUs
on one host system. Another approach is to deploy the neural network to
field-programmable gate arrays (FPGAs) [210]. This hardware might be
integrated to the sensor in the long term.

To further increase the accuracy of the neural network, detector-specific
pixel-to-pixel variations can be added to the training process. This reduces
the generality of the trained neural network but potentially increases the
accuracy of the individual detector system.

A planned future step is to obtain the required training and validation data
with a pencil beam realized by a laser scan relative to the pixel structure.
Using experimental data instead of simulated data enables training of the
neural network, which is entirely independent of simplifications and assump-
tions made during the Monte Carlo simulation. The result is a data set
that perfectly describes the used detector system. The more precise data set
increases the quality and accuracy of the neural networks trained by this data
set.

Extending the developed approaches based on neural networks to photons of
a broad energy band also is be a task of future works.

Furthermore, reinforcement learning offers the potential to train the required
neural networks directly with measured data without requiring the exact PoE
or simulated data. The result is a neural network perfectly tuned to the
detector hardware. However, this requires a deep understanding of how neural
networks act with data obtained from pixelated semiconductor detectors. This
work provides the required knowledge for this purpose. A further extension of
reinforcement learning could be optimizing detector parameters and operating
conditions. The presented work presents the first step in this direction of a
new era of data analysis and detector parameters optimization.
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Appendix A

Physical Considerations

A.1 Spatial Precision, Spatial Accuracy, and Spa-
tial Resolution

The spatial accuracy is defined as the average distance between the mean
position of the individual reconstructed PoEs and their ground truth.

The spatial precision is defined as the standard deviation of the individual
reconstructed PoEs.

The spatial resolution is defined as the average Euclidean distance between
the individual reconstructed PoEs and their ground truth.

Figure A.1 illustrates the response in terms of precision, accuracy, and reso-
lution for different reconstructions. The reconstructed PoEs are spatially close
together for high precision and low accuracy. However, the distance between
the mean position and the ground truth is high. For a low precision and a high
accuracy, the mean position is spatially close to the ground truth. However,
the reconstructed PoEs are widely spread. A good spatial resolution can only
be obtained if the precision and accuracy are high. A low accuracy can, for
example, be caused by a systematic error introduced by the reconstruction
process. A low precision can be caused by the detector system’s too high noise
level.

A.2 Physical Limitations

Although modern computational approaches contribute to a significant im-
provement in data analysis, physical limits apply. Many of those physical
limits apply to all data analysis methods and are not limited to approaches
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Figure A.1: Spatial precision, spatial accuracy, and spatial resolution. The ground
truth and, therefore, the best reconstruction is shown as a blue circle in the center
of the crosshair. The orange crosses indicate PoEs obtained by the reconstruction
process. A high resolution can only be obtained if the precision and the accuracy
are high.

based on neural networks. The limits of the parameters that data analysis
methods can influence are investigated in this Chapter.

A.2.1 Position Resolution

One of the key features of pixelated detectors is the spatial resolution. The
spatial resolution depends on the method of reconstruction, type of particle,
and particle energy, but also detector properties such as the pixel size or op-
eration conditions. In the following Section, the limitations of measurement
resolution due to the pixel size are described, and a one-dimensional detector
is investigated. The expansion to the spatial resolution o, of a two-dimensional
pixelated detector with r = /22 + 32 leads to o, = v/20, if there is no prefer-
ential direction.

A.2.1.1 Binary Detector Response

A binary detector response (single event pattern) assumes that the generated
charge cloud’s spatial expansion is small compared to the pixel size. Only
one pixel contains a signal. As reconstructed PoE, the center of the pixel is
taken. Without restriction of generality, the origin of the coordinate system is
at x = 0 is in the center of the pixel. The distance from center to center of the
next pixel is the pixel size d. The position’s uncertainty Ax is the difference
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between the reconstructed PoE z,.. and the true PoE %ipun:
Az = Lrec — Ltruth (A]-)

Here, .. is the center of the pixel. If the true PoEs are distributed homoge-
neously over the pixel, the averaged uncertainty of the reconstruction method
is zero (Az) = 0. The spatial resolution is defined as follows [38]:

0, = /(A — (Aa)? = /(AP (A.2)

The uncertainty is maximal for a true PoE near the pixel’s border and be-
comes smaller for more central hits. Assuming a homogeneous illumination,
the density of hits p(z) is given by [38]:

p(x)dz = édx (A.3)

The variance of a random distribution is the second moment of this distribution

[38]:
1o _d

The spatial resolution in this one-dimensional case is the size of the pixel
times 1/4/12. This scenario is similar to the case where any number of pix-
els containing a signal by the primary particle and one pixel is reconstructed
as PoE during data analysis, provided that the correct pixel is reconstructed.
The spatial resolution calculated here, therefore, also indicates the maximum
spatial resolution for the reconstruction method described in Chapter 8. The
same limit applies for a reconstruction with subpixels (super-resolution), but
the effective pixel size becomes smaller, and, thus, the best achievable spa-
tial resolution becomes better. Table A.1 shows the resolution limits within
different representations of the hit-maps.

A.2.1.2 Signal Split Over Multiple Pixels with Amplitude Sensitive Read-
out

For Gaussian distributed charge clouds, a better estimate can be calculated
using the center of gravity method than the center of the pixel. A Gaussian
distributed charge cloud is a valid approximation for photons and low-energy
electrons. Here, the spatial expansion of the charge cloud mainly results from
diffusion and repulsion. The calculation for the center of gravity can be found
in Appendix B.1.4.

For a perfect Gaussian distributed charge cloud and under the assumption of
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Table A.1: Limit of the spatial resolution for binary detector response. All values
are in pm. The physical limits with subpixel application can only be achieved if all
PoEs are predicted correctly on subpixel level.

physical pixel size no subpixel 2x2 4x4 8x8 16x16

25 7.2 3.6 1.8 09 0.5
48 13.9 70 35 1.7 0.9
100 28.9 144 72 3.6 1.8
150 43.3 21.7 108 54 2.7
200 o7.7 289 144 72 3.6

0.30

0.25 \\
0.20

el N\
S~

0.00 ' | ' | ' | ' | ' |
0.0 0.1 0.2 0.3 0.4 0.5 0.6
width of the charge cloud o/d

spatial resolution o,/d
o
[
(6]

Figure A.2: Maximal spatial resolution for a Gaussian distributed charge cloud
without additional noise. The spatial resolution is shown in units of the pixel width
as a function of the charge cloud’s width expressed in units of the pixel width. Figure
adapted from [38].

no additional noise, the spatial resolution can be theoretically calculated by
[38]:
2 1 o0 €—4TI' n?(o/d)?
(7) " e —— (4.5)
n=1
o/d, is the width of the charge cloud in units of the pixel size and n a
summation index. Figure A.2 shows the spatial resolution as a function of
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the charge cloud. For a perfect Gaussian distribution without noise, the
uncertainty made by the reconstruction method is neglectable for o, 2 d/2.
In this case, the pixel size should be smaller than half the size of the standard
deviation of the charge cloud’s size.

The best achievable spatial resolution using the center of gravity method
depends on the tuning of the pixel-width to the signal distribution’s width and
the signal-to-noise ratio. A large pixel-width leads to a resolution analog to
the binary case. A too small pixel width leads to a small signal amplitude
height per pixel and, thus, to a bad signal-to-noise ratio. A detailed view can
be found in [38].

The influence of noise on the spatial resolution can be found in Appendix
B.3. For the presence of noise, the spatial resolution depends on the position of
the PoE within the physical pixel and is better near the borders of the physical
pixels.

A.2.2 Energy Resolution

The energy resolution of the detector system is physically limited by the Fano
statistics. The energy resolution of such a system can be described by the full
width half maximum FWHM of the signal peak with a mean energy E [211]:

FWHM = 2v2In2 - w - \/EN02 + Fw—E (A.6)
Here, w is the electron-hole pair generation energy, ENC is the equivalent noise
charge of the readout chain, and % the Fano noise. The prefactor is derived
from the conversion of the standard deviation of a Gaussian distribution to an
expression of the full width half maximum [211]. Figure A.3 shows the energy
resolution for different equivalent noise charges as a function of the signal’s
mean energy. In the physical limit, the ENC is equal to zero and does not
contribute to the energy resolution.

A.2.3 Peak-to-background Ratio in the Energy Spectrum

The basic physical limit for the peak-to-background ratio in the energy spec-
trum is determined by the out-scattered particles, which partly deposit their
energy in the detector volume. This leads to a characteristic background sig-
nal. To determine this physical limit, a silicon detector with no insensitive
layers at the entrance window and a charge collection efficiency of 100% is as-
sumed. A detector thickness of 450 um is assumed. A thicker detector leads to
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103 +

102 1

energy resolution in eV

102 103 104 10% 106

mean energy of the peak in eV

Figure A.3: Energy resolution as a function of the mean energy of the peak for
different equivalent noise charges. The physical limit and, therefore, the best achiev-
able energy resolution for a given mean energy of the peak is shown as the blue line
with an equivalent noise charge of zero.

a smaller ratio of forward-scattered particles. If the primary particle or at least
one secondary particle leaves the detector volume, an event is an out-scattered
event. For each energy and each primary particle type, 10 million events were
simulated. A detailed description of the spectra for photons and electrons can
be found in Section 4.5, respectively, Section 4.6.

A.2.3.1 Peak-to-background Ratio in the Energy Spectrum for Photons

Figure A.4 shows the ratio of out-scattered events in silicon. The forward-
scattered events are neglectable for low primary energies and increase with
higher primary energies. The ratio of backscattered events is the highest at
low energies and has a minimum at 11 keV. At higher energies, the probability
of an escaping secondary particle increases.

Figure A.5 shows the peak-to-background ratio for photons as a function
of the primary energy. The peak’s amplitude is calculated by a Gaussian fit.
The background is defined by a constant fit over a range of 1000 eV. The range
is kept constant for all primary energies to make the results comparable for
different primary energies. The higher end of the range is chosen at 1738eV,
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Figure A.4: Ratio of out-scattered events for photons as a function of the primary
energy. The thickness of the silicon bulk is 450 pm. The blue curve shows the
ratio of backscattered particles, and the orange curve the ratio of forward-scattered
particles.

which is 100 eV below the K-edge.! The value of the peak-to-background ratio
is very sensitive to the choice of the position and the range of the constant fit.
However, the basic shape remains. Figure A.6 shows the Gaussian fit and the
range for the background for a primary energy of 6 keV.

The peak-to-background ratio initially increases with increasing primary en-
ergy since fewer particles are backscattered. The ratio of forward-scattered
particles becomes more significant for higher primary energies, and the peak-
to-background ratio decreases. For the pnCCD, the entrance window limits the
peak-to-background ratio to approximated 10000 at a primary photon energy
of TkeV [98].

ITypically, the peak-to-background ratio is defined as the ratio between the manganese
K, signal peak and the mean value of the spectrum between 800eV and 1200 eV. However,
this definition is for the considerations made not applicable since we want to demonstrate
the energy dependency of the peak-to-background ratio.
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Figure A.5: Peak-to-background ratio for photons as a function of the primary
energy. The error bars result from the uncertainties of the fits.
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Figure A.6: Example of the fit for the peak-to-background ratio for photons with
a primary energy of 6keV. The spectrum is shown in blue, and the Gaussian fit of
the main peak and constant fit of the background are shown in red. The peak at
approximated 70% of the primary energy is the silicon escape peak.
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Figure A.7: Backscattering coefficient for electrons as a function of the primary
energy. The thickness of the silicon bulk is 450 pm. The blue curves denote the ratio
of events where the primary electron or a secondary particle is backscattered. The
green curve denotes the ratio of events with a forward-scattered particle. The differ-
ent line styles describe the maximal fraction of the primary energy which has to be
deposited in the detector in order for the event to count as an out-scattered event.
The line style is the same for backscattered and forward-scattered particles. This
corresponds to a vertical line in the energy spectrum. Counts at lower energies than
the line count as out-scattered events. Counts in an energetic higher bin than the
vertical line do not count as out-scattered events. For a ratio of 100 %, every event,
for that the primary particle or at least one secondary particle leaves the detector
volume is counted as out-scatter event. The red crosses denote the backscattering
coefficient extracted from measurements [69]. For the data obtained by the mea-
surement, a fraction of the maximal energy deposition of 85 % was assumed. The
red curve shows the backscattered ratio for a maximal energy deposition of 85 %.
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A.2.3.2 Peak-to-background Ratio in the Energy Spectrum for Electrons

Figure A.7 shows the energy dependence of the backscattering and forward-
scattering coefficient for the data obtained from the Monte Carlo simulation
and experimental data from a pnCCD. The detector material is silicon with a
thickness of 450 pm. For the measurement, an event counts as backscattered
event if the primary energy was not totally deposited in the detector, i.e., the
deposited energy is not in the spectrum’s main peak. For higher energies,
backscattering becomes less likely. The experimental data are obtained by
indirect measurements. Every event which has less than 85 % of its primary
energy deposited in the detector volume is counted as an out-scattered event.
For 300 keV, the ratio of out-scattered events obtained from the measured data
increases since, for this energy, the ratio of forward-scattered events can no
longer be neglected. The primary energy-dependent behavior of the backscat-
tered event ratio is also empirically described by Tabata et al. [212]. The
empirical description agrees reasonably well with the measurement and the
simulation.

Figure A.8 shows the peak-to-background ratio for electrons as a function
of the primary energy. The peak’s amplitude is calculated by a Gaussian fit.
The background is defined by taking the average over the spectrum between
10 % and 80 % of the primary energy. The range is kept constant for all pri-
mary energies to make the results for different primary energies comparable.!
The value of the peak-to-background ratio is sensitive to the background’s
choice and definition. However, the basic shape remains.

The peak-to-background ratio initially increases with increasing primary en-
ergy since fewer particles are backscattered. For higher primary energies above
350 keV, the ratio of forward-scattered particles becomes more significant, and
the peak-to-background ratio decreases.

A.2.4 Particle Rate

The particle rate’s upper limit depends on the readout speed of the detector
and its dynamic range and is, therefore, specific for the detector system. Per-
forming measurements with this upper limit particle rate results in intensity
images.

If one wants to distinguish between single-particle tracks in the detector, the
rate has to be smaller. In this case, the rate is limited by the range traveled
by the particles in the detector. This range depends on the detector material,
the particle type, and the particle energy.

!The upper limit of 80 % also ensures for a primary energy of 10keV that the photo
escape peak is outside the background.
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Figure A.8: Peak-to-background ratio for electrons as a function of the primary
energy. The error bars result from the uncertainties of the fits.

The limiting factor is the maximum lateral expansion of the charge cloud
and not the track length of a particle in the material. For photons as primary
particles, the lateral expansion of the charge cloud is mainly dominated by the
drift process and, therefore, strongly depends on the detector parameters such
as the thickness or the back contact voltage (Section 4.8). The charge cloud
can be approximated as radially symmetric.

For electrons as primary particles, the maximum lateral expansion is dom-
inated by multiple scattering and, thus, strongly depends on the primary
energy. The statistical character of multiple scattering allows only to make
statements about the average over many particles and not about an individual
particle.

A quantitative view of probability for pattern pile-up events for photons can be
found in [213] and [214] and for electrons in Figure B.3 on page 233. Increas-
ing the primary particle rate from this limit, a transition from single-particle
tracks to intensity images happens.
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A.3 Units of the Bethe Bloch Formula

The units of the Bethe Bloch equation are as follows:

Adgt L ke ] B [ Al kgPmPmbol _ [kgm] _ F] (A7)

A2s8 kg m2 |

aZm® mol K8 57 AL 402 P ol 52 m
106 1079 [k
F} — 107 {i} _ 10 {ﬁ} _ 10 [G_V] (A.8)
m pm € pm e pm

Here, e is the elementary charge.
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A.4 Landau Distribution Function

The distribution of the energy loss fr, of an electron passing a thin absorber is
described by the Landau distribution [68]:

o(\)

fu= ra (A.9)
O(N\) =71 /00 e"IO=A) gin (1) dt (A.10)

0
Az, A) = A_Tw — 2 —In(k) —1 - Cg (A.11)

22" NapZ
&(x) = Tl A B2 (A.12)
k= % (A.13)
v

Here, A is the energy loss, (A) is the mean energy loss, x is the thickness of
the absorber, .. is the maximum transferable energy in one collision, 7 is
the atomic number, A is the atomic weight, p is the density of the absorber,
and Cg = 0.5772 is the Euler constant. ¢ is the prefactor of the Bethe Bloch
formula (eq. 2.17 on page 24) times the thickness of the absorber. Note that
the original nomenclature is used, and A is not the wavelength. The mean
energy loss can be obtained from the Bethe Bloch formula [38]:

(A) = ¢ (m <2m“c—?272) +In (%) 02— 5) (A.15)

Here, ¢ is a density correction, which becomes important at high energies,
and [ is the mean excitation energy. The maximum of the distribution is at
A ~ —0.22 and the full width at half maximum can be calculated to [38]:
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A.5 Electric Potential and Field Approximation in
the Silicon Detector Volume for pnCCD

In this Appendix, the equation for the electric potential and the electrostatic
field for a model of the pnCCD is derived. In this model, no pixel structure
and a homogeneous space charge density in the bulk and the n region are
assumed. In addition, the thin p* region at the front- and the backside are
neglected, and a totally depleted detector is assumed. Eq. A.17 shows the
one-dimensional Poisson equation for the potential (.

1aim P9 p

\V4 - —
y 072 €0€si

(A.17)

€p is the electric permittivity, and eg; is the dielectric constant of silicon. The
space charge density in the n-doped bulk is given by

p=€: Ny (A.18)
and the space charge density in the n region near the frontside contact is
p=e-n, (A.19)

with the elementary charge e, the space density n,- of the n~ dopant and the
space density n,, of the n dopant. A schematic drawing of the model and the
choice of the coordinate system is shown in Figure 4.1 on page 49. The origin
of the coordinate system is at the surface of the backside, and the z-axis goes
toward the detector volume. The transition between the ranges is at z = 4.
The thickness of the detector is d. This leads to a general description of the
space charge density:

e-n,— 0<z<9
p(z)=<e-n, d<z<d (A.20)
0 otherwise

The solution for the electric field can be parameterized as:

- =A 22+ B -2+C,- 0<2z<$6
¢<z>={ (A.21)

On=Ay- 22+ By, 2+ C, 0<z<d
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Applying the voltage V;, at the backside of the detector and V; at the frontside,
the solution to eq. A.17 must obey the following boundary conditions:

p(z=0)=p,-(2=0) =W
plz=d)=pu(z =d) =V
Pn (2= 8) = pu(z = 0) (A.22)
%% (z2=0)= %%(2 =)

Solving the resulting system of equations leads to the solution for the coeffi-
cients A;, B;, and C;:

A, = _ Pn
2ep€s;
Vi—W [0 Pn— Po= | d-pn (A.23)
= 5. )
" d + (2d 260631 + 260651
C,-=V
J—
2ep€s;
Vi—Vo 0 (pn—pn)  d-pa
B, =
d + 2d - €0€si + QEQESi <A24)
6% (p,— — po
= vy P =)
2€p€s;

The electric field is determined by the negative gradient of the electric poten-
tial:

0p(z) {—QAH cz—B,- 0<z<$ (A.25)

E(z)=— =
—2A,-2— B, d<z<d
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Classical Data Analysis Methods

In the following Appendix, classical data analysis methods instead of neuronal
networks are described. This understanding is needed for comparing the
quality of the introduced analysis methods based on neural networks in this
work.

Typically, the first step is a signal offset correction. The offset of the pixels
varies, for example, because of slightly different gains and leakage currents.
An offset map oy, (eq. B.1) is determined and subtracted from the raw
data. For this purpose, frames without illuminating the detector are recorded.
These frames are called dark frames D;yy in the following. The pixel-wise
average over a set of dark frames is the offset map oy,. Furthermore, the
standard deviation over the dark frames is defined as noise map nyy (eq.
B.2). In this notation, i describes the frame’s temporal index (frame id), x
the frame’s column index, and y the frame’s row index. Both the offset map
and the noise map are calculated for each pixel separately. [11]

_ 1 <&
Oxy = D17X7y = E Z Di,x,y (B].)

n

1
Ty = IDGey) = 4| Z [Dixy — Ox,y]2 (B.2)
1

An optional step at this point is the common-mode correction. So-called
common-mode describes the temporal fluctuations in the supply voltages of
the detector readout circuit. These temporal fluctuations affect all pixels
that are readout simultaneously in the same manner. The common-mode
correction can be realized in several ways. All these correction methods only
consider pixels that do not contain any signal from an energy deposition but

contain only noise. A simple common-mode correction is to subtract the
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median of the common-mode affected pixel values, which is stable compared
to the mean value against outliers of the simultaneously readout pixels. This
method works if at least half of the simultaneously readout pixels are free of
signal charges. [98]

The next step is an optional multiplication of a gain map gy, (eq. B.3)
to calibrate the amount of deposited energy. The gain map can be obtained
through several ways.

One way is to obtain a relative gain map. With this relative gain map, the inho-
mogeneous amplifications of the pixels and the readout chain can be corrected.
This is crucial to get well reconstructed PoEs of the incoming particles because
the energy depositions in single pixels are compared with each other. The rel-
ative gain map is obtained by a reference measurement H;,, with spatially
homogeneous illumination with a high particle rate. Under such conditions,
the signal in every pixel should be the same. The numerator of eq. B.3 de-
scribes each pixel’s mean signal for each frame of the reference measurement.
The denominator is a normalization factor that can be chosen individually.[69]

1 %ZHI,X,y
Ix,y N L1 1 d&Ed (B:3)
S 5

The parameters ny and n, specify the number of columns and rows of the
detector, respectively. In the following, a gain map with one gain value per
octant is applied for the conventional methods [69].

The other alternative way for determining the gain map, especially for low
energies and low particle rates, is to calculate the gain map from single pattern
events with an energy deposition in only one pixel. This method requires an
event pattern analysis (Section B.1). From the event pattern analysis, a pixel-
by-pixel spectrum can be created. The peak in the spectra and the known
primary energy of the incoming particle can then be used as a basis for the
calibration. [98]

The offset corrected frames S°°, and the gain corrected frames S can

1L,X,y? ix,y
finally be calculated from the raw frames S

LX,y °
Sty = Sty © 0xy (B.4)
&) = 519 © guy (B.5)
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Here, © and ® denote frame-wise difference and multiplication.

B.1 Event Pattern Analysis

An event pattern analysis searches for event patterns in the recorded frames.
These event patterns are a group of adjacent pixels which exceed a certain
threshold. Figure B.1 shows an offset corrected example frame on the left side
and the extracted event patterns on the right side.

H..:.E,n-ll'-
- -
{l M

T T
0 20 40 60 80 100 120 140

Figure B.1: Event Pattern Analysis. The left image shows a simulated example
frame. The energy deposition into the individual pixels is color-coded. The red
crosses label the PoEs of the primary electrons with an energy of 300keV. The
right image shows the remaining event pattern after the event pattern analysis.
The primary threshold is at 50 (orange line in the color scale), and the secondary
threshold is at 20 for an assumed equivalent noise charge of 20 e~. Event patterns
with two PoEs denote a pattern pile-up event.

Here, the event pattern analysis can basically be structured into three
parts.
The first step is the individual classification of all pixels for each frame.
The second step is to cluster the pixels to events, and the third step is
the housekeeping to ensure the correct assembling of the events after the
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reconstruction of the PoE.

The individual classification of the pixel works with thresholds. Typically, the
primary threshold is five times the noise value, and the secondary threshold is
in the range of two to four times the noise map [98]. After the classification,
the event clusters are built. All pixels that are higher than the secondary
threshold and physically connected are combined to one cluster. This cluster is
counted as an event if at least one pixel is higher than the primary threshold.
This pixel-by-pixel classification is robust to the optional gain correction but
not necessarily robust to a common-mode correction.

Typically, the event analysis provides information for housekeeping such
as the frame index, the position, the bounding box which rectangularly
surrounds the cluster, the signal of the pixels above the threshold, and their
relative positions in the bounding box. Information such as the number of
pixels above the threshold and the sum of the signals representing the total
energy of the event can be provided optionally.

Since the frames are independent of each other, the event pattern anal-
ysis is perfectly parallelizable.! For the classical data analysis methods, the
event pattern is the bottleneck of the performance but is inevitably required
to create a spectrum or obtain the PoE of individual primary particles. The
actual speed of the event pattern analysis strongly depends on the primary
particle rate and is in the order of several minutes to hours for a typical mea-
surement. For example, the event pattern analysis with a primary threshold
of 5o and a secondary threshold of 20 of the noise and an electron rate of
0.92-107% ¢ /pixel/frame (PID_e_300_1, Table D.3) on a standard workstation
on six CPU cores [218] is performed with a frame rate of around 180 Hz. For
an roughly 2.7 times higher event rate per frame (PID_e 3002, Table D.3),
the performance decreases to approximately 120 Hz.

B.1.1 Influence of Threshold Variations

Varying the primary threshold acts such as an event filter because the primary
threshold is the criterion of whether an event cluster of an energy deposition
is counted as an event pattern or not.

The choice of the secondary threshold impacts the ratio between the
frequency of occurrence of the pattern with different sizes. The total number
of detected patterns is not influenced by the secondary threshold as long as

!The event analysis is performed with the help of methods label() and find_objects() from
Scipy [215]. For the parallelization, the Python module Dask [216] is used [217].
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Figure B.2: Choice of the secondary threshold that decides whether a pixel contains
a signal from an energy deposition or just noise. The shown spectrum is a so-called
pixel spectrum. This means no event pattern recombination is performed, but the
values of an individual pixel are used. TN denotes the true negative, TP the true
positive, FN the false negative, and FP the false positive classified pixels. Figure
adapted from [219].

two pixels that exceed the primary threshold are not connected. Thus, two
events are merged into one.

Figure B.2 shows the best selection of the secondary threshold. Here, best
is defined as the value where the number of false negatives and false positives
is minimal. In this context, negative contributions are contributions by pixels
labeled to contain only noise, and positive contributions are contributions
by pixels labeled to contain an energy deposition. True and false describe
the correctness of the generated label. Because of the noise contribution’s
statistical character, there is no threshold that labels the contributions with
an accuracy of one hundred percent. In general, the selection criterion should
be chosen at the energy value on which the contribution of the noise is of the
same magnitude as the average contribution of a real energy deposition to the
spectrum in one pixel (Figure B.2).

A lower secondary threshold than the best secondary threshold decreases
the ratio of single pattern events. As a consequence, the false negative
contributes decrease. For a single pattern event, it is less likely to miss an
energy deposition in an adjacent pixel. Otherwise, the event would be a
double pattern event. As a consequence, the energy resolution of the single
pattern events increases. At the same time, the false positive contribution
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to events where multiple pixels contribute increases. Therefore, the energy
resolution of the multiple events decreases.

Other impacts on the pattern size and, therefore, on the ratio between
patterns containing only one pixel and larger patterns are shown in Table B.1.

Table B.1: Dependencies of the single pattern events are obtained from an event
pattern analysis using a noise-dependent primary and a secondary threshold. A
detailed explanation can be found in the text.

property behavior single pattern events

secondary threshold
particle energy

back contact voltage
readout noise

pixel size

N\
/!
/!
/!

NN NN

A higher energy of the primary particle leads to a stronger repulsion
of the charge cloud due to the larger amount of generated charge carriers.
For charged primary particles, there is also an additional effect. Charged
particles randomly produce three-dimensional tracks in the detector volume.
The length of those tracks becomes larger for higher primary energies. Both
effects increase the event pattern size and, therefore, reduce the ratio of single
pattern events.

A higher back contact voltage leads to a higher electric field in the silicon
bulk and, therefore, to a shorter drift time of the charge cloud. The charge
cloud expands less in this shorter time. As a consequence, the ratio of single
pattern events increases with increasing back contact voltage.

A higher noise contribution of the readout chain leads to a higher secondary
threshold. Therefore, more pixels are considered to contain just noise and no
energy deposition from a primary particle. The number of pixels containing
an energy deposition but are classified as pixels that only contain noise
increases. Thus, the number of pixels of an event pattern decreases.

A larger pixel size yields for the same size and shape of the charge cloud to
less pixels contributing to the pattern. Therefore, the patterns’ size becomes
smaller on average, and the ratio of single pattern events increases.

Depending on the application, a high ratio of single pattern events is desired

or not desired.
A large ratio of single pattern events is desired for spectroscopy because every
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additional pixel contributing to the event provides its individual noise. The
more pixels contribute to the event pattern, the more noise terms contribute
to the measured total energy deposition.

Large event patterns are advantageous for applications where the primary focus
is the PoE’s spatial resolution. In general, algorithms that determine the PoE
on subpixel level need a spread of the energy deposition over several pixels
(Figure B.10).! This statement applies to classical methods such as the center
of gravity method (Section B.1.4) as well as for methods based on neural
networks (Chapter 7).

B.1.2 Pattern Pile-up Events

The event pattern analysis works well for low particle rates. If the rate
increases, more and more pattern pile-up events are detected. A pattern
pile-up event is an event pattern where the energy deposition of two or more
different primary particles is combined to one cluster and recognized as one
event pattern by the event pattern analysis algorithm.

The classical methods for the reconstruction of the PoE for the primary
particles, which are described in Section B.1.4, require event patterns to which
only one primary particle contributes.

Basically, two types of pile-up events can occur, but these two types are
only phenomenological and not distinguishable in measurements.
The first type is two or more physical events whose pixel boundaries touch
each other, but at least theoretically, one physical event can be assigned to
each pixel. Here, a physical event is the energy deposition of one primary
particle. In principle, these types of events are separable. Every pixel contains
at least the charge carriers from only one primary particle.
The second type is events where the charge clouds overlap, i.e., there is at
least one pixel containing charge carriers from two different primary particles.

For even higher rates and intensity imaging, illuminated and adjacent
pixels are counted as one event, making a proper event analysis impossible.

The ratio between events where only one primary particle contributes to
the energy deposition and pattern pile-up events depends on the experimental
conditions. Table B.2 show these dependencies. Because the event size

!Not a precise PoE can be reconstructed for single pattern events, but the area centered
at the pixel center in which the PoE has to be can be defined. The size of the area containing
the PoE depends on the charge cloud size. A larger charge cloud leads to a smaller area.
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influences the probability of a pattern pile-up event, most relationships are
similar to the considerations for the single pattern events (Table B.1).

An increase of the readout rate acts similarly as a decrease of the particle
rate and leads to a lower probability that two particles enter the detector in
the same frame.

An increase in the pixel size has the same effect as smaller event pattern sizes.
However, the probability for pixels of two events that are connected increases
since the spatial dimensions of the charge clouds are the same. Therefore, the
pattern pile-up probability increases.

The situation is different if one assumes not a constant overall particle
rate but a constant particle rate per pixel. The larger pixel sizes lead to a
smaller overall particle rate in this context. The dimensions of individual
charge clouds stay the same since they are independent of the pixel size.
Consequently, the probability of a pattern pile-up event decreases. [11]

Table B.2: Dependencies of the pattern pile-up probability. A detailed explanation
can be found in the text. Table adapted from [69].

property behavior pattern pile-up

secondary threshold

readout rate

particle rate

particle energy

back contact voltage

readout noise

pixel size (const. particle rate)

pixel size (const. particle rate per pixel)

NN NN N
N NN

Figure B.3 shows the probability for a pattern pile-up event for different
primary energies as a function of the primary electron rate. For small primary
electron rates, the probability that an event pattern only contains the energy
deposition of one primary electron is the highest. With increasing primary
electron rate, the probability for single pattern events decreases, whereas the
probability for multiple event patterns increases since it is more likely that
two or more electron tracks overlap. The probability for event patterns where
less than six primary electrons contribute is for low primary electron rates
nearly one and decreases with higher primary electron rates since the number
of event patterns with six or more primary electrons increases. The tracks of
primary electrons with higher energies are larger than the tracks of primary
electrons with low primary energies. Therefore, the probability for a single
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pattern event as a function of the primary rate decreases faster with higher
primary energy. For even higher rates, the contributions of single primary
electrons are no longer separable, and intensity images are created. Since the
classical approaches presented in Appendix B.1.4 require single pattern events
and cannot handle pattern pile-up events, the multiplicity for the classical
methods is related to the probability for single pattern events shown in Figure
B.3. The multiplicity denotes the fraction between the number of reconstructed
PoEs and actual PoEs. An energy filter applied to the event pattern can be
used to separate single pattern events from the others.
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Figure B.3: Simulated pattern pile-up event probability for electrons for different
primary energies as a function of the primary electron rate. The pixel size is 48 x
48 pm?. The line style indicates the number of primary electrons contributing to
the event pattern. ”Single” denotes the probability for a single pattern event, and
”double” denotes the probability for a double pattern event. ”Smaller 6” denotes
that less than six primary electrons contribute to the event pattern. Figure adapted
from [69].

A quantitative view of probability for pattern pile-up events of photons can
be found in [213] and [214], and for electrons in [69].
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B.1.3 Energy Filter

Instead of using the primary threshold as a selection criterion whether a cluster
should be counted as an event or not, another mechanism can be used. A
detected cluster is counted as an event pattern if the total amount of deposited
energy in the cluster exceeds a certain threshold or, alternatively, is in a certain
range. The selection criterion works as an energy cut or as an energy window.
In contrast to the event pattern detection with two thresholds, this energy
filter depends on the quality of the gain correction.

This event filter is suitable, especially if the to-be-detected particles’ energy
is well known and monochromatic. A correctly chosen energy window reduces
pattern pile-up events or only partial energy distributions of a primary particle
in the detector.

B.1.4 Classical Methods for the Reconstruction of the Point
of Entry

Several methods exist to reconstruct the PoE for each event obtained from
the event pattern analysis. However, all these methods do not consider the
statistical energy deposition behavior of charged particles in the detector vol-
ume and have in common that they cannot handle pile-up events. This has the
consequence that the conventional methods are only applicable for low particle
rates. As a criterion for a single event or pile-up event, the simple summation
of the energy depositions can be used.

The reconstruction of the PoE is not necessarily robust to a gain cor-
rection or a common-mode correction. The following introduced methods to
reconstruct the PoE for each event pattern assume that exactly one particle
contributes to each event pattern.

e Maximum: The simplest method is to take the pixel with the maximal
signal as PoE. This method is applicable for photons and electrons where
the incident electrons do not create extended tracks and is used for so-
called single pattern events where the number of pixels of the event is
one. This method cannot provide any subpixel information.

e Center of gravity: The standard method to determine the PoE is to
calculate the center of gravity xc.q of the pixels that contain a signal.

_ (7Tcoa _ 1 T
Feea = (ycoe) > Sy 2 S (y) (B:6)

pixels€event pixels€event

Sy,y is the signal of the pixel with the center (x,y)T. It is important to
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note that the straightforward calculation leads to a systematical error
that shifts the PoE towards the physical pixels’ centers in comparison
to the true PoE [12]. This systematical error can be partially corrected
either with the ¢ correction method or the 7 correction method [220]. A
detailed description and explanation can be found in Appendix B.2.
The idea behind the method is a symmetrically shaped charge cloud cen-
tered at the PoE. This means it is applicable to photons and electrons
with low energies and can provide reconstructions of subpixel informa-
tion.

e Furthest away method: The furthest away method is suitable for
electrons with higher primary energies. They deposit most of their energy
at the end of the track (Section 2.2). Therefore, the furthest away method
assumes that the PoE is in the pixel with the largest distance to the
pixel with the highest signal. This method cannot provide any subpixel
information and only works well if the event shows a strong directional
track. [11]

Figure B.4 shows the positions of the reconstructed PoE obtained by the
different methods, for example, event pattern for a primary electron with an
energy of 300keV. The furthest away method achieves the best result. Best
result in this context means the Euclidean distance between the true PoE and
the reconstructed PoE is minimal. For this example, the worst of the described
methods is using the pixel with the maximum energy deposition as PoE. The
result obtained by the center of gravity method is slightly better. Figure 10.13
confirms this behaviour for large statistics.

B.2 Corrections to the Center of Gravity Method

In this Section, the systematical error made by the center of gravity method
is mathematically described and analyzed.

B.2.1 Theoretical Derivation of the Corrections to the Cen-
ter of Gravity Method

A detector system without noise and a vanishing electrostatic field component

parallel to the detector surface is assumed for the following considerations.

This simplification is valid because additional noise would only result in an
additional statistical rather than a systematical error. An electrostatic field
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Figure B.4: Reconstructed event patterns by conventional methods. The color
code indicates the energy deposition into the individual pixels. The primary elec-
trons enter the detector volume at (0,0) with a primary energy of 300keV and
produce a three-dimensional track in the silicon shown in red. The size of the red
dots indicates the amount of energy deposition along the track. This track is only
shown for clarity but is not obtained by the measurement. The different marker
shows the reconstructed PoE with the different conventional methods. PoE denotes
the actual PoE, CoG the PoE obtained by the center of gravity method, MAX the
PoE obtained by the maximum method, and FAM the PoE obtained by the furthest
away method.

component perpendicular to the detector surface that is not zero is not con-
sidered in the following Section and would lead to a systematical shift of the
PoE due to the lateral drift of the charge cloud.

The total energy deposition or, more specific the generated amount of charges
of one primary particle can be calculated by the following integral:

@= | [ sy (B.7)

Here, p(z,y) is the projection of the charge cloud onto a plane parallel to the
pixel structure of the detector.

The center of gravity method can only be used if the projection of the
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charge cloud onto the plane parallel to the pixel structure is symmetric. This
symmetry is ensured by the diffusion and the electrostatic repulsion since
they are radially symmetric (Chapter 4.2.4).

The x-component of the theoretical PoE is the center of gravity and can
be calculated by the expectation value of p(z,y):

TpoE = Q//:prydydw—Q/ [/ a:ydy}dx—Q/xp .

Because the x-coordinate is independent of the coordinate y, the integral over y
can be performed first. The result is the projection of the charge density on the
x-axis, which is labeled as p(z). The x-coordinate of the PoE is independent
of the expansion of the charge cloud in the y-direction.

The calculated x-component of the PoE by the center of gravity method can
be derived from eq. B.6:

1
TCoG = ﬁ Z Sx,yxpixel

X7 M o
pixels€event v pixels€event

— prlxel/ /p(x,y)dydx

plxel width length

Z prlxel / / (z,y)dydx

columns rows width length

Q=

1
-5 > Tpixa / > / p(z,y)dy | dz (B.9)
columns width row gth
1
:6 Z Tpixel p(l‘,y)dy da
columns width
1 ~
= @ Z Tpixel / p(fE)de
columns width

[ oz
_ Wldth
- —~  Lpixel

columns

Here, wpixel is the x-coordinate of the pixel center and Sy is the signal in
the pixel with the center (z,y)T. The integral over the width has the limits
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Tpixel — Az/2 and Tpixe + Az /2. Az is the pixel’s width. The integral over
the length has the limits ypixe — Ay/2 and ypixe + Ay/2. Ay is the length of
the pixel. Rows are in the x-direction, and columns are in the y-direction.

In the second line of eq. B.9, the signal in the pixel is substituted by eq.
4.20 on page 55. Here, p(z,y) is the charge density created by the primary
particle, which contributes to the event.

The summation over all pixels can be separated in the summation over the
detector’s rows and columns. Because the x-component of the pixel positions
Zpixel 15 the same for all summands of the summation over the rows, the
order of the summation over the rows and the integral over the width can be
exchanged.

The summation over all rows of the integral over the length of the individual
pixels can be simplified by the integral over the total detector length. The
calculated x-component is the weighted summation over the x-positions of
the pixels. The weighting factors are fractions of deposited energy in the
corresponding detector columns.

The deviation §(z) between the theoretical and the calculated PoE is the
difference between xp,p and rcoq:

I(T) = TpoE — TCoG

Q/xp dx—— Z Tpixel / p(x)dx

column width

Q Z / zp(x)dr — Tpixel / p(x)dx (B.10)
column \yigih width
[ plx)dx [ [ zp(x)da
Z w1dth width .
pixel

column f /3 (37) dx

width

In the second line, the integral over the detector’s total width is split in the
sum over the pixel-wise integrals. In eq. B.11, the projected charge density
p(x) is substituted with the charge density p(z,y) to get a contribution of the
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individual pixels to the deviation 6(x).

I [ ple,ydyde ([ [ xp(z,y)dyde

width length width length
5($) = Z 5 Q & — Tpixel
pixel . [ | plz,y)dyda
width length (Bl]_)
JJ zp(z,y)dyds
Z Sx,y width length "
= - ixel
pixel Z Sx’y Sx’y ’
pixel

The deviation §(z) is the weighted summation over the distance of the centers
of gravity of the individual pixels and the positions of the pixels’ centers Zpixer.
The weights of the sum are the relative amount of charge in the individual
pixels.

Figure B.5 shows the projection of the charge density on the x-axis and
the corresponding representation in the pixel structure. The calculated PoE
is shifted by d§(x) towards the center of the pixel structure. The integrated
charge density in pixel 0 and pixel 3 can be neglected. §(x) is the difference
between the actual PoE xp.g and the calculated PoE xcoq. The dashed lines
in the upper plot are the theoretical centers of gravity of the individual pixels.
The dashed lines in the lower plot are the pixel-wise centers of gravity in the
pixelated representation. Since the charge density is constant over one pixel
in the pixelated representation, the center of gravity is at the same point
as the pixel center. §(x) is the weighted sum over the differences d; of the
individual pixels.

Since in the theoretical and the pixelated representation, the charge density
is constant for pixels 0 and 3, the center of gravity and the center of the pixel
is the same. Therefore, the contribution of pixels 0 and 3 to §(x) is zero.

The deviation of the y-component can be calculated in the same way.

The calculated PoE has not to be corrected if either the center of gravity
is the center of the pixel for all pixels or the contributions of the individual
pixels cancel each other.
The first assumption is true if the charge density is constant over the indi-
vidual pixels. In general, this is valid if either the charge density is constant
or the pixel size is very small compared to the spatial change of the charge
density.!

!These conditions also hold if the charge density is symmetric around the center of each
pixel.
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Figure B.5: Schematic of a correction to the center of gravity method. Upper
plot: Gaussian distribution of the charge density as a function of the x-position
in arbitrary units (a.u.). The solid blue line depicts the charge density in pixel 0
and pixel 3, the solid green line depicts the charge density in pixel 1, and the solid
orange line the charge density in pixel 2. Lower plot: Relative amount of charge
in the pixel structure. The relative amount of charge is the integral over the pixel
boundaries divided by the total amount of charge.

The dashed colored lines depict the pixel-wise center of gravity for pixel 1 and
pixel 2 in both shown representations. The arrows depict the derivations. The red
lines show the center of gravity in both representations. The red line in the upper
plot represents the theoretical PoE, and in the lower plot, the calculated PoE. The
difference d(z) (red arrow) is the deviation made by the reconstruction method and
can be calculated by the pixel-wise derivations weighted with the relative amount
of deposited charge.

The signals of the individual pixels cancel each other if the charge density is
symmetric in the representation of the pixel structure. It is not sufficient that
the charge density is symmetric. For example, this symmetry is accomplished
if the theoretical PoE is at the border or the center of a pixel. In this case,
the symmetry of the charge density is not broken by the representation of the
pixel structure.

The systematic deviations §(z) and d(y) only depend on the projection on the
x- and y-axis, respectively, and can, therefore, be treated independently.
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The theoretical description of the deviation §(z) is also valid if the primary

particle only deposits its energy in one pixel (more precisely in one column and
row, respectively). However, in this case, the deviation d(x) is not bijective
and, therefore, a mathematically unique reconstruction of the theoretical PoE
is not possible.
Here, it must be noted that §(x) is given as a function in the detector space.?
In order to apply the correction to the calculated centers of gravity, a coor-
dinate transformation into the analysis space defined by the calculated center
of gravity must be performed. Analytically, this coordinate transformation
depends on §(z) and is given as follows:

r—x—0(x) (B.12)

B.2.2 Determination of the Corrections to the Center of
Gravity Method by Simulation

Figure B.6 and Figure B.7 show the probability distribution and the cumu-
lative probability over a pixel caused by the center of gravity method. The
initial situation is a homogeneous distribution of PoEs over the pixel. Since
the center of gravity method systematically shifts the calculated PoEs to
the pixel center, the probability in the center is the highest. In a subpixel
representation, this leads to so-called checkerboard artifacts. Checkerboard
artifacts are repetitive artifacts that repeat themself with a spatial frequency.
Subpixels located in the center of physical pixels show a higher probability of
being hit. A flat-field illumination leads to an inhomogeneous distribution in
the reconstructed hit-map.

To correct the calculated center of gravity, d(z) has to be added to the
reconstructed center of gravity:

TPoE = LCoG + (5(%) (B13)

The correction d(x) depends on the charge cloud’s shape and size and the
pixel structure of the detector system.

2The detector space represents the direct physically accessible coordinates. Distances
can be measured with a simple tape measure.
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Figure B.6: Probability density function of the center of gravity for a homogeneous
illumination. The pixel size is 48 x 48 pm?, and the pixel center is at zero. A K,
photon emitted by copper generates the charge cloud. The dimensions and shape of
the assumed charge clouds are shown in Figure 4.4 on page 55. The different colors
refer to the different charge cloud models.

The following steps describe the procedure to create the correction function
d(z) = 0(y) to the center of gravity method. The method is adapted from
Belau [220] and Ryll [11] and supplemented by the different models of the
charge cloud. The used data are generated by a numerical method described
in Section 4.7.

e Calculation of the center of gravity in the pixel domain: In this
step, the calculated PoE is obtained via the center of gravity method for
each seven times seven pattern.! Pixel domain means that all centers
of gravity are calculated relative to the central pixel of the seven times
seven pattern.

e Calculation of the shift between the actual PoE and the center

!The Gaussian distribution is never zero but for the range of the used parameters outside
the seven times seven pattern smaller than one percent of the total charge and, therefore,
neglectable.
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Figure B.7: Cumulative probability of the center of gravity for a homogeneous
illumination. The pixel size is 48 x 48 pm?, and the pixel center is at zero. A K,
photon emitted by copper generates the charge cloud. The dimensions and shape
of the assumed charge clouds are shown in Figure 4.4 on page 55. The different
colors refer to the different charge cloud models. For a homogeneous illumination,
the cumulative probability should be a straight line.

of gravity in the detector space:?> The deviation between the actual
PoE and the calculated center of gravity is calculated for every event
pattern and, therefore, for all different PoE positions within the central
pixel of the pattern. The result is a map of the deviations or rather
the shifts between the true PoE and the calculated center of gravity in
the detector space. Figure B.8 shows the shift. As expected from the
theoretical derivation, the shift at the pixel boundaries and in the center
is zero. The calculated centers of gravity are shifted towards the pixel
center.

e Transfer the shift to the analysis space:! The shifts obtained in the
previous step contain all necessary information to perform the correction
step. However, the entries of the shift map are a function of the coordi-

2The detector space represents the direct physically accessible coordinates. Distances
can be measured with a simple tape measure.
IThe weighted centroids define the coordinate system of the analysis space.
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Figure B.8: Shift between the actual PoE and the center of gravity in the detector
space. The different colors refer to the different charge cloud models. The shift
between the actual PoE and the calculated PoE is zero for an ideal reconstruction.

nates in the detector space. This map must be transferred in the analysis
space to find the corresponding correction to a reconstructed PoE by the
center of gravity method. The analysis space is the coordinate system
that results from the calculated PoE. Since the spacing in the coordinate
system of the analysis space is not equidistant but depends on the coor-
dinates itself, the coordinate transformation between the two reference
systems is not linear. With the coordinate transform described by eq.
B.12 follows:

d(z) = 6 (x—d(x)) (B.14)

The correction map in the analysis space is obtained via interpolation
of the correction map in the detector space. Figure B.9 shows the
correction d(x) as a function of the coordinates in the analysis space.
Again, the shift at the pixel boundaries and in the center is zero. The
bigger the charge clouds or the smaller the pixel sizes, the smaller is the
correction 6(x).

If the actual PoE is located near the center of the pixel and the charge cloud
is small compared to the pixel size, the charges are not spread over adjacent
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Figure B.9: Correction for the center of gravity in the analysis space to obtain the
actual PoE. The different colors refer to the different charge cloud models. For an
ideal reconstruction, the correction is zero.

pixels. As a consequence, a single pattern event occurs. In such a case, it is
not possible to precisely reconstruct the actual PoE within a geometrical pixel
due to the lack of information. Figure B.10 shows this exemplary for different
charge clouds the area around the pixel center for which a single pattern event
is created. This behavior is expressed in a vertical line in §(x). An exact
assignment of the weighted average and the actual PoE is not possible.

The same applies for double pattern events. Here, the actual position
in one dimension can be reconstructed but not in the other dimension. For
a horizontal double event pattern, the x-coordinate can be reconstructed,
and for a vertical double event pattern, the y-coordinate. In general, to
reconstruct the x- and the y-coordinate, the expansion of the event pattern in
the x-, y-dimension has to be larger than one pixel, respectively.
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3 4

Figure B.10: Occurrence of single pattern events. A cut perpendicular to the
detector surface is shown. For each example, the central pixel and its neighbors are
shown. The black lines represent the pixel borders, and the blue curves represent
the charge distributions for four different charge cloud sizes. The PoE is at the
maximum of the charge distribution. (1) The charge cloud is larger than the pixel
structure. As a consequence, no single pattern events occur, for all PoEs extend at
least over two pixels. (2) The charge cloud has the same size as the pixel structure.
For a PoE in the center of the pixel, a single pattern event occurs. This position
is marked with the red dashed line. (3) The size of the charge cloud is slightly
smaller than the pixel structure. Therefore, all events with a PoE within the red
area produce a single pattern event. (4) For decreasing charge clouds compared to
the pixel structure, the area in which a single pattern event is created increases.
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Figure B.11: Normalized hit-map and spatial accuracy map for the pure center of
gravity, a too small correction, and a too large correction. The physical pixel size is
48 x 48 pm? with (0,0) in the center of the pixel, and the illumination is homogeneous
with around two million simulated primary particles. The spacial accuracy map
contains the average distance between the true PoE and the reconstructed PoE
in pm, and the arrows describe the systematic displacement. The charge cloud is
Gaussian shaped with an FWHM of 22 pm. The pixel-wise noise is 0.01 % of the
total signal. For the too small correction, an FWHM of 24 pm, and for the toodig
correction, an FWHM of 20 pm of the charge cloud is used.
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The accuracy of the correction §(z) can be investigated by the gener-
ation of a two-dimensional histogram (Figure B.11). The two-dimensional
histogram is created over all relative PoE positions within the individual
pixels of the detector.! Ideally, this two-dimensional histogram should be
homogeneous over the pixel area. It was seen that due to the large slope of
d(x) (Figure B.9) at the center of the pixels, inhomogeneities at the center of
the two-dimensional histogram are most indicative of deviations between the
true shape of the charge cloud and the assumed model of the charge cloud in
Section 4.7.

Building the two-dimensional histogram over the results of the uncorrected
center of gravity method leads to a density distribution with the maximum
at the center of the pixel area (Figure B.11a and B.11b). This is caused by
the fact that the calculated PoEs of the center of gravity method are shifted
towards the center. This applies similarly to the x- and the y-component and
results in a plus-shaped distribution.

A less pronounced plus shape suggests a too small correction d(x) in the center
of the pixel structure (Figure B.11c and B.11d). The too small correction in
the center corresponds to a too flat slope in the center of the pixel structure.
A too flat slope in the center is due to the fact that the charge cloud in the
model was assumed to be too large. A too large charge cloud follows, for
example, from a drift time that was assumed to be too long.

An inverse plus shape suggests a too large correction in the center of the
pixel structure (Figure B.11e and B.11f). A too large correction in the center
corresponds to a too large slope in the center of the pixel structure. A too
large slope in the center is due to the fact that the charge cloud in the model
was assumed to be too small. A too small charge cloud follows, for example,
from a drift time that was assumed to be too short.

B.2.3 Determination of the Corrections to the Center of
Gravity Method by Measurements

Between synthetically generated data and measurements, small deviations can
be found. Those differences occur due to simplifications of the model. For
example, the pixel structure of the detector leads to a small deviation between
the simulated and the actual electric field. The deviation leads to a second,
typically small, correction n:

'A flat-field measurement is ideal. However, other measurements work well, too, as long
as enough area of the detector is illuminated, that on average, the theoretically calculated
two-dimensional histogram of the PoE is homogeneous.
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Tpor = Tpor + N(Tpor) = Tooa + 0(x) + n(Tcoe + ()) (B.15)

While 6(x) = 6(y) is similar for x and y, this is not necessarily true for
n(x) # n(y). These differences can be caused by the symmetry breaking of the
pixel structure.! The following steps can be performed to resolve differences
represented by 7(z) between the synthetically generated results and the mea-
surements. The construction of n(y) works similarly. It is based on a method
for silicon strip detectors [220, 221] following the steps:

e Applying the §(z) correction function (eq. B.13): The first step
is to perform a flat-field measurement with the desired settings. The
measured data are analyzed by using the center of gravity method and
applying the correction function 6(z) (eq. B.13). The obtained values
are a list of all xp.g.

e Creating a histogram over a pixel: The PoE zp,g can be described
as a sum of the position of the physical pixel x iy that contains the PoE
and relative position £ within the pixel.

5 = TPoE — Tpixel (B16)

A histogram calculated over & can be interpreted as a stacking of all
pixels of the detector.

e Calculating the deviation from a homogeneous distribution: The
histogram over all ¢ should be homogeneous for a homogeneous illumi-
nation if the synthetically generated data set describes the detector per-
fectly. The correction n, which has to be applied to the individual PoE to
remove the inhomogeneities, is the difference between the actual cumu-
lative distribution function cdf(§) and the ideal cumulative distribution
function cdf(const.):

n(&) = cdf(§) — cdf(const.) (B.17)

To correct inhomogeneities along the pixel structure, the second correction 7
can be individually calculated for each pixel of the detector. This pixel-wise
second correction requires larger statistics. Moreover, for the pixel-wise
correction, n(§) corrects the systematic error introduced e.g. by a false gain
calculation. The second correction n can also be used as an indirect validation

IThe storage and transfer of the signal charges towards the readout anode require a
different electric field than the confinement of the signal charges perpendicular to the transfer
direction.
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of the simulated charge cloud size.

B.2.4 Influence of Noise to the Corrections to the Center
of Gravity Method

The occurrence of noise in the individual pixels limits the spatial resolution.
The non-linearity of the correction §(z) leads to a location-dependent spatial
resolution within the pixel structure. Figure B.12 shows the reconstructed
PoEs for randomly chosen positions within the pixel structure. For each
chosen position, around 4000 primary particles are simulated. The only
difference between those event patterns is the contribution of the noise to the
different pixels. Consequently, the histogram of the reconstructed PoE of the
event pattern leads to a broad distribution and not a sharp spot for each PoE
position. The shape of those distributions depends on the relative position of
the PoE within the pixel structure.

Positions near the edges of the pixel structure are less sensitive to noise.
Therefore, the spot created by many individual particles at the same PoE
with different noise contributions is sharp (1 in Figure B.12). This behavior
can be explained by the small slope of d(z) (Figure B.9) near the pixel
borders. A slight change of the center of gravity caused by noise impacts the
reconstructed position only marginally.

Distributions of PoEs near the central axes are broad in the dimension in
which they are near the central axis and sharp in the other dimension (2
in Figure B.12). This behavior can be explained by the large slope of §(x)
(Figure B.9) near the pixel center. A small change in the center of gravity
leads to a large change in the position.

Distributions of PoEs in intermediate positions between the pixel border and
the central axis cause a medium spread (3 in Figure B.12). Distributions of
PoEs near both central axes are broad in both dimensions (4 in Figure B.12).
In general, the distributions are broad in the dimension in which their position
is near the central axis. The spreading in the x- and y-dimension can be
treated separately.

Appendix B.3 contains a detailed theoretical derivation of the spatial
resolution and its dependency on correlated and uncorrelated noise.

Figure B.13 shows the distribution of the reconstructed positions for five
PoE’s positions. The distribution of the center of gravity for many events
at one PoE can be approximated symmetrically. Applying the non-linear
correction §(z) skews the symmetric distribution. Therefore, the recon-
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Figure B.12: Reconstruction with the center of gravity with correction of 50 ran-
domly chosen PoEs within the pixel structure. The physical pixel size is 48 x 48 1m?
with (0,0) in the center of the pixel, and the energy of the primary photons is
8048 eV. A non-correlated Gaussian distributed pixel-wise noise with a mean of
11.3 eV is assumed. For each PoE’s position, around 4000 primary particles are sim-
ulated. The red crosses indicate the position of those PoEs, and the color map shows
the amount of individually reconstructed PoEs on a virtual grid with a spacing of
0.1pm in percent. The structure of the reconstructed distribution is exemplarily
explained with the help of the four numbered PoEs in the text.

structed distributions of the individual PoEs are, in general, not symmetric
but skewed towards the center or, more specific the central axes of the pixel.
Distributions of PoEs near the central axis are the most skewed due to the
large slope of §(x). Distributions of PoEs on the border and the central axis
are symmetric due to the symmetry of d(x). The skewness is symmetric
along the central axis and becomes smaller for a larger signal-to-noise ratio.
The sharpness of the distribution increases with the distance to the central
axis of the pixel. The skewness of the distributions for individual PoEs
leads to the effect that a flat-filed illumination which can be interpreted
as a summation of many of these distributions for different PoEs does
not lead to a homogeneous density distribution of PoEs. An example is
shown in Figure 5.1a. To obtain a homogeneous response of a flat-filed
illumination, the same n(x) = n(y) such as described in Section B.2.3 can
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Figure B.13: Reconstruction with the center of gravity method with correction of
five chosen PoEs within the pixel structure. The physical pixel size is 48 x 48 im?
with (0,0) in the center of the pixel, and the energy of the primary photons is
8048 eV. A non-correlated Gaussian distributed pixel-wise noise with a mean of
11.3eV is assumed. The color code refers to the different PoEs. For the sake of
clarity, only the central area of the pixel is shown.

be introduced. However, instead of measured data, simulated data are used.
This n(x) corresponds to a systematic shift for each reconstructed PoE, which
lowers the spatial accuracy of individual PoEs but leads for intensity images
to images with fewer artifacts due to a more homogeneous normalized hit-map.

The presence of noise can be handled differently during the calculation of
d(z). The pixel with the maximal energy deposition and its next neighbors are
used for all methods. The consideration of noise refers to the data set used to
calculate the corrections §(z). For the prediction and the calculation of n(z),
noise is always considered as it is also always present in real measurements.
Due to the offset correction, negative values for the pixel’s signal in the next
neighbors can occur. However, they are not physically meaningful but can
mathematically be used. Therefore, the methods, which are compared here,
handle negative values in two different ways. On the one hand, ignoring
negative values and, on the other hand, using them as valid values.

For neglecting the noise term for the simulated data set, which is used to
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calculate the corrections, no difference between using or ignoring negative
values appears since the values for all pixels are always positive or zero
without the presence of noise.

To compare the different methods the normalized hit-map (Figure B.14a),
the spatial precision in Figure B.14b, the accuracy in Figure B.14c, and the
resolution in Figure B.14d, are used. The spatial precision is defined as
the standard deviation of the individual reconstructed PoEs. The spatial
accuracy is defined as the average distance between the mean position of the
individual reconstructed PoEs and its ground truth. The resolution is defined
as the average Euclidean distance between the individual reconstructed PoEs
and their ground truth. A comparison between spatial precision, spatial
accuracy, and resolution can be found in Appendix A.1. The line-style
encoding is the same for all four plots: The color-codes correspond to the
different handling of noise during calculation and the determination of which
pixels are considered during the calculation and prediction. For the blue
and the orange lines, no noise is assumed during the calculation process
of §(x). For the green and the red line, noise during the calculation is
assumed. The blue and the green line originate using all neighboring pixels,
whereas only pixels with a value above zero are used for the orange and red line.
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Figure B.14: Accuracy for conventional methods in terms of normalized hit-map,
spatial precision, spatial accuracy, and resolution. The physical pixel size is 48 X
48 um? with (0,0) in the center of the pixel, and the energy of the primary photons
is 8048 eV. A non-correlated Gaussian distributed pixel-wise noise with a mean of
11.3eV is assumed. A detailed description of the legend can be found in the text.
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Figure B.14a presents the normalized hit-map. The fluctuations of the
curves are caused by the noise statistics. The increased number of hits of the
orange curve in the center occurs by single pattern events. Due to noise, this
feature is not seen in the blue curve.

Due to the non-linear response of the correction function §(x) in the center
of the pixel, the intensity image features artifacts at the pixel centers. These
artifacts can be reduced by applying additionally the n(x) correction, leading
to a homogeneous response. The most homogeneous response is obtained by
applying the n(z) correction using all neighboring pixels and as well as noise
during the composition of d(z) values.

Another important parameter is the accuracy, which describes the average
distance between the mean position of the individual reconstructed PoEs
and their ground truth. Therefore, many patterns that differ only by noise
are reconstructed for every PoE, and the average position is calculated and
compared with the ground truth PoE. From Figure B.14c can be extracted
that the accuracy is the best at the borders of the pixel and in the center
of the pixel. The worst accuracy is at positions with a large change in slope
of the correction functions. Here, little variations in the calculated weighted
centroid have a significant influence on the PoE. The best accuracy is obtained
using the §(z) correction.

The spatial precision (Figure B.14b) describes the standard deviation of
individual reconstructed PoEs that only differ by noise. The best spatial
precision is obtained at the pixel borders.

As expected from the theoretical description, the resolution presented in
Figure B.14d is the best at the pixel’s borders. Using only neighboring pixel
amplitudes larger than zero and assuming no noise during the calculation
process of §(x) leads to the best result. The resolution contains the contribu-
tion from the accuracy and the spatial precision. The dips in the resolution
at the pixel centers are caused by the good accuracy in the pixel centers in
comparison to positions near the pixel centers.

For the average distance between the individual reconstructed PoEs
and its ground truth, the (linear) mean is used. The standard deviation,
which uses the quadratic mean, is used for the spatial precision. For a
good accuracy, which means the mean of the individual reconstructed PoEs
can be approximated as the ground truth, the standard deviation is lager
than the average distance (Appendix B.4). As a consequence of these defini-
tions, the resolution can be better than the spatial precision if accuracy is high.

Depending on whether one is interested in the best results in terms of spa-
cial accuracy and resolution for individual PoEs such as, for example, diffrac-
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tion spots or a homogeneous response for intensity images, only the d(x) cor-
rection or also the n(z) correction should be applied. This different handling
is caused by the asymmetric response (Figure B.13) due to the non-linearity
of the correction functions.

Only the §(x) correction should be used to get the best spatial accuracy and
the best resolution. The n(x) correction should be used to get the best response
for intensity images. Individual PoEs are shifted by n(z) in a way that the
asymmetric response by the non-linearity of §(z) is compensated. The individ-
ual PoEs shifted by 7(x) are very small in comparison to the d(x) correction
and in the sub-micrometer range but should still be applied. Since due to the
summation over many individual PoEs, the intensity image is very sensitive to
these systematic shifts. The shape of n(x) strongly depends on the calculation
method of §(z) to shift the PoEs in a way that the multiplicity shown in Figure
B.14a becomes constant across the pixel. The correction by n(z) scales by the
amount of pixel-wise noise and is zero in the noise-free limit.

B.3 Spatial Resolution in the Presence of Noise

In this Appendix, the influence of the noise on the spatial resolution for
signals which are split over multiple pixels is described. The assumptions are
only valid for the center of gravity method and the corresponding corrections
described in Section B.2. Because the approaches based on neural networks
use the information of the signal distribution of the x- and the y-axis, the
made assumptions are not valid for this more abstract model of reconstruction.
Without loss of generality, only one dimension (z) is assumed in the following.
Technically, this can be achieved by summing over the other dimension (y).
As a consequence, the index i denotes not a pixel but a column in the following.

The calculation of the spatial resolution is adapted from Kolanoski et al.
[38] and expanded and generalized for an arbitrary detector response described
by the function f. The noise is assumed to be constant for all pixels. The
noise of column i is defined as the variance of the detector response g, for no
illumination (eq. B.2 on page 225):

(an,) = on (B.18)

n
The variance of the noise o2 is assumed to be constant over the measure-
ment. Since the frames are offset corrected, the average over the detector

response for no illumination is zero:
(qn;) =0 (B.19)
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The relative noise of each column is defined as the standard deviation of
the noise divided by the total charge within one event:

o V)
1 Z Sl
In the following, a distinction is made between statistically independent

noise (eq. B.21) and fully correlated noise (eq. B.22). Fully correlated noise
is, for example, noise produced by common mode.

(B.20)

<ninj> = (SijO'Z (B21)

(ninj> = O'r2l (B22)

In comparison to the total charge within one event, the noise has to be
small [38]:

n <Y S, (B.23)

Without loss of generality, the origin of the coordinate system is set to the
center of the event. Figure B.15 shows the choice of the coordinate system for
an even and an uneven number of pixels of the event!.

» a=0 (B.24)

The reconstructed center of gravity z{5 results from the true center of gravity

Tcoi plus a deviation which is caused by the noise [38]:
2 (Sitn)z Teos + DM

1+Zn1

rec 1

Tcoog = Z(Si+ni>

(e S (1 Sn00)

In the last step, the denominator is approximated by a Taylor expansion for
small n;.

(B.25)

Tt was assumed that the number of pixels in y-dimension that contribute to the event
pattern is the same for every x-position. Otherwise, the origin of the coordinate system is
the weighted average over the x-positions of the pixels that contribute to the event pattern.
The weights of the averaging are the corresponding number of pixels in the y-dimension
which contribute to the event pattern.
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Figure B.15: Choice of the coordinate system for even (a) and uneven sizes (b)
of the event in the x-dimension. The coordinate axis indicates the origin of the
coordinate system. The dashed lines represent the pixels’ centers with a pixel size
of a, and the solid lines describe the pixel borders. The blue pixels denote pixels
that contain a signal by the event plus noise. The white pixels only contain noise.
N denotes the number of pixels in the event pattern in the x-dimension. The green-
colored area denotes the mathematically possible positions of the PoE. However, the
true PoE is in the red area due to the symmetry and the requirement to the noise
(eq. B.23). The true PoE is between two pixel centers for the even case and within
the central pixel for the uneven case.

The made uncertainty Ay(z) is the difference between the reconstructed center
of gravity z5s, and the true PoE x [38]:

Ar) = 25 — 7
— Zi:ni:ci — xzi:ni — (Z nm) (Z ni> + O (n}) (B.26)
= Zni(xi —z)+ 0 (n})

In this case, it was assumed that the true center of gravity Zc.q is the true
PoE z.
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The variance can be calculated as follows [146] [38]:

ox(z) = (A7) — (A)* = (A}

<Z nin;(z x)> + 0 (o)) (B.27)
—Z nin;) —z)(z; — 2)) + O (o)

The bracket indicates an averaging over all x5, — x, respectively, over the

noise.
Again, statistical independent noise (eq. B.28) and fully correlated noise (eq.
B.29) is assumed [38]:

% uncor(T) = Z (niny) (2 — x)(x; — 2)) + O (07)
= Z ol <(m1 — x)2> + 0O (aﬁ)

=l 3t - gx%g+x2> +0 (o)) (:25)
[(Z g; ) Lo ()
Due to the definition of the coordinate system, the sum over x; is zero.
0% cor(@) = Y (nimy) (2 — @) (25 — ) + O (o)
Lj
=Y onl(w — @)z — ) + O (0})
b (B.29)

= - — zyz +2* ) + O (o3
“Z<“f A ) ot

=o2N?* (2*) + O (an)

In the following, a necessary correction like described in Section B.2 is
assumed [38]:

7' = wiee + 0 (v6se) = [ (485a) (B.30)

For simplicity, the function ¢ (zs;) which describes the correction is redefined
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as [ (z¢ee):
flz) =z +0(x) (B.31)

The requirements for the function f are as follows:

e 0 < |f] <1: The corrected PoE is always in the same physical pixel as
the reconstructed PoE by the center of gravity method.

° %Ef) > 0: The function f is strictly monotonous. Otherwise, the assign-

ment between the center of gravity and the reconstructed PoE are not
unique.

o [(x)
1(0)

e f(—a/2) = 0 and f(a/2) = a: The center of gravity and the recon-
structed PoE are the same for the pixel borders due to symmetry.

f(x)—0.5 = —f(—z): The function f is anti-symmetrical around
0.5.

Using the correction function f, eq. B.26 modifies to:
AD(z) = f(255e) — =

=f (fcoc; + Zni(xi — ZToog) + O (nf)) —
~ f (jCoG) +
—_——

= a f7H(x) i (B.32)
df(€)
-, (Eren)
)

_df(§)
~ d—£ - Ay ()

Here, the function f is approximated using the Taylor expansion at the point
€.
§ = Tcog + Z ni(z; — x) (B.33)

The made uncertainty under the assumption of the correction f results
analogous to eq. B.28, respectively, eq. B.29:

2

(0 neer)” (@) = aﬁ< %(;) > [(Z x?) +N(x2)] (B.34)
@) i
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(a)(f)cor)Q (z) ~ 02N? < %(;) > (z?) (B.35)
(=)

The summations and integrals can be simplified for an even number of
columns in the event pattern (Figure B.15a) and an uneven number of columns
in the event pattern (Figure B.15b):

For an even number of columns, the summation simplifies to:

N N/2 N/2
Y oal=2) a?=2a") (i—05) (B.36)
i=1 i=1 i=1

For N = 2, the sum is “—22 and for N = 4, the sum is 5a®.

For an uneven number of columns, the summation simplifies to:

N/2-0.5 N/2-0.5

N
fo = Z r? = 2a* Z i (B.37)
i=1 i=1 i=1

For N = 3, the sum is 2a?.

An averaging over noise leads to
(z?) = 2? (B.38)

and an averaging over space to

(z?) :2 / ridr
24 (B.39)

Since it is actually an averaging over all possible f(z{5S;) — and since f(z{55;)

describes without the contribution of noise the exact PoE, the integral limits
are defined by the red area in Figure B.15 [38]. The limit of the integral is
independent of the number of columns that contribute to the event pattern.

It should be noted that an incorrect event pattern analysis leads to
an additional error and that, in general, o> depends on the number of
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contributing rows. Since the derivative of f(x) is the largest in the center of
the pixels, the spatial resolution is in the pixel center the lowest and increases
towards the pixel’s borders. The simulation shown in Figure B.12 on page
251 and the measurement presented in Section 10.1.1 confirms this behavior.
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B.4 Average Distance from the Mean in Compar-
ison to the Standard Deviation

The average distance from the mean is defined as:

N 2

R = %;dlstl = %Z Z <xi7j — <[L’>j)2 (B40)

i=1 \ j=1

Here, i describes the index for the individual contributions to the mean, j
describes the index of the dimension, and (z); is the mean of the j** dimension.
The standard deviation o, is defined as:

2

Op = E JJ?
\=

(B.41)

I
/ /

E
7

==

' nNo

=

B
N BN

p
1 2 R
> N - Z (xiyj — (x>J> = dist

Here, i describes the index for the individual contributions to the mean, j
describes the index of the dimension, and (z); is the mean of the j* dimension.
The approximation in the last row is done by using a modification of the
Jenson’s inequality [222], the facts that the square root is a concave function,

N
1/N >0,and Y 1/N =1.
i=1
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Artificial Neural Networks

C.1 Pseudo-Code of the Adam Optimization Al-
gorithm

In this Appendix, a pseudo-code implementation of the Adam optimizer is
shown.
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Algorithm 1: Adam optimization algorithm [140)]

'y

10

11

12

Require: a: Step size

b1, Po € [0,1): Decay rate for the moment estimations
f(0): Function with parameters 0
0o: Initial parameter vector

Return : 6,: Resulting parameter vector

mg < 0

#Initialize first moment vector

vg < 0

#Initialize second moment vector

t<0

#Initialize time steps

#while not converged
while |6, — 04| > precision do

t+t+1

#Increase time step
gi < Vo fi(6i1)

#Get gradient w.r.t. parameters at timestep t
my = Br-mer + (1= Bi) - g

#Update biased first moment estimate
v = Bo v+ (1= o) - 67

#Update biased second raw moment estimate
g <= me/ (1= fp)

#Update bias—corrected first moment estimate
Uy = v/ (1= )

#Update bias-corrected second raw moment estimate
«9t — et_l — Q- mt/ (\/Tjt + 6)

#Update parameters

end
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C.2 Gradient of the Loss Function with Respect
to the Weights and the Biases of the Neural
Network

This Appendix demonstrates an explicit calculation of the gradient of the loss
function with respect to the biases and weights according to [113].

Figure C.1 shows an example network with two hidden layers.
The change in loss is related to the change in the weight w;k and can be
approximated as:

oL .
AL =~ —— Aw; C.1
awjk jk ( )
This means a small change in the weight wjik causes a small change in the loss
function. The partial derivative describes how this small change propagates
through the neural network. The idea is to look at this propagation in detail
and get an expression for the partial derivative.

Input Hidden Hidden Output
layer layer 1 layer 2 layer

Figure C.1: Concept of backpropagation. The loss function is £ = £(z,r3) and
depends only on the activation of the output neurons. The goal is to find how the
weight w?; influences the loss function. A change of w?, propagates the red path
along with the neural network. But there are many more paths like, for example,
the blue or green path. To consider the overall influence, all possible paths have
to be considered. These paths contain all combinations of the colored and black
connections between the different layers.

A change of the weight w} causes a change in the activation x} of the j*"

neuron in the i*" layer: .
i Or
Ary = ——Awy, (C.2)

~ 1
8wjk
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The change of the activation xJ‘ changes the activation zit! of the next layer:

) axi—kl )
Azl ~ 220 Ayl C.3
This change propagates along with the layers of the neural network. Math-
ematically, this can be achieved by applying eq. C.3 recursively, resulting in
chain rule. Combining eq. C.2 and eq. C.3 leads to an expression for the

change of the activation ! in the last layer of the neural network:

I Ol i+1 Yol )
Adln O OFa Ot OF; i (C.4)

Y Okt ok 8%1. 8w}k

Eq. C.4 considers only one path through the neurons of the neural network.
This path can be, for example, the red path in Figure C.1. But there are many
more paths on which the change Aw}k can propagate to the input of the '
neuron of the last layer I. Other possible paths are the blue or the green path
in Figure C.1. To consider all possible paths through the layers between layer

i and layer I, one has to sum over all possibilities:
My Y O Oug Om,"  OnOn 0% i (o)

Ozt 0w Qwg  Oxyft Oy Owy,

Q,p,0 ... n,m

The loss function can be written as a function of the output of the neural
network, which is nothing else than the activation of the neurons of the last
layer:

aow YT DL O ORI diont o

1 9l 9pl-2 9pl3 " 9pitl Ol i
o Oxy 0wt Oup? Oug Oxiftt Ox; Jwy,

Awi, (C.6)

r,q,p,0 ... 1,

The comparison of eq. C.1 and C.6 leads to an expression for the derivative
of the loss function with respect to w}k:

oL 3 OL Ozl Oxg' dxp?  Oxlt? 0alt! Ou]

- I ALl 02 93 " Aoitd i 1
o 0xy 0wt Owp? Oug Oxitt Ox; Jwy,

. C.7
Wi v 0
Eq. C.7 has an intuitive interpretation. The change in weight w;k of j*" neurons
in the i layer propagates through all neurons of the following layers. Doing
this, each neuron modifies this change by a factor which is simply the partial
derivative of the activation with respect to the activation of a neuron of the
previous layer. The total change is the sum of all possible paths through the
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neural network. The derivation for the influence of the change of the biases to
the loss function works in the same way and leads to a similar result:

oL 3 OL Ozl Oxgt Oxy>  9xlt? 9ait! Ox;

ob; Qxl 02kt 0252 Oxl3 7 Oxifl Ox} OU}

(C.8)

r,q,p,0 ... n,m

Eq. C.7 and C.8 can be simplified by looking at one of the partial deriva-
tives and one of the sums in detail. The derivatives of the last layer with
respect to the second last layer can be rewritten as a matrix:

8:1:11 Bxll
axl 8:(:11‘1 8905‘1
I._ — : -
Mi=gm=|: (C.9)
Oxy axd

Here, the capital letters R and Q denote the number of neurons in the last,
respectively, the second last layer. The definition of the matrices of the other
layers is similar. Using the matrix multiplication, the sum over the second last
layers simplifies!:
Ozl dwy!
Oxftt 02

=M M (C.10)

Therefore, eq. C.7 and C.8 simplify basically to a sequence of matrix multi-
plications:

oL  OL o’

= MMM MM C.11

owy,  Ox; dwy, ( )
oL oL o i O]

D= MMM MR M (C.12)
b, Oz} b}

In eq. C.11 and C.12, the first derivative cannot be simplified since the loss
function can be an arbitrary function. The last derivatives with respect to the
weights and the biases can be simplified using the explicit formulation of the
activation of a neuron defined by eq. 6.4 on page 91:

Ox!

J
i
Owy,

Sy (C.13)

!The sum can be performed directly since the other terms in eq. C.7 and C.8 are inde-
pendent of q.
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ozt

=1 C.14
ob; ( )
By using again eq. 6.4 on page 91, the entries of the individual matrices can
be written as:

0 _0f () 04 _ 0f () 201+ Suvhal) _ TG i (05

-1 i -1 i i-1 i
Oxy, 8zj (%vj 6zj Oxy, azj

The derivative of the activation function f (zjl) with respect to the weighted
input z; cannot be simplified since the activation function can be an arbitrary
function.

This means the matrices M are special because they depend on the values of
the neurons and, therefore, on the input. Therefore, their entries change for
every training sample.
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C.3 Pseudo-Code of the Backpropagation Algo-
rithm

In this Appendix, a pseudo-code implementation of the backpropagation
optimizer is shown.

Algorithm 2: Backpropagation algorithm

Require: 2°: Input training examples in batch

x': Ground truth of the examples in the training batch
w: Current weights

e Current biases

Neural network topology

ac.
b} ”

;Li : Gradient with respect to the weights
wjk

Return : Gradient with respect to the biases

#for each training example in batch
1 for all 2° do
#Feed forward
2 for i =01, ..., I do

3 2= wigt!
#Calculate weighted input
4 2t f(2Y)

#Calculate activation
5 end

6 5I<—VX£®%

#Calculate errors of last layer

#Backpropagation of the error
7 for i = 1-1, I-2, ..., 0 do

. . T\ . df (2l
8 S <<w1+1) >51+1 ® J;(;J)
#Calculate errors of the hidden and input layer
9 end
oL i
10 o 0
#Calculate the gradient with respect to the biases
oL i1 i
11 pus, — 00
#Calculate the gradient with respect to the weights
12 end
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C.4 Hyper-Parameters of the Special Layers Used

in Neural Networks

The following Tables show the used layers and their corresponding hyper-

parameters.

Table C.1: Hyper-parameters of the special layers used in neural networks. Based

on [130].
layer arguments  type description
dense units integer Size of output space
activation activation  function Definition of the activa-
tion function
n-dimensional  channels integer Number of channels at
convolution the output
kernel size  list of Size of the kernel
n integers
strides list of Step size of moving
n integers
padding string Can be "valid” or ”same”;
Behavior at the edges
dilation list of Dilation rate to use for di-
rate n integers lated convolution
n-dimensional  pool size list of Size of the pooling win-
pooling n integers dow
strides list of Step size of moving
n integers
padding string Can be "valid” or "same”;
Behavior at the edges
dropout rate float Fraction of the input
between units to drop
0 and 1
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Table C.2: Hyper-parameters of the special layers used in neural networks. Based

on [130].
layer arguments  type description
2-dimensional  size list of 2 in- Upsampling factor for
upsampling tegers columns and rows
interpolation string Can be "bilinear”, "near-
est, "bicubic” "lanczos3”,
"lanczosb”, "gaussian”,
“area”, or “mitchellcu-
bic”
n-dimensional  channels integer Number of channels at
separable the output
convolution
kernel size  list of Size of the kernel
n integers
strides list of Step size of moving
n integers
padding string Can be "valid” or ”same”;
Behavior at the edges
dilation list of Dilation rate to use for di-
rate n integers lated convolution
n-dimensional  channels integer Number of channels at
transposed the output
convolution
kernel size  list of Size of the kernel
n integers
strides list of Step size of moving
n integers
padding string Can be "valid” or ”same”;
Behavior at the edges
dilation list of Dilation rate to use for di-
rate n integers lated convolution
batch normal- axis integer Axis that should be nor-

ization

malized; Typically the
channel axis
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C.5 Topology and Number of Parameters of Used
Neural Networks

Table C.3: Parameters of the compact neural network (Chapter 7). None denotes
the batch size. Dense and convolution layers are always followed by an activation
layer.

layer output shape parameter
input (None, 3, 3) 0
expand dimensions (None, 3, 3, 1) 0
2-d convolution (None, 3, 3, 64) 640
2-d convolution (None, 3, 3, 64) 36928
dropout (None, 3, 3, 64) 0
flatten (None, 576) 0
dense (None, 100) 57700
dense (None, 2) 202
total parameters: 95470
trainable parameters: 95470
non-trainable parameters: 0
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Table C.4: Hyper-parameters of the convolutional neural network POENN and the
SR neural networks. The column ref denotes the Section in the thesis which provides

more information.

arguments type default description ref
activation function Leaky Applied activation function 6.4
ReLU (The activation function of
the last layer is sigmoid.)
kernelSize integer 3 Size of the kernel 6.7.1
separable boolean  False Should separable convolu- 6.7.2
tions be used?
batchNorm boolean  False Is batch normalization ac- 8.1
tive?
upsampling string "subpixel” Can be ”subpixel”, "trans- 8.1.5.2
posed”, or "resize” and de-
notes the upsamling type.
preamble boolean False Should there be an addi- 8.1
tional convolution block be-
fore and after the u-net?
features integer 16 Number of channels of the 8.1
preamble, SR module and
fusion module
factor integer 16 Factor for the channels of 8.1
the u-net. It represents the
number of channels of the
first and last u-net block.
depth integer 2 Depth of the u-net. 8.1
middleBlocks integer 1 Number of blocks in the bot- 8.1

tleneck of the u-net
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Table C.5: Additional hyper-parameters for the SR neural networks. The hyper-
parameters in Table C.4 are also used for the SR neural networks. The column ref
denotes the section in the thesis which provides more information.

arguments type default description ref

subPixelFactor integer 3 Expansion into the subpixel 8.1.4
regime. Every physical pixel
is divided in each dimension
into 2subPixelFactor g hpivels.

srBlock integer 2 Number of convolution 8.1.4
blocks after upsamling in
the SR-net.

stepWiseSR boolean  True Is super-resolution achieved 8.1.4

in one step or iterative with
a stepsize of two?

resnet boolean False Is a residual neural network 9.1.1.1
used?

threeDim boolean False Is it SISR or MISR? 9.2.1

fusionBlock integer 4 Number of  convolution 9.2.1.1

blocks of the fusion net.
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Table C.6: Parameters of the convolutional neural network POENN (Chapter 8)
(Part 1 of 2). The encoder and bottleneck are shown. The decoder is in Table C.7
None denotes the batch size. The frame size is 256 x 256 pixel. However, due to
the architecture, the number of parameters is independent. Dense and convolution
layers are always followed by an activation layer.

id layer output shape parameter connected to
1 input (None, 256, 256) 0

2 expand dimensions (None, 256, 256, 1) 0 1
3 2-d convolution (None, 256, 256, 16) 160 2
4 dropout (None, 256, 256, 16) 0 3
5 2-d convolution (None, 256, 256, 16) 2320 4
6 max pooling (None, 128, 128, 16) 0 5
7 2-d convolution (None, 128, 128, 32) 4640 6
8 dropout (None, 128, 128, 16) 0 7
9 2-d convolution (None, 128, 128, 32) 9248 8
10 max pooling (None, 64, 64, 32) 0 9
11 2-d convolution (None, 64, 64, 64) 18496 10
12 dropout (None, 64, 64, 64) 0 11
13 2-d convolution (None, 64, 64, 64) 36928 12
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Table C.7: Parameters of the convolutional neural network POENN (Chapter 8)
(Part 2 of 2). The decoder is shown. The encoder and the bottleneck are in Table

C.6. None denotes the batch size. The frame size is 256 x 256 pixel. However, due to
the architecture, the number of parameters is independent. Dense and convolution

layers are always followed by an activation layer.

id layer output shape parameter connected to
14 2-d convolution (None, 64, 64, 128) 73856 13
15 depth to space (None, 128, 128, 32) 0 14
16 concatenate (None, 128, 128, 64) 0 9, 15
17 2-d convolution (None, 128, 128, 32) 18464 16
18 dropout (None, 128, 128, 32) 0 17
19  2-d convolution (None, 128, 128, 32) 9248 18
20 2-d convolution (None, 128, 128, 64) 18496 19
21 depth to space (None, 256, 256, 16) 0 20
22 concatenate (None, 256, 256, 32) 0 5, 21
23 2-d convolution (None, 256, 256, 16) 4624 22
24 dropout (None, 256, 256, 16) 0 23
25  2-d convolution (None, 256, 256, 16) 2320 24
26 2-d convolution (None, 256, 256, 1) 145 25
27 reduce dimensions (None, 256, 256) 0 26
total parameters: 198945
trainable parameters: 198945
non-trainable parameters: 0
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Table C.8: Hyper-parameters of the SR neural network. The used SISR has 273537
parameters, of which 270705 are trainable and 2832 are non-trainable. The MISR
has 282265 parameters, of which 279241 are trainable and 3024 are non-trainable.
The detailed parameters are not shown since the layer structure would lead to a very
long list. As a consequence, only the hyper-parameters are shown. The abstract
design is described in Chapter 9.

hyper-parameters value

activation Leaky ReLu
kernelSize 3

separable False
batchNorm True
upsampling "transposed”
preamble True
features 16

factor 16

depth 2
middleBlocks 1
subPixelFactor 3

srBlock True
stepWiseSR True

resnet True
threeDim True
fusionBlock True
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Experiments

D.1 Modulation Transfer Function

The modulation transfer function (MTF) describes how much contrast of the
object function is transferred by the imaging process [223]. The upper part of
Figure D.1a shows alternating stripes of illuminated and not illuminated areas.
The spatial frequency of the alternation increases from left to right. The lower
part of Figure D.1a shows the response of an image process. The image process
blurs the sharp edges of the stripes and smooths them. In the raw data, the
main contribution to this blurring is due to the random energy depositions in
the form of tracks and not a point-wise energy deposition. In the analyzed
data, the main contribution occurs from false reconstructed positions.

Figure D.1b shows the intensity and the contrast of the image process in Fig-
ure D.la. The magnitude of the extremes of the intensity decreases with an
increasing spatial frequency of the stripes. The contrast is a function of the
spatial frequency w and can be calculated from the intensity of the illuminated
areas Ij.x and the not illuminated areas I, [224]:

I max ~ ]min

contrast(w) = A (D.1)
The MTF can be obtained from a slanted edge. It is essential that the
sample is as sharp and the line is as straight as possible. Otherwise,
the MTF is affected by the sample and not only by the imaging process.
The edge should be tilted about 6 to 8 degrees against the pixel structure
and should span over at least 20 rows, respectively, columns of the frame. [225]

With the following approach, the MTF (Figure D.2) can be determined
[223]:
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(a) The upper line shows the object function of increasingly finer stripes, and the
lower line the image function. The image function shows fewer details because of
effects created by the imaging process.
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(b) Contrast and intensity for the increasingly finer stripes shown in Figure D.1a.
Due to the resolution limit introduced by the imaging process, the contrast and the
envelope of the intensity decrease with higher spatial frequencies of the stripes.

UUUUTVN

spatial frequency in arbitrary units

Figure D.1: Visual concept of the MTF. Figure adapted from [69].

e Find a suitable edge.
e Define a region of interest of the image containing the edge (Figure D.2a).

e Find the edge for each row in this region of interest.
Therefore, fit the edge spread function (ESF) for each row and use the
center position b as position of the edge (Figure D.2b).
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ESF(z) = a - erf (b - x) +d (D.2)

e Fit the edge approximated as line (Figure D.2c¢).

flx)=m-x+1t (D.3)

e Create an oversampled ESF by shifting each line so that the position of
the edge is the same for all lines (Figure D.2d).

e Fit ESF to oversampled edge (Figure D.2d).

e Use the relationship between ESF (eq. D.6) and MTF (eq. D.7) to ob-
tain the MTF'. In particular, use the fit parameter A from the ESF in the
Gaussian approximation to obtain the MTF in the Gaussian approxima-
tion.!

Figure D.3 shows the analytical relationship between the optical transfer
functions. The following definitions are valid if the smearing is Gaussian. The
point spread function (PSF) is defined as [228]:

PSFq(r) = (5¢) (D.4)

— e
A2

The line spread function (LSF) can be written as the PSF in one dimension
[228]:

LSFq(x) = W—lAe(f;) (D.5)

The ESF is the integral of the LSF [228]:
—x
In this framework, the MTF is defined as [228]:

MTFg(w) = el=5) (D.7)

!The MTF is the Fourier transformation of the LSF. The LSF can be obtained by differ-
entiating the ESF, which can be calculated with the above described routines (Figure D.3).
However, the derivative of the ESF can be very noisy, and it turns out that fitting equation
D.6 and extracting the parameter A leads to better results.
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The relation between the parameter A in eq. D.6 and the physical accessible
full width at half maximum (FWHM) is described by the following relation:

FWHM¢ = 2v/In (2)A (D.8)
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(a) Region of interest (ROI) to
obtain the MTF
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(c) Linear fit to the edge po-

sitions obtained from individual
ESFs of Figure D.2b.
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(b) ESFs of the individual rows
of the ROL. For clarity, only every
tenth row is plotted.
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(d) Oversampled ESF of the
overlaid ESF of the individual
rows (Figure D.2b) shifted by the
displacement obtained from the
linear fit in Figure D.2c
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(e) MTF in the Gaussian approximation obtained from the slanted edge in Figure
D.2a. For comparison, the physical limit of the MTF, which is expressed by the
absolute value of the sinc function, is shown [226].

Figure D.2: Approach to obtain the MTF from slanted edge
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integral
[ PSF(x,y) < | ESF(x.y) }
A differential A
- - ng, = 8
][ L 5 |
(0] hat
Q 2 E &
=
v 1D v
{ MTF(u,v) P 7] MTF(u,0) P 4 LSF (x) }

2D FFT

Figure D.3: Relationship between the optical transfer functions. Connection be-
tween the point spread function (PSF), error spread function (ESF), line spread
function (LSF), and the modulation transfer function (MTF) as a function of one or
two spatial frequencies. FFT denotes a Fourier transformation, and iFFT denotes
the inverse Fourier transformation. Figure adapted from [227].
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D.2 Data Reference

Table D.1: Reference of experimental data for measurements with photons used in
Section 10.1.2. In the thesis, the data is referenced by the processing identifier (PID)
in the first column. The original data is referenced by the measurement identifier
(MID).

PID MID energy
eV

PID v XRF_1 (C16.18.64.210114.001 8048

Table D.2: Reference of experimental data for measurements with photons used in
Section 10.1.1. The index from 1 to 154 denotes the different selected positions of the
PoE. All other parameters remain unchanged. In the thesis, the data is referenced
by the processing identifier (PID) in the first column. The original data is referenced
by the measurement identifier (MID).

PID MID index energy
eV
PID v SCN_1 MAXYMUS_ 140720 1-154 1320

Table D.3: Reference of experimental data for measurements with electrons used
in Section 10.2. The sample is for all measurements a beam blinker. The frame size
of all measurements is 264 x 264 pixels. In the thesis, the data is referenced by the
processing identifier (PID) in the first column. The original data is referenced by
the measurement identifier (MID).

PID MID energy rate
keV 1073 e /pix/frame
PID_e 020.1 C16.15.24.140212_40 20 1.01
PID_e 0401 (C16.15.24.140212_34 40 2.05
PID_e 060-1 (C16-15-24.140212_30 60 1.33
PID_e 080-1 (C16-1524_140212_27 80 247
PID_e 120.1 (C16.15.24.140212_23 120 1.32
PID_e 200.1 C16.1524.140212_.18 200 1.16
PID_e300.1 (C16.1524.140212_13 300 0.92
PID_e 3002 C16.1524.140212_.14 300 2.44
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