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Abstract

Background: Causal inference has seen an increasing popularity in medical research. Estimation of causal effects
from observational data allows to draw conclusions from data when randomized controlled trials cannot be
conducted. Although the identification of structural causal models (SCM) and the calculation of structural coefficients
has received much attention, a key requirement for valid causal inference is that conclusions are drawn based on the
true data-generating model.

Methods: It remains widely unknown how large the probability is to reject the true structural causal model when
observational data from it is sampled. The latter probability – the causal false-positive risk – is crucial, as rejection of the
true causal model can induce bias in the estimation of causal effects. In this paper, the widely used causal models of
confounders and colliders are studied regarding their causal false-positive risk in linear Markovian models. A simulation
study is carried out which investigates the causal false-positive risk in Gaussian linear Markovian models. Therefore, the
testable implications of the DAG corresponding to confounders and colliders are analyzed from a Bayesian
perspective. Furthermore, the induced bias in estimating the structural coefficients and causal effects is studied.

Results: Results show that the false-positive risk of rejecting a true SCM of even simple building blocks like
confounders and colliders is substantial. Importantly, estimation of average, direct and indirect causal effects can
become strongly biased if a true model is rejected. The causal false-positive risk may thus serve as an indicator or
proxy for the induced bias.

Conclusion: While the identification of structural coefficients and testable implications of causal models have been
studied rigorously in the literature, this paper shows that causal inference also must develop new concepts for
controlling the causal false-positive risk. Although a high risk cannot be equated with a substantial bias, it is indicative
of the induced bias. The latter fact calls for the development of more advanced risk measures for committing a causal
type I error in causal inference.

Keywords: Causal inference, Bayesian inference, Directed acyclic graph (DAG), d-separation, Bayes factor, Structural
coefficients

Correspondence: riko.kelter@uni-siegen.de
Department of Mathematics, University of Siegen, Walter-Flex-Str. 3, Siegen,
Germany

© The Author(s). 2022 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were
made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative
Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made
available in this article, unless otherwise stated in a credit line to the data.

http://crossmark.crossref.org/dialog/?doi=10.1186/s12874-021-01473-w&domain=pdf
mailto: riko.kelter@uni-siegen.de
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


Kelter BMCMedical ResearchMethodology           (2022) 22:58 Page 2 of 22

Background
Causal inference deals with the identification of causes
and quantification of causal effects in experimental or
purely observational data [1, 2]. While much of statis-
tical science has dealt with developing the mathemati-
cal theory for parameter estimation, hypothesis testing
or confidence set construction, a variety of scientifically
important questions remains unsolved when purely sta-
tistical means are taken into account. Policy makers as
well as researchers are interested not only in the predic-
tions of a statistical model or parameter estimates of some
parameters of interest but in the effect of interventions
or policy manipulations. For example, when considering
the development of a new drug, a relevant question is
whether the drug can be considered as causal for the treat-
ment of the disease, that is, can a positive effect observed
between patients taking the drug and patients who do not
take it be attributed to the administration of the drug? As
is well known correlation is not causation so observing a
correlation between improved health condition and tak-
ing the new drug in purely observational data alone does
not suffice to attribute the drug as causal for the effect.
The situation is depicted in Fig. 1, where the treatment X
could resemble the new drug, the outcome Y the health
condition of an individual, and C a possible confounding
variable. Such a confounder could be the health condition
of an individual: Maybe individuals who are in a generally
better health condition and suffer from a weaker form of
the disease are more likely to take the drug. These patients
will also be more likely to recover, and thus C affects both
the access to the treatment and the outcome, confounding
the causal effect of the drug X on outcome Y.
Likewise, when a predictive model states that patients

will recover earlier after surgery when being assigned to
additional physical therapy (PT), a policy maker will typ-
ically ask: “Is additional physical therapy causal for the

Fig. 1 Directed acyclic graph for the structural causal model which
describes the effect of treatment X on outcome Y under the
confounding variable C. UX , UY and UC denote unobservable latent
variables, which determine the values of X, Y and C

faster recovery of patients after surgery?”. Purely obser-
vational data present a major obstacle in answering such
a question, simply because it may happen that patients
who are in a better health condition after the surgery (for
whom the surgery worked better) could show up more
frequently at PT. Patients who did not show up that fre-
quently at additional physical therapy could have been in a
worse health condition (the surgery was not as effective as
for the other patients) and as a consequence physical ther-
apy mediates the true effect of the treatment on recovery
time. It could be the case that 90% of the faster recov-
ery can be attributed to the mediator, while the surgery
only accounts for 10% of the total causal effect. Attribu-
tion of causal effects is thus crucial to provide insights
into the effectiveness of such interventions. Causal infer-
ence provides means to achieve such insights from purely
observational data.
One may wonder why performing a randomized con-

trolled trial (RCT) is not the ultimate solution to the
above dilemma. Since the early days of Fisher [3], random-
ized controlled trials have become the gold standard in
biomedical research, which is for good reasons: Random-
ization ensures that undesired influences can be excluded
from the analysis by eliminating confounders and this
in turn enables researchers to interpret observed differ-
ences as causal. Consider the situation depicted in Fig. 2.
Figure 2 shows the same situation as in Fig. 1, but this time
a randomization scheme R is added to determine who is
administered the treatment (or drug) X. Now individuals
are not free in their choice of opting for the treatment X
or not, and the influence of confounding variables like the
gender, overall health condition, et cetera – each of which
could stand for the confounding variable C in Fig. 1 – can
efficiently be eliminated. This is depicted as the missing
arrowC → X in Fig. 2 and the effect of the treatmentX on
the outcome Y and the variable C on the outcome Y can
now clearly be distinguished. This is in sharp contrast to

Fig. 2 Directed acyclic graph for the structural causal model which
describes the effect of treatment X on outcome Y under
randomization R



Kelter BMCMedical ResearchMethodology           (2022) 22:58 Page 3 of 22

Fig. 1 where it is unclear which fraction of the effect of X
on Y is attributable to X, and which fraction is attributable
to C. A randomized controlled trial helps in this first
example, but the influence of the mediator physical ther-
apy in the second example can not so easily be eliminated
by randomization: Even after patients have been random-
ized into the treatment and control groups, the effect of
the treatment X can be mediated through a mediator M
after the treatment X has been applied. As a consequence,
mediation analysis is mandatory even in RCTs [4]. In lin-
ear systems, a minimal requirement is to separate between
the direct and indirect effect ofX on Y, while in non-linear
systems the language of counterfactuals is required, see
Pearl et al. [2], Section 3.8.4.
An important preliminary for a RCT is that experimen-

tal intervention is possible after all. In a variety of cases
however, ethical concerns do not allow to perform a RCT.
For example, studying the effect of sleep deprivation on
cognitive ability by forcing people to stay awake is not
possible due to the known adverse effects of sleep depri-
vation on the general health condition [5]. Also, economic
considerations such as the costs associated with perform-
ing an RCT present challenges. Even if these challenges
are met, RCTs still suffer from aspects such as compli-
ance or loss to follow-up. In contrast, purely observational
data can be thought of as somehow ideal in the sense
that study participants are observed under their natural
living conditions. The transferability of causal inference
from observational data to the everyday life of individuals
thus seems better than when individuals are being aware
that they are participating in a RCT. For example, the lat-
ter case could cause a deliberate change in the behaviour
of RCT participants (e.g. because of social desirability
bias). In sum, while RCTs often provide a meaningful way
to obtain causal inferences by eliminating possible con-
founders, methods for the analysis of non-interventional
purely observational data are required to answer ques-
tions where performing a RCT is simply not possible due
to ethical, economic or conceptual obstacles.

Contribution
An important condition for the validity of causal infer-
ences from either observational or experimental data is
that the underlying structural causal model which is often
represented by a directed acyclic graph (DAG) is cor-
rect. If causal inferences are based on a structural causal
model which does not represent the true data-generating
process, estimates for a causal effect can become biased
and lead to unreliable attributions of causal effects to a
set of variables.1 This stresses that model validation is a

1Note, however, that the estimate for a causal effect must not necessarily be
biased. There may exist causal effects which are identical under different
structural causal models. Still, often this is not the case so some bias will be
induced by shifting to a wrong causal model.

key requirement in causal inference from observational or
experimental data, and checking the testable implications
of the structural causal model is therefore mandatory
before any causal effects are calculated. In case one or
multiple of the testable implications of the assumedmodel
are violated, the model must be refined before any causal
effect is computed or the model must be entirely rejected.
Refinement of the model may be possible in some cases,
keeping a causal effect computable, while in others the
structure of the model must be modified substantially
so that the calculation of a causal effect may turn out
to require an entirely different method or even become
impossible. In the latter case, the effect is not identifiable
anymore, that is, it cannot be calculated based on purely
observational data no matter how much data is collected.
In the former case, the formula to calculate the effect
changes and depending on the change between the cor-
rect formula for the true model and the incorrect formula
based on the modified model more or less bias is induced
on the effect estimate.
However, by now it remains unclear how large the prob-

ability is to reject a true structural causal model when data
from it is observed. Thus, under ideal conditions – that
is, when the correct causal relationships between the vari-
ables are reflected in the DAG representing the model –
violations of the testable implications of themodel can still
produce contradictions to the hypothesized model struc-
ture. After observing such contradictions in some cases
(which depend on the form of the contradiction) the DAG
will be modified incorrectly and the resulting estimates of
causal effects may suffer from introduced bias. In other
cases, the causal model will be modified incorrectly and
the causal effect of interest may become unidentified in
the wrong modified model. In even other cases, the causal
effect of interest may still be identified and although the
causal model is modified incorrectly, the correct causal
effect is still obtained correctly as its calculation does not
depend on the falsely modified part of the causal model.
All of these scenarios represent a kind of causal type I
error, where the true model is rejected in favour of a false
one. However, the severity of the three scenarios above
differs substantially: For example, in the third case, the
causal effect can still be obtained correctly, in the first
case it becomes biased, and in the second case calculation
of the causal effect of interest becomes entirely impossi-
ble. Thus, from a decision-theoretic perspective the loss
associated with incorrectly rejecting a true causal model
depends on the causal effect of interest and the structure
of the model itself. All cases above are united by the fact
that they describe some sort of causal false-positive risk,
which corresponds to the probability of rejecting a true
causal model based on its testable implications.
In this paper, two structural causal models which are

widely used in medical research and epidemiology – con-
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founders and colliders – are studied regarding their causal
false-positive risk. Confounders and colliders play a cen-
tral role in biomedical research, and more complex causal
models often include these more elementary structures,
so analyzing them first is helpful also to provide lower
bounds on the causal false-positive risk of more elabo-
rate and complex structural causal models. The plan of the
paper is as follows: The next section reviews the basic def-
initions and properties of directed acyclic graphs (DAGs)
and causal effects. Details about the building blocks of
DAGs and identifiable structural coefficients are provided
in the following section. There, the relevance of con-
founders and colliders for medical research is discussed.
The section which follows analyzes possible violations
of the testable implications of confounders and colliders,
that is, which structural coefficients remain identified, and
how the causal effect of interest changes depending on the
set of violated testable implications. Then, a section dis-
cusses the goal and design of the simulation study which
was carried out to (1) investigate the probability that the
above causal models are rejected as false, although they
reflect the true data-generating process, and (2) quantify
the bias in estimating the structural coefficients and causal
effects when the DAG is modified incorrectly. The fol-
lowing section discusses the results and the last section
provides a conclusion.

Methods
Causal diagrams and directed acyclic graphs (DAGs)
This section provides a brief overview about causal dia-
grams and DAGs. To provide answers to causal ques-
tions from observational data, structural equation models
(SEMs) are widely used in the data-intensive biomed-
ical sciences. Such models allow to posit theoretical
assumptions via structural equations, to derive their con-
sequences and to put their statistical implications under
test against the observed data. The resulting process is key
to causal inference [1, 6] and a widely used representation
of the model structure is given by directed acyclic graphs
(DAGs). DAGs can be obtained from a SEM by creating a
node in the DAG for each variable in the SEM, and adding
an edge between nodes depending on the relationships
specified in the SEM equations. An edge between nodes A
and B thus corresponds to a coefficient in the SEM, hence-
forth called a structural coefficient. Thus, DAGs allow to
convert a SEM into a graphical representation, which has
so-called testable implications [1]. Drawing causal infer-
ences from a DAG then typically proceeds by checking the
identification of the structural coefficients of interest (can
the coefficient of interest be computed from observational
data?), and reducing interventional probabilities by means
of the do-calculus – see Pearl [1], Dawid [6] and Van-
derWeele [4, 7] – to observational probabilities. In sum,
based on a DAG which represents a SEM, causal effects

can be computed by well-established methods such as
backdoor-adjustment [2], the front-door criterion [1], or
counterfactual reasoning, based on purely observational
data.

Directed acyclic graphs (DAGs)
We use the prototypical example of the effect of a treat-
ment X on the outcome Y under the confounder C, the
situation of which is shown in Fig. 1. The corresponding
structural equation model

C = UC (1)
X = βC + UX (2)
Y = αX + γC + UY (3)

where UX ,UC and UY represent exogenous (error) vari-
ables which are not measured but which partially or
entirely determine the value of the endogenous variables
on the left-hand side above, and α,β and γ are the
structural coefficients. In the DAG, such latent variables
are distinguished from observed variables by being sur-
rounded by a dashed box. The above model assumes that
the choice of treatment is determined by UX which is
unobservable and could amount to personal preferences,
severity of the disease, chance or a combination thereof,
as well as the confounding variable C. The outcome Y
is influenced by whether an individual chooses the treat-
ment X, plus an additional disturbance UY as well as the
confounding variable C. From Fig. 1 it is apparent that
every variable in the model has a corresponding node in
the graph. For each equation, an arrow is drawn from
the independent variables on the right-hand side to the
dependent variables on the left-hand side. These arrows
reflect the direction of causation and after converting the
variables and equations in a SEM into the nodes and edges
of a DAG, the structural coefficients in the equations are
appended to the corresponding arrows, in this case, the
labels α,β and γ . A natural question is when a structural
equation coefficient α yields information about the causal
effect of treatmentX on outcome Y. To estimate the causal
effect α of X on Y, the coefficient must obey a unique
solution in terms of the probability distribution of the
observed variables X,Y and C (or equivalently, in terms of
their covariance matrix). Identifying such a unique solu-
tion is called identification of a causal effect, and assuming
linearity a linear regression model can provide a unique
estimate for α in Fig. 1 based on least-squares estimation
(after adjusting for the confounder C). In practice, how-
ever, it is often more difficult to identify a causal effect
and sometimes it may even be unidentifiable based on the
observable variables. The important implication is that no
matter how many data one collects, it remains impossible
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to produce a point estimate for the value of an uniden-
tifiable causal effect, that is, the corresponding structural
coefficient(s).
Some definitions are required for spelling out sufficient

criteria for a causal effect to be identifiable: An edge in
a DAG is defined to be either an arrow or a bidirected
arc. Whenever an arrow exists from X to Y, X is called a
parent of Y, and when there exists a sequence of directed
arrows from X to Y, then Y is called a descendant of
X, and X an ancestor of Y. Nodes which are connected
by bidirected arcs are called siblings. A path between X
and Y is defined as a sequence of edges that connects
the two nodes, and a path may be directed from X to Y
(when every arrow points toward Y ) or from Y to X (when
every arrow points towards X). Important for the iden-
tification of causal effects are the notions of a backdoor
path: A backdoor path from X to Y is any path which
starts with an arrow pointing towards X and ends with
an arrow pointing to Y. Also important is the notion of
a collider: A collider is a node in which two arrowheads
meet. Colliders block the flow of information, while back-
door paths are associated with confounding, for details
see Pearl and MacKenzie [8] and Pearl [1]. Here, we
consider only acyclic graphs, and an acyclic model with-
out correlated error terms (the terms UX , UY in Fig. 1)
is called Markovian. Whenever error terms are allowed
to be correlated, the model is only semi-Markovian,
and when the model becomes cyclic, the model is
non-Markovian.

d-Separation
While in simple situations the identification of causal
effects may be possible by visual inspection of the DAG,
in more complex scenarios the property of d-separation
is crucial. d-separation allows for more advanced criteria
to identify causal effects, and also enables to test whether
nodes corresponding to variables Z “block” a path from
nodes in X to nodes in Y. d-separation is defined as
follows, compare Pearl [1], p. 16:

Definition 1 (d-Separation) A path p is d-separated by
a set of nodes Z if and only if

1 p contains a chain i → m → j or a fork i ← m → j
such that the middle node m is in Z, or

2 p contains a collider i → m ← j such that the middle
node m is not in Z and such that no descendant of m
is in Z

A set Z d-separates X from Y if and only if Z d-separates
every path from a node in X to a node in Y.

Thus, when X and Y given Z are d-separated, this stops
the flow of information and it can be shown that this
implies conditional independence of X and Y given Z,

where the latter is denoted as X ⊥⊥ Y |Z, see Verma and
Pearl [9] and Pearl [1], Chp.1.

Theorem 1 (Probabilistic Implications of d-Separation)
If sets X and Y are d-separated by the set Z in a DAG G,
then X is independent of Y conditional on Z in every distri-
bution compatible with G. Conversely, if X and Y are not
d-separated by Z in a DAG G, then X and Y are dependent
conditional on Z in at least one distribution compatible
with G.

Thus, d-separation is connected to the testable impli-
cations of a structural causal model which itself is rep-
resented by a DAG: Whenever X and Y are d-separated
by the set Z in a DAG G it follows that X ⊥⊥ Y |Z in G.
The latter is testable by inspection of the partial regression
coefficient βYX|Z ofX on Y givenZ in linearmodels, which
should then equal zero, βYX|Z = 0. This is seen from the
relationship that X ⊥⊥ Y |Z implies pXY |Z = 0 where pXY |Z
denotes the partial correlation coefficient between X and
Y given Z, and the partial regression coefficient βYX|Z is
given as

βYX|Z = pYX|Z
σYZ
σXZ

(4)

and reduces to zero under pXY |Z = 0. Thus, X ⊥⊥ Y |Z
implies βYX|Z = 0 [1]. The second part of the above
theorem is actually “much stronger – the absence of d-
separation implies dependence in almost all distributions
compatible with G. The reason is that a precise tuning
of parameters is required to generate independency along
an unblocked path in the diagram, and such a tuning is
unlikely to occur in practice.”, for details see Pearl [1], p. 18
and Pearl [1], Corollary 5.2.2. This leads to the follow-
ing more useful result in linear Markovian models (that
is, linear models which admit no correlated error terms
between variables), compare Verma and Pearl [9]:

Theorem 2 If sets X and Y are d-separated by Z in a
DAG G, then X is independent of Y conditional on Z in
every Markovian model structured according to G. Con-
versely, if X and Y are not d-separated by Z in a DAG,
then X and Y are dependent conditional on Z in almost all
Markovian models structured according to G.

Thus, when X and Y are not d-separated (that is, no
set Z ⊂ G can be found which d-separates Z and Y in
G), the dependency of Y and X holds in almost all dis-
tributions compatible with G. As a consequence, except
for pathological cases where the precise tuning of param-
eters may generate independency along an unblocked
path the testable implication is that the partial correla-
tion coefficient βYX|Z does not vanish, that is, βYX|Z �=
0. Importantly, as stated by Pearl [1], Corollary 5.2.2,
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“no other partial correlation would vanish” except those
whose variables are d-separated.
In the simulation study reported later, the simulation

design ensures that such pathological cases do not occur,
rendering the reverse part of the above theorem a helpful
testable implication of a DAG.
Importantly, a Bayesian approach is taken in this paper

to avoid the above pathologic cases. There are three pri-
mary reasons for using a Bayesian approach.

(i) First, Bayesian analysis has various advantages over
traditional frequentist methods in biomedical
research, for details see Kelter [10–12] and
Wagenmakers et al. [13].

(ii) Second, null hypothesis significance tests aim at
rejecting the null hypothesis H0 : β = 0 in favour of
the alternative H1 : β �= 0. However, in a variety of
testable implications such as βYX|Z = 0, interest lies
in confirmation of a null hypothesis. The Bayes
factor allows to confirm such a null hypothesis as is
discussed later.

(iii) Third, and most importantly, opting for a Bayesian
approach to check the testable implications is
important to ensure exclusion of the aforementioned
pathological cases where Y is not conditionally
independent of X given Z but the partial regression
coefficients vanish, βYX|Z = 0.

With regard to point (iii), while in the frequentist
approach the true parameter is unknown and fixed, in
the Bayesian paradigm the parameter is a random variable
such as the observed data. Thus, under an absolutely con-
tinuous prior distribution Pϑ with respect to the Lebesgue
measure λ for the regression coefficients in a Bayesian lin-
ear regression model, the probability of the parameters
(that is, the regression coefficients) taking the precise val-
ues which render an unblocked path independent (that
is, βYX|Z = 0, although Y is not conditionally indepen-
dent of X given Z), is zero a priori. Thus, the assurance
that such a tuning of parameters “is unlikely to occur in
practice” is strengthened to the statement that such a tun-
ing of parameters occurs with probability zero Pϑ -almost
surely. This Bayesian perspective adds to the implication
of the above Theorem that “those (and only those) partial
correlations identified by the d-separation test are guar-
anteed to vanish” ([1], p. 142), the additive that “those
(and only those) partial correlations not identified by the
d-separation test are guaranteed not to vanish”. Opting
for a Bayesian statistical analysis thus allows to make the
“almost all Markovian models” part in Theorem 2 explicit
through the prior distribution Pϑ .
It is worth noting from a computational point of view

that next to manual inspection whether X and Z are d-
separated by a set Z based on Definition 1, there are also

algorithms which allow for automating this process, see
Lauritzen et al. [14] and Dawid [6].

Causal effects
After a structural equation model has been converted to
a DAG, a precise definition of the causal effect of X on
Y is required. Therefore, let P := {p1, ..., pn} be the set
of directed paths from X to Y and pi denote the prod-
uct of structural coefficients along path pi. The total effect
or average causal effect (ACE) according to Bollen [15] is
given as

ACE(X,Y ) :=
n∑

i=1
pi (5)

For example, in Fig. 1,ACE(X,Y ) = α. This “path-tracing”
definition goes back to Wright [16] and in linear sys-
tems coincides with the expected value of a variable Y,
after X is assigned the value x by intervention, denoted
E[Y |do(X = x)], for details see Chen and Pearl [17], p. 4.
The difference between conditioning onX = x and setting
X = x by intervention, denoted as do(X = x) is impor-
tant for causal inference and the associated do-calculus is
outlined in detail in Pearl [1], Chapter 1-5, see also Dawid
[6] and Berzuini et al. [18]. Thus, ACE can be expressed
equivalently as

ACE(X,Y ) = ∂

∂x
E[Y |do(X = x)] (6)

Inmany cases however, one is interested in the direct effect
of X on Y. The direct effect of X on Y is the sensitivity of
Y to changes in X while all other factors in the analysis
are held fixed, see Pearl [1], Chp. 4.5. The process of hold-
ing all other factors fixed can be conceptualized in a DAG
as a “graph surgery” in which all arrows from parents of
X which run into X are severed, leaving only direct links
from X to Y (compare Figs. 1 and 2, where randomization
achieves the same, which is why an RCT can answer causal
questions).
Direct effects can be calculated from do-free expres-

sions and evaluated via purely observational data under
the conditions given in Pearl ([1], Definition 4.5.1,
Theorem 4.5.3), see also Pearl et al. [2], p. 77. The single-
door criterion provides means to calculate a direct effect:

Theorem 3 (Single-door Criterion) Let G be any acyclic
causal graph in which α is the coefficient associated with
arrow X → Y , and let Gα denote the graph which results
when X → Y is deleted from G. The coefficient α is
identifiable if there exists a set of variables Z such that

(i) Z contains no descendant of Y and
(ii) Z d-separates X from Y in Gα
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If Z satisfies these two conditions, then α is equal to the
regression coefficient βYX|Z. Conversely, if Z does not satisfy
these conditions, βYX|Z is not a consistent estimate of α.

A proof of the single-door criterion is given in Pearl [19]
and Spirtes et al. [20], see also Pearl [1], Chp. 5. The back-
door criterion allows to identify the average causal effect
based on d-separation between nodes in a DAG:

Theorem 4 (Back-door Criterion) For any two variables
X and Y in a causal diagram G, the total effect of X on Y is
identifiable if there exists a set of variables Z such that

(i) no member of Z is a descendant of X
(ii) Z d-separates X from Y in the subgraph GX formed

by deleting from G all arrows starting in X.

If the two conditions are satisfied, the total effect of X on Y
is given by the regression coefficient βYX|Z.

Details are provided in Pearl [1], Chapter 3.3.1.

Confounders and colliders
The previous section outlined the basic theoretical results
which are required for a detailed analysis of confounder
and collider models. As is inevitably the case, every infer-
ential situation can result in its own specific DAG which
makes it impossible to provide results for the causal false-
positive risk independent of the underlying structural
model. However, in the majority of research there are
key components which could be called “causal bricks”
that are frequently observed and together can build larger
and more complex graphs. In the context of biomedical
research and epidemiology, two of these typical causal
bricks are confounders and colliders (next to media-
tors and confounded mediators), see VanderWeele [4, 7],
Dawid [6], Pearl et al. [2] and Hernán and Robins [21]. In
this section, we assume a linear Markovian model (that
is, acyclic and uncorrelated error terms) and consider the
prototypical situation of the effect of a treatment X on the
outcome Y.

Confounders
The first causal brick is the situation where the effect of
the treatment X on the outcome Y is confounded by a
confounding variable C, displayed in Fig. 3. The structural
coefficients are shown as α,β and γ and we first turn to
the testable implications of this model. Clearly, no variable
is d-separated conditional on any other set of variables in
Fig. 3: For example, Y ⊥⊥ X|C does not hold as the path
X → Y remains unblocked after conditioning on C. Thus,
although the path X ← C → Y is blocked by C, the
nodes X and Y are not d-separated by C. Analogue argu-
ments show that Y �⊥⊥ C|X and X �⊥⊥ C|Y . Note that Y is
a collider in the path C → Y ← X, and thus Y blocks

Fig. 3 Directed acyclic graph for the structural causal model which
describes the effect of treatment X on outcome Y under the
confounding variable C. UX , UY and UC denote unobservable latent
variables, which determine the values of X, Y and C

this path. X �⊥⊥ C holds even without conditioning on Y :
the path C → X stays open, regardless on whether one
conditions on the collider Y additionally, opening the path
C → Y ← X or not. The symmetry property of condi-
tional independence – that is, A �⊥⊥ B|C ⇔ B �⊥⊥ A|C,
compare Dawid [6] – shows that we cannot d-separate any
nodes in Fig. 3 (conditioning on the empty set ∅ clearly
also does not d-separate any nodes in Fig. 1). As outlined
in the previous section, no partial correlation coefficients
are expected to vanish, and due to the arguments below
Theorem 2 we obtain the testable implications that

pYX|C �= 0, pYC|X �= 0, pXC|Y �= 0 (7)

In the simulation study, we will use these constraints to
estimate the resulting causal false-positive rate and the
bias in estimating the causal effect of treatment X on out-
come Y. As noted above, X �⊥⊥ C which we use to employ
the constraint pXC �= 0 instead of pXC|Y �= 0. This avoids
biased estimates of the regression coefficient βXC|Y by
opening the collider Y in C → Y ← X later. Now, the
testable implications are given as

βYX|C �= 0, βYC|X �= 0, βXC �= 0 (8)

Turning to the identification of causal effects under con-
founding as shown in Fig. 3, the backdoor-criterion as
given in Theorem 4 shows that C is a backdoor-admissible
set and the total effect ACE(X,Y) = α (there is only a sin-
gle directed path from X to Y in the DAG, and no other
path fromX to Y, and thus it also follows that IE(X,Y) = 0)
of treatment X on outcome Y can be estimated by the
(unbiased) estimand βYX|C ,

ACE(X,Y ) = βYX|C (9)

As there is only one directed arrow from X to Y in Fig. 3,
it is immediate that there is no indirect effect of X on Y,
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and thus the direct effect is equal to the total effect, as in
linear systems, the equality

ACE(X,Y ) = DE(X,Y) + IE(X,Y) (10)

holds, compare Pearl [1], Section 4.5.5 and Pearl et al. [2],
p. 83-87. Therefore,

DE(X,Y ) = βYX|C (11)
IE(X,Y ) = 0 (12)

Colliders
The second causal brick considered is the frequently
observed setting of a collider as shown in Fig. 4. The treat-
ment X has a direct causal effect on the collider C, which
is also influenced by another variableW. For example, the
treatment X could now be a drug for lowering blood pres-
sure that affects physiological properties C. However, W
could represent whether an individual exercises regularly
which also affects C, and C itself influences the outcome Y
which could be cardiac failure. Importantly, neitherW nor
X have a direct cause on Y, but the causal effects are trans-
mitted through the collider C inW → C ← X. Note that
conditioning on C correlates the previously uncorrelated
variables X and C: Individuals having a specific value of C,
e.g. risk-reducing physiological properties, will either pick
an appropriate dose of the treatment, and thus require no
additional exercising, or will exercise a lot and thus require
no (or little) additional treatment X. Thus, given C = c,W
and X become (negatively) correlated.
Inspecting the testable implications of Fig. 4, it is appar-

ent that Y ⊥⊥ X|C and Y ⊥⊥ W |C, as C blocks every
path from X to Y orW to Y (compare Definition 1). Also,
W ⊥⊥ X as the empty set ∅ blocks every path between W
and X in Fig. 4: X andW are separated by the collider C in
X → C ← X. However,W �⊥⊥ X|C as conditioning on the
collider C opens the only path W → C ← X between W
and X. This yields the testable implications

pYX|C = 0, pYW |C = 0, (13)
pWX = 0, pWX|C �= 0 (14)

which are equivalent to

βYX|C = 0, βYW |C = 0,
βWX = 0, βWX|C �= 0 (15)

Furthermore, asC is not d-separated fromW by {X,Y }we
can conclude that C �⊥⊥ W |{X,Y } and thus pCW |{X,Y } �= 0,
Pϑ -almost surely in almost all Markovian linear models
(compare Theorem 2), which in turn implies βCW |{X,Y } �=
0. Likewise, because C is not d-separated from X given
{W ,Y }, it follows that βCX|{W ,Y } �= 0. Finally, Y �⊥⊥
C|{W ,X}, and thus also βYC|{W ,X} �= 0, so that Fig. 4 yields
the additional testable implications

βCW |{X,Y } �= 0,βCX|{W ,Y } �= 0,βYC|{W ,X} �= 0 (16)

Concerning the total effect of X on Y, we obtain

ACE(X,Y ) =
1∑

i=1
pi = γα (17)

as p1 := X → C → Y . Clearly, there is no direct arrow
from X to Y in Figure 4, so

DE(X,Y ) = 0 (18)

and from Eq. (10) it follows that

IE(X,Y ) = ACE(X,Y ) − DE(X,Y )

= ACE(X,Y ) = αγ (19)

From Theorem 3 it follows that ∅ is a single-door admis-
sible set for estimating α by βCX . Likewise, γ is estimable
as βYC due to the same reason. It thus follows that the
estimand for ACE(X,Y) = IE(X,Y) is given as

ACE(X,Y) = IE(X,Y) = βCX · βYC (20)

Testable implications and graphmodifications
In this section, we pose the question what happens when
one or multiple of the testable implications are falsified,
although the true data-generating model corresponds to
one of the two causal models described in the above
section.

Fig. 4 Directed acyclic graph for the structural causal model which describes the effect of treatment X on outcome Y under the collider variable C.
UX , UY , UW and UC denote unobservable latent variables
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Testable implications of confounders
Return to Fig. 3: Suppose that we observe data X,Y and
C and set up two Bayesian linear regression models by
regressing Y on X and C, and by regressing X on C. Then,
βYX|C and βYC|X are obtained as the regression coeffi-
cients for X andC in the first model, while βXC is obtained
as the corresponding regression coefficient in the second
regression model. The testable implications in Eq. (8) can
now be checked as follows: Suppose the hypothesis tests
for H0 : β = 0 against H1 : β �= 0 for all partial regression
coefficients β given in Eq. (8) show evidence for all three
coefficients being equal to zero. For example, these tests
could be conducted by checking whether the Bayes factor
BF01 of the hypothesis H0 : β = 0 against the alternative
H1 : β �= 0 passes a predefined threshold, compare Kelter
[22]. The resulting modification of the DAG would corre-
spond to deleting all arrows between X,Y and C, and thus
it would follow that ACE(X,Y) = DE(X,Y) = IE(X,Y) = 0.
Suppose on the other hand that only two hypothesis

tests confirm that a regression coefficient is zero.

• When βYX|C = 0 and βYC|X = 0, we also have
ACE(X,Y) = DE(X,Y) = IE(X,Y) = 0 because we
would erase both arrows from C → Y and from
X → Y .

• When βYX|C = 0 and βXC = 0, we would also have
ACE(X,Y) = DE(X,Y) = IE(X,Y) = 0, because we
would erase the arrow C → X and the arrow X → Y ,
thus deleting all paths between X and Y.

• When βYC|X = 0 and βXC = 0, we would not identify
C as a confounder anymore via the
backdoor-criterion, and compute ACE(X,Y) without
conditioning on C. Thus, we would arrive at
ACE(X,Y) = βYX which is obtained from the newly
built regression model which regresses Y on X only,
and obtain DE(X,Y) = βYX = ACE(X,Y). Thus, both
the average causal and direct effect are biased in this
case.

Suppose now that only a single of the three hypothesis
tests confirms that a regression coefficient is zero:

• If βYX|C = 0, we would erase the arrow from X → Y
and obtain ACE(X,Y) = DE(X,Y) = IE(X,Y) = 0.

• If βYC|X = 0, we would erase the arrow from C → Y
and obtain ACE(X,Y) = DE(X,Y) = βYX from the
newly built regression model of Y only on X (Y is
conditionally independent of C given X in the
modified graph)

• If βXC = 0, we would erase the arrow from C → X
and obtain ACE(X,Y) = DE(X,Y) = βYX from the
newly built regression model of Y only on X, because
Z := ∅ satisfies the backdoor-criterion as X and Y
are d-separated by ∅ in the subgraph Gα when the
arrow C → X is removed from Fig. 3.

Thus, while all of the above cases contribute to the causal
false-positive risk under the situation depicted in Fig. 3,
the bias which is implied for the average causal, direct
and indirect effects ACE(X,Y), DE(X,Y) and IE(X,Y) dif-
fers depending on the actual outcome of the performed
hypothesis tests to check the testable implications of the
underlying model. In sum, the above reasoning leads to
the following result:

Lemma 1 Assume the true structural causal model is
given by the directed acyclic graph G in Fig. 3 with
testable implications given in Eq. (8). The induced bias on
ACE(X,Y), DE(X,Y), IE(X,Y) for each possible violation of
one or multiple testable implications (each case of which
contributes to the causal-false positive risk) are given in
Table 1 in the Supplementary file.

Proof See Supplementary file.

Testable implications of colliders
Now, consider the testable implications of colliders as
depicted in Fig. 4. The implications in Eq. (15) and (16) are
more complex than for the case of confounding shown in
Fig. 3, but with the exception of a single testable implica-
tion, checking the testable implications and deriving the
consequences of violations of any of them is straightfor-
ward.
We consider the single testable implication which

requires more attention first, that is, βWX|C �= 0. We
discuss this implication in the context of the testable
implication βWX = 0, and show that it can be removed,
leaving only six testable implications

βYX|C = 0, βYW |C = 0, βCW |{X,Y } �= 0
βWX = 0, βCX|{W ,Y } �= 0, βYC|{W ,X} �= 0 (21)

remaining. Therefore, consider the case when βWX = 0:
Then, no directed path fromW toX or fromX toW exists
(possibly including other nodes in the graph). Assume that
the testable implication βWX|C �= 0 now is violated, which
implies βWX|C = 0, then C cannot be a collider on the
path W → C ← X anymore. The following options exist
for this scenario:

• Option 1:W → C → X, then we have βWX|C = 0,
but reversing the direction of the arrow X → C to
C → X means that the treatment X has no causal
effect on C anymore (e.g. parameters in a blood
sample). However, this contradicts the causal
assumption how the treatment X works, and as data
are purely observational the treatment X (which
often corresponds to taking some drug or applying
some kind of intervention) has succeeded in a long
administration process via clinical studies. Next to
contradicting these extra-mathematical arguments,
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assuming the pathW → C → X also contradicts the
assumption βWX = 0, as then W and X are clearly
correlated (through C).

• Option 2: X → C → W , which also is rendered
unrealistic as W could stand for gender, which has an
effect on the blood sample parameters C. Thus, as C
cannot change the gender W, this assumption is also
rendered unrealistic. Even when W corresponds to
some other variable, say, physical activity,
X → C → W contradicts the assumption βWX = 0,
too.

• Option 3: Erase both arrows X → C andW → C,
then βWX|C = 0, but neither the treatment X nor the
other variable W have any causal influence on C then
anymore, which is unrealistic due to the same
arguments brought forward for Option 1.

• Option 4: Erase the arrow X → C. This implies
βWX|C = 0 but is unrealistic, too, due to the same
arguments brought forward for Option 1.

• Option 5: Erase the arrowW → C: Then, βWX|C = 0
and βWX = 0. In this last case, the treatment still has
a causal effect on C but the influence of W is
questioned.

In sum, except for Option 5 all other options are either
contradicting βWX = 0 or are rendered implausible due to
extra-mathematical arguments. Thus, whenever βWX = 0
holds and βWX|C �= 0 is violated, the consequence is to
modify the original DAG by erasing the arrow from W
to C with label β . Thus, this two-stage test via βWX and
βWX|C is an implicit test for the existence of the arrow
W → C in the DAG, and such a test is already existent in
the set of testable implications through the testable impli-
cation βCW |{X,Y }. Thus, the two-stage test βWX and βWX|C
is not necessary in the above case and can be replaced by
the test of βCW |{X,Y } when βWX = 0 holds and βWX|C �= 0
is violated.

What about the other cases? When βWX = 0 holds and
βWX|C �= 0 is not violated, neither constraint is violated
and the DAG stays the same.
When βWX = 0 is violated, there must be a direct path

between W and X in the DAG (excluding the case where
X ← C → W because then the treatment has no effect
on C anymore). The cases W → C → X and X →
W → C are thus excluded because they are again unre-
alistic as they imply that X has no effect on C anymore
or that C can affect W (which could stand for gender, but
even when W is physical activity, a different set of blood
parameters will not cause higher or lower physical activ-
ity; it could possibly allow for a better health situation,
which would add a new node in the DAG, that then influ-
ences W ). The remaining two cases are to add an arrow
X → W or W → X to the DAG. These are narrowed
down to W → X, because as mentioned above, X will
neither change the gender W of an individual, nor have a
direct causal effect on the physical activity (any such effect
would be mediated by health status, motivation, quality
of life, et cetera of a patient which are affected by the
treatment).
In sum, the only option is to add the arrow W → X

to the DAG (resulting in the modified DAG shown in
Fig. 5) whenever βWX = 0 is violated, and importantly,
as then βWX �= 0, the testable implication βWX|C �= 0 is
then always true: Conditioning onC will not d-separateW
from X because of the direct path W → X, which cannot
be closed.
In total, in every case the test of βWX|C �= 0 is super-

fluous. No information is gained whenever βWX = 0
is violated. Whenever βWX = 0 and βWX|C �= 0 hold
and neither testable implication is violated it implies no
change to the DAG or it can be replaced by the check of
βCW |{X,Y }. Thus, the testable implication βWX|C �= 0 can
be removed and the remaining testable implications are
given by Eq. (21).

Fig. 5 Directed acyclic graph for the structural causal model which describes the effect of treatment X on outcome Y under the collider variable C.
UX , UY , UW and UC denote unobservable latent variables. The arrow connectingW and X is assumed to be directed fromW to X and not from X to
W, either due to subject-domain knowledge or temporal information
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Assumption 1 Let G be the directed acyclic graph in
Fig. 4 corresponding to the collider situation, and suppose
that the testable implication βWX = 0 is violated. Then,
a directed arrow W → X is added to the DAG which is
justified either by subject-domain knowledge or temporal
information.

Each of these remaining six testable implications has
an unambiguous consequence when being violated. For
example, when βYW |C = 0 is violated, an arrow from
X to Y is added to the DAG, because (again borrough-
ing the example where W stands for gender) the variable
W may have a direct causal influence on the outcome
Y, but the opposite can often be questioned. In cases,
where the directionality of the arrow is questionable (e.g.
when W is physical activity), it is assumed that temporal
information is available which allows to specify the direc-
tion W → Y (that is, the observational data allow to
judge that patients have not become physically more or
less active through the outcome; this is often straightfor-
ward, because such an effect would again be transmitted
through a change in motivation, pain reduction, or other
variables which would correspond to new nodes in the
DAG, so that no direct arrow would be drawn from
Y toW ).
The above analysis also showed that when βWX = 0 is

violated, an arrow from W to X and not from X to W is
inserted into the DAG, and when for example βCX|{W ,Y } �=
0 is violated, the arrow X → C would be deleted from the
DAG.
In total, the six testable implications can thus be violated

in the following structured ways: Either, a single implica-
tion is violated, or exactly two implications are violated,
or exactly three are violated, or exactly four, or exactly
five, or exactly six. The number of these violations is given
as

∑6
k=1

(6
k
) = 6 + 15 + 20 + 15 + 6 + 1 = 63, and

in a large number of cases the direct, indirect and aver-
age causal effects will reduce to zero immediately. The
Supplementary file outlines each of these cases and how
the estimands for ACE(X,Y), DE(X,Y) and IE(X,Y) change
for each case. The results allow to test for any possible
violations of the testable implications and show which of
the arrows in Fig. 6 is existent in the modified DAG in
each case. Whether one or multiple arrows are deleted in
Fig. 6 depends on which of the six testable implications in
Eq. (21) are violated. The above line of thought thus leads
to the following result:

Lemma 2 Assume the true structural causal model is
given by the directed acyclic graph G in Fig. 4 with testable
implications given in Eq. (21) and suppose Assumption 1
holds. The induced bias on ACE(X,Y), DE(X,Y), IE(X,Y) for
each possible violation of one or multiple testable impli-
cations (each case of which contributes to the causal-false
positive risk) is then given in Tables 2 and 3 in the Supple-
mentary file.

Proof See Supplementary file.

Simulation study
Now, based on the previous section it is clear that the sim-
ulation study mimicks a smart investigator who adaptively
responds to violations of the testable implications of his
causal model. The first goal of the simulation study is to
investigate the causal false-positive risk, that is, to provide
answers to question (i) below.

(i) How large is the probability to reject a true structural
causal model represented as a DAG based on its
testable implications?

(ii) How large is the resulting bias for estimates of
average causal effects, direct and indirect causal

Fig. 6 Directed acyclic graph for the structural causal model which describes the effect of treatment X on outcome Y under the collider variable C.
UX , UY , UW and UC denote unobservable latent variables. The presence of each of the arrows depends on which of the testable implications for the
collider scenario are violate



Kelter BMCMedical ResearchMethodology           (2022) 22:58 Page 12 of 22

effects based on falsely rejecting a true structural
causal model which is represented as a DAG?

Question (ii) goes hand in hand with question (i),
because bias can only occur when the true estimands for
ACE(X,Y), DE(X,Y) and IE(X,Y) change. The latter hap-
pens if and only if the true structural causal model is
rejected, which in turn can only be the case whenever one
or multiple of the testable implications of the DAG are
violated.
Naturally, the answers to the above questions will

depend on the statistical methods to check the testable
implications, the magnitude of the true structural coeffi-
cients, and the amount of data available to the researcher.

Statistical analysis of the testable implications
Statistical analysis of the testable implications proceeds
via standard linear regression analysis. As we operate
in linear Markovian models (uncorrelated error terms,
no cycles), the standard regression coefficients βAB of
regressing A on the independent variable B, or the partial
regression coefficients βAB|C which equal the regression
coefficient of the variable B in the multiple linear regres-
sion model of Y on both A and B provide the estimands
which are subsequently used to check the testable implica-
tions. As mentioned already above, a Bayesian approach is
taken in this paper, compare the section on d-separation,
which analyzes the testable implications by means of stan-
dard Bayesian linear regression models (for an overview
see Van Erp et al. [23], Robert [24] or Kruschke [25]). The
Bayes factor BF01 in favour of the null hypothesis H0 :
β = 0 against H1 : β �= 0 is used to test the conditional
independencies and dependencies which are given as the
testable implications of each of the models. The Bayes fac-
tor measures the relative change in beliefs towards either
of the hypotheses under consideration, and under equal
prior probabilities for H0 : β = 0 and H1 : β �= 0
equals the posterior probabilities forH0 andH1. Thus, the
threshold BF01 > 1 provides a natural criterion for a vio-
lation of the testable implication β �= 0, and BF01 < 1
implies a violation of the testable implication β = 0. In the
former case, the posterior probability (under equal prior
weights for H0 and H1) indicates that H0 : β = 0 is more
probable given the data, and in the latter case, the poste-
rior probability shows that H1 : β �= 0 is more probable
than H0 : β = 0 after observing the data. Details about
the Bayes factor are provided in Robert [24], Wagenmak-
ers et al. [13] and Kelter [11, 22] as well as Berger [26] and
Schervish [27].
It is important to note that there are various alterna-

tive statistical evidence measures to the Bayes factor. An
overview is provided by Kelter [28], and Makowski et
al. [29], Linde et al. [30] and Kelter [10, 31, 32] have

shown that different Bayesian approaches to hypothesis
testing can yield varying conclusions for identical data.
As the Bayes factor is one of the most widely established
approaches to hypothesis testing in medical research [11,
13, 33], in this paper the focus is on using a single evi-
dence measure which is the Bayes factor. This allows
to compare the results and also enables to use relation-
ships between Bayes factors and p-values which have been
established in the statistical literature [34, 35]. However,
future research should also investigate the dependency of
the results obtained here on the evidence measure which
is employed for testing the hypotheses corresponding to
the testable implications.
Next to the choice how to test a hypothesis the role of

the prior is crucial in a Bayesian analysis. Here, weakly-
informative normal priors are employed on the regression
coefficients, following the recommendation of Goodrich
[36], see also the section on the simulation design. As
stressed by Gelman et al. [37], using such priors in hier-
archical models provides a natural Bayesian type I error
control.

Local and global testing
A short note should be made on the strategy of local over
global testing. As stressed by Pearl [1], the approach to for-
malize all testable implications in terms of the covariance
matrix of the resulting model and perform a global test
on the covariance matrix as a whole turns out problematic
in a variety of cases: Researchers usually want to mod-
ify their causal model represented as a DAG when one or
multiple of the testable implications are violated. Hence, a
global test can only invalidate the set of all testable impli-
cations as a whole but does not provide hints where the
underlying structural causal model may be misspecified,
and refinement is needed.
Additionally, some structural coefficients may not be

identified which implies that in some cases a global test
of the testable implications cannot be performed at all
because of missing entries in the covariance matrix. In
contrast, local tests may still be possible through the use
of instrumental variables (see Chen and Pearl [17], p. 10
and Pearl [1]):

“Global tests represent summaries of the overall
model-data fit and, as a result, violation of specific
testable implications may be masked (Tomarken and
Waller, 2003). In contrast, if the testable implications
are enumerated and tested individually, the model can
be tested even when unidentified, the power of each
test is greater than that of a global test (Bollen and
Pearl, 2013; McDonald, 2002), and in the case of
failure, the researcher knows exactly which constraint
was violated.”
Chen and Pearl [17], p. 16
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As a consequence, the approach taken in this paper
focusses on local over global testing of the model
constraints and testable implications. Furthermore, this is
precisely what allows to simulate a researcher in the simu-
lation study who adaptively modifies his structural causal
model by deleting or adding arrows in his DAG, depend-
ing on the set of violated testable implications based on
the observed data.

Magnitude of the structural coefficients
Consider the situation in Fig. 3 which depicts the con-
founder scenario. The resulting causal false-positive risk,
that is, the probability of violation of one or multiple of
the testable implications in Eq. (8) depends on the magni-
tude of the structural coefficients α,β and γ . First, when
the relationships between X,Y and C are too strong or
self-evident, it follows that none of the testable implica-
tions will be violated, even for small sample sizes. Thus,
the magnitude of α,β and γ must not be too large. Sup-
pose α := 0.25. Then, we can separate between different
magnitudes of the confounder C. Consider a balanced
confounder, that is β = γ . The influence on X and Y
could be as strong as the influence of X on Y, yielding
β = γ = 0.25. This situation, henceforth called balanced
leveled confounder, builds the starting point in the sim-
ulations. Next to this setting, the confounder could exert
considerably stronger or weaker influence on X and Y : For
example, setting β = γ = 0.125 amounts to a confounder
which exerts half of the influence on X and Y as X exerts
on Y. On the contrary, β = γ = 0.5 or β = γ = 1 cor-
respond to confounders which exert twice or four times
as much influence on X and Y as X exerts on Y itself. We
study all of these four settings, and additionally consider
also unbalanced confounders.
Natural choices are given by β = 0.25 and γ = 0.75

as well as β = 0.75 and γ = 0.25. More extreme
cases of unbalanced confounders amount to β = 0.1
and γ = 0.9 as well as β = 0.9 and γ = 0.1. These
two settings are investigated as well, and in each setting
the testable implications in Eq. (8) serve as the basis for
conducting local Bayesian hypothesis tests via the Bayes
factor, and consecutively adapting the true DAG in Fig. 3
according to the rules outlined in earlier. In case of any
violations of the testable implications, the resulting esti-
mands for ACE(X,Y ), DE(X,Y ) and IE(X,Y ) thus change
as specified in the section on the testable implications
of confounders. Table 1 provides an overview about the
simulation settings for confounders.
Consider the situation in Fig. 4. First, balanced collid-

ers are considered, that is α = β = γ = 0.25. Then,
α = β = 0.5 and α = β = 1 are considered for γ = 0.25.
Also, the above settings are repeated for γ = 0.5 and
γ = 1. In addition, unbalanced colliders are considered:
α = 1/3, β = 2/3 for γ = 0.25 and α = 2/3, β = 1/3

Table 1 Simulation settings for confounders (Fig. 3)

Setting α β γ

Balanced

Weak Confounder 0.25 0.125 0.125

Balanced Confounder 0.25 0.25 0.25

Strong Confounder 0.25 0.5 0.5

Very strong Confounder 0.25 1.0 1.0

Weak Confounder 0.5 0.125 0.125

Balanced Confounder 0.5 0.25 0.25

Strong Confounder 0.5 0.5 0.5

Very strong Confounder 0.5 1.0 1.0

Unbalanced

Unbalanced Confounder 0.25 0.25 0.75

Unbalanced Confounder 0.25 0.75 0.25

Unbalanced Confounder 0.25 0.1 0.9

Unbalanced Confounder 0.25 0.9 0.1

Unbalanced Confounder 0.5 0.25 0.75

Unbalanced Confounder 0.5 0.75 0.25

Unbalanced Confounder 0.5 0.1 0.9

Unbalanced Confounder 0.5 0.9 0.1

likewise. Also, α = 0.1, β = 0.9 and α = 0.9, β = 0.1
are considered, too. These unbalanced settings are then
again repeated for γ = 0.5 and γ = 1. Table 2 provides an
overview about the simulation settings for colliders.

Amount of data
All of the above cases can produce violations of the
testable implications of the underlying models depicted
in Figs. 3 and 4. However, the actual causal false-positive
risk will depend also on sample size. For large sample size
n, the consistency of Bayesian posterior distributions –
see Doob [38], Ghosal and Van der Vaart [39] or Ghosal
and Ghosh [40] – will guarantee that the true parame-
ter value α,β and γ is identified, as long as no testable
implications of the underlying structural causal model are
violated. However, for increasing sample size violations
of the testable implications will occur with probability
decreasing to zero because of the aforementioned pos-
terior consistency. Thus, it is reasonable to study the
resulting causal false-positive risk for sample sizes rang-
ing from n = 10 to n = 100 samples for each observable
variable. As often is the case in medical research, attaining
large sample sizesmay be prohibitively difficult due to cost
or time constraints (e.g. the study of rare diseases), and
therefore causal inference from purely observational data
is even more mandated as in other scientific areas. In the
simulation study, balanced sample sizes are investigated
because often, there is data available for each variable in
the DAG for each study participant. However, the situ-
ation of missing data could additionally induce bias and
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Table 2 Simulation settings for colliders (Fig. 4)

Setting α β γ

Balanced 0.25 0.25 0.25

Balanced 0.5 0.5 0.25

Balanced 1.0 1.0 0.25

Balanced 0.25 0.25 0.5

Balanced 0.5 0.5 0.5

Balanced 1.0 1.0 0.5

Balanced 0.25 0.25 1.0

Balanced 0.5 0.5 1.0

Balanced 1.0 1.0 1.0

Unbalanced 1/3 2/3 0.25

Unbalanced 2/3 1/3 0.25

Unbalanced 1/3 2/3 0.5

Unbalanced 2/3 1/3 0.5

Unbalanced 1/3 2/3 1.0

Unbalanced 2/3 1/3 1.0

Unbalanced 0.1 0.9 0.25

Unbalanced 0.9 0.1 0.25

Unbalanced 0.1 0.9 0.5

Unbalanced 0.9 0.1 0.5

Unbalanced 0.1 0.9 1.0

Unbalanced 0.9 0.1 1.0

increase the false-positive risk, but this analysis is outside
the scope of the current paper.

Simulation design
Throughout all simulations Gaussian linear models are
assumed and it is further supposed that data have been
standardized to z-scores, that is, X,Y ,C,C in Figs. 3 to
4 are distributed as N (0, 1), standard normal. For exam-
ple, X could measure the methotrexate dose in milligrams
a patient with rheumatoid arthritis (RA) administers
weekly, Y could be the corresponding rheumatoid factor
in a blood sample taken at a fixed time after treatment, C
could be the physical activity measured in minutes andW
could be additional cryotherapy interventions (also mea-
sured in minutes). Standardizing all of these units yields
X,Y ,C,W ∼ N (0, 1), and while this may be a some-
what simplifying assumption it allows to separate between
the influence of different marginal distributions for the
variables corresponding to a node in the DAG and the
effect of violations of testable implications, the magnitude
of the underlying structural coefficients and the influ-
ence of sample size. It is well known that distributional
differences can severely influence traditional type I or II
error rates (and even Bayesian error rates) in statistical

hypothesis testing [22, 41], so using z-scores is a reason-
able assumption. Also, we assume standard normal error
terms UX ,UY ,UC ,UM in the structural equations.
In the simulation study, Monte Carlo estimates for the

causal false-positive risk under each of the settings out-
lined above are produced as the number of simulations
with at least one violation of a testable implication of the
underlying model divided by the total number of simu-
lations for the model. For each model, confounders and
colliders, n = 10000 Monte Carlo simulations are run
for sample sizes ranging from n = 10 to n = 100 for
each of the structural coefficient settings for α,β , γ , δ, ε
detailed above. Convergence to the posterior distribution
in a Bayesian analysis is important, and the latter was
checked via the Gelman-Rubin shrink factor [36, 42] and
the effective sample size [43]. In all simulations which
were conducted, no model fit via the Hamiltonian Monte
Carlo sampler Stan [36, 44] showed problems in con-
verging to the posterior based on these two convergence
diagnostics2.
A testable implication was defined to be violated when

the Bayes factor in favour (or against) the correspond-
ing hypothesis (depending on the testable implication)
passes the threshold 1. For example, the testable impli-
cation βYX|C = 0 in Eq. (15) is violated when the Bayes
factor BF01 in favour of H0 : βYX|C = 0 and against
H1 : βYX|C �= 0 is smaller than 1. Thus, the perspective
of a hard-nosed sceptic is taken who posits his structural
causal model as a possible explanation of the underlying
data-generating process, but who will readily modify the
model when contradictions to the testable implications of
the posited model arise. In the Bayesian regression mod-
els, a non-informative standard normal prior is assigned
to each regression coefficient β , which amounts to fre-
quentist ridge regression, compare Hastie, Tibshirani and
Wainwright [45]. Using such priors is equivalent to fre-
quentist ridge-regression, and also controls for the rate of
false-positive results, compare Gelman et al. [37].
Next to the Monte Carlo estimates for the causal

false-positive risk, estimates for the average causal effect
ACE(X,Y ) of X on Y as well as the direct and indirect
effect DE(X,Y ) and IE(X,Y ) are produced. The esti-
mands depend on possible violations of the corresponding
testable implications of each model and the detailed mod-
ifications of the true DAG in each case. When no testable
implications are violated by means of a hypothesis test,
the correct estimands are used. The resultingMonte Carlo
estimates are thus biased and provide insights how reli-
able causal effect estimates are given the risk of incorrectly
modifying the true causal model.

2Compare the provided replication scripts. All results and figures can be
reproduced via the replication script at the Open Science Foundation under
https://osf.io/fmqjz/?view_only=719c493588d5406394c8f393d3b16249.

https://osf.io/fmqjz/?view_only=719c493588d5406394c8f393d3b16249
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Fig. 7 ACE(X,Y) estimates for the balanced confounder situation in Fig. 3 based on the simulation results

Discussion
Confounders
Figure 7 shows the resulting average causal effect esti-
mates based on the simulations under α = 0.25 and α =
0.5. Importantly, from the earlier analysis it follows that
the average causal effect ACE(X,Y) and the direct effect
DE(X,Y) are always equal, and also IE(X,Y) is always zero,
nomatter whether a testable implication is violated or not.
Thus, as a consquence a separate analysis for the indi-
rect effect IE(X,Y) is not necessary, compare Lemma 1 and
Table 1 in the Supplementary file, as well as Eq. (11), and
all results for ACE(X,Y) apply also to DE(X,Y), compare
Eqs. (9) and (11).
From Fig. 7a it can be observed that the stronger the

effect of balanced confounding, the larger the induced bias
on the average causal effect ACE(X,Y). For example, for
β = γ = 0.125 (red line) the average causal effect is reli-
ably estimated for even moderate sample size. Shifting to
balanced confounding β = γ = 0.25, the situation is
similar, but increasing the balanced confounding to strong
or very strong influence (blue and skyblue lines) shows
that the average causal effect ACE(X,Y) becomes biased

more and more. For β = γ = 1 even n = 100 sam-
ples for all three observable variables X,Y and C do not
suffice to produce a reliable estimate: The Monte Carlo
estimate for ACE(X,Y) in this case yields ACE(X,Y) ≈
0.21 which equals about 20% bias compared to the true
ACE(X,Y) = α = 0.25. As a comparison, Fig. 7b shows
the same situation for α = 0.5, where the treatment X
has a much stronger causal effect on the outcome Y. The
bias introduced by confounding then reduces substantially
for identical values of β and γ under balanced confound-
ing. However, it is obvious that when β and γ increase
together with α, the situation of Fig. 7a will be recovered
again. Figure 8 shows the resulting causal false-positive
risk of the confounder simulations. Figure 8a shows the
results under α = 0.25, and these show that the weaker
the effect of confounding, the larger the resulting false-
positive rate. Thus, when β = γ = 0.125 (red line),
nearly all analyses yield an error and reject the true model.
Increasing the effect of balanced confounding over β =
γ = 0.25 to β = γ = 1.0 shows that the causal false-
positive risk decreases accordingly. This is to be expected
because the weaker any relationship between two observ-

Fig. 8 Causal false-positive risk estimates for the balanced confounder situation in Fig. 3 based on the simulation results
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able variables in the DAG in Fig. 3, the more likely it is to
commit a type I error and reject the true data-generating
model. However, comparison of Figs. 7a and 8a shows that
a smaller false-positive rate does not necessarily imply that
the effect estimates for the average causal effect ACE(X,Y)
are less biased. The situation of very strong confound-
ing β = γ = 1 yields the largest bias in Fig. 7a but
the smallest false-positive rate in Fig. 8a as shown by the
skyblue solid line. The reason is that strong confounding
(that is, the larger magnitude of the structural coefficients
β and γ ) may allow to identify the confounder model in
Fig. 3 more reliably, but the average causal effect esti-
mate ACE(X,Y) still is biased more than in any other
setting, because whenever the strong confounding sit-
uation is not detected the difference between the true
ACE(X,Y) = βYX|C and the falsely calculated ACE(X,Y)
(either ACE(X,Y) = 0 or ACE(X,Y) = βYX , compare
the section on testable implications and graph modifica-
tions) is substantial. As a consequence, these (rare) cases
where strong or very strong confounding is not discov-
ered bias the resulting ACE(X,Y) estimate which in turn
shrinks the Monte Carlo estimate for ACE(X,Y) shown
in Fig. 7a.
Figure 7b confirms this observation: Although the false-

positive rate for larger α = 0.5 decreases even more
quickly for identical sample size, this does not allow to
infer that the corresponding ACE(X,Y) estimates are less
biased, compare Fig. 7b.
Turning to the situation of unbalanced confounding,

Figure 9 shows the resulting ACE(X,Y) estimates under
α = 0.25 and α = 0.5. Now, Fig. 9a shows that unbalanced
confounding can also bias the resulting average causal
effect estimates. For example, while for β = 1/3, γ = 0.75
(solid black line) or β = 0.75, γ = 1/3 (dashed black
line) the resulting ACE(X,Y) estimates become approxi-
mately unbiased for a sample size of 100 samples for each
observable variable X,Y and C, stronger imbalance can
yield stronger bias: For β = 0.1, γ = 0.9 (dashed blue

line) the resulting ACE(X,Y)Monte Carlo estimate for this
sample size is ACE(X,Y) = 0.30, which is 20% off the true
ACE(X,Y) = 0.25 shown as the horizontal dashed blue
line. The situation for β = 0.9, γ = 0.1 is similar although
not as strongly biased as for the setting β = 0.1, γ =
0.9. This difference can be attributed to the influence of
specific values of β and γ on the occurrence of any viola-
tions of the testable implications of the confounder model
as analyzed in detail in the section on testable implica-
tions and graph modifications (compare Supplementary
file, in particular Table 1). Conceptually, changing β and
γ changes the distribution of falsely applied DAG mod-
ifications in the long-term, which in turn influences the
bias on the ACE(X,Y) estimates. The same phenomenon is
observed in Fig. 9b where again β = 0.1, γ = 0.9 (dashed
blue line) yields the largest bias, although the bias now is
considerably less severe because α = 0.5. This can also
be explained by the fact that the worst case scenario in
Fig. 3 corresponds to questioning the arrow X → Y , that
is, questioning the direct effect of treatment X on out-
come Y.Whenever this testable implication is violated, the
induced bias is extreme, which will happen with less prob-
ability when α grows. As a consequence, the bias in Fig. 9b
is considerably smaller than in Fig. 9a as was already the
case in Fig. 7a and b.
The causal false-positive risk under unbalanced con-

founding are shown in Fig. 10a and b. Interestingly, in
the unbalanced setting a smaller false-positive rate seems
to be associated with smaller bias in the corresponding
ACE(X,Y) estimates: The black lines which correspond to
more balanced situations yield smaller false-positive rates,
and also less bias when α = 0.25. However, switching to
α = 0.5 shows that it is in general not possible to relate
the bias and false-positive risk in such a way, as e.g. the
solid blue line in Fig. 9b shows that less bias is induced
by β = 0.9, γ = 0.1 than for the more balanced settings,
although the corresponding false-positive rate in Fig. 10b
is much higher.

Fig. 9 ACE(X,Y) estimates for the unbalanced confounder situation in Fig. 3 based on the simulation results
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Fig. 10 Causal false-positive risk estimates for the unbalanced confounder situation in Fig. 3 based on the simulation results

Colliders
The results for the collider setting in Fig. 4 are shown in
Figs. 11, 12 and 13. Figure 11a shows the Monte Carlo
estimates for the average causal effect ACE(X,Y) of treat-
ment X on outcome Y and evidently, there is strong bias
in almost every simulation setting. This is also reflected
in Fig. 11b which shows the ratio of the Monte Carlo esti-
mates and true ACE(X,Y) for each setting. Consequently,
the ACE(X,Y) is estimated nearly unbiased when the cor-
responding line comes close to the horizontal blue line
at the ratio 1, which holds only for the three settings
where two coefficients have magnitude of 1 (dotted yel-
low and blue lines) or all three coefficients magnitude of
0.5 (dashed blue line), with the latter setting exhibiting a
slightly stronger bias. All other settings suffer from much
stronger bias.

Figure 12a and b show the simulation results for the
direct causal effects and causal false-positive risk for bal-
anced colliders. Based on Fig. 12a, the true direct effect
DE(X,Y) = 0 is identified correctly for large enough
sample size in any setting, although larger structural coef-
ficients imply larger bias which again shows that a larger
magnitude of structural coefficients may not have a direct
relationship to the induced bias. While it is often per-
ceived that such stronger relationships are easier to iden-
tify, the bias on the causal effects may be much higher
than for more moderate magnitudes. That is, the induced
bias is not (negatively) proportional to the magnitude of
structural coefficients. This is reflected for example in the
green dotted and dashed lines in Fig. 12a which corre-
spond to the largest structural coefficients but also induce
the strongest bias on DE(X,Y). Inspecting the causal false-

Fig. 11 Average causal effects of treatment X on outcome Y for balanced colliders
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Fig. 12 Direct causal effects of treatment X on outcome Y and the causal false-positive risk for balanced colliders

positive risk in Fig. 12b shows that the magnitude of struc-
tural coefficients α,β and γ , however, relates directly to
the associated false-positive risk. The dotted yellow and
blue lines and the dashed blue line correspond to the
largest structural coefficients and imply the smallest false-
positive risk. The probability to reject the true DAG for
these settings is thus smallest among all settings. The
weaker the relationship between the observable variables,
the higher the false-positive risk. For balanced colliders,

the causal false-positive risk is thus a direct indicator of
the presence (not the magnitude) of bias on the average
causal, direct and indirect causal effects.
Figure 13a and b confirm this phenomenon, as the situa-

tion for the indirect causal effects is similar to the situation
for the average causal effects in Fig. 11a and b.
Turning to the situation of unbalanced colliders, two

phenomena can be observed. First, all settings with α =
0.1 (solid yellow, orange and red lines) yield the strongest

Fig. 13 Indirect causal effects of treatment X on outcome Y for balanced colliders
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Fig. 14 Average causal effects of treatment X on outcome Y for unbalanced colliders

bias as shown by the ratio of Monte Carlo estimates for
ACE(X,Y) and true ACE(X,Y) in Fig. 14b, compare also
Fig. 14a. Note that this is not simply because for α = 0.1,
the probability of deleting the arrow X → C is largest
in Fig. 4, which in turn implies that ACE(X,Y) vanishes
entirely. In fact, from Fig. 14b it becomes clear that even
for α = 0.9,β = 0.1, γ = 1.0 (green dashed line), the
induced bias on ACE(X,Y) is comparable and larger than
in all other settings except for the setting α = 0.1,β =

0.9, γ = 1.0 (solid green line). Thus, imbalance can func-
tion as a catalyst for the induced bias on the average causal
effect in collider settings. Second, Fig. 14b shows that
for the most balanced settings (blue and black solid and
dashed lines) the bias is weakest among all settings.
Shifting to the direct causal effects of unbalanced col-

liders, Fig. 15a and b shows the same phenomenon as
for balanced colliders. The direct causal effect DE(X,Y) is
revealed correctly but larger imbalance implies larger bias

Fig. 15 Direct causal effects of treatment X on outcome Y and the causal false-positive risk for unbalanced colliders
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here, too. Also, Fig. 15b shows that the larger the imbal-
ance, the larger the causal false-positive risk: The dashed
and solid blue lines correspond to the most balanced
setting, yielding the smallest error rates. The dashed and
solid black lines correspond to the second-most balanced
setting, yielding slightly larger error rates. The same holds
in turn for the skyblue dashed and solid lines, and the
green, orange and red lines are the most imbalanced col-
lider settings, being associated with the largest probability
to incorrectly reject the true causal model.
Figure 16a and b confirm the phenomena observed

already in Fig. 14a and b for the average causal effects
ACE(X,Y) for the indirect causal effects IE(X,Y).

Conclusions
Causal inference has become an important methodology
in medical research, in particular, when a randomized
controlled trial is not possible. Even when randomiza-
tion is possible, estimation of direct and indirect effects is
crucial in the presence of confounders or colliders. Qual-
itative causal assumptions – often expressed as a directed
acyclic graph (DAG) – and experimental or even non-
experimental data can yield quantitative causal inferences
in such settings. However, although the identification and
calculation of structural coefficients in such models has
received much attention, a key premise for valid causal
inference is that conclusions are drawn based on the true
data-generating model.
By now, it remained widely unknown how large the

probability is to reject the true structural causal model
after observational data from it is recorded. The latter

probability – the causal false-positive risk – is crucial,
since rejecting the true causal model can lead to bias in
the estimation of structural coefficients and causal effects,
thus producing false causal conclusions. In this paper, the
building blocks of structural causal models were stud-
ied regarding their associated causal false-positive risk.
A simulation study was carried out which investigated
the probability that elementary causal structures such as
confounders and colliders in a DAG are misclassified.
Therefore, the testable implications of the DAG were ana-
lyzed and the corresponding modifications derived based
on available theory of directed acyclic graphs.
Results showed that the false-positive risk of rejecting a

true but simple causal model like confounders or colliders
is substantial. The probability to falsely reject even a sim-
ple causal model turned out to be substantial in all sim-
ulations. Importantly, estimation of average causal effects
can become biased quickly if a true model is rejected (for
the case of balanced confounders, see Fig. 7, for the case
of balanced colliders, see Fig. 11). While this already holds
in the balanced settings, introducing imbalance – which
is more realistic in practice – even works as a catalyst on
the induced biases (compare the analysis in the previous
section). For direct and indirect causal effects, the same
applies: For balanced confounders, the direct effect and
average causal effect coincide even if the true causal model
is falsely rejected, and thus the bias on DE(X,Y) equals the
bias on ACE(X,Y). Adding imbalance to the confounding
mechanism, the bias can increase (compare Fig. 9a). For
the direct and indirect causal effects in the collider model,
substantial bias was strongly correlated with a high false-

Fig. 16 Indirect causal effects of treatment X on outcome Y for unbalanced colliders
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positive risk (compare Figs. 12 and 13), as was already
the case for the average causal effects (compare Fig. 11).
Additional imbalance here also functioned as a catalyst
which drove up the induced bias as shown in Figs. 14, 15
and 16. Importantly, a high false-positive risk is strongly
correlated with large bias on the causal effect estimates.
The latter fact is natural since rejecting the true struc-
tural causal model often (but not always) amounts to an
incorrect modification based on the observed violation of
a testable implication of the model. The according change
in the estimands for the average, direct and indirect causal
effects can thus induce bias on the resulting estimates.
This is different to the situation of a confounder, where a
larger false-positive risk could not be equated with a larger
induced bias.
However, there are also limitations of the results pre-

sented herein. First, linear Markovian models are not
appropriate in every situation, and semi-Markovian mod-
els may be more realistic in a variety of cases, allowing
for correlated error terms among the observable variables.
Furthermore, the causal false-positive risk decreases to
zero whenever the association between variables is strong
enough. Still, in the biomedical and cognitive sciences
small to medium effect sizes are the norm rather the
exception – compare Aarts et al. [46]. Third, Bayesian
analysis of the testable implications is associated with the
priors on the regression coefficients. However, as the same
weakly-informative priors were chosen in all situations,
results are comparable [11, 36]. These priors also con-
trol for false-positive results, compare Gelman et al. [37].
Also, for increasing sample size the influence of the prior
becomes negligible, and the results showed that even for
sample sizes of 100 observations per observable variable in
the causal model, the false-positive risk often stays above
50%, yielding a substantial probability to reject the true
causal model. As a consequence, the results presented in
this paper can also be perceived as a kind of causal power
analysis for simple confounder and collider settings, which
shows that to reliable identify the true causal model, sam-
ple sizes of 100 are not enough in observational studies.
This is insofar important, as obtaining large sample sizes
often is difficult in medical research, e.g. in the study of
rare diseases.
Fourth, next to the influence of the prior distribution

in a Bayesian analysis the choice of the statistical evi-
dence measure to test a hypothesis in form of a testable
implication is relevant. As discussed in the section about
the statistical analysis of the testable implications, the
Bayes factor which was used in the simulations is one
of the most widely established approaches to hypothe-
sis testing in medical research, but there are alternatives.
Future research should study whether the same conclu-
sions can be drawn regarding the causal false-positive
risk and the induced bias when a different approach

to Bayesian hypothesis testing is taken. Importantly, the
results obtained here hold only when using the Bayes
factor for testing the testable implications.
An interesting extension of the current work would be

to study other important causal models regarding their
associated causal false-positive risk, such as mediators
or confounded mediators. However, obtaining theoretical
results such as Lemmas 1 or 2 becomes necessarily more
complicated in more complex structural causal mod-
els, because the number of testable implications quickly
becomes large.
In sum, while the identification of structural coeffi-

cients and testable implications in causal inference have
been studied rigorously in the literature, the results of this
paper show that causal inference also must develop new
concepts for controlling the causal false-positive risk, as
the latter often is strongly correlated with the induced
bias on the estimated average, direct and indirect causal
effects (of a treatment X on outcome Y ). Although a high
false-positive risk cannot be equated with a substantial
bias by theoretical means by now, the latter fact calls for
the development of new and more elaborate risk mea-
sures for wrongly rejecting the true causal model in causal
inference.
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