

Reliable, Energy-Efficient and
Temporally Predictable Time-Triggered
Hybrid TSN Systems Combing Wireless

and Wirebound Networks

DISSERTATION

zur Erlangung des Grades eines Doktors

der Ingenieurwissenschaften (Dr.-Ing.)

vorgelegt von

Haytham Baniabdelghany

eingereicht bei der Naturwissenschaftlich-Technischen Fakultät

der Universität Siegen

Siegen 2023

Betreuer und erster Gutachter

Prof. Dr.-Ing. Roman Obermaisser

Universität Siegen

Zweiter Gutachter

Prof. Dr. Wilfried Elmenreich

Alpen-Adria-Universität

Klagenfurt

Tag der mündlichen Prüfung
31. Januar 2023

Printed and published with the support of the German Academic Exchange Service

Acknowledgements
I would like to express my special appreciation and thanks to my advisor Professor

Dr.Roman Obermaisser, who has been a tremendous mentor for me. I would like to thank
him for encouraging my research and for allowing me to grow as a research scientist. His
guidance on both research as well as on my career has been priceless. I would like also to
thank Dr.Ala Khalifeh for his support during my research period.

Special thanks to my parents and my family for their endless love and support through-
out my life. To all my friends and colleagues thank you for your motivation and encourage-
ment.

i

Zusammenfassung
Hybride Netze kombinieren kabelgebundene und drahtlose Technologien und werden gegen-
wärtig in großem Umfang in Automatisierungssystemen, intelligenten Städten und Home-
Area-Networks eingesetzt. Einerseits bieten kabelgebundene Netze aufgrund der Stabil-
ität der Topologie und einer geringeren Wahrscheinlichkeit von Paketverlusten eine höhere
Zuverlässigkeit und Leistung. Andererseits bieten drahtlose Netze im Vergleich zu kabelge-
bundenen Infrastrukturen eine größere Flexibilität und sind weniger kostspielig. In jüngster
Zeit haben viele Systeme hybride Netze für Anwendungen mit Echtzeit- und Sicherheit-
sanforderungen vorgeschlagen. Die Arbeitsgruppe für TSN (Time-Sensitive Networking)
hat eine Reihe von IEEE 802.1-Unterprotokollen für drahtgebundene Ethernet-Netze einge-
führt um eine fehlertolerante und deterministische Kommunikationsinfrastruktur anzubi-
eten. Die Abbildung der Konzepte von TSN auf drahtlose Umgebungen erfordert jedoch
die Berücksichtigung der dynamischen Topologie, Signalstörungen, Zuverlässigkeit und
des Datenübertragungsverhaltens. Deshalb erweiterte diese Arbeit die TSN-Fähigkeiten auf
hybride (drahtlose und drahtgebundene) Systeme. Das hybride TSN-fähige Netz kann auf
verschiedene Architekturen angewendet und modifiziert werden, um weitere von der TSN-
Arbeitsgruppe eingeführte Unterstandards zu integrieren. Dadurch können verschiedene
TSN-Merkmale wie Taktsynchronisierung, zeitabhängige Formgebung und fehlertolerante
Nachrichtenübermittlung über Knoten in einem hybriden System implementiert werden.

Diese Arbeit befasst sich mit Echtzeitsystemen, bei denen verteilte Rechen- und Kommu-
nikationsaktivitäten über eine globale Zeitbasis koordiniert werden. Daher wird in dieser
Arbeit eine Erweiterung des Standard-Zeitprotokolls (d.h. IEEE 802.1AS) für hybride TSN-
Systeme vorgeschlagen um die Güte der Uhrensynchronisation zu verbessern. Das erweit-
erte Protokoll berücksichtigt die deterministischen Verzögerungen und Taktdrift, so dass
die Genauigkeit der Taktsynchronisation des Standards 802.1AS erheblich verbessert wird.
Außerdem wird das Problem der asymmetrischen Verzögerungen bei der Übertragung der
Zeitpakete berücksichtigt, um dynamischen Kommunikationseinstellungen mit mobilen Kn-
oten Rechnung zu tragen. Zur Überwachung des Verkehrsverhaltens von Zeitpaketen und
der Ausreißerwerte, die aufgrund dynamischer und asymmetrischer Ereignisse auftreten
können, wird ein Path Deviation Delay (PDD)-Filter bereitgestellt. Die Simulationsergeb-
nisse zeigen, dass das erweiterte Protokoll die Synchronisationsgenauigkeit im Vergleich
zum 802.1AS-Standard auf unter eine Mikrosekunde verbessert. Im Gegensatz dazu steigt
der Synchronisationsfehler mit dem Standardprotokoll stark an, wenn asymmetrische Verzö-
gerungsverhältnisse und Szenarien mit mobilen Knoten vorhanden sind.

Wenn alle Knoten in einem hybriden TSN-Netz mit einer globalen Zeitbasis synchro-
nisiert sind, müssen die Aufgaben einer Echtzeitanwendung an drahtlose Hosts geplant
und ihre übertragenen Nachrichten so geplant werden, dass alle Echtzeitanforderungen er-
füllt werden. Das Problem der Task- und Nachrichtenplanung ist besonders in drahtlosen
Systemen eine Herausforderung, da die räumliche und zeitliche Verteilung der abhängigen
Tasks an die drahtlosen Hosts die Nebenbedingungen erfüllen und den Energieverbrauch
minimieren muss. Die gegenseitige Störung zwischen den Signalen muss abhängig von den
Nachrichtenübertragungszeiten und der räumlichen Nähe ebenfalls berücksichtigt werden.
Interferenzen können den Empfang verhindern, Signale verfälschen und die Signalqual-
ität beeinträchtigen. Daher konzentriert sich diese Arbeit auf die Planung von Tasks und
Nachrichten in drahtlosen Echtzeitsystemen.

Die meisten der bisherigen Planungsalgorithmen für drahtlose Netze berücksichtigen
entweder die Perspektive der Einsparung von Netzressourcen, Einschränkungen bei der
Weiterleitung von Nachrichten oder die Auswirkungen von Störungen. Um neben der

ii

Taskplanung auch die Interferenzen und Routing-Beschränkungen für die Nachrichtenpla-
nung zu berücksichtigen, wurde ein neuer Algorithmus zur Task- und Nachrichtenplanung
namens Task and Message Scheduling for Wireless Networks (TMS) vorgeschlagen. In
diesem Algorithmus werden für die zeitgesteuerten Nachrichten der Berechnungsaufgaben
die optimalen Routen mit minimaler Interferenz verwendet. Darüber hinaus wird jede
Nachricht fragmentiert und mehreren Zeitschlitzen zugeordnet. In jedem Zeitschlitz kön-
nen Nachrichten gleichzeitig übertragen werden, indem ein physikalisches Interferenzmod-
ell verwendet wird. TMS unterstützt die Multi-Cast-Kommunikation unter Berücksichti-
gung der Präzedenzbedingungen zwischen Berechnungsaufgaben mit Zeitbeschränkungen.
Zur Bewertung des vorgeschlagenen Algorithmus werden mehrere Algorithmen mit un-
terschiedlichen Routing-Strategien implementiert. Die experimentellen Ergebnisse zeigen,
dass TMS in den Simulationstests besser abschneidet als Lösungen aus verwandten Ar-
beiten. Dies betrifft die Echtzeitfähigkeit, die verbrauchte Energie, Fehlerraten und Ausfälle.
Außerdem wird in den Experimenten festgestellt, dass die Änderung der Parameter des ver-
wendeten Interferenzmodells die Leistung der verglichenen Algorithmen beeinflusst.

Die nahtlose Wiederherstellung von korrektem Verhalten bei Fehlern ist ein weiterer kri-
tischer Punkt für Echtzeit- und zeitempfindliche Systeme. Daher werden in dieser Arbeit Al-
gorithmen auf der Grundlage des TMS vorgestellt, welche eine Nachrichtenreplikation über
redundante Routen unterstützen. Es werden zwei zuverlässige Algorithmen vorgestellt,
welche als Reliable Task and Message Scheduling for Wireless Networks (R-TMS) und Op-
timized Reliable Task and Message Scheduling for wireless networks (OR-TMS) bezeichnet
werden. OR-TMS verwendet einen bioinspirierten Optimierungsalgorithmus um bessere
Lösungen zu finden. Die vorgeschlagenen zuverlässigen Algorithmen verwenden einen
Ansatz namens Frame Replication and Elimination for Reliability (FRER) um die Kommu-
nikationsnachrichten über redundante disjunkte Routen zu replizieren.

Bei R-TMS wird die Systemzuverlässigkeit durch die Planung von Tasks in drahtlosen
Hosts verbessert. Dabei werden die Ankunftszeit der Nachrichten, der Energieverbrauch
und die Ausfallraten optimiert. Es wird auch ein Zuverlässigkeitsmodell eingeführt, um die
Zuverlässigkeit des Systems zu bestimmen. Das Zuverlässigkeitsmodell berechnet die Zu-
verlässigkeit jedes Tasks in Abhängigkeit von der Zuverlässigkeit aller eingehenden Nachri-
chten. Die Zuverlässigkeit eines Tasks, der keine Nachrichten weiterleitet, stellt die glob-
ale Zuverlässigkeit des Gesamtsystems dar. R-TMS wird mit Algorithmen aus verwandten
Arbeiten verglichen, welche die kürzesten oder lastabhängigen Routen zum Senden von
Nachrichten verwenden oder die Aufgaben auf Hosts verteilen, welche die geringste Bere-
itschaftszeit haben. Die experimentellen Ergebnisse zeigen, dass die Zuverlässigkeit des
von R-TMS berechneten Systems im Vergleich zu anderen Algorithmen verbessert wird
und gleichzeitig die Skalierbarkeit des Netzentwurfs und die Aktualität gewährleistet ist.
Die Auswirkungen von Verbindungsfehlern auf die Nachrichtenübermittlungsrate werden
ebenfalls untersucht.

Der OR-TMS-Algorithmus basiert auf der diskreten Partikelschwarmoptimierung (DPSO),
wobei eine Nutzenfunktion zur Optimierung des Task- und Nachrichtenplanungsproblems
aufgestellt wird. Es wird iterativ versucht eine bessere Lösung zu finden. Die Nutzenfunk-
tion unterstützt die Energieeinsparung, Verringerung der Aufgabenerledigungszeit und die
Senkung der Fehlerquote. Ein Lastenausgleichsmechanismus wird angewendet, um die
Aufteilung der Tasks auf mehrere Hosts zu verbessern. Analyse und Simulationsergebnisse
zeigen, dass OR-TMS die Echtzeitfähigkeit, die Zuverlässigkeit und die Energieeffizienz op-
timiert.

iii

Abstract

At the present time, there is widespread deployment of hybrid networks including wired
(e.g., Ethernet networks) and wireless technologies, especially in automation systems, smart
cities and home area networks. On the one hand, due to topology stability and a lower
chance of packet loss, wired networks provide improved reliability and performance. On
the other hand, compared to wired infrastructure, wireless networks offer greater flexibility
and are less expensive. Recently, many systems have introduced hybrid networks in appli-
cations with real-time and safety requirements. The Time-Sensitive Networking (TSN) task
group introduced for wirebound Ethernet networks a series of IEEE 802.1 sub-protocols to
offer a fault-tolerant and deterministic communication infrastructure. Mapping the concepts
of TSN to wireless environments requires taking into account the dynamic topology, signal
interference, reliability and data transmission behaviour. Therefore, this thesis extends the
TSN capabilities over hybrid (wireless and wirebound) systems. The hybrid TSN-enabled
network can be applied to different architectural designs and it can be modified to incor-
porate further sub-standards introduced by the TSN task group. Thereby, different TSN
features including clock synchronization, time-aware shaping, and fault-tolerant message
delivery can be implemented over nodes in a hybrid system.

This thesis focuses on real-time systems, where distributed computational and commu-
nication activities are coordinated using a global time base. Therefore, this work firstly
proposes an extension of the standard time protocol (i.e. IEEE 802.1AS) for hybrid TSN
systems to improve the clock synchronization. The extended protocol considers the deter-
ministic delays and the clock drift, and the precision of the clock synchronization of the
standard 802.1AS scheme is significantly improved. Furthermore, the issue of asymmetrical
delays in the transmission of the timing packets is also taken into consideration in order to
accommodate dynamic communication settings with mobile nodes. In order to monitor the
traffic behavior of timing packets and to reject outlier values that may appear as a result
of dynamic and asymmetric events, a Path Deviation Delay (PDD) filter is provided. The
simulation results demonstrate that, in comparison to the standard 802.1AS protocol, the
extended protocol increases the synchronization precision. The outcomes further demon-
strate that it improves synchronization precision to under 1 microsecond. In contrast, when
asymmetric delay ratios and mobile node scenarios are present, the synchronization error
with the standard protocol greatly rises.

When all nodes in a hybrid TSN network are precisely synchronized with a global time-
base, the tasks of a real-time application have to be scheduled to wireless hosts and their
transmitted messages have to be scheduled in a manner that all real-time constraints are
fulfilled. The task and message scheduling problem is challenging particularly in wireless
systems because the spatial and temporal distribution of dependent tasks to wireless hosts
must satisfy the precedence constraints and minimize energy consumption. The mutual in-
terference between signals must be also considered depending on the message transmission
intervals and the spatial proximity. Interference may prevent reception, cause the corrup-
tion of signals or affect the signal quality. Therefore, this thesis focuses on task scheduling
and message scheduling in real-time wireless systems.

Most of prior scheduling algorithms for wireless networks consider either the perspec-
tive of saving-network resources, routing message restrictions, or the impact of interference.
Therefore, to address the interference and routing restrictions for the message scheduling
besides the task scheduling, a novel task and message scheduling algorithm named Task
and Message Scheduling for wireless networks (TMS) is proposed. In this algorithm, Time-
Triggered (TT) messages of the computational tasks use the optimal routes with minimum

iv

latency from all available routes. In addition, each message is fragmented and assigned to
several time-slots. In each time-slot, messages can be transmitted simultaneously by using
a physical interference model. TMS supports multi-cast communication while respecting
the precedence constraints between computation tasks and period constraints. To evaluate
the proposed algorithm, several algorithms that use different routing strategies are imple-
mented. The experimental results show that TMS outperforms solutions from the related
work in the simulation tests, where makespan, consumed energy, failure rate and deadline
missing cases are used as metrics. Moreover, in experiments, it is observed that changing
the parameters of the used interference model affects the performance of the compared al-
gorithms.

The seamless recovery from faulty behaviours is a critical issue for real-time and time-
sensitive systems. Therefore, this thesis presents algorithms on top of the TMS to incor-
porate message replication over selected redundant routes to avoid any potential link or
node failure. Two reliable algorithms are presented, the first one named Reliable Task and
Message Scheduling for wireless networks algorithm (R-TMS), the second one uses a bio-
inspired optimization algorithm to find better solutions, which is named Optimized Reliable
Task and Message Scheduling for wireless networks algorithm (OR-TMS). The proposed re-
liable algorithms use an approach called Frame Replication and Elimination for Reliability
(FRER) to replicate the communication messages through redundant disjoint routes.

In R-TMS, the system reliability is improved through scheduling tasks to wireless hosts
with high performance in terms of message arrival time, energy consumption and failure
rate. A reliability model is also introduced to determine the reliability of the system. The
reliability model computes the reliability of each task depending on the reliability of all its
incoming messages. The reliability of the leaf task, which has no forwarding messages,
presents the global reliability of the overall system. R-TMS is compared with state-of-the-art
TT algorithms that use the shortest or load-aware routes to send messages or that schedule
the tasks to hosts that have the minimum ready-time. The experimental results show that the
reliability of the system computed by R-TMS is improved compared to the other algorithms
while also ensuring scalability in the network design and timeliness. The impact of the
injected link failures on the message delivery ratio is also studied.

The Discrete Particle Swarm Optimization (DPSO) algorithm, on which OR-TMS is based,
establishes a utility function for optimizing the task and message scheduling problem by try-
ing to find a better solution iteratively. The defined function is created to achieve objectives
like energy conservation, reducing task completion time, and lowering failure rates. A load
balance mechanism is applied to improve balancing of the tasks on several hosts. Analysis
and simulation results show the optimization of OR-TMS timeliness, deadline miss ratio,
failure rates and energy efficiency compared it to prior algorithms that schedule tasks to
hosts that produce the minimum completion time.

v

Contents

Acknowledgements i

Zusammenfassung ii

Abstract iv

1 Introduction 1
1.1 Context and Motivation . 1
1.2 Thesis Objectives and Contributions . 2
1.3 Thesis Structure . 5

2 Related Work and Research Gap 7
2.1 Requirements for Hybrid TSN Networks . 7
2.2 Related Work . 8

2.2.1 Related Work on Guarantees for End-to-End Delay and Energy-saving 8
2.2.2 Related Work on Interference-Aware Message Scheduling 9
2.2.3 Related Work on the Time Synchronization of Distributed Clocks . . . 10
2.2.4 Related Work on the Task Scheduling Schemes 12
2.2.5 Related Work on the Fault-tolerant Task Scheduling Schemes 14

2.3 Research Gap . 15
2.3.1 Comparison of the Extended IEEE 802.1AS that Addressed the Time

Synchronization with Prior Work . 16
2.3.2 Comparison of TMS, R-TMS and OR-TMS that Address the Task and

Message Scheduling with Prior Work 18

3 Background Theory 21
3.1 Real-time Systems . 21
3.2 Distributed Real-Time Systems . 22
3.3 Time-Triggered and Event-Triggered Embedded Systems 23
3.4 Dependability . 24

3.4.1 Threats: Faults, Errors and Failures . 24
3.4.2 The Means to Obtain Dependability . 26

3.5 Techniques for Fault Tolerance in Critical Systems 27
3.5.1 Fault Hypothesis . 27
3.5.2 Error Detection and Correction Codes 27
3.5.3 Damage Confinement . 28
3.5.4 Error Recovery . 28
3.5.5 Fault Treatment . 28
3.5.6 Redundancy of Computing Systems . 28

Hardware Redundancy . 28
Software Redundancy . 32
Time Redundancy . 32
Information Redundancy . 33

vi

3.6 NTP vs PTP Timing Protocols . 33
3.6.1 Source Selection . 34
3.6.2 Synchronization Process in NTP . 34
3.6.3 Synchronization Process in PTP . 35
3.6.4 Asymmetry in the Measured Delay . 36
3.6.5 Clock Drift . 37
3.6.6 Time-stamping Errors . 37

3.7 IEEE 802.1AS Standard Protocol . 38
3.7.1 IEEE 802.1AS Node Types . 38
3.7.2 Synchronization in the 802.1AS Domain 39
3.7.3 Best Master Clock Algorithm . 39
3.7.4 SYNC Message Delay Measurement . 40

3.8 Link Scheduling in Wireless Networks . 41
3.8.1 Link Scheduling Based on the Protocol Interference Model 42
3.8.2 Link scheduling Based on the Physical Interference Model 43
3.8.3 Limitation of the Protocol Interference Model 43

3.9 IEEE 802.11 Standard Protocol . 46
3.9.1 IEEE 802.11 DCF (Contention-based) Mode 47
3.9.2 IEEE 802.11 PCF (Contention-free) Mode 48
3.9.3 Limitations of 802.11 for Wireless Systems 48

Random Backoff Problem . 48
Multi-hop Transmission . 48

3.10 Real-time Communication Protocols in Wireless Systems 49
3.10.1 Hard Real-Time MAC Protocols . 49

Real-time Protocols Based on Time-Division Multiple Access 49
Dual Mode Real-time Protocols . 50
Real-time Protocols Based on Frequency Division Multiple Access . . 50
Real-Time Protocols Based on Message Ordering 50

3.10.2 Soft Real-Time MAC Protocols . 51
Real-time Protocols Based on Medium Access Scheme 51
Real-time Protocols Based on Channel Reuse 53
Real-time Protocols Based on Direct-MAC 53

3.10.3 Hybrid Real-time Protocols . 53
3.11 Real-time Communication Protocols in Wired Systems 54

3.11.1 TTEthernet . 54
3.11.2 Audio Video Bridging Protocol . 55
3.11.3 Time Sensitive Networking . 57

4 System Model 58
4.1 System Model . 58

4.1.1 Formal Models Using Graphs . 58
4.2 Task and Message Scheduling Model . 62
4.3 Description for Our Hybrid Modelling Approach 63

4.3.1 Attributes of the Building Blocks . 63
4.3.2 Services . 64

5 Extending TSN Capabilities over Hybrid Systems 68
5.1 Introduction . 68
5.2 IEEE 802.11/Wi-Fi and TSN Support . 68

5.2.1 Time Synchronization (802.1AS) over 802.11 69
5.2.2 Traffic Scheduling and Shaping (802.1Qbv) over 802.11 69

vii

5.2.3 Fault Tolerance Management (802.1CB) over 802.11 72
5.3 Modelling of Hybrid TSN Networking in a Simulation Framework 74

5.3.1 System Model Setup Definition . 76
5.3.2 Configuring of TSN-enabled nodes . 77
5.3.3 Modelling of a TSN-enabled Wirebound/Wireless End node 80

TSN-main-process . 81
MAC-interface Module . 88
MAC Module . 88

5.3.4 Modelling of a TSN-enabled Ethernet/wireless intermediate node . . 89
TSN-main-bridge Module . 89
MAC Module . 92

6 Time Synchronization for Improved Precision in an Asymmetric TSN Hybrid Net-
work Using Extended IEEE802.1AS 93
6.1 The Frequency Drift in a TSN-enabled Node 94
6.2 Modelling the Timing of Delay Response Messages 94

6.2.1 Symmetric Degree Ratio (SDR) . 95
6.2.2 Neighbour Rate Ratio (NRR) . 96
6.2.3 Response Delay Value . 98

6.3 Path Deviation Delay Filter Test . 99
6.4 Hybrid Network Simulation Models for Clock Synchronization Process 100
6.5 Optimization of 802.1AS in a TSN Hybrid Domain 101
6.6 Evaluation of the Improved IEEE 802.1AS Protocol 102

6.6.1 Simulation Setup . 102
6.6.2 Time-Aware Hybrid Network Simulation 102

7 Task and Message Scheduling Algorithm for Hybrid TSN Systems 107
7.1 Introduction . 107
7.2 Problem Formulation of TMS . 109
7.3 Time Slot Message Scheduling Model . 111
7.4 Task and Message Scheduling Algorithm . 112

7.4.1 Example . 117
7.5 Evaluation of TMS Algorithm . 121

7.5.1 Simulation Setup . 121
7.5.2 Experimental Results . 121

Network Topology . 122
Deadline miss ratio . 125
Wireless Interference Parameters (α, β) 126

8 Reliable Task and Message Scheduling Algorithms for Hybrid TSN Systems 129
8.1 Introduction . 129
8.2 Problem Formulation of R-TMS . 131
8.3 Message Scheduling Over Redundant Routes 133

8.3.1 Frame Replication and Elimination for Reliability (FRER) 133
8.3.2 Time Slot Message Scheduling Over Disjoint Redundant Routes 135
8.3.3 Example . 135

8.4 Reliability Model of the Wireless TSN System 137
8.4.1 Reliability of Communication Message Transmission 137
8.4.2 Reliability of Real-time Tasks . 138
8.4.3 Reliability of Wireless TSN System . 138

8.5 Reliable Task and Message Scheduling (R-TMS) Algorithm 138

viii

8.6 Simulation Setup to Evaluate R-TMS . 143
8.6.1 Experimental Results . 144

System Reliability Based on the Link Reliability 144
System Reliability Based on the Number of Hosts 146
System Reliability Based on the Number of Tasks 147
System Reliability Based on Link Failures 147

8.7 Problem Formulation of OR-TMS . 148
8.8 Discrete Particle Swarm Optimization (DPSO) 150

8.8.1 PSO Definition . 150
8.8.2 Mapping of a Task Scheduling Instance to DPSO 150
8.8.3 Task and Message Scheduling Process Based on DPSO 153

8.9 Evaluation of a Task Scheduling Instance (A Particle’s Position) 156
8.10 Trace Particles Using DPSO . 160
8.11 Simulation Setup to Evaluate OR-TMS . 161

8.11.1 Message Scheduling of OR-TMS, R-TMS and R-MMTS Algorithms . . 162
8.11.2 Experimental Results . 164

Impact of Network Topology on Performance 164
Impact of Deadline on the Task Scheduling Miss Ratio 166
Impact of the Runtime of the System on the Network Lifetime 167
Convergence Rate of OR-TMS . 168

8.12 OR-TMS Based Metascheduler . 169
8.12.1 Metascheduler with Reconvergence of Repeated Schedules 169
8.12.2 Evaluation of the Proposed Metascheduler 171

Evaluation of the MSG size reduction in relation to increasing task
numbers . 171

Evaluation of the MSG size reduction in relation to increasing deadline
values . 172

The effect of task load on validity . 173
The effect of increasing deadline values on validity 174

9 Conclusion and Future Directions 179
9.1 Conclusion . 179
9.2 Future Work . 181

ix

List of Figures

3.1 Timeliness for hard and soft real-time systems. 22
3.2 An example of distributed real-time system. 23
3.3 Contention-based schemes for TT and ET message transmissions. 24
3.4 Fault-Error-Failure chain of threats to dependability. 26
3.5 Structure of TMR FT technique. 29
3.6 Structure of standby sparing FT technique. 30
3.7 Structure of duplication with comparison FT technique. 30
3.8 Structure of pair and spare FT technique. 31
3.9 Structure of NMR with spares FT technique. 32
3.10 Structure of triple-duplex FT technique. 32
3.11 Tree structure of NTP and PTP. 34
3.12 Client/server mode in NTP. 35
3.13 Symmetric mode in NTP. 35
3.14 Asymmetry in the measured delay. 36
3.15 A simple example shows the inaccuracy of the time-stamping in the NTP pro-

tocol. 37
3.16 An example of master-slave hierarchy in the gPTP domain. 40
3.17 P2P mechanism between adjacent time-aware node clocks. 41
3.18 A simple example shows the communication and the interference ranges of

the nodes. 43
3.19 Six nodes are deployed on a TDMA network and the protocol model produces

one color time slot. 44
3.20 Four nodes are deployed on a TDMA network and the protocol model pro-

duces two color time slots. 45
3.21 Four nodes are deployed on a TDMA network, the physical model produces

one color time slot. 46
3.22 IEEE 802.11 DCF operation in 802.11 protocol. 47
3.23 RRMAC superframe structure. 50
3.24 VTS superframe structure. 51
3.25 A sequence of the packet transmissions in a protocol, which is based on the

contention scheme. 52
3.26 Timing diagram for the packet transmission in the protocol, which is based

on the feedback scheme. 53
3.27 LPRT superframe structure. 54
3.28 Egress port model of AVB switch. 57

4.1 An example for an architecture graph. 59
4.2 An example for an application graph. 61
4.3 Example of mapping an application graph onto an architecture graph. 63
4.4 The grid topology used in our system model. 66
4.5 The ring topology used in our system model. 67

x

5.1 Time synchronization between wired and wireless TSN domains by enabling
802.1AS over Ethernet and 802.11. 69

5.2 A simple view of an 802.1Qbv-enabled node, which transmits different types
of traffic at an output egress port. 71

5.3 Example for traffic shaping and scheduling in an 802.1Qbv-enabled node. . . 72
5.4 Operation of message replication and elimination at FRER enable nodes. . . . 73
5.5 Simple example showing the fault tolerance and guarantee of message deliv-

ery by using FRER. 74
5.6 Simple example with a message failing arrive in a network that does not sup-

port FRER. 74
5.7 Forming the system model as JSON files. 76
5.8 TT traffic generation profile at a sending node. 77
5.9 Ingress configuration files at receiving and intermediate nodes. 78
5.10 GCL configuration files for sending and intermediate nodes. 79
5.11 Models of TSN-enabled end nodes. 81
5.12 Diagram showing the services that are offered by the TSN-main-process mod-

ule at a TSN-enabled end node. 82
5.13 Process model of the TSN-main-process module at a TSN-enabled end node. . 82
5.14 Process model of the TSN-sync-time module at a TSN-enabled end node. . . . 84
5.15 Format of an Announce message transmitted in TSN wired/wireless domains. 85
5.16 Procedure of selecting the grandmaster clock in a TSN hybrid domain using

the BMCA algorithm. 86
5.17 Message passing gPTP scheme in the TSN hybrid domain. 87
5.18 Format of a SYNC message transmitted in the TSN wired/wireless domains. 88
5.19 Format of a Delay_Req message transmitted in the TSN wired/wireless do-

mains. 88
5.20 Format of a Delay_Res message transmitted in the TSN wired/wireless do-

mains. 88
5.21 Flow of the services that are offered by the TSN-main-bridge module at a TSN-

enabled intermediate node. 91
5.22 Process model of the TSN-bridge-sync-time module at a TSN-enabled inter-

mediate node. 92

6.1 Two consequent Delay_Res messages. 97
6.2 Diagram illustrating how the slave clock is synchronized with its grandmas-

ter using the improved IEEE 802.1AS protocol. 99
6.3 PDD filter test . 100
6.4 Wireless TSN domain with two redundant synchronization trees. 102
6.5 Clock drift synchronization error between grandmaster (HMI) and h17 with

variable frequency offsets in (ppm). 103
6.6 Clock synchronization error between the grandmaster (HMI) and h17 for dif-

ferent mobile speeds. 104
6.7 The synchronization error for the standard and the proposed IEEE 802.1AS

protocols when increasing the asymmetry ratios between h17 and ap5. 104
6.8 The synchronization error for the standard and the proposed IEEE 802.1AS

protocols when increasing asymmetry ratios between h17 and ap5. 105
6.9 The synchronization error for h17 by using the standard (A) and the proposed

(B) protocols with a variable number of wireless TSN-enabled nodes (range
speed 0 - 30 m/s) connected with ap5, uplink and downlink = 24 Mbps, asym-
metry ratio = 1. 106

xi

7.1 A simple application graph consisting of 3 tasks and 3 messages. 118
7.2 TT message scheduling with dedicated time slots for TMS, MLTS and MMTS

algorithms. 120
7.3 Impact of applying TMS, MLTS and MMTS on the makespan, consumed en-

ergy and failure rate when increasing the number of tasks in a grid topology. 123
7.4 Impact of applying TMS, MLTS and MMTS on the makespan, consumed en-

ergy and failure rate when increasing the number of tasks in a ring topology. 124
7.5 Deadline miss cases of TMS, MLTS and MMTS in grid and ring topologies

when increasing of task deadlines. 125
7.6 Makespan, consumed energy and failure rate of TMS, MLTS and MMTS in

the grid topology when increasing β value, α = 4. 127
7.7 Makespan, consumed energy and failure rate of TMS, MLTS and MMTS in

the grid topology when increasing α value, β = 10. 128

8.1 A application graph showing different available hosts on which each task can
run. 135

8.2 Reliability model of message m3. 138
8.3 Reliability model of task t0. 138
8.4 R-TMS task and message scheduling model. 143
8.5 System reliability by applying R-TMS, STS, MLTS and MMTS for different

link reliabilities. 145
8.6 System reliability when applying R-TMS, STS, MLTS and MMTS for different

numbers of hosts. 147
8.7 System reliability when applying R-TMS, STS, MLTS and MMTS for different

numbers of tasks. 147
8.8 Number of messages failing to arrive by applying R-TMS, STS, MLTS and

MMTS for different numbers of link failures. 148
8.9 Application graph consisting of 5 tasks with 10 messages. 151
8.10 Mapping a task assignment instance to a DPSO particle. 152
8.11 Rounding the not compliant host to the closest available host satisfying the

load balance condition. 153
8.12 OR-TMS task and message scheduling model. 155
8.13 TT message scheduling along dedicated time slots for OR-TMS, R-TMS and

R-MMTS algorithms. 163
8.14 Impact of the grid topology on performance of OR-TMS, R-TMS, R-STFS and

R-MMTS algorithms. 165
8.15 Impact of the ring topology on performance of OR-TMS, R-TMS, R-STFS and

R-MMTS algorithms. 166
8.16 Impact of deadline on the task scheduling miss ratio of OR-TMS, R-TMS, R-

STFS and R-MMTS algorithms. 167
8.17 Impact of the number of running times on the network lifetime using OR-

TMS, R-TMS, R-STFS and R-MMTS algorithms. 168
8.18 Convergence rate of OR-TMS. 169
8.19 An example of a MSG with reconvergence of repeated schedules. 170
8.20 Flowchart of the OR-TMS based metascheduler. 171
8.21 MSG size reduction ratio in relation to increasing task numbers. 172
8.22 Effect of increasing task numbers on validity. 175
8.23 Effect of increasing deadline values on validity. 175

xii

List of Tables

2.1 Comparison of the extended IEEE 802.1AS with prior work that addressed
the time synchronization process. 17

2.2 Comparison of the thesis algorithms with prior work. 19
2.3 Comparison of TMS, R-TMS and OR-TMS algorithms that address the task

and message scheduling with extra prior work. 20

3.1 System parameters for a TDMA network. 44

7.1 Notations used in Chapter 7 . 110
7.2 Transmitted TT messages between periodic tasks. 118
7.3 The simulation setup of the simulation experiments to evaluate TMS algorithm.121
7.4 The execution time (in seconds) for TMS, MLTS and MMTS in a grid topology

when increasing number of tasks/graph. 125
7.5 The execution time (in seconds) for TMS, MLTS and MMTS in a ring topology

when increasing number of tasks/graph. 125

8.1 Notations used in Chapter 8 . 133
8.2 Time slot message scheduling and communication message interference anal-

ysis. 136
8.3 Test of several parameter settings. 144
8.4 Comparison of the completion-time, consumed energy and CPU-time for MMTS,

MLTS, STS and R-TMS in the grid topology, tasks = 80, messages = 200. 146
8.5 Comparison of the completion-time, consumed energy and CPU-time for MMTS,

MLTS, STS and R-TMS in the ring topology, tasks = 80, messages = 200. 146
8.6 Set of available hosts for each task t ∈ T. 151
8.8 MSG size reduction ratio in relation to increasing deadline values. 173
8.7 A trace of DPSO-based OR-TMS algorithm . 176

xiii

List of Abbreviations

ACL Access Control List
ALU Arithmetic Logic Unit
AVB Audio Video Bridging
AV Audio Video traffic
BER Backward Error Recovery
BEATA Balanced Energy Aware Task Allocation algorithm
BAG Bandwidth Allcation Gap
BE Best Effort traffic
BMCA Best Master Clock Algorithm
BPS Bidirectional Pipelining Schedule
BCs Boundary Clocks
BPDU Bridge Protocol Data Unit
CSMA/CA Carrier Sense Multiple Access with Collision Avoidance
CCU Central Computing Unit
CR-SLF Channel Reuse-based Smallest Latest-start-time First
CoS Class of Service
CCC Clear Channel Counter
CCF Clear Channel Flag
CTS Clear To Send
CMTS Cluster-based Maximum consensus Time Synchronization
CCTS Clustered Consensus Time Synchronization
CATP Compatibility Aware Task Partition
CAP Contention Access Period
CFP Contention Free Period
CW Contention Window
CAN Controller Area Network
CBQ Credit Based Queuing
CBS Credit Based Shaping
CRC Cyclic Redundancy Check
CSRO Cumulative Scaled Rate Offset
DoS Denial of Service
DPSO Discrete Particle Swarm Optimization algorithm
DCTS Distributed Consensus Time Synchronization algorithm
DCF Distributed Coordination Function
DDPaS Distributed Dynamic Packet Scheduling
DIFS Distributed Inter-Frame Space
DOOTA Distributed Optimal Online Task Allocation algorithm
DRTS Distributed Real-Time System
DSSS Direct Sequence Spread Spectrum
DTAW Divisible Task scheduling Algorithm for Wireless sensor networks
DHRP Dynamic Hyper Round Policy
DMS Dynamic Modulation Scaling

xiv

DVS Dynamic Voltage Scaling
EDF Earliest Deadline First
EDL Earliest Deadline Late
ET Eevent Triggered
FT Fault Tolerance
FCR Fault Containment Region
FTAOA Fault-tolerant Task Allocation Algorithm
FPGA Field Programmable Gate Array
FIFO First In First Out
FER Forward Error Recovery
FQETS Forwarding and Queuing Enhancements for Time Sensitive streams
FRER Frame Replication and Elimination for Reliability approach
FDMA Frequency Division Multiple Access
FD-PaS Fully Distributed Packet Scheduling
GCL Gate Control List
GA Genetic Algorithm
GNSS Global Navigation Satellite System
GPS Global Positioning System
GMC Grand Master Clock
GUI Graphical User Interface
GTS Guaranteed Time Slots
HMI Human Machine Interface
I-EDF Implicit Earliest Deadline First protocol
ITAS Intelligent Task Allocation Scheme
JSON Java Script Object Notation
LST Latest transmission Start Time
LCM Least Common Multiple
LACP Link Aggregation Control Protocol
LLC Logical Link Control
LPRT Low Power Real Time protocol
MTU Maximum Transmission Unit
MAC Medium Access Control
MSG Multi Schedule Graph
MLTS Minimum traffic Load Task Scheduling algorithm
MMTS Min-Min Task Scheduling algorithm
mRFTAS modified Real-time Fault-tolerant Task Allocation Scheme
MOP Multi-objective Optimization Problem
MIMO Multiple Input Multiple Outpot
MMRP Multiple MAC Registration Protocol
MSTP Multiple Spanning Tree Protocol
MSRP Multiple Stream Reservation Protocol
NRR Neighbour Rate Ratio
NIC Network Interface Card
NTP Network Time Protocol
NMR N-Modular Redundancy technique
NC Normal Clock
NoTP Normal Transmission Period
NVP N-Version Programming
OTSA Optimal Task Scheduling Algorithm
OR-TMS Optimized Reliable Task and Message Scheduling algorithm for wireless networks
OFDM Orthogonal Frequency Division Multiplexing modulation technique

xv

PTN Packet Transport Network
PSO Particle Swarm Optimization algorithm
PDT Path Delay Table
PDD Path Deviation Delay
PR-MAC Path oriented Real-time M A C
TLV Path trace Type Length Value
PIFS PCF Inter-Frame Space
PVST Per VLAN Spanning Tree
PLL Phase Locked Loop
PCF Point Coordination Function
PTP Precision Time Protocol
PCP Priority Code Point
PQ Priority Queuing
PrCF Protocol Control Frame
RC Rate Constrained traffic
RMS Rate Monotonic Scheduling
RRMAC Real-time and Reliable M A C
RFS Real-time Flow Scheduling
RTWN Real-Time Wireless Network
RD-PaS Reliable Dynamic Packet Scheduling
R-MMTS Reliable Min-Min Task Scheduling algorithm
R-TMS Reliable Task and Message Scheduling algorithm for wireless networks
RBD Reliability Block Diagram
RMEC Reliability Maximization with Energy Constraint algorithm
RTS Request To Send
RP Retransmission Period
STS Shortest Task Scheduling algorithm
SIFS Short Inter-Frame Space
SINR Signal to Interference and Noise Ratio
SNR Signal to Noise Ratio
STP Spanning Tree Protocol
STD State Transition Diagram
SRP Stream Reservation Protocol
SDR Symmetric Degree Ratio
TCVCXO Temperature-Compensated Voltage-Controlled Crystal Oscillator
TAS Time-Aware Shaper
TDMA Time-Division Multiple Access
TSN Time-Sensitive Networking
TSCH Time-Slotted Channel Hopping
TT Time-Triggered traffic
TC Transparent Clock
TMR Triple Modularity Redundancy technique
UTC Universal Coordinated Time
UAV Unmanned Aerial Vehicle
VTS Virtual TDMA for Sensors
WBAN Wireless Body Area Network
TMS Task and Message Scheduling algorithm for wireless networks
WLAN Wireless Local Area Network
WNCS Wireless Networked Control System
WSN Wireless Sensor Network

xvi

Chapter 1

Introduction

1.1 Context and Motivation

Real-time hybrid communication systems combine wireless and wirebound networks have
been gaining increasing popularity in recent years thanks to the ease of deployment, en-
abling flexibility, stability and accessibility. Therefore, they have been engaged in a variety
of applications such as border monitoring, environmental tracking, home automation and
smart architecture [1]–[3]. Whenever a hybrid system interacts with a real environment
through its nodes, it normally decomposes an application into several tasks that are sched-
uled on several wireless hosts (e.g., sensors and actuators) so that messages are used to pass
content between the interconnected tasks.

To ensure that all tasks are done in the correct order and before deadlines, firstly, it is
very helpful that hardware clocks are synchronized accurately so that all local clocks share
the same global (i.e. reference) time. Secondly, it is necessary to optimize the scheduling of
tasks over the potential wireless hosts, taking into account the scheduling of the connecting
messages. Due to the stochastic nature of wireless communication, the task and message
scheduling problem is considered a significant challenge in the face of bandwidth and en-
ergy limitations. Bandwidth and energy are consumed due to the effects of media access
control and contention resolving, signal interference and channel fading. Therefore, the task
and message scheduling solution needs to preserve the network resources by balancing the
traffic load over several nodes and reducing the signal interference that causes message re-
transmissions.

Many real-time hybrid networks not only rely on guaranteed timely delivery of data,
but its nodes and links can be subject to failures. In order to prevent a failure from de-
grading the network performance, fault tolerance becomes a necessity for the continuity
and functionality of hybrid networks. Fault tolerance becomes even more important when
adopting wireless technologies in hard real-time systems (e.g., medical applications, battle-
field surveillance) where the transmitted data is critical and it should arrive with stringent
deadlines [4]. These fault-tolerance requirements add further difficulties to the already de-
manding problem of scheduling tasks among wireless hosts of a hybrid system.

The current trend is towards time-triggered wireless approaches due to the increasing
demand for reliable and deterministic wireless infrastructures in real-time and safety-critical
systems [5]. The use of the time-triggered technique is advantageous from the perspective
of (i) building a network with predictable real-time response times, (ii) establishing an archi-
tecture with a global idea of time and clearly defined interfaces reduces system complexity
and thus makes it easier to create real-time applications, (iii) distributing an application’s
tasks across several hosts to reduce maintenance costs, (iv) messages transmitted with less
jitter and latency. The time-triggered wired approach has already been successfully applied
to safety-critical systems in transportation applications [6]–[8] (e.g. vehicle applications,
railway control systems and flight-critical functions in aircraft).

1

Chapter 1. Introduction

Time-Sensitive Networking (TSN) [9] and TTEthernet [10] are examples of time-triggered
infrastructures that satisfy mixed-critically requirements, while at the same time satisfying
real-time constraints. However, it is challenging to offer in a wireless environment TSN
capabilities, which are interoperable and comparable with existing wired TSN standards.
Recent advances in 5G and IEEE 802.11 wireless connectivity technologies with low latency
and high reliability have generated significant interest towards extending TSN capabilities
to wireless systems. In this context, scheduling tasks to hosts interconnected by a wireless
network with TSN capabilities is an open research challenge. In the following, the termi-
nology ’WirelessTSN’ is used to refer to a wireless network that extends IEEE 802.1 TSN
capabilities to wireless media.

In WirelessTSN, time synchronization is critical because message injection times and
task dispatching involve a time-triggered communication schedule that is defined with re-
spect to a global time base. Time also provides the frame of reference between all nodes
on the network. Without sharing a global time base, the temporal coordination of activi-
ties is difficult. Therefore, the concept of a precise global time base has to be considered in
order to achieve a correct and meaningful behaviour. IEEE 802.1AS [11] is an extension of
the Precision Time Protocol (PTP) [12] used for precise timing in wired TSN standards and
Audio Video Bridging (AVB) [13] with switched Ethernet networks. To meet the challenges
of WirelessTSN in a hybrid TSN network, IEEE 802.1AS has to be improved and extended.

1.2 Thesis Objectives and Contributions

Highly reliable, scalable and deployable networks satisfying strict temporal constraints are
inevitable for future cyber-physical systems. Due to the widespread usage and success
of wireless technologies and the capabilities of wired TSN standards that provide real-
time capabilities and performance improvements, this work aims to extend TSN services
from wired to wireless domains and operation models. Therefore, this thesis presents a
WirelessTSN model, which is developed as an extension to an Ethernet-based model in the
Riverbed simulator [14]. The hybrid model provides models of generic TSN-enabled nodes
that are used to share services between wireless and wirebound TSN segments. The hybrid
model also allows verifying the integrated services of TSN with respect to time-aware shap-
ing and timeliness. In other words, the node models are defined to support IEEE 802.1AS,
IEEE 802.1Qbv [15] and IEEE 802.1CB [16] features. To be more specific, IEEE 802.1Qbv in-
troduces a novel scheduling mechanism called Time-Aware Shaper (TAS). TAS determines
which frame can be transmitted at each instant of time based on the Gate Control List (GCL)
idea. On the other hand, Frame Replication and Elimination for Reliability (FRER) is a revo-
lutionary fault-tolerance method defined by IEEE 802.1CB [16]. FRER offers highly reliable
communication for TT traffic by forwarding messages via redundant routes.

To achieve the real-time capabilities especially in hard real-time systems which have
strict temporal requirements and based on existing wireless protocols (e.g., IEEE 802.11),
a robust clock synchronization mechanism becomes a necessity. The importance of hav-
ing precise synchronization is due to the fact that TSN time-based properties (e.g. IEEE
802.1Qbv and IEEE 802.1QCB standards) are based on the precision of the global time.
Thereby, this thesis presents an extension for IEEE802.1AS standard synchronization pro-
tocol that is, in turn, based on IEEE 1588 V2 [17]–[19]. The extended protocol enables the
time distribution between wired and wireless TSN domains over IEEE 802.11. A Best Mas-
ter Clock Algorithm (BMCA) algorithm is implemented to help choose which clock to use
as the grandmaster of timing on the TSN network. In addition, an asymmetric peer delay
mechanism and a Path Deviation Delay (PDD) filter are introduced to compute the induced

2

Chapter 1. Introduction

deterministic delays, clock drift and asymmetric delays in WirelessTSN. The simulation
framework of time-aware systems shows significant results in terms of reducing the syn-
chronization error between the grandmaster clock and its slave clocks with variable asym-
metry ratios and variable frequency offsets. Moreover, the behavior of the extended TSN
synchronization mechanism is evaluated in the presence of different mobile speeds and dif-
ferent numbers of the participating wireless TSN-enabled nodes.

The thesis also provides solutions to challenges faced by wireless time-triggered com-
munication in terms of signal interference, channel fading and limited resources. Most of
the state-of-the-art solutions adopt strategies of scheduling tasks, either to consider the sys-
tem’s completion time and energy consumption, or to consider the workload balancing, or
even to support a reliable task scheduling. Hence, the previous approaches limit themselves
to finding a suitable task scheduling solution that fulfills the requirements of real-time sys-
tems. This thesis provides contributions beyond the state-of-the-art by presenting heuristic
task and message scheduling strategies that consider the following features: FRER is used
to send multiple copies of messages through redundant routes, which limits the effect of
link and node faults and makes the system more reliable. A physical interference model is
applied to mitigate the negative impact of signal interference during the message transmis-
sions. At the physical model, the message transmission is successfully performed between
sender a and receiver b if the Signal to Interference and Noise Ratio (SINR) at b is above a
certain threshold (i.e. β), which depends on the channel specifications and the standard of
WirelessTSN. Furthermore, we consider the precedence constraints, period and deadline of
the tasks. Finally, the thesis considers the resource utilization (i.e. energy consumption) and
the workload balancing during the task and message scheduling process.

The presented heuristic algorithms lead to significant enhancements of the reliability,
timeliness, efficiency and resource utilization compared to the state-of-art algorithms. To be
more specific, our Task and Message Scheduling (TMS) algorithm for wireless networks is
compared with other algorithms like Min-Min Task Scheduling (MMTS) [20] and Minimum
traffic Load Task Scheduling (MLTS) [21], [22] algorithms. MMTS is based on scheduling a
task to a wireless host that has the minimum ready time (i.e. the host that has the minimum
start time to execute the task). MMTS is a traditional offline algorithm, which does not
consider the effect of the message scheduling on the transmission paths during the task
scheduling process. In MLTS, a task is scheduled to a host depending on routes that can
be used to send messages from the parent tasks and have the least traffic load. MLTS uses
the computed traffic load value to recognize when a route is becoming congested and then
it chooses an alternate route. Routes with lower value and less congestion are preferred.
While TMS firstly sorts all tasks according to their priorities, scheduling a sorted task to an
available host takes into account the message scheduling over fixed duration time slots. The
message scheduling considers, in turn, the period and the precedence of the cooperating
tasks. In the event that all required messages have arrived, the task is scheduled to the
host that receives the messages as fast as possible provided that it meets the task deadline
condition. The task scheduling process continues until all sorted tasks are completed. The
simulation tests show the improvement of timeliness, saving network resources, and the
efficiency of the proposed task and message scheduling by TMS.

Reliable Task and Message Scheduling (R-TMS) and Optimized Reliable Task and Mes-
sage Scheduling (OR-TMS) algorithms are proposed to find reliable task and message schedul-
ing solutions using task priorities and Discrete Particle Swarm Optimization (DPSO). DPSO
[23] is defined as a problem optimization tool, which is used in OR-TMS to solve the task
and message scheduling problem by iteratively trying to improve a possible solution with

3

Chapter 1. Introduction

regard to a cost function value. The cost function value considers multiple objectives includ-
ing the system’s completion time, total energy consumption and total failure rates. Thereby,
the computed cost function value determines the cost of a task scheduling instance. R-TMS
uses the same cost function value but in a different manner, where the function value is
computed to select a suitable wireless host for every task gradually until finishing all tasks.
A novel reliability model is introduced in R-TMS, which assesses the reliability of a system
using interactions between interconnected tasks in the form of time-triggered messages. The
reliability of message transmission is computed as a function of the reliability of the network
nodes that engage in the message delivery. Consequently, it can be determined which nodes
are more critical in the overall reliability of the system.

Extensive simulation tests are implemented to show the significance of the results of
our fault-tolerant task and message scheduling algorithms in terms of reliability, timeliness,
deadline miss ratio, failure rate, network lifetime and energy conservation. R-TMS out-
performs MMTS, MLTS and the Shortest Task Scheduling (STS) [24], [25], which depends
basically on selecting the shortest routes to send messages. To show the improvement in
performance and reliability using OR-TMS, it is compared with R-TMS, Reliable Min-Min
Task Scheduling (R-MMTS), and Reliable Shortest Task First Scheduling (R-STFS) [26] algo-
rithms that have been developed to send multiple messages over disjoint redundant routes.

The main contributions of this thesis can be summarized as follows:

• A simulation framework is implemented supporting TSN capabilities (i.e. IEEE 802.1Qbv
and IEEE 802.1QCB standards) over real-time wireless networks. The developed frame-
work also simulates redundant transmission and scheduling mechanisms of real-time
systems [27].

• The simulation models use an extended synchronization protocol based on IEEE802.1AS
[27] for improved precision in asymmetric WirelessTSN. The proposed protocol in-
cludes different procedures such as selecting the best grandmaster clock, asymmetric
peer delay measurement and path deviation delay filtering.

• TMS strategy based on a list task scheduling approach for time-triggered communi-
cation [28]. This strategy finds feasible task and message scheduling solutions by em-
ploying the following techniques:

– Prioritizing each task according to the top-level values and then arranging tasks
in ascending order.

– Message scheduling over fixed duration time slots considering the interference
that is induced by sending multiple messages at the same time. The message
scheduling takes also into account the period and the precedence of the tasks.

– Each task is scheduled to a wireless host that has the minimum start time pro-
vided that the task deadline is met.

• R-TMS strategy [29] is built on top of TMS and aims to improve the system reliability
using the following techniques:

– FRER features to support fault-tolerant message delivery.
– A novel reliability model is used to keep the WirelessTSN system working prop-

erly even upon task failures.
– A cost function comprised of factors including the task start time, task’s con-

sumed energy and task failure rate. The least cost function value is used to select
the most suitable host for that task and the task and message scheduling process
continues until scheduling all sorted tasks.

4

Chapter 1. Introduction

• OR-TMS strategy [30], which aims to improve the system reliability addressed by R-
TMS by using further assumptions:

– Improve the reliability by using the DPSO algorithm. The cost function in OR-
TMS refers to the total energy saving, total completion time and total failure rates
of a task scheduling instance. To the end, OR-TMS tries iteratively to improve the
task scheduling instance with regard to the minimum cost function value.

– A workload mechanism is implemented to distribute the execution of the tasks
along with several available hosts.

– A metascheduler based on OR-TMS is generated to provide a transition to a ver-
ified schedule at run-time. Therefore, the proposed metascheduler pre-computes
schedules at design time.

1.3 Thesis Structure

After the introduction presented in this chapter, the remainder of the thesis is structured as
follows:

• Chapter 2: Through an in-depth analysis, this chapter points out the challenging re-
quirements of hybrid (i.e. wired/wireless) networks in real-time applications, then
provides an overview of related work in the context of the precision time synchro-
nization and TT task scheduling in different wired/wireless environments and finally
provides an analysis of the research gaps.

• Chapter 3: Outlines the background theory to provide an understanding of the funda-
mental concepts used throughout this work. It starts with the concepts of real-time op-
erating systems and distributed real-time systems including time-triggered and event-
triggered communication. It then explores different aspects such as dependability,
fault-tolerance techniques and timing protocols. This chapter provides also a detailed
introduction to the IEEE 802.1AS standard, link scheduling in wireless networks and
IEEE 802.11 DCF/PCF modes with their limitations. Finally, this chapter shows real-
time communication protocols in wired and wireless systems.

• Chapter 4: introduces the system model that is used throughout the thesis. It contains
architecture and application graphs that serve as inputs to simulate the proposed al-
gorithms and compare them with related ones.

• Chapter 5: extends the TSN capabilities of the Ethernet-based network over the wire-
less network. The hybrid network is based on the system model from chapter 4, which
covers hybrid real-time systems including wireless and wirebound networks. Wireless
bridges and host models with support for TSN features are presented.

• Chapter 6: explains in detail the extended synchronization protocol based on IEEE802.1AS
for improved the precision time synchronization in a hybrid TSN network.

• Chapter 7: optimizes the task and message scheduling solution, particularly in WirelessTSN.
This chapter provides a detailed description of our TMS algorithm. After that, simula-
tion results are presented to compare the proposed algorithm with the state-of-the-art
algorithms such as MLTS and MMTS algorithms.

• Chapter 8: describes how the task and message scheduling strategies which are in-
troduced in the TMS algorithm can be extended to support reliability requirements of

5

Chapter 1. Introduction

WirelessTSN. Therefore, this chapter provides a detailed description of our reliable
R-TMS algorithm. The simulation results show the improvement in reliability and
performance compared to previous work. After that, it provides a detailed descrip-
tion of our optimized OR-TMS using the DPSO algorithm. OR-TMS explains how to
map a task scheduling instance into DPSO. Experimental results show a comparison of
R-TMS and OR-TMS with prior algorithms such as R-STFS and R-MMTS algorithms.
Finally, a metascheduler based on OR-TMS is implemented and evaluated using sev-
eral experiments.

• Chapter 9: presents the conclusion of the thesis.

6

Chapter 2

Related Work and Research Gap

2.1 Requirements for Hybrid TSN Networks

Wireless networks have been adopted in several industrial systems thanks to their flexibility
and reducing setup costs. Wireless networks often represent an effective alternative solution
to avoid cabling that turns out to be expensive and cumbersome in many cases. Conversely,
wireless networks are well known for problems like shadowing, interference and multipath
propagation, which have a negative impact on the performance of the industrial real-time
systems that are often known by their requirements in terms of reliability and timeliness.
The features of wired and wireless networks can be combined by extending the existing
wired networks with wireless segments. The resulting integrated configuration is known as
a hybrid network. In this kind of network, controllers, servers, and human machine devices
are located often in the wired segment because of stability and reliability, thus, all nodes in
the wireless segment (i.e. sensors, access points, wireless routers) should interoperate seam-
lessly with the wired communication system. Consequently, the combination of a wired
and wireless system is a critical issue, which has to satisfy the requirements of timeliness
and reliability in real-time systems.

TSN standards, which are developed by the Time-Sensitive Networking task group, pro-
vide guaranteed delivery and minimized jitter for critical data that can be transmitted with
non-critical data over the converged and synchronized standard Ethernet-based network.
Moreover, TSN standards provide seamless redundancy for data that cannot tolerate mes-
sage losses. The gained properties are relevant for hybrid systems since the tested and
proven TSN features of the Ethernet-based segment can be extended to the TSN wireless
medium. To achieve that, the following requirements appear for hybrid TSN networks:

• Bounded latency: the hybrid TSN network requires guaranteed end-to-end latency
(i.e. predictable and bounded) for the delivery of messages. To do that, the available
data rate and net throughput in the wireless medium have to be considered during the
message transmissions. Even operating at the maximum data rate, the net throughput
may be lower compared with the TSN wired network, because of the shared medium
among all wireless nodes. Moreover, the random access techniques (e.g., Carrier-Sense
Multiple Access with Collision Avoidance (CSMA/CA)) are mostly used by the wire-
less MAC protocols (e.g., IEEE 802.11). This means that unpredictable access to the
medium and network congestion can lead to unbounded delays and nonnegligible
jitter. Hence, this kind of hybrid networks would not be acceptable for real-time ap-
plications.

• Interference avoidance: besides the random access, wireless channels are also prone
to signal interference that may increase transmission errors and compromise network

7

Chapter 2. Related Work and Research Gap

reliability. Hence, scheduling access to the wireless medium using time-division mul-
tiple access is considered as an efficient solution to avoid the impact of signal interfer-
ence and simultaneous message retransmissions.

• Energy saving: a serious drawback of a hybrid TSN network is the imposed energy
overhead caused by the operations in every node of the wireless network segment.

• Precise global time service: the establishment of an accurate global notion of time is
an important service to successfully coordinate and organize the tasks of a real-time
application that is distributed throughout hosts in a hybrid TSN system. Therefore, it
is essential to first take into account the limitations of the wireless medium as well as
factors that reduce the precision of synchronization, such as aging hardware compo-
nents and inaccurate time-stamping.

• Optimized task and message scheduling solution: challenges of wireless communi-
cation like signal fading (i.e. signal interference), bounded latency and limited energy
make scheduling of tasks in a hybrid system a critical issue. In other words, the con-
straints of the real-time application must be fulfilled during the scheduling of the tasks
to the distributed hosts. In particular, these constraints demand that all tasks finish
before their deadlines, any task waits for all incoming messages before starting its ex-
ecution, the transmitted messages have to be scheduled in specific times to consider
the period of the sending tasks and the negative impacts of signal interference, limited
energy, and routing loops have to be avoided.

• Reliable task and message scheduling: If a system needs high reliability in the event
of link or node failures, the distribution of dependent tasks among multiple hosts be-
comes more complicated. Therefore, fault tolerance techniques have to be imposed to
continue operating the tasks without interruption in the presence of faults.

• Data traffic regulation: wired and wireless mediums are connected through specific
nodes called bridges (i.e. relay nodes). These nodes have different or dissimilar struc-
tures, complexity, and functionality from those of wired and wireless nodes. Therefore,
they have to operate efficiently on reforming, buffering, re-timing, and regulating the
access to the shared medium for the passing messages.

Based on the aforementioned challenges, we conclude that the interoperability between
wireless IEEE 802.11-based extensions to TSN Ethernet-based networks is not as straightfor-
ward an interconnection. Moreover, unpredictable behaviours caused by interference, ran-
dom access procedures, and transmission error, may significantly impair the performance
and reliability of hybrid TSN networks. Therefore, this thesis aims to build a hybrid TSN
system model that satisfies the mentioned requirements.

2.2 Related Work

In this section, we review related work in the areas of bounded latency and limited en-
ergy, interference-awareness, time synchronization, task scheduling algorithms, and fault-
tolerant task scheduling techniques. These areas are discussed, because they correspond to
the research requirements identified in the previous section and addressed in the thesis.

2.2.1 Related Work on Guarantees for End-to-End Delay and Energy-saving

Authors introduced several algorithms to bound the message communication latency with
the purpose of minimizing the end-to-end delay. Most researchers adopted Time-Division

8

Chapter 2. Related Work and Research Gap

Multiple Access (TDMA) to ensure deterministic real-time data transmission. Centralized
and static schemes for schedulability of real-time messages [31]–[33] fit well for small-scale
networks but their efficiency degrades on finding feasible solutions in large networks or
where disturbances exist. Another thread of research advances the static schemes by pro-
viding dynamic schemes for the message scheduling. Among these schemes, the authors
in [34] handled disturbances (e.g. link qualities and traffic demands) in Real-Time Wireless
Networks (RTWNs). Dynamic and deterministic schemes have been proposed by support-
ing admission control to add and remove streams. Although the proposed schemes, which
are based on the earliest-deadline-first policy, meet all deadlines in hard real-time multi-hop
wireless systems, they do not consider how to deal with precedence constraints between
message senders. The work in [35] presented emergency communication protocols that
reserved time slots to satisfy the deadline constraints in the case of emergencies. Hence,
regular operations may not be finished before their deadlines. According to the suggestion
in [36], each node should create its own transmission schedule using local data. Hard real-
time requirements cannot be met by the chosen schedule because nodes that only use local
information and have an impact on their surrounding neighbors cannot ensure end-to-end
data delivery.

To ensure bounded latency and reliability bounds, the authors in [37] proposed a generic
heuristic scheduler called SchedEx algorithm, which guarantees the reliability of the end-to-
end transmission. The work in [38] addressed strict reliability and energy limits by using
channel hopping and medium access control techniques. The authors in [39] addressed
a message-centric policy and dynamically reallocate the multi-hop message transmissions
among links depending on their qualities.

Several techniques have been proposed that focus on the communication cost to con-
serve the depleted energy in wireless systems. For instance, task clustering techniques [40],
[41] and routing approaches [42], [43] have been introduced to balance transmission load to
dedicated clusters or reduce the message transmission distance, respectively. In addition,
some researchers introduced compression techniques to decrease the size of the transmitted
messages [44], [45]. The work in [46], [47] studied sleep/wakeup schemes to save the energy
spent by idle components.

2.2.2 Related Work on Interference-Aware Message Scheduling

A set of methods were proposed to avoid the induced interference due to transmitting differ-
ent messages from different senders simultaneously. For instance, Chipara, Octav, et al. [48]
presented a conflict-free message transmission scheme named Real-time Flow Scheduling
(RFS). It supports spatial reuse, reliability by incorporating message retransmissions during
the link scheduling process and scalability by dividing the network components into neigh-
bourhoods. Jamthe, Anagha, et al. [49] scheduled multiple transmissions from different
health care sensors in Wireless Body Area Networks (WBANs). The proposed approach uses
IEEE 802.15.6 (TG6) as a standard protocol to avoid inter and intra-WBAN interferences.
The coordinators in WBANs exchange information between them before sending the sen-
sors’ messages and they divide the channel into super-frames. The coordinators then assign
time-slots, so that a sensor classified as the highest priority sends its data in the first avail-
able slot. However, this scheme does not consider the changes in the network topology and
in the surrounding environments. In addition, the transmission time is high in the waiting
mode and it is low for high-priority data. A heuristic static off-line algorithm is presented in
[50] to schedule the data traffic and predict the radio interference according to the analysis
of the global network state. Besides, a routing update scheme is applied to distribute the
interfering streams provided that deadline constraints are met. This algorithm can produce

9

Chapter 2. Related Work and Research Gap

highly optimized solutions in small-scale and static networks, in contrast to highly dynamic
networks. Fateh, Benazir, and Manimaran Govindarasu [51] formulated the scheduling of
tasks and messages as a joint problem. The authors proposed a three-phase heuristic to
perform the task scheduling by taking into account deadline, interference and precedence
constraints. The objective of this work is to improve the efficiency of energy-saving by using
Dynamic Modulation Scaling (DMS) [52] for messages and Dynamic Voltage Scaling (DVS)
[53] for tasks. This work was also improved to perform dynamic task scheduling.

2.2.3 Related Work on the Time Synchronization of Distributed Clocks

Due to the distributed nature of wired/wireless nodes, precise synchronization plays an im-
portant role in coordinating tasks especially those facing real-time constraints. In the case of
asynchronous clocks, messages may arrive in an undesirable order, then whole system op-
erations may not produce correct results, especially synchronous tasks with precedence con-
straints that make analysis and innovation of experimental task scheduling algorithms more
complex. Moreover, the synchronization error causes inconsistencies in the times when the
hosts are ready to perform the tasks. Thus, tasks cannot be executed at specific times. To
meet the challenges of precise time synchronization, several excellent types of research have
been proposed.

In the last years, several work studied intensively different time synchronization pro-
tocols using various simulation frameworks, especially for wireless technologies. Some re-
search addresses asymmetric delays to mitigate the temporal unpredictability of the net-
work. For instance, the authors of [54] applied the Precision Time Protocol (PTP) to IEEE
802.11 Wireless Local Area Network (WLAN) to solve the problem of asymmetric links. A
delay filtering algorithm based on Kalman filters was designed as a pure software-based sys-
tem and applied to coordinate each local clock with its grandmaster clock. The algorithm
dealt with asymmetric delays in a single-hop WLAN environment by considering deter-
ministic and random delays. Software time-stamping in the application layer has a negative
impact since there will be an extra overhead passing through layers. It can also take longer,
because of more CPU usage and more complexity. In contrast, hardware time stamping
makes the time synchronization more precise. The authors in [19] proposed an enhanced
IEEE 1588 time synchronization algorithm. Procedures called block burst transmission and
offset correction are introduced to calculate the asymmetry ratio of the communication link
and to calculate the offset values, respectively. The proposed algorithm requires additional
message exchanges for femtocell network environments and Packet Transport Networks
(PTNs).

Some work assumes that the hardware clock of the network nodes is accurate in fre-
quency [55] or even the effect of the clock drift is neglected [56]. In fact, the change of the
frequency leads to a remarkable drifting of the clocks in the same network. Therefore, some
research addresses the clock drift compensation to establish accurate synchronization pro-
tocols. For instance, the authors in [57] proposed an optimized version of PTP for simple
wireless networks. By utilizing the delayed transmission feature in the DW1000 transceiver,
the optimized protocol inserted the exact sending time-stamp into the synchronization mes-
sage to reduce the timing packet overhead. The goal of [58] was computing clock drift
more precisely by applying adaptive time compensation. The implementation used stan-
dard Time-Slotted Channel Hopping (TSCH) control messages [59] in multi-hop networks.
The accuracy of the clock offset computation for a standard PTP scheme was greatly in-
creased by the authors in [60] by using a clock drift factor. The symbol timing synchroniza-
tion was also studied, which enabled robust time-stamp message decoding during the clock
synchronization period. The authors in [61] used the CC2420 transceiver which is compliant

10

Chapter 2. Related Work and Research Gap

with the physical layer of IEEE 802.15.4/ZigBee. The authors maintain a clock offset of 200
nanoseconds between the local clocks and their reference clock. To eliminate the difference
of the frequency skew between two clocks, a local clock computes both the drift rates of the
reference clock and its clock within the sending synchronization interval and in the arrival
synchronization interval, respectively.

Most time synchronization schemes are restricted to applying software time-stamping
due to the lack of hardware time-stamping capability [62]–[64]. One of the software time-
stamping disadvantages is that it generates non-deterministic delays. Therefore, some re-
search is addressed to improve the time synchronization by moving the time-stamping to
lower layers. As part of improving the performance of hardware-based time-stamping so-
lutions, the authors of [55] presented a physical layer time-stamping approach for IEEE
802.11b protocol in a Field-Programmable Gate Array (FPGA) platform. The overall clock
synchronization accuracy was shown to be sub-100 picoseconds and the standard deviation
to be around 500 picoseconds. The proposed time-stamping approach is only applied by a
stable oscillator with a fixed frequency. Moreover, multipath propagation is considered as
a limitation factor. The work in [65] presented an expansion time synchronization module
and a circuit that is used for clock-rate adjustment and as a global clock source in a FireFly3
wireless sensor platform. The clock-rate adjustment system has the advantage for adjusting
the clock rate for FireFly3’s processor while it is in sleep mode. This leads to precise instanta-
neous time-stamping, reducing the clock drift to 0.01 ppm and saving 60% of the consumed
energy compared to the original design. The disadvantage of this approach is that extra
hardware requires more cost and energy consumption. In addition, the system is only inter-
nally synchronized. Another approach that is proposed to use hardware time-stamping is
explained in [66], where time synchronization timers are used for hardware time-stamping
so that both offset and rate correction can be performed at the node.

The authors of [67] proposed an algorithm called Clustered Consensus Time Synchro-
nization (CCTS) for Wireless Sensor Networks (WSNs). Their algorithm is based on the Dis-
tributed Consensus Time Synchronization (DCTS) algorithm with a clustering technique.
CCTS improves the convergence rate due to the incorporation of the Cluster Head (CH)
which is responsible for updating skew compensation and offset compensation parameters
for intra-cluster time synchronization. After that, the CH exchanges messages via gateway
nodes in order to support inter-cluster time synchronization. CCTS has some drawbacks.
For instance, the static synchronization period is a limitation of this algorithm and the re-
quirement of initial consensus does not make it an ideal solution for unpredictable and dy-
namic topologies that require continuous adaptation. Moreover, packet losses, asymmetric
links, node failures and cluster membership changes will degrade the performance of CCTS.
Another method that incorporates the clustering technique is proposed in [68]. The au-
thors of [68] presented a Cluster-based Maximum consensus Time Synchronization (CMTS)
method which includes intra-cluster and inter-cluster time synchronization parts. The im-
pact of the communication delays is minimized by the Revised-CMTS method. This work
shows the effect of using the clustering technique on the convergence time and overhead.
On the other side, the energy reduction over time and the mobility of nodes cause variation
in the transmission ranges, variation in the cluster membership and dynamic communi-
cations delays. Therefore, the CMTS method needs to be improved to deal with dynamic
network topologies.

Some state-of-the-art dealt with both asymmetric delays and clock drifts. For instance,
the study by Lam et al. [69] provided two approaches. In the first approach, the standard
PTP algorithm is improved to deal with clock skews in an industrial WLAN. The improved
protocol adds two additional timestamps, transmission and reception timestamps of the

11

Chapter 2. Related Work and Research Gap

follow-up synchronization message, without changing the number of messages sent be-
tween two clocks. In the second approach, a method is derived to deal with asymmetric
hardware processing latencies to reduce the error caused by asymmetric message delay on
download and upload links.

For hybrid networks, the authors in [70] have optimized an IEEE 1588v2 protocol to com-
pensate non-deterministic delays for synchronization messages over a wireless segment:
The reference clock adjusts the sending rate of the synchronization messages according to
the induced forwarding jitter. Hence, this work leads to variable and unpredictable message
overhead as well as synchronization error in the range of microseconds. Similarly, the accu-
racy obtained using [71] is in the millisecond range. The authors in [72] have presented IEEE
802.1AS based solutions over audio-video bridging networks. Therefore, it is not optimized
to work with cyclic control loops and time-triggered data transmissions. The work in [73] is
presented to enhance the net throughput rather than reducing delays.

Clock synchronization based on Ethernet has been researched in many papers. The main
difference between wired and wireless frameworks is that the message transmission delay
and the time of medium access are already known in the wired medium, therefore, the clock
synchronization in fixed topology wired systems is easier. For instance, the authors in [74],
[75] presented time synchronization protocols, which are based on industrial Ethernet, to
address the clock drift and precise timestamping, respectively.

In contrast to the related work, our work extends IEEE 802.1AS to improve the time syn-
chronization for scalable hybrid TSN networks by considering the aforementioned factors
(i.e. asymmetric delays, clock drift and precise time-stamping) that affect the time synchro-
nization accuracy. The timestamping in the extended protocol is applied to the MAC layer
instead of higher layers to avoid traffic overload, to be more accurate and ensure a faster
response to time synchronization messages. Moreover, the extended protocol focuses on ac-
curately measuring clock drift and path delays. Although the path delay is a sensitive value,
deterministic delays are considered to reduce the asymmetric delays brought on by unpre-
dictably changing environmental conditions (e.g., mobility [76]). As an additional step, a
PDD filter is applied to exclude outlier path delay values resulting from traffic congestion
or lossy links in a dynamic network. To the best of our knowledge, this work is the only one
that addresses a global and unified clock for a hybrid network with TSN-based wireless and
wirebound systems. While there is a trend to apply hybrid TSN networks in various indus-
trial fields [77], the time synchronization in hybrid systems is an open research question.

2.2.4 Related Work on the Task Scheduling Schemes

Based on precise time synchronization for all nodes of hybrid systems, a necessary step
comes to provide an feasible solution to solve the task scheduling problem of temporally
and spatially mapping tasks to nodes. This problem has been intensively studied because it
is considered a big challenge particularly for wireless technologies. As a result, several work
has lately been developed with the aim of shortening task completion times. Another thread
of work in the literature advances the state of the art by providing a variety of energy-aware
task scheduling algorithms. Therefore, in this subsection, we review the most significant
results in the field of task scheduling algorithms for RTWNs.

Numerous task scheduling schemes have been proposed for wired networks (e.g., [78]–
[80]). These schemes do not satisfy the desired efficiency in wireless networks. Therefore,
the task scheduling scheme for wireless industrial environments [81] is ongoing research,
which is considered to be a sensitive issue and a challenging requirement for our thesis.

12

Chapter 2. Related Work and Research Gap

Prior work considered unpredicted internal and external disturbances when guarantee-
ing Quality of Services (QoS). For instance, an on-line framework is used in [82] to adjust
the static schemes to respond to external and sporadic disturbances. A Wireless Networked
Control System (WNCS) reconfigures at a bounded time after system changes to reduce the
impact of system dynamics on current flows. Zhang, Tianyu, et al. [83] introduced a Dis-
tributed Dynamic Packet Scheduling (DD-PaS) framework. DD-PaS locally constructs task
scheduling schemes at individual components, which in turn minimizes the disseminated
information. DD-PaS also applies a packet dropping algorithm at a centralized gateway
to determine on-line which packets can be eliminated as a result of disturbances. Zhang,
Tianyu, et al. [84] later introduced another framework named Fully Distributed Packet
Scheduling (FD-PaS) framework for handling disturbances faster and locally without cen-
tralized control. However, the mentioned work assumes that the wireless links are perfect
without noisy or harmful factors that lead to packet loss.

On the other side, a set of research has addressed message scheduling to improve the re-
liability of communication over lossy links during the task scheduling process. For instance,
the solution in [85] is based on Medium Access Control (MAC) [86] and TSCH at industrial
environments. Chen, Yu, et al. [87] proposed a framework to translate the communica-
tion requirement and the link reliability into a fixed number of transmission opportunities
reserved for each packet to achieve the required delivery packet ratio in a wireless sens-
ing and control system. The lack of flexibility to deal with frequent changes in link quality
and the irregularity of failure occurrence is one of the drawbacks of this work. Therefore,
a message-centric policy is proposed in [39] to reallocate message retransmissions among
links more flexibly. The aforementioned work handled message scheduling in static wire-
less environments, while the work in [88] is proposed to handle the packet scheduling over
lossy links in RTWNs. However, the retransmissions policy in [87], [88] leads to consuming
significant network bandwidth.

The task scheduling problem has been solved using some bio-inspired optimization
methods, such as Genetic Algorithms (GA) [89], [90] and Particle Swarm Optimization (PSO)
[91], [92]. For instance, Jin, Yichao, et al. [89] proposed an adaptive Intelligent Task Allo-
cation Scheme (ITAS) based on a genetic algorithm. A hybrid fitness function is employed
to increase the lifetime of multi-hop wireless networks through balancing the workload (i.e.
independent tasks) among several nodes. The proposed scheme takes care of the applica-
tion deadlines but the genetic algorithm may get stuck in a local optimum. Yang, Jun, et
al. [91] proposed a Modified version of the Binary Particle Swarm Optimization approach
(MBPSO-based) to be used in the task scheduling problem. The particles of MBPSO are iden-
tified to represent potential task scheduling instances. Makespan, energy consumption and
workload balancing are considered as factors to design a hybrid fitness function that is used
to make a trade-off among these factors and reach the optimized task scheduling solution.
The precedence and the connectivity between nodes are taken as constraints. Although the
feasibility and the significant simulation results for the proposed approach, deadlines have
not been ensured which is a critical aspect for real-time applications.

Some researchers focus on the network lifetime through energy-aware task scheduling
solutions. For instance, the authors in [93] proposed an algorithm named Distributed Op-
timal Online Task Allocation (DOOTA), which is applied for cluster-based WSNs to con-
sider the consumed energy during processing, sensing, connecting and sleeping times. The
DOOTA algorithm aims to save the energy of the collaborative nodes and the experimental
results show that the proposed algorithm increases the network lifetime and decreases the
algorithm run time compared with other off-line task scheduling methods. It works well

13

Chapter 2. Related Work and Research Gap

for complex applications because it does not require prior information for all network pa-
rameters, but it is unsuitable for real-time applications because it ignores task deadlines.
Neamatollahi, Peyman, et al. [94] applied a clustering protocol, which is based on a dy-
namic task scheduling process to minimize the clustering overhead and extend the network
lifetime in WSNs. Therefore, an energy-saving policy is presented in the Dynamic Hyper
Round Policy (DHRP) algorithm. In a similar way to DOOTA, DHRP significantly extends
the network lifetime, but it cannot achieve deadline constraints due to its distributed nature.

Dai, Liang, et al. [95] aimed to reduce the task completion time and fully utilize the
network resources. Therefore, a Divisible Task scheduling Algorithm for Wireless sensor
networks (DTAW) and a model to find the optimized task distribution among actors are
presented in clustered WSNs. The authors in [95] used a strategy to split the original load
into a number of chunks and distribute these chunks to clusters in a specific order. Similarly,
an Optimal Task Scheduling Algorithm (OTSA-WSN) in a clustered WSN is presented in
[96]. OTSA-WSN is proposed for clustered networks and based on divisible load theory. The
proposed algorithm consists of two phases: intra and inter-cluster task scheduling. OTSA-
WSN removes the idle gaps and the induced collisions as a result of two data transmissions.
Thus, avoiding the effect of idle and signal interference leads to minimized task completion
time and improved network resource utilization. All mentioned work considers either the
completion time and/or the consumed energy to schedule independent tasks.

Xie, Tao, and Xiao Qin. [97] proposed a scheme called Balanced Energy-Aware Task Al-
location (BEATA) for heterogeneous embedded systems. BEATA makes a trade-off between
the schedule length and the energy depletion by an energy-delay tunable task scheduling
strategy. The work in [97] does not consider workload balancing. Thus, some nodes that are
intensively used are depleted early. In contrast, work in [89], [93]–[96] can well balance the
task scheduling on collaborative hosts. In addition, the authors in [97] do not consider the
task execution deadlines, therefore it is not appropriate for real-time systems.

For faulty real-world RTWNs, Gong, Tao, et al. [98] suggested a reliable task scheduling
framework to manage the extra data traffic brought on by disturbances. The introduced Re-
liable Dynamic Packet Scheduling (RD-PaS) improves the QoS (i.e. the reliability of the data
delivery) in terms of task scheduling and message traffic scheduling models. RD-PaS guar-
antees timely and reliable delivery for critical messages while minimizes the reliability for
less important messages in the presence of disturbances. However, the RD-PaS framework
does not provide multipath routing techniques. A Reliability Maximization with Energy
Constraint (RMEC) algorithm is developed by the authors in [99]. RMEC is applied on
dependent tasks by using a blend of three phases: frequency selection, processor assign-
ment and task priority establishment while adopting the DVS technique. RMEC makes a
balance between the reliability and the energy consumption in a heterogeneous computing
platform of a cluster. However, the aforementioned algorithms consider fault-free wireless
systems, while in practice wireless technology encounters different types of failures. Hence,
fault tolerance and reliability of RTWNs are critical issues and require a corresponding task
scheduling process. Therefore, several work was proposed to investigate different aspects
of the fault-tolerant task scheduling problem as shown in the next subsection.

2.2.5 Related Work on the Fault-tolerant Task Scheduling Schemes

Another thread of work in the literature advances the state of the art by providing a variety
of fault-tolerant task scheduling algorithms. Fault tolerance aims at improving the reliabil-
ity, safety and availability of a system.

14

Chapter 2. Related Work and Research Gap

Many task scheduling algorithms were proposed to support fault tolerance in RTWNs.
The authors in [92] proposed a real-time Fault-tolerant Task Allocation Algorithm (FTAOA)
to find a solution in the presence of node failures. FTAOA adopts a primary/backup tech-
nique to tolerate failed nodes by applying the Discrete Particle Swarm Optimization (DPSO)
algorithm. The DPSO-based algorithm considers the consumed energy and guarantees that
each task is executed before its deadline. However, this work does not consider the prece-
dence restrictions and the communication cost is also neglected. Marshall, Francis Franklin,
et al. [100] suggested a modified Real-time Fault-tolerant Task Allocation Scheme (mRF-
TAS) for WSNs, which uses active replication to address the fault tolerance and the task
processing time. The proposed scheme needs to be experimentally evaluated and compared
to other related algorithms. Moreover, it needs to be extended to minimize the energy con-
sumption in WSNs. These studies are concerned with node failures during the fault-tolerant
task scheduling process, whereas this thesis focuses also on fault tolerance in case of a failure
in the communication system, which is not covered in the mentioned work.

The work in [101] studies the capability of tolerating transient faults by partitioning pe-
riodic tasks on homogeneous multi-core platforms. The task quantization exploits the re-
lations and recovery costs under Rate Monotonic Scheduling (RMS) policy [102]. A metric
named “compatibility index” is used to measure how much a group of tasks is compatible
when they are scheduled on the same core. Based on this metric, two partitioning schemes
are proposed: Compatibility Aware Task Partition (CATP) and Group-wise Compatibility
Aware Task Partition (G-CATP). CATP schedules just one task at a time to the most compat-
ible core, while G-CATP looks for the most compatible set of tasks, then it assigns them to a
specific core. This work needs more investigation in the partitioning decisions. For instance,
the deadline parameter can be added to the “compatibility index” metric. In addition, there
should be a trade-off between the execution speed and task compatibility. For example,
a task is executed faster in a core but it is more compatible with a task group in another
core. The precedence constraint is also not considered yet. Some search focuses mainly on
high energy efficiency besides tolerating transient faults. For instance, the authors of the
work in [103] aim to minimize the consumed energy by improving task scheduling algo-
rithms. The improved algorithms show significant results in energy savings and tolerate
multiple transient faults under the preemptive Earliest Deadline First (EDF) policy. Simi-
larly, Wei, Tongquan, et al. [104] presented quasi-static task scheduling algorithms, which
are used to investigate the fault tolerance and DVS technique. The proposed algorithms
contain off-line and on-line components, where the off-line components are used to enable
the on-line ones to save energy by using dynamic slack. Han, Qiushi, et al. [105] introduced
an algorithm that ensures fault tolerance for hard real-time systems. The proposed work
determines checkpoints that ensure a successful task scheduling process under the worst-
case scenarios (i.e. multi faults on a single core). The task scheduling, speed assignment
and checkpoint configuration play crucial factors to design a system with high efficiency in
saving energy and fault tolerance. Guo, Yifeng, et al. [106] defined a generalized standby-
sparing technique that can tolerate permanent and transient faults. It partitions cores into
primary and secondary groups, where the primary group contains the main tasks and the
secondary group contains the backup tasks. All tasks are executed under EDF and Earliest-
Deadline-Late (EDL) [107] policies. Task partitioning into two core groups aims to improve
energy savings and minimize overlapping executions.

2.3 Research Gap

The requirements of hybrid systems as identified in Section 2.1 are only partially satisfied in
prior work.

15

Chapter 2. Related Work and Research Gap

Precise time synchronization in a hybrid network must take into account all factors that
cause synchronization errors. For instance, research addressed problems like clock drift,
asymmetric delays and precise timestamping. Our thesis provides a contribution beyond
the state of the art by improving the IEEE 802.1AS protocol to deal with all these problems.
Moreover, the algorithm proposed in this thesis skips the outlier path delays as a result of
variable surrounding conditions (e.g. traffic congestion and link loss in dynamic topologies)
during the synchronization process in a hybrid TSN system.

TMS, R-TMS and OR-TMS are presented in this thesis to deal with the challenges related
to the deadlines (i.e. bounded latencies), message scheduling and constraints of real-time
applications during the task and message scheduling process. Each of these three algo-
rithms shares the following phases: 1) Building a topological order for the cooperating tasks
depending on specific criteria to establish the task priorities. 2) Avoiding the negative im-
pact of signal interference, which causes increased packet losses and retransmissions, by
applying a model named the physical interference model. This model is used to schedule
TT messages in predefined time slots. 3) Considering deadlines, precedence and period con-
straints, the transmission times of messages are planned and the tasks are scheduled to the
distributed wireless hosts.

In TMS, the task and message is based on a heuristic approach using list scheduling. The
main purpose of TMS is to schedule each task to the most suitable host. The host selection is
performed according to the minimum start time. The start time of a host mainly depends on
the time of arrival of all incoming messages when scheduling them in their time slots. The
message scheduling process considers the essential constraints for TT real-time applications
including the period and the precedence constraints. In the end, the solution obtained by
TMS should satisfy all task deadlines.

R-TMS and OR-TMS algorithms are built on top of TMS with all constraints inherited.
Moreover, limited energy and fault tolerance requirements are taken into account. The pro-
posed fault-tolerant algorithms maximize the reliability by sending multiple copies of mes-
sages through redundant routes. Our proposed algorithms consider three non-trivial sub-
problems, namely, energy-saving, minimizing task completion time and failure rate in het-
erogeneous wireless nodes as a combinational multi-objective optimization problem. OR-
TMS is based on the bio-inspired PSO algorithm that finds a solution with high efficiency
and less computational complexity compared to our heuristic methods (i.e. R-TMS and
TMS).

2.3.1 Comparison of the Extended IEEE 802.1AS that Addressed the Time Syn-
chronization with Prior Work

Table 2.1 shows a comparison of the extended 802.1AS and prior work that aimed at improv-
ing the time synchronization. The related work aims to improve the time synchronization
by dealing with the asymmetric delays, clock drift and time-stamping in real-time wireless
networks. The extended protocol addresses all the mentioned aspects which in turn reduce
the synchronization error between the grandmaster and slave clocks. This is important to
avoid task scheduling errors for time-critical applications. In addition, the table shows that
the extended protocol allows to provide the features of TSN protocols, which have proven
effective in Ethernet networks.

16

Chapter 2. Related Work and Research Gap

TABLE 2.1: Comparison of the extended IEEE 802.1AS with prior work that
addressed the time synchronization process.

Algorithm

Asymmetric
delays

mitigation

Clock
drift

handling
Precise

time-stamping

Applied in
TSN

based systems

Reinhard Exel
[55] X

Buevich, Maxim, et al.
[65] X X

Chen, Jian, et al.
[66] X

Chen, Wu, et al.
[54] X X

Sungwon Lee
[19] X

Lv, Shuai, et al.
[227] X

von Zengen, Georg, et al.
[57] X X

Elsts, Atis, et al.
[58] X X

Shrestha, Deep, et al.
[60] X X

Cho, Hyuntae, et al.
[61] X

Wu, Jie, et al.
[67] X

Wang, Zhaowei, et al.
[68] X

Lam, Duc Khai, et al.
[69] X X X

H.Baniabdelghany, et al.
[27] X X X X

17

Chapter 2. Related Work and Research Gap

2.3.2 Comparison of TMS, R-TMS and OR-TMS that Address the Task and Mes-
sage Scheduling with Prior Work

This section outlines the major challenges and requirements considered for task and mes-
sage scheduling in hybrid real-time systems and compares the proposed algorithms (TMS,
R-TMS, and OR-TMS) with prior work.

Table 2.2 shows the contributions of the proposed algorithms to meet the requirements
and challenges. We note that some research is limited to meeting the requirements of an
accurate timing system, including those that aim to schedule tasks regardless of whether
the system is exposed to a potential failures. Other work is limited to finding solutions to
conserve the consumed energy, while there are authors who study only how to schedule
messages and avoid interference in signals using a specific timing for each sender.

To be more specific, Table 2.3 compares the proposed algorithms separately with ex-
tra prior works and more challenges. For instance, researchers in [93]–[96] scheduled in-
dependent tasks while taking into account the saving energy and workload balancing as-
pects to meet the task deadlines. Regardless of how much energy was consumed, the au-
thors in [100], [101] minimized the total failure rates. The works in [83], [84], [98], [228]
aimed to fulfil the task deadlines by using routing approaches to conserve communication
costs. The authors in [92] neglected the communication costs because of no message trans-
mission between the independent tasks. Energy-saving and minimizing of the makespan
were considered in [89], [91], [97], [99] without regard to message scheduling or supporting
fault-tolerant message delivery. The authors in [228] considered the task deadlines, prece-
dence and period constraints to found task scheduling solutions in TSN-enabled Ethernet
networks. In contrast, the TMS [28]algorithm includes many aspects that are mentioned
including the deadline, precedence and period constraints. In addition, it uses routing ap-
proaches and scheduling the messages into fixed time slots to conserve the communication
cost in fault-free Wireless TSN networks. R-TMS [29] is built on top of TMS to support fault-
tolerant message delivery and consider the energy-saving and failure rate during the task
and message scheduling process. Due to using the DPSO algorithm, OR-TMS [29] produces
better solutions than R-TMS. Moreover, OR-TMS has more advantages because of the aspect
of workload balancing.

18

Chapter 2. Related Work and Research Gap

TA
B

L
E

2.
2:

C
om

pa
ri

so
n

of
th

e
th

es
is

al
go

ri
th

m
s

w
it

h
pr

io
r

w
or

k.

A
lg

or
it

hm
B

ou
nd

ed
la

te
nc

y
En

er
gy

sa
vi

ng
M

es
sa

ge
sc

he
du

li
ng

Ta
sk

sc
he

du
li

ng

Fa
ul

t-
to

le
ra

nt
ta

sk
sc

he
du

li
ng

A
cc

ur
at

e
gl

ob
al

no
ti

on
of

ti
m

e

Z
im

m
er

li
ng

,M
ar

co
,e

t a
l.

[3
4]

X
X

X

B
ru

m
m

et
,R

ya
n,

et
al

.[
39

]
X

X

Z
ha

o,
M

ia
o,

et
al

.[
40

]
X

X
X

Yu
,W

an
li

,e
ta

l.
[4

4]
X

X

C
hi

pa
ra

,O
ct

av
,e

ta
l.

[4
8]

X
X

Ja
m

th
e,

A
na

gh
a,

et
al

.[
49

]
X

X

Fa
te

h,
B

.a
nd

G
ov

in
da

ra
su

,M
.[

51
]

X
X

X
X

C
he

n,
W

u,
et

al
.[

54
]

X
X

X

Le
e,

Su
ng

w
on

[1
9]

X
X

vo
n

Z
en

ge
n,

G
eo

rg
,e

ta
l.

[5
7]

X

B
ue

vi
ch

,M
ax

im
,e

t a
l.

[6
5]

X
X

Ya
ng

,J
un

,e
ta

l.
[9

1]
X

X
X

Yu
,W

an
li

,e
ta

l.
[9

3]
X

X

D
ai

,L
ia

ng
,e

ta
l.

[9
5]

X
X

X

M
ar

sh
al

l,
Fr

an
ci

s
Fr

an
kl

in
,e

ta
l.

[1
00

]
X

X
X

G
uo

,W
en

zh
on

g,
et

al
.[

92
]

X
X

X
X

H
an

,Q
iu

sh
i,

et
al

.[
10

1]
X

X
X

T
he

th
es

is
al

go
ri

th
m

s
X

X
X

X
X

X

19

Chapter 2. Related Work and Research Gap

TA
B

L
E

2.
3:

C
om

pa
ri

so
n

of
TM

S,
R

-T
M

S
an

d
O

R
-T

M
S

al
go

ri
th

m
s

th
at

ad
dr

es
s

th
e

ta
sk

an
d

m
es

sa
ge

sc
he

du
lin

g
w

it
h

ex
tr

a
pr

io
r

w
or

k.

A
lg

or
it

hm

Pr
ec

ed
en

ce
an

d
pe

ri
od

co
ns

tr
ai

nt
s

R
ou

ti
ng

ap
pr

oa
ch

es
to

co
ns

er
ve

co
m

m
-c

os
ts

Fu
lfi

ll
in

g
ta

sk
de

ad
li

ne
s

En
er

gy
sa

vi
ng

M
in

im
iz

in
g

of
fa

il
ur

e
ra

te

M
in

im
iz

in
g

of
m

ak
es

pa
n

Ti
m

e-
sl

ot
te

d
m

es
sa

ge
sc

he
du

li
ng

Fa
ul

tt
ol

er
an

t
m

es
sa

ge
de

li
ve

ry
W

or
kl

oa
d

ba
la

nc
in

g

Ji
n,

Yi
ch

ao
,e

ta
l.

[8
9]

X
X

X
X

X

Yu
,W

an
li

,e
ta

l.
[9

3]
X

X

N
ea

m
at

ol
la

hi
,P

ey
m

an
,e

ta
l.

[9
4]

X
X

X
X

D
ai

,L
ia

ng
,e

ta
l.

[9
5]

X
X

X

D
ai

,L
ia

ng
,e

ta
l.

[9
6]

X
X

X

X
ie

,T
ao

,a
nd

X
ia

o
Q

in
.[

97
]

X
X

X

G
on

g,
Ta

o,
et

al
.[

98
]

X
X

X
X

Z
ha

ng
,T

ia
ny

u,
et

al
.[

84
]

X
X

X
X

Z
ha

ng
,T

ia
ny

u,
et

al
.[

83
]

X
X

X
X

P.
M

ar
ya

m
,a

nd
R

.O
be

rm
ai

ss
er

[2
28

]
X

X
X

X

Z
ha

ng
,L

on
gx

in
,e

ta
l.

[9
9]

X
X

X
X

Ya
ng

,J
un

,e
ta

l.
[9

1]
X

O
a

O
a

O
a

G
uo

,W
en

zh
on

g,
et

al
.[

92
]

X
O

a
O

a
O

a
O

a

M
ar

sh
al

l,
Fr

an
ci

s
Fr

an
kl

in
,e

ta
l.

[1
00

]
X

X
X

H
an

,Q
iu

sh
i,

et
al

.[
10

1]
X

X
X

H
.B

an
ia

bd
el

gh
an

y,
et

al
.[

28
]

X
X

X
X

X

H
.B

an
ia

bd
el

gh
an

y,
et

al
.[

29
]

X
X

X
C

b
C

b
C

b
X

X

H
.B

an
ia

bd
el

gh
an

y,
et

al
.[

30
]

X
X

X
O

a
O

a
O

a
X

X
X

a A
n

ob
je

ct
in

a
m

ul
ti

-o
bj

ec
ti

ve
co

st
fu

nc
ti

on
,w

hi
ch

is
us

ed
to

fin
d

a
gl

ob
al

ta
sk

an
d

m
es

sa
ge

sc
he

du
lin

g
so

lu
ti

on
.

b Th
e

al
go

ri
th

m
co

nt
ri

bu
te

s
du

ri
ng

th
e

sc
he

du
lin

g
of

ev
er

y
ta

sk
gr

ad
ua

lly
on

an
av

ai
la

bl
e

ho
st

un
ti

la
ll

ta
sk

s
in

a
so

rt
ed

lis
ta

re
co

m
pl

et
ed

.

20

Chapter 3

Background Theory

This chapter describes background theories that are relevant to understand the rest of our
thesis. Section 3.1 gives a brief overview of real-time systems that are widely deployed in
different domains to provide a wide range of services. Section 3.2 explains the concept of the
distributed real-time systems. Time-triggered and event-triggered systems are introduced
in Section 3.3. Section 3.4 discusses different aspects of dependability such as dependability
threats and the means to obtain dependability. Fault-tolerance techniques are discussed in
Section 3.5 to preserve the correctness of the system in the event of failures. Section 3.6
compares timing protocols (i.e. Precision Time Protocol (PTP) and Network Time Protocol
(NTP)) and it demonstrates the limitations of the NTP protocol. The standard 802.1AS for
clock synchronization is described in Section 3.7. Section 3.8 discusses the link scheduling
modes to avoid interference due to collisions and to minimize the end-to-end delay. Section
3.9 gives an overview of the 802.11 protocol and its limitations in real-time systems. Section
3.10 analyzes real-time communication protocols for wireless systems, while well-known
real-time communication protocols in wired systems are discussed in Section 3.11.

3.1 Real-time Systems

A real-time system is defined as a time-bounded system intended to be used in applications
where the correctness of the outputs depends mainly on the logical order of computations
and the timing at which the computations are implemented [108]. In other words, the cor-
rectness of the results in real-time systems depends basically on the predictability of the task
execution time and the message communication time. Each task and each message has to
finish before its deadline. This timeliness condition also demands that the real-time sys-
tems should not be degraded in case of peak-load traffic as a result of overlapping zones of
two senders. Moreover, to ensure reliability, these systems should be designed to be fault-
tolerant. For example, the air traffic control real-time system, where the timeliness is critical
to coordinate aircraft during landing and take-off. The control process becomes more diffi-
cult when wireless networks are involved, where timeliness and reliability strongly depend
on the surrounding factors.

In general, real-time systems can be classified into two groups: soft and hard real-time
systems. For the purpose of preventing dangers to the user or the environment, a hard real-
time system [109] is any software or hardware that must function within strict, predeter-
mined deadlines, as shown in Figure 3.1a. The application may cause disasters and massive
system failure if it does not complete its tasks within a specified time. Many examples of
hard real-time systems are present in our daily life such as robots, automotive and railway
systems, nuclear power plants, etc. Consequently, a timing failure can lead to intolerable
costs in terms of human lives or major economic losses.

A soft real-time system [110] tolerates variations in delivery time and deadline viola-
tions as shown in Figure 3.1b. Such a system degrades the application performance but it

21

Chapter 3. Background Theory

does not endanger the user or the environment. For example, multimedia applications are
considered as soft real-time systems because deadline violations degrade the quality but do
result in safety risks. Banking applications, reservation systems, and entertainment systems
can also work properly under variable delays. In general, all components involved in a real-
time system must support the real-time requirements including for example the operating
systems such as VxWorks [111] and MaRTE OS [112] which have the capability to guarantee
timing requirements in task scheduling.

Deadline

Time

Value

(A) Hard deadline

Time

Value
Deadline

(B) Soft deadline

FIGURE 3.1: Timeliness for hard and soft real-time systems [113].

3.2 Distributed Real-Time Systems

A Distributed Real-Time System (DRTS), as shown in Figure 3.2, contains multiple comput-
ing nodes (e.g. sensors) interconnected by a real-time communication network. The nodes
are physically distributed along the real-time system rather than communicating within a
single processing unit. This is due to a number of reasons, first, the spatial expansion of the
application may demand a distributed system. In other words, the computation of a real-
time system is based on gathering data from spatially separated and heterogeneous nodes,
the results of the processing are sent to central processing and monitoring nodes that are
located at different places. Second, distributed applications may require special hardware
specifications. Therefore, it would be difficult to connect them to the same unit. Third, fault
tolerance and workload balancing must be structured in such a way that faults can be con-
tained, detected, and masked. This guarantees that even in the event of failures, the system
will continue to function properly.

In distributed systems, insufficient precision or unexpected communication delays lead
to some nodes execute tasks at different sequences. Thus, some nodes may have an incor-
rect and inconsistent view of the situation [114]. Therefore, the typical distributed real-time
system not only preserves the task casual order but also ensures that the tasks are executed
before their deadlines [4]. This means that message communication delays have to be accu-
rately predicted. Based on that, real-time protocols that offer delay guarantees and deter-
ministic access to the medium are required.

Most protocols are designed to distribute tasks to different nodes either to maximize data
rate or to conserve network resources without service connectivity after the distribution has
been established. For this reason, there are some dedicated communication protocols that
are implemented using specialized communication hardware.

22

Chapter 3. Background Theory

…

Real-time communication
network

NodeNNode3Node2Node1

Monitoring
node

Central processing
node

Sensors

FIGURE 3.2: An example of distributed real-time system.

3.3 Time-Triggered and Event-Triggered Embedded Systems

The processing and communication activity in real-time embedded systems can be classified
into two categories depending on when the tasks and messages are triggered [115]–[117]: In
Time-Triggered (TT) systems, the tasks and messages are initiated periodically at predefined
point of times. In Event-Triggered (ET) systems, the tasks and messages are initiated in
response to significant sporadic events. On the one hand, the task scheduling in most ET
systems is associated with task pre-emption, meaning that a high priority task can interrupt
the execution of a lower priority task, with the intention of resuming its execution at a later
time. On the other hand, task scheduling in most TT systems is associated with task co-
operation, meaning that the current task continues executing, then it relinquishes the control
to another task co-operatively. Therefore, ET systems excel in flexibility, whereas TT systems
excel in temporal predictability.

In TT systems, each task and each message is triggered when the global time reaches a
specific point. The periodic clock signal is widely used as a trigger to perform TT tasks in
communication and control systems. Therefore, the precise synchronization for all nodes
that perform TT periodic tasks plays a critical role in TT embedded systems. In ET systems,
tasks and messages are triggered when a significant event occurs such as a progress event
(e.g. termination of a preceding task) or an external signal that comes from the surrounding
environment (e.g. an interrupt). There are two types of events: predictable events that occur
at certain times determined by pre-defined laws and chance events that cannot be predicted
deterministically. The latter events are unplanned and cannot be described by specific laws
in contrast to the predictable ones. Compared to the ET design, the TT design is simpler,
having less overhead, resource sharing is more straightforward, and testing is simplified.

For the integration of TT and ET communication systems, many contention-based schemes
have been proposed. For example, Figure 3.3 illustrates three different contention-based
schemes: 1) In the non-preemptive scheme, if a TT periodic message overlaps with an ET
message, the ET is not pre-empted by the TT message and the transmission of the ET mes-
sage continues until completion. Thereby, the TT message transmission may be delayed at
worst by one ET message transmission. 2) The preemptive scheme allows interfering TT
message to pre-empt the currently transmitted ET message. Afterwards, the ET message is
resumed to be transmitted at the time of the TT message completion. 3) The time-reserved
scheme reserves an interval of time before each TT message to avoid the potential overlap-
ping with expected ET messages. However, this scheme is not suitable for systems without

23

Chapter 3. Background Theory

prior knowledge about ET applications due to depending on the maximum size of an ET
message. Therefore, sending large size ET messages may severely affect the messages laten-
cies and the utilization of the network.

Time-reserved scheme

Preemptive scheme

Non-preemptive scheme

Time-Triggered message transmission time Event-Triggered message transmission time

Real time

Real time

Real time

TT message arrival time

FIGURE 3.3: Contention-based schemes for TT and ET message transmissions.

3.4 Dependability

Dependability of a real-time system is defined as the ability to deliver a trusted service
within a period of time [118]. It usually consists of a set of attributes including availability,
reliability, security, safety, and maintainability. Availability is also known as the uptime
and it defines whether a correct service can be used or accessed within a specific period
of time. Distributed real-time systems typically have a big advantage compared with non-
distributed systems in terms of service availability. Reliability is the likelihood that a service
will carry out its intended purpose successfully within a specific time frame or continue
to function without failure in a specific environment. For this reason, real-time systems
develop services as a series of fault-tolerant functions that operate correctly regardless of
faults [119]. Security is the ability of the system to protect its data. There are two types of
data: public data can be used by any user and private data that should only be accessed by
authorized users with defined privileges. Safety means that the computing system is free
from harms or dangers to human life and property. Maintainability measures the ability of
the computing system to be repaired or modified to specified conditions.

The concepts of dependability also distinguish different types of threats and the means
by which dependability is attained.

3.4.1 Threats: Faults, Errors and Failures

A fault is described as a physical flaw or defect in the system’s hardware or a bug in the
system’s software. On one hand, the fault is active when it causes an error, otherwise, it is
dormant. On the other hand, it is not necessary that the presence of a fault leads to a failure.
For instance, a system may contain a fault but the conditions may never activate this fault
and lead to a failure. The faults are classified into three categories: transient, intermittent,
and permanent.

24

Chapter 3. Background Theory

• A transient fault is defined as a fault that temporarily affects network connectivity or
involves the loss of computational components and services for a short period. Nor-
mally, transient faults disappear without a repair action.

• An intermittent fault is a malfunction of a system or software that happens at irregular
intervals. The system or the software is working normally outside these intervals.
Moreover, it masquerades as a transient fault but it returns unpredictably. Therefore,
this type of fault is difficult to trace and deal with.

• A permanent fault is a malfunction that does not go away when certain conditions exist
and needs a repair action to be removed, whereas intermittent faults are permanent
faults that sporadically lead to failures (e.g. loose contact).

An error is a deviation between the expected state of a computing system and its actual
state. It occurs when a part of the system enters into an unpredicted state due to activation of
a fault. If the error reaches a service of the system and changes its behaviour, the error causes
a subsequent failure. Special observation mechanisms such as log files or error messages are
used to indicate the presence of the errors. Undetected errors are called latent errors.

A failure occurs when the system provides a behaviour that deviates from the speci-
fication. Therefore, fault tolerance techniques are used to avoid the effects of failures and
to preserve the overall operation of the system. A fault-tolerant real-time system normally
includes subsystems called Fault Containment Region (FCR) [120]. The fault must be discov-
ered within the FCR to mitigate its effects on the services of other regions. To achieve this,
error containment coverage is provided within each FCR. In a distributed system, nodes and
communication links are usually considered FCRs if they are completely independent while
designing the system.

In general, the way that the computing system and communication can fail is called the
failure mode. The following failure modes are distinguished in practice:

• Omission failures: the nodes or participants keep working, but the connection between
at least two of them is lost or at least one of the messages is dropped or delivered with
unexpected delay (i.e. channel failure). The omission failure can also occur when a
process in the system is crashed (i.e. process failure).

• Crash failures: a node shuts down or halts unpredictably. The reason relates to errors
in the environment, the output result of an application, or simply a loss of power.

• Simultaneous or repeated failures: these are correlated failures, in which several nodes go
down simultaneously or one node keeps failing.

• Fail-stop failures: the computing system with the fail-stop failure stops working, then
the system does not return any result or the result shows that the system is failed.
Depending on the time model, we can determine the occurrence of this type of failure.
For example, it can be detected in time-triggered systems, while it is difficult to be
detected in event-triggered systems.

Figure 3.4 illustrates the chain of threats to dependability that shows a causal relation-
ship between faults, errors, and failures. The arrows in the chain start from the activation of
a fault, followed by the propagation of the produced error until the induced failure.

25

Chapter 3. Background Theory

Fault Error Failure
Activation Propagation Causation

Fault

FIGURE 3.4: Fault-Error-Failure chain of threats to dependability [118].

3.4.2 The Means to Obtain Dependability

To increase the dependability of a system and to break the chains that threaten dependabil-
ity, a set of four techniques are combined [118] including fault prevention to prevent fault
occurrence or the introduction of faults, fault tolerance to provide correct service in the pres-
ence of faults, fault removal to reduce the number of existing faults, and fault forecasting
to estimate the current number of faults, future incidence, and the possible consequences of
faults.

Fault prevention is a proactive technique used to identify the areas where the faults
could occur and to close the gaps. Fault prevention is accomplished during the manufactur-
ing phase (i.e. the design process) of software applications and hardware components. To
be achieved, several development methodologies and techniques are used.

Fault tolerance aims to keep the system correctly working in the event of failures, al-
though it may degrade the performance of the system. For example, two engines of an
airplane represent a fault-tolerant system. If one of them fails, the other remains operational
to let the airplane continue to fly. In addition, fault-tolerant mechanisms need to be eval-
uated with respect to the dependability attributes (e.g, reliability and availability, ease of
design and maintenance, ease to understand, data security).

Fault tolerance aims at recovering the system from a state that includes active errors to a
state without errors. Implementation of error handling and fault management is necessary
to complete the recovery process. Error management either does a roll-forward or puts
the system back in a safe condition. Fault handling aims to prevent the current fault to be
activated again. To achieve that, firstly it identifies and detects the factors causing errors,
secondly, the faulty components are isolated and prevented to participate in the service
delivery, thirdly switching into non failed components, and finally, the system will be re-
initialized.

Fault removal is divided into two phases to remove the faults before putting the sys-
tem into production. The first phase is fault removal during the development phase, and
the second phase is fault removal during the operating phase. Fault removal during the
development phase checks if the system adheres to specific verification conditions such as
static verification conditions (e.g., data flow analysis) and dynamic verification conditions
(e.g., verification testing). If not, the system analyses the faults that prevent satisfying these
conditions, and then the required corrections are performed. Fault removal during the op-
erating phase is either corrective maintenance or preventive maintenance. Corrective main-
tenance is used to remove reported faults that cause errors, while preventive maintenance
is used to remove faults before they may cause errors during the live operation.

Fault forecasting is an assessment of the behaviour of the system concerning the occur-
rence of the fault. The assessment is fulfilled in terms of qualitative and quantitative aspects
that are based on classifying failure modes and probabilities of satisfying the attributes of
dependability.

26

Chapter 3. Background Theory

3.5 Techniques for Fault Tolerance in Critical Systems

3.5.1 Fault Hypothesis

A system’s ability to continue operating in the event that some of its components fail is
known as the Fault Tolerance (FT) of the system. It becomes a prerequisite, particularly for
life-critical and high-availability systems [121]. Fault-tolerant system are confronted with
two types of faults: covered and uncovered faults. The covered faults are addressed during
the development phase of the system. In the event of a covered fault occurrence, the fault
is guaranteed to be tolerated to prevent any effect on the system functionality. Uncovered
faults are those faults that are not contained in the fault hypothesis and there is no provided
strategy against them. Therefore. It is necessary to prove that the uncovered fault occurs
rarely to avoid a failure which in turn, leads to a failure of the entire system [122].

Research in fault-tolerant techniques includes interdisciplinary work. All possible faults
have to be carefully considered especially when the system is being complicated, the fault
tolerance is a necessity for high-value systems such as the military, transport systems, and
public facilities. The field of research topics in the area of fault tolerance is wide such as soft-
ware models, hardware reliability, and parallel processing [123]. Therefore, in this section,
we will introduce briefly some fault-tolerance techniques.

3.5.2 Error Detection and Correction Codes

During data transmission from a transmitter to a receiver, data packets can suffer from noise
that may cause errors in the sequence of the binary bits. Therefore, redundant codes can be
implemented in both the transmitter and receiver to ensure the integrity of the transmitted
data.

Error detection codes: they append some added bits to the original transmitted packet
to detect the errors at the receiver. For example, 1) Simple parity code [124]: There are two
types of simple parity codes, namely even and odd parity codes. A parity bit is added to
the original binary code to make the total number of 1′s odd or even depending on which
parity code is implemented. Thereby, the parity code is useful for detecting a single bit flips
in the received packet. 2) Two-dimensional Parity check [124]: This method implements the
simple parity code for each row of the original data, similarly, the same parity code is imple-
mented for each column. Then all calculated parity bits are appended with the transmitted
original packet. 3) Hamming code [125]: Up to two erroneous bits can be detected using this
method, to do that, multiple parity bits are generated and added at specific positions in the
original transmitted packet. At the receiver, a recalculation process is performed to detect
the errors and find out the position of the bit errors. 4) Checksum [126]: In this method, small
segments are derived from the original message and all segments are added to each other
using 1′s complement arithmetic to compute the sum, which is sent to the receiver. Similarly,
the receiver adds the received segments to compute its sum, and if the complement of the
receiver’s sum is identical with the transmitted one, then the data is accepted, otherwise, an
error is detected. 5) Cyclic Redundancy Check (CRC) [127]: It is based on binary division by
using a generator polynomial. Firstly, the transmitted packet is divided by a generator poly-
nomial, and then the remainder is added to the original packet. At the receiver, the received
packet is also divided with the same generator polynomial. If the remainder of the division
is zero then the data is correct, otherwise, an error is detected. An example for a generator
polynomial is x3 + 1, which can be represented as 1001. Another example is x2 + x + 1 that
represents 0111.

Error correction codes: In addition to error detection, error correction codes are used
to correct the detected errors in the received packet at the receiver. For example, Hamming

27

Chapter 3. Background Theory

code has the capability to correct a single bit error in the received packet [125] and CRC is an
effective correction technique to correct the errors [128] so that the original can be restored.

3.5.3 Damage Confinement

Damage confinement [129] is based on structuring the system to prevent or stop the spread-
ing of the damage caused by failures of some components during the repairing process.
In other words, the damage confinement works as a firewall against failures that can af-
fect adversely the efficiency of the system. The modular decomposition provides a static or
dynamic damage confinement. In the static confinement, data traffic is imposed to be for-
warded through well-defined paths. In the dynamic confinement, atomic actions are used
to keep the system in a consistent state.

3.5.4 Error Recovery

There are two approaches to restore (i.e. recover) the system from an erroneous state to an
error-free state [130]:

• Forward Error Recovery (FER): This approach is usually used in non-stop applications
to remove and correct the current state and then allow the system to move forward.
This is possible when the errors and the damage caused by a fault can be accurately
predicted and assessed (i.e. damage assessment).

• Backward Error Recovery (BER): On the contrary, when the errors and the damage
caused by a fault cannot be accurately predicted and assessed, then it is not possible
to remove the errors from the current state. Therefore to avoid the errors, the current
state is reverted to a previous stable and error-free state (i.e. checkpoint). BER is
frequently used due to its simplicity and it is independent of unanticipated faults. But
on the other side, it requires more overhead for the recovery process and there is no
guarantee that all components are recoverable or that the errors will not occur again.

3.5.5 Fault Treatment

The fault treatment [131] prevents the error from reoccurring. For example, restarting the
system then moves the system to an error-free state in case of a transient fault. Further
examples of fault treatment are patching the system with a new error-free version, online-
intervention while the system is executing or correcting the human behaviour so that the
person will not cause the same error again.

3.5.6 Redundancy of Computing Systems

Redundancy enables a system to be protected against damage by extra nodes added to the
system. There are different ways to enable the system to continue operating properly and
make it more resistant to faults. However, adding extra nodes inevitably increases the com-
plexity of the system. Therefore, it is necessary to avoid redundant nodes that are not re-
quired in the system. This section discusses briefly the forms of redundancy.

Hardware Redundancy

In this type of redundancy, two or more hardware nodes are independent and completely
equipped with processors, memories, and peripheral nodes [132]. The redundant nodes can
cooperate in three ways: 1) Passive technique (i.e. fault-masking): In this simple technique,

28

Chapter 3. Background Theory

all hardware nodes work independently, and the output results are compared. If there is
a different result in a node, it means a fault occurred in that outlier node. Thereby, no ex-
plicit action or fault detection is required in this type of redundancy. 2) Active technique:
this technique requires a sequence of operational steps including detection, localization,
containment, and recovery to isolate the faulty hardware node. This technique does not
prevent faults from producing errors in the system. Compared to the passive technique, the
active technique is not expensive because only one hardware node is in the operating mode
and all other standby nodes are available if the current operating node fails. In addition,
it recognizes a fault and takes an action after producing an error. Hence it is useful in sys-
tems that tolerate temporal errors while they are running. 3) Hybrid approach: it is used in
fault-masking to prevent spreading the errors and it also detects faults and reconfigures all
independent nodes to isolate the faulty one. In the following, we demonstrate some exam-
ples for each hardware redundancy technique.

Passive hardware redundancy

Triple Modularity Redundancy (TMR) [133]: It is considered one of the most known
passive fault-tolerance techniques. Figure 3.5 illustrates the structure of TMR, where a hard-
ware node (N) is replicated into three nodes that operate simultaneously in parallel. The
results of the three nodes are inserted into a voter (V). The voter then presents the common
result as an output value.

N

VN

N

input output

N VNode Voter

FIGURE 3.5: Structure of TMR FT technique [133].

The advantage of TMR is the ability of masking a single failure in one of the three opera-
tional nodes. As mentioned, TMR is a passive technique that does not require special actions
such as error recovery. TMR is more suitable for transient faults since it does not have the
ability to remove or isolate the failed node. In addition, it does not handle two failed nodes.
Therefore, if one node fails, it is necessary to be sure that the other two remaining nodes
work properly.

N-Modular Redundancy (NMR) [134]: It is a generic FT technique preferred to be
used in highly critical systems. The concept of NMR is based on the assumption that at least
N+1

2 nodes are working correctly at any time, where N is an odd number denoting the total
number of replicated nodes. Thus, NMR will tolerate the failure of up to N−1

2 nodes. For
example, if NMR replicates 5 nodes that are operating at the same time, then at least 3 nodes
should work properly to mask at most 2 failed nodes. In contrast to TMR, NMR enhances
reliability and guarantees continuity for a system that contains more than one failed node.

Active hardware redundancy

29

Chapter 3. Background Theory

As mentioned the passive (i.e. static) redundancy techniques are more expensive, where,
three replicated nodes mask one failed node, five replicated nodes mask two failed nodes,
and so on. In contrast to passive redundancy, in active (i.e. dynamic) FT techniques, only
two replicated nodes are required to mask one failed node and three nodes to mask two
failed nodes. To illustrate how active techniques work, some active techniques are ad-
dressed in this section.

Standby sparing [135]: To demonstrate the concept of standby sparing, Figure 3.6
shows a switch that is controlled by a fault detection scheme to compare the outputs of each
node with an error report that is issued from its corresponding error detection circuitry. This
comparison makes the switch aware if a node is working properly or it is a faulty node. In
case of a faulty node, the output is taken from another spare (i.e. standby) node. Standby
sparing is divided into two types, hot and cold standby sparing. In hot standby sparing, the
spare node is operating in synchrony with its online node and is prepared to take over at
any time. This type is fast and does not need power-up time, in contrast, it affects adversely
the power consumption. In cold standby sparing, the spare is powered-up only when it is
required to work instead of the faulty node. It requires more time than the hot sparing to
bring the spare into the operational state with less power consumption.

N1
Error

Detection

N2

Nn

SwitchError
Detection

Error
Detection

input output

N Node

FIGURE 3.6: Structure of standby sparing FT technique [136].

Duplication with comparison [137]: A comparison of the results is made between two
identical nodes which perform the same computation. The duplication concept can detect
faults but it cannot determine which node is faulty. This technique causes problems. For
instance, the input data may be faulty, which means that the same error is inserted into the
duplicated nodes and then they produce the same erroneous result. The comparator (C)
may not perform the exact comparison due to problems in matching or synchronization. In
addition, a failed comparator causes the entire technique to stop operating.

N

N

Cinput

output

agree/disagree

N Node ComparatorC

FIGURE 3.7: Structure of duplication with comparison FT technique [137].

30

Chapter 3. Background Theory

Pair and spare [138]: It combines standby sparing and duplication with comparison.
The concept uses N replicated nodes to N-to-2 switch rather than N-to-1 switch. The reason
is that the comparator receives two results to verify if they are the same (agree) or not (dis-
agree). As long as the output results match, the spares are not required. If the output results
disagree, the error reports will be used to locate the faulty node and then the result will be
taken from another spare. In this technique, the error detection is done at two levels, the first
level is the standby (i.e. at the node level) and the second level is done by the comparator
at the output level. Pair and spare works correctly if the faults are independent. Correlation
between faults could cause a failure of the entire technique.

N1
Error

Detection

N2

Nn

SwitchError
Detection

Error
Detection

input
output

C

agree/disagree

N Node ComparatorC

FIGURE 3.8: Structure of pair and spare FT technique [138].

Hybrid hardware redundancy

This type of redundancy technique combines passive and active redundancy. It pre-
vents spreading of errors in a system by using fault-masking and it also detects the faults
and reconfigures the system to isolate and remove the faulty nodes. Therefore, the hybrid
approaches are expensive, but with more fault-tolerance capability. Some types of hybrid
redundancy are shown below:

Self-purging redundancy [139]: In this technique, the failed nodes are purged by using
a voter threshold. The most important feature of this technique is that every node has the
ability to remove itself from the active nodes if it discovers itself as a faulty node. Thus, it
is preferred for time-critical systems because maintenance personnel can isolate the faulty
modules and replace them without causing interruptions during the operational time.

NMR with spares [140]: Figure 3.9 shows the hybrid approach of combining NMR
with the standby sparing technique. The technique works as a passive NMR technique until
the disagreement detector determines a fault through a voter that compares the individual
results from the nodes with the voter’s output. The node that disagrees is labelled as a faulty
node, removed from the system and replaced by a spare (S) node. NMR requires five nodes
to mask two faults, whereas this technique requires only three nodes and one spare to mask
the same number of faults.

31

Chapter 3. Background Theory

N1

Switch

N2

Nn

S1

S2

Sm

Disagreement Detector

V
output

System
inputs

N Node VoterVS Spare

FIGURE 3.9: Structure of NMR with spares FT technique [132].

Triple-duplex [141]: Figure 3.10 shows the hybrid approach of combining TMR with
the duplication and comparison technique. Each node in the triple-duplex setup is repre-
sented as two duplicates with a comparator (i.e. duplication with comparison). The rep-
resented nodes are then inserted into TMR. Thereby, this hybrid approach allows TMR to
mask the faults and the duplication with comparison technique serves for the detection of
the faults and removes the faulty nodes from the system. The triple-duplex setup can mask
two faults.

N1

C
input1

N1

V output

N2

C

N2

N3

C

N3

input2

input3

N Node Comparator VoterC V

FIGURE 3.10: Structure of triple-duplex FT technique [132].

Software Redundancy

To find and hide software and hardware faults, software redundancy can be used. Hard-
ware faults can be dealt with either by testing the consistency, for instance, executing some
instructions in an Arithmetic-Logic Unit (ALU) to compare the output results with precom-
puted ones that exist in Read-only memory (ROM), or testing the capability, for instance,
using a memory test. Software redundancy can also be used to detect software faults. For
example, N-Version Programming (NVP) [142] implements the same functionality using
different software versions (e.g. different development teams, different languages, different
operating systems), and then it compares the results. However, the ambiguous specifica-
tions of the versions and correlated faults could make NVP fail.

Time Redundancy

In time redundancy, no extra hardware is required, the same task is executed several times,
and then the output results are compared to confirm the integrity of the computations or
detecting transient faults.

32

Chapter 3. Background Theory

Information Redundancy

In information redundancy, extra information is required to detect faults. For example, stor-
ing the same information in different places (i.e. data backup). Another example are extra
codes that are used to detect or correct errors in the transmitted data.

3.6 NTP vs PTP Timing Protocols

Clock synchronization is one of the most crucial services for coordinating distributed access
to shared resources, comparing timestamps set up at various locations, and measuring the
performance of distributed real-time systems [143]. Due to the effects of variable latencies
which exist in any network, the establishment of a global notion of time with a predefined
precision by ensuring bounded maximum offsets becomes a challenge. Two prevalent pro-
tocols are designed to reduce the impact of time synchronization errors. The first protocol
is NTP [12], [144], [145] which is defined by IETF in RFC 5905. It is widely adopted as a
networking protocol to synchronize packet-switched networks. The second protocol is PTP
[12], [145], [146] which is developed on top of the IEEE 1588-2008 standard [17]–[19]. PTP,
in ideal conditions, can synchronize the network nodes with a reference global time with
less than one-microsecond synchronization error. It is normally used in local area networks
that depend on broadcasting for data transmission. NTP, in particular, is applied in the
internet which uses the unicast principle for data transmission with millisecond range syn-
chronization error. For non real-time applications, NTP is typically sufficient. In the case of
time-sensitive applications, the PTP protocol becomes a suitable solution.

In principle, NTP and PTP are based on the same procedure. The nodes are arranged
in a tree topology, with the reference source clocks at its top. Normally, the source clock
is synchronized with an external high-precision global clock (e.g., Global Positioning Sys-
tem (GPS) clock [147]). The nodes below periodically exchange timing packets with their
source clocks to adjust their clocks by minimizing the induced offset due to effects like un-
predictable delays and changes in temperature.

In NTP, the tree structure consists of layers (i.e. stratum levels), Stratum 0 (i.e S0) at
the top layer contains atomic clocks (e.g. Global Navigation Satellite System (GNSS) [147]).
Every main time server in Stratum 1 (i.e S1) is connected with Stratum 0 clocks to achieve
microsecond-level synchronization, it is also connected with other Stratum 1 clocks to make
fast tests and backups to each other. As shown in Figure 3.11a, Stratum 1 clocks are clients to
Stratum 0 clocks, Stratum 2 (i.e S2) clocks are clients to Stratum 1 clocks. NTP supports up to
15 stratum levels, thus, increasing the number of stratums leads to a higher synchronization
error from Stratum 0 clocks. In PTP, the tree structure contains slaves that are synchronized
to their masters. Each slave in the tree may be synchronized by different masters using
different paths. The clock at the top is called the Grand-Master Clock (GMC). The clocks
that can be slaves to the upper clocks and masters for other salve clocks at the same time
are called Boundary Clocks (BCs). The clocks (i.e. leaf clocks) that have one port are called
Normal Clocks (NCs). The set of clocks that is synchronized with each other is called "PTP
domain" as illustrated in Figure 3.11b.

33

Chapter 3. Background Theory

S0 S0

S1 S1 S1

S2 S2 S2 S2

(A) NTP structure.

GMC

BCBC

NC

NC

NC BC

NC NC

(B) PTP domain.

FIGURE 3.11: Tree structure of NTP and PTP [145].

3.6.1 Source Selection

The source selection in NTP is different than in PTP [145]. In NTP, the client selects the best
sources out of several available sources to synchronize to. The selection is based on sources
that have the best characteristics and the shortest paths to the primary servers in Stratum
0. The selected sources can be combined to minimize the accumulated error and to give
the client a more accurate time. Moreover, NTP rejects the falseticker NTP source that has
been identified by an NTP client as providing inaccurate time due to time software failure or
configuration mistake. In the presence of three source clocks, NTP can detect one falseticker.
With five sources it can detect two falsetickers, and so on. Thereby, the NTP source selection
procedure results in a fault-tolerant protocol.

In PTP, nodes identify themselves as slave, passive, or grandmaster clocks by listening to
Announce messages that are broadcast from all normal clocks in the network. The Announce
message contains the properties of the clock that sent it. If the normal clock receives an
Announce message from a better clock, the status of that clock changes to be a slave or pas-
sive clock. If a normal clock does not receive Announce messages with better characteristics
during a period called Announce-time-outInterval, the status of the normal clock goes to
be a grandmaster clock. The selection process may take several iterations until reaching a
stable system, where ultimately there is only one grandmaster clock that periodically sends
synchronization messages (SYNC) to all slaves to adjust the time of their clocks.

3.6.2 Synchronization Process in NTP

NTP has three modes to measure time offsets [145]. The first mode is the client-server mode
which is the most common mode. The client sends its server a client mode message, the
server responds to the client with a server mode message. The client gets then four times-
tamps as a result of exchanging the mode messages: the client mode message records two
timestamps t1 and t2 of the time of sending it from the client and receiving it at the server,
respectively. Similarly, the server mode message records two timestamps t3 and t4 of the
time of sending it from the server and receiving it at the client, respectively, as seen in Fig-
ure 3.12. The offset of the client’s clock is the mean value of the delays (t2 – t1) and (t3 –
t4). The assumption is that the request and response delays are symmetric (which they are
usually not), thus, the measured offset has an error and leads, in turn, to a synchronization
error with the server.

34

Chapter 3. Background Theory

Client at

Stratum3

t1
t2

t4

t3

Server at

Stratum2

FIGURE 3.12: Client/server mode in NTP [145].

In the second mode which is the symmetric mode, the synchronization is typically used
between NTP peers (i.e., servers) to change the server in case one of the NTP peers losses the
connection with the upper servers. The main difference compared to the client-server mode
is that the synchronization is done in both directions. For example, when P1 peer in Figure
3.13 sends a request message to another peer (i.e. P2) at the same stratum, P2’s response
message is also considered as a request message toward P1. At the time P1 receives the
incoming message, it gets all four timestamps required to measure its offset with P2. After
that, P1 responds to the incoming request message with a response message. P2, in turn,
gets all required timestamps to measure its offset with P1.

t1,P1

t3,P1, t1,P2

Peer (P1) at
Stratum2

Peer (P2) at
Stratum2

t2,P1

t4,P1, t2,P2

t3,P2

t4,P2

FIGURE 3.13: Symmetric mode in NTP [145].

In the third mode which is the broadcast mode, there is no message exchange between
two nodes. The purpose of the broadcast message is to send the configuration setup from
a server to all nodes in a large size network. For example, the broadcast mode can be used
to distribute the list of NTP servers as a broadcast message to all clients instead of configur-
ing each client manually or using a distributing protocol like Dynamic Host Configuration
Protocol (DHCP).

3.6.3 Synchronization Process in PTP

In PTP, periodic SYNC messages are sent from the grandmaster clock to all slave nodes that
record two timestamps. The first time-stamp represents the sending time and the second
time-stamp represents the time when the slave node receives the SYNC message. However,
two timestamps are not enough to measure the SYNC message transmission delay that is
used to compute the offset of the slave clock to the grandmaster.

Therefore, two mechanisms are used to measure the SYNC message transmission de-
lay [145]: End-to-End (E2E) communication uses a request/response message along the
path from the slave to the grandmaster clock. The Peer-to-Peer (P2P) mechanism uses a

35

Chapter 3. Background Theory

request/response message between two directly connected peers. E2E is the same as the
client-server mode in NTP protocol. E2E measures the SYNC message transmission delay
along the path that contains switches and routers between the requesting slave node and
its grandmaster clock. In the P2P mechanism, the delay is measured between two adjacent
peers that are a part of the path between the slave node and its grandmaster clock. The
measured delay is aggregated and loaded into a specific field named correction- f ield inside
the SYNC message. At the instant the SYNC message is received at the slave node, the total
delay for the whole path is accumulated and used to compute the slave node offset to the
grandmaster clock. It is worth noting that the two mentioned mechanisms consider the res-
idence time of the transmitted messages in each transparent clock (router, switch or hub) in
order to measure that delay.

3.6.4 Asymmetry in the Measured Delay

One of the main sources that negatively affects the accuracy of the measured offset are asym-
metric delays [145]. The standard NTP and PTP protocols assume that the message trans-
mission delay (i.e. request and response delays) is identical in both directions. In real life
especially in wireless environments the symmetry is a rare case. Figure 3.14 illustrates an
aspect of the asymmetric delay. For example, if a message needs 50 microseconds to be
transmitted from a client to a server and it needs 100 microseconds to be sent back, the mea-
sured offset will be decreased with an error of 25 microseconds. Thereby, the client will
actually be running 25 microseconds behind its server.

Client Switch Server

t1

t2

t3

t4

Request
delay

FIGURE 3.14: Asymmetry in the measured delay [145].

Sources of asymmetry are difficult to be detected or avoided. They may be at different
layers such as the link layer. For example, the message may go over different routes in the
bidirectional transmission. Furthermore, the delays (i.e. propagation and transmission de-
lays) in the wireless systems are changeable as a result of using different wireless broadband
communication standards (e.g. WiMAX, Wi-Fi, LTE) or there are variable queueing delays
in the routers and switches. Moreover, the processing delay is not identical for all network
components. The slave and the client cannot independently measure the error due to the
asymmetry, even if the reference time source is directly connected with the slave and client.

The processing and the queueing delays can be corrected in the PTP protocol by using the
Correction- f ield inside the SYNC message as mention in the P2P mechanism. All PTP-aware
routers and switches that support that field are called Transparent Clocks (TCs). When
grandmaster clock sends periodic SYNC messages, the difference between the reception and
transmission times of the SYNC message (i.e. the residence time) over each TC is aggregated
besides the peer-to-peer delays to the value of the Correction- f ield. At the slave node, the
accumulated delay value is used to compute the slave’s offset. But on the other hand, the

36

Chapter 3. Background Theory

standard PTP protocol does not address other sources of asymmetry like asymmetric routing
and changing delays, and it does not carry out methods to solve the asymmetry. The best
solution would be that NTP servers are directly connected with their clients.

3.6.5 Clock Drift

Another critical issue that should be considered in NTP and PTP is the node’s clock drift,
because it causes divergence during the synchronization process. Every node is susceptible
to drift, which varies from node to node depending on the quality of the clock (for example,
a clock oscillator (XO) or a Phase Locked Loop (PLL) synthesizer) and the surrounding en-
vironment (e.g., temperature, power-level stability). Because of this, the slave/client clock’s
rate of operation differs somewhat from that of its master/server clock. After some time any
local clock will gradually drift apart and exhibit an offset from its reference clock. Therefore,
another field has to be integrated into the SYNC message to adjust the slave/client clocks
to the same frequency as the master/server clock.

3.6.6 Time-stamping Errors

Inaccuracy of the time-stamping means that the time-stamp does not correspond to the exact
time at the instant of sending or receiving a message [145]. It is also a source of the synchro-
nization error. The time-stamping can occur at three places: in the user space, in the kernel
(i.e. software time-stamping), or in the Network Interface Card (NIC) (i.e. hardware time-
stamping). Figure 3.15 shows the inaccuracy of the time-stamping in the NTP protocol. The
client at Stratum3 misses the exact time (indicated in a black circle) at the times of sending
the client mode message and receiving the server mode message. Similarly, the inaccuracy
is shown in the server at Stratum2.

t4

t3

t1

t2

Client at

Stratum3

Server at

Stratum2

FIGURE 3.15: A simple example shows the inaccuracy of the time-stamping
in the NTP protocol [145].

Since context switching, processing time, and network stack waiting time are not nec-
essary, software time-stamping in the kernel is more precise than in user space. Similarly,
the hardware time-stamping in the NIC is more accurate than in the kernel because the
timestamp is generated using the hardware clock of the NIC. However, there are several
challenges with hardware and software time-stamping that do not exist in the user space
time-stamping. For example, hardware time-stamping is not supported by every network
card which also has its own clock. Therefore, an accurate synchronization between the NIC
clock and the system clock is required. The kernel in the software time-stamping does not
know where to include the transmit time-stamp, unlike the user space application and the
hardware time-stamping where the server/master and the NIC take care of including the
transmit time-stamp in the messages, respectively.

37

Chapter 3. Background Theory

In addition, the user space and software time-stamping are less accurate because of inter-
rupt coalescing, which is implemented to avoid flooding the node with a lot of interrupts by
buffering the received messages at the NIC and processing them in one single interrupt. This
causes an increase in the time-stamping error in the user space and software time-stamping
as a result of the buffering time.

If the total time-stamping error induced in the transmit and receive timestamps for a
message sent from node N1 to node N2 is the same total time-stamping error as for a mes-
sage sent from N2 to N1, then the errors will cancel each other. If there is asymmetry in
transmit and receive timestamps of the two directions, this error is not considered in the
time synchronization process. Therefore, it is recommended to use a ratio formula to deter-
mine the relationship between the two asymmetry error values, and to use the same time-
stamping method and the same NIC model on both sides.

The advantages of NTP is using multiple sources, the client can select the best sources for
synchronization, whereas PTP needs to allow multiple grandmasters to provide the slaves
with more information for selecting the best grandmaster. The advantage of PTP is better
time-stamp correction and addressing the delay correction but it needs substantial solutions
to address the asymmetric delays. On the contrary, NTP requires adopting the concept of
delay correction.

3.7 IEEE 802.1AS Standard Protocol

As mentioned in the previous section, PTP is better suited for time-sensitive and control
applications because of its synchronization accuracy as well as the transmit time-stamp and
delay corrections. On the contrary, NTP is not suitable for many industrial time-sensitive
applications due to its synchronization error with a margin of milliseconds. Therefore, this
section discusses the IEEE 802.1AS protocol that is based on the PTP protocol, generalized
Precision Time Protocol (gPTP) is another name for it. Later, it will be the basis to synchro-
nize clocks in the thesis. The IEEE 802.1AS protocol is built on top of the IEEE 1588 standard
with more enhanced features in order to satisfy the requirements of real-time applications.

3.7.1 IEEE 802.1AS Node Types

IEEE 802.1AS is capable to implement its features provided that all attached time-aware
nodes support gPTP services, thus, a gPTP domain is established. To do that, each time-
aware node examines if its adjacent node is time-aware by using the P2P request/response
mechanism. For this reason, a time-aware node sends a request message (Delay_Req) to its
adjacent node and then waits for its response. The time-aware node identifies its neighbour
as a standard node (i.e. it does not support gPTP services) if there is no response, or if there
are multiple response messages (Delay_Res′s) or the received timestamps are illogical and
unpredictable. IEEE 802.1AS categorizes the time-aware nodes into two types:

Time-aware end node: it is a node with one port, and it acts as a slave or grandmas-
ter clock. In other words, if the port is identified as a slave state, the clock of the node is
synchronized with its grandmaster at the time of receiving SYNC messages. In contrast, if
the port is in the master state, the node plays the role of the grandmaster. Its clock is syn-
chronized with an accurate external reference time (e.g. GPS) and sends SYNC messages
periodically to its slave nodes in the gPTP domain.

Time-aware intermediate node: it is a multi-port relay node (i.e. bridge, router or switch).
The state of each port is either in slave or master state depending on the port’s state of the
connected node. Thus, the time-aware intermediate node may play the role of slave and

38

Chapter 3. Background Theory

master simultaneously. Namely, a port of a time-aware intermediate node is in the slave
state if it connected with a node through its master port. The port is in the master state if
it is connected with a port in the slave state. It is worth noting that a port in a master state
means that it forwards the grandmaster reference time to the next slave port that synchro-
nizes the slave node with the received reference time. When the time-aware intermediate
node receives the SYNC message of the grandmaster clock at the ingress port. It modifies
the received timing information by adding the residence time and the P2P path delay which
is measured by exchanging a series of request/response messages between two neighbour-
ing time-aware nodes. Eventually, it forwards the modified SYNC message to the egress
port toward the next time-aware node. At the time-aware end node, the received timing
information is used to adjust the local clock with the grandmaster clock. However, the time-
aware intermediate node forwards non-gPTP and management messages in a similar way
to the standard node.

3.7.2 Synchronization in the 802.1AS Domain

In the gPTP (802.1AS) domain, firstly, the best source clock should be selected as the grand-
master clock by using an algorithm named the Best Master Clock Algorithm (BMCA). Then
all states for all time-aware nodes are identified to build the slave-master hierarchy. The se-
lected grandmaster sends periodically SYNC messages which include its current clock time
to all slave clocks in the domain. During the SYNC message transmission, the time-aware
intermediate nodes modify the timing information in the SYNC message and then forward
it until arriving at the time-aware end node.

3.7.3 Best Master Clock Algorithm

Each clock has its own set of attributes including a user-configurable priority, clock class,
clock accuracy, and clock variance. To select the best available source clock as a grandmas-
ter, time-aware nodes send their set of attributes to all nodes in the gPTP domain through
Announce messages. The time between these messages is normally configured to be a cou-
ple of seconds. BMCA algorithm is executed in each port of a clock to compare the local
attributes of the clock with other sets of attributes for time-aware clocks once receiving their
Announce messages. The priority attribute of a clock is configured manually. A clock is pre-
ferred over another for specific reasons like the position where a centralized position gives
a clock higher priority. If two clocks have the same priority, they will be compared by the
clock class, which defines the role of the clocks and whether they are used as a grandmaster
clocks. If two clocks have the same class, the BMCA will prefer the clock that has better
accuracy. If the accuracy is the same, then the clock variance is used. In the case of the
same variance, BMCA determines which node acts as an intermediate or as an end node.
If none of the mentioned attributes breaks the tie to determine the best grandmaster, then
the clock that has a higher MAC address will be selected as a grandmaster clock. The data
set comparison of each clock determines which clock is the best to maintain the timing net-
work. Besides, the output of the comparison is also used to update the state of each port
that receives the Announce messages from all nodes in the gPTP domain [11].

Figure 3.16 illustrates an example of a master-slave hierarchy in the gPTP domain. It
is assumed that time-aware-end-node1 has an external reference clock (e.g. GPS) and pos-
sesses the best data set among all clocks. Thereby, it is selected as the grandmaster clock.
time-aware-end-node1 receives timing information from GPS and sends this information to
other nodes via its master port, if the selected grandmaster clock does not have an exter-
nal timing source, it will then send its local time and encapsulates it in the outgoing SYNC
message. time-aware-intermediate1, time-aware-intermediate2, and time-aware-intermediate3

39

Chapter 3. Background Theory

receive the SYNC message provided by time-aware-end-node1 at their slave ports, adjust
their local clocks. Afterwards they forward the SYNC message through their master ports
to peer-to-peer connected slave ports in the next neighbour clock along the route toward the
time-aware end nodes.

time-aware end node1
(grandmaster)

time-aware
intermediate1

time-aware
intermediate2

time-aware
intermediate3

m

s s

mm

mm

ss

ss

m : port in a master state
 s : port in a slave state

time-aware end
node2 (slave)

time-aware end
node3 (slave)

FIGURE 3.16: An example of master-slave hierarchy in the gPTP domain.

3.7.4 SYNC Message Delay Measurement

In the gPTP domain, time-aware clocks are interconnected through separate communication
links. Therefore, when the slave end node receives the SYNC messages from the grand-
master, it is required to measure the SYNC message delay along the forwarding paths to
calculate the accurate clock offset concerning the grandmaster clock. To do that, the P2P
mechanism is implemented to measure the delay between two peers of time-aware nodes.
Therefore, every two ports of the time-aware nodes calculate the delay of a path which
is a part of the forwarding paths of the SYNC message. The path delay is added to the
Correction- f ield that is later used for the slave clock correction.

P2P mechanism is implemented through exchanging Delay_Req/ Delay_Res timing mes-
sages and possibly Follow-Up-Delay-Res messages which are used to send the origin times-
tamps to avoid potential time-stamp errors. As denoted in Figure 3.17, the pattern of the
P2P mechanism is:

• Node1 Clock dispatches a Delay_Req message towards Node2 Clock and records the
transmission time-stamp t1.

• Node2 Clock generates the time-stamp t2 upon arrival of the Delay_Req message.

• Node2 Clock sends back a Delay_Res message and generates the transmission time-
stamp t3. Dispatching of the Delay_Res message is done immediately after receiving
the Delay_Req message to minimize the impact of the clock offset between Node1 and
Node2 Clocks. Node2 sends the timestamps t2 and t3 to Node1 in one of the following
ways:

– The Delay_Res message carries both timestamps t3 and t2.

– When a two-step clock is used, the Delay_Res message and the Follow-Up-Delay-
Res message carry the time-stamp t2 and the time-stamp t3, respectively.

40

Chapter 3. Background Theory

• Node1 generates the time-stamp t4 upon arrival of the Delay_Res message or the Follow-
Up-Delay-Res message when a two-step clock is used.

Delay_Req

Delay_Res

t1

t2

t3

t4

Node1 Clock

Follow-Up-Delay-Res

Node2 Clock

FIGURE 3.17: P2P mechanism between adjacent time-aware node clocks.

After exchanging these P2P messages, Node1 gets all required timing information to mea-
sure the MeanPathDelay as denoted in the following equation:

MeanPathDelay =
(t2 − t1) + (t4 − t3)

2
(3.1)

The assumption in Eq. 3.1 is that the communication delay between Node1 and Node2
in both directions is symmetrical. In fact, asymmetric sources (e.g., asymmetric routing and
changing delays) which exist in wireless systems, result in time-stamping errors and make
the measured path delay an inaccurate measurement. Therefore, more improvements in the
standard IEEE 802.1AS are needed to take all asymmetric sources into account to achieve a
high precision of synchronization.

3.8 Link Scheduling in Wireless Networks

In a wireless network, a message is usually transmitted from a source node to a sink node
through intermediate relays (i.e. switches and routers). To do that, several sequences of P2P
connections are required, thus a wireless network is multi-hop in nature. In addition, mul-
tiple P2P connections corresponding to different source-sink pairs are used to exploit the
channel capacity. Therefore, the design of wireless networks faces many challenges particu-
larly in the design of the physical and MAC layers to achieve high throughput and improve
the data rate. At the physical layer, several methods are used to increase the capacity of
the channel. For instance, Multiple Input Multiple Output (MIMO) [148] multiplies the
capacity of the channel using multiple transmitting and receiving propagation paths, and
Orthogonal Frequency Division Multiplexing modulation technique (OFDM) [149] which
carries data in parallel. At the MAC layer, the authors in [150] take advantage of multiple
channels by switching channels dynamically. The survey in [151] addresses several methods
that are proposed at the MAC layer to enhance the utilization of the channel by improving
the spatial reuse.

Achieving high network throughput plays a critical role in real-time applications, be-
cause data traffic has to be delivered to the intended receivers with predefined deadlines.
Besides the channel utilization, the message transmission should also consider assessing the
level of the interference and avoid the retransmission commonly used in packet-switched
computer networks. To eliminate the induced interference due to possible collisions and to

41

Chapter 3. Background Theory

limit the end-to-end delay, the literature addressed the problem by routing and scheduling
the message access in the wireless medium [152].

Several medium access mechanisms can be implemented such as TDMA and Frequency
Division Multiple Access (FDMA). In real-time wireless networks, TDMA is more feasi-
ble and preferred to be used over FDMA, because TDMA is more efficient in using the
spectrum, more users can use the same spectrum and different types of data traffic (e.g.,
data, audio and video streams) that require different data rates can be transmitted using
the same medium using multiple time slots. Moreover, TDMA-based protocols are used to
achieve deterministic communication properties. TDMA slots are assigned for each user
(i.e. transmitter) periodically, thus, the receiver receives the transmitted data with fixed du-
ration TDMA time slots. Therefore, the associated actions can be executed at the right time
and the absence of data transfer can be easily detected by the system.

The link scheduling using TDMA should be well designed so that all packets transmitted
through the wireless medium are received at the receiver successfully within limited time.
In the literature, physical and protocol interference models are proposed for specifying the
methodology for successful data reception. The following two subsections demonstrate the
concept of each model.

3.8.1 Link Scheduling Based on the Protocol Interference Model

In the protocol interference model [153], [154], the message is successfully received at the
intended receiver only if the transmitter is within the communication range of the receiver
and other interfering transmitters have to be outside the interference range of the receiver.
In other words, the protocol model imposes a silence zone around a receiver during the time
of the data reception.

Assume rei,j is a receiver that receives messages using a connection path j at time slot
i. The received power at rei,j from its transmitter tri,j is Ptr

N0Dα(tri,j,rei,j)
, where Ptr is the trans-

mitted power, N0 denotes the power of noise in the bandwidth, D is the physical distance
between tri,j and rei,j and α denotes the path loss to the distance between the transmitter and
the receiver. The received power at rei,j from other interfering transmitters is ∑Mi

k=1
k ̸=j

Ptr
Dα(tri,k ,rei,j)

,

where Mi is the total number of unintended transmitters, k is a connection path that is used
by an unintended transmitter tri,k that interferes the received signal to rei,j at time slot i.
Thus, the Signal to Noise Ratio (SNR) at receiver rei,j is measured by the following equation
[155]:

SNRrei,j =
Ptr

N0Dα
(
tri,j, rei,j

) (3.2)

Depending on the definition of the protocol model, the data from tri,j to rei,j is success-
fully received if:

• The SNR value from tri,j at rei,j is no less than the communication threshold (i.e. β),
from Eq. 3.2 the communication range (Rcomm) is defined as [155]:

D
(
tri,j, rei,j

)
<

(
Ptr

N0β

) 1
α

=: Rcomm (3.3)

• The SNR value from any unintended transmitter tri,k at rei,j is less than the interference
threshold (i.e ψ), from Eq. 3.2 the interference range (Rint) is defined as [155]:

42

Chapter 3. Background Theory

D
(
tri,k, rei,j

)
>

(
Ptr
N0ψ

) 1
α
=: Rint

∀k = 1, . . . , Mi, k ̸= j
(3.4)

According to Equations. 3.3 and 3.4, the message transmission is successful if the dis-
tance between the transmitter-receiver pair is less than the communication range of the re-
ceiver and no other transmitters locate in a distance less than the interference range of the
receiver.

For example, Figure 3.18 shows a communicating transmitter-receiver pair A� B, where
A denotes the node which transmits a packet and B denotes the node which receives that
packet. The transmission is successful because node B (i.e. the receiver) locates inside the
communication range of node A. Moreover, the communication pair C� D can commu-
nicate concurrently in the same time slot with A� B because node C locates outside the
interference range of node B during its communication with node D.

Communication range

Interference range of node B

A B C D

FIGURE 3.18: A simple example shows the communication and the interfer-
ence ranges of the nodes.

3.8.2 Link scheduling Based on the Physical Interference Model

In the physical interference model [153], [156], A message is only successfully received at a
receiver if the Signal to Interference and Noise Ratio (SINR) there is equal to or greater than
the communication threshold (i.e. β). In other words, the transmission at the transmitter-
receiver pair ti,j � ri,j is successful if:

Ptr
Dα(tri,j,rei,j)

N0 + ∑Mi
k=1
k ̸=j

Ptr
Dα(tri,k ,rei,j)

≥ β (3.5)

Where the value on the left side of the inequality denotes the SINR value at the receiver
ri,j, see [157].

3.8.3 Limitation of the Protocol Interference Model

A wide variety of wireless networks employ the protocol model due to its simplicity. Hence,
we notice that the protocol interference model is less complex than the physical interference
model but it is more restrictive. The protocol model divides the TDMA wireless networks
into communication and interference zones. Thus the link scheduling problem is converted

43

Chapter 3. Background Theory

to be a graph edge-colouring problem [158] so that the researchers seek to reduce the num-
ber of colors (i.e. time slot numbers) regardless of the network design. Despite its sim-
plicity, there are also doubts about its validity, which means the protocol model does not
guarantee conflict-free transmissions. The conflict-freedom is satisfied if the SINR at every
receiver is always more than a specified communication threshold (i.e. β). However, the al-
gorithms that are based on the protocol model do not necessarily maximize the throughput
of a TDMA wireless network as a result of the following reasons:

• Accumulative receiver interference caused by scheduling multiple transmitter and re-
ceiver pairs in the same time slot depends on strict communication and interference
thresholds [159]. This, in turn, leads to a decrease in the SINR values at the receivers
when increasing number of concurrent transmissions. Thus, some transmissions are
unsuccessful according to the condition in Eq. 3.5.

For example, assume the TDMA wireless network in Figure 3.19 consisting of six
nodes whose labels and coordinates are 1: (−360, 0), 2: (−450, 0), 3: (90, 0), 4: (0,
0), 5: (360, 0) and 6: (450, 0), and three transmitter-receiver pairs 1� 2, 3� 4, and 5
� 6. Table 3.1 shows the system parameters that are implemented on the tested net-
work. According to Equations 3.3 and 3.4, the computed Rcomm and Rint for all nodes
are 100m and 177.8m, respectively.

TABLE 3.1: System parameters for a TDMA network [155].

Parameter Value
Transmission power (Ptr) 10 mW

Communication threshold (β) 20 dB
Interference threshold (ψ) 10 dB

Path loss (α) 4
Noise power (N0) -90 dBm

(-450, 0)

(-360, 0)2
1

X

Y

(360, 0)

(450, 0)5
6(0, 0)

(90, 0)4
3

Communication range

Interference range

SINR6 = 19.74SINR4 = 18.42SINR2 = 21.26

Time slot colour

FIGURE 3.19: Six nodes are deployed on a TDMA network and the protocol
model produces one color time slot [155].

According to the protocol model conditions, we see that all transmissions can be re-
ceived and scheduled in the same color (i.e. time slot). To make it easy to understand,
all transmissions are symbolled with orange-coloured arrows as shown in Figure 3.19.
However, the computed SINR values at nodes 2, 4, and 6 are 21.26 dB, 18.42 dB, and
19.74 dB respectively. According to the condition in Eq. 3.5, the transmission 1� 2 is

44

Chapter 3. Background Theory

successful because the SINR value at node 2 (i.e. 21.26 dB) is more than β (i.e. 20 dB),
while 3� 4 and 5� 6 transmissions are unsuccessful because SINR values at nodes
4 and 6 (i.e. 18.42 dB and 19.74 dB) are less than β, respectively. Thereby, this exam-
ple shows that scheduling all transmission at the same time slot leads to low network
throughput due to unsuccessful transmissions.

• On the contrary, the protocol model can result in more colors than required. For exam-
ple, Figure 3.20 shows a TDMA wireless network with four nodes whose labels and
coordinates are 1: (0, 0), 2: (50, 0), 3: (220, 0), and 4: (170, 0), and two transmitter-
receiver pairs 1 � 2 and 3 � 4. Because the transmission pairs are located in the
interference range of each other, the protocol model will typically color the transmis-
sions with different colors, thus, the transmission pairs will be scheduled in different
time slots. The computed SINR value at receiver 2 and receiver 4 are both 32.04 dB.

X

Y

(170, 0)

(220, 0)4
3(0, 0)

(50, 0)1
2

Communication range

Interference range

SINR2 = 32.04 SINR4 = 32.04

Time slot colours

FIGURE 3.20: Four nodes are deployed on a TDMA network and the protocol
model produces two color time slots [155].

We notice that the computed SINR in the protocol model at both receivers is well above
the value of β. In contrast, the physical model schedules the two transmitter-receiver
pairs in the same time slot according to the condition in Eq. 3.5. The graph edge-
colouring in Figure 3.21 shows that the new computed SINR at receivers 2 and 4 are
both 20.91 dB, which are still above the communication threshold of 20 dB. Thus, the
physical model schedules the two transmissions successfully because the signal power
at the receivers is high enough to tolerate the induced interference. In summary, the
mentioned example demonstrates that the protocol model will schedule several trans-
missions in different time slots and it, in turn, leads to a decrease in the network
throughput compared to the scheduling provided by the physical mode. In essence,
though SINR compliance is satisfied in the protocol model the network throughput
can be further enhanced without affecting the success of the transmissions.

45

Chapter 3. Background Theory

X

Y

(170, 0)

(220, 0)4
3(0, 0)

(50, 0)1
2

Communication range

Interference range

SINR2 = 20.91 SINR4 = 20.91

Time slot colour

FIGURE 3.21: Four nodes are deployed on a TDMA network, the physical
model produces one color time slot [155].

• The protocol model cannot recognize the topology of the network, thus, it builds its
link scheduling without interesting in the positions of the transmitters and receivers.

Due to low throughput and more time slots than required as a result of the link schedul-
ing in the protocol model. Alternatively, the literature addressed algorithms based on the
physical model to maximize the network throughput and minimize the necessary time slots
to get a shorter schedule which is an essential issue in real-time systems.

3.9 IEEE 802.11 Standard Protocol

Wireless nodes are equipped with communication interfaces to communicate with other
nodes in the network. In general, these communication interfaces are based on IEEE 802.11
[160] that defines a set of protocols (i.e. standards) for communications at both 2.4 GHz
and 5 GHz frequency bands. Several protocols have emerged from the IEEE 802.11 original
standard such as 802.11b, 802.11g, and 802.11n protocols.

For the physical layer, IEEE 802.11 defines two forms of spread spectrum modulation:
Frequency Hopping Spread Spectrum (FHSS) and Direct Sequence Spread Spectrum (DSSS)
[161] that are operating at 2.4GHz frequency and 1-2 Mbps data rate. In the IEEE 802.11
MAC architecture, two medium access modes are defined: Distributed Coordination Func-
tion (DCF) and Point Coordination Function (PCF) [162]. The default DCF mode is im-
plemented in both infrastructure networks (based on nodes connected with a base station)
and ad hoc networks. In order to access the medium, DCF employs CSMA/CA [163] with
an exponential backoff algorithm. The nodes compete to get access and they implement
inter-frame spacing before starting the transmission, whereas the medium access in PCF is
centralized by a coordinator that controls which node can transmit.

The advantages of the IEEE 802.11 protocol are the low cost and relatively high-frequency
range. On the contrary, this protocol is sensitive to traffic disruptions and depends gener-
ally on the backoff algorithm to randomly access the medium to avoid the collision. The
non-deterministic medium access control makes this type of protocol unsuitable for time-
sensitive applications.

46

Chapter 3. Background Theory

3.9.1 IEEE 802.11 DCF (Contention-based) Mode

As mentioned, DCF mode employs CSMA/CA rather than a technique to detect collisions
(e.g., CSMA/CD) in the wireless system. The reason is that the half-duplex mode is used
for data transmission. In other words, wireless transceivers cannot transmit and receive
on the same channel at the same time. Therefore, each unicast data transmission has to be
acknowledged.

In DCF, any node that wants to send a packet on the medium has to wait for a fixed
time interval called Distributed Inter-Frame Space (DIFS). At the instant the DIFS interval
ends, the node senses the medium and if the medium is free, the node immediately sends
its packet. If instead, the medium is busy (i.e. another node is currently sending its packet),
the node selects randomly a backoff counter (i.e. number of waiting time slots) from a set
called Contention Window (CW). Typically, the size of CW is between 0 and 15 and it is
directly proportional to the size of the network. This technique is used to avoid collisions
with another node that wants to send packets at the same time. However, after the backoff
counter is selected, the node continues listening to the medium. When the medium becomes
free again, the node firstly waits for the DIFS interval before starting to decrease its backoff
counter. During the decreasing process, if the medium becomes busy again, the node stops
the decreasing process and it is resumed the process later with the remaining counter when
the medium returns to be free. At the moment the backoff counter of the node reaches zero
and the medium is still free, the node has to wait for another DIFS interval time before
starting the packet transmission. The sink node must wait for the Short Inter-Frame Space
(SIFS) period after it receives the packet, which gives the acknowledgement (ACK) priority
over the data. When SIFS ends, the sink node starts sending back the ACK packet to the
transmitting node.

Figure 3.22 shows a simple example of the DCF operation. Node N1 has sent packet
P0 and it is ready to send the second packet P1. As discussed, node N1 waits for the DIFS
interval time and senses the medium. As shown in the figure, the medium is free, hence,
node N1 starts sending packet P1. During the transmission of packet P1, nodes N2 and N3
are ready to transmit their packets P2 and P3, respectively. N2 and N3 sense the medium
and they find out that the medium is busy. Therefore, they generate backoff counters inde-
pendently. N2 generates 4 waiting time slots while N3 generates 7 waiting time slots. When
N1 finishes the transmission of packet P1, both N2 and N3 wait for DIFS and decrease their
backoff counters. N2 finishes its countdown before N3 (i.e. its backoff counter reaches zero)
and starts sending its packet P2. N3 senses the medium again and it finds out that it is busy,
so N3 stops decreasing its backoff counter and it resumes decreasing the remaining back-
off counter (3 waiting time slots) after the DIFS interval time has elapsed. At the time the
medium is free and the backoff counter of N3 is zero, N3 starts to send its packet P3.

DIFS

DIFS DIFS

DIFS

Frame + ACK

Backoff

N1

N2

N3

P1P0

P2

P3

FIGURE 3.22: IEEE 802.11 DCF operation in 802.11 protocol [164].

In wireless networks, there is a problem called the hidden node problem [165]. It occurs

47

Chapter 3. Background Theory

when a node is visible to a receiver and not visible to another node that is communicating
with the same receiver. Therefore, IEEE 802.11 protocol uses a mechanism called Request To
Send (RTS)/Clear To Send (CTS) [166] which uses RTS and CTS packets to check the medium
and avoid a potential collision. When a node wants to send data, firstly it sends the RTS
packet to the receiver to determine if the receiver is ready to receive the data. The receiver
will send back the CTS packet, and the data transmission begins. Thus, all neighbour nodes
overhear the exchanged RTS/CTS packets and they are prevented from sending their data
until the data transmission is finished and another RTS packet is sent from another node.

3.9.2 IEEE 802.11 PCF (Contention-free) Mode

PCF is an optional mode, which means that it is not required to be implemented in IEEE
802.11 nodes. PCF mode is intended for the transmission of time sensitive information. The
base station (i.e. access point) works as a coordinator and controls all connected nodes. It
enables the PCF mode and it polls the node that has the right to access the medium. The
coordinator has higher priority than other nodes to access the medium. Therefore, it waits
for an interval of time called PCF Interframe Space (PIFS) which is less than DIFS. During a
contention-free period, the coordinator steps through all nodes and polls one node at a time.
The polled node that receives a contention-free poll frame starts transmitting its traffic and
all other nodes need to wait. In case the node has no packets in its queue, it has to transmit
a null frame. After that, the coordinator polls the next node until all nodes had the chance
to transmit. Since the priority of PCF is higher than DCF, the nodes that support only DCF
mode may not get permission to access the medium. Therefore, a repetition interval has
been implemented to consider both DCF and PCF traffic.

PCF ensures regular and deterministic delays for PCF-enabled nodes. Thus, PCF mode
is suitable to transmit messages such as video and control traffic that require robust timing
guarantees.

3.9.3 Limitations of 802.11 for Wireless Systems

In general, the IEEE 802.11 protocol exhibits several limitations for transmitting time-sensitive
data due to its inability to support multi-hop data transmission and the random backoff
strategy.

Random Backoff Problem

Due to the randomness in selecting the backoff counter and the probability that several
nodes may select the same backoff counter, the RTS/CTS and backoff techniques are consid-
ered as indeterministic solutions to solve the collision problem. The absence of determinism
in data transmission may also lead to the false blocking problem [167] that occurs in case
the nodes are unable to reply to the received RTS packet when they are in a deferring state.
This, in turn, motivates researchers to find deterministic alternatives, especially for real-time
applications.

Multi-hop Transmission

The 802.11 protocol is mainly implemented to transmit data in one-hop bidirectional com-
munication from nodes connected to access points that are presented as bridges to wired
networks. However, the nodes that use this protocol are not supported with routing capa-
bilities to propagate data among multi-hop nodes [168]. Despite the low cost and relatively
high communication range, the lack of multi-hop capability and non-deterministic medium
access demonstrate the need to find solutions that address real-time constraints. Therefore,

48

Chapter 3. Background Theory

the next two sections demonstrate briefly the recent research in real-time communication
protocols for wireless and wired systems.

3.10 Real-time Communication Protocols in Wireless Systems

In general, wireless networks are less reliable than wired ones because the probability of
error occurrence is higher. The challenges include the possibility of interference due to the
node mobility, high power lines, electrical components, long-distance P2P communication.
Collision detection and correction methods become more difficult in wireless networks due
to the fact that the nodes do not listen to the shared channel while data transmitting. As
discussed in the previous section, the majority of methods to solve the collision problem
relies on random backoff techniques which produces solutions that depend mainly on non-
deterministic waiting times in the MAC layer [169]. This could result in waiting times and
undesirable margins of end-to-end delays in real-time applications. Therefore this section
describes Real-Time (RT) MAC protocols that are applied for wireless technologies. The
literature classifies RT MAC protocols into hard and soft protocols.

3.10.1 Hard Real-Time MAC Protocols

Real-time Protocols Based on Time-Division Multiple Access

As mentioned in Section 3.8, TDMA is used to access a channel in a shared medium net-
work by dividing time into different time slots. This method has many advantages such as
determinism, different types of traffic can be sent by allocating them to different time slots,
guarantee of non-interference as a result of simultaneous transmission and sharing among
multiple users the same carrier frequency. Therefore, several researchers suggested TDMA
to be adopted in their solutions for real-time requirements [170]–[172].

Real-time and Reliable MAC (RRMAC) [173] is a TDMA based protocol that depends on
a tree design to forward the messages in one super-frame from the bottom-level nodes to the
nodes at the top-level. Figure 3.23 shows the structure of the super-frame which is divided
into a beacon period, active period (i.e. Contention Access Period (CAP), Contention Free
Period (CFP)), and inactive period. These periods are used to synchronize the message
transmission. Using CSMA/CA, the nodes in CAP compete for access to the channel. A
portion of CAP remains for contention access by new nodes joining the network. In CFP,
Guaranteed Time Slots (GTS) are assigned to messages that require low latency without any
contention during transmission. The nodes are controlled by coordinators that coordinate
the GTS requests sent from connected nodes with time-sensitive data. The nodes go into a
low-power mode when they are not in use to conserve energy and prolong the battery life.
The beacon period is used to forward the beacon through multiple-hops.

The structure of the super-frame is flexible [174]. If the nodes do not have real-time data,
CFP can be eliminated from the super-frame structure. The nodes in RRMAC are located
in clusters [174], [175], where the cluster head (i.e. coordinator) is that the top level and
collects the data from bottom-level nodes in its cluster. Radio Frequency (RF) power for top-
level nodes is higher than for lower-level nodes in order to increase the transmission range.
However, the disadvantage of RRMAC is the difficulty of the global time synchronization
in large wireless networks.

49

Chapter 3. Background Theory

Inactive
period

CFPCAP

Beacon

Active period

FIGURE 3.23: RRMAC superframe structure [174].

Dual Mode Real-time Protocols

Dual-mode RT protocol [176], [177] is a hard real-time protocol, which is subdivided into
protected and unprotected modes. In the unprotected mode, the transmission of the mes-
sages is unreliable but at full speed. On the contrary, the messages in the protected mode
incur a higher delay but have an improved reliability. The unprotected mode is used when
collisions are not likely. When a node wants to send data, it initializes the backoff-time at the
instant of receiving a signalling message from a sender. This time is inversely proportional
to the distance from the sender, which means that the farthest node sends its messages first
and all other nodes reset their backoff-times and are used only for forwarding the message.

In the protected mode, nodes are clustered into groups so that each node of a group can
connect with another node in a neighbouring group. The protected mode provides a guar-
antee for reliable collision-free communication during run-time. This mode uses signaling
messages to reserve a group between the source and sink nodes. The reserved group can-
not generate messages until the transmission is completed. Initially, the unprotected mode
begins but in case a node detects a collision, it immediately sends an alarm message to in-
form the neighbour nodes and to switch their modes to the protected mode. However, this
protocol requires that all nodes are well-synchronized and accurately know their positions.
Hence, it is hard to be implemented in randomly deployed wireless systems. Moreover,
energy consumption is not considered in this type of protocols.

Real-time Protocols Based on Frequency Division Multiple Access

Implicit Earliest Deadline First (I-EDF) [178], [179] is another hard RT MAC protocol that
is based on a cellular structure for periodic message transmissions in WSNs. On one hand,
collisions are avoided by using FDMA among neighbouring cells so that inter-cell messages
are reliably exchanged through capable routers. On the other hand, multi-cast intra-cell
messages are exchanged inside fully-connected cells using EDF with implicit contention.
However, this protocol is not suitable for event-triggered messages and dynamic topology
networks because it is based on the periodic nature of the messages and fixed-size cells
[175]. In addition, it needs specialized multi-channel radio sensor hardware and precise
time synchronization.

Real-Time Protocols Based on Message Ordering

The authors in [180] presented a hard RT MAC protocol that gives priority to the messages in
direct proportion to their waiting time caused by sleeping time or busy channels. Since the
messages are arranged chronologically according to transmit timings, the older messages
have a higher priority and can access the channel first if it is idle. However, this protocol is
intended for one-hop networks rather than multi-hop ones.

50

Chapter 3. Background Theory

3.10.2 Soft Real-Time MAC Protocols

Real-time Protocols Based on Medium Access Scheme

Virtual TDMA for Sensors (VTS) protocol [181], [182] is designed to be a soft real-time MAC
protocol in WSNs. The message scheduling in VTS is a contention-free protocol for the par-
ticipating nodes. The super-frame of VTS is shown in Figure 3.24 which is a cyclic frame
with Nc cycles, where Nc represents the number of the participating nodes. The length of
the VTS’s super-frame is dynamically adapted with joining or leaving nodes. Each node is
only allowed to send its data in its dedicated cycle (i.e. TDMA slot). The TDMA slot is di-
vided into two periods: Listen period (i.e. DATA and synchronization period) and Inactive
period. The ratio of the listen period to the inactive period is called the duty cycle. At the
beginning of each frame, the owner of the frame sends its control packet (SYNC packet),
which is used to coordinate the duty cycle, provide keep-alive indication, reserve the chan-
nel and discover new nodes. RTS/CTS [166] is used to avoid collisions when sending DATA
and SYNC packets with fixed backoff contention windows.

Sleep periodDATA

SY
N

C

Listen period

TDMA-slot

Inactive period

Contention periods

Sleep periodDATA

SY
N

C

Listen period

TDMA-slot

Inactive period

SY
N

C

D

FIGURE 3.24: VTS superframe structure [181]

The super-frame in VTS is virtual, which means a node does not know the arrangement
of its TDMA slot and the number of the available cycles in the super-frame. If a node leaves
the network, the super-frame length is reduced automatically. A short contention period is
used before the owner of the current TDMA-slot to let new nodes contend with the owner
for access to the medium. Finally, to keep the deadlines, each node adjusts its duty cycle
depending on its real-time application requirements.

VTS decreases the energy consumption and latency of the packet transmission when
there are only few nodes. However, in multi-hop WSNs, VTS cannot properly work because
each node generates a high packet rate for a given TDMA-slot and this leads to an increase in
the energy consumption and super-frame length. Therefore, this protocol guarantees timeli-
ness but it gets slower as the network grows. Moreover, it is not considered optimal in terms
of the spatial channel reuse.

Another soft RT MAC protocol in [175] is designed for randomly distributed single-
stream wireless applications, it depends on a feedback scheme to access the medium rather
than contention schemes. To illustrate the problem of the contention scheme, the source
node (N0) in Figure 3.25 wants to send four packets (P0, P1, P2, P3) to a sink node (N10).
Firstly, N0 competes to access the medium and wins at time t1. Thus, N0 starts sending
packet P0 to node N1. At the instant when transmitting packet P0 is completed, N0 and N1
compete to access the medium in order to send their packets. If N0 again wins the competi-
tion at time t2, then it starts sending packet P1 to N1. In the scenario of real-time transmis-
sion, the packets should be transmitted in a defined order. Therefore, N1 should access the
medium in order to send packet P0 to node N2 rather than N0. Along the times from time t3
until time t7, we notice that the packet transmission sequence is unexpected and random.

51

Chapter 3. Background Theory

FIGURE 3.25: A sequence of the packet transmissions in a protocol, which is
based on the contention scheme [175].

Therefore, a control packet named ’CC’ is used to change the boolean Clear Channel Flag
(CCF) for each node that receives that CC packet. At the initializing phase, the CCF value
for all nodes equals 1, meaning that all nodes can receive and send packets. On the contrary,
the CCF of a node equals 0 when the node can only receive packets. The source node sends a
CC packet to its neighbours, and CC contains an integer value called Clear Channel Counter
(CCC). CCC at the source node is initialized to be 3 and decreases by one with a one-hop
transmission. For example, if a node receives the CC packet with CCC equal 3, then CCC is
decreased to be 2 and to node changes CCF in the receiver to be 0. As long as the CCC value
is more than 1, the receiver node still forwards data without initializing it. In case the CCC
value equals 0 or 1, the CCF value in the receiver node is changed to be 1 and the node can
initialize data for transmission.

To illustrate the concept of the protocol, Figure 3.26 shows that source node N0 sends
packet P0 to node N1 by using the RTS/CTS/data/ACK sequence. After getting ACK from
N1, N0 sets its CCF to 0, meaning that it cannot transmit its data until switching its CCF to
1 again. As long as any intermediate node receives packet P0, it will set its CCF value to 0.
This protocol is designed to send a CC control packet to the previous node, which is four
hops away after the data packet arrives. CC is then periodically sent to the previous node,
which is two hops away after the data packet arrives. Figure 3.26 shows that when node N3
receives ACK from the next node N4, then N4 waits a designated time prior to forwarding
packet P0 to node N5. In the meantime, N3 sends a CC packet to its previous node (i.e. node
N2) and sets its CCF to 0. N2 then sends the CC packet to N1 and sets its CCF to 0. N1 then
sends the CC packet to N0 and sets its CCF to 1. At the instant that N0 receives the CC packet
from N1, N0 can send a new data packet (i.e. packet P1) to N1, after that N1 sends P1 to N2
and waits there for the next CC control packet.

The disadvantages of the protocol are supporting only a single-stream and consuming
high network resources because of periodic sending control packets.

52

Chapter 3. Background Theory

FIGURE 3.26: Timing diagram for the packet transmission in the protocol,
which is based on the feedback scheme [175].

Real-time Protocols Based on Channel Reuse

The authors in [183] proposed the Channel Reuse-based Smallest Latest-start-time First (CR-
SLF) protocol to increase the channel reuse in soft real-time multi-hop sensor networks. This
protocol is based on partitioning the message in mobile WSNs into disassembled sets where
each set is transmitted through the medium in parallel while avoiding collisions and inter-
ference. The message transmission in each set depends on the minimum Latest transmission
Start Time (LST). CR-SLF considers the collision and deadline constraints, but the efficiency
of message scheduling is degraded in large networks. In addition, the energy consump-
tion is not considered and the proposed protocol requires precise position information for
message scheduling.

Real-time Protocols Based on Direct-MAC

The Path oriented Real-time MAC (PR-MAC) [184] is a soft real-time protocol based on
Direct-MAC (D-MAC) [185], which is proposed to guarantee the end-to-end delay by using
the Bidirectional Pipelining Schedule (BPS) algorithm to eliminate the sleep delay in both
directions of message transmission. In addition, the proposed protocol reduces the commu-
nication delay and prevents interference by using the multi-channel technique for message
communication. PR-MAC requires time synchronization with a reference clock, where the
performance can be improved by spatial channel reuse.

3.10.3 Hybrid Real-time Protocols

A hybrid scheduling protocol named Low-Power Real-Time (LPRT) is proposed in [186],
which is based on dynamic CSMA/CA to transmit Best Effort (BE) traffic and TDMA for
real-time traffic. The star topology is applied, where the base station directly connects and
controls the traffic with its end nodes. Figure 3.27 shows the structure of the LPRT super-
frame that includes the Beacon (B) frame, CAP and CFP. CFP, in turn, is divided into a
Retransmission Period (RP) and a Normal Transmission Period (NoTP). The beacon frame
is used to send Resource Grant (RG) information from the base station to its nodes to de-
termine which node is selected to access the medium. During the CAP period, BE traffic is
transmitted using CSMA/CA while the CFP period is used to transmit real-time traffic by
a node determined by its base station. RP and NoTP periods in CFP are optional periods

53

Chapter 3. Background Theory

used to retransmit the traffic due to a potential collision. LPRT decreases the energy con-
sumption and the required overhead due to the applied star topology. Nevertheless, it is
not considered as a suitable solution in large-scale wireless networks.

CFP

Beacon

NoTP

FIGURE 3.27: LPRT superframe structure [186].

3.11 Real-time Communication Protocols in Wired Systems

Many real-time protocols have been proposed for wired communication. For example, Con-
troller Area Network (CAN) is a vehicle bus standard, which allows nodes to communicate
with each other without a central master. Process Field Bus (PROFIBUS) [187] and Process
Field Net (PROFINET) [188] are other widely used standards designed for data communi-
cation in automation technology. However, these types of protocols are implemented using
dedicated hardware components, in addition, some disadvantages such as network size
limitations and potential for undesirable connection.

Today Ethernet-based communication network become widely used because of the ad-
vantages that Ethernet technology offers like low latency, high throughput, low cost and
reliability. In recent years, one of the most actively researched areas of industrial commu-
nication has been Ethernet-based communication systems. Nevertheless, the features of
standard Ethernet technology are not sufficient to meet stringent real-time requirements.
Therefore, extensions have been developed to solve this limitation. For example, a real-time
extension for CSMA protocols is virtual time CSMA [163]. It grants access to the shared
channel depending on variable-rate clocks to avoid collisions and offer better throughput
and less latency. The authors in [189] rely on the sensing and collision detection features
of the native CSMA protocol to provide priorities for real-time traffic by applying round-
robin service among all cooperating hosts. In [190], a token is passed among all nodes to
control access to the shared communication medium. Transmitted messages are classified
as synchronous or asynchronous, where the synchronous messages are used for real-time
applications. Another solution is using a master/slave architecture, where the master polls
slaves to access the communication medium at any given time [191]. Hanssen, Ferdy, and
Pierre G. Jansen [192] show a comprehensive overview of real-time communication proto-
cols for wired communication.

3.11.1 TTEthernet

As mentioned above, standard Ethernet does not consider real-time requirements for deter-
ministic, time-critical, and safety-relevant systems [193]. Therefore, Time-Triggered Ether-
net (TTEthernet) [10], [194] has been developed to address these requirements by extending
standard Ethernet fro safety-critical applications such as industrial control and automotive

54

Chapter 3. Background Theory

systems. TTEthernet synchronizes the nodes and schedules the packet switching. In ad-
dition, it partitions the bandwidth, provides fault-tolerance techniques to isolate and elim-
inate error expansion and ensures low latency jitter for messages. If no bounded latency
traffic is sent, it operates as a full-duplex Ethernet to be compatible with IEEE802.3 and
IEEE802.1 standards without any modification in the software or hardware designs. The
fault-tolerance, communication and synchronization services have been certified for avion-
ics. TTEthernet unifies critical and uncritical traffic into a single coherent communication
architecture without interference. Thereby, TTEthernet supports different types of appli-
cations including soft real-time systems (e.g., multimedia) and safety-critical real-time sys-
tems. TTEthernet provides three different types of messages (i.e. classes) that are defined as
follows:

• Time-Triggered (TT): the time-triggered messages are sent periodically and dispatched
at pre-defined time-slots where the message scheduling limits the potential interfer-
ence and collisions in the access to network resources. To guarantee the bounded la-
tency and low jitter in TT communication, all participating network components have
to be synchronized accurately with a global time. The message scheduling depends on
the network architecture (i.e. topology), transmission speed, computing model and the
specifications of the TT messages. Therefore, any modification in a network requires
recalculating the scheduling tables.

• Rate-Constrained (RC): RC messages are transmitted sporadically according to the
rate-constrained paradigm. Unlike TT messages, RC traffic does not depend on a
global base time or Protocol Control Frames (PrCF) to maintain the synchronization.
Instead, each transmitter uses a traffic shaping function for RC traffic to ensure that
there is a minimum gap between any two successive messages. Each intermediate
switch checks the sequence of the sent messages. Hence, the switch drops messages if
they are sent too early (i.e. after less time than the minimum inter-message gap). The
transmission latency in RC traffic can be bounded according to the network specifica-
tions and the allocated bandwidth.

• Best-Effort (BE): these messages are sent via First In First Out (FIFO) queues at out-
put ports and there are no restrictions concerning the transmission rates. Thereby,
there is no bounded latency or guarantee whether the messages can be sent. There
is no knowledge of the delays, message delivery and whether the delivery satisfies
any quality of service. BE messages have the lowest priority and are served by the
remaining bandwidth of the network after sending TT and RC traffic [195].

3.11.2 Audio Video Bridging Protocol

Audio Video Bridging (AVB) [13] is a set of IEEE standards introduced by the AVB task
group as a series of extensions to the standard IEEE 802.1 protocol. AVB addresses deter-
ministic playback, low latency and low jitter of audio and video traffic using Credit Based
Queuing (CBQ) and Priority Queuing (PQ) algorithms [196]. It is suited for infotainment
and audio systems such as audio conferencing and in-vehicle entertainment. AVB defines
the following standards to achieve the Audio Video (AV) traffic requirements.

• IEEE P802.1AS [11]: it is built on top of IEEE 1588 protocol to synchronize the clocks
of all components with a reference global time base.

55

Chapter 3. Background Theory

• IEEE P802.1Qat [197]: it is also known as Stream Reservation Protocol (SRP). This pro-
tocol is used to reserve the necessary network resources for AV traffic and maintain
the reserved resources until AV traffic is completed. Two protocols are defined in SRP:
The first protocol is called Multiple MAC Registration Protocol (MMRP), which is a
registration protocol used to register a group of MAC addresses (i.e. listeners and
talkers) on a set of switches. MMRP aims to confine the multicast AV traffic in spe-
cific areas of bridged LANs. The second protocol is the Multiple Stream Reservation
Protocol (MSRP) which maintains the required QoS by providing the network compo-
nents with the technique to conserve network resources and guarantee that AV traffic
is successfully transmitted along the network. MSRP permits the talkers to advertise
AV traffic across AVB switches and the listeners can register for the traffic. Thereby,
MSRP controls the establishments and termination of the traffic. Moreover, MSRP sup-
plies modules such as QoS to setup hardware resources that guarantee the requested
bandwidth. gPTP domains are used to keep up with the latest information about the
latency of the streams.

• IEEE P802.1Qav [196]: it is also known as Forwarding and Queuing Enhancements for
Time-Sensitive streams (FQETS). FQETS ensures the bounded latency and low jitter
during the transmission of the AV traffic by specifying shaping and queueing mecha-
nisms. AV traffic is classified in AVB switches into three types: 1) SR class A: this type
of traffic has the highest priority and it is sent over seven AVB hops in less than two
milliseconds. 2) SR class B: it is the second-highest priority and AV traffic of class B is
sent over seven hops in less than 50 milliseconds. 3) BE traffic: it is the lowest priority
traffic. Any traffic that does not belong to either class A or class B, is classified as BE
traffic.

As shown in Figure 3.28, the AVB switch contains several ingress and egress ports. The
AVB switch presents an egress port model to perform and schedule BE and AV traffic. PQ
and CBQ transmission algorithms are used to customize the traffic depending on the ap-
plication requirements. The default PQ algorithm is used to insert BE traffic into different
egress queues according to their priorities that are embedded in their Class-of-Service (CoS)
field. The high priority BE traffic is sent through the best-effort egress port before lower
priority traffic. Besides PQ, the CBQ algorithm is a credit-based shaping algorithm used
in conjunction with the SRP protocol to guarantee low latency for AV traffic and regulate
the data transmission for AV and BE traffic. Hence it performs the transmission through the
AVB egress port. In the beginning, a new incoming frame is queued and its credit is adjusted
to be zero. If the AVB egress port is not busy and no higher priority frames are waiting for
their turn in transmission, then the queued frame is selected for transmitting. During the
transmission time, the frame credit decreases at a rate of SendSlope until the transmission is
complete. Otherwise, the frame’s credit increases at a rate of IdleSlope while another queued
frame is being sent. In the event that SR class A does not have frames for transmission, the
lower-priority class (i.e. SR class B) that contains a queued frame has the ability to transmit.
Hence, the CBQ algorithm exploits the unused bandwidth. This means that traffic, which
uses the PQ algorithm (i.e. BE traffic), is able to use the unused bandwidth.

56

Chapter 3. Background Theory

PQ

CBQ

BE1

BE2

BE3

SR Class A

SR Class B

Best-effort
queues

Audio-Video
queues

Best-effort
egress

AVB egress

FIGURE 3.28: Egress port model of AVB switch [196].

3.11.3 Time Sensitive Networking

TSN [9] is a set of standard protocols produced by the TSN task group as an extension to
the IEEE 802.1 standard. The TSN task group was established in 2012 based on the AVB
task group to define techniques for real-time requirements of time-sensitive data. The TSN
standards converge the real-time AV traffic and real-time control traffic of high availability
and very low transmission latency in a TSN-enabled node. Despite spreading AVB in many
fields like music venues and entertainment systems, AVB does not fulfil the requirements
of critical safety applications [13]. AVB switches only guarantee low transmission latency
and low jitter for AV traffic by providing different levels of priority and bandwidth reser-
vation. In addition, the traffic transmission over AVB switches is non-preemptive, meaning
that time-sensitive traffic cannot interrupt lower priority traffic and it has to stay in the
waiting state until the ongoing traffic is completely transmitted. Hence, the credit-based
shaping used by AVB switches does not satisfy the bounded transmission latency of the
time-sensitive traffic. Therefore, the TSN standard protocols emerged.

The TSN protocols are developed to be compatible with Ethernet standards while being
suitable for different safety-critical systems (e.g. automotive and industrial systems). First
and foremost, IEEE 802.1AS [11] standard protocol is implemented and used to synchronize
TSN-enabled clocks with a precise reference global clock. IEEE 802.1Qbv [15], [198], [199]
adds TT traffic to the time-aware shaper, it permits temporal isolation and compositional
TSN structures when TT traffic is scheduled along the network from the sender to the re-
ceiver. IEEE 802.1CB [16] introduces replicas of each frame and sends them over disjoint
routes to provide seamless redundancy and prevent traffic loss in the event of failure. IEEE
802.1Qci [200] applies policy mechanisms by filtering incoming traffic in order to protect
the TSN-enabled switches and TSN-enabled end nodes from a wide range of attacks such
as Denial of Service (DoS) and man-in-the-middle attacks. The traffic filter in the 802.1Qci
standard uses a time-aware Access Control List (ACL) as a matching rule to pass or drop
traffic with specified IDs. Moreover, ACL identifies the size of the Maximum Transmission
Unit (MTU) and the target egress port for each incoming message. 802.1Qcc [201] manages
and fully distributes the configuration of the SRP protocol to replace the centralized con-
figuration management with a decentralized one. It also enhances the stream reservation
protocol and improves performance. The aforementioned properties of TSN, motivate us to
extend the mechanisms and protocols to wireless systems as will be explained in details in
Chapter 5.

57

Chapter 4

System Model

This chapter introduces in Section 4.1 the system model in the form of graphs that are used
as inputs to the proposed algorithms mentioned in Chapter 2, which perform the task and
message scheduling in a hybrid TSN. Section 4.2 displays the task and message scheduling
model. Section 4.3 describes our hybrid modelling approach that we use in our exploration
environment to test and analyse the proposed algorithms.

4.1 System Model

The system model used in the thesis is built from two TSN-based models (i.e., application
and architecture models). The application model is described with specific task vertices
and message edges, while the architecture model is a structured design of nodes and links.
The application models provided are mapped to the architecture, the goal of mapping is
to schedule the arrival of messages to the medium and to find optimized task schedules so
that the task and message scheduling model meets the overall requirements mentioned in
Chapter 2.

4.1.1 Formal Models Using Graphs

The architecture model is represented as a unidirectional graph GArc(N, L) using the tuple
< N, L >. Each vertex n ∈ N represents a node, which is either a wireless TSN-enabled
host (h ∈ H), a wirebound TSN-enabled station (st ∈ St), or a TSN-enabled router (r ∈ R),
i.e., N = H ∪ St ∪ R. Each router r is defined either as an access point (ap), an Ethernet
router (er), a wireless router (wr), or a bridge (b). The access point works as a wireless router
besides acting as a gateway for wireless hosts. We assume that all wireless nodes are spread
randomly in a Euclidean area and one available channel is shared for them.

Each edge (l ∈ L) is defined as a bidirectional physical link between nodes. It means
that a second TT message can be sent over the same link while the first is being transmitted
in the opposite direction. A wireless link is defined as a method of sending messages from
one wireless node to another using a radio frequency over a limited space (communication
range), while wired links generally use cables with fixed speed and known characteristics.
All TSN nodes in the architecture graph are synchronized to the global time. Each node
(n ∈ N) is presented by the tuple < id, type, f _rate, pos, mob, dri f t, max_energy >, where
each attribute in the tuple is defined as follows:

• id: it denotes the identification number of the node.

• type: it denotes the type of the node (e.g. host, wired station, access point, bridge,. . .).

• F: it is the node failure rate, which is the inverse of the Mean Time To Failure (MTTF).
MTTF is often calculated by dividing the total runtime of the node by the total of
failures encountered.

58

Chapter 4. System Model

• pos: it indicates the position of the node and it is defined as x, y coordinates. The
nodes are placed in a rectangular region, where the center of the region is the center
of the coordinate system. If the node is in motion, the coordinates are used to find out
the new location of the node and the distance travelled.

• mob: it is a boolean attribute that denotes whether the node is stationary or in motion.

• dri f t: it refers to the clock drift of the node’s clock and it is defined in terms parts per
million (e.g. 200 ppm).

• max_energy: it refers to the full energy of a wireless node.

Each link (l ∈ L) is presented by the tuple < id, start, end, pos-start, pos-end, Rlt, distance_link >,
each attribute in the tuple is defined as in the following:

• id: it denotes the identification number of the link.

• start and end: they are defined as the identification numbers of the start and end nodes
of the link, respectively.

• pos-start and pos-end: they are the coordinate positions of the start and end nodes of
the link, respectively.

• Rlt: it is the reliability of the link and it increases as the MTTF value of the link in-
creases.

Figure 4.1 illustrates a simple architecture graph, which contains several nodes presented
as vertices consisting of five wireless hosts in the range of [h1, h5], three access points in the
range of [ap1, ap3], three wireless routers in the range of [wr1, wr3], one bridge (b1), one Eth-
ernet router (er1) and one base-station (bs1). For instance, the failure rate of the bridge b1 is
0.05. It is located at the center of the region, it is defined as a stationary node, its clock drift
is 300 parts per million and the full energy of the bridge is 6000 joule.

Bidirectional wired and wireless links are used to connect different nodes. For instance,
link (l1) in Figure 4.1 starts from the Ethernet router (er1) and ends at the bridge (b1). The
coordinates (0, 90), (0, 0) represent the positions of the start and end nodes, respectively. The
reliability of the link (0.997) is assigned off-line and normally it is less for the wireless links
than for the wired ones.

ap2

wr1 wr2

ap1 wr3

ap3

h1

h2 h3

h4

l1

h5

b1

er1
bs1

er1 <0.08, (0, 90), 0, 200, 5000>

b1 <0.05, (0, 0), 0, 300, 6000>

l1 <er1, b1, (0, 90), (0, 0), 0.997>

FIGURE 4.1: An example for an architecture graph.

59

Chapter 4. System Model

The application model is represented as a directional graph GApp(T, M) using the tuple
< T, M >. Each vertex t ∈ T is defined as a real-time periodic task. Each edge m ∈ M
represents a message transmitted between the interconnected tasks. For instance, message
mab represents the relationship between task ta ∈ T and task tb ∈ T such that ta is the parent
task to tb (i.e. child task). These tasks and TT messages are represented as vertices and edges
respectively. Each parent task can have multiple child tasks. Therefore, the proposed model
supports multi-cast TT messages.

Each task (t ∈ T) is presented by the tuple < id, et[H], en[H], P, tl, dl, can_run_on[] >,
where each attribute in the tuple is defined as follows:

• id: it denotes the identification number of the task.

• et[H]: it is a list that specifies the Worst-Case Execution Time (WCET) for the task on
each host h ∈ H. The WCET depends on the processing capability of the host at which
the task is executed.

• en[H]: it is a list that includes the consumed worst-case energy for executing the task
on each host h ∈ H, where the consumed energy depends on the energy efficiency of
the host at which the task is executed.

• P: it presents the period of the task. The periods of the sending and recipient tasks af-
fect the period and the scheduling of the transmitted messages. More details about the
number of times a sending task should be repeated before starting to send its message
are given in Chapter 7.

• tl: it defines the top-level value of the task and denotes the cost of the longest path
from the root task (i.e. a task with no incoming messages) to that task. The value of tl
is the sum of the costs of vertices and edges of the longest path. Chapter 7 illustrates
how to compute the top-level value for each task. A task with lower top-level value is
considered to have higher priority for scheduling.

• dl: it defines the deadline of the task execution. Because the task deadline is fixed, a
host should be carefully selected for every task to avoid deadline missed.

• can_run_on[]: it denotes a list of the available hosts on which the task can run.

Each edge m ∈ M is presented by a tuple < id, se, re, et[R], en[R], sz, comm, c > and de-
fined as follows:

• id: it denotes the identification number of the message.

• se and re: they are defined as identification numbers of the sender and receiver tasks
of the communication message, respectively.

• et[R]: it is a list that includes the routing time of the message on each router r ∈ R. The
routing time depends on the queuing and the routing capability of the router through
which it passes.

• en[R]: it is a list that includes the consumed energy for routing the message on each
router r ∈ R. The consumed energy depends on the queuing and the routing capability
of the router through which it passes.

• sz and comm: they represent the amount of transmitted data (i.e. the message size)
and the required time to transmit message, respectively. The required time depends
mainly on the data rate (i.e. bandwidth).

60

Chapter 4. System Model

• c: it presents conditional precedence restrictions and indicates whether the message
from the sender task (i.e. se) is essential. In case the message is essential, the receiver
task (i.e. re) can only start its execution as soon as it receives that message from its
sender. If the message is substitutable, this means that the receiver task needs to re-
ceive at least one message from its sender tasks with the substitutable condition to
start its execution. Based on this concept, the receiver task still executes correctly even
if one of the sender tasks fails.

Figure 4.2 illustrates a simple application graph, which consists of four computational
tasks that are numbered in the range of [t0, t3] and presented as vertices. For instance, task
t3 has a WCET (ett3) and consumed energy (ent3) that depend on which host it runs. Its
deadline is 100ms and its period is 200ms. The top-level of the task t3 (i.e. the longest path)
is 0, and task t3 can be run on either host 1, host 2, or host 5.

Six periodic TT messages that are represented as arrows between different tasks [m1,
m6]. For instance, message m1 is sent by the task t3 and received by the task t2. Message
m1 has available routing time (etm1) and consumed energy (enm1) that depend on the router
it passes through. The message size is 6 packets and the message needs 1 ms to transmit.
The conditional feature (i.e. essential or substitutable) is assigned to each message off-line.
For instance, task t0 starts its execution provided that message m3 from the sender t3 is
received (i.e. essential), besides receiving either m5 or m6 (i.e. substitutable) from tasks t2 or
t1, respectively. It is worth noting that all tasks have precedence constraints, which means
the execution of a task comes after the execution of all its parent tasks. The complexity of
the application graphs increases with the number of computational tasks and the increase
in messages exchanged between them.

t3

t2

t1

t0

m4

m5

m3

m6

m1 <t3, t2, etm1, enm1, 1 ms, 6 packets, essential>

m1

m2

m2 <t3, t1, etm2, enm2, 1 ms, 6 packets, essential>

m3<t3, t0, etm3, enm3, 2 ms, 12 packets, essential>

m4 <t2, t1, etm4, enm4, 1 ms, 6 packets, essential>

m5<t2, t0, etm5, enm5, 2 ms, 12 packets, substitutable>

m6<t1, t0, etm6, enm6, 2 ms, 12 packets, substitutable>

t3 <ett3, ent3, 100, 200, 0, [1, 2, 5]>

t2 <ett2, ent2, 100, 200, 220, [1, 3, 5]>

t1 <ett1, ent1, 100, 200, 440, [1, 2, 3]>

t0 <ett0, ent0, 100, 400, 660, [1, 3, 4]>

FIGURE 4.2: An example for an application graph.

61

Chapter 4. System Model

4.2 Task and Message Scheduling Model

The scheduling algorithms in this thesis are executed off-line to optimize the task and mes-
sage scheduling by mapping different application models to an existing architecture model.
The message scheduling determines when a transmitted message is injected into the medium
and how to allow several transmitted messages to access the channel without interference
by allocating unique time-slots for each message. The task scheduling process aims to find
the best available host at which a task can run. Therefore, during the task and message
scheduling process several variables are continuously updated as illustrated in the follow-
ing:

• When choosing a route (i.e. r) to send a message m, the energy consumption (i.e.
enn) and the execution time (i.e. etn) in every node n ∈ r are continuously updated
as a result of scheduling the message on that route. Also, The injection time of the
message m (i.e. mIT) into the medium, the message end to end delay (i.e. me2eD) and
the arrival time of the message at the receiver (i.e. marrival) are determined at the end
of the scheduling.

• The energy consumption of scheduling the message (i.e. enm) is the sum of enn in every
node n ∈ r. Likewise, the failure rate of scheduling that message (i.e. Fm) is the sum of
the failure rate (Fn) of every node n ∈ r. The reliability of the message m (i.e. Rlm) is
computed based on the reliability of the nodes (i.e. Rln) and reliability of the links (i.e.
Rll) that the message passes through.

• The consumed energy (i.e. ent), and the failure rate (i.e. Ft) determined by the task and
message scheduling are constantly updated until scheduling the required messages
and the task schedule is obtained.

• The reliability of the task t (i.e. Rlt) depends mainly on the reliability of the incoming
messages and the reliability of its parent tasks. trt is the ready time for executing the
task t and it is updated until arriving all required incoming messages.

• At the end of the task and message scheduling process, a host is selected from an
available host set (i.e. can_run_on[]), and it is inserted into the runs_on attribute to
execute the task.

Figure 4.3 represents a possible solution for the task and message scheduling problem by
assigning the tasks from Figure 4.2 onto a set of hosts from Figure 4.1. Figure 4.3 shows the
mapping of the application graph onto the architecture. The transmission time is neglected
between two tasks scheduled to the same host. The size of the transmitted message and the
network capacity are taken into account when calculating the transmission time between
two tasks assigned to different hosts. Since the tasks do not specify which host to use, the
applied algorithm to perform task and message scheduling must be optimized in order to
obtain solutions that consider the constraints of the hybrid TSN systems.

62

Chapter 4. System Model

ap2

wr1 wr2

ap1 wr3

ap3

h1

h2 h3

h4

l1

h5

b1

er1
bs1t3

t2

t1

t0

m4

m5m6

m1

m2

FIGURE 4.3: Example of mapping an application graph onto an architecture
graph.

4.3 Description for Our Hybrid Modelling Approach

Figures 4.4 and 4.5 show two different architecture graphs (i.e. hybrid networks) that are
later used as inputs to evaluate our proposed algorithms. Every graph represents two zones.
The first zone is a wired TSN domain that contains wirebound station (st) used for control-
ling and monitoring operations, time-aware Human-Machine Interface (HMI) and Central
Computing Unit (CCU), they are connected through five fully connected TSN-enabled Eth-
ernet routers (er). The wired TSN domain is a static and stable network. The second zone is a
wireless TSN domain that contains a group of three TSN-enabled wireless routers (wr), two
TSN bridges (b) and five TSN access points (ap). In the architecture graph, the TSN bridges
are used to combine the wired and wireless zones and reformulate the timing and control
messages while transmitting between zones. Each TSN access point is connected with four
mobile wireless TSN hosts (h) (i.e. laptops, iPods and mobile phones) or four fixed wireless
TSN smart hosts (i.e. wireless stations). In our thesis, the wired clocks in the TSN wired
domain have higher priority than in the TSN wireless domain. Higher priority gives pref-
erence to a wirebound station to be the grandmaster clock because wired clocks are more
stable than wireless ones in terms of energy stability and not being exposed to surrounding
influences that, in turn, negatively affect the TSN network performance.

4.3.1 Attributes of the Building Blocks

The computational resources in the described hybrid network are described by a set of gen-
eral attributes as shown in the following.

Wireless nodes include mobile, fixed wireless hosts, and wireless routers sharing the fol-
lowing attributes: 802.11g is the Wi-Fi version that supports the communications of wireless
local networks. The data rate is set to be 1-54 Mbps, channels are auto-assigned, transmit
power is 0.1 watt, buffer size is 32 Kbytes, the beacon broadcast interval is 0.02 seconds and
the maximum receive time is 0.5 seconds.

The Ethernet part of the bridges is built on 802.1w spanning tree protocol for loop-free
logical topology Ethernet networks. The Bridge Protocol Data Unit (BPDU) and packet ser-
vice rates are assigned to be 500 kilo packets per second. The addresses are auto-assigned
and the operational mode is full-duplex.

63

Chapter 4. System Model

Wired nodes include base-stations and Ethernet routers sharing the following attributes:
the spanning tree protocol is 802.1w. BPDU and packet service rates are assigned to be 100
and 500 Kilo packets per second, respectively. The link model is 100BaseT, whereas, the link
speed, link type, and duplex mode are auto-designed.

4.3.2 Services

The services that are supposed to be provided by the hybrid network are as follows:

• Clock synchronization:

The clock synchronization establishes a global time in a hybrid TSN domain and forms
the basis of the successful implementation of an application. Because of the deadlines
of critical tasks in a real-time application, it is necessary to make sure that the task
deadlines are not missed, therefore, the clocks of the hybrid system have to be accurate.

• Time-triggered communication:

The periodic tasks generate time-triggered messages at regular intervals. Therefore,
the proposed algorithms select the egress ports of the cooperating nodes to determine
the instant of time for transmitting TT messages.

• Message scheduling:

The egress ports must be selected so that all messages required for a task arrive before
its deadline, especially for a wireless environment where many messages are sent si-
multaneously, causing potential interference. Therefore, each message must meet the
deadline and interference constraints.

• Fault tolerant message scheduling and routing:

In case of link or node failures, a fault-tolerance technique is needed for sending copies
of the same message through several routes, which reduces significantly the impact
of miss task deadlines and message retransmissions. The routing of the replicated
messages plays also a critical role in the reliability of the system. Selecting the shortest
routes with the least joint routers increases the capability of establishing a reliable and
fault-tolerant system.

• Task scheduling process:

Besides the message scheduling, selecting the best available host, on which the task
can run, contributes significantly to implementing a real-time application in a hybrid
system successfully. Therefore, this thesis targets to find an optimal mapping of the
vertices of the task graph to available hosts so that the overall challenging require-
ments mentioned in Chapter 2 are met.

In this chapter, we support two topologies in the models, Figure 4.4 shows the wireless
TSN domain in a ring topology, whereas Figure 4.5 shows it in a grid topology. All traf-
fic travelling in both topologies is bidirectional which means any topology provides two
pathways between any two nodes.

In the ring network, each wireless TSN relay (such as a TSN bridge, TSN router, or TSN
access point) is connected to exactly two other nodes, creating a single continuous path for
signals to travel through each node.

We summarize the advantages of a ring topology as follows:

• It does not require a central node to manage the connectivity between the nodes.

64

Chapter 4. System Model

• It is quite easy to install and reconfigure since adding or removing a node requires
moving just two connections.

• Point-to-point line configuration makes it easy to identify and isolate faults.

• Ring protection reconfiguration for line faults of bidirectional rings can be very fast,
as switching happens at a high level, and thus the traffic does not require individual
re-routing.

The disadvantages of a ring topology are summarized in the following points:

• One malfunctioning node can create problems for the entire network.

• Network performance may be impacted by node changes, additions, and moves.

• Communication delay is directly proportional to the number of nodes in the network.

• On each link connecting the nodes, bandwidth is shared.

• Limited routes between a sender and its receiver.

In the grid topology, each node is connected to two or more other nodes with a point-
to-point bidirectional link. As a result, it is possible to utilize a portion of the physical
complete connectivity and redundancy of a mesh topology without having to incur the cost
and complexity of connecting each node individually.

The grid networks have advantages over the ring ones, as in the following:

• Easy scalability, this means you can quickly and easily change the size of the network.

• Resistant to problems, this means this type of topology helps keep the network run-
ning even if a failure occurs.

• Sender has many alternative routes to send its traffic to its receiver.

In contrast, a network designer wants to be aware before committing to this type of
network, as in the following:

• Increasing the required network resources.

• Initial network setup can be complicated.

65

Chapter 4. System Model

Wireless laptop Wireless iPod

Wireless station Mobile phone

TSN wireless
router

TSN Ethernet
router

TSN bridge

Wired link

Wireless link

Operations, control
and monitoring

CCU

Wired TSN domain

Wireless
TSN domain

Wired station

TSN access point

HMI

h1 h5h4 h8 h12 h9 h13h16 h17h20

wr1 b1 wr2 b2 wr3

ap1 ap2 ap3 ap4 ap5

er1 er2

er4 er5

er3

FIGURE 4.4: The grid topology used in our system model.

66

Chapter 4. System Model

Wireless laptop Wireless iPod

Wireless station Mobile phone

TSN wireless
router

TSN Ethernet
router

TSN bridge

Wired link

Wireless link

Operations, control
and monitoring

CCU

Wired TSN domain

Wireless
TSN domain

Wired station

TSN access point

HMI

h1 h4

h5 h8
h9 h12 h13 h16

h17 h20

ap1

ap2
wr1 ap3 wr2

ap4

ap5

b2wr3b1

er1

er3

er4 er5

er2

FIGURE 4.5: The ring topology used in our system model.

67

Chapter 5

Extending TSN Capabilities over
Hybrid Systems

5.1 Introduction

Wireless and wirebound networks are widespread in dependable and scalable real-time ap-
plications. More and more applications combine wireless and wirebound nodes in a single
system. In such systems, the real-time MAC protocols addressed in Chapter 3 may face
several challenges such as 1) precision of the clock synchronization. 2) support for dynamic
topologies and event-triggered applications. 3) channel assignment problem in wireless net-
works. 4) management of multi traffic types. 5) energy efficiency despite control packets.

TSN as explained in Subsection 3.11.3, is designed to fulfil the real-time requirements
in wired (i.e. Ethernet-based) environments and offers services that are not covered in AVB
systems including deterministic latency and limited jitter for time-critical applications. For
time-sensitive streams, the IEEE 802.1 TSN task group creates standards to achieve correct
time distribution and timeliness with high reliability.

The standards of TSN make it an ideal solution to address the challenges and problems
that are faced by real-time MAC protocols in wireless environments. Thereby, this moti-
vates us to implement and extend TSN wire-bound systems for hybrid environments in
order to include the capabilities of TSN features. Due to the nature of the medium access,
channel competition, asymmetry communication delay and packet error rate, the TSN stan-
dards have to be improved for mapping TSN capabilities to wireless systems. In addition,
not all wireless technologies are configured to support the TSN features, but 5G and IEEE
802.11/Wi-Fi standards are suitable base technologies for TSN. To achieve that, this chapter
discusses how to extend TSN capabilities for wireless systems.

The rest of the chapter is structured as follows: Section 5.2 discusses IEEE 802.11/Wi-
Fi and TSN support. This section details time synchronization, traffic scheduling, traffic
shaping and fault tolerance based on 802.11. Section 5.3 presents modelling of the hybrid
TSN with a simulation framework using the OPNET network simulator.

5.2 IEEE 802.11/Wi-Fi and TSN Support

According to the limitations of 802.11 such as random backoff and multi-hop problems men-
tioned in Subsection 3.9.3, extensions become necessary to fulfil the requirements of real-
time applications over wireless technologies. To achieve that, the standards of TSN require
the support of 802.11 MAC/PHY to work properly as demonstrated in this section.

68

Chapter 5. Extending TSN Capabilities over Hybrid Systems

5.2.1 Time Synchronization (802.1AS) over 802.11

Section 3.7 gives an overview of 802.1AS and the selection of the grandmaster as a source ref-
erence clock. Although 802.1AS has already been developed for LANs [11], our thesis pro-
poses an extended protocol [27] to deal with the challenges of defining a profile of 802.1AS
for 802.11 networks. Figure 5.1 illustrates an example for the time synchronization referring
to a source reference time (i.e. grandmaster clock) between wired (Ethernet) and wireless
TSN domains by enabling 802.1AS over Ethernet and 802.11. To achieve that, 802.1AS tim-
ing packets (i.e. SYNC, Announce and P2P request/response messages) have the priority
when accessing the channel to perform the TT data traffic. Moreover, the timing packets
that are transmitted through the wireless medium have to take into account the asymmetric
delays due to variable data rates, deterministic and random delays and outlier path delays
due to unpredictable data collisions. To select the best grandmaster clock, stationary nodes
with an Ethernet connection get higher priority than the fixed or mobile wireless nodes. The
reason is that the network topology and the packet transmission are more stable compared
to the nodes located on the wireless side. More details about extending 802.1AS for wired
and wireless networks will be shown in Chapter 6.

Wired TSN
router

Wired TSN
router

Grandmaster
Clock TSN bridge

TSN access
point

Wireless end
nodes

Wired link

Wireless link

FIGURE 5.1: Time synchronization between wired and wireless TSN domains
by enabling 802.1AS over Ethernet and 802.11 [202].

5.2.2 Traffic Scheduling and Shaping (802.1Qbv) over 802.11

One of the limitations of 802.11 is the random backoff mechanism that results in random
latency in CSMA/CA. To eliminate the random latency and ensure that time-sensitive TT
traffic can be delivered with low latency and high reliability, a deterministic mechanism that
can classify and schedule the traffic according to deadline constraints becomes necessary.

The IEEE 802.1Qbv [15], [199] standard is an off-line scheduling mechanism that clas-
sifies and shapes all types of traffic and schedules them according to the characteristics of
the traffic and the distribution of the TSN-enabled nodes. It is basically used to classify
the time-sensitive traffic in TSN-enabled nodes and give them higher priority than other
types of traffic (i.e. BE and AV traffic) during the transmission through the wireless access
medium. IEEE 802.1Qbv supports preemptive scheduling which means that the low prior-
ity traffic is interrupted in case of scheduling higher priority traffic. Thereby, high-priority
traffic is delivered before deadlines.

The egress port of a WirelessTSN intermediate node (i.e. a TSN-enabled bridge or a
wireless router) has its own queues, and each queue has a priority value used to classify the
incoming messages. Figure 5.2 illustrates eight ports sorted from the lowest priority at the
top of the figure (i.e. BE0) to the highest priority at the bottom of the figure (i.e. TT7). TT

69

Chapter 5. Extending TSN Capabilities over Hybrid Systems

traffic is enqueued in the higher priority queues. The following queues are used to prioritize
different classes of AV messages. BE messages are enqueued in the remaining queues. The
priority for messages of the same type depends on the value of a tag called Priority Code
Point (PCP) which is contained in each message and used to forward it to the corresponding
queue. The transmission procedure starts at the highest priority queue that has messages
and the gate of the queue is opened. We assume that the gates have mutually exclusive
patterns meaning that no two gates can be opened at the same time. When a message is
preempted by a higher priority message, the transmitting message is interrupted before
initiating transmission of the higher priority message (e.g. TT traffic), such that the higher
priority message can immediately initiate its transmission. After finishing the transmission,
the preempted message resumes its transmission.

The gates of the queues are controlled to be opened and closed by a Time Aware Shaper
(TAS), which applies a Gate Control List (GCL) to dictate the state of each queue’s gate at a
defined time. It is worth noting that the GCL is configured separately for each egress port.
For instance, the GCL in Figure 5.2 shows a set of queue masks that identifies the status of
each queue’s gate at an output egress port. The GCL of the 802.1Qbv-enabled node starts
with t0: 10000000, which means that ‘t0’ is the start time of the GCL. Thereby, the enqueued
TT traffic in Queue # 7 is allowed to be transmitted from its queue so that the first index of
the GCL is opened ‘1’ and the other gates of the queues are closed due to their corresponding
indexes in the GCL being closed ‘0’. At the next start time (i.e. t1), the AV traffic in Queue #
6 is allowed to be transmitted because the second index of the GCL is opened and the other
indexes are closed. The opening mechanism of the gates of all queues continues until the
end of a predefined period.

The configured period of time in the structure of a port-specific GCL depends on the
periods of all traffic that is designated to that 802.1Qbv-enabled node. To be more specific,
the period of a port-specific GCL is computed according to the Least Common Multiple
(LCM) of the periods of the traffic passing through that node. To avoid interference and
to make the scheduling more deterministic, the GCL is computed offline for TAS in each
TSN-enabled node. This means that every node has prior knowledge and it is aware of the
network topology, the transmitted streams and their attributes (e.g. transmitter, receiver,
period and deadline). Moreover, TAS has to know the structure of the output queues to
facilitate the classification and shaping process. This guarantees that an active TT queue is
the only available queue with its gate opened and the gates of all other queues have been
closed. Thus, each TT message reserves time slots, similar to the principle of TDMA, to elim-
inate the latency caused by nodes competing for access to the wireless medium. Thereby,
scheduled operation are performed with a minimum bounded latency.

An enqueued AV message is transmitted if the following conditions are satisfied 1) the
gate of the AVB queue is opened, 2) the Credit-Based Shaping (CBS) of the AV message per-
mits it to be transmitted and 3) no TT traffic is enqueued. Thus, the combination with IEEE
802.1Qat stream reservation protocol, which reserves the resources for specific traffic, allows
the transmission of the AV messages whenever the credit value is zero or positive. The CBS
concept enables the transmission of all enqueued AV messages and prevents low priority
messages from getting stuck and waiting for a long time. Therefore, CBS performs and
shapes the AV messages. At the initialization, the credits of all AV messages are set to zero.
The credit of a message is decreasing with a SendSlope during the message transmission.
The credit is frozen if the message is interrupted by a higher priority message. The credit
increases with an IdleSlope if the message is in the waiting state. The message transmission
is only initiated if the credit is zero or positive and the gate is opened. If no messages are in
the queue, the credit is reset to zero.

70

Chapter 5. Extending TSN Capabilities over Hybrid Systems

An example of how CBS works is illustrated in Figure 5.3 where a wireless bridge has
a TT message, two AVB queues, as well as a BE queue. Figure 5.3 shows a time-line for
the transmission at the bottom, where a rectangle is a part of a message (fragment), with
the width representing the transmission time. The values of the credit over time for AVB
streams are presented above the time-line. Let us explain the transmission of all streams
using the events e0 to e10.

At event e0, message m1 which arrived at AVB1-Queue starts transmission. Its credit (i.e.
Credit AVB1) is initialized to zero and decreases according to the SendSlope. At event e1, the
credit of AVB1-Queue is negative while the credit of AVB2-Queue is positive because it waits
for the completion of the transmission of m1 (IdleSlope). Therefore, at e1, AVB2-Queue opens
the transmission for m3. Message m2 arrives and is enqueued in AVB1-Queue. During the
period from e2 to e3 no transmission occurs for m2 because the gate of AVB1-Queue is closed.
AVB1-Queue opens the gate to transmit m2 at e3. During the transmission time, messages
m4 and m5 arrive and are enqueued in AVB2-Queue and BE-Queue, respectively. At event
e4, message m6 arrives at TT-Queue and immediately the gated is opened to transmit m6.
The credits of AVB-Queues are frozen during this period. At event e5, transmission of m6
finishes, the gate of AVB1-Queue opens and the transmission of m2 is resumed. At event
e6, the enqueued m5 is transmitted and the credits of AVB-Queues are increasing. At event
e7, the transmission of m5 finishes. During the period from e7 to e8 no transmissions for
messages m4 and m7 takes place because the gates of AVB-Queues are closed. During this
time, the credits of the AVB-Queues keep accumulating during until event e8. At event e8,
AVB2-Queue transmits m4 and its credit decreases again, while the credit of AVB1-Queue
keeps increasing. At event e9, AVB1-Queue resumes decreasing its credit because of sending
m7. AVB2-Queue returns to accumulate its credit according to the IdleSlope until event e10.

CBS
CBS

Transm
ission selection to egress port

Gate
Gate

Gate
Gate

Gate

BE0

BE4

AVB1

AVB2

TT1

Time Aware Shaper

t0: 10000000
t1: 01000000

…
t8: 10000000

Gate control list

Lowset
Priority

Highest
Priority

Queue # 0

Queue # 4

Queue # 5

Queue # 6

Queue # 7

FIGURE 5.2: A simple view of an 802.1Qbv-enabled node [198], which trans-
mits different types of traffic at an output egress port.

71

Chapter 5. Extending TSN Capabilities over Hybrid Systems

TT-Queue

AVB1-Queue

AVB2-Queue

BE-Queue

Credit AVB1

Credit AVB2

m3

m1 m2

m6

m5

m7

m1 m3 m6
m
2 m5 m7

m4

m4
m
2

e0 e1 e2 e3 e4 e5 e6 e7 e8 e9 e10

FIGURE 5.3: Example for traffic shaping and scheduling in an 802.1Qbv-
enabled node.

5.2.3 Fault Tolerance Management (802.1CB) over 802.11

The IEEE 802.1CB [16] standard – known as Frame Replication and Elimination for Reliabil-
ity (FRER) - foresees sending duplicated copies of a message over disjoint redundant routes.
The proactive seamless redundancy improves the reliability of the message transmissions,
especially for sensitive applications that do not tolerate message losses. Each TSN-enabled
wireless node that has the message replication capability generates sequence numbers for
each outgoing message. Each copy is then forwarded through a different route, and in case
of a route failure, the message reaches the destination through another redundant route. The
message replication can use the traffic type and the route information to minimize network
congestion. The redundant routes have to contain disjoint intermediate nodes because a
failure of a joint node would lead to the failure of the routes that contain that node. To avoid
network overloading at an intermediate node, all following messages are eliminated and the
first received message is forwarded through other redundant routes toward the next node.
At the destination node when a message is received through a route, all following messages
are eliminated and the first received message is processed.

FRER consists of different functions, which are described in the following.

• Sequencing function: at the sender, this function generates a unique identification
number (i.e. sequence number) for each transmitted message.

• Sequence recovery function: this function is used at the egress port to examine the
messages that come from different ingress ports and eliminate the duplicated mes-
sages. Moreover, the egress port reorders the messages before dispatching them into
the medium. To achieve that, each FRER-enabled node has its own history to save the
sequence numbers of the received messages. This is useful to discard message that are
out of the expected sequence range.

• Individual recovery function: every message passed to an ingress port is checked and
eliminated if it is a duplicate message with the same sequence number of a message
that has been received previously.

72

Chapter 5. Extending TSN Capabilities over Hybrid Systems

• Message splitting function: this function creates one, two, or more copies of a message
according to the number of the extracted disjoint redundant routes. Thereby, these
copies are transmitted to the destination via separate routes.

• Encoding and decoding sequencing: this function is used to encode the generated
sequence numbers by the sequencing function. At the receiver, a decoding process
is implemented to retrieve the original sequence number provided that the encoding
process is known to all wireless intermediate and end nodes. Otherwise, a problem
can occur during the sequence number retrieving mechanism.

• Message identification function: at the FRER-enabled bridge node, any message is
identified by a message identifier to determine to which stream the received message
belongs (i.e. TT traffic, AV or BE stream). To do that, the identifier examines the source
MAC address and Virtual LAN_id fields of the received message. Thus, the received
message is classified and shaped at the egress port by implementing TAS.

The design of the FRER-enabled node is flexible. To be more specific, FRER and non-
FRER nodes can coexist in the same network provided that the non-FRER nodes do not
affect the TSN constraints.

Figure 5.4 depicts how FRER operates. The sender (i.e. the leftmost box) sends its mes-
sage (e.g. TT message) to its access point, the access point generates and encodes a sequence
number and embeds it for each outgoing copy of the message. At the next wireless routers
where two copies of the message are received, each ingress port checks the sequence num-
bers and eliminates the duplicates. At the egress port, the copies of the same message are
eliminated if they come from different ingress ports while the first copy of the messages is
forwarded through the redundant routes toward the next wireless router. The same process
of elimination and replication of the message is repeated until arriving at the access point
that is connected with the receiver. The receiver’s access point (i.e. the rightmost box) passes
the first copy of the message to the receiver host. In this setup, the transmitted message is
delivered and multiple failures can be overcome. To further explain, Figure 5.5 shows two
path failures on the paths between the sender and the receiver of the message. Neverthe-
less, the message is successfully received due to the adoption of the principle of replicating
the message and use of available paths that in turn lead to overcoming the failures in the
network. In the network without FRER in Figure 5.6 two failures lead to preventing the
message delivery.

Sender

* Checks the sequence numbers at
each single ingress port then
discards duplicates.
* Duplicates a message if required
at the egress port.

* Checks the sequence numbers for different

ingress ports then discards the duplicates.

R
eplication

At the receiver, only one message is received
and the sequence number is removed

Elim
ination

Sequence
num

ber
generator

A path of a copy of the message.

A path of a second copy of the message.

FIGURE 5.4: Operation of message replication and elimination at FRER-
enabled nodes.

73

Chapter 5. Extending TSN Capabilities over Hybrid Systems

Sender

Replication

Elim
ination

Sequence
num

ber
generator

FIGURE 5.5: Simple example showing the fault tolerance and guarantee of
message delivery by using FRER.

Sender

Forw
arding

FIGURE 5.6: Simple example with a message failing arrive in a network that
does not support FRER.

5.3 Modelling of Hybrid TSN Networking in a Simulation Frame-
work

The implementation of TSN functions in hardware is a time-consuming and costly process.
Therefore, modelling and simulation frameworks can be used to create an environment
for emulating and imitating the configurations of the real hardware nodes. This section
presents a TSN simulation framework for a hybrid environment that includes wired and
wireless components. The described implementation is modular, which was integrated and
improved as an extension of the TSN Ethernet-based network in [203]. The time-aware
shaping (i.e. 802.1Qbv) and fault tolerance (i.e. 802.1CB) capabilities of TSN are extended
into the existing models used by the standard Ethernet and wireless models with adding
necessary functionalities to fulfil the requirements of the time-sensitive applications.

To provide the functionalities of TSN, the simulation model of a TSN-enabled node im-
plements the TSN clock synchronization, which also provides an opportunity to evaluate
the synchronization accuracy of real-time TSN solutions. Therefore, each time-aware node
requires a local clock synchronized accurately with a source reference clock as also required
for the deterministic delivery of time-triggered traffic.

74

Chapter 5. Extending TSN Capabilities over Hybrid Systems

Evaluation of TSN functions using simulation tools before starting the manufacturing
process of TSN-compliant components is useful due to the high cost and manufacturing
time, which are required to reach the final approved components. Therefore, network simu-
lators are considered as time and cost-efficient options for analysing and debugging as part
of the verification and validation of the TSN functions. The simulation tools have the fea-
tures to evaluate the tested network through different parameters like end-to-end-delay and
throughput. Moreover, the networking scenarios can be applied by using various topologies
and considering different faults.

There are several simulation tools designed for research, industry and teaching pur-
poses. The Network Simulator-2 (NS-2) [204], NS-3 [205], Qualnet [206], OMNeT++ [207]
and OPNET (Riverbed) [14] simulators are the most common network software simulation
tools. NS-2 and OMNeT++ are both free and non-commercial open-source primarily built
for network frameworks. Qualnet is a commercial software used especially for scientists
and network planners to mimic the behaviour of scalable network topologies, but it is not
free and source codes for some files cannot be modified [205]. On the other hand, OPNET
is a commercial tool with discount licenses for educational usage. It is a discrete-event sim-
ulation tool and it is widely used in several academic and scientific institutes because of
continuously updated models for many protocols. OPNET provides to its users various sce-
narios and predefined node models which can be easily imported from the OPNET library
to enable the required functions. Besides that, Graphical User Interfaces (GUIs) let the users
interact with the network models and easily access the message structures and source code
at different OSI layers. OPNET also allows its users to modify or build process modules that
are used to implement user-defined network models.

The simulations in OPNET occur at hierarchy levels and the user can investigate specif-
ically what is going on at that level. The modelling development tool in OPNET consists
of three editors: network, node and process editors. The network editor is used to build
the network model by defining the nodes and connecting links. The node editor is used to
edit the node model, which may include processors, sinks, queues, and external modules
among other types of modules. Both static links and packet streams can be used to connect
the modules. The process editor is used to define and control the processes inside the node’s
modules, which are designed as State Transition Diagrams (STDs). The code in the states is
written in Proto-C language and each state is coloured either in green if it is a forced state or
red if it is an unforced state. The change between the related states is denoted by an arrow.
To analyse the behaviour and performance of the system, simulation and execution tools
are implemented to execute the simulation sequence and change the simulation behaviour.
A probe editor is used to collect static and animated outputs in different formats. Finally,
result analysis tools use filters to collect and display the results in graphs after completing
the simulation execution.

Based on the above, the OPNET simulator is used in our thesis for modelling the network
infrastructure of the hybrid TSN system because of the support of OPNET for debugging
and performance analysis for a wide range of wired and wireless systems. To be more spe-
cific, the OPNET simulator is considered a suitable and flexible user-defined environment
to build or modify models for several time-triggered protocols, which can be improved to
satisfy the timing and reliability requirements of the hybrid networks. Chapter 4 presents a
network model that contains associated node models of switches, bridges, routers and end
nodes in wired and wireless TSN domains and Figures 4.4 and 4.5 illustrate the architecture
graphs of our system model. TSN domains support the time-based TSN properties (i.e. IEEE
802.1Qbv) and fault-tolerance properties (i.e. IEEE 802.1CB) with an improved and precise
IEEE 802.1AS synchronization protocol.

75

Chapter 5. Extending TSN Capabilities over Hybrid Systems

5.3.1 System Model Setup Definition

OPNET is use for the system model that contains the description of network components
and physical links of an architecture model. The description of the tasks and messages
that form an application model occurs in JavaScript Object Notation (JSON) formatted files.
OPNET then converts JSON files into XML files. The reason for using XML files is that dif-
ferent hybrid network topologies are easily generated by importing XML files of the desired
topologies. As shown in Figure 5.7, the JSON files contain JavaScript objects with attributes,
where objects define the nodes and links of the architecture model, tasks and messages of
the application model in a high-level definition, where the attributes are explained in Sec-
tion 4.1. In other words, JSON files save time and avoid common pitfalls in the configuration
settings by assigning several attributes using default values. Many developers prefer to use
JSON because of its simplicity however it limits the flexibility and further details for the
setup of the system configuration.

 "Architecture": {

nodes: [links: [

 { {

id: 0, id: 0,

node-type: h, start: 0,

is_router: false, end: 1,

failure_r: 0.5, pos-start: (748, 838)

pos: (748, 838) pos-end: (764, 715)

mob 0 reliability: 0.995,

drift 250 Distance_link: 124.036

max_energy 100.000 },

 }, {

 { id: 1,

id: 1, start: 1,

node-type: ap, end: 0,

is_router: true, pos-start: (764, 715)

failure_r: 0.1, pos-end: (748, 838)

pos: (764, 715) reliability: 0.995,

mob 0 Distance_link: 124.036

drift 200 },

max_energy 100.000

 }, .

 { .

. .

.

.

 "Application": {

tasks: [messages: [

 { {

id: 0, id: 0,

et[H] sender: 1,

en[H] receiver: 0,

period: 200, et[R]

top-level: 660, en[R]

deadline: 1000, size: 12,

can_run_on: [2, 5, 6] comm:2ms

runs_on = 0, timetriggered: true,

 }, conditional: essential

 { },

id: 1, {

et[H] id: 1,

en[H] sender: 2,

period: 100, receiver: 1,

top-level: 440, et[R]

deadline: 1000, en[R]

can_run_on: [11, 6, 12] size: 6,

runs_on = 0, comm:1ms

 }, timetriggered: true,

conditional: essential

. },

.

. .

.

.

FIGURE 5.7: Forming the system model as JSON files.

76

Chapter 5. Extending TSN Capabilities over Hybrid Systems

5.3.2 Configuring of TSN-enabled nodes

In the TSN hybrid framework, TSN traffic generating nodes (e.g. wireless hosts) are con-
figured to send and receive their traffic depending on their traffic generation profiles. The
TSN-enabled intermediate nodes (e.g. routers and bridges) use their queuing system to
shape and schedule the ongoing traffic. Therefore, to establish the TSN properties of fault
tolerance and traffic scheduling, every node obtains prior knowledge of the configuration
including the network components, assigned tasks and their associated traffic profiles, be-
sides, the message scheduling to schedule the traffic in temporal and spatial coordination.
Ingress configuration files are used to identify the incoming traffic by its traffic identifier
and define the egress port in the TSN-enabled intermediate nodes. If any message does not
match TT or AV traffic, it is classified as BE traffic that does not have time constraints.

Figure 5.8 shows an example of a TT traffic generation profile at a sending node. Two
TT messages are generated and the attributes of each message are defined. For example, the
phase (e.g. 30 µs) defines the expected time at which a node expects to receive the message.
The period (e.g. 200 ms) defines the recurrence time of the message. The transmission time
(e.g. 2 µs) specifies how long the messages occupies the channel. VLAN_id (e.g. 10) is the
VLAN identifier for the message, destination address (e.g. 20) is the final address for the
generated message.

<num_TT> 2 </num_TT>

<TT>

<phase> 0.000030 </phase>

<period_duration> 0.200000 </period_duration>

<transmission_duration> 0.000002 </transmission_duration>

<vlan_id> 10 </vlan_id>

<pkt_size> 64 </pkt_size>

<dst_address> 20 </dst_address>

</TT>

<TT>

<phase> 0.000070</phase>

<period_duration> 0.200000 </period_duration>

<transmission_duration>0.000002 </transmission_duration>

<vlan_id> 20 </vlan_id>

<pkt_size> 64 </pkt_size>

<dst_address> 10 </dst_address>

</TT>

<num_RC> 0 </num_RC>

<num_BE> 0 </num_BE>

FIGURE 5.8: TT traffic generation profile at a sending node.

Figures 5.9a and 5.9b show the attributes of the ingress configuration files at receiving
and intermediate nodes, respectively. The primary distinction between them is that the
receiving end node specifies the prior node’s address (src_address), whereas the ingress file
of the intermediate node (such as a bridge) specifies additionally the egress port (dest_port)
where the incoming message should be transmitted. The route of each copy of a TT message
is specified off-line by using FRER.

77

Chapter 5. Extending TSN Capabilities over Hybrid Systems

<num_TT> 2 </num_TT>

<TT>

<phase> 0.000030</phase>

<period_duration> 0.100000 </period_duration>

<transmission_duration> 0.000010 </transmission_duration>

<vlan_id> 10 </vlan_id>

<src_address> 60 </src_address>

</TT>

<TT>

<phase> 0.000050</phase>

<period_duration> 0.200000 </period_duration>

<transmission_duration> 0.000010 </transmission_duration>

<vlan_id> 10 </vlan_id>

<src_address> 20 </src_address>

</TT>

<num_RC> 0 </num_RC>

(A) An ingress configuration file at a receiving end node.

<num_TT> 2 </num_TT>

<TT>

<src_address> 30 </src_address>

<phase> 0.000060 </phase>

<period_duration> 0.200000 </period_duration>

<transmission_duration> 0.000010 </transmission_duration>

<vlan_id> 10 </vlan_id>

<dest_ports>

<num_dest_ports> 1 </num_dest_ports>

<port_id> 1 </port_id>

</dest_ports>

</TT>

<TT>

<src_address> 31 </src_address>

<phase> 0.000140 </phase>

<period_duration> 0.200000 </period_duration>

<transmission_duration> 0.000010</transmission_duration>

<vlan_id> 20 </vlan_id>

<dest_ports>

<num_dest_ports> 1 </num_dest_ports>

<port_id> 1 </port_id>

</dest_ports>

</TT>

<num_RC> 0 </num_RC>

<num_BE> 0 </num_BE>

(B) An ingress configuration file at an intermediate node.

FIGURE 5.9: Ingress configuration files at receiving and intermediate nodes.

78

Chapter 5. Extending TSN Capabilities over Hybrid Systems

As mention in Subsection 5.2.2, the queue’s gates of a port-specific GCL are mutually
exclusive patterns and are continuously opened within a certain period of time which is
assigned according to the LCM of periods of all periodic messages designated to that port.
Figures 5.10a and 5.10b demonstrate the attributes of the GCL configuration files for sending
and intermediate nodes, respectively. As an illustration, Figure 5.10a uses 1000 as the queue
mask and 0 and 10 microseconds, respectively, for the start and end times. The gate of
queue number 4 would be open and able to send traffic at any moment between 0 and 10
microseconds if these parameters were met. In the time frame specified, all other queues are
closed. To offer a deterministic and synchronized transmission schedule, all TSN nodes run
their GCLs simultaneously.

<CGL>

<num_CGR> 2 </num_CGR>

<CGR>

<start_time> 0 </start_time>

<end_time> 10 </end_time>

<queue_mask> 1000 </queue_mask>

</CGR>

<CGR>

<start_time> 10 </start_time>

<end_time> 100000 </end_time>

<queue_mask> 0111 </queue_mask>

</CGR>

</CGL>

(A) A GCL configuration file for a sending node.

<CGL>

<num_CGR> 3 </num_CGR>

<CGR>

<start_time> 0 </start_time>

<end_time> 10 </end_time>

<queue_mask> 01111111 </queue_mask>

</CGR>

<CGR>

<start_time> 10 </start_time>

<end_time> 20 </end_time>

<queue_mask> 10000000 </queue_mask>

</CGR>

<CGR>

<start_time> 20 </start_time>

<end_time> 100000 </end_time>

<queue_mask> 01111111 </queue_mask>

</CGR>

</CGL>

(B) A GCL configuration file for an intermediate node.

FIGURE 5.10: GCL configuration files for sending and intermediate nodes.

79

Chapter 5. Extending TSN Capabilities over Hybrid Systems

The transmission schedule at each output egress port (i.e. GCL) is generated using one
of the task and message scheduling algorithms that are discussed in Chapters (7, 8). The
main purpose of the algorithms is scheduling time-triggered tasks to the most suitable hosts
in order to fulfil the real-time requirements and to consider the constraints of the wireless
environment. Therefore, each algorithm determines the port-specific GCLs by taking the
structure of the hybrid network and the specifications of the TT tasks and their associated
periodic messages as inputs. In the output, the task and message scheduling solution spec-
ifies on which host a task can be run and which route an associated message can use to
traverse. Thereby, the solution reflects the injection time and arrival time for each transmit-
ted message routed via TSN-enabled nodes. Namely, every message is sent at a particular
time slot and it is repeated with the period of that message.

5.3.3 Modelling of a TSN-enabled Wirebound/Wireless End node

The models of standard end nodes that are situated in the wired and wireless TSN do-
mains should incorporate additional modules in order to simulate a TSN hybrid environ-
ment. Thus, the modified modules can accommodate the TSN properties including accurate
clock synchronization, traffic shaping and FRER. Figures 5.11a and 5.11b represent the node
model of wired and wireless end nodes in OPNET, respectively.

The end node model consists basically of three modules:

• TSN-main-process module.

• MAC-inter f ace module.

• MAC module

In the TSN-enabled end node model, the TSN-main-process has the responsibility to gen-
erate messages. It is worth noting that our work focuses on generating only TT messages
without other types of messages like AV or BE messages. The reason is that our thesis targets
scheduling and transmission of periodic time-sensitive data used in real-time applications.
Therefore, the rest of this thesis addresses scheduling TT traffic at a TSN hybrid environ-
ment. The generated TT messages are sent to the lower module (i.e. MAC-inter f ace). The
MAC module sends the received TT messages form the TSN-main-process to the directly
connected nodes through the physical layer with the help of peer-to-peer transmitter and
receiver units (i.e. port-tx and port-rx). At the instant of transmitting a message, the MAC
module adds the local time in the message and encapsulates it at the port-tx unit. At the peer
receiver node, the port-rx unit receives the message. Then the MAC module decapsulates
the received TT message and forwards it through the MAC-inter f ace to the upper layer to
execute tasks that depend on the received TT messages.

80

Chapter 5. Extending TSN Capabilities over Hybrid Systems

(A) model of a wired TSN-
enabled end node.

(B) Model of a wireless TSN-
enabled end node.

FIGURE 5.11: models of TSN-enabled end nodes.

TSN-main-process

The TSN-main-process is the main module that has the responsibility to offer TSN services
including TAS, FRER and time synchronization. The traffic flow in Figure 5.12 depicts how
a TT message (coloured in purple) is generated, enqueued and dequeued into an egress port
in a TSN-enabled end node. TAS performs time-based events that depend on a deterministic
synchronization process. Figure 5.12 shows that four queues are dedicated to different traffic
types. A TT message is enqueued in the highest priority queue. If non-TT messages (i.e. AV
and BE messages) are generated, the lower priority queue is used to enqueue an AV message
(coloured in cyan). The lowest two queues are used for different types of BE traffic (coloured
in green). However, the services of the TSN-main-process are split into three child process
modules as follows:

• TSN-traff ic-generator module: it is responsible for the TSN FRER service.

• TSN-enqueue-dequeue module: it is responsible for the TSN time-aware shaping ser-
vice.

• TSN-sync-time module: it is responsible for TSN timing services including the BMCA
and synchronization.

81

Chapter 5. Extending TSN Capabilities over Hybrid Systems

CBS

Transm
ission selection to egress port

G
ate

G
ate

G
ate

BE1

AVB

TT

Time Aware Shaper

TS
N

-t
ra

ff
ic

-g
en

er
at

or
m

od
ul

e

TSN-sync-time
 module

G
ateBE2

t0: 1000
t1: 0100

...
t4: 1000

Gate Control List

Traffic at t0

Delay_Res
message

G
ate

G
ate Gate is closed

Gate is open

Delay_Req
message

BE1
BE1

BE2

AVB

TT

TSN-enqueue-dequeue
module

SYNC
message

1

2

3

The order of the time synchronization
messages at a TSN-enabled end node.

1

2

3

FIGURE 5.12: Diagram showing the services that are offered by the TSN-main-
process module at a TSN-enabled end node.

Figure 5.13 shows the process model of the TSN-main-process that contains three forced
and unforced states: Init, Spawn and Idle states. In the forced Init state, the main process
allocates memory for flags used to indicate if the invoked child process module is in free or
in busy status. The unforced Spawn state is used to initiate the child modules so that every
child module is ready to operate its services. The unforced Idle state invokes a particular
child module upon receiving a message from the lower layer (i.e. MAC layer). Thus, the
Idle state coordinates and controls the operate of the child modules depending on the type
of the incoming message. For instance, the TSN-sync-time module is invoked if the received
message is an Announce, Delay_Res or SYNC message.

FIGURE 5.13: Process model of the TSN-main-process module at a TSN-
enabled end node.

The TSN-traff ic-generator module is triggered to generate copies of TT messages and
send them through the disjoint redundant routes according to the TT traffic generation pro-
file. Figure 5.8 illustrates the attributes of a TT generation traffic profile.

82

Chapter 5. Extending TSN Capabilities over Hybrid Systems

The TSN-traff ic-generator module can also be used to generate AV and BE messages.
The difference between TT and AV messages is that an AV message does not require a global
clock to determine when an AV message should be sent. Instead, the sender determines the
minimum time between successive AV messages belonging to the same AV stream. The
determined time is called Bandwidth Allocation Gap (BAG) and depends on the network
specifications. Therefore, two AV messages cannot be sent at a time less than the BAG of
an AV stream. For generating BE messages, FRER can be skipped because the loss of a BE
message cannot cause critical failures in the application. A TSN-enqueue process is then
used to enqueue the generated message to its corresponding queue according to the traffic
profile of the TSN-enabled node.

As illustrated in Figure 5.12, the egress TAS performs a TSN-dequeue process to check
the gate status of every queue at an egress port. Therefore, this process is used to send
out the messages from a queue to the MAC layer when the gate is opened. For instance,
TAS lets a TT message be dequeued and sent out directly to the attached link if its queue is
opened according to the generated GCL. Deterministic message transmission and QoS are
guaranteed provided that the required time to deliver a message is equal or less than the
time when the gate remains open. The gate has to be opened to transmit the entire message
and to maintain its period pattern.

As mentioned earlier, TSN-enabled nodes depend on the precision of the global time
for generating time-based services (i.e. IEEE 802.1Qbv functions). The wireless TSN nodes,
which are integrated with the wired TSN domain, should also operate as a time-based ho-
mogeneous hybrid system. To achieve that, the TSN-sync-time module in Figure 5.12 con-
siders on-line the factors that affect inversely the precision of the global time. These factors
include clock drift, asynchronous packet transmission and non-deterministic processing.
Therefore, the TSN-sync-time module extends the role of an 802.1AS clock, which does not
consider these factors, to improve precision of the time synchronization. Further details
about the extended 802.1AS protocol to consider the mentioned factors are shown in Chap-
ter 6.

In the following, the TSN-sync-time module shows how to incorporate BMCA, peer-
delay and synchronization mechanisms to synchronize the time of the TSN-enabled node
with its grandmaster clock. Figure 5.14 depicts the state transition diagram of modelling
the TSN-sync-time module to achieve the time synchronization with the grandmaster clock
[208]. The states of the diagram are summarized as follows:

• Init state: it is a forced state, which is used to initialize all variables and forward the
control to the unforced Idle state.

• Idle state: it generates an “Announce-generate” interrupt to dispatch an Announce
message for the BMCA algorithm. The TSN-sync-time process model waits in the
Idle state until the arrival of a gPTP message and then the process model moves the
control to the Busy state by a Service-start interrupt.

• Busy state: it identifies the incoming gPTP message. For instance, if the message is an
Announce message, the BMCA algorithm will be invoked. Similarly, if it is a SYNC
message, the local time of the node will be synchronized with the grandmaster clock.
The P2P path delay is measured when the received message is a Delay_Res message
at the instant of processing the gPTP message in the Busy state. When the Service-
complete-Queue-empty interrupt is triggered, the TSN-sync-time process moves the
control to the Idle state if there are no gPTP messages in the queue. Otherwise, the
Service-complete-!Queue-empty interrupt is triggered to let the process model wait in

83

Chapter 5. Extending TSN Capabilities over Hybrid Systems

the Busy state until processing all messages in the queue is finished, where !Queue-
empty indicates that the queue is not empty.

• Master-slave state: it is a forced state, which is used to generate Announce and SYNC
messages. Therefore, it serves the slave and the grandmaster events. Transition to the
state is performed by a Master-service-complete interrupt. When finishing the service,
the system model moves the control to the Idle or the Busy state based on the status of
the queue. The Queue-empty interrupt is triggered to move the control to the Idle state
or the !Queue-Empty interrupt is triggered to move the control to the Busy state.

FIGURE 5.14: Process model of the TSN-sync-time module at a TSN-enabled
end node [208].

The BMCA algorithm firstly initializes in every TSN-enabled node an Announce message
to distribute its clock properties to all nodes in the TSN hybrid domain. The exchanged
properties are used to build the master-slave hierarchy. Figure 5.15 depicts the format of
the Announce message that is transmitted through the wired/wireless TSN domains. The
fields, which are contained in the Announce message, are as follows:

• Message type (4 bit), Version PTP (4 bit) and Domain number (8 bit): they identify the
type of the message (i.e. Announce, SYNC, Delay_Req or Delay_Res), the version of
the PTP protocol (i.e. gPTP) and the TSN domain in which the TSN-enabled node is
located (i.e. wired or wireless domain).

• Source-port Identity (80 bit): it identifies the port from which the message is transmit-
ted.

• Priority 1 field (8 bit): the lowest value is the highest priority. Normally, the priority
of a slave node is set to be 255 and it is 128 for the grandmaster node. It is manually
configured depending on factors such as the location. For example, a node that is in
a centralized position is typically preferred. Moreover, a wired node takes a higher
priority than a wireless one due to the stability.

• Priority 2 field (8 bit): it is used to identify the last updated grandmaster and to specify
the grandmaster clock and its redundant backup if they have the same properties.

• Clock class (8 bit): it is a list of class states. For instance, a node’s clock that complies
to Universal Coordinated Time (UTC) has a higher class than one that is free-running
and manually set.

84

Chapter 5. Extending TSN Capabilities over Hybrid Systems

• Clock accuracy (8 bit): this is a list of a precision ranges for UTC (e.g., 25-100 ns).

• Clock variance (16 bit): this is a complex statistic for a modular log that represents the
oscillator’s jitter and its variation through the period of the SYNC messages.

• Time-source (8 bit): it specifies the type of time source that is used in the TSN-enabled
node (e.g. GPS, NTP).

• Path trace Type Length Value (TLV) (96 bit): it determines the nodes that an Announce
message passes through.

• StepsRemoved (16 bit): it is used at the receiver to verify the correctness of the received
Announce message.

Priority 1 field
 (8 bit)

Priority 2 field
(8 bit)

Clock accuracy
(8 bit)

Clock class
 (8 bit)

Clock variance (16 bit)

Time-source
 (8 bit)

Path trace TLV (96 bit)

StepsRemoved (16 bit)

Message
type (4 bit)

Version PTP
(4 bit)

Domain number
(8 bit)

Source-port Identity (80 bit)

Ann.ID (16 bit)

FIGURE 5.15: Format of an Announce message transmitted in TSN
wired/wireless domains.

To simplify the procedure of selecting the grandmaster clock, the priority is used as a
standard to differentiate between the clocks. Each TSN-enabled node in a TSN hybrid do-
main has two fields (called node’s dataset) used during the selection of a grandmaster clock.
The first field (i.e. clock priority) is used to represent the local dataset, whereas the second
field (i.e. parent priority) is used to represent the priority of the best grandmaster clock
found so far. The dataset of the node is continuously updated whenever an Announce mes-
sage arrives.

In the initialise phase of the BMCA algorithm, the parent dataset of a TSN-enabled node
is set to its local clock and the clock’s status is in the master state. After that, each node
sends out its Announce message to all neighbouring nodes in the TSN hybrid domain. The
information obtained is utilized to build the hierarchy of slaves and masters. Whenever a
node receives an Announce message, it compares its dataset with the dataset of the message
sender. Thus, the state (i.e. master or slave) of the node is determined. Further, the state
of the parent dataset is updated accordingly. For instance, the state of the receiver clock is
identified to be a slave state and its parent priority is updated to the priority of the sender
if the dataset of the sender is better than the local and parent datasets of the receiver. In
contrast, if the receiver does not receive an Announce message with information better than
the local dataset, the receiver remains as a master clock. It is considered as the grandmaster
clock at the end of the Announce message transmission time.

To understand the procedure of the BMCA algorithm, Figure 5.16 depicts Announce mes-
sages that are dispatched from three TSN-enabled nodes in a TSN hybrid domain. The pri-
orities (i.e. parent priority and clock priority) of the first clock A (coloured in brown) are

85

Chapter 5. Extending TSN Capabilities over Hybrid Systems

100 and 100, the priorities of the second clock B (coloured in blue) are 110 and 110 and the
priorities of the third clock C (coloured in green) are 120 and 120. At the initialization, each
clock is set to be in the master state. In the beginning, clocks A, B and C broadcast their
Announce messages. Each message in Figure 5.16 is numbered by ‘1’, ‘2’ or ‘3’ to indicate
the arrival order of the messages. At the end of the broadcasting period, each node receives
two Announce messages that contain the properties of the neighbour clocks. At the instant
that clock B receives the first Announce message originated by A, it compares its dataset
with the dataset of A. It then identifies itself as a slave clock and updates its parent priority
to be 100 instead of 110 (i.e. the master clock of B is updated to be A). The reason is that A
has better properties than B. On the other hand, upon arrival of the second Announce mes-
sage from the clock C, B recognizes that its dataset is better than C. Therefore, no updating
will occur on the dataset of B and it remains as a slave clock. Similarly, when the clock C
receives the first Announce message from B, it updates its parent priority to be 110 instead of
120 and identifies itself as a slave clock. The second Announce message from A updates the
dataset again to be 100 instead of 110. Clock A recognizes that it is the best available clock
in the domain because its dataset is better than the dataset of the two Announce messages
that are received from clocks B and C. Thereby, A does not change its master state and it is
considered as a grandmaster clock for the TSN hybrid domain.

Parent priority = 100

Clock priority = 100

Parent priority = 110

Clock priority = 110

Parent priority = 120

Clock priority = 120

C ⇒SlaveB ⇒Slave

A ⇒Grandmaster

1 21

1
2

2

100 110
100

1

2
The order of access Announce messages
at a TSN-enabled node.

FIGURE 5.16: Procedure of selecting the grandmaster clock in a TSN hybrid
domain using the BMCA algorithm.

When the BMCA is implemented and a grandmaster is detected, each slave clock initial-
izes an interval named Announce-receipt-timeout which is normally 2-10 times the Announce
interval. For instance, if the Announce interval is 2 seconds, the Announce-receipt-timeout
interval is set to be 4 seconds at the minimum. The Announce-receipt-timeout interval is used
to check the availability of the current grandmaster. If no message arrives from the grand-
master within this interval, the slave clock generates an Announce message and implements
the BMCA in order to select a new grandmaster clock.

It is worth mentioning that the grandmaster in our system model will be mostly selected
as a wired clock because the wired communication is more stable and does not suffer from
interference and channel overlapping as in wireless communication. Therefore, the priority
attributes of a node clock are user-defined to have a higher priority in the wired nodes than
in the wireless nodes.

86

Chapter 5. Extending TSN Capabilities over Hybrid Systems

After establishment of the master-slave hierarchy, the grandmaster sends periodic SYNC
messages containing its own local time in the Original-timestamp field. Figure 5.18 depicts
the format of the SYNC message that is transmitted through the wired/wireless TSN do-
mains. The SYNC message is transmitted through TSN-enabled bridge nodes until arriving
at the slave clocks. The target of the SYNC message is to synchronize the slave clocks with
their grandmaster. Follow-Up-SYNC messages are sent if a two-step process is used. Every
TSN-enabled node receives a SYNC message and the TSN-sync-time module executes the
P2P mechanism that consists of request/response message transmission between the recipi-
ent node and its TSN neighbour node that forwards that SYNC message, as shown in Figure
5.17.

When a TSN-enabled node transmits a Delay_Req message, the P2P mechanism begins
and records the time the message was transmitted (i.e. t1). The neighbour node receives
that Delay_Req message at t2 and immediately generates a Delay_Res message to store t2
and the time at which the Delay_Res message is sent (i.e. t3) in Request-receipt-timestamp
and Response-timestamp fields, respectively. Figures 5.19 and 5.20 depict the format of the
Delay_Req and Delay_Res messages that are transmitted through the wired/wireless TSN
domains, respectively. The Follow-Up-Delay-Res message is sent if a two-step process is
used.

When a TSN-enabled node receives the Delay_Res message and stores the time at which
the Delay_Res message arrives (i.e. t4), then the recipient node has all required four times-
tamps used for the P2P mechanism. Thereby, the path delay that is computed by the P2P
mechanism is added to an aggregated path delay, which represents the delay along the
whole route from the grandmaster until a slave clock. The aggregated value is continu-
ously updated in the Correction- f ield of the SYNC message that passes through every TSN-
enabled node until the slave node.

At the instant of receiving the SYNC message, the slave clock is synchronized with
the grandmaster clock. To achieve that, the grandmaster time included in the ’Original-
timestamp’ is compensated with the aggregated path delay in the Correction- f ield. Chapter
6 contains further details about how the Correction- f ield is considered in the deterministic
processing time (i.e. residence time) in the intermediate nodes. Moreover, the CSRO- f ield
is also addressed in Chapter 6 to consider the problem of clock drift.

Delay_Req

Delay_Res

t2

Slave ClockNeighbor Clock

Follow-Up-Delay-Res

SYNC message

Follow-Up-SYNC message

Delay_Req

Delay_Res

t1

t2

t3

t4

Neighbor ClockGrandmaster Clock

Follow-Up-Delay-Res

SYNC message

Follow-Up-SYNC message

t1

t3

t4

FIGURE 5.17: Message passing gPTP scheme in the TSN hybrid domain.

87

Chapter 5. Extending TSN Capabilities over Hybrid Systems

Correction-field (64 bit)

Original-timestamp (80 bit)

CSRO-field (64 bit)

Follow_up information TLV (256 bit)

Message
type (4 bit)

Version
PTP

 (4 bit)

Domain
number (8 bit)

Source-port Identity (80 bit)

Wlan Header (48 bit) SYNC.ID (16 bit)

FIGURE 5.18: Format of a SYNC message transmitted in the TSN
wired/wireless domains.

Message
type

 (4 bit)

Version
PTP (4 bit)

Domain
number (8 bit)

Source-port Identity (80 bit)

Wlan Header (48 bit)

FIGURE 5.19: Format of a Delay_Req message transmitted in the TSN
wired/wireless domains.

Request-receipt-
timestamp (16 bit)

Requesting port
Identity (16 bit)

Response-timestamp
(16 bit)

Message
type (4 bit)

Version
PTP (4 bit)

Domain
number (8 bit)

Source-port
Identity (16 bit)

Wlan Header (48 bit)

lat (16 bit)

Long (16 bit)

alt (16 bit)

Drift-rate (16 bit)

FIGURE 5.20: Format of a Delay_Res message transmitted in the TSN
wired/wireless domains.

MAC-interface Module

The MAC module and higher modules use it to communicate and share data. It is the same
as in the standard interface for both wired and wireless nodes.

MAC Module

The main target of the MAC module is to record all timestamps including the sending time
of the outgoing messages and receiving time of the incoming messages.

88

Chapter 5. Extending TSN Capabilities over Hybrid Systems

At the grandmaster when a SYNC message is initiated, the MAC module inserts the lo-
cal time in the Original-timestamp at the time of sending the message through the port-tx.
To generate a Delay_Res message, the MAC module encapsulates the time-stamp of receiv-
ing the Delay_Req message at the port-rx with the time-stamp of sending the Delay_Res
message at the port-tx and inserts them in the transmitted Delay_Res message. It is worth
noting that the grandmaster does not generate Delay_Req messages because it does not re-
ceive SYNC messages in its gPTP domain.

On the other hand at the slave node, the MAC module synchronizes the node’s clock to
the time of the grandmaster clock, which is included in the received SYNC message. More-
over, the slave node periodically sends Delay_Req messages to its adjacent node (i.e. the
nodes that forwarded the SYNC message) in order to implement the P2P mechanism. To
generate a Delay_Req message, the MAC module encapsulates the time-stamp of sending
the Delay_Req message at the port-tx and inserts the associated time-stamp in the trans-
mitted Delay_Req message. On receiving a Delay_Res message, the MAC module uses the
stored and the included timestamps in the received message to compute the P2P path delay.

To prevent the latency margin caused by creating time stamps at upper layers (such
as the layer between the MAC and the Logical Link Control (LLC) sub-layer), the time-
stamping takes place close to the physical layer of a TSN-enabled node. Consequently, the
physical layer time-stamping occurs either when a message is sent from the MAC module
towards the port-tx transmitter unit or when a message is sent from the port-rx receiver unit
towards the MAC module. Since the MAC module is directly connected with the transmit-
ter and receiver units, the latencies of ingoing and outgoing message are neglected.

5.3.4 Modelling of a TSN-enabled Ethernet/wireless intermediate node

For modelling a TSN-enabled Ethernet/wireless intermediate node, the OPNET Ethernet
standard switch model and OPNET wireless standard model (i.e. access points, bridges and
wireless routers) are modified in a way that they support subsets of non-time-based and
time-based properties of the hybrid TSN domain. The regular intermediate node forwards
the incoming message either as unicast traffic by specifying the MAC destination address
or as broadcast traffic by sending copies of the message from all egress ports. However, the
TSN-enabled bridge node comprises two different process modules, namely the TSN-main-
bridge module and the MAC module.

TSN-main-bridge Module

The TSN-enabled intermediate node operates through a TSN-main-bridge module and six
child modules. The state transition diagram of the main module consists of an Init state to
initialize all ports and build a port mapping table to map each connected port to a MAC
address. A Spawn state is used to initialize all six child modules, and an Idle state to invoke
a child module according to the type of the incoming message. Therefore, each child module
can be described as follows:

• Bridge-protocol-entity module: it is used in the TSN-enabled intermediate nodes to run
the Spanning Tree Protocol (STP) upon receiving a Bridge Protocol Data Unit (BPDU)
[209].

• LACP module: this process uses the Link Aggregation Control Protocol (LACP) [210]
to identify and store the operational and state modes for each enabled port in the
intermediate node.

89

Chapter 5. Extending TSN Capabilities over Hybrid Systems

• MSTP module: it executes the Multiple Spanning Tree Protocol (MSTP) to create mul-
tiple spanning instances for each Virtual LAN throughout a local area network.

• PVST module: it runs Per VLAN Spanning Tree (PVST) to allow a TSN-enabled inter-
mediate node to have multiple spanning trees per Virtual LAN.

• Bridge-MAC-relay module: as indicated in the relevant traffic generation profile, it
first receives the incoming message and then transmits it to the destination port. Ac-
cording to Subsection 5.2.3, FRER introduces different functions. Therefore, this mod-
ule calls firstly the message identification function to identify the incoming message.
As mentioned earlier, only TT traffic is supported, therefore this function needs to find
out the incoming TT message to which the stream belongs to. The TT message seq-num
is then retrieved by executing the decoding sequencing function, and the sequence
recovery function to examine the seq-num of the received TT message in relation to the
seq-num of the previous TT message of the stream to which the received message be-
longs. If the received message’s seq-num is higher by one than the previous message’s
seq-num, the encoding sequencing function is called and the TSN-enqueue module is
invoked. Otherwise, the message with the wrong seq-num will be skipped. Figure 5.21
depicts the flow of the functions that are offered by the Bridge-MAC-relay module at
a TSN-enabled intermediate node.

• TSN-bridge-sync-time module: the TSN-enabled intermediate node plays the role of an
802.1AS boundary clock. This means that the TSN-bridge-sync-time module in Figure
5.21 executes all clock synchronization methods including BCMA, P2P measurement
and synchronization mechanism once receiving Announce, Delay_Req/Delay_Res and
SYNC messages, respectively. The logic of the synchronization methods in a TSN-
enabled bridge node is the same as in a TSN-enabled end node. To be more specific, if
a TSN-enabled bridge node is identified as a grandmaster clock, it sends periodically
Announce and SYNC messages. In contrast, if a TSN-enabled bridge node is identi-
fied as a slave clock, the P2P and the synchronization mechanisms are executed at the
instant of receiving Delay_Req/Delay_Res and SYNC messages, respectively.

90

Chapter 5. Extending TSN Capabilities over Hybrid Systems

C
B

S

T
ran

sm
issio

n
 se

le
ctio

n
 to

 e
gre

ss p
o

rt

G
ate

G
ate

G
ate

Time Aware Shaper

Bridge-mac-relay module TSN-enqueue-dequeue
module

G
ate

t0: 1000
t1: 0100

...
t4: 1000

Gate Control List

Traffic at t0

d
e

co
d

in
g

se
q

u
e

n
ci

n
g

fu
n

ct
io

n

se
q

u
e

n
ce

 r
e

co
ve

ry
 f

u
n

ct
io

n

m
e

ss
ag

e
 id

e
n

ti
fi

ca
ti

o
n

 f
u

n
ct

io
n

 e
n

co
d

e
 s

e
q

u
e

n
ci

n
g

fu
n

ct
io

n

? TT??

TT1

TT2 TT2

TT??

TSN-bridge-sync-time
 module

Delay_Res
message

Delay_Req
message

SYNC
message

1

2

3

G
ate

G
ate Gate is closed

Gate is open

1

2

3

The order of the time synchronization
messages at a TSN-enabled intermediate
node.

/ / /

FIGURE 5.21: Flow of the services that are offered by the TSN-main-bridge
module at a TSN-enabled intermediate node.

As shown in Figure 5.22, modelling the TSN-bridge-sync-time module of a TSN-enabled
bridge node has the same states as in the TSN-enabled end node with an additional Port-
QoS-deq state. The Port-QoS-deq state is invoked if the neighbouring nodes implement qual-
ity of service functions via output port dequeuing.

91

Chapter 5. Extending TSN Capabilities over Hybrid Systems

FIGURE 5.22: Process model of the TSN-bridge-sync-time module at a TSN-
enabled intermediate node [208].

MAC Module

The MAC module of a TSN-enabled intermediate node operates in the same way as the
MAC module of a TSN-enabled end node. To be more specific, if a TSN-enabled interme-
diate node is identified as a grandmaster, the TSN-enabled intermediate node transits all its
output ports to the master state, and then it starts sending periodically Announce and SYNC
messages within its hybrid TSN domain. A TSN-enabled bridge node that is identified as
a grandmaster does not perform the P2P mechanism. Therefore, it does not receive SYNC
or transmit Delay_Req messages. In contrast, if a TSN-enabled intermediate node is identi-
fied as a slave clock, at most one of the ports transits to the slave state to receive the SYNC
messages from the grandmaster, and the rest of the ports are transited to the master state to
forward the received SYNC messages. A MAC module, which is associated with a port in
the slave state, records and performs all time-stamps related to the P2P mechanism. These
time-stamps are then used to measure the P2P path delay.

92

Chapter 6

Time Synchronization for Improved
Precision in an Asymmetric TSN
Hybrid Network Using Extended
IEEE802.1AS

In safety-critical distributed systems, hybrid networks are gaining importance, and clock
synchronization is a crucial service to provide safety-relevant services that span both wired
and wireless subsystems. The IEEE 802.1AS protocol does not account for some delays
that are present in hybrid wireless networks, including random delays (channel access and
transmission jitter) and deterministic delays (residence time, propagation, transmission, and
receiving). In time-aware hybrid networks, asymmetric delays are one of the key causes of
the synchronization process’ inaccuracy. The synchronization precision is affected by the
asymmetric delays in such a way that the degree of precision depends on the accuracy of
the calculated path delay. In the TSN-enabled hybrid system based on the 802.1AS synchro-
nization protocol, all slave nodes in a hybrid domain share a global time base that is realized
using the robust synchronization mechanism. The standard 802.1AS synchronization pro-
tocol is designed mainly for Ethernet networks and assumes that the communication links
between nodes are symmetric. Therefore, determining the path delay is simple by calculat-
ing the mean delay value for Delay_Req and Delay_Res messages based on Eq. 3.1. On the
contrary, the path delay obtained in Eq. 3.1 is not an optimal solution in asymmetric TSN
hybrid networks.

Several variations like variable data rate, time-stamping errors, and the mobility of the
nodes are frequently changing for the same node and thus affect significantly the path de-
lays and synchronization precision. To make it worse, the synchronization process with a
reference clock can be affected by the continuously changing drifts of the clocks that depend
on several factors like the clock class and clock accuracy.

Based on the above, this chapter proposes an extension of the standard 802.1AS protocol
to improve the precision of the time synchronization in a TSN hybrid network. The cor-
rectness and applicability of the extended IEEE802.1AS clock synchronization protocol are
studied through several test scenarios. Based on an example hybrid network layout, simu-
lation scenarios are run in order to generate experimental results that show the validity and
viability of implementing TSN services over wired and wireless networks.

The rest of the chapter is structured as follows: Section 6.1 discusses the clock drift in a
TSN-enabled node. Section 6.2 presents modelling the delay of the Delay_Res message. A
path deviation delay filter test to skip outlier path delays is discussed in Section 6.3. Sec-
tion 6.4 presents the hybrid simulation models for the clock synchronization process. The

93

Chapter 6. Time Synchronization for Improved Precision in an Asymmetric TSN Hybrid
Network Using Extended IEEE802.1AS

optimization of 802.1AS in a TSN hybrid domain is shown in Section 6.5. Finally, Section 6.6
illustrates the simulation setup and evaluation of the improved 802.1AS protocol.

6.1 The Frequency Drift in a TSN-enabled Node

In electronic nodes especially in telecommunications, the frequency drift, which is tradition-
ally measured in Hz/s, is normally unintended and means that the oscillator deviates from
its specified frequency. This relates to different reasons including the node ageing [212],
temperature variation [213] that vary the piezoelectric effect in a crystal oscillator and volt-
age regulation problems on the oscillator. The mentioned reasons are variable and one or
more of them could cause changeable effects on a node and more or less on another one.
For example, a slave clock may suffer from an increase in the temperature while the grand-
master clock has a problem with its voltage regulator. This leads to frequency drift in the
slave clock ,which differs from its reference clock. Frequency stability can be measured
as the absence or level of the frequency drift. Besides, the frequency drift may cause the
drift of a radio transmitter to an adjacent channel if multiple channels are used to schedule
the wireless data transmission, which in turn causes unintended signal interference. For
this reason, frequency allocation regulations are used to specify the allowed tolerance for
such oscillators in TSN-enabled wireless nodes. For example, a Temperature-Compensated
Voltage-Controlled Crystal Oscillator (TCVCXO) is normally used for frequency modula-
tion.

The frequency drift of a clock can occur either in a linear or non-linear way. In the linear
drift, the drift rate is constant while the drift rate varies in the non-linear drift. In the real
world, the non-linear drift is more realistic according to the changeable environmental and
technical factors such as temperature and voltage fluctuations. The extension of the standard
802.1AS protocol solves this problem by computing a frequency ratio of the neighbour TSN
nodes, known as Neighbour Rate Ratio (NRR) [208]. The NRR value is computed in each
TSN-enabled intermediate node, which is equal to the frequency ratio with the neighbour
clock. On the other side, the Cumulative Scaled Rate Offset (CSRO) [208], which is carried
by the SYNC message, is an aggregated value by adding the system’s NRR values. As a
result, the SYNC messages are utilized to employ CSRO to sync an oscillator’s frequency
(syntonization) with the grandmaster clock in a TSN-enabled node. Due to the periodic
sending of the SYNC message, the deviation of the non-linear drift is computed regularly
every time the SYNC message is sent. Therefore, selecting the appropriate SYNC interval
affects the accuracy of the synchronization process significantly.

6.2 Modelling the Timing of Delay Response Messages

This section describes techniques for accurately measuring the path delay value for the P2P
mechanism. The delay of the Delay_Res message (i.e. Response_delay) represents the actual
path delay, because it represents the transmission delay of the SYNC message. Thus, it must
be accurately measured.

The slave node adjusts its local time with the grandmaster and the offset value to the
grandmaster should be minimized. Therefore, if the P2P mechanism is incorrect, it leads to
a bias or deviation between the local clock and the grandmaster clock. When communication
delays are asymmetric, the difference of the propagation and transmission delays has to be
determined for the different directions but identifying this difference in the P2P mechanism
(upload and download) is not mentioned in the standard protocol. This degrades the syn-
chronization precision for dynamic wireless environments, where the data rate is frequently

94

Chapter 6. Time Synchronization for Improved Precision in an Asymmetric TSN Hybrid
Network Using Extended IEEE802.1AS

changed as a result of channel conditions, mobility or the characteristics of the service. If
we assume that the grandmaster is located in the wired TSN domain, the synchronization
messages will be transmitted through the wired and wireless TSN bridges until arriving
at the TSN-enabled wireless end nodes. Several broadband technologies such as mobile
WiMAX and LTE would change in the data rate. Changes can be caused by the mobility of
the TSN end nodes (e.g. sensors). Slow moving does not affect the synchronization process,
but if a mobile node increases its speed, this leads to fluctuation in its data rate and makes
it unstable due to changes in the quality of the used wireless links. The wireless link is a
shared resource for multiple users who want to send data at that link. Thus, the allocated
time varies for each scheduled interval. Conditions in the link such as channel fading and
errors affect also the date rate. Moreover, wireless technologies use different asymmetric
duplexing mechanisms. For example, asymmetric traffic can occur for specific services (e.g.,
web server) where higher bandwidth is required for downloading than uploading. These
asymmetric characteristics cause varying time offsets between the grandmaster and its slave
clocks.

When integrating the synchronization process in TSN hybrid networks, which contain
different node models, random mobility, dynamic data rates and asymmetric characteristics,
it becomes necessary to propose a model to deal with the mentioned boundary conditions.

6.2.1 Symmetric Degree Ratio (SDR)

In order to measure the ratio of delays for Delay_Req and Delay_Res messages during the
P2P mechanism, the Symmetric Degree Ratio (SDR) is introduced as shown in Eq. 6.1. If
its value is unity or very close to unity, this means symmetric delays for Delay_Req and
Delay_Res messages. Thereby, considering and identifying all the differences in the P2P
traffic, the SDR value has to be approximately one. Therefore, the SDR ratio gives an indica-
tion of the symmetric P2P delay mechanism. If the SDR value deviates from unity, it means
we have to consider asymmetric environmental characteristics in the wireless TSN network.
The SDR ratio of a TSN node can be calculated as:

SDR =
Request_delay

Response_delay
(6.1)

Where, Request_delay and Response_delay are the times needed to transmit Delay_Req
and Delay_Res messages, respectively. According to Figure 5.17, these delays are defined as
follows.

Response_delay = t4 − t3 (6.2)

Request_delay = t2 − t1 (6.3)

Where, t1 is the egress time-stamp and t2 is the ingress time-stamp of the sender and
receiver clocks when sending and receiving the Delay_Req message, respectively. Similarly,
t3 is the egress time-stamp and t4 is the ingress time-stamp of the sender and receiver clocks
when sending and receiving the Delay_Res message, respectively. To avoid unpredicted
delays and time-stamping errors as mentioned in Section 3.6.6, the time-stamping process
is operated at the MAC layer, which eliminates the need to know the delay from higher
layers and gives a more accurate reading when sending messages. The difference in the
transmission time equals the absolute value of subtracting Equations 6.4 and 6.5.

Request_trans_time =
Delay_Req_size

Data_rate
(6.4)

95

Chapter 6. Time Synchronization for Improved Precision in an Asymmetric TSN Hybrid
Network Using Extended IEEE802.1AS

Reply_trans_time =
Delay_Rep_size

Data_rate
(6.5)

Data_rate in Equations 6.4 and 6.5 refers to the date-rate used to send the Delay_Req and
Delay_Res messages, respectively.

According to the potential movement of some TSN wireless end nodes, the distance
between them is subject to be changed. Therefore, the propagation delay for Delay_Req and
Delay_Res messages is calculated using Equations 6.6 and 6.7, respectively.

Request_propagation_time =
Dist_req

speed_o f _light
(6.6)

Reply_propagation_time =
Dist_rep

speed_o f _light
(6.7)

Where, Dist_req and Dist_rep are computed based on the distances between the message
sender and the message receiver for Delay_Req and Delay_Res messages, respectively. The
difference in the propagation time equals the absolute value of subtracting Equations 6.6
and 6.7.

The time difference equals the sum of the difference in the transmission time and the
difference in the propagation time. Eq. 6.8 shows the consideration of the time difference
(time_dif) in the SDR ratio.

SDR =
Response_delay

Request_delay + time_di f
(6.8)

time_di f deals with delays required for the transmission on the physical layer and the
traffic propagation in the medium. Even if the time difference is computed and considered
in the SDR ratio, in some scenarios, the SDR ratio deviates from unity as a result of highly
dynamic changes in the size and the topology of the network, besides the random access
delays. Eq. 6.9 shows how to compensate the time difference for Delay_Req and Delay_Res
messages.

t4 − t3 = (t2 − t1) + time_di f (6.9)

Dividing Eq. 6.9 by (t4− t3), and by using Eq. 6.1, the SDR ratio can be expressed as in Eq.
6.10.

SDR = 1− time_di f
t4 − t3

(6.10)

6.2.2 Neighbour Rate Ratio (NRR)

The NRR value is used to compensate for the drift time of a local clock and support TSN-
enabled nodes with different drift rates. Therefore, Equations 6.11 and 6.12 show the ex-
pressions of the timing offset and the normalized frequency offset (the clock drift factor)
between a node clock and its neighbour clock.

t2 − t1 = Request_delay−O f f set− Dri f t (6.11)

t4 − t3 = Response_delay + O f f set + Dri f t (6.12)

Where, Dri f t = NRR ∗ (current_time− last_sync_time) (6.13)

The current_time represents the local time of a node once it receives the SYNC message.
In contrast, the last_sync_time is the local time of the node since the last time it received

96

Chapter 6. Time Synchronization for Improved Precision in an Asymmetric TSN Hybrid
Network Using Extended IEEE802.1AS

the SYNC message. NRR represents the clock drift factor between the current node, which
receives the SYNC message and its neighbour that has sent the SYNC message.

Equations 6.11 and 6.12 can be reformulated as shown in the following equations.

t2 = t1 + Request_delay−O f f set− NRR ∗ (t1 − last_sync_time) (6.14)

t4 = t3 + Response_delay + O f f set + NRR ∗ (t4 − last_sync_time) (6.15)

The value of NRR can be computed via two subsequent Delay_Res messages that have
been received at a TSN-enabled node, as shown in Figure 6.1. Since NRRs are continuously
measured through the P2P mechanism, if a network encounters some changes (e.g. reconfig-
uration of nodes or switching to another grandmaster), there is no need to explicitly request
a measurement of NRRs.

Slave ClockNeighbor Clock

Delay_Res

Next Delay_Res

Neighbor ClockGrandmaster Clock

Delay_Res

Next Delay_Res

tx1

ty1 tx2

ty2

tx1

ty1
tx2

ty2

FIGURE 6.1: Two consequent Delay_Res messages.

Similarly to Eq. 6.15, the expressions of tx2 and ty2 can be shown as follows:

tx2 = tx1 + Response_delay + O f f set + NRR ∗ (tx2 − last_sync_time) (6.16)

ty2 = ty1 + Response_delay + O f f set + NRR ∗ (ty2 − last_sync_time) (6.17)

Where, tx2 and tx1 are time-stamps of a Delay_Res message at the receiving node and
the sending neighbouring node, respectively. Similarly, ty2 and ty1 are the time-stamps of
the same Delay_Res message. The neighbouring node is where the SYNC message is sent
or forwarded.

By using Equations 6.16 and 6.17, the expression of NRR can be expressed using Eq. 6.18:

NRR = 1− ty1 − tx1

ty2 − tx2
(6.18)

It is worth noting that if the neighbouring TSN nodes have the same drift rate, then the
measured NRR value is unity, which may lead to an inaccurate computation of the synchro-
nized time due to the actual frequency offset between the slave and the grandmaster clocks.
Therefore, the CSRO is used to accumulate the values of NRR during the transmission of the
SYNC message between the grandmaster and the slave clocks. If there are multiple TSN in-
termediate nodes between the grandmaster and a slave node, each intermediate node com-
putes its NRR and adds it to the accumulative CSRO value. The CSRO value is then loaded
into the CSRO- f ield of the SYNC message as shown in Figure 5.18 that shows the CSRO-
f ield in the SYNC message format. Even with NRR unity values between neighbouring
nodes, the respective frequency ratio will be obtained by the aggregated CSRO values.

97

Chapter 6. Time Synchronization for Improved Precision in an Asymmetric TSN Hybrid
Network Using Extended IEEE802.1AS

6.2.3 Response Delay Value

After formulating the SDR and NRR equations from the previous sections, it is time to ex-
press the Response_delay formula as shown in this section.

Equations 6.14 and 6.15 are used to formulate Eq. 6.19 as follows:

(t2 + t4)− (t1 + t3) = Request_delay + Response_delay + NRR ∗ (t4 − t1) (6.19)

Dividing Eq. 6.19 by the Response_delay value, the Response_delay value is finally ob-
tained using Eq. 6.20:

Response_delay =
(t2 − t1) + (t4 − t3)− NRR ∗ (t4 − t1)

SDR + 1
(6.20)

Substituting the outputs of Eq. 6.10 and Eq. 6.18 in Eq. 6.20, an accurate Response_delay
value (the actual path delay of P2P mechanism) is obtained. Thereafter, the measured value
is used as a path delay instead of the mean path delay in the hybrid TSN systems. The resi-
dence time of the SYNC message in every TSN-enabled intermediate node is also computed
and added besides the Response_delay value in the Correction- f ield of the SYNC message.

In the symmetric scenario (ideal scenario), the value of NRR and SDR are 0 and 1, re-
spectively. According to Eq. 6.20, the Response_delay value in the symmetric scenario is the
same as in Eq. 3.1.

Eq. 3.1 is used normally in symmetric frameworks such as wired communications, but
it is not feasible in dynamic wireless environments because NRR and SDR values mostly
are not 0 and 1, respectively. Regarding the previous analysis, the synchronization precision
in asymmetric wireless networking depends on computing accurate values for time and
frequency offsets, which ensures that the slave time nearly operates as the grandmaster
time.

In general, once a TSN-enabled intermediate node receives a SYNC message from the
grandmaster, the improved 802.1AS protocol uses the P2P mechanism to compute NRR (i.e.
the frequency drift) and an accurate path delay value (i.e. the Response_delay) with the
TSN neighbouring nodes. The recipient node adds the computed NRR to the aggregated
CSRO value, then the added value is inserted into the CSRO- f ield of the SYNC message.
At the same time, the recipient node adds the summation of its computed Response_delay
value and the SYNC’s residence time into the Correction- f ield. Thereafter, the SYNC mes-
sage is forwarded to the next TSN-enabled node. By combining the values in the CSRO
and Correction- f ields with the original grandmaster time that was previously stored in the
Original-timestamp field of the SYNC message, the local time at the TSN-enabled end node
can be measured when it gets the SYNC message.

Thereby, the slave clock of a TSN end node, which is used for time-stamping the gPTP
messages in a hybrid TSN domain, is expressed as follows:

Slave_clock = Timestamp.o f .SYNC + Agg.dri f t + Agg.path_delay + Agg.residence_time.
(6.21)

As stated in Eq. 6.21 and illustrated in Figure 6.2, the time of the slave clock on the
left hand side is the summation of the timestamp of the SYNC message transmission in-
stant captured by the grandmaster clock (Timestamp.o f .SYNC), the total drift time (i.e.
Agg.dri f t), the aggregated path delays (i.e. Agg.path_delay) and the aggregated residence
times (i.e. Agg.residence_time) on the right hand side.

98

Chapter 6. Time Synchronization for Improved Precision in an Asymmetric TSN Hybrid
Network Using Extended IEEE802.1AS

The computed Agg.dri f t at the slave clock is defined as a result of the frequency drift
between the grandmaster and the slave clock. It is computed using the following equation:

Agg.dri f t = CSRO ∗ (current_time− last_sync_time) (6.22)

The CSRO value is obtained from the CSRO- f ield, the compensated times (i.e. Agg.residence_time
and Agg.path_delay) are obtained from the Correction- f ield and Timestamp.o f .SYNC is ob-
tained from the Original-timestamp field.

Grandmaster
Clock (0)

TSN
bridge (2)

TSN access
point (3)

Wired link
Wireless link

Wired TSN
Switch (1)

CSRO(1) = CSRO(0) + NRR(1)

SYNC message

CSRO(0)
CF(0)

TSN Wireless
end node (4)

SYNC message

CSRO(1)
CF(1)

SYNC message

CSRO(2)
CF(2)

SYNC message
CSRO(3)

CF(3)

Delay_Req

Delay_Res

Delay_Req

Delay_Res

Delay_Req

Delay_Res

CF(1) = CF(0) + PD(1) + RT(1)

TS(0)
CSRO(0) = 0

CF(0) = 0

TS(0)
CSRO(2) = CSRO(1) + NRR(2)
CF(2) = CF(1) + PD(2) + RT(2)

TS(0)
CSRO(3) = CSRO(2) + NRR(3)
CF(3) = CF(2) + PD(3) + RT(3)

TS(0)
CSRO(4) = CSRO(3) + NRR(4)

CF(4) = CF(3) + PD(4)

TS(0)

Slave Clk = TS(0) +
CSRO(4) + CF(4)

CF = Correction Field
CSRO = CSRO-field
TS(0) = Timestamp of the SYNC message captured by the grandmaster clock
NRR = NRR value
PD = Path Delay
RT = Residence Time

Delay_Req

Delay_Res

FIGURE 6.2: Diagram illustrating how the slave clock is synchronized with its
grandmaster using the improved IEEE 802.1AS protocol.

6.3 Path Deviation Delay Filter Test

In the previous section, the Response_delay value (i.e. the computed path delay) is calcu-
lated to accurately determined SDR and NRR values. It should be noted that the value of
SDR is deceptive, because the SDR ratio might give diverged values for Request_delay (in
the numerator) and Response_delay (in the denominator) but an acceptable SDR ratio, espe-
cially when dealing with a time-sensitive environment, where the deadline conditions play
a critical role. Therefore, to ensure acceptable values for Response_delay and to ensure that
it is not an outlier value; a filter called Path Deviation Delay (PDD) filter is used to compare
it with Request_delay values stored in the TSN-enabled intermediate node.

After receiving the SYNC message and exchanging P2P messages at the TSN-enabled
intermediate node, the Response_delay value is computed according to the measured NRR
and SDR values. In this filter, the previously stored Response_delay values are utilized in
a table called Path Delay Table (PDT). The idea is to observe the standard deviation of the
values in PDT with and without the computed Response_delay value. If the Response_delay
value causes a decrease or increase in the deviation by more than 30%, the Response_delay
value is then considered as an outlier value and is excluded because it does not satisfy the
TSN application requirements [9] and it might be an indication of traffic congestion or the
sender of the Response_delay is out of coverage area. At this moment, the node keeps its

99

Chapter 6. Time Synchronization for Improved Precision in an Asymmetric TSN Hybrid
Network Using Extended IEEE802.1AS

time until another SYNC message with a successful filter test is coming from a TSN neigh-
bour node. If the Response_delay value is close to the previous values, the Response_delay
can be used to update the time of the TSN-enabled intermediate clock. It is then inserted into
the Correction- f ield for the next node until reaching the TSN-enabled end node as shown
in Figure 6.3. This filter contributes to removing the effects of random delays. It is worth
noting that discarding several consecutive synchronization messages reduces the synchro-
nization precision, thus the filter may not work perfectly in very high congested dynamic
environments.

Forward the SYNC message

Update the Correction-field of the SYNC
message with the Response_delay value

Synchronize the TSN intermediate node by
using the Correction-field and CSRO values

Exclude the Response_delay
value and keep the current

time until the next SYNC
message

Response_delay is
an outlier value?

 Update and store the Response_delay
value in the PDT

Calculate the PDD for Response_delay with previous values in PDT

YES

NO

Calculate NRR, SDR to calculate accurate Response_delay value

Start

Receiving the SYNC message

Exchanging IEEE 802.1AS P2P messages

FIGURE 6.3: PDD filter test

6.4 Hybrid Network Simulation Models for Clock Synchroniza-
tion Process

In this section, the simulation model and environment used to evaluate the effectiveness of
the proposed synchronization protocol are described. Wireless nodes and bridges’ TSN syn-
chronization capabilities are combined and tested with already-existing wired TSN models
[208]. These wired TSN models have been implemented in the OPNET framework, where
the standard node models were identified to be wired TSN-enabled nodes in a wired TSN
environment. We summarize the models of the wireless TSN-enabled nodes (i.e. wireless
end nodes and bridge models) as shown below.

• Wireless TSN-enabled End node: All packets belonging to the IEEE 802.1AS protocol
are based on the WLAN format. Therefore, the existing standard wireless node model
is used for modelling the TSN wireless end node.

• Wireless TSN-enabled Bridge: The functionalities of the boundary clock as proposed
in the IEEE 802.1AS protocol are applied in the wireless TSN bridge. Thus, the existing
bridge model in OPNET is used for modelling the TSN wireless bridges.

By utilizing the proposed IEEE 802.1AS protocol, all models (including Ethernet and
wireless models) incorporate the synchronization process and the BMCA algorithm. These

100

Chapter 6. Time Synchronization for Improved Precision in an Asymmetric TSN Hybrid
Network Using Extended IEEE802.1AS

models are then re-defined to support the IEEE 802.1Qbv and IEEE 802.1CB protocols [203],
which schedule TT streams using TAS and send replicas of the TT messages over redundant
routes. It is worth mentioning, broadcasting an Announce message in the wireless environ-
ment to all neighbours makes a neighbour receive more than one copy of the same message
by other nodes located with the sender in the same domain. Therefore, BMCA solves this
problem by using an identification in the Announce message (i.e. Ann.ID), see Figure 5.15.
If a node receives an Announce message, it keeps the Ann.ID and in the future another
Announce message with the same ID is simply dropped. After finishing the BMCA algo-
rithm and selection of the grandmaster, SYNC and P2P messages will be sent periodically.
Because of their periodicity, their time sensitivity and their importance to keep all slaves
synchronized with their reference time, SYNC and P2P messages will be scheduled as TT
traffic and inserted as high priority messages in the GCL of each node they pass through.

6.5 Optimization of 802.1AS in a TSN Hybrid Domain

The key procedures of the extended 802.1AS in TSN hybrid systems adhere to the same
principles as the standard protocol but there are several optimizations:

• The extended 802.1AS facilitates the interconnection of wired/wireless networking
technologies within a single TSN hybrid domain. For this reason, the timing informa-
tion transmitted through the wireless TSN domain is generalized. This means that the
extended protocol conforms to the management control and the format of the transmit-
ted messages. In the contrast, standard 802.1AS is limited to the IEEE 802.3 standard.
The major modification is associated with the TSN hybrid domain that combines and
unifies the functionalities of the wireless and wired TSN domains rather than support-
ing one single gPTP domain.

• The extended 802.1AS enables the TSN-enabled node to measure the residence time
and the asymmetric path delay to prevent the outlier path delay values and non-
deterministic P2P from degrading the performance of the time synchronization pro-
cess in a wireless environment.

• The extended 802.1AS protocol is designed to support the reliability of the clock syn-
chronization process in the TSN wireless domain. To achieve that, the extended 802.1AS
protocol introduces multiple redundant synchronization trees which are used to for-
ward the timing information (i.e. SYNC messages). For example, Figure 6.4 shows
two synchronization trees and the timing information can be sent over these trees at
the same time. Therefore, in case one of these trees fails, TSN nodes continue to receive
the timing information from their grandmaster through the redundant synchroniza-
tion tree. This procedure serves for protecting the synchronization process and keep-
ing it deterministic. Each synchronization tree is distinguished by the identification of
the SYNC message (i.e. SYNC.ID), see Figure 5.18. On one hand, if multiple copies of
timing information come from the same synchronization tree, the TSN-enabled node
synchronizes its time according to the first arriving copy and eliminates the others.
On the other hand, if multiple copies of timing information come from different syn-
chronization trees, the TSN-enabled node synchronizes its time according to the first
arriving copy and forwards each arrived copy.

101

Chapter 6. Time Synchronization for Improved Precision in an Asymmetric TSN Hybrid
Network Using Extended IEEE802.1AS

time-aware end node1
(grandmaster)

time-aware
intermediate1

time-aware end
node2 (slave)

time-aware
intermediate2

time-aware
intermediate3

time-aware end
node3 (slave)

m

s s

mm

mm

ss

ss

m : port in a master state
 s : port in a slave state

1

2
Access sequence for the SYNC messages
at a TSN-enabled node.

21

2 11 2

FIGURE 6.4: Wireless TSN domain with two redundant synchronization trees.

6.6 Evaluation of the Improved IEEE 802.1AS Protocol

In the hybrid TSN simulation framework, different TSN-enabled nodes will be used includ-
ing wired and mobile wireless nodes, Ethernet relays and wireless bridges. The improved
IEEE 802.1AS was implemented using the OPNET simulation environment, which runs on
a PC (Intel i5) with 24 GB of memory.

6.6.1 Simulation Setup

To evaluate the behaviour of the proposed protocol, our grid hybrid modelling approach
mentioned in Chapter 4 is used. As illustrated in Figure 4.4, two wireless TSN bridges
connect a group of TSN wireless routers and wireless access points. Each access point is
connected with mobile and fixed wireless TSN-enabled end nodes. On the other side of the
bridges, TSN wired relays are connected with a HMI and monitoring application stations.
Data traffic of every TSN end node is sent to a CCU. Then, the CCU forwards the traffic to
the HMI and the monitoring application. After that, the HMI sends the processed data back
to the CCUs.

6.6.2 Time-Aware Hybrid Network Simulation

The BMCA algorithm is executed in our experimental network for all the TSN-enabled sys-
tems. In [208], the authors show the configuration parameters for clock synchronization and
how the BMCA algorithm works to select the grandmaster. In the simulation, the HMI is
selected to be the grandmaster according to the highest priority and it is set to the OPNET
simulation time (i.e. op_sim_time()), the adjusted slave times are then utilized as precise
times for scheduling other time-sensitive events. It is worth noting that all parameters are
user-configurable and can be changed depending on the network specifications.

The proposed protocol is evaluated with different scenarios, including different mobile
speeds, different oscillation drifts between the grandmaster and the slave clocks, increasing

102

Chapter 6. Time Synchronization for Improved Precision in an Asymmetric TSN Hybrid
Network Using Extended IEEE802.1AS

number of hops between them and different asymmetry ratios. The simulation results of
both the proposed and the standard protocols are compared and a detailed analysis is pre-
sented. The oscillation drifts are measured in parts per million (ppm) which indicates how
much the crystal’s frequency deviates from the nominal value [212], [213]. The asymmetry
ratio is defined as the ratio in the data rate between the wireless uplinks and downlinks.

Figure 6.5 shows the computed synchronization error in nanoseconds (ns) according to
the variation in ppm between the selected grandmaster (i.e. HMI) and wireless TSN mobile
host h17. The synchronization error is calculated by referring to the OPNET simulation time
(i.e. op_sim_time()). Figure 6.5 shows how the variation in ppm between the grandmas-
ter and the slave clocks affects the synchronization precision. It shows a linear increase in
the synchronization error when increasing ppm variation, thus the proposed protocol con-
siders the variation in the frequency by calculating the accumulated value of CSRO at the
slave clock. The CSRO value gives the actual deviation in the frequency, which should be
considered in the synchronization process. It is obvious from the results of the clock drift
synchronization error that it equals 0 in case of no clock-drift or when both node clocks are
operating with the same frequency drifts as a result of the same frequencies.

0

1

2

3

4

5

6

7

0 50 100 150 200 250

C
lo

ck
 d

ri
ft

 S
yn

cr
o

n
iz

at
io

n
 E

rr
o

r
(n

s)

Frequency offset between the grandmaster (HMI) and h17 in (ppm)

FIGURE 6.5: Clock drift synchronization error between the grandmaster
(HMI) and h17 (fixed speed = 20 m/s) with variable frequency offsets in

(ppm), uplink and downlink = 24 Mbps, asymmetry ratio = 1.

In the following scenarios, ppms of wireless/wired end nodes, wireless bridge and
wired router are fixed to 1000, 500 and 200 respectively. Figure 6.6 shows the synchro-
nization error that is produced between HMI and h17 at different mobile speeds in random
directions. The speed of h17 affects the synchronization error because the transmission time
for the synchronization messages varies depending on the speed, topology and direction of
the node that receives these messages.

103

Chapter 6. Time Synchronization for Improved Precision in an Asymmetric TSN Hybrid
Network Using Extended IEEE802.1AS

20

21

22

23

24

25

26

27

0 50 100 150 200 250 300 350

Cl
o

ck
 d

ri
ft

 S
yn

cr
o

n
iz

at
io

n
 E

rr
o

r
(n

s)

Time (sec)

Mobile_speed_0 (m/s)

Mobile_speed_10 (m/s)

Mobile_speed_15 (m/s)

Mobile_speed_20 (m/s)

Mobile_speed_30 (m/s)

Mobile_speed_40 (m/s)

FIGURE 6.6: Clock synchronization error between grandmaster (HMI) and
h17 for different mobile speeds, uplink and downlink = 24 Mbps, asymmetry

ratio = 1.

Figure 6.7 shows the measured synchronization error in h17 according to the asymme-
try data ratio between h17 and its access point (i.e. ap5). As shown, the synchronization
error for the standard algorithm increases as the asymmetry ratio between the uplink and
the downlink increases. In contrast, the proposed IEEE 802.1AS provides accurate synchro-
nization for dynamically changing asymmetric wireless systems compared to the standard
protocol. The proposed correction model shows that the average synchronization error is
around 0.645 microseconds in average. This is due to the wireless data rate awareness in
the proposed correction model, which enables accurate path delay calculation for dynamic
changes in uplinks and downlinks and dynamic mobile network topologies.

-26
-24
-22
-20
-18
-16
-14
-12
-10

-8
-6
-4
-2
0
2
4

0 10 20 30 40 50 60

Sy
nc

hr
on

iz
at

io
n

Er
ro

r (
µs

)

Asymmetry ratio (Download / Upload)

Proposed 802.1AS

Standard 802.1AS

FIGURE 6.7: The synchronization error for the standard and the proposed
IEEE 802.1AS protocols when increasing the asymmetry ratios (downlink =

54 Mbps, uplink 1 - 54 Mbps) between h17 (speed = 20 m/s) and ap5.

Figure 6.8 shows the calculated synchronization error according to the number of inter-
mediate hops between HMI and a selected TSN-enabled node. The synchronization error for
the standard and the proposed protocols increases as the number of hops increases. This is
as expected, but the proposed correction model shows a smaller synchronization error. The
proposed correction model could be utilized to minimize the upward increase in the syn-
chronization error by selecting the best path out of different paths between the grandmaster
and a slave end node.

104

Chapter 6. Time Synchronization for Improved Precision in an Asymmetric TSN Hybrid
Network Using Extended IEEE802.1AS

0

1

2

3

4

5

0 1 2 3 4 5 6
Sy

nc
hr

on
iz

at
io

n
Er

ro
r (

µs
)

Number of Hops

Proposed 802.1AS

Standard 802.1AS

FIGURE 6.8: The synchronization error for the standard and the proposed
IEEE 802.1AS protocols when increasing asymmetry ratios (downlink = 54

Mbps, uplink 1 - 54 Mbps) between h17 (speed = 20 m/s) and ap5.

Another scenario to evaluate the proposed protocol and compare it with the standard
protocol is illustrated in Figure 6.9. It shows the synchronization error for h17 in case of
increasing the number of mobile wireless TSN-enabled nodes (i.e. hosts) that are connected
with its access point (i.e. ap5). The actual synchronization precision in h17 is not correctly
computed by the standard IEEE 802.1AS protocol. Significantly more accurate time syn-
chronization is achieved by the proposed IEEE 802.1AS protocol by incorporating determin-
istic delays and considering the oscillation factor with the grandmaster, besides eliminat-
ing asymmetry and outlier values in the path delay values. Figure 6.9a shows that in the
standard protocol, the synchronization error stabilizes at the range of 2.899 to 14.522 mi-
croseconds when increasing the number of mobile hosts that are located in the same local
network. This relates to the asymmetric behaviour of the standard protocol. On the other
hand, at the beginning of the simulation, Figure 6.9b shows positive and negative synchro-
nization errors. The reason is that the compensated time upon receiving the synchronization
message at the end node is less or more than op_sim_time, respectively. But over time, ev-
ery end node receives more synchronization messages. Therefore, the compensated time is
computed accurately and the synchronization error stabilizes to be in the range 0.0558 to
0.5251 microseconds although the number of the mobile hosts increases.

105

Chapter 6. Time Synchronization for Improved Precision in an Asymmetric TSN Hybrid
Network Using Extended IEEE802.1AS

(A) Standard Protocol.

(B) Proposed Protocol.

FIGURE 6.9: The synchronization error for h17 by using the standard (A) and
the proposed (B) protocols with a variable number of wireless TSN-enabled
nodes (range speed 0 - 30 m/s) connected with ap5, uplink and downlink =

24 Mbps, asymmetry ratio = 1.

106

Chapter 7

Task and Message Scheduling
Algorithm for Hybrid TSN Systems

7.1 Introduction

As mention in Chapter 1, systems with wireless networks (e.g., WLAN, WSN and ad hoc
networks) have attracted considerable attention due to their scalability and flexibility. There-
fore, there is a trend to apply them in conjunction with TSN technology [77], [202] in vari-
ous industrial systems such as robotics, vehicular applications and machine control systems.
These systems need a high level of temporal predictability in data transmission especially
for real-time applications that consist of periodic tasks and TT messages used to send infor-
mation between the interconnected tasks.

In Chapter 5, the TSN standards are implemented in wireless nodes besides the TSN-
based wired nodes to fulfil the requirements of time-sensitive applications in a hybrid en-
vironment. The TAS feature is used to support scheduled traffic, where each TSN node has
a certain number of queues dedicated to transmitting different types of traffic according to
a GCL list. The GCL typically allocates a higher priority to TT streams than others like AV
and BE streams. In this chapter we are mapping GCL to wireless components to specify the
egress time (i.e. the gate is open) to transmit TT messages over a wireless medium. GCL
guarantees that the allocated time slot for a TT message will not be occupied by any other
message.

The scheduling of TT messages and task scheduling problem in wireless environments
is NP-complete. Increasing the number of computation tasks and TT messages leads to an
exponential increase in the number of possible task schedules. Therefore, finding a valid
task scheduling solution, which is defined as a case of distributing all tasks to potential
wireless hosts, is considered a challenge to fulfil the deadline restrictions, especially in an
environment that suffers from surrounding signal interference. Thus, it becomes necessary
to reduce the search space that to find a feasible solution.

The majority of prior research to find a global feasible solution for real-time TT networks
considered the task scheduling constraints with fixed routing as input to their algorithms.
Other research considered the routing possibilities [43], which in turn leads to better so-
lutions that satisfy the requirements of real-time systems. The authors in [214], [215] use
ILP-based algorithms, which are quite slow and not scalable to address large real-time sys-
tems, with a focus on joint routing and scheduling for the TT schedule computation. Others
use the interference as a metric to find a feasible task schedule [216]. In order to combine the
scheduling, interference and routing constraints into one adaptive algorithm, a list-based
task scheduling algorithm named Task and Message Scheduling (TMS) algorithm is pro-
posed to generate a feasible task and message scheduling solution in WirelessTSN networks.

107

Chapter 7. Task and Message Scheduling Algorithm for Hybrid TSN Systems

In contrast to state-of-art task scheduling solutions, TMS generates port-specific GCLs
imposing routing, interference and scheduling constraints at the same time. It transforms
the mentioned constraints into one set of constraints and solves the task scheduling problem
considering precedence constraints of TT tasks in a single step. The basic objective of TMS
is to meet TT traffic deadlines while minimizing TT transmission makespan and overhead.
The makespan is determined by the time for the execution of a leaf task, which is a task
without message forwarding. Additionally, it gives the option to distribute safety-critical
applications across all available hosts rather than just one, helping to prevent host overload
on particular hosts. This approach is beneficial for mission-critical applications (e.g. Un-
manned Aerial Vehicles (UAVs)) that operate in wireless systems and require considerable
amounts of computational power.

Since the wireless networks use a shared medium, the interference as a result of send-
ing TT messages at the same time leads to decreased capacity and reliability of the network
[153]. This is one of the main problems in finding a global task and message scheduling
solution for hard real-time applications. The proposed algorithm solves this problem via
scheduling the TT messages, which use wireless physical links, into several time slots. In
each time slot, the TT messages can be transmitted at the same time without causing unde-
sired mutual interference. Clearly, it is often effective to find an optimal route of minimum
latency for each TT stream, and in each time slot only a subset of TT streams can be sched-
uled.

In order to integrate TSN wireless nodes into an accurate time-synchronized network,
we use our extended IEEE 802.1AS protocol from Chapter 6 to establish a precise global
time [27]. A single channel is used to send and receive the TT messages and the time is
slotted into fixed-size time slots. Each TT message is fragmented according to the time slot
size along the wireless route and each fragmented message is assigned to a specific time slot
as long as it is transmitted through its path. The proposed algorithm guarantees using the
spatial distribution of the communication activities that all TT messages in each slot can be
transmitted simultaneously without causing undesired mutual interference.

Section 3.8 analyzes the physical interference and protocol models in [153]. If no other
node is simultaneously sending its data inside the interference range of the receiver (r),
then the data transmission between sender (s) and receiver (r) is successful, according to the
protocol model. In the physical model, data transmission between s and r is successful if the
SINR value at r is greater than a predetermined communication threshold value, or β, whose
value relies on the channel characteristics and the communication system standard. Because
it offers a somewhat accurate depiction of a wireless environment, the physical interference
model is used in this work. The physical model considers the channel effects like SINR
conditions, ambient noise power and path loss, which leads to higher network throughput
and reliability.

In order to have a strong foundation for comparison, we also created the Minimum traf-
fic Load Task Scheduling (MLTS) algorithm [21], [22], which chooses the routes with the
least amount of traffic load to transfer the messages throughout the task scheduling process.
Another algorithm is the Min-Min Task Scheduling (MMTS) algorithm [20] which does not
consider the traffic cost due to the message transmissions. MMTS is a traditional heuris-
tic algorithm, which first sorts the tasks according to the top-level values. The algorithm
proceeds by assigning the task to the wireless host that produces the minimum completion
time. The same procedure is repeated by MMTS until all tasks are scheduled.

Several experimental tests with different topologies, traffic loads and variable interfer-
ence environments are implemented. The simulation results show significant improvement

108

Chapter 7. Task and Message Scheduling Algorithm for Hybrid TSN Systems

in the reliability, network resource-saving and makespan of the proposed algorithm as com-
pared with the MLTS and MMTS algorithms. All notations used in this chapter are shown
in Table 7.1.

The rest of this chapter is organized as follows. The task and message scheduling prob-
lem of TMS is formulated in the next section. Section 7.3 defines the time slot message
scheduling model. The proposed algorithm is described in detail in Section 7.4. Finally,
Section 7.5 discusses the experiments and the evaluation.

7.2 Problem Formulation of TMS

To start the task and message scheduling process, firstly we assume that all wireless TSN-
enabled nodes are fixed and spread randomly in the Euclidean area and their clocks are
synchronized with the grandmaster clock. One available channel is shared for all bidirec-
tional wireless links.

The wireless systems normally decompose a real-time application into several tasks that
are scheduled on several wireless hosts to be executed. TT messages are used to send data
between the periodic tasks. The task and message scheduling problem is a critical issue in
WirelessTSN networks because the message transmission cost is integrated with the task
execution time. Hence, it is imperative to choose the most suitable host for each task to run
on and to make sure that all tasks are completed in hosts before their deadlines, which is the
fundamental objective of the TMS algorithm.

As mentioned in Section 3.11, there are three types of data traffic transmitted over the
wireless paths. These types are (i) BE streams, (ii) AV streams and (iii) TT streams. BE and
AV streams do not require deadline guarantees. To avoid the interference of BE and AV
streams with TT streams, the proposed algorithm employs a GCL which is defined for each
port of a wireless TSN node. The proposed algorithm considers only TT messages, while
other types of data are scheduled when no TT messages are transmitted over the wireless
paths.

TMS considers our hybrid modelling approach from Chapter 4 including the architecture
graphs (i.e. the grid and ring graphs) and the application graph as inputs to schedule a set
of tasks T to the available wireless hosts for each task t, whereas the task and message
scheduling model addresses the following constraints:

1. Resource scheduling constraint: Each computational task t is executed only on one
wireless host h.

2. Path-attribute constraint: To eliminate routing loops, each TT message is allowed to
pass a wireless TSN-enabled intermediate node (i.e. a wireless router or an access
point) only once toward the receiver host.

3. Physical interference constraint: The dedicated time slot for each TT message uses a
certain path only if the interference induced by other messages does not violate the
SINR threshold value.

4. Precedence constraint: Each task t is ready to be executed at time trt after the arrival of
all messages Mt sent from its parent tasks. The ready time of task t is equal to the last
arrival time. It is expressed as shown in Eq. 7.1:

trt = maxm ∈Mt(marrival) (7.1)

109

Chapter 7. Task and Message Scheduling Algorithm for Hybrid TSN Systems

TABLE 7.1: Notations used in Chapter 7

Symbol The description of the symbol Domain

T Set of all computational tasks in the
application graph

T ∈ GApp

MTT Set of all TT messages in the application
graph

MTT ∈ GApp

trt Ready time of the task t to be executed t ∈ T
tet Execution time of the task t
tdl Deadline of the task t
t.AvailableHosts Available hosts to allocate the task t
Pt Period of task t
Mt Set of TT messages from the sending task t
msz Message size m ∈ MTT

me2eD Message end to end delay
mcomm Message communication cost
mIT Injection time of TT message into the

medium
marrival Arrival time of the message at the receiver
Frm Total number of fragments of a TT message

m
f rm A fragment of a TT message m
li(f rm) li is the path used by a fragment of a TT

message m
rm A tested route for a TT message m
r*

m Selected route for a TT message m
parent(t)m Parent of task t that sends the TT message m parent(t) ∈ T
mparent(t) Message that comes from that parent

n Time slot number

sltd Time slot duration

Slt(n) Set of paths in the nth time slot

L Set of wireless communication paths L ∈ GArc(N, L)
ISlt(Slt(n), b) Total interference induced on b by all

senders in Slt(n)
li ∈ L

ISlt(Slt(x, n), b) Interference induced on b by sender x in
Slt(n)

Ptr(a) Transmission power of node a a ∈ N
Prcv(a, b) Reception power at node b from node a a, b ∈ N

110

Chapter 7. Task and Message Scheduling Algorithm for Hybrid TSN Systems

marrival is defined as the instant of time when a message m from a parent task arrives
at task t. It is defined as:

marrival = mIT + me2eD (7.2)

Where, mIT and me2eD denote the injection time and the transmission time of the mes-
sage m, respectively.

5. Message period constraint: TMS considers the period of the interconnected tasks.
Therefore, TMS dedicates time slots to transmit each message by taking into account
the period of other messages that share the same path.

6. Deadline constraint: The instant of time for the host to finish executing the task t after
receiving all messages must be less than the deadline for that task.

trt + tet ≤ tdl (7.3)

Where, tet and tdl refer to the execution time and the deadline of a task t, respectively.

7.3 Time Slot Message Scheduling Model

Signal interference would be induced in the case of two or more simultaneous transmissions.
Selecting the interference model has a vital impact on the efficiency of the message schedul-
ing. To capture the aspects of TT wireless systems, the time slot message scheduling in the
TMS adopts the physical interference model [153] because it aims to maximize the amount
of successfully received data and considers channel effects like path loss, shadowing, fading
and the received power. The physical model operates to send multiple messages simulta-
neously using fixed duration time slots in order to maximize the amount of successfully
received data and prevent the influence of the induced interference as possible.

Assume d(a, b) to be the length (i.e. the transmission distance) of the path (a, b), where
(a, b) represents the path between two wireless nodes a and b. The transmit power of node a
is denoted by Ptr(a). The received power Prcv(a, b) at node b of the transmitted signal from
the node a is:

Prcv(a, b) =
Ptr(a)

d(a, b)α (7.4)

α is the path loss, where the path loss increases with the fourth power of the transmission
distance [217].

In the physical interference model, the message that uses the path (a, b) will be received
correctly at node b if and only if the following condition is satisfied:

Prcv (a, b)
N + ∑p∈Paths Prcv (c, b)

≥ β (7.5)

Where Prcv(a, b) represents the received power on b from a, Prcv(c, b) represents the in-
terference on b by c. The ambient noise power is N, Paths is a subset of wireless paths used
by other communication messages simultaneously with path (a, b) to the same receiver b. β
is the SINR threshold value, which ensures that the message will be successfully received at
b. Thus, path (a, b) is inserted in a specific time slot with other Paths if the computed value
on the left side of Inequality 7.5 is equal to or more than β. Otherwise, the message that uses
path (a, b) uses the next time slot that satisfies this condition.

111

Chapter 7. Task and Message Scheduling Algorithm for Hybrid TSN Systems

Let the interference Prcv(x, b) on b by a sender x be expressed as ISlt(Slt(x, n), b), then the
total interference on b by all other senders (i.e. not the sender a) in the nth time slot (Slt(n))
is expressed by:

ISlt(Slt(n), b) = ∑
x∈Slt(n)

ISlt(Slt(x, n), b) (7.6)

Slt(n) is considered as a feasible time slot for a message that uses path (a, b) if the total
interference on b by other senders in Slt(n) keeps the value on the left side of Inequality 7.5
higher than β.

7.4 Task and Message Scheduling Algorithm

In this section, we present the TMS algorithm to solve the problem of message scheduling
and scheduling the task on several wireless TSN hosts. It aims to find a feasible global
solution to minimize the makespan of TT traffic in a WirelessTSN network by taking into
consideration the constraints that are mentioned in Section 7.2. TMS, in general, assigns a
host for each task gradually based on the selection of routes that deliver messages as early
as possible. TMS is described as follows:

TMS algorithm (General overview): For each unscheduled task t, TMS computes firstly
its top-level cost tlt. Eq. 7.7 defines a path length pl(ta, t) from ta to task t, where ta is
considered as the root task (a task has no incoming messages) for the unscheduled task t
(the child task). pl(ta, t) is the sum of the costs of vertices (i.e. tet) and edges (i.e. mcomm) of
a path from task ta to t. tlt in Eq. 7.8 represents the longest path found from ta to t in GApp.

pl(ta,t) = ∑
t∈path(ta,t)

tet + ∑
m∈path(ta,t)

mcomm (7.7)

tlt = max(pl(ta,t)) ∀ta ∈ parent(t) (7.8)

For instance, if we consider in Figure 4.2 that the costs of the edges and vertices of GApp
are 20 and 200, respectively, then tlt3 will be equal to 0 (t3 is a root task and has no incoming
messages). The longest path to t0 is (t3 -> t2 -> t1 -> t0), thus tlt0 = 200+20+200+20+200+20
= 660. After that R-TMS sorts all unscheduled tasks in ascending order according to their
top-level values.

After that, TMS sorts the unscheduled tasks from lowest to highest top-level values (line
3 of TMS algorithm (General overview)). The Task and Message Scheduling Procedure (Al-
gorithm 1) will be repeated until finishing the scheduling all sorted tasks, then the makespan
of all tasks is computed (lines 4-7). The final makespan is the instant of time when all com-
putational tasks are executed.

112

Chapter 7. Task and Message Scheduling Algorithm for Hybrid TSN Systems

TMS algorithm (General overview)

1: makespan← 0
2: compute top_level (tl) of each unscheduled_task t
3: Tsorted ← sorttasks(Sorting tasks on tl ascendant order)
4: for t ∈ Tsortedunscheduled do
5: Call Algorithm 1 Task and Message Scheduling Procedure (task t)
6: end for
7: return global makespan

Pseudo-code of TMS procedure for scheduling all computation tasks of GApp.

Task and Message Scheduling Procedure (Algorithm 1): For each unscheduled task t,
the incoming TT messages are determined first. If task t waits for TT messages from parent
tasks (constraint # 4), TMS will firstly schedule all the previous tasks (lines 1-5 of Algorithm
1). If all the parent tasks are already scheduled then TMS works on assigning that task on
one of its available hosts (t.AvailableHosts).

TMS initializes trt and marrival to 0. In order to select the best available host h ∈ t.AvailableHosts
for the unscheduled task t, TMS works firstly to find all routes (i.e. R) between the sender
host (parent(t)m) and the receiver host (h) while taking into consideration constraint # 2 and
constraint # 5, see lines 6-18 of Algorithm 1.

Equation 7.9 is used in lines 13-17 to compute the number of times (i.e. repparent(t))
a parent task (i.e. parent(t)) should be repeated before starting to send its message to
the child task t. Pt and Pparent(t) denote the period of task t and its parent task, respec-
tively. Ceil(Pt

Pparent(t)
) method returns the smallest integer no smaller than the fraction of t and

parent(t) periods.

repparent(t) =

Pt
Pparent(t)

, if mod(Pt, Pparent(t)) = 0, Pt ≥ Pparent(t)

Ceil(Pt
Pparent(t)

), if mod(Pt, Pparent(t)) ̸= 0, Pt > Pparent(t)

1, if Pt < Pparent(t)

(7.9)

For each route rm ∈ R a Message Link Scheduler (Algorithm 2) is applied. Algorithm 2
is used to compute the message end-to-end delay (i.e. me2eD) for each route rm after schedul-
ing the message on time-slotted paths. The scheduler begins to schedule the message at the
nth time slot (Slt(n)), where n = mIT

sltd
, mIT denotes the message injection time from the sender

host and sltd denotes the time slot duration. TMS fragments the message transmission time
(i.e. mcomm) into a number of fragments Frm according to the time slot duration time sltd
(lines 1-2 of Algorithm 2). For example, if a message m needs 180 ms to reach the recipient
task t and sltd = 60 ms, then the number of fragments is 180/60 = 3 fragments. For each
path li belonging to the route rm , TMS applies the feasible time slot algorithm (Algorithm
3) for all fragmented messages Frm on that path li. The process is repeated and n increases
starting from the first fragment of the first path l1 until the last fragment of the last path lh
in the route rm, where rm is denoted as rm = {l1, l2, l3, . . . , lh} (lines 3-13).

113

Chapter 7. Task and Message Scheduling Algorithm for Hybrid TSN Systems

Algorithm 1 Task and Message Scheduling Procedure(task t)

Input: GApp, GArc
Output: makespan (t)

1: if task t is unscheduled and waits TT messages from its parent tasks then
2: for m ∈ Mt do
3: Call Task and Message Scheduling Procedure (parent(t)m)
4: end for
5: else if all_parent(t).scheduled then
6: RT ← 0
7: for h ∈ t.AvailableHosts do
8: for m ∈ Mt do
9: trt ← 0

10: marrival ← 0
11: R = routes(parent(t)m, h)
12: if Pt > Pparent(t) then
13: repparent(t) = Pt

Pparent(t)

14: else
15: repparent(t) = 1
16: end if
17: mcomm =

mparent(t)
BW

18: for rm ∈ R do
19: mIT ← Find(parent(t)et + Pparent(t) ∗ (repparent(t) − 1))
20: Call Algorithm 2 Message Link Scheduler (rm, mIT, mcomm)
21: arrival ← mIT + me2eD
22: if arrival + tet > tdl then
23: invalid route, go to the next route
24: end if
25: if arrival < marrival then
26: marrival ← arrival
27: r*

m ← rm
28: end if
29: end for
30: end for
31: RT ← max(RT, marrival)
32: if trt> RT then
33: trt ← RT
34: t.runs_on← h
35: makespan← max(makespan, trt + tet)
36: end if
37: end for
38: return makespan
39: end if

Pseudo-code of Algorithm 1 used to schedule a computation task to an avail-
able host h ∈ t.AvailableHosts.

114

Chapter 7. Task and Message Scheduling Algorithm for Hybrid TSN Systems

Algorithm 2 Message Link Scheduler (rm, mIT, mcomm)

Input: rm, mIT, mcomm, sltd
Output: me2eD (Scheduling the message on time-slotted paths)

Initialize : n = mIT
sltd

, me2eD = 0
1: Fragment mcomm according to time slotsize (sltd)
2: Frm = mcomm

sltd
3: for each path li ∈ rm do
4: for each fragment f rm ∈ Frm do
5: Call Algorithm 3 Feasible Time Slot (li(f rm), n)
6: B = mod (mcomm, sltd)
7: if B == 0 then
8: me2eD = (n)* sltd + sltd
9: else

10: me2eD = (n)* sltd + B
11: end if
12: end for
13: end for
14: return me2eD

Pseudo-code of Algorithm 2 used to schedule a TT message on time slotted
wireless paths of a certain route and computation of end-to-end delay.

Feasible Time Slot (Algorithm 3): It adopts the physical interference model to find a
feasible time slot used to transmit every f rm ∈ Frm through its path li(f rm). Algorithm 3
checks two cases for Slt(n), where n is the current time slot number. In the first case Slt(n)
is empty, li(f rm) will be inserted into the empty slot and its slot number (n) will be returned
to Algorithm 2 (lines 2-5 of Algorithm 3). In the second case Slt(n) is not empty and Algo-
rithm 3 computes the interference on li(f rm) by every path lj ∈ Slt(n) that has already been
scheduled in that slot. At this moment, the SINR value is computed according to the total
induced interference in that slot [4]. If the computed SINR value is less than β, the algorithm
checks the next slot until finding a feasible slot (the computed SINR value is more than β),
thus, li(f rm) will be inserted into that slot and its n will be returned to Algorithm 2 (lines
6-21). At the end of the algorithm, all paths in each slot can be used to transmit their frag-
ments successfully at the same time, so that the influence of the interference is prevented as
much as possible (constraint # 3).

115

Chapter 7. Task and Message Scheduling Algorithm for Hybrid TSN Systems

Algorithm 3 Feasible Time Slot (li(f rm), n)

Input: li(f rm), n (current time slot), Ptr, α, N, β
Output: n∗ (next time slot)

Initialize : find_slot = false
1: while find_slot == false do
2: if Slt(n) == null then
3: find_slot = true
4: n∗ = n
5: return n∗

6: else
7: for each sender x ∈ Slt(n) do
8: compute Islt(Slt{x}, li)
9: I += Islt

10: compute Prcv = Ptr
lengthli

α

11: compute SINR = Prcv
(N+I)

12: end for
13: if SINR ⩾ β (Slt(n) is feasible for path li(f rm) then
14: Add li(f rm) on Slt(n)
15: find_slot = true
16: n∗ = n
17: return n∗

18: else
19: increment n
20: Continue
21: end if
22: end if
23: end while

Pseudo-code of Algorithm 3 used to check the feasibility of the time slot of
each fragment’s wireless path. The algorithm returns the last incremented

slot number.

In Algorithm 2: After calling Algorithm 3 and finding Slt(n) of every li(f rm) in the route
rm, the last value of n is used to compute me2eD of the route rm (lines 3-13 of Algorithm 2).

In Algorithm 1: After calling algorithm 2, TMS finds the route that forwards a message
with the minimum me2eD and takes into consideration the constraints # 5 and # 6 from all
possible routes (lines 19-30 of Algorithm 1). If the minimum me2eD violates constraint # 6
then the algorithm looks to the next best route (lines 23-25). The route that has the mini-
mum arrival time marrival will be selected and r*

m is updated accordingly (lines 26-29).

After selecting the best route which leads to the least delay for every incoming mes-
sage to the recipient host h (lines 9-31 of Algorithm 1), the unscheduled task start time
trt at the available host h is continuously updated until receiving all incoming messages
(line 32). The task and message scheduling procedure is repeated for all available hosts in
t.AvailableHosts, then the unscheduled task t is assigned to host h that leads to the minimum
trt (lines 32-34). The makespan value will be updated (line 35) until scheduling all tasks T
in the hyper-period HP.GApp. In the end, the makespan is computed to represent the time
that is required to schedule all tasks of the system model within one complete execution of
GApp.

116

Chapter 7. Task and Message Scheduling Algorithm for Hybrid TSN Systems

HP.GApp is defined as the Least Common Multiple (LCM) of the periods P of all tasks as
shown in Eq. 7.10. HP.GApp is the smallest interval of time after which the periodic patterns
of all tasks are repeated.

HP.GApp = LCM(P0, P1, P2, P3...., PT) (7.10)

rept =
HP.GApp

Pt
(7.11)

rept in Eq. 7.11 is the number of times task t will be repeated within one complete exe-
cution of GApp.

For example, if all tasks have the same period (e.g. 200 ms), the computed HP.GApp
is equal to 200. Therefore, every task should be repeated one time until starting the next
complete execution of GApp.

7.4.1 Example

The state-of-the-art MLTS and MMTS algorithms have been created, as was described at the
beginning of this chapter, in order to effectively compare with TMS. The main difference
between TMS and MLTS is that TMS selects the routes which lead to the minimum message
arrival time after scheduling the message on time-slotted paths. It computes the message
delay caused by scheduling the message on a route after continuous updating and inserting
all previous messages on time-slotted paths that make up this route. This gives an accurate
value for the time of arrival of the message. MLTS does not search for the available routes
of sending the message in terms of which one leads to the least delay, but it searches for
a route that leads to the least load and has the least congestion traffic.This in turn leads to
choosing longer routes that may not meet deadline constraints and consume more energy
than in TMS.

MMTS does not consider the congestion cost or message arrival latency due to the mes-
sage transmissions. MMTS is a heuristic algorithm, which firstly computes the top-level of
all tasks, and then it sorts the task with the minimum top-level has the highest priority. The
algorithm proceeds by scheduling the sorted task to the host that produces the minimum
completion time, where the completion time is computed by adding the task execution time
to the ready time of that host. Afterwards, the ready time of the host will be updated. The
same procedure is repeated for the next task until having scheduled all tasks.

MMTS is not an optimal algorithm for real-time applications because it does not consider
the latencies of the message transmissions and the congestion traffic when it addresses task
scheduling solutions. In other words, MMTS’s solutions are initiated before starting the
implementation of the tasks on the proposed hosts, therefore, the delay resulting from the
signal interference and the continuous updating of scheduling the messages into their time
slots are not considered. Thereby, this may result in a delay in the scheduling of all tasks, in
turn, MMTS increases the likelihood of failure to schedule all tasks within their deadlines.

To illustrate the idea of how TMS, MLTS and MMTS work, a simple application graph
as shown in Figure 7.1 and the gird architecture graph (see Figure 4.4) are used as inputs.
Figure 7.1 consists of three tasks that are connected using three interconnected messages.
The bandwidth of the wireless links is set to be 2 units per millisecond, and it is used to
compute mcomm of each TT message. For example, if message size msz of message m10 is 6,
then mcomm of m10 will be 6/2 = 3 ms. tet is the execution time for all tasks and it is set to 4
ms. P0 = P1 = P2 = 40 ms. Thereby, according to Eq. 7.10, HP.GApp for this graph is 40 ms. t0,

117

Chapter 7. Task and Message Scheduling Algorithm for Hybrid TSN Systems

t1 and t2 will be repeated one time within once complete execution of GApp according to Eq.
7.11. Ptr, N, α and β values are set to be 100 mW, 1x10−10mW, 4 and 10 dB respectively.

t1

t2

t0

m20

msz= 12

tet= 4ms
P2= 40 ms

m21

msz= 12

m10

msz= 6

tet= 4ms
P1= 40 ms

tet= 4ms
P0= 40 ms

FIGURE 7.1: A simple application graph consists of 3 tasks and 3 messages.

The Gantt charts in Figure 7.2 depict the TT message transmission schedules of TMS,
MLTS and MMTS algorithms, respectively. TT messages as shown in Table 7.2 are with dif-
ferent transmission times. The periods of tasks are the same and equal to 40 ms. According
to Eq. 7.9 each parent task sends its periodic TT message to its child task every 4 ms with
the parent task execution time repparent(t) = 1, which means that the parent task sends its
message after the first execution. If repparent(t) = 2 then the parent task sends its message
after the second execution, which is after 40 + 4 = 44 ms. TT messages are fragmented ac-
cording to sltd (sltd is set to 2 ms). For example, mcomm of message m20 is 6 ms and it will be
fragmented into 6/2 = 3 fragments.

TABLE 7.2: Transmitted TT messages between periodic tasks.

Message (m) mcomm sltd Fm
m10 3 2 2
m21 6 2 3
m20 6 2 3

Figure 7.2a shows scheduling the TT messages using the TMS algorithm. As shown,
two TT messages are sent from host h9 and one TT message is sent from h1. The route of
each message can be found by keeping track of each coloured message from the sender host
until reaching the receiving host. These routes are selected according to the minimum me2eD
according to the TMS procedure. m10 and m21 messages are directly scheduled without
delaying their fragments because either no message uses the time slot (slot is empty) or the
induced interference by other messages, which use other paths at the same time slot, does
not violate β (the computed SINR value is more than β). For instance, m21 uses all its paths
in the range of time slots 4− 28 without delaying its fragments because no other messages
use their paths in the same time slots. m10 uses also path (ap2 -> h5) in time slots 40− 43
without delaying its fragments because the interference caused by using m20 on its path (ap3
-> ap2) simultaneously in the same time slot does not degrade the SINR value to be less than
β in the Inequality 7.5.

The induced interference by other messages, which use other paths simultaneously may
make the sending infeasible. For example, the first fragment of message m20 starts using the
path (ap3 -> ap2) at time slot 34− 36, and the second fragment is delayed until time slots
40 − 44. The reason is that the induced interference of sending message m10 on the path

118

Chapter 7. Task and Message Scheduling Algorithm for Hybrid TSN Systems

(ap1 -> ap2) in timeslots 36− 39 makes the path (ap3 –> ap2) infeasible for sending m20 in
timeslots 36− 40. It is worth mentioning that a message has to use a path at the beginning of
the next time slot even if the message can be scheduled before the end of the previous time
slot. In this example, message m10 uses the path (h1 -> ap1) in time slots 32− 35, whereas
it starts using the next path (ap1 -> ap2) at the beginning of the next time slot 36− 39. It is
shown that all messages require 50 ms to be scheduled. After 50 ms, all incoming messages
are scheduled and received by the child task (i.e. t0). Thereby, the total makespan is 50 + 4 =
54 ms, where 4 ms is the execution time of task t0.

The MLTS algorithm uses the same time slot message scheduling model as TMS, but as
we see in Figure 7.2b, m20 is scheduled on a different route which is {h9, ap3, wr2, b1, ap2, h5}
rather than the route {h9, ap3, ap2, h5} which is used by the TMS algorithm. The reason
is that m21 is scheduled on the route {h9, ap3, ap2, ap1, h1}, thereby the path (ap3 -> ap2)
has a traffic load from message m21. Therefore, MLTS changes the route in which m20 is
scheduled to another route that has less traffic load, which leads to selecting a longer route
that consumes, in turn, more time and energy than the route from the TMS algorithm. In
the end, the makespan as a result of scheduling all messages and executing task t0 equals 58
+ 4 = 62 ms. The increase of the global makespan may lead to missing a deadlines of some
scheduled tasks, thereby, the global task scheduling solution by MLTS may be considered as
an infeasible solution.

TMS and MLTS aim to select nearby hosts for assigning tasks. For instance, host h9 is as-
signed to execute task t2. Similarly, h1 and h5 are assigned to execute t1 and t0, respectively.
Therefore, the proposed solutions by TMS and MLTS select h1, h5 and h9 which are close to
each other (see Figure 4.4). On the contrary, the prepared solutions in MMTS, which selects
the hosts that have the minimum ready time to execute tasks, may make the selected hosts
relatively distant, depending on the size of the system model. This is evident from Figure
7.2c, where hosts h13, h1 and h5 are assigned to execute tasks t2, t1 and t0, respectively. For
instance, the sender h13 sends message m21 through a longer route to the receiver h1. In this
simple example, the global makespan is 62 ms. However, with the increase in the number
of tasks and the transmitted messages, the proposed solutions by MMTS are more complex
and require more time than TMS and MLTS to implement all tasks, which adversely leads
to missing the task deadlines in real-time applications.

119

Chapter 7. Task and Message Scheduling Algorithm for Hybrid TSN Systems

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58

h9->ap3

ap3->ap2

ap2->ap1

ap1->h1

h1->ap1

ap1->ap2

ap2->h5

Time (ms)

TMS TT Message Transmission Schedule

(A) TT message transmission schedule of TMS.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58

h9->ap3

ap3->ap2

ap2->ap1

ap1->h1

h1->ap1

ap1->ap2

ap2->h5

ap3->wr2

wr2->b1

b1->ap2

Time (ms)

MLTS TT MessageTransmission Schedule

(B) TT message transmission schedule of MLTS.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58

h13->ap4

ap4->ap3

ap3->ap2

ap2->ap1

ap1->h1

h1->ap1

ap1->ap2

ap2->h5

Time (ms)

MMTS TT Message Transmission Schedule

(C) TT message transmission schedule of MMTS.

FIGURE 7.2: TT message scheduling with dedicated time slots for TMS, MLTS
and MMTS algorithms.

120

Chapter 7. Task and Message Scheduling Algorithm for Hybrid TSN Systems

7.5 Evaluation of TMS Algorithm

This section illustrates the experimental setup with several sets of simulation experiments
used for evaluating the proposed algorithm in a WirelessTSN framework. The experiments
run on a ThinkPad laptop (Intel i5 CPU) with 24GB of memory. The SNAP library [218] is
used to build random input system models. The simulation results are then compared using
different parameters.

7.5.1 Simulation Setup

To evaluate the TMS algorithm, MLTS and MMTS algorithms are implemented using the
same procedures as TMS (i.e. implementation of the time slot message scheduling model
considering the mentioned constraints in Section 7.2). The evaluation procedure is done by
using three sets of simulation experiments. The first experiment set shows the makespan,
consumed energy and failure rate obtained by using two types of network topologies (i.e.
the grid and ring topologies in Figures 4.4, 4.5, respectively). The second experiment set
shows the miss deadline ratio as a result of increasing the task deadlines. The last experi-
ment is used to represent the impact of the interference on the makespan, consumed energy
and failure rate obtained by changing the values of the path loss and the communication
threshold in the mentioned grid topology. Table 7.3 summarizes the simulation setup of the
simulation experiments.

TABLE 7.3: The simulation setup of the simulation experiments to evaluate
TMS algorithm.

Parameter Value

Simulation area. 1000 x 1000 meters.

Distance between hosts and their access
points (i.e. gateways).

Randomly chosen in a range of
[1, 30] meter.

Execution time (ms) and energy cost (joule)
of routing a message are subject to be
changed according to each wireless router.

Determined from a range of [20,
25].

Execution time (ms) and energy cost (joule)
of executing a task are subject to be changed
according to each wireless host.

Determined from a range of
[200, 250].

The full energy of any router or host. 100,000 joule.

Wireless bandwidth. 2 units per ms.

Time slot duration (i.e. sltd). 2 ms.

Ambient noise power (i.e. N). 10−10 mW.

Transmission power (i.e. Ptr). 100 mW.

Number of simulation tests. 20 times, then the result is
averaged.

The application graphs are generated as random forest fire, directed graphs [218]. The
set of hosts that are used to process the computational tasks are selected randomly from a
set of available hosts in the system.

7.5.2 Experimental Results

This section shows a comparison of the TMS algorithm with MLTS and MMTS algorithms
by applying three sets of simulation experiments.

121

Chapter 7. Task and Message Scheduling Algorithm for Hybrid TSN Systems

Network Topology

We consider our hybrid modelling approach from Chapter 4 to evaluate the proposed al-
gorithm. Each network topology has ten TSN-enabled routers (access points and wireless
routers) and each access point is connected with four wireless TSN-enabled hosts. Each
router in the grid topology is connected with two or three wireless routers, while the routers
in the ring topology are connected to form a circular loop. The grid topology has more
routes and connections, while the ring topology is more popular in several industrial fields.

To show the impact of using different network structures, Figures 7.3 and 7.4 illustrate
the average makespan, average consumed energy and average failure rate for 20 different
cases in TMS, MLTS and MMTS. Figure 7.3 is applied in a grid topology, whereas Figure 7.4
is applied in a ring topology. The comparison of the algorithms is made by increasing the
number of tasks to be scheduled. As can be seen in the table below, as the number of tasks
increases, so do the number of messages sent.

Number of tasks Number of accompanying messages
80 200
100 250
120 300
140 350

TMS improves the makespan, consumed energy and failure rate compared to MLTS and
MMTS. The reason is that TMS achieves the minimum makespan because of considering
the minimum end-to-end delays of message transmissions, which in turn, leads to better
utilization of the channel bandwidth. The routes chosen by TMS are mostly the shortest
routes to send or forward messages, which reduces the energy required to transmit these
messages. The involvement of fewer routers also reduces the failure rate of the proposed
scheduling solution. On the other hand, MLTS depends on the principle of adopting the
least congested routes, which may lead to positive results in small networks but when in-
creasing the complexity of the networks, it becomes difficult to choose the best route to send
messages especially when the task deadline is not allowed to be missed. Moreover, less con-
gested routes are mostly longer routes and require more energy and time, which negatively
affects the failure rate in applying the MLTS algorithm.

MMTS as we mentioned earlier selects off-line solutions, this often affects the makespan,
consumed energy and failure rate, especially when the complexity of the networks increases.
In contrast, the previous two algorithms (TMS and MLTS) assign a host for each task gradu-
ally, so that after scheduling a task, assigning a host for the next task considers the deadline
for that task until all tasks are completed.

It is clear that the makespan, consumed energy and failure rate increase when the ring
structure is used compared to the grid structure for all algorithms. The reason is that the
ring structure has fewer routes, therefore, the best route is chosen with fewer routes avail-
able. In addition, using the same route by several messages leads to higher utilization of the
network resources and imposes in the physical interference model the need to stretch the
time when scheduling messages on a particular route. It is worth noting that the size of the
application graph does not affect the makespan significantly if there are enough resources
in the architecture graph.

122

Chapter 7. Task and Message Scheduling Algorithm for Hybrid TSN Systems

2

2.5

3

3.5

4

4.5

5

5.5

80 100 120 140

M
ak

e
sp

an
 (

m
s)

Number of Tasks

TMS

MLTS

MMTS

(A) Impact of applying the compared algorithms on
the makespan.

20

30

40

50

60

70

80

80 100 120 140

C
o

n
su

m
e

d
 E

n
e

rg
y

(J
o

u
le

)

Number of Tasks

TMS

MLTS

MMTS

(B) Impact of applying the compared algorithms on the
consumed energy.

2

2.5

3

3.5

4

4.5

5

5.5

6

80 100 120 140

Fa
ilu

re
 R

at
e

Number of Tasks

TMS

MLTS

MMTS

(C) Impact of applying the compared algorithms on the
failure rate.

FIGURE 7.3: Impact of applying TMS, MLTS and MMTS on the makespan,
consumed energy and failure rate when increasing the number of tasks in the

grid topology.

Tables 7.4 and 7.5 illustrate the CPU execution time required for all compared algorithms
in the grid and ring topologies, respectively. The time it takes to implement all algorithms
increases as the number of tasks increases since more tasks require more CPU time to be
scheduled. Compared to MMTS, TMS and MLTS take longer to reach the final solution.
The reason is that MMTS prepares a solution that schedules all tasks before starting the
implementation, and this does not require much time compared to TMS and MLTS algo-
rithms, which are looking into the possibility of scheduling each task gradually in all avail-
able routes until finding the final solution. Checking the traffic load on all available routes
and then choosing the one that is the least congested route adds additional effort to MLTS.
Therefore, MLTS consumes a notable CPU time, especially when increasing the number of
tasks that in turn leads to an increase in the congestion on the routes. Consequently, the
more congestion on the routes, the more CPU time MLTS takes to determine which is the
least congested one. While TMS computes the time for sending messages on the available
routes, choosing the route to send a message depends on the fastest route from among all
available routes.

123

Chapter 7. Task and Message Scheduling Algorithm for Hybrid TSN Systems

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

80 100 120 140

M
ak

e
sp

an
 (

m
s)

Number of Tasks

TMS

MLTS

MMTS

(A) Impact of applying the compared algorithms on
the makespan.

20

30

40

50

60

70

80

90

80 100 120 140

C
o

n
su

m
e

d
 E

n
e

rg
y

(J
o

u
le

)

Number of Tasks

TMS

MLTS

MMTS

(B) Impact of applying the compared algorithms on the
consumed energy.

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

80 100 120 140

Fa
ilu

re
 R

at
e

Number of Tasks

TMS

MLTS

MMTS

(C) Impact of applying the compared algorithms on the
failure rate.

FIGURE 7.4: Impact of applying TMS, MLTS and MMTS on the makespan,
consumed energy and failure rate when increasing the number of tasks in the

ring topology.

124

Chapter 7. Task and Message Scheduling Algorithm for Hybrid TSN Systems

TABLE 7.4: The execution time (in seconds) for TMS, MLTS and MMTS in a
grid topology when increasing number of tasks/graph.

Increase the number of tasks/graph.
Algorithm T = 80 T = 100 T = 120 T = 140

TMS 3.5 6.3 8 11
MLTS 36 51 89 111
MMTS 1.5 2.1 2.6 4

TABLE 7.5: The execution time (in seconds) for TMS, MLTS and MMTS in a
ring topology when increasing number of tasks/graph.

Increase the number of tasks/graph.
Algorithm T = 80 T = 100 T = 120 T = 140

TMS 5 8.8 11 13
MLTS 14 23 27 38
MMTS 1.6 2.3 3.6 5

Deadline miss ratio

Figure 7.5 shows the deadline miss ratio of 20 test cases for TMS, MLTS and MMTS in the
grid and ring topologies. The miss ratio is computed by increasing the task deadlines in
the range of 800-1600 ms. The deadline miss ratio of TMS is less than that of MLTS and
MMTS by 15.3% and 37.1% in the grid topology, respectively. Similarly, the deadline miss
ratio of TMS is less than that of MLTS and MMTS by 16.6% and 44.4% in the ring topology,
respectively.

TMS outperforms MLTS in the deadline miss ratio. The reason is that TMS mainly de-
pends on selecting the fastest routes to transmit messages and tasks are scheduled accord-
ingly. MLTS adopts the least congested routes, which often require more time to send the
messages and cause in turn to increase the deadline miss ratio. On the other hand, MMTS
schedules the tasks to hosts that have the minimum ready time. However, the cost of deliv-
ering messages between hosts is not taken into consideration, which clearly affects adversely
on the deadline miss ratio. The grid topology shows better results than the ring topology
for all compared algorithms, the reason is that the ring topology uses a limited number of
routes and the high utilization of these routes leads to increased transmission time and vio-
lates the deadline constraints.

0

2

4

6

8

10

12

14

16

18

20

800 1000 1200 1400 1600

D
e

ad
lin

e
 m

is
s

ca
se

s

Deadline (ms)

TMS

MLTS

MMTS

(A) Deadline miss cases of the compared algorithms in
the grid topology when increasing of task deadlines.

0
2
4
6
8

10
12
14
16
18
20

800 1000 1200 1400 1600

D
e

ad
lin

e
 m

is
s

ca
se

s

Deadline (ms)

TMS

MLTS

MMTS

(B) Deadline miss cases of the compared algorithms in
the ring topology when increasing of task deadlines.

FIGURE 7.5: Deadline miss cases of TMS, MLTS and MMTS in the grid and
ring topologies when increasing of task deadlines.

125

Chapter 7. Task and Message Scheduling Algorithm for Hybrid TSN Systems

Wireless Interference Parameters (α, β)

To evaluate TMS, MLTS and MMTS when considering the interference metric, Figures 7.6
and 7.7 compare the average makespan, consumed energy and failure rate for the compared
algorithms. The grid graph and an application graph of 120 tasks and 300 messages are
inserted as inputs. Firstly, Figure 7.6 shows that TMS reduces the makespan, consumed
energy and failure rate by 8.93%, 8.09% and 6.41% compared to MLTS when the path loss (i.e.
α) = 4 and the communication threshold (i.e. β) increases to be 1, 5 and 10. Similarly, TMS
reduces the makespan, consumed energy and failure rate by 15.13%, 14.55% and 12.53%
compared to MMTS. Secondly, Figure 7.7 shows that TMS reduces the makespan, consumed
energy and failure rate by 10.9%, 10.42% and 6.77% compared to MLTS when β = 10 and α
increases to be 4, 7 and 10. Similarly, TMS reduces the makespan, consumed energy and
failure rate by 19.08%, 14.05% and 11.9% compared to MMTS.

Figure 7.6 shows that increasing the value of β makes it more difficult for the computed
SINR to satisfy the physical interference condition, which in turn increases the number of
time slots that are required to send all messages, thereby, the average makespan for all algo-
rithms will be increased. On the other side, Figure 7.7 shows that increasing the value of α
reduces the average makespan because higher α induces less interference on every wireless
path. On the contrary, we notice that with the increase of β value, the consumed energy
and the failure rate will be decreased. The reason is that when increasing the value of β, the
signal strength of the sender node should be higher than any potential signal interference.
Therefore, the signal interference when increasing the value of the interference condition
has no significant effect on the failure ratio or the possibility of retransmitting the failed
messages that require extra energy. Figure 7.7 shows also that the path loss value, the con-
sumed energy and the failure rate will be slightly increased.

126

Chapter 7. Task and Message Scheduling Algorithm for Hybrid TSN Systems

2

2.5

3

3.5

4

4.5

5

1 5 10

M
ak

e
sp

an
 (

m
s)

SINR threshold value (β)

TMS MLTS MMTS

(A) Makespan of TMS, MLTS and MMTS when increas-
ing β value.

20

25

30

35

40

45

50

55

60

65

1 5 10

C
o

n
su

m
e

d
 E

n
e

rg
y

(J
o

u
le

)

SINR threshold value (β)
TMS MLTS MMTS

(B) Consumed energy of TMS, MLTS and MMTS when
increasing β value.

2

2.5

3

3.5

4

4.5

5

5.5

6

1 5 10

Fa
ilu

re
 R

at
e

SINR threshold value (β)

TMS MLTS MMTS

(C) Failure rate of TMS, MLTS and MMTS when in-
creasing β value.

FIGURE 7.6: Makespan, consumed energy and failure rate of TMS, MLTS and
MMTS in the grid topology when increasing β value, α = 4.

127

Chapter 7. Task and Message Scheduling Algorithm for Hybrid TSN Systems

2

2.5

3

3.5

4

4.5

5

4 7 10

M
ak

e
sp

an
 (

m
s)

Alpha (α)

TMS MLTS MMTS

(A) Makespan of TMS, MLTS and MMTS when increas-
ing α value.

20

25

30

35

40

45

50

55

60

65

4 7 10

C
o

n
su

m
e

d
 E

n
e

rg
y

(J
o

u
le

)

Alpha (α)

TMS MLTS MMTS

(B) Consumed energy of TMS, MLTS and MMTS when
increasing α value.

2

2.5

3

3.5

4

4.5

5

5.5

6

4 7 10

Fa
ilu

re
 R

at
e

Alpha (α)

TMS MLTS MMTS

(C) Failure rate of TMS, MLTS and MMTS when in-
creasing α value.

FIGURE 7.7: Makespan, consumed energy and failure rate of TMS, MLTS and
MMTS in the grid topology when increasing α value, β = 10.

128

Chapter 8

Reliable Task and Message
Scheduling Algorithms for Hybrid
TSN Systems

8.1 Introduction

Our proposed TMS algorithm in the previous chapter aims to solve the task and message
scheduling problem with the least possible makespan, ensuring that all tasks meet their
deadlines. TMS takes into account constraints such as the signal interference, but it consid-
ers the system as fault-free which is unrealistic for most wireless technologies. Therefore,
the task scheduling to hosts, scheduling the transmitted messages, and simultaneously bal-
ancing the task load in the context of unreliable wireless networks are urgent and significant
issues.

The task and message scheduling problem in WirelessTSN networks involves additional
challenges compared to traditional distributed systems. Distribution of sensing tasks among
hosts should take into consideration the consumed energy to prolong the network lifetime,
besides guaranteeing that all tasks finished before their deadlines. The reason is that drain-
ing of the remaining energy leads some nodes to become overloaded, and then tasks fail
to be executed. The problem of task and message scheduling becomes more difficult when
these tasks must satisfy precedence requirements [28], meaning that a task does not start its
execution until all incoming messages from parent tasks have been received.

Moreover, WirelessTSN nodes or paths are subject to failures. In order to prevent a
failure from degrading the network performance, the reliability in the presence of faults be-
comes a necessity for the continuity and functionality of WirelessTSN networks. Reliability
becomes even more important when adopting wireless technologies to be used in hard real-
time systems (e.g. the battlefield surveillance) where the transmitted data is critical and it
should arrive with stringent deadlines [4].

Time-triggered wireless networks are gaining importance due to the increasing demand
for reliable and deterministic wireless infrastructures in real-time and safety-critical systems.
All contributing network nodes should firstly share a precise global time base. Therefore,
we extended the IEEE 802.1AS protocol in prior work [27] to provide a precise time synchro-
nization process in a TSN hybrid framework.

Recently, some state-of-the-art algorithms have adopted means of task scheduling in
wireless environments to reduce the task completion time, the energy consumption or to
establish a reliable task scheduling framework. This chapter offers two algorithms that seek
to take into account all of the restrictions listed in Section 7.2 for reliably scheduling tasks
and messages. The first reliable algorithm is called Reliable Task and Message Scheduling

129

Chapter 8. Reliable Task and Message Scheduling Algorithms for Hybrid TSN Systems

(R-TMS) algorithm [29], which optimizes the system reliability when scheduling periodic
tasks and scheduling their messages. Thus, R-TMS provides the following contributions:

• Like TMS, R-TMS schedules tasks gradually until all tasks are completed. The dif-
ference is that TMS selects the routes to send messages according to the minimum
latencies. On the contrary, R-TMS establishes a cost function for optimization of the
task scheduling, which includes the message latency, energy consumption and failure
rate for selecting hosts on which the tasks can run.

• Employment of FRER [16] in WirelessTSN networks. In this approach, every message
is replicated and sent by the sender over more than one redundant route. The receiver
accepts one copy and eliminates the other one. Therefore, FRER avoids the message
loss as a result of failures.

• A physical interference model is employed as part of the message scheduling model to
prevent the influence of an interference on message transmissions and achieve time-
liness [28]. The interference model in R-TMS is used more widely to accommodate
duplicate messages, which makes message scheduling more complicated and requires
more time.

• A reliability model is also incorporated in R-TMS to determine the overall system’s re-
liability. Firstly, the reliability of each transmitted message between tasks [219] is com-
puted by establishing a Reliability Block Diagram (RBD). Second, conditional prece-
dence restrictions are used for the sequential tasks, which compute each task’s relia-
bility using the reliability of the incoming communication messages as an input. The
conditional restriction specifies whether the incoming message from a sending task
is essential to execute the receiving task or is substitutable with other messages from
other senders to start the execution of that task. The sink task, which is a leaf task
without forwarding messages, is ultimately responsible for the overall system’s relia-
bility.

The solution of R-TMS is a multi-objective optimization, which aims to reduce the task
completion time, save energy and minimize the failure rate. Nonetheless, its major dis-
advantage is that the computational complexity is growing exponentially when increasing
the size of the system models. In contrast, stochastic heuristic optimization algorithms e.g.,
GA [89], [90], PSO [91], [92] can find a solution with higher efficiency. PSO typically out-
performs other evolutionary-based optimization algorithms in terms of the quality of the
solutions and success rate while offering low processing time and fast convergence [220]. In
addition, the simplicity, ease to use and low computational complexity of PSO make it suit-
able for resource-limited wireless environments [221]. Since the task scheduling problem for
WirelessTSN networks is a discrete search space problem, where the goal is to schedule a set
of available tasks to certain hosts that will satisfy specific constraints, the discrete version of
PSO (i.e. DPSO) is employed in this thesis.

Based on DPSO, we introduce a second reliable algorithm called Optimized Reliable Task
and Message Scheduling algorithm (OR-TMS) [30], which also uses FRER and the physical
interference model. OR-TMS is optimized by the following further features:

• The DPSO algorithm [222] is applied as a multi-objective optimization. The solution
is optimized by considering properties including the global makespan, total energy
consumption and total failure rates.

• OR-TMS balances the network load by using a load balance mechanism during the
execution of DPSO.

130

Chapter 8. Reliable Task and Message Scheduling Algorithms for Hybrid TSN Systems

• We conduct extensive tests to compare OR-TMS and R-TMS with other algorithms.
The simulation results show the effectiveness and the feasibility of OR-TMS.

• A metascheduler based on OR-TMS is presented to provide a predictable adaptation
mechanism, ensuring that in the event of run-time events, transitions to a previously
verified schedule are made. Therefore, the proposed metascheduler pre-computes
schedules at design time and forms a Multi-Schedule Graph (MSG). It uses a reconver-
gence mechanism for repeated schedules to address the state-space explosion problem
in the MSG.

To the best of our knowledge, no work has been done to design a task and message
scheduling algorithm that works to find a feasible solution, which considers the mentioned
contributions as in R-TMS and OR-TMS algorithms.

The rest of this chapter is organized as follows. The next section presents the problem
formulation of R-TMS. Section 8.3 presents time slot message scheduling over redundant
routes. The reliability model of the Wireless TSN system is discussed in Section 8.4. The
R-TMS algorithm is demonstrated in Section 8.5. The experimental results of using R-TMS
are shown in Section 8.6. Section 8.7 presents the problem formulation of OR-TMS. Section
8.8 discusses the DPSO algorithm. The task and message scheduling process in OR-TMS is
explained in Section 8.9. Section 8.10 shows a trace example of using DPSO-based OR-TMS.
Section 8.11 discusses the experiments and results as a result of OR-TMS implementation.
Finally, an OR-TMS based metascheduling technique is discussed and evaluated in Section
8.12.

8.2 Problem Formulation of R-TMS

We consider the hybrid modelling approach mentioned in Chapter 4 as an input to R-TMS.
The proposed algorithm aims to minimize the completion time, energy consumption, and
failure rate of each task until all tasks are done while gradually scheduling T tasks to avail-
able hosts. The algorithm also aims to improve the global system reliability. In other words,
the algorithm ensures that the tasks do not fail due to a potential failure of components or
links. To do so, the messages of the sender (i.e. parent) tasks are transmitted through re-
dundant disjoint routes. In real-time applications, there exist dependant tasks that should
be reliably executed under constraints of deadline, energy, bandwidth and processing capa-
bility of wireless networks. Therefore, it is required to optimize the selection of the hosts to
execute the consecutive tasks.

To explain the task and message scheduling process, we introduce the following points.
The notations used for R-TMS are shown in Table 8.1:

• The R-TMS algorithm considers the constraints of the TMS algorithm as mentioned in
Section 7.2.

• We consider T = {t1, t2, t3, . . . , tn} as a sorted set of n unscheduled tasks and H =
{h1, h2, h3, . . . , hm} as a changeable set of m available hosts on which each task (i.e.
t ∈ T) can run. For instance, t1 can be run on a host that belongs to a set (e.g. Ht1 =
{h1, h3, h6}), whereas t2 can be run on a host that belongs to a different set (e.g. Ht2 =
{h1, h4, h8}). R-TMS aims to schedule each task t ∈ T to the best available host that
belongs to its available host set.

• FRER is used to send x copies (mc1, mc2, . . . , mcx) of message m through disjoint redun-
dant routes RR(m)h from all senders to a tested available host h on which a task t can
be run.

131

Chapter 8. Reliable Task and Message Scheduling Algorithms for Hybrid TSN Systems

• Computing the energy consumption and the failure rate of routing message m over
the disjoint redundant routes:

The energy consumption of routing the message m (i.e. enm) is the sum of the con-
sumed energy on each router r ∈ RR(m)h, as shown in Eq. 8.1.

enm =
RR(m)h

∑
r=1

enr ∀r ∈ RR(m)h (8.1)

The failure rate of routing the message m (i.e. Fm) is shown in Eq. 8.2:

Fm =
RR(m)h

∑
r=1

ηr × etr ∀r ∈ RR(m)h (8.2)

Where, enr and etr are the consumed energy and the execution time on every router
r ∈ RR(m)h, respectively. The time slot message scheduling, which will be discussed
later, shows how to compute enr and etr values according to the message interference
analysis. It is important to note that the execution time and energy cost of message
routing might vary based on the route the message takes, they are denoted as et[R]
and en[R] parameters in Chapter 4. ηr denotes the failure rate of r, which denotes the
number of failures of router r over a specified time (e.g. per 6 months) [223].

• When the time slot message scheduling has been completed, an RBD diagram is ap-
plied to compute the reliability of message m (i.e. Rlm). Section 8.4 shows more de-
tails about computing the reliability of the message that depends on the reliability of
the TSN-enabled nodes and the reliability of network paths that the message passes
through.

• Finding the time of arrival of all incoming messages at task t and computing the failure
rate and the consumed energy of executing task t at host h ∈ H is done as follows:

According to the definition of the message arrival time, the arrival time denotes the
last instant of time when all incoming messages have arrived at the receiver task t at
host h. The arrival value at host h is defined as:

arrival = max(marrival) ∀m ∈ Mt (8.3)

The consumed energy and the failure rate after arrival of all messages and executing
task t at host h are computed as follows:

ent =
Mt

∑
m=1

enm + enh.t ∀m ∈ Mt (8.4)

Ft =
Mt

∑
m=1

Fm + Fh.t ∀m ∈ Mt (8.5)

Where enh.t and Fh.t denote the consumed energy and the failure rate of executing task
t at host h, respectively.

• A conditional precedence restriction is then applied to compute the task reliability Rlt.
Section 8.4 shows more details about computing the reliability of the task that depends
on the reliability of incoming messages and their conditional cases (i.e. essential or
substitutable).

132

Chapter 8. Reliable Task and Message Scheduling Algorithms for Hybrid TSN Systems

TABLE 8.1: Notations used in Chapter 8

Symbol The description of the symbol Domain

RR(m)h The disjoint redundant routes for message m
from a sender to host h

h ∈ GArc

rt(m) A route in RR(m)h m ∈ GApp

enr.m The consumed energy of routing message m
on router r

r ∈ GArc

etr.m The routing time of message m on router r m ∈ GApp

enh.t The consumed energy of executing task t on
host h

h ∈ GArc

eth.t The execution time of task t on host h
Fh.t The failure rate of executing task t on host h t ∈ GApp

enr The consumed energy on router r r ∈ GArc

etr The execution time on router r.

enm The consumed energy of routing message m. m ∈ GApp

Fm The failure rate of routing message m.

ent The consumed energy of executing task t on
available hosts after arrival of all messages.

t ∈ GApp

Ft The failure rate of executing task t on
available hosts after arrival of all messages.

EN= (enr.m)mxr The consumed energy matrix.
ET= (etr.m)mxr The execution time matrix.

• According to the above descriptions, the task scheduling cost task_cost of scheduling
task t at host h is formulated as shown in Eq. 8.6:

task_cost = θ ∗ arrival + γ ∗ ent + δ ∗ Ft (8.6)

Where θ, γ and δ are weighting parameters, task_cost value is computed for each h ∈
H, then task t is finally scheduled to the host h that results in the minimum task_cost
value. The process is repeated for every computational task until scheduling all tasks
in T.

• Finally, the reliability of the system is considered as the reliability of the sink task
(i.e. leaf task) where no forwarding messages will be sent in the wireless TSN-enabled
system model.

8.3 Message Scheduling Over Redundant Routes

To determine the cost of scheduling a task to a host h ∈ H, a message scheduler is applied
for scheduling all incoming messages over redundant routes. Therefore, FRER should be
first applied to determine how to extract these disjoint redundant routes.

8.3.1 Frame Replication and Elimination for Reliability (FRER)

Many TT wireless task scheduling techniques assume that the network structure is fault
while the messages are being exchanged. In practice, the wireless networks may be subject

133

Chapter 8. Reliable Task and Message Scheduling Algorithms for Hybrid TSN Systems

to node or link failures. Since delays need to be bounded, the redundancy becomes a neces-
sity to mitigate the faulty behaviours. Recovery from faulty behaviour is crucial, especially
in safety-critical systems where failure is more likely to cause severe, irreparable harm and
significant financial losses, as well as put people’s lives in peril. Therefore, the permanent
failures can be alleviated by using FRER spatial redundancy [16], which sends replicas of
every transmitted message over redundant routes and eliminates redundant replicas at the
receiver.

FRER features need to be considered during the process of the message scheduling be-
cause the redundancy increases the search space and the schedule that meets the restrictions
imposed on WirelessTSN becomes more complex. Therefore, the replicas of the communi-
cation messages are forwarded over the most disjoint routes, where the most disjoint routes
are defined as the shortest routes that do not share common wireless relays between them.
Thus, considering the shortest disjoint routes increases the likelihood of messages arriving
within the target time and it reduces the research space.

FRER in the proposed algorithm runs first the Shortest Path First (SPF) routing algorithm
to find routes starting from the shortest route. FRER prunes the edges of the shortest route
from the graph to find the available paths on the remaining graph. If pruning leaves leads
to no paths (i.e. no disjoint routes from the sender to the receiver), then FRER excludes this
route and repeats the pruning process on the next shortest route. When pruning of a route
provides a certain number of K disjoint routes, the proposed algorithm uses them as paths
to send copies of a message.

To illustrate how to extract the most disjoint routes, the application graph in Figure 8.1
shows tasks: t3, t2 and t1 are already run on hosts h1, h12 and h8, respectively. t0 can run on
one of the hosts {h9, h16, h20}. The grid architecture graph in Figure 4.4 shows different re-
dundant routes: route1 = {h1, ap1, ap2, ap3, h9}, route2 = {h1, ap1, wr1, b1, wr2, ap3, h9} and
route3 = {h1, ap1, wr1, b1, ap2, ap3, h9} that can be used to transmit a message m3 from task
t3 that is scheduled at host h1 to t0 at a potential host (e.g. h9). The wireless TSN nodes
indicated in blue represent either a host or a gateway through which the message passes
while it is being sent from a sender to the recipient, so they are excluded when choosing the
most disjoint routes. Route1 and route2 are considered as disjoint routes (i.e. RR(m3)h1−>h9)
between the sender host h1 and the receiver h9 because they do not have common wireless
intermediate nodes. Route3 is excluded from the disjoint route set because it has a com-
mon wireless intermediate node (i.e. ap2) with route1 and two intermediate nodes (i.e. wr1
and b1) with route2. As soon as the receiver h9 receives message replicas, it forwards only
one copy and eliminates the others. Since FRER adds extra delay and requires more net-
work resources (i.e. bandwidth), we make the assumption that a message will arrive at its
destination at the time from the longest route in the disjoint route set in order to prevent
fluctuation in the arrival latency.

134

Chapter 8. Reliable Task and Message Scheduling Algorithms for Hybrid TSN Systems

t3

Runs on h1

t2

Runs on

h12

t1

Runs on h8

t0

Can run on

 {h9, h16, h20}

m4

m1

m2

m5

m3

m6

t0 can run on {h9, h16, h20}
t1 can run on {h8, h14, h15}
t2 can run on {h10, h12, h13}
t3 can run on {h1, h11, h19}

FIGURE 8.1: A application graph showing different available hosts on which
each task can run.

8.3.2 Time Slot Message Scheduling Over Disjoint Redundant Routes

Time slot message scheduling is an extension to the scheduling introduced in TMS. As de-
scribed, message scheduling means assigning each message to a set of time slots in which it
will be transmitted using the dedicated paths. The message scheduling adopts the physical
interference model and computes enr and etr of each r ∈ RR(m)h used by a transmitted
message. The implemented model aims to transmit multiple messages simultaneously over
redundant routes using conflict-free time slots in order to increase the likelihood that the
data arrives successfully and avoid the influence of the induced interference.

8.3.3 Example

In Figure 8.1, when task t3 at sender host h1 starts to transmit message m3 to task t0, we
assume that the available host set on which t0 can run is Ht0 = {h9, h16, h20}. Firstly, R-
TMS starts to check the task cost (task_cost) at every h ∈ Ht0 (e.g. h9). Thus, route1 =
{h1, ap1, ap2, ap3, h9} and route2 = {h1, ap1, wr1, b1, wr2, ap3, h9} ∈ RR(m3)h1−>h9 are ex-
tracted by FRER, where η = 0.01 for all network nodes. Table 8.2 displays the interference
analysis on paths lj /∈ route1 that have been scheduled in their time slots and used by other
communication messages like m1 and m2.

We assume that the consumed energy enr.m and the routing execution time etr.m of m1,
m2 and m3 in intermediate nodes (ap1, ap2, ap3) ∈ route1 are shown in the following ma-
trixes, the units of measure of energy and time are ’joule’ and ’millisecond’, respectively. We
assume the consumed energy enh9.t0 and the processing execution time eth9.t0 of executing
task t0 at host h9 are equal to 14 joule and 11 ms, respectively.

135

Chapter 8. Reliable Task and Message Scheduling Algorithms for Hybrid TSN Systems

EN =

ap1 ap2 ap3

2 3 1 m1
3 1 3 m2
3 1 2 m3

ET =

ap1 ap2 ap3

4 3 4 m1
2 4 3 m2
1 4 4 m3

TABLE 8.2: Time slot message scheduling and communication message inter-
ference analysis.

Time-slot1 Time-slot2 Time-slot3 Time-slot4 Time-slot5 Time-slot6 Time-slot7
m1, m2 messages have been scheduled on paths lj’s /∈ route1

(h1− ap1)m1 (ap1− ap2)m1 (ap2− ap3)m1 (ap3− h12)m1
(h1− ap1)m2 (ap1− ap2)m2 (ap2− h8)m2

Interference analysis to schedule message m3 on the paths li’s ∈ route1
(h1− ap1)m3 (ap1− ap2)m3 (ap2− ap3)m3 (ap3− h9)m3

The physical interference model allows message m3 to be transmitted through its path li
= (h1− ap1) in route1 until time-slot3. The reason is the induced interference of transmitting
message m1 in time-slot1, and the interference of transmitting messages m1 and m2 in time-
slot2, which does not satisfy the condition in Eq. 7.5. In this case, the consumed energy
at ap1 (i.e. enap1) as a result of receiving messages m1 and m2 in time-slot1 and time-slot2,
respectively is added to the consumed energy due to arrival of the message m3 in time-slot3.
The energy consumption enap1 is thus 2+3+3 = 8 joule, and the time consumption etap1 at
ap1 is in total 4+2+1 = 7 ms.

If the physical interference model allows message m3 to travel through path li = (ap1−
ap2) ∈ route1 in time-slot4, the values of enap2 and etap2 will increase as a result of trans-
mitting message m1 through path (ap1− ap2) in time-slot2 and message m2 through path
(ap1− ap2) in time-slot3. Therefore, enap2 becomes 3 + 1 + 1 = 5 joule, and etap2 becomes 3 +
4 + 4 = 11 ms in time-slot4.

Transmitting the message m3 through the path (ap2− ap3) in time-slot5 causes the SINR
at ap3 to be below the SINR threshold (i.e. β). Therefore, R-TMS considers time-slot5 as an
infeasible slot for sending message m3 and looks at the next slot (i.e. time-slot6).

Resulting from sending message m1 through the path (ap2 − ap3) in time-slot3, enap3
and etap3 values increase to be equal to 1+2 = 3 joule and 4+4 = 8 ms, respectively in time-
slot6. Similarly, m3 is transmitted through path li = (ap3 − h9) in time-slot7. In the end,
every transmitted message is scheduled on a feasible time slot, enr and etr of r ∈ route1 are
estimated.

As soon as the interference analysis is completed, the value of enm3 as a result of us-
ing route1 is equal to enap1 + enap2 + enap3 = 8+5+3 = 16 joule (using Eq. 8.1), and Fm3 is
equal to η*(etap1 + etap2 + etap3) = 0.01*(7+11+8) = 0.26 (using Eq. 8.2). enm3 and Fm3 values
are then updated by using the interference analysis on the other redundant route route2 =
{h1, ap1, wr1, b1, wr2, ap3, h9}. At the time of receiving all messages at h9, Equations 8.3, 8.4,
and 8.5 are used to compute arrival, ent0 and Ft0 , respectively. Where, the consumed energy
of execution t0 at host h9 (i.e. enh9.t0) is equal to 14 joule, and the failure rate (i.e. Fh9.t0) is
equal to η*eth9.t0 = 0.11.

Task_cost value of scheduling task t0 at host h9 is computed by Eq. 8.6. The process
is repeated to compute the task_cost of all available hosts (i.e. h16 and h20). t0 will be

136

Chapter 8. Reliable Task and Message Scheduling Algorithms for Hybrid TSN Systems

scheduled to the host that results in the minimum task_cost value. The task and message
scheduling process is applied in the same way to schedule all tasks in the system model.

8.4 Reliability Model of the Wireless TSN System

R-TMS is an extension of the TMS algorithm to maximize the reliability of WirelessTSN dur-
ing the task and message scheduling process. Therefore, a novel reliability analysis model is
applied. The reliability of real-time tasks, which depend on the reliability of communication
messages that are replicated and delivered between them, is the foundation of the system’s
reliability. The reliability of the root tasks that have no incoming messages equals the relia-
bility of their hosts. For example, Figure 8.1 shows that task t3 has no incoming messages,
therefore its reliability equals the reliability of host h1 on which it runs.

8.4.1 Reliability of Communication Message Transmission

After scheduling message m over all disjoint redundant routes, the reliability of the wireless
TSN-enabled node n, where n ∈ RR(m)h is defined as follows:

Rln = e−ηn∗etn (8.7)

To determine the reliability of each incoming message Rlm, R-TMS models the reliability
of the nodes Rln and the reliability of the links Rll , which are used in RR(m)h as a series
and parallel blocks B, where b ∈ (N ∪ L) ∈ B. For instance, Figure 8.2 shows the RBD of
message m3. Each block is connected in series if the failure of that block causes a failure of
the transmission of the message m3. On the contrary, if the message is delivered successfully
at the receiver h9 provided that at least one block out of the set of blocks operates correctly,
this set of blocks is connected in parallel.

According to the following formulation, the reliability of the series blocks [219] equals
the product of the reliability of each block:

Rlm(series) =
B

∏
b=1

Rlbi (8.8)

The reliability of the parallel blocks [219] is equal to the complement of products of
failure probabilities for all parallel blocks and it is formulated as follows:

Rlm(parallel) = 1−
B

∏
b=1

(
1− Rlbi

)
(8.9)

The final form of the message reliability is shown in Eq. 8.10:

Rlm = Rlm(series) ∗ Rlm(parallel) (8.10)

According to the described model, the reliability of message m3 in Figure 8.2 is equal to:

Rlm3=Rll1 Rlap1[1-(1-Rll2 Rlap2Rll3)(1-Rll5 Rlwr1Rll6 Rlb1Rll7 Rlwr2Rll8)]Rlap3Rll4 Rlh9

Where, wr, ap and h ∈ N. l ∈ El . El and N ∈ GArc.

137

Chapter 8. Reliable Task and Message Scheduling Algorithms for Hybrid TSN Systems

l1 ap1

l2 ap2 l3

ap3 l4 h9

l5 wr1 l6 b1 l7 wr2 l8

FIGURE 8.2: Reliability model of message m3.

8.4.2 Reliability of Real-time Tasks

After computing the reliability of all incoming messages Rlm where m ∈ GApp, it is time to
calculate the reliability of the receiving task t (i.e. Rlt) that receives the incoming messages.
In the same way as calculating the reliability of communication messages, we assume the
sender (parent) tasks and their forwarding messages as blocks. The principle of series and
parallel systems is based on conditional precedence restrictions. The essential parent tasks
and their forwarded messages are connected in series, whereas the substitutable tasks and
their forwarded messages are connected in parallel.

For instance, Figure 8.3 illustrates the block diagram of the task t0 reliability model. We
consider that t0 can start its execution only after receiving the message from task t3 and
messages from either t1 or t2. Hence, Rlt0 at host h9 is formulated as follows:

Rlt0 = Rlt3 Rlm3[1− (1− Rlt1 Rlm6)(1− Rlt2 Rlm5)]

m3t3

t2 m5

t1 m6

t0

FIGURE 8.3: Reliability model of task t0.

Where the reliability of the incoming messages is computed as introduced in the previ-
ous sub-section.

8.4.3 Reliability of Wireless TSN System

Once the reliability of all real-time tasks is computed, the system reliability is finally the
reliability of the leaf task (i.e. t0 in Figure 8.1).

Rls = Rlt ⇐⇒ t = lea f _task (8.11)

8.5 Reliable Task and Message Scheduling (R-TMS) Algorithm

R-TMS aims to find a reliable global task and message scheduling solution by considering
the points mentioned in Section 8.2. Figure 8.4 shows the flow chart of the R-TMS algorithm,
which is described as follows:

138

Chapter 8. Reliable Task and Message Scheduling Algorithms for Hybrid TSN Systems

R-TMS procedure (General overview): For each unscheduled task t ∈ T, R-TMS com-
putes its top-level cost (i.e. tlt). The top-level cost is the sum of costs of the vertices (i.e. tet)
and the edges (i.e. mcomm) in the longest path from the root task (where the root task has no
incoming messages) to task t in GApp.

The R-TMS Task Scheduling (Algorithm 1) will be repeated and the reliability of every
task computed until scheduling all sorted unscheduled tasks. The final global task schedul-
ing solution is the instant of time when the leaf task is executed and its reliability value is
returned.

R-TMS procedure (General overview)
Input: GApp, GArc
Output: global reliability

Initialize ηn randomly, where n ∈ GArc. Initialize sltd period in (ms).
1: Global Reliability← 0
2: Compute top-level (tl) of each unscheduled-task (t)
3: Tsorted ← sorttasks(depending on tl ascending order)
4: for t ∈ Tsorted do
5: Call Algorithm 1: R-TMS Task Scheduling (t)
6: end for
7: return global reliability (Rls).

Pseudo-code of R-TMS procedure for scheduling all tasks, which returns the
global reliability.

R-TMS Task Scheduling (Algorithm 1): R-TMS schedules a task t on one of the available
hosts Ht. Therefore, it assigns Min_task_cost as the minimum cost value of scheduling task
t at host h ∈ Ht, and it is initialized to be 0. In order to find the best available host h to be
assigned to task t, the algorithm proceeds as follows. Firstly, R-TMS finds for each incoming
message m all available routes between the sender host and host h and extracts the disjoint
redundant routes (i.e. RR(m)h) by using FRER. The reliability of every root task troot is equal
to the reliability of its assigned host as mentioned earlier.

For each redundant route rt(m) ∈ RR(m)h, a message scheduler (Algorithm 2) is ap-
plied. Algorithm 2 is used to compute marrival on rt(m) after scheduling m on fixed duration
time slots and calculating enr and etr where r ∈ rt(m) by using the message interference
analysis (Algorithm 3).

After scheduling message m on all rt(m) ∈ RR(m)h, Rln values are computed depending
on the determined etn values in Algorithm 3, where n ∈ RR(m)h. Further, Equations 8.1 and
8.2 are used to calculate enm and Fm values of message m, respectively.

The arrival value is continuously updated until all incoming messages have arrived. If
(arrival + tet) exceeds the tdl value, where tdl is defined as the maximum allowed time by
which all sender tasks provide their messages and execution of task t is finished, Algorithm
2 looks at the next available host h.

The reliability of m (i.e. Rlm) that is determined by the routes RR(m)h is computed de-
pending on the RBD. The conditional precedence restriction is then employed to update the
reliability of the task t (i.e. Rlt) until receiving all its incoming messages. At this moment, the
consumed energy ent, failure rate Ft and maximum message arrival time arrival of schedul-
ing t at host h are used as inputs to find the task scheduling cost on host h (i.e. task_cost).
Finally, t will be assigned to the host h ∈ Ht that results in the minimum task_cost value.

The process continues until scheduling all unscheduled tasks T in a GApp. The global
reliability is computed when the leaf task is executed and its reliability value is returned.

139

Chapter 8. Reliable Task and Message Scheduling Algorithms for Hybrid TSN Systems

Algorithm 1 R-TMS Task Scheduling(task t)

Input: unscheduled task t
Output: Reliability of the scheduled task t

1: Min_task_cost← 0
2: for h ∈ Ht do
3: if t is troot then
4: Rlt = Rlh
5: end if
6: Rlt, Rlt(serial), Rlt(parallel)← 0
7: for m ∈ Mt do
8: Find the redundant routes (RR(m)h)
9: for rt(m) ∈ RR(m)h do

10: Call Algorithm 2: Message Scheduler
11: marrival ← mIT + me2eD
12: Update arrival = max(marrival).
13: if (arrival + tet) > tdl then
14: Invalid h, go to the next h.
15: end if
16: end for
17: Calculate Rln, for each n ∈ RR(m)h using Eq. 8.7.
18: Calculate Rlm using RBD.
19: Calculate enm and Fm using Eqs. (8.1, 8.2).
20: if m is essential then
21: Update Rlt, Rlt(serial) for task t at host h.
22: else
23: Update Rlt, Rlt(parallel) for task t at host h.
24: end if
25: end for
26: Find (trt)
27: if (trt + tet) > tdl then
28: Invalid h, go to the next h.
29: end if
30: Calculate ent, Ft for task t at host h using Eqs. (8.4, 8.5).
31: Compute task_cost value using Eq. 8.6.
32: if task_cost < Min_task_cost then
33: Min_task_cost← task_cost
34: t.runs_on← h
35: end if
36: end for
37: Rls ← Rlt ⇐⇒ t = lea f _task
38: return Rls

Pseudo-code of Algorithm 1 used to schedule a task t on the best available
host h and return the reliability of t at h.

Message Scheduler (Algorithm 2): It computes me2eD on each rt(m) after scheduling m
on feasible time slots. The scheduler starts at the nth time slot where n = mIT

sltd
, then R-TMS

fragments message m into several fragments Frm according to the time slot duration sltd.
For each path li in the route rt(m), R-TMS applies message interference analysis (Algorithm
3) to find a feasible time slot n for each f rm ∈ Frm on that path li. The process is repeated and
n is incremented beginning from the first fragment of the first path l1 (from the sender host)

140

Chapter 8. Reliable Task and Message Scheduling Algorithms for Hybrid TSN Systems

until the last fragment of the last path (i.e. lh) in the route rt(m), where rt(m) is represented
as {l1, l2, l3, ..., lh}.

The last incremented value of n is used to compute me2eD as a result of scheduling mes-
sage m on route rt(m).

Algorithm 2 Message Scheduler

Input: rt(m), mIT
Output: me2eD, scheduling the message m on fixed duration time slots

Initialize : n = mIT
sltd

, me2eD = 0
1: Frm ← Fragments of m according to sltd value
2: for each path li ∈ rt(m) do
3: for each fragment f rm ∈ Frm do
4: Call Algorithm 3: Message Interference Analysis
5: me2eD = (n + 1) * sltd
6: end for
7: end for
8: return me2eD

Pseudo-code of Algorithm 2 used to schedule message m on conflict-free time
slots on a route rt(m) ∈ RR(m)h, after which it returns the message end-to-end

delay (me2eD).

Message Interference Analysis (Algorithm 3): It adopts the physical interference model
and finds a feasible time slot number (i.e. n) for every f rm ∈ Frm. R-TMS checks two cases
for the nth time slot Slt(n). In the first case Slt(n) is empty, li ∈ rt(m) will be inserted into
the empty slot and its slot number (i.e. n) will be returned to Algorithm 2. enr and etr (where
r = li.receiver) is equal to enr.m and etr.m, respectively. In the second case Slt(n) is not empty,
and R-TMS computes the interference on r by every path lj that has already been scheduled
in that slot. For every path lj, if its receiver router (i.e. lj.receiver) is equal to r, then the
consumed energy enr.m∗ and the consumed time etr.m∗ as a result of routing message m∗ (m∗

uses path lj) will be added to the accumulated Sum_enr and Sum_etr values, respectively.

At this moment, R-TMS will compute the SINR value according to the total induced
interference in Slt(n) [28]. If the computed SINR is less than β, the algorithm checks the
next time slot until finding a feasible slot (i.e. the computed SINR is more than β), then
(enr.m + Sum_enr) and (etr.m + Sum_etr) values in the feasible slot will be added to enr and etr,
respectively, li will be inserted in that slot and its n will be returned to Algorithm 2. At the
end of the algorithm, all the paths in each time slot can be used to transmit their fragments
successfully at the same time, so that the influence of the interference is prevented as much
as possible.

141

Chapter 8. Reliable Task and Message Scheduling Algorithms for Hybrid TSN Systems

Algorithm 3 Message Interference Analysis

Input: path li of f rm, f rm, n (current slot number)
Output: n∗ (next slot number)

Initialize : find_slot = false, r = li.receiver, {r is the router to which the fragment f rm is sent.}
1: while find_slot == false do
2: if Slt(n) == null then
3: Insert li on Slt(n)
4: find_slot = true
5: enr += enr.m, etr += etr.m
6: n∗ = n
7: return n∗

8: else
9: for each path l j ∈ Slt(n) do

10: Compute Islt(Slt{l j}, li) {the interference on li by all paths l j’s in time-slot (Slt).}
11: I += Islt
12: Update SINR value
13: if l j.receiver == r then
14: Sum_enr += enr.m∗ , Sum_etr += etr.m∗ , where m ̸= m∗

15: end if
16: end for
17: if SINR ⩾ β then
18: Insert li on Slt(n)
19: find_slot = true
20: enr += Sum_enr + enr.m, etr += Sum_etr + etr.m
21: n∗ = n
22: return n∗

23: else
24: Increment n
25: Continue
26: end if
27: end if
28: end while

Pseudo-code of Algorithm 3 used to check the feasibility of the time slot of
each fragment f rm: it continuously updates enr and etr values, and then re-

turns the feasible slot number n.

142

Chapter 8. Reliable Task and Message Scheduling Algorithms for Hybrid TSN Systems

start

Input GArc(N, El),
GApp(T,Em)

Are all tasks in
T scheduled?

Check all hosts on
which task t can

run?

Check all messages are
sent from parent(t) to

task t?

time-slot is
empty?

Insert m into time-slot
enr+= enr.m etr+=etr.m

Sum_enr += enr.m*
Sum_etr += etr.m*
where, m* != m

time-slot is
feasible?

Insert m into time-slot
enr += enr.m + Sum_enr

etr += etr.m + Sum_etr

Next time-slot

m is scheduled on all
redundant routes?

enm = sum(enr)
Fm = sum(ηr * etr)

Arrival = max (marr)

Reliable Block Diagram
(RBD) to compute Rlm

Conditional precedence
technique to compute Rlt

ent = sum(enm) + enh.t

Ft = sum(Fm) + Fh.t

task_cost = θ *(Arrival) +
γ*(ent) + δ*(Ft)

Is task_cost <
min?

min task_cost

Schedule t on h that gives
minimum (task_cost) value
and use its Rlt to conclude

the reliability of the system

Sort unscheduled
tasks (T)

YES

Rl(system) = Rl(leaf task)
Where leaf task in GApp

StopYES

YES

NO

YES

NO

YES

NO

YES

Start at time-slot
when m was injected?

Next time-slot

NO

NO

NO

YES

NO

FIGURE 8.4: R-TMS task and message scheduling model.

8.6 Simulation Setup to Evaluate R-TMS

In the experimental tests, the grid and ring network topologies in Figures 4.4 and 4.5 are
applied, each topology contains 10 static wireless TSN-enabled nodes (i.e. wireless routers
and access points), and each access point connects to four static wireless TSN hosts with
50 Mbps wireless data rate. Moreover, 20 different system models are used and generated
as random Forest Fire directed graphs [218]. In our experimental setup, β = 10, α = 0.01
and N = 0. The etr.m and enr.m values of routing the messages in each router r are selected
randomly from a range of [20, 25], whereas eth.t and enh.t of executing the tasks in each host

143

Chapter 8. Reliable Task and Message Scheduling Algorithms for Hybrid TSN Systems

h are selected randomly from a range of [200, 250]. The units of measure of energy and time
are ’joule’ and ’millisecond’, respectively.

In addition, we assume that all tasks have the same deadline (i.e. 700 ms) and the avail-
able host set Ht to execute a computational task t is selected randomly. The 20 generated
application graphs that have different inter-message dependency patterns are used to com-
pute the general reliability and the total values are averaged.

8.6.1 Experimental Results

In Eq. 8.6, the values of weighting parameters (θ, γ and δ) are important. The selection
of appropriate parameters can make the algorithm achieve better results. Therefore, we
compare the reliability of the system by setting different values of weighting parameters.
The values in Table 8.3 achieve better results in the computed reliability. These values are
obtained by taking the average result of several tests.

TABLE 8.3: Test of several parameter settings.

θ γ δ Rls

0.45 0.1 0.45 0.8975
0.4 0.2 0.4 0.8944
0.6 0.1 0.3 0.8927
0.3 0.1 0.6 0.8920

In order to evaluate the system reliability and efficiency of R-TMS, we compare R-TMS
with MMTS and MLTS algorithms that are mentioned in Chapter 7. We also contrast R-
TMS with the Shortest Task Scheduling (STS) algorithm [24], [25], which primarily relies on
choosing the shortest routes to deliver the periodic messages. According to the route selec-
tion mechanism, tasks are scheduled to available hosts in R-TMS, MLTS and STS algorithms.

System Reliability Based on the Link Reliability

Figure 8.5 illustrates how the system reliability increases when increasing link reliability for
all evaluated algorithms in our modelled grid and ring topologies. Figure 8.5a shows that
the average system reliability of the generated solution by R-TMS is improved in the grid
topology by 29%, 80% and 105% compared to the reliability of the generated solutions by
STS, MLTS and MMTS, respectively. Figure 8.5b shows that R-TMS improves the system
reliability in the ring topology by 69%, 101% and 130% compared to STS, MLTS and MMTS,
respectively. The noticeable improvement of the system reliability in the grid topology com-
pared to the ring is due to the fact that grid networks contain more routes and thus the link
reliability has a greater impact.

The significant improvement of the system reliability in R-TMS is achieved by forward-
ing copies of messages over disjoint redundant routes. STS shows better reliability than
MLTS because STS forwards one copy of a message over the shortest routes instead of
choosing the least congested routes that may be longer and thus MLTS reduces its relia-
bility as more nodes and links contribute to sending messages. MMTS shows the worst
system reliability because it selects a prepared solution before starting the task scheduling
process. The proposed solution schedules tasks to hosts that have the minimum completion
time. MMTS’s solution does not also consider the communication costs and the reliability
of the nodes and links that the periodic messages pass through. It should be noted that
R-TMS selects the fastest routes to forward messages. These routes may be the shortest as
in STS or maybe the least congested ones as in MLTS. The shortest routes are not always

144

Chapter 8. Reliable Task and Message Scheduling Algorithms for Hybrid TSN Systems

the fastest due to the congestion that may cause delayed delivery of messages, so choosing
less congested routes in some cases leads to faster delivery of messages, even if they are
longer. Thus, R-TMS regards the transmission time as a priority due to the importance of
the bounded time in real-time applications.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0.95 0.97 0.98 0.99

Sy
st

e
m

 R
e

lia
b

ili
ty

Link Reliability

MMTS

MLTS

STS

R-TMS

(A) Grid topology.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0.95 0.97 0.98 0.99

Sy
st

e
m

 R
e

lia
b

ili
ty

Link Reliability

MMTS

MLTS

STS

R-TMS

(B) Ring topology.

FIGURE 8.5: System reliability by applying R-TMS, STS, MLTS and MMTS for
different link reliabilities, tasks = 10 and messages = 30.

Nevertheless, Table 8.4 shows the makespan, consumed energy and CPU time of R-TMS,
STS, MLTS and MMTS algorithms. The grid topology is applied to schedule 80 tasks with
200 messages, and Table 8.5 shows the same comparison for the ring topology. As illustrated,
the grid topology needs less CPU-time than the ring topology for MMTS, STS and R-TMS
algorithms due to the multiplicity of options for sending messages, while the ring topology
consumes more CPU time until it reaches a feasible solution. We notice that MLTS needs
almost half the CPU-time for the ring topology compared to the grid topology because the
search space to find the least congested routes is significantly smaller in the ring topologies.

R-TMS increases the makespan and consumed energy to generate its solutions compared
to STS, MLTS and MMTS. The reason is that the duplication of messages in the R-TMS al-
gorithm needs more time and energy until receiving all message copies. However, increas-
ing the time in R-TMS does not affect its feasibility when it still permits the execution of
tasks before their deadlines. In addition, γ parameter in Eq. 8.6 can be modified (i.e. γ is
the highest weight) to give the consumed energy the highest priority when scheduling the
tasks. Using the weight sum in Eq. 8.6 contributes to obtaining better results and controls
the task and message scheduling. In other words, the weighting parameters are set based
on the importance of the corresponding factors regarding the specifications of the network
and the constraints of the applications. For example, the value of the θ parameter, which
corresponds to the arrival, gets a higher weight in the case of applying hard real-time ap-
plications. Similarly, the weight of γ is higher than other weights for networks consisting of
hosts with limited energy (e.g. sensors). So in general, the arrival time has been considered
of greater importance because of dealing with fault-tolerant real-time systems.

STS shows better makespan than MLTS but not in all cases because of the potential con-
gestion along the shortest routes. On the contrary, MLTS consumes the most CPU-time to
find the least congested routes of all routing possibilities because of the larger search space,
especially for complex system models. MMTS requires the least CPU-time because it pre-
pares its solution at the beginning of executing the algorithm and it is not trying to find the
best routes during the task scheduling process, but on the other hand, we notice that it con-
sumes more makespan and more energy compared to MLTS and STS algorithms.

145

Chapter 8. Reliable Task and Message Scheduling Algorithms for Hybrid TSN Systems

TABLE 8.4: Comparison of the completion-time, consumed energy and CPU-
time for MMTS, MLTS, STS and R-TMS in the grid topology, tasks = 80, mes-

sages = 200.

Algorithm Makespan Consumed energy CPU-time
MMTS 3545 40050 1.5
MLTS 3378 35000 36.1
STS 3203 34102 3.5

R-TMS 5344.5 67670 10.39
TABLE 8.5: Comparison of the completion-time, consumed energy and CPU-
time for MMTS, MLTS, STS and R-TMS in the ring topology, tasks = 80, mes-

sages = 200.

Algorithm Makespan Consumed energy CPU-time
MMTS 4100 4516 1.6
MLTS 3853 4165 14
STS 3781 4083 5

R-TMS 7569 90235 15.29

System Reliability Based on the Number of Hosts

In the second experimental test, we study the impact of the number of available hosts on the
system reliability. For this purpose, we consider that the link reliability is 0.99 for all algo-
rithms. Figure 8.6a shows that the average system reliability of R-TMS in the grid topology
improves considerably by 24%, 35% and 54% compared to STS, MLTS and MMTS, respec-
tively. Figure 8.6b shows that R-TMS improves rapidly the system reliability in the ring
topology to be 99%, 114% and 171%, compared to STS, MLTS and MMTS, respectively. We
observe that the system reliability rises as the number of hosts used to schedule tasks for all
algorithms increases. Moreover, there is a minor effect on the system reliability when using
R-TMS and it is applied in the ring topology instead of the grid one compared with the other
algorithms. The reason is that R-TMS optimizes the reliability in presence of variability of
available hosts. To achieve optimal reliability, R-TMS distributes and balances the load of
tasks according to the consumed energy, time and failure rate of several available hosts.
In addition, applying FRER and scheduling different messages in their time slots with the
minimum induced interference significantly contributes to improving the global system re-
liability.

146

Chapter 8. Reliable Task and Message Scheduling Algorithms for Hybrid TSN Systems

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

5 10 15 20

Sy
st

e
m

 R
e

lia
b

ili
ty

Number of Hosts

MMTS

MLTS

STS

R-TMS

(A) Grid topology.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

5 10 15 20

Sy
st

e
m

 R
e

lia
b

ili
ty

Number of Hosts

MMTS

MLTS

STS

R-TMS

(B) Ring topology.

FIGURE 8.6: System reliability when applying R-TMS, STS, MLTS and MMTS
for different numbers of hosts, tasks = 30, messages = 90 and link reliability =

0.99.

System Reliability Based on the Number of Tasks

As illustrated in Figure 8.7, due to the host availability and limited resources, the overall sys-
tem reliability is decreasing when increasing the number of tasks (i.e. network utilization).
The higher number of tasks has a greater impact on ring networks because they consume
more network resources. Likewise, R-TMS gives better system reliability than STS, MLTS
and MMTS when increasing the load (the number of tasks). The R-TMS algorithm shows a
clear improvement in system reliability compared to others, especially with more tasks that
need to be scheduled. Increasing the number of tasks makes it more difficult to perform
all tasks reliably, especially for tasks that take into account precedence constraints, which
means that the task is executed only after receiving all messages from its parent tasks. R-
TMS solves this problem by implementing a reliability model that guarantees conditional
precedence constraints to maintain system reliability even when tasks fail.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

10 20 30 40 50

Sy
st

e
m

 R
e

lia
b

ili
ty

Number of Tasks

MMTS

MLTS

STS

R-TMS

(A) Grid topology.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

10 20 30 40 50

Sy
st

e
m

 R
e

lia
b

ili
ty

Number of Tasks

MMTS

MLTS

STS

R-TMS

(B) Ring topology.

FIGURE 8.7: System reliability when applying R-TMS, STS, MLTS and MMTS
for different numbers of tasks, with a link reliability = 0.99.

System Reliability Based on Link Failures

Figure 8.8 shows that increasing the number of injected link failures leads to more messages
that fail to arrive at their receiving tasks for all compared algorithms. R-TMS outperforms
STS, MLTS and MMTS with a lower number of failed messages because of multiple paths,
which are used to send messages, reducing the possibility of message failures.

147

Chapter 8. Reliable Task and Message Scheduling Algorithms for Hybrid TSN Systems

We note that the impact of the link failure is greater on ring networks, which is expected
because the links in the ring topologies are used more than in the grid topologies and thus
the probability of failure to deliver messages is significantly greater for all algorithms. The
messages that failed to arrive in R-TMS remain less compared to other algorithms, as we ex-
plained earlier because replicas of a message are sent over redundant routes. However, the
increase of the number of link failures makes sending of messages more complex for all al-
gorithms. MMTS shows the same failure rate in sending messages compared to STS because
MMTS uses the shortest routes to send messages to prepare the task scheduling solutions.

0
1
2
3
4
5
6
7
8
9

10
11

1 2 3M
e

ss
ag

e
s

fa
ile

d
 t

o
 a

rr
iv

e

Link Failures

MMTS

MLTS

STS

R-TMS

(A) Grid topology.

0
2
4
6
8

10
12
14
16

1 2 3M
e

ss
ag

e
s

fa
ile

d
 t

o
 a

rr
iv

e
Link Failures

MMTS

MLTS

STS

R-TMS

(B) Ring topology.

FIGURE 8.8: Number of messages failing to arrive by applying R-TMS, STS,
MLTS and MMTS for different numbers of link failures, tasks = 8 and mes-

sages = 20.

8.7 Problem Formulation of OR-TMS

OR-TMS [30] uses the DPSO algorithm to find an optimized task and message scheduling
solution with regard to a given measure of quality. The solution is evaluated by considering
multiple objectives including the global makespan, total energy consumption and total fail-
ure rates of scheduling all tasks. In contrast, R-TMS schedules each task one after the other
until all tasks are completed. OR-TMS has the advantage that it selects a solution that dis-
tributes the tasks in a way taking into consideration the constraints in an integrated manner
for all tasks, while R-TMS [29] is a heuristic algorithm, which looks to schedule a current
task considering only constraints of the previous tasks (i.e. parent tasks).

OR-TMS considers our hybrid modelling approach mentioned in Chapter 4 as inputs to
schedule T tasks to sets of available hosts. In our work, the term “task-scheduling-instance”
is used. It refers to distributing the tasks to potential hosts so that each instance has its own
distribution of the tasks. To explain the task-scheduling-instance and determine its cost of
using the network resources, we introduce the following points:

• The OR-TMS algorithm considers the task and message scheduling constraints of the
TMS algorithm mentioned in Section 7.2.

• We consider T as unscheduled tasks and Ht as a changeable set of available hosts on
which a task t ∈ T can run. The cost of the task-scheduling-instance is determined
when scheduling all tasks.

• FRER is used to send replicas of a message m through redundant routes RR(m)h from
every parent task to a child task t that is scheduled on an available host h ∈ Ht.

148

Chapter 8. Reliable Task and Message Scheduling Algorithms for Hybrid TSN Systems

• The consumed energy and the failure rate of routing a message m are computed.

The energy consumption of routing a message m (i.e. enm) is the sum of the consumed
energy of routing m on each router r ∈ RR(m)h.

enm =
RR(m)h

∑
r=1

enr ∀r ∈ RR(m)h (8.12)

The failure rate of routing a message m (i.e. Fm) is shown in Eq. 8.13.

Fm =
RR(m)h

∑
r=1

ηr × etr ∀r ∈ RR(m)h (8.13)

Where, enr and etr are the consumed energy and the execution time on a router r ∈
RR(m)h, respectively. The time slot message scheduler in Section 8.3 uses a message
interference analysis to compute enr and etr values during the message transmission.
ηr denotes the failure rate of r.

• The arrival time of all incoming messages at task t is found, and the consumed energy
and the failure rate of executing task t at host h are computed.

The arrival time (i.e. arrival) denotes the instant of time when all incoming messages
have arrived at the child task t at host h, where t’s execution depends on the arrival of
all parent messages. Arrival at host h is defined as:

arrival = max(marrival) ∀m ∈ Mt (8.14)

The consumed energy and the failure rate after the arrival of all messages and the
completion of task t at host h are computed as follows:

ent =
Mt

∑
m=1

enm + enh.t ∀m ∈ Mt (8.15)

Ft =
Mt

∑
m=1

Fm + Fh.t ∀m ∈ Mt (8.16)

Where enh.t and Fh.t denote the consumed energy and the failure rate of executing task
t at host h, respectively. After executing all tasks (i.e. T) on the selected available hosts,
a cost function for the task-scheduling-instance is formulated as shown in Eq. 8.17.

Cost = θ ∗makespan + γ ∗ enT + δ ∗ FT (8.17)

enT and FT denote the consumed energy and the failure rates as a result of scheduling
all tasks T, respectively. The makespan is the instant of time at which all tasks are
finished. θ, γ and δ are weighting parameters.

The computed cost function value determines the cost of scheduling all tasks on the
selected available hosts. Lower values indicate better instances. Finding the best pos-
sible scheduling instance depends mainly on selecting the best distribution of tasks to
the available hosts, where each task has a different set of available hosts. Therefore,
DPSO will be employed in the course of the OR-TMS algorithm.

149

Chapter 8. Reliable Task and Message Scheduling Algorithms for Hybrid TSN Systems

8.8 Discrete Particle Swarm Optimization (DPSO)

8.8.1 PSO Definition

PSO is a heuristic and computational algorithm developed by Kennedy and Eberhart [222].
It optimizes a problem with regard to its computed fitness value. The most important fea-
tures of PSO over other algorithms are ease of implementation and fast convergence to get
a reasonable solution. PSO also preserves the diversity of the population to avoid prema-
ture convergence. Therefore, it is widely used in various experiments to solve optimization
problems [92], [224].

PSO aims to solve an optimization problem by iteratively trying to improve a solution
with regard to a fitness value. PSO consists of a swarm (i.e. population) of individual par-
ticles. Firstly, particles are initialized with random solutions and through many iterations,
every particle moves in a direction to search for a better solution. Thus, each particle is
defined by two variables the position and velocity. The position determines its location in
the space and the velocity is used to determine its movement and its direction. During the
iterations, every particle updates its position according to its velocity. Besides the previous
variables, each particle has also two best values. The first best value is Pbest, which the best
local position value for each particle so far. This value is adjusted in accordance with the
particle’s position’s fitness value. The second best value is Gbest which is the best global po-
sition value for the swarm so far. Gbest is checked in every iteration and is changed by Pbest
value of any particular particle at the iteration k + 1 if the fitness value of Pbest is better than
the fitness value of Gbest in the previous iteration k.

Following are the equations, which are used to update the parameters and determine
the best values for each particle in the swarm.

Vk+1
i = w ·Vk

i + c1 · r1 ·
(

Pk
besti
− Xk

i

)
+ c2 · r2 ·

(
Gk

best − Xk
i

)
(8.18)

Xk+1
i = Xk

i + Vk+1
i (8.19)

Equation 8.18 computes a new velocity Vk+1
i for each particle (pi) at iteration k + 1 ac-

cording to its previous velocity Vk
i at iteration k. The position of the particle at which the best

fitness value for that particle has been attained so far is continuously updated in Pbest. The
global best position at which the best fitness value has been achieved so far in the swarm is
continuously updated in Gbest. Eq. 8.19 updates the particle’s position (i.e. Xk+1

i) at iteration
k + 1 by adding the new velocity resulting from Eq. 8.18 to its previous position at iteration
k. r1 and r2 are random values, c1 and c2 are factors used to determine the acceleration and
the pull for each particle in the swarm toward Pbest and Gbest values, w is an inertia weight
and it is decreased in every iteration.

8.8.2 Mapping of a Task Scheduling Instance to DPSO

PSO was introduced as a continuous optimization problem, while the task scheduling in
WirelessTSN is a discrete optimization problem. Energy savings, reliability, and timeliness
objectives in WirelessTSN are defined as optimization problems that should be resolved
during the task and message scheduling process. Thus, a discrete search space is introduced
to the continuous PSO.

Inspired by the idea of PSO, the task-scheduling-instance mentioned in Section 8.7 is
formulated and mapped to a particle’s position and each particle’s position has one dimen-
sion for all tasks T. Therefore, this section describes how Discrete PSO (DPSO) is formu-
lated for the task and message scheduling problem. One of the key issues for a successful

150

Chapter 8. Reliable Task and Message Scheduling Algorithms for Hybrid TSN Systems

DPSO representation is finding a suitable mapping between the task-scheduling-instance
and DPSO particle’s position. We setup the discrete search space of the dimension for the
task scheduling problem. This dimension is a set of discrete sets of possible values located
in s = {hi : 1 ≤ i ≤ Ht}; such that Ht is the number of possible hosts on which task t ∈ T
can run. For example, the problem in Figure 8.9 is considered to map 5 tasks {t0 : t4} onto
the grid graph of our system model in Figure 4.4. Table 8.6 shows that each task t can be run
on a host chosen from the set of hosts {Ht0 : Ht4}. For example, task t0 can be run on one of
its available hosts {h6, h7, h9, h10, h14}.

t4

t3

t2

t1

t0

FIGURE 8.9: Application graph consisting of 5 tasks with 10 messages.

TABLE 8.6: Set of available hosts for each task t ∈ T.

Task number Available set (Ht)
t0 {h6, h7, h9, h10, h14}
t1 {h4, h8, h13, h14, h17}
t2 {h10, h13, h18, h20}
t3 {h1, h6, h10, h15, h18}
t4 {h2, h4, h9, h15}

Figure 8.10 illustrates a mapping of a possible task scheduling instance [6 4 13 10 2]
to particle position coordinates in the DPSO domain. A vector of hosts is used to represent
the particle’s position, and each host h ∈ Ht is internally stored as an integer value in the
vector, with the index indicating the task t that each host is given during the DPSO pro-
cess. For example, t0 can be scheduled to host 6 because host 6 belongs to t0’s available set
{6, 7, 9, 10, 14} where t0 can run. t1 can be scheduled to host 4 because host 4 belongs to
t1’s available set {4, 8, 13, 14, 17}. The same scenario is applied to assign a host to all other
tasks {t2 : t4} that run on different available sets. The algorithm starts randomly generating
several possible instances depending on the size of the initial population of the DPSO. Thus,
the population of the DPSO is represented as a two dimensional HxT matrix consisting of a
defined number of particles, where each particle pi is represented as a vector of T tasks and
its scope is a T-dimensional discrete search space. At the end of the DPSO implementation,
all particles are converged to a global position that represents an optimized instance (i.e.
solution) for the task scheduling problem.

151

Chapter 8. Reliable Task and Message Scheduling Algorithms for Hybrid TSN Systems

0 1 2 3 4Task index

6 4 13 10 2Corresponding host task Ht
t0 6, 7, 9, 10, 14
t1 4, 8, 13, 14, 17
t2 10, 13, 18, 20
t3 1, 6, 10, 15, 18
t4 2, 4, 9, 15

A task scheduling instance

A DPSO particle’s position

FIGURE 8.10: Mapping a task assignment instance to a DPSO particle.

A load-balance-mechanism should be taken into account for an effective task scheduling
process to increase the network lifespan and decrease the likelihood of failing to map a task-
scheduling-instance in the event that a host’s energy is depleted. Using the load-balance-
mechanism, the number of times the host is assigned to the particle of a task scheduling
instance does not exceed the permissible limit as shown in the following equation:

Max_assh = int(T/H) + 1 (8.20)

Max_assh represents the maximum number of assignments of a host to an scheduling
instance. For our example, Figure 8.9 shows 5 tasks (T = 5) and 20 available hosts (H = 20).
According to Eq. 8.20, the output value of Max_assh equals 1, which means any host should
be assigned only once to any possible instance. For example, instances such as [7 17 18 18
2] and [6 17 18 6 2] are not considered regarding Table 8.6 as possible instances because
hosts 18 and 6 are used twice to assign tasks in the first and the second scheduling instances,
respectively. Therefore, DPSO generates at the beginning different instances that satisfy the
condition in Eq. 8.20. During the course of DPSO, if the new position of a particle does not
satisfy the condition, DPSO rounds the not compliant host to the closest host that satisfies
the mentioned condition. For example, host 18 in the instance [7 17 18 18 2] is used twice
to schedule tasks t2 and t3, thus, DPSO in Figure 8.11 rounds the host, which is assigned
to task t3, to the closest available host (i.e. host 15). This process is implemented in every
iteration for all particles until DPSO is terminated and a unified solution is obtained.

Increasing the number of tasks relating to the total number of hosts leads to an increase
in the maximum number of assignments per host. For example, if T = 30 and H = 20, then
the number of assignments of a host in any task-scheduling-instance could be a maximum of
two.

152

Chapter 8. Reliable Task and Message Scheduling Algorithms for Hybrid TSN Systems

7 17 18 18 2Not-possible instance

7 17 18 15 2Possible instance

Not-compliant host

Compliant host

FIGURE 8.11: Rounding the not compliant host to the closest available host
satisfying the load balance condition.

8.8.3 Task and Message Scheduling Process Based on DPSO

To explain how our DPSO-based algorithm works, DPSO starts with random task-scheduling-
instances as a generated population. Each instance is evaluated by measuring its cost func-
tion value using Eq. 8.17. We conclude that Eq. 8.17 expresses the task and message schedul-
ing problem as a Multi-objective Optimization Problem (MOP) by means of a weight sum
of the system’s completion time (i.e. makespan), total energy consumption and total failure
rates. The solution and the cost function value are updated gradually until scheduling all
transmitted messages and executing all tasks on their corresponding hosts. DPSO keeps
updated Gbest and Pbest values during the course of its execution. If the cost of a particle’s
current place is less than that of previously visited positions, Pbest is updated. If the cost of
any particle’s current position is less than the cost of the best global position so far, Gbest of
all the particles in the swarm is updated. According to Equations 8.18 and 8.19, these two
revised values cause every particle to have a new velocity, which results in a new position.
The random parameters in 8.18 prohibit a bias effect from either the global or the local best
positions; as a result, these parameters regulate the process of the exploration and exploita-
tion forced by the particle’s new velocity randomly. Once all particles update their new
positions, a new status of the DPSO population is established. The cost of the updated Gbest,
which represents the minimum cost found so far, is compared with previous cost function
values. If the new cost function value is changed, then the whole process is repeated with
a new iteration to determine new global and local best positions until the convergence con-
dition is satisfied. In general, the convergence condition is met when Gbest reaches a value
that the particle cannot update and find a lower value, so the DPSO is terminated and the
optimized global position (i.e. the final solution) is obtained.

The flow chart in Figure 8.12 gives an overview of OR-TMS by applying DPSO. Each
particle firstly supposes a random position which represents a solution to schedule tasks on
random possible hosts. Each particle’s solution is evaluated in DPSO by calculating the cost
function value Cost(pi) of the proposed solution. To do so, every task is not scheduled to
the assigned host until all message replicas sent from all parents through redundant routes
are received. The time slot message scheduler is used to schedule the message traffic using
conflict-free time slots in order to avoid signal interference. To determine the Cost(pi) value,
OR-TMS computes the task completion time, overall energy consumption, and failure rates
of scheduling all tasks. After computing Cost(pi) of all particles, DPSO generates the best
global solution Gbest depending on the lower Cost(pi) value. DPSO then updates new posi-
tions and velocities in parallel for all particles. If the new global solution does not meet the
terminal condition (Cost(Gbest) is not converged), DPSO continues with the next iteration.

153

Chapter 8. Reliable Task and Message Scheduling Algorithms for Hybrid TSN Systems

A technique known as the random method [225] is used to change a particle’s velocity
such that the new position of the particle is always inside a feasible area, as indicated in the
following formulas:

if Xk+1
i > Xi.max, then
Vk+1

i = rand
(
0, Xi.max − Xk

i
) (8.21)

if Xk+1
i < Xi.min, then
Vk+1

i = rand
(
0, Xk

i − Xi.min
) (8.22)

Where, Xi.max and Xi.min stand for the highest and lowest host integer value for a particle
i in the H domain.

154

Chapter 8. Reliable Task and Message Scheduling Algorithms for Hybrid TSN Systems

start

Input GArc(N,
El), GApp(T,Em)

Are All tasks of
particle pi ∈ P

scheduled?

Schedule all messages
sent from parents to

t?

time-slot is
empty?

Insert m into time-slot
enr+= enr.m etr+=etr.m

Sum_enr += enr.m*
Sum_etr += etr.m*
where, m* != m

time-slot is
feasible?

Insert m into time-slot
enr += enr.m + Sum_enr

etr += etr.m + Sum_etr

Next time-
slot

enm = sum(enr)
Fm = sum(ηr * etr)

Arrival = max (marrival)

ent= sum(enm) + enh.t

Ft= sum(Fm) + Fh.t

Makespan = max(Arrival)

Cost(pi) = θ *(Makespan)
+ γ*(∑t ent) + δ*(∑t Ft)

Sort unscheduled tasks (T)

YES

Initialize Particles (P) with random
position and velocity vectors

Initialize Iteration = 0

NO

Update Pbest for every pi

Update Gbest

Update Velocity and Position
for every pi

Cost(Gbest) is
converged?

Stop

Increment
Iteration

NO

NO

m is scheduled on all
redundant routes?

NO

YES

Start at time-slot
when m is injected?

Next time-
slot

NO

YES

NO

YES

YES

Compute Cost(pi) for
all pi ∈ P?

YES

 Next
particle pi

NO

Output Gbest (the
optimized solution)

YES

FIGURE 8.12: OR-TMS task and message scheduling model.

Algorithm 1 shows the pseudo-code of the DPSO-based task and message scheduling
procedure. The particle’s position Xi represents a solution for scheduling tasks to random
hosts. The cost function value of a position Cost(Xi) is used to determine the particle’s so-
lution. The lower the value, the better the particle’s location. In general, the convergence
condition refers to finding a satisfactory solution. If the convergence condition is met, the

155

Chapter 8. Reliable Task and Message Scheduling Algorithms for Hybrid TSN Systems

solution (the global best position) is obtained and the run of DPSO is terminated.

Algorithm 1 DPSO-based Task and Message Scheduling Procedure

Input: Tasks, Particles
Output: Gbest

1: for each particle pi do
2: Initialize position Xi randomly
3: Initialize velocity Vi randomly
4: Initialize Pbesti with a copy of Xi
5: end for
6: for each particle pi do
7: Evaluate Cost(Pbesti)
8: Initialize Gbest with a copy of Pbesti with the least cost
9: end for

10: while the convergence condition is not met do
11: for each particle pi do
12: Call Algorithm 2 OR-TMS(T)
13: Evaluate Cost(Xi) using Eq. 8.17
14: if Cost(Xi) < Cost(Pbesti) then
15: Pbesti ← Xi
16: end if
17: if Cost(Xi) < Cost(Gbest) then
18: Gbest ← Xi
19: end if
20: end for
21: if the convergence condition is met then
22: Output Gbest; Break
23: else
24: for each particle pi do
25: Update Vi according to Eq. 8.18
26: Update Xi according to Eq. 8.19
27: end for
28: end if
29: end while

DPSO-based task and message scheduling procedure.

8.9 Evaluation of a Task Scheduling Instance (A Particle’s Posi-
tion)

This section shows how OR-TMS employs DPSO (Algorithm 2) to evaluate a task-scheduling-
instance (i.e. a particle’s position) in the swarm. OR-TMS algorithm introduces a reliable
task and message scheduling process to consider the assumptions mentioned in Section 8.1.

OR-TMS (Tasks T) (Algorithm 2): For each unscheduled task t, OR-TMS algorithm
computes firstly its top-level cost tlt using Equations 7.7 and 7.8. OR-TMS sorts all unsched-
uled tasks in ascending order according to their top-level values. Every sorted task applies
Algorithm 3 until scheduling all tasks of a particle’s position. At the instant of time when all
tasks are executed within the hyper period time HP.GApp [226], the consumed energy enT,

156

Chapter 8. Reliable Task and Message Scheduling Algorithms for Hybrid TSN Systems

failure rates FT and makespan of all tasks are computed, where the makespan is defined
as the completion time of the execution of the leaf task (i.e. a task that has no forwarding
messages).

Outputs of Algorithm 2 are used to compute the cost function value of the current in-
stance, which is used to be compared with other instances in DPSO.

Algorithm 2 OR-TMS(T)

Input: GApp, GArc
Output: FT, enT and makespan

1: Sort(tasks T)
2: for t ∈ Tsorted do
3: Call Algorithm 3: Task t Scheduling
4: FT += Ft
5: enT += ent
6: makespan = max(arrival)
7: end for
8: return FT, enT and makespan

Pseudo-code of Algorithm 2 used to schedule all tasks to their corresponding
hosts, outputs are used to evaluate the current DPSO instance.

Task t Scheduling (Algorithm 3): It shows how to schedule task t to its corresponding
host h in a particle’s position. Algorithm 3 firstly finds for each incoming message m all
available routes between the sender host of message m and host h, then it extracts the disjoint
redundant routes RR(m)h by using FRER.

For each redundant route rt(m) ∈ RR(m)h, a message scheduler (Algorithm 4) is ap-
plied. Algorithm 4 is used to compute me2eD as a result of using a route rt(m) and scheduling
m on conflict-free time slots. me2eD is then used to find the arrival time marrival of message m.
The arrival time of all messages, the consumed energy enm and the failure rate Fm as a result
of sending message m are continuously updated until all messages that use their redundant
routes have arrived at task t.

As discussed earlier, OR-TMS considers the period of the tasks. Equation 7.9 in Chapter
7 is used to compute the number of repetitions of a parent task to start injecting its message
towards its child task.

If the updated arrival time and execution time of task t (i.e. tet) violate the tdl value,
where tdl is defined as the maximum allowed time by which all parent tasks provide their
messages and execution of task t is completed, Algorithm3 considers the particle’s position
(i.e. the task-scheduling-instance) as an invalid solution.

At this moment, Equations 8.15 and 8.16 are used to compute the consumed energy ent
and the failure rate Ft of scheduling t to its corresponding host h in the particle’s position.

157

Chapter 8. Reliable Task and Message Scheduling Algorithms for Hybrid TSN Systems

Algorithm 3 Task t Scheduling

Input: unscheduled task t
Output: arrival, ent and Ft

1: for m ∈ Mt do
2: Find the redundant routes (RR(m)h)
3: for rt(m) ∈ RR(m)h do
4: Call Algorithm 4 Message Scheduler
5: marrival ← mIT + me2eD
6: Update arrival = max(marrival)
7: if (arrival + tet) > tdl then
8: Invalid solution, break.
9: end if

10: Update enm
11: Update Fm
12: end for
13: end for
14: Find(trt)
15: if (trt + tet) > tdl then
16: Invalid solution, break.
17: end if
18: Compute ent, Ft using Eqs. (8.15, 8.16).
19: return arrival, ent and Ft

Pseudo-code of Algorithm 3 used to schedule a task to its corresponding host.

Message Scheduler (Algorithm 4): The scheduler computes me2eD of routing message m
on a redundant route rt(m) after scheduling m on its feasible time slots. The scheduler starts
at the time slot number n = mIT

sltd
, where mIT and sltd are defined as the message injection time

and the duration of the time slot, respectively. Algorithm 4 then fragments message m into
several fragments Frm according to the duration of sltd. For each path li in the route rt(m),
Algorithm 4 applies message interference analysis (Algorithm 5) to find a feasible time slot
number (i.e. n) for each f rm ∈ Frm using that path li. The process is repeated and n is incre-
mented beginning from the first fragment of the first path l1 (from the sender host) until the
last fragment of the last path lh in the route rt(m). The last incremented value of n is used to
compute me2eD of routing message m on the route rt(m). Equations 8.12 and 8.13 are used
to return the values of enm and Fm, respectively.

158

Chapter 8. Reliable Task and Message Scheduling Algorithms for Hybrid TSN Systems

Algorithm 4 Message Scheduler

Input: rt(m), mIT
Output: me2eD, enm and Fm

Initialize : n = mIT/sltd , me2eD = 0
1: Frm = Fragments of m according to sltd value
2: for each link li ∈ rt(m) do
3: for each fragment f rm ∈ Frm do
4: Call Algorithm 5: Message Interference Analysis
5: me2eD = (n + 1) * sltd
6: end for
7: end for
8: Compute enm, Fm using Eqs. (8.12, 8.13).
9: return me2eD, enm and Fm

Pseudo-code of Algorithm 4 used to schedule message m on conflict-free time
slots on a route rt(m) ∈ RR(m)h.

Message Interference Analysis (Algorithm 5): The proposed algorithm adopts the phys-
ical interference model to find a feasible time slot used to transmit every f rm ∈ Frm. Algo-
rithm 5 checks two cases for the time slot number n (i.e. Slt(n)), where n is the number of
the current time slot. In the first case Slt(n) is empty, li ∈ rt(m) will be inserted into the
empty slot and its slot number (i.e. n) will be returned to Algorithm 4. enr and etr (where
r = li.receiver) are equal to enr.m and etr.m, respectively. In the second case Slt(n) is not
empty, and Algorithm 5 computes the interference on r ∈ rt(m) by every path lj ∈ Slt(n)
that has already been scheduled in that slot. If the receiver router (i.e. lj.receiver) of a path
lj is equal to router r, then the consumed energy enr.m∗ and the consumed time etr.m∗ as a
result of routing message m∗ (m∗ uses path lj) will be added to the accumulated Sum_enr
and Sum_etr values, respectively. At this moment, the SINR value is computed according
to the total induced interference in that slot [28]. If the computed SINR value is less than β,
the algorithm checks the next slot until finding a feasible slot (i.e. on which the computed
SINR value is more than β). Then (enr.m + Sum_enr) and (etr.m + Sum_etr) values in the fea-
sible slot will be added to enr and etr, respectively. li will be inserted into that slot and its n
will be returned to Algorithm 4. At the end of the process, all path in each slot can be used
to successfully send their fragments at the same time, minimizing the impact of interference.

159

Chapter 8. Reliable Task and Message Scheduling Algorithms for Hybrid TSN Systems

Algorithm 5 Message Interference Analysis

Input: path li of f rm, f rm, n (current slot number)
Output: n∗ (next slot number)

Initialize : find_slot = false, r = li.receiver, {r is the router to which the fragment f rm is sent.}
1: while find_slot == false do
2: if Slt(n) == null then
3: Insert li on Slt(n)
4: find_slot = true
5: enr += enr.m, etr += etr.m
6: n∗ = n
7: return n∗

8: else
9: for each path l j ∈ Slt(n) do

10: Compute Islt(Slt{l j}, li) {the interference on li by all paths l j’s in time slot number n.}
11: I += Islt
12: Update SINR value
13: if l j.receiver == r then
14: Sum_enr += enr.m∗ , Sum_etr += etr.m∗ , where m ̸= m∗

15: end if
16: end for
17: if SINR ⩾ β then
18: Insert li on Slt(n)
19: find_slot = true
20: enr += Sum_enr + enr.m, etr += Sum_etr + etr.m
21: n∗ = n
22: return n∗

23: else
24: Increment n
25: Continue
26: end if
27: end if
28: end while

Pseudo-code of Algorithm 5 used to check the feasibility and determine the
number of time slots of each fragment f rm.

8.10 Trace Particles Using DPSO

In this section, we show an example execution trace for the DPSO as depicted by mapping
the application graph in Figure 8.1 to the architecture graph in Figure 4.4. For ease of use,
each index in a particle vector is a task, and the value of the associated index is a host number
to which the corresponding task is scheduled. A population of 10 particles (p1, p2, . . . , p10)
is initialized as shown in Table 8.7. Particle velocities are initialized randomly in a range of
[-3, 3]. Table 8.7 also shows the best local position Pbest for each particle and the best global
position Gbest in each iteration. The particle’s cost, which is the cost of the task scheduling, is
shown at the cost column of each particle. For example, in the first iteration, p1’s position [7,
17, 18, 15, 2] suggests a solution to the task scheduling problem by scheduling t0 to host h7,
t1 to host h17, t2 to host h18, t3 to host h15 and t4 to host h2. In this iteration, the particle p4 =
[10, 4, 13, 15, 2] has the least cost function value (cost = 1107). Therefore, it will be considered
as Gbest. A copy of Gbest is updated throughout all particles. At the beginning the historical

160

Chapter 8. Reliable Task and Message Scheduling Algorithms for Hybrid TSN Systems

Pbest of each particle is its initial position, DPSO then updates the particle’s velocity using
Eq. 8.18. The updated velocity is used in Eq. 8.19 to get a new position for each particle. For
instance, the velocity vector [7,-8,-10, 0, 1] of particle p1 in the 2nd iteration is added to its
position [7, 17, 18, 15, 2] in the 1st iteration to give a new position equal to [14, 9, 8, 15, 3]. If
the corresponding host of a task in the new position is not considered as an available host as
shown in Table 8.6, we map the host number to the closest number on which that task can
run; thus, we obtain the new position of p1 to be [14, 12, 5, 15, 2] in the 2nd iteration.

Gbest and Pbest are constantly updated for all particles at every iteration. For example,
Pbest of each particle in the 2nd iteration is updated if the new position gives less cost (bet-
ter solution) such as for particles (p1, p2, p3, p4, p5, p6, p8, p10), whereas p7 and p9 particles
keep their previous best local position found so far. The cost function value is updated (i.e.
minimized) from 1107 in the 1st iteration to be 944 in the 6th iteration at p3’s position [14,
12, 13, 15, 9]. The iteration number is increased and the process is repeated until obtaining
results or a termination condition is met such as the particles convergence into a unified so-
lution. We conclude that the cost function value (944) is a steady-state from the 5th iteration
until iteration # 32, where all particles have the same solution for both Gbest and Pbest. This
solution represents the best global position found so far, thereby the corresponding velocity
of each particle equals zero.

8.11 Simulation Setup to Evaluate OR-TMS

20 variable system models are randomly generated as random forest fire directed graphs.
These graphs have different dependency patterns and they are used to evaluate the be-
haviour of the OR-TMS algorithm compared it to other suggested algorithms.

In our experimental setup, the system model in Figures 4.4 and 4.5 is used as input for
the compared algorithms. Each architecture graph in the system model includes 10 wireless
TSN-enabled intermediate nodes (i.e. wireless routers and access points). Every access point
creates a local network with 4 static wireless TSN-enabled hosts with 50 Mbps data rate.

We assume a node that is out of energy as a failed node. Moreover, some simulation
parameters are set as follows: β = 10, α = 0.02 and N = 0. The weighting parameters of
Eq. 8.17 (i.e. θ, γ and δ) are set as 0.1, 0.45 and 0.45, respectively. Choosing appropriate
weighting parameters is important to obtain better results. However, throughout the task
and message scheduling process, the weight of each parameter is determined depending on
the significance of its related factor. Therefore, the failure rate and the makespan have been
considered of greater importance because of dealing with reliable and real-time applications.
The initial value of w in Eq. 8.18 is set to be 0.9, c1 and c2 equal to 2, r1 and r2 are randomly
selected from a range of [0, 1]. etr.m and enr.m costs of routing a message m are determined
from a range of [20, 25]. Similarly, eth.t and enh.t costs of executing a task t in a host h are
determined from a range of [200, 250]. The full energy of any router or host is 100,000. In
the setup, the units of measure of time and energy are ’millisecond’ and ’joule’, respectively.
Moreover, an available set Ht, from which to select a host for a task t, is generated randomly
and it is standardized for all algorithms that will be evaluated.

To evaluate the efficiency of OR-TMS, it is compared with our mentioned algorithm R-
TMS in [29], Reliable Min-Min Task Scheduling algorithm (R-MMTS), and Reliable Shortest
Task First Scheduling (R-STFS) algorithm [26]. All algorithms implement the physical in-
terference model and FRER, which makes the comparison more fair. The main difference
between OR-TMS and R-TMS lies in the fact that R-TMS does not support DPSO. In R-TMS,
a host is selected for a listed task as soon as all the incoming messages, which are scheduled

161

Chapter 8. Reliable Task and Message Scheduling Algorithms for Hybrid TSN Systems

on time-slots and sent via redundant routes, have been received. R-TMS then moves to the
next task until scheduling all tasks, while OR-TMS compares pre-selected solutions until the
optimized solution is achieved by using DPSO. Meanwhile, to reveal the performance im-
provements gained by considering the communication cost as a result of time-slot message
scheduling, we also compare OR-TMS with R-MMTS and R-STFS that do not consider the
cost due to the message transmissions. R-MMTS is a traditional heuristic algorithm, which
firstly computes the top-level of all tasks, and then it sorts the tasks depending on the task
that has the minimum top-level as the priority. The algorithm then assigns the sorted tasks
to the hosts that result in the shortest completion time, where the completion time is deter-
mined by adding the task execution time to the host’s ready time. The same procedure is
repeated for the next task until scheduling all tasks. R-STFS is a non-preemptive algorithm
and assigns a task to a host based on the shortest execution time, where the host that finishes
the task in less time gets the highest priority.

8.11.1 Message Scheduling of OR-TMS, R-TMS and R-MMTS Algorithms

To show the message scheduling for three of the compared algorithms (i.e. OR-TMS, R-TMS
and R-MMTS), we use the application graph mentioned in Figure 7.1. It is a simple graph
that shows sending of only three messages m21, m20 and m10 between three tasks (t2, t1 and
t0) so that we can show the scheduling of the messages on time slots in the simplest way
possible.

Figures 8.13a, 8.13b, and ?? show TT message scheduling over their disjoint redundant
routes for OR-TMS, R-WTA and R-MMTS algorithms, respectively. For example, Figure
8.13a shows that OR-TMS sends two replicas of m21 over two redundant routes: the first
route = {h5, ap2, ap1, h1} is used to send the first replica indicated by dark red color and
the second route = {h5, ap2, b1, wr1, ap1, h1} is used to send the second replica indicated
by light red color. Messages m20 and m10 are sent over their redundant routes in the same
way for all algorithms. We conclude that the replicas can be sent in parallel or even with
other messages at the same time, provided that the induced interference does not affect the
received signal strength (i.e. SINR) and makes it less than a threshold value (i.e. β). For
example in OR-TMS, the first replica of message m20 (dark blue message) is sent over its
path (h5 -> ap2) simultaneously with sending the first replica of message m10 (dark green
message) that uses its path (h1 -> ap1) in the time slot 44− 46. The second replica of message
m20 (light blue message) sends its first fragment in the time slot 46− 48 but it delays the rest
of the fragments until time slots 60− 64 because of the induced interference by sending the
first and the second replicas of message m10 making the time slots 48 − 60 infeasible for
sending message m20. Subsection 7.4.1 also gives a more illustrative example that shows the
scheduling of messages on time slots using the physical interference model.

Sending replicas through redundant routes increases the reliability in the event of faults,
but this causes an increase in the time required to schedule messages for all algorithms.
Based on the mechanism of scheduling tasks and messages in R-TMS, it initially schedules
task t2 on host h9. The best hosts to schedule tasks t1 and t0 based on the previous task (i.e.
t2) and according to Eq. 8.6 are h1 and h5, respectively. If we assume that OR-TMS uses the
same hosts to schedule the same tasks, we notice the ability of OR-TMS to take an overview
of all tasks and find out the best host for each task based on Eq. 8.17. We conclude that only
by rearranging the scheduling of the tasks on the hosts, we will find out that OR-TMS finds a
better solution than R-TMS. The solution of OR-TMS results in scheduling tasks t2, t1 and t0
on hosts h5, h1 and h9. The task and message scheduling solution of OR-TMS decreases the
message scheduling time to be 94 ms compared to 98ms in the R-TMS algorithm. Finding
more efficient solutions using OR-TMS is made possible by the growth in the number of

162

Chapter 8. Reliable Task and Message Scheduling Algorithms for Hybrid TSN Systems

tasks and the growth in the number of related messages in a more sophisticated system
model. R-MMTS schedules tasks on hosts that have a lower completion time, while the cost
of sending messages is not taken into account. We conclude that R-MMTS schedules t2, t1
and t0 tasks on h13, h1 and h5 hosts, thus, it increases the message scheduling time to be 110
ms.

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96 100 104 108 112

h5->ap2

ap2->ap1

ap1->h1

ap2->b1

b1->wr1

wr1->ap1

h1->ap1

ap1->ap2

ap2->ap3

ap3->h9

ap1->wr1

wr1->b1

b1->wr2

wr2->ap3

Time (ms)

OR-TMS TT Message Transmission Schedule

(A) TT message transmission schedule of OR-TMS.

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96 100 104 108 112

h9->ap3

ap3->ap2

ap2->ap1

ap1->h1

ap3->wr2

wr2->b1

b1->wr1

wr1->ap1

h1->ap1

ap1->ap2

ap2->h5

ap1->wr1

wr1->b1

b1->ap2

Time (ms)

R-TMS TT Message Transmission Schedule

(B) TT message transmission schedule of R-TMS.

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96 100 104 108 112

h13->ap4

ap4->ap3

ap3->ap2

ap2->ap1

ap1->h1

ap4->b2

b2->wr2

wr2->b1

b1->wr1

wr1->ap1

h1->ap1

ap1->ap2

ap2->h5

ap1->wr1

wr1->b1

b1->ap2

Time (ms)

R-MMTS TT Message Transmission Schedule

(C) TT message transmission schedule of R-MMTS.

FIGURE 8.13: TT message scheduling along dedicated time slots for OR-TMS,
R-TMS and R-MMTS algorithms.

163

Chapter 8. Reliable Task and Message Scheduling Algorithms for Hybrid TSN Systems

8.11.2 Experimental Results

Impact of Network Topology on Performance

Firstly, we carry out a set of experiments to observe the impact of the network topology and
the number of tasks on OR-TMS, R-TMS, R-MMTS and R-STFS. Figures 8.14 and 8.15 show
the impact of increasing the number of tasks in the grid (see Figure 4.4) and ring (see Figure
4.5) topologies. The task number is increased from 10 to 50 tasks with a step size of 10.

The deadline miss ratio, task completion time, network energy consumption, failure rate,
and cost (the lower the better) are growing for all compared algorithms due to the restricted
network resources and node availability that results from an increase in task numbers. Rel-
atively, the results in the grid topology are better than in the ring topology because the grid
contains more routes that allow to reduce the congestion in some routes and make a balance
in the distribution of the messages. In the grid topology, the messages can also be received
more quickly using short routes, and multiple messages can be transmitted simultaneously.
Additionally, a failure doesn’t stop the transmission of the message.

OR-TMS shows the best results because it continuously updates the best solution by up-
dating the best local position gained by each particle, and the best global position gained
by all particles. The updating of each particle’s position depends mainly on the cost func-
tion value that results from scheduling all tasks. Moreover, OR-TMS applies a load balance
mechanism which distributes a set of tasks over a set of hosts, with the aim of making the
task and message scheduling process more efficient. Load balancing can reduce comple-
tion time, energy consumption, and avoid unevenly overloading some nodes while leaving
other nodes idle. The same cost function is also used in R-TMS but in a different manner.
The function in R-TMS is used by every task gradually to select a suitable host until finish-
ing all tasks. R-TMS does not compare and make a comprehensive evaluation for different
solutions as in OR-TMS. Moreover, the load balancing is not applied in R-TMS. Thus, the
effectiveness of OR-TMS appears with the increase in the number of tasks. On the contrary,
R-MMTS and R-STFS do not support a comprehensive evaluation during the task schedul-
ing process regarding the energy, message routing, message arrival time, and workload
balancing. R-MMTS selects the host that has the minimum completion time to execute a
task, while R-STFS selects the shortest process for task execution. Therefore, R-MMTS and
R-STFS cause unbalanced load in some nodes, which consumes more energy and causes a
higher overall failure rates. They also do not benefit from the message routing during the
message scheduling process. Figure 8.14 illustrates that R-MMTS and R-STFS have mostly
similar performance in the grid topology, whereas R-MMTS deviates in producing less com-
pletion time than R-STFS when the task number increases. Figure 8.15 shows that when
increasing the number of tasks in the ring topology, R-MMTS cannot schedule tasks appro-
priately, and the completion time, energy consumption, failure rates and deadline miss ratio
of the system gets relatively high. As a result, as traffic loads increase, it performs the worst.

164

Chapter 8. Reliable Task and Message Scheduling Algorithms for Hybrid TSN Systems

1

1.5

2

2.5

3

3.5

4

4.5

10 2 0 30 40 5 0

C
O

M
P

LE
TI

O
N

 T
IM

E
(X

1
0

3
M

S)

TASK NUMBER

OR-TMS

R-TMS

R-MMTS

R-STFS

(A) System’s completion time.

0

5

10

15

20

25

30

35

40

45

50

10 20 30 40 50

EN
ER

G
Y

 C
O

N
SU

M
P

TI
O

N
 (

X
1

0
3
J)

TASK NUMBER

OR-TMS

R-TMS

R-MMTS

R-STFS

(B) Network energy consumption.

0

0.5

1

1.5

2

2.5

3

3.5

10 20 30 40 50

FA
IL

U
R

E
R

A
TE

 (
X

1
0

3
)

TASK NUMBER

OR-TMS

R-TMS

R-MMTS

R-STFS

(C) Failure rate.

0

1

2

3

4

5

6

7

8

1 0 20 30 40 50

C
O

ST
 (

X
1

0
3
)

TASK NUMBER

OR-TMS

R-TMS

R-MMTS

R-STFS

(D) Cost.

0

2

4

6

8

10

12

14

16

18

20

22

10 20 30 40 50

D
EA

D
LI

N
E

M
IS

S
R

A
TI

O

TASK NUMBER

OR-TMS

R-TMS

R-MMTS

R-STFS

(E) Deadline miss ratio.

FIGURE 8.14: Impact of the grid topology on performance of OR-TMS, R-TMS,
R-STFS and R-MMTS algorithms.

165

Chapter 8. Reliable Task and Message Scheduling Algorithms for Hybrid TSN Systems

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

10 20 30 40 5 0

C
O

M
P

LE
TI

O
N

 T
IM

E
(X

1
0

3
M

S)

TASK NUMBER

OR-TMS

R-TMS

R-MMTS

R-STFS

(A) System’s completion time.

0
5

10
15
20
25
30
35
40
45
50
55
60

10 20 30 40 50

EN
ER

G
Y

 C
O

N
SU

M
P

T
IO

N
 (

X
1

03
J)

TASK NUMBER

OR-TMS

R-TMS

R-MMTS

R-STFS

(B) Network energy consumption.

0

0.5

1

1.5

2

2.5

3

3.5

4

10 20 30 40 5 0

FA
IL

U
R

E
R

A
TE

 (
X

1
0

3
)

TASK NUMBER

OR-TMS

R-TMS

R-MMTS

R-STFS

(C) Failure rate.

0

1

2

3

4

5

6

7

8

9

10

10 20 30 40 50

C
O

ST
 (

X
1

0
3
)

TASK NUMBER

OR-TMS

R-TMS

R-MMTS

R-STFS

(D) Cost.

0

2

4

6

8

10

12

14

16

18

20

22

10 20 30 40 50

D
EA

D
LI

N
E

M
IS

S
 R

A
TI

O

TASK NUMBER

OR-TMS

R-TMS

R-MMTS

R-STFS

(E) Deadline miss ratio.

FIGURE 8.15: Impact of the ring topology on performance of OR-TMS, R-TMS,
R-STFS and R-MMTS algorithms.

Impact of Deadline on the Task Scheduling Miss Ratio

Secondly, we carry out experiments as shown in Figure 8.16 to observe the impact of the
task deadline. Here, the number of tasks is set as 30, the task deadline is increased from 500
ms to 1200 ms. Figure 8.16 shows that the deadline miss ratio of the compared algorithms
is dropping when increasing the task deadline. OR-TMS adopts an optimized solution to
execute the tasks and it makes a comprehensive evaluation of the proposed solutions. If
one of the tasks in that solution misses its deadline, then this solution will be considered as
an unsuccessful task scheduling and it is skipped when generating the best global solution.
R-TMS adopts the miss deadline condition, but this condition is applied for each task indi-
vidually. This means if a task in R-TMS is scheduled to a host, this scheduling may lead to

166

Chapter 8. Reliable Task and Message Scheduling Algorithms for Hybrid TSN Systems

an increase in the time required for the outgoing messages to arrive at the next dependent
task, thus, the next task may miss its deadline. R-MMTS and R-STFS work without consid-
ering the deadline condition. Hence, OR-TMS shows the least deadline-miss ratio, which is
11.25% and 35% in the grid and ring topologies, respectively. R-TMS misses the deadlines by
42.5% and 89.37% in the grid and ring topologies, respectively. Similarly, R-MMTS misses
the deadlines by 63.75% in the grid topology and 100% in the ring topology. R-STFS misses
the deadlines by 74.73% and 99.3% in the grid and ring topologies, respectively. We observe
better results in the grid topology than in the ring topology for all compared algorithms,
because the grid topology has more routes to forward messages, which leads to a reduced
possibility of miss the deadlines.

Figure 8.16 shows that the lower the deadline, the more difficult it is for all algorithms
to find solutions that finish all tasks before the deadlines. We recognize the significance of
considering the wireless TSN’s limitations on simultaneous messaging or power consump-
tion. The difficulty of finding solutions increases with the increase in the number of tasks
and messages in a network with limited resources. However, we conclude that OR-TMS is
able to find solutions for the 20 tested system models, despite the low task deadline. On
the other hand, R-MMTS, R-STFS and R-TMS are unable to find solutions with a deadline of
less than 800 ms in the ring topology.

0

5

10

15

20

25

500 600 700 800 900 1000 1100 1200

D
e

ad
lin

e
 M

is
s

 R
at

io

Deadline (ms)

OR-TMS

R-TMS

R-MMTS

R-STFS

(A) Grid topology.

0

5

10

15

20

25

500 600 700 800 900 1000 1100 1200

D
ea

d
lin

e
 M

is
s

R
at

io

Deadline (ms)

OR-TMS

R-TMS

R-MMTS

R-STFS

(B) Ring topology.

FIGURE 8.16: Impact of deadline on the task scheduling miss ratio of OR-
TMS, R-TMS, R-STFS and R-MMTS algorithms.

Impact of the Runtime of the System on the Network Lifetime

In order to study the impact of the number of times the system is running on the network
lifetime, 30 tasks with 2000 ms deadline are tested from 0 to 70 times. The algorithms are
used in grid and ring networks.

Figure 8.17 shows the number of failed nodes when increasing the number of times the
system is running (after scheduling). When a node runs out of all energy, it is deemed to
have failed. We observe that OR-TMS has the longest network lifetime because the number
of the failed nodes is the least compared with the other algorithms. Similar to the previous
experiments, OR-TMS consumes the least amount of energy because the messages are trans-
mitted on the shortest routes, so it shows the best results. Moreover, the hosts, which are
chosen to schedule tasks in the selected solution, are scheduled in a way that minimizes the
resource consumption of the traversing messages.

In OR-TMS, the average failed nodes (i.e. the percentage of nodes that failed during an
experiment) are 3.76% and 9.98% in the grid and ring topologies, respectively. The average
failed nodes for R-TMS are 4.68% and 12.17% in the grid and ring topologies, respectively.
Likewise, the average failed nodes for R-MMTS are 7.62% and 12.38% in the grid and ring

167

Chapter 8. Reliable Task and Message Scheduling Algorithms for Hybrid TSN Systems

topologies, respectively. For R-STFS, the average failed nodes are 6.95% and 11.73%. In the
ring topology, all algorithms resulted in more failed nodes compared with the grid topology
because the ring networks require more energy to schedule all tasks.

0

1

2

3

4

5

6

7

8

9

10

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70

Fa
ile

d
 N

o
d

es

Number of times the system is running

OR-TMS

R-TMS

R-MMTS

R-STFS

(A) Grid topology.

0

1

2

3

4

5

6

7

8

9

10

11

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70

Fa
ile

d
 N

o
d

es

Number of times the system is running

OR-TMS

R-TMS

R-MMTS

R-STFS

(B) Ring topology.

FIGURE 8.17: Impact of the number of running times on the network lifetime
using OR-TMS, R-TMS, R-STFS and R-MMTS algorithms.

Convergence Rate of OR-TMS

Finally, the convergence rate of OR-TMS is investigated. The number of iterations the algo-
rithm requires to progress toward a converged and uniformly optimized solution is known
as the convergence rate. Therefore, 30, 40, and 50 tasks with 2000 ms deadline for each task
are tested. The step size of the experiments is set as 5.

As shown in Figure 8.18 with a population of 10 particles, OR-TMS begins to converge
after 15, 20, and 35 times to schedule 30, 40, and 50 tasks, respectively. We conclude that OR-
TMS needs more iterations in an ascending trend when increasing the number of tasks that
are required to be scheduled, besides more iterations as the size of the population increases.

168

Chapter 8. Reliable Task and Message Scheduling Algorithms for Hybrid TSN Systems

6.5

7

7.5

8

8.5

9

0 5 10 15 20 25 30 35 40 45 50 55

C
o

st
 (

x1
0

3
)

Iterations

OR-TMS

(A) Tasks = 30.

8.5

9

9.5

10

10.5

11

11.5

0 5 10 15 20 25 30 35 40 45 50 55

C
o

st
 (

x1
0

3
)

Iterations

OR-TMS

(B) Tasks = 40.

8

9

10

11

12

13

0 5 10 15 20 25 30 35 40 45 50 55

C
o

st
 (

x1
0

3
)

Iterations

OR-TMS

(C) Tasks = 50.

FIGURE 8.18: Convergence rate of OR-TMS.

8.12 OR-TMS Based Metascheduler

In time-triggered systems, adaptation is performed using the metascheduling, which is used
to ensure temporal predictability and fault tolerance by activating another schedule for fault
recovery. Metascheduling approaches to WirelessTSN present difficulties in estimating and
storing the resulting scheduling at design time. A large number of schedules causes a state
space explosion problem that can be managed using a reconvergence method. In this sec-
tion, a metascheduler is proposed to solve a new scheduling problem for each adaptation
scenario using OR-TMS, resulting in a Multi-Schedule Graph (MSG) that combines the re-
peated schedules. The proposed metascheduler computes the MSG using the input models
at design time. It repeatedly invokes OR-TMS to solve a scheduling problem constructed by
the metascheduler. The resulting schedule is inserted into the MSG.

The hybrid modelling approach mentioned in Chapter 4 is given to the OR-TMS based
algorithm, which generates a schedule that satisfies resource limitations and precedence
constraints. The preference for choosing the schedule depends on quality metrics and input
parameters that include the energy consumption, failure rates, and the time when all tasks
are finished.

8.12.1 Metascheduler with Reconvergence of Repeated Schedules

The suggested metascheduler provides schedule adaptation in response to each failure event
f r ∈ Fr. For example, as shown in Figure 8.19, for the case that a single-failure (e.g. f rn1)
or a two-failure (e.g. f rn1l1) event occurs, a new schedule is generated to allow adapting
to the failure event. The metascheduler calculates these new schedules, resulting in a MSG

169

Chapter 8. Reliable Task and Message Scheduling Algorithms for Hybrid TSN Systems

covering the occurrence of the specified failure events. The output MSG is used to determine
the possibility of switching schedules in the event of a failure event during the operation of
the WirelessTSN.

S0

S1

frn1

S2

S4

frl1

S3

frn2

frl1n2

S5

frn2l1 frn1l1

Schedules of

single-failure

events

Schedules of

two-failure

events

FIGURE 8.19: An example of a MSG with reconvergence of repeated sched-
ules.

The metascheduler in Figure 8.20 is used to build an MSG by continually invoking the
OR-TMS. To begin, the original hybrid system model (i.e. GArc and GApp) is utilized to
create a base schedule S0, which is then added as the MSG’s root node. A set of failure
events is calculated using the formula in Equation 8.23, where CoCombr is the number of
failed component combinations, r is the number of failed components, and Co is the total
number of components in the network, where a component represents a wireless node or
link. For example, if the total number of components in the WirelessTSN is 20 (i.e., the total
links and nodes are 20), and the number of failed components is 1 (i.e., r = 1), the number of
failed component combinations is 20!

1!(20−1)! = 20. In the same way, with r = 2, the number of
failed component combinations is 190. Two sets (Set1 and Set2) are built in this work, one for
one failed component and the other for two failed component combinations. The existing
sets are merged into a single event set to index all combinations beginning with Set1, which
was created from S0, where all events at Set1 are defined from S0.

CoCombr =
Co!

r!(Co− r)!
(8.23)

The initial failure event is picked and deleted from the set in the metascheduling process,
and it is used to change the original GArc (i.e. G′Arc) in the case of a failed link f rl or a failed
node event f rn. The modified system model m′ is then sent to OR-TMS to solve the new
scheduling problem.

The metascheduler checks if the computed schedule S′ is valid. The schedule is consid-
ered valid if all tasks are finished by their deadlines; otherwise, it is deemed invalid. The
metascheduler calls the next event in the set if the schedule is invalid.

Each valid schedule is compared to the MSG’s existing schedules. If the MSG contains
a repeated schedule, the schedules are converged, and a new transition (i.e. edge) is con-
structed from the previous schedule (i.e. previous state). If the schedule does not exist, a
new transition is produced from the previous schedule and it is added to the MSG. The
next event is called by the metscheduler, and the metscheduling procedure is repeated. The
metascheduler begins calling the first of the two-failure combination sets after processing all
failures in the single-failure combination set. After calling all events, the MSG is completely
formulated, and the number of valid, invalid, and stored schedules is calculated. Thus, con-
verged schedules that exist on multiple schedule tree routes merge the transitions and then

170

Chapter 8. Reliable Task and Message Scheduling Algorithms for Hybrid TSN Systems

reduce the size of the MSG.

OR-TMS based metascheduler with reconvergence of
repeated schedules in MSG

OR-TMS based metascheduler with reconvergence of
repeated schedules in MSG

Set (Set1) of the single failed link/node
combinations ([{fn1}, {fn2}, … , {fl1}, {fl2}, … ,

CoComb1])

call the next combination (Comb)

Model modification (Comb)Original
App.graph

 (GApp)

Original
Arch.graph

(GArc) G‘Arc GApp

Invoke OR-TMS scheduler

Modified model (m‘)

Original model (m)

S‘ is exist
In MSG?

add S‘ to MSG as new state, create transition
from previous state to the new state S‘

NO

Set (Set2) of the two failed link/node combinations
 ([{fn1, fn2}, {fn1, fn3}, … ,{fn1, fl1}, {fn1, fl2}, …, CoComb2])

Schedule (S0)
 is valid?

Schedule (S0)

Create Meta-Schedule Graph
(MSG), add S0 to MSG as root

state

EndNO

YES

Schedule (S‘) is
valid?

Model initialization

YES

Increase number of valid
schedules (nschedules)

Increase number of valid schedules (nschedules)

create transition
from previous state

to the existing S‘
YES

Add Set2 to Set1 to be index
of all possible combinations

Start

Schedule (S‘)

FIGURE 8.20: Flowchart of the OR-TMS based metascheduler.

8.12.2 Evaluation of the Proposed Metascheduler

The grid and ring network topologies in Figures 4.4 and 4.5 are applied in our experimental
setup. The weighting parameters (θ, γ and δ) of Eq. 8.17 are set to 0.1, 0.45, and 0.45, respec-
tively to give more importance to makespan when finding a schedule. The TT task deadline
is 1500 ms, and the task periods are chosen at random from 100 and 200 ms. The commu-
nication message size is either 100 or 200 bytes, and the message takes either 3 or 6 ms to
transmit. The task execution time is between [200, 250] ms, and the message routing time
is between [20, 25] ms. The OR-TMS based metascheduler is compared against metasched-
ulers based on R-TMS, R-MMTS, and R-STFS algorithms to determine its efficiency.

Evaluation of the MSG size reduction in relation to increasing task numbers

This subsection shows the efficiency of the proposed OR-TMS based metascheduler in re-
convergence of repeated schedules in the MSG. In the ring and grid topologies with a 1500
ms deadline, Figure 8.21 demonstrates the ratio of reducing the size of the MSG when in-
creasing the number of tasks. To show how MSG removes repeated schedules, the reduction
ratio is defined in Equation 8.24.

171

Chapter 8. Reliable Task and Message Scheduling Algorithms for Hybrid TSN Systems

MSG size reduction ratio =
1− MSG size

number o f valid schedules
x100% (8.24)

When two failure events are evaluated, the reduction ratio is larger than when single
failure events are considered for both topologies. In the case of two-failure events, the ratio
jumped to 46% compared to single-failure events in the grid topology. Similarly, in the ring
topology, the ratio increased to 38%. The reason for this is that as the number of failed
component combinations grows, so does the size of the MSG. While the reduction ratio in
the ring topology is greater than that in the grid topology, this is because of the structure of
the rings and the reduced number of available paths as compared to the grids, which leads
to the similarity of many valid schedules even in the presence of failures.

Figure 8.21 clearly demonstrates that when the number of tasks increases, the MSG size
reduction ratio decreases. The reason for this is that as the number of tasks to be scheduled
grows, it becomes increasingly difficult to create effective schedules.

0

20

40

60

80

100

10 20 30 40 50

M
S

G
 s

iz
e

 r
e

d
u

ct
io

n
 r

a
ti

o
 (

%
)

Task number

Single-failure event in
the grid topology

Two- failure event in
the grid topology

Single-failure event in
the ring topology

Two- failure event in
the ring topology

FIGURE 8.21: MSG size reduction ratio in relation to increasing task numbers.

Evaluation of the MSG size reduction in relation to increasing deadline values

For 30 tasks distributed in the ring and grid topologies, the MSG size reduction ratio is
shown in Table 8.8 against the task deadlines in milliseconds. All tasks of the application
model have the same deadline, which varies between 1100 and 1900 ms. The size of the
MSG is greatly reduced when the ring and grid topology are re-converged for single and
two-failure events. The MSG size is reduced while still keeping a valid schedule.

When the task deadline is fixed, the lowered ratio for two-failure events is found to be
larger than for single-failure events. Similarly, ring topologies have a larger ratio than grid
topologies. It is assumed that as deadlines increase, valid schedules increase as well, raising
the MSG size reduction ratio. However, if an increase in deadlines leads in a considerable
increase in MSG size compared to an increase in valid schedules, the MSG size reduction
ratio will be smaller.

172

Chapter 8. Reliable Task and Message Scheduling Algorithms for Hybrid TSN Systems

TABLE 8.8: MSG size reduction ratio in relation to increasing deadline values.

MSG size reduction
ratio (%) 1100 1300 1500 1700 1900

Single-failures in grid 50% 50% 70% 67% 53%

Two-failures in grid 59% 65% 73% 72% 75%

Single-failures in ring 94% 84% 46% 65% 74%

Two-failures in ring 98% 98% 93% 94% 96%

The effect of task load on validity

We ran a series of tests to see how task load and network topology affect the metascheduler,
which is based on OR-TMS, R-TMS, R-MMTS, and R-STFS. The validity of the grid and ring
topologies in Figure 8.22 is affected by the number of tasks, where the validity formula is
defined in Equation 8.25. The number of tasks has been increased from 10 to 50, with a step
size of 10 and a deadline of 1500 ms.

Validity =
number o f valid schedules

number o f valid and invalid schedules
(8.25)

Due to limited network resources and host availability, increasing the number of tasks
reduces the task’s capacity to be completed before its deadline, resulting in an increase in
the number of invalid schedules and a decrease in the validity of all compared algorithms.

The task scheduling process to hosts is complex and depends on the number of messages
flowing from the parent tasks. Moreover, differences in the structure of application models
may affect communication costs by scheduling more than one task on the same host, which
may lead to higher validity with a larger number of tasks. The R-MMTS in Figure 8.22a,
for example, is observed to schedule 50 tasks with higher validity than 40 tasks. A similar
behavior can be observed for R-TMS in Figure 8.22d.

When single-failure events are present, the OR-TMS based metascheduler outperforms
those based on R-STFS, R-MMTS, and R-TMS by 44%, 49%, and 57%, respectively, in the
grid topology scenarios. With two-failure events, it also demonstrates better validity than
R-STFS, R-MMTS, and R-TMS by 40%, 41%, and 56%, respectively.

In the ring topology when single-failure events are present, a OR-TMS based metasched-
uler outperforms those based on R-STFS, R-MMTS, and R-TMS by 32%, 14%, and 24%, re-
spectively. It also outperforms R-STFS, R-MMTS, and R-TMS in terms of validity, by 7%,
4%, and 18%, respectively, with two-failure events.

Because it continuously updates the solution by updating the best local position achieved
by each particle and the best global position gained by all particles, the metascheduler based
on OR-TMS produces better results. A similar cost algorithm is utilized in R-TMS, but it se-
lects an appropriate host until all of the tasks are completed. R-TMS does not assess and
evaluate different solutions in the same way that OR-TMS does. R-MMTS and R-STFS do
not profit from message routing during the message scheduling process and cannot provide
the individual advantage of nodes.

Due to its efficiency in regulating parameters and quickness in discovering solutions,
the metascheduler based on OR-TMS provides high validity stability with one or two fail-
ure events in the ring or grid topologies besides its overall effectiveness. Although the

173

Chapter 8. Reliable Task and Message Scheduling Algorithms for Hybrid TSN Systems

metascheduler based on OR-TMS in Figure 8.22 has a smaller advantage in the ring topol-
ogy than in the grid topology, this is because there are fewer valid solutions, particularly
when there are several failures.

The effect of increasing deadline values on validity

In the grid and ring topologies, increasing the value of deadlines in Figure 8.23 has an impact
on the validity. The number of tasks has been increased to 30, and the deadline has been
extended from 1100 to 1900 ms with a 200 ms step size.

When single-failure events are present, the OR-TMS based metascheduler outperforms
those based on R-STFS, R-MMTS, and R-TMS by 76%, 62%, and 62%, respectively, in the
grid topology. With two-failure incidents, it also demonstrates 70%, 47%, and 65% better
validity than R-STFS, R-MMTS, and R-TMS, respectively.

In the ring topology when single-failure events are present, the OR-TMS based metasched-
uler has better validity than those based on R-STFS, R-MMTS, and R-TMS by 38%, 22%, and
1%, respectively. With two-failure events, it also outperforms R-STFS and R-TMS by 6% and
4%, respectively, in terms of validity. When the deadline starts at 1500 ms, OR-TMS shows
better validity than R-MMTS.

In the metascheduler based on OR-TMS, if a task in a solution misses its deadline, that
solution is considered an unsuccessful task assignment and is skipped when the global best
solution is constructed. The miss deadline clause is adopted by the R-TMS, although it
applies to each task separately. This means that scheduling a task to a host in R-TMS may
lengthen the time required for outgoing communications to reach the following child task,
causing the next task to miss its deadline. The R-MMTS and R-STFS work without regard
for the requirement of a deadline. As a result, despite the short deadlines for the tasks, we
conclude that OR-TMS is capable of finding solutions.

174

Chapter 8. Reliable Task and Message Scheduling Algorithms for Hybrid TSN Systems

0

20

40

60

80

100

120

10 20 30 40 50

V
al

id
it

y

Task number

R-STFS

R-MMTS

R-TMS

OR-TMS

(A) Single failure/Gird topology.

0

20

40

60

80

100

120

10 20 30 40 50

V
al

id
it

y

Task number

R-STFS

R-MMTS

R-TMS

OR-TMS

(B) Two failure/Gird topology.

0

20

40

60

80

100

120

10 20 30 40 50

V
al

id
it

y

Task number

R-STFS

R-MMTS

R-TMS

OR-TMS

(C) Single failure/Ring topology.

0

20

40

60

80

100

120

10 20 30 40 50

V
al

id
it

y

Task number

R-STFS

R-MMTS

R-TMS

OR-TMS

(D) Two failure/Ring topology.

FIGURE 8.22: Effect of increasing task numbers on validity.

0

20

40

60

80

100

120

1100 1300 1500 1700 1900

V
al

id
it

y

Deadline

R-STFS

R-MMTS

R-TMS

OR-TMS

(A) Single failure/Gird topology.

0

20

40

60

80

100

120

1100 1300 1500 1700 1900

V
al

id
it

y

Deadline

R-STFS

R-MMTS

R-TMS

OR-TMS

(B) Two failure/Gird topology.

0

20

40

60

80

100

120

1100 1300 1500 1700 1900

V
al

id
it

y

Deadline

R-STFS

R-MMTS

R-TMS

OR-TMS

(C) Single failure/Ring topology.

0

20

40

60

80

100

120

1100 1300 1500 1700 1900

V
al

id
it

y

Deadline

R-STFS

R-MMTS

R-TMS

OR-TMS

(D) Two failure/Ring topology.

FIGURE 8.23: Effect of increasing deadline values on validity.

175

Chapter 8. Reliable Task and Message Scheduling Algorithms for Hybrid TSN Systems

TABLE 8.7: A trace of DPSO-based OR-TMS algorithm

Iteration 1 Position Best Local Position Velocity Cost
p1 7 17 18 15 2 7 17 18 15 2 3 -2 -3 -1 2 1231

p2 10 17 13 18 1 10 17 13 18 1 0 -2 -2 -1 -3 1210

p3 6 12 13 15 1 6 12 13 15 1 2 -1 1 0 -1 1120

p4 10 4 13 15 2 10 4 13 15 2 -2 -3 -2 3 -2 1107

p5 8 14 18 4 1 8 14 18 4 1 2 1 0 2 -2 1231

p6 8 14 20 6 9 8 14 20 6 9 3 3 2 -3 -3 1176

p7 6 14 5 15 1 6 14 5 15 1 0 -2 -1 3 -1 1167

p8 10 17 5 6 1 10 17 5 6 1 2 3 0 -3 -1 1170

p9 14 4 5 6 1 14 4 5 6 1 -2 -3 0 2 -2 1124

p10 6 17 20 15 1 6 17 20 15 1 0 2 -2 -2 -3 1233

Best Global Position at Iteration 1 = {10, 4, 13, 15, 2}
Iteration 2 Position Best Local Position Velocity Cost

p1 14 12 5 15 2 14 12 5 15 2 7 -8 -10 0 1 1141

p2 10 12 13 15 1 10 12 13 15 1 0 -8 -1 -5 0 1046

p3 14 12 13 15 1 14 12 13 15 1 6 -2 -1 0 0 1044

p4 10 4 13 15 2 10 4 13 15 2 1 0 0 0 0 1107

p5 8 12 5 4 1 8 12 5 4 1 1 -3 -9 0 0 1068

p6 14 12 5 15 9 14 12 5 15 9 5 -3 -11 7 -1 1063

p7 8 4 20 15 1 6 14 5 15 1 2 -10 14 -2 0 1222

p8 10 12 18 15 1 10 12 18 15 1 0 -8 11 7 0 1144

p9 10 4 18 15 1 14 4 5 6 1 -4 2 12 11 0 1222

p10 10 12 5 15 1 10 12 5 15 1 4 -8 -11 1 0 1114

Best Global Position at Iteration 2 = {14, 12, 13, 15, 1}
Iteration 3 Position Best Local Position Velocity Cost

p1 14 4 5 15 2 14 12 5 15 2 0 -7 0 0 0 1162

p2 14 4 13 10 1 10 12 13 15 1 3 -7 0 -4 0 1154

p3 14 12 13 15 1 14 12 13 15 1 0 -1 0 0 0 1044

p4 14 12 13 15 2 14 12 13 15 2 4 6 0 0 0 1043

p5 14 12 5 15 1 8 12 5 4 1 5 -2 0 9 0 1143

p6 14 12 5 15 2 14 12 5 15 9 0 -2 0 0 -7 1141

p7 14 12 13 15 1 14 12 13 15 1 4 7 -7 -1 0 1044

p8 14 4 20 15 1 10 12 18 15 1 3 -7 2 0 0 1200

p9 14 12 13 15 1 14 12 13 15 1 3 8 -5 1 0 1044

p10 10 4 5 15 1 10 12 5 15 1 0 -7 0 0 0 1167

Best Global Position at Iteration 3 = {14, 12, 13, 15, 2}

176

Chapter 8. Reliable Task and Message Scheduling Algorithms for Hybrid TSN Systems

Iteration 4 Position Best Local Position Velocity Cost
p1 14 4 5 15 2 14 12 5 15 2 0 2 2 0 0 1162

p2 14 4 13 10 1 10 12 13 15 1 0 2 0 1 0 1154

p3 14 12 13 15 1 14 12 13 15 1 0 0 0 0 0 1044

p4 14 17 13 15 2 14 12 13 15 2 0 5 0 0 0 1077

p5 14 12 5 15 1 8 12 5 15 1 0 -1 2 0 0 1143

p6 14 12 5 15 2 14 12 5 15 9 0 -1 2 0 0 1141

p7 14 13 5 15 1 14 12 13 15 1 0 2 -6 0 0 1088

p8 14 4 18 15 1 10 12 18 15 1 0 2 -2 0 0 1202

p9 14 13 5 15 1 14 12 13 15 1 0 2 -4 0 0 1088

p10 10 4 5 15 1 10 12 5 15 1 1 2 2 0 0 1167

Best Global Position at Iteration 4 = {14, 12, 13, 15, 2}
Iteration 5 Position Best Local Position Velocity Cost

p1 14 12 13 15 2 14 12 13 15 2 0 8 9 0 0 1043

p2 7 12 13 15 1 10 12 13 15 1 -7 8 0 3 0 1117

p3 14 12 13 15 1 14 12 13 15 1 0 0 0 0 0 1044

p4 14 4 13 15 2 14 12 13 15 2 0 -10 0 0 0 1091

p5 10 12 13 15 1 10 12 13 15 1 -4 0 9 -3 0 1046

p6 14 12 13 15 9 14 12 13 15 9 0 0 9 0 13 944

p7 14 12 13 15 1 14 12 13 15 1 0 -1 6 0 0 1044

p8 7 12 13 15 1 7 12 13 15 1 -7 8 -6 0 0 1117

p9 14 12 13 15 1 14 12 13 15 1 0 -1 6 0 0 1044

p10 14 12 13 15 1 14 12 13 15 1 4 8 9 0 0 1044

Best Global Position at Iteration 5 = {14, 12, 13, 15, 9}
Iteration 6 Position Best Local Position Velocity Cost

p1 14 13 20 15 9 14 13 20 15 9 0 1 7 0 4 994

p2 10 13 18 15 9 10 12 13 15 1 3 1 0 2 5 1065

p3 14 12 13 15 9 14 12 13 15 9 0 0 0 0 5 944

p4 14 17 13 15 9 14 17 13 15 9 0 11 0 0 4 993

p5 8 12 20 15 9 10 12 13 15 1 -1 0 7 -2 5 1132

p6 14 12 20 15 9 14 12 13 15 9 0 0 7 0 0 1052

p7 14 12 18 15 9 14 12 13 15 1 0 0 5 0 5 1056

p8 6 13 5 15 9 7 12 13 15 1 -1 1 -5 0 5 1119

p9 14 12 18 15 9 14 12 13 15 1 0 0 5 0 5 1056

p10 14 12 20 15 9 14 12 13 15 1 0 0 7 0 5 1052

Best Global Position at Iteration 6 = {14, 12, 13, 15, 9}

177

Chapter 8. Reliable Task and Message Scheduling Algorithms for Hybrid TSN Systems

Iteration 32 Position Best Local Position Velocity Cost
p1 14 12 13 15 9 14 12 13 15 9 0 0 0 0 0 944

p2 14 12 13 15 9 14 12 13 15 9 0 0 0 0 0 944

p3 14 12 13 15 9 14 12 13 15 9 0 0 0 0 0 944

p4 14 12 13 15 9 14 12 13 15 9 0 0 0 0 0 944

p5 14 12 13 15 9 14 12 13 15 9 0 0 0 0 0 944

p6 14 12 13 15 9 14 12 13 15 9 0 0 0 0 0 944

p7 14 12 13 15 9 14 12 13 15 9 0 0 0 0 0 944

p8 14 12 13 15 9 14 12 13 15 9 0 0 0 0 0 944

p9 14 12 13 15 9 14 12 13 15 9 0 0 0 0 0 944

p10 14 12 13 15 9 14 12 13 15 9 0 0 0 0 0 944

Best Global Position at Iteration 32 = {14, 12, 13, 15, 9}

178

Chapter 9

Conclusion and Future Directions

This chapter highlights the conclusion of the thesis and potential future work.

9.1 Conclusion

This thesis intends to map the TSN features to wireless nodes and hybrid systems due to the
extensive deployment of hybrid systems including wirebound and wireless time-triggered
networks and the key features that are introduced by the TSN task group for Ethernet-
based infrastructure. A TSN simulation framework that includes simulation models of TSN
switches and end nodes in wired and wireless TSN domains is used to assess the suggested
models and algorithms. All incorporated TSN nodes share a global time using an improved
synchronization protocol based on IEEE 802.1AS. The synchronized nodes distinguish dif-
ferent types of traffic (i.e. TT, AV and BE traffic) using time-aware shaping (IEEE 802.1Qbv),
which gives higher priority for TT traffic at the output egress ports. To support the reliability
of the system, TSN-enabled nodes replicate the data transmission (IEEE 8021.1CB) through
redundant paths. A common system model is provided for all introduced protocols and
presented algorithms to synchronize and schedule the services.

An improved version of the standard IEEE 802.1AS time protocol has been presented
to address the challenges of wireless environments caused by deterministic and random
delays. The asymmetric delays can be produced as a result of several factors like channel
characteristics, noise, channel fading, variable data rate and using different wireless tech-
nologies. Therefore, by computing the changeable delays in dynamic TSN hybrid networks
and considering the frequency drift between the slave and grandmaster clocks, a formula to
calculate accurate values for the link delay is derived. This synchronized time is used for the
scheduling and filtering in our simulation framework. In addition, the proposed protocol
deals with the dynamic and asymmetric behavior of mobile hybrid networks by applying
a PDD filter, which is used to exclude the outlier behavior in the wireless networks as a
result of mobility and traffic congestion. As shown by the simulation results, the proposed
protocol outperforms the standard IEEE 802.1AS and provides a significant gain in terms of
synchronization precision.

To find a feasible task and message scheduling solution for WirelessTSN networks, this
thesis presents the TMS algorithm which considers link scheduling, routing and interference
constraints in one algorithm. It supports multicast traffic between periodic and inter-flow-
dependent computational tasks. TMS targets to find solutions that fulfill the task deadlines
with the least possible makespan.

In order to evaluate TMS, several algorithms with several scheduling strategies are im-
plemented. The simulation results show the impact of the network topology and the number
of tasks on metrics like makespan, consumed energy and failure rate, besides, the impact of
changing wireless interference parameters (i.e. α, β) on the measured metrics. Moreover, the

179

Chapter 9. Conclusion and Future Directions

results show how varying the deadline affects the deadline miss cases. TMS outperforms in
all experimental tests, the reason is that TMS is a comprehensive and adaptive algorithm
that selects message forwarding routes that avoid the effect of the signal interference and
fulfill the period and deadline constraints simultaneously. In contrast, the other compared
algorithms select routes either to avoid the congested traffic or use off-line solutions for task
scheduling without considering the link scheduling during the message transmissions. This,
in turn, leads to an increased load on some wireless links or missing the deadlines.

This thesis presents the R-TMS algorithm that aims to maximize the reliability and ful-
fill the deadlines of WirelessTSN networks. It supports the redundant FRER during the
time slot message scheduling. Moreover, R-TMS employs a task cost definition, which de-
pends on the consumed energy, failure rate and message arrival time of each task t at every
available host h to find the best host that satisfies the cost definition. The reliability of net-
work nodes is used as an input to the RBD diagram that computes the reliability of the
communication messages. The conditional precedence restrictions are then used to com-
pute the reliability of the tasks. In the end, the reliability of the system is considered as
the reliability of the leaf task in the system. The experimental findings demonstrate that,
as compared to state-of-the-art TT algorithms that do not enable redundant techniques for
their task scheduling solutions, R-TMS greatly increases the system’s reliability.

A novel optimized reliable task and message scheduling algorithm OR-TMS is also pro-
posed for WirelessTSN networks. In this algorithm, each unscheduled task is firstly sorted
according to the idea of the least top-level. The task completion time, failure rates and total
energy consumption are considered as optimization goals. Therefore, a DPSO algorithm is
constructed to represent all these goals as a multi-objective optimization problem and for-
mulates them as a utility function used to improve a global optimized solution for the task
and message scheduling problem. To evaluate the proposed algorithm, we conduct exten-
sive simulation experiments to compare it with our prior R-TMS and other related algo-
rithms. The simulation results show that OR-TMS leads to significant results in the network
lifetime, task completion time, deadline miss cases and failure rates in different topologies.
In the experiments, the results show also the impact of varying deadlines and the frequent
use of network nodes on the deadline miss ratio and network lifetime, respectively. OR-TMS
outperforms in all tests because of depending on a bio-inspired algorithm that iteratively
tries to find the best possible solutions until the cost function value is converged.

A metascheduler based on OR-TMS that computes a meta schedule graph is provided.
The proposed metascheduler controls the state-space explosion of the resulting multi-schedule
graph because of increasing numbers of failure events by merging repeated schedules. Dif-
ferent scenarios are used to assess the proposed metascheduler under various failure events.
The results show a reduction in the size of the multischedule graphs by applying inputs with
different deadline values and different numbers of tasks. Furthermore, the validity provided
by the proposed metascheduler, which is the ratio of valid to invalid schedules, is improved
when compared to R-TMS, R-MMTS, and R-STFS algorithms.

On the contrary, the redundant routes used in R-TMS and OR-TMS algorithms tend to in-
crease the time and the energy costs compared with fault-free systems. However, by choos-
ing task scheduling solutions that meet their deadlines, it solves the issue of the lengthening
task completion time. Hence, the increased time will not affect the efficiency of WirelessTSN
networks.

180

Chapter 9. Conclusion and Future Directions

9.2 Future Work

Many concepts and features can be added or extended in future work. Therefore, possible
direction for future work can be summarized as follows:

• Selecting the best path through different paths between the grandmaster and slave
clocks, or using multiple grandmaster clocks, can be considered. Furthermore, a TSN-
enabled node can belong to multiple gPTP domains, where each gPTP domain exe-
cutes the BMCA independently and each domain has its own grandmaster, where one
acts as an active grandmaster, and the others are backup grandmasters. The backup
grandmaster operates as a cold-standby where it does not dispatch SYNC messages
or as a hot-standby where it operates with the active grandmaster simultaneously. Re-
gardless of the operation mode, the backup grandmaster synchronizes to the active
grandmaster.

• Consideration of multiple TT channels, where the wireless link can be used simulta-
neously in both directions, helps improve data delivery.

• Using primary/backup technique to support fault-tolerant task scheduling in WirelessTSN
networks. FRER supports fault-tolerant message delivery, but the primary/backup
technique is used to execute tasks in backup hosts in case the primary hosts fail.

• The task and message scheduling solutions in this thesis are only proposed for TT
messages, while other types of traffic (i.e. AV and BE traffic) are sent when no TT
traffic is scheduled. Therefore, as a next step, we can incorporate different types of
traffic at the same network medium and study the impact of scheduling all traffic at
the output egress ports on the end-to-end delay and deadline fulfilment.

• Several fault categories can be addressed (intermittent and transient faults) to evaluate
the reliability of the system using reliable task and message scheduling algorithms.

• The TSN simulation framework can use a centralized configuration model to deploy
configuration and management data. This facilitates the configuration of the nodes
and avoids inconsistencies in the network design.

• The simulation framework and experimental setup can be extended to combine both
simulated and physical TSN-enabled nodes in an actual network.

181

Bibliography

[1] A. AlQammaz, K. A. Darabkh, B. A. Sha’ar, O. Ghatasheh, et al., “A framework for artificial intelligence
assisted smart agriculture utilizing lorawan wireless sensor networks,” in International Workshop Soft
Computing Applications, Springer, 2018, pp. 408–421.

[2] A. Khalifeh, N. Bartolini, S. Silvestri, et al., “Hybrid wireless sensor networks: A prototype,” in IFIP
Conference on Human-Computer Interaction, Springer, 2019, pp. 549–553.

[3] N Vikram, K. Harish, M. Nihaal, R. Umesh, A. Shetty, and A. Kumar, “A low cost home automation
system using wi-fi based wireless sensor network incorporating internet of things (iot),” in 2017 IEEE
7th International Advance Computing Conference (IACC), IEEE, 2017, pp. 174–178.

[4] X. Zhu, X. Qin, and M. Qiu, “Qos-aware fault-tolerant scheduling for real-time tasks on heterogeneous
clusters,” IEEE transactions on Computers, vol. 60, no. 6, pp. 800–812, 2011.

[5] S. Mersch, T. Meyerhoff, L. Krüger, and A. Timm-Giel, “Coexistence of wireless avionics intra-communication
networks,” in 2018 6th IEEE International Conference on Wireless for Space and Extreme Environments
(WiSEE), IEEE, 2018, pp. 18–23.

[6] T. Ringler, J Steiner, R. Belschner, and B. Hedenetz, “Increasing system safety for by-wire applications in
vehicles by using a time triggered architecture,” in International Conference on Computer Safety, Reliability,
and Security, Springer, 1998, pp. 243–253.

[7] G. Heiner and T. Thurner, “Time-triggered architecture for safety-related distributed real-time systems
in transportation systems,” in Digest of Papers. Twenty-Eighth Annual International Symposium on Fault-
Tolerant Computing (Cat. No. 98CB36224), IEEE, 1998, pp. 402–407.

[8] J. Wang, P. Wang, and X. Ma, “Adaptive event-triggered control for quadrotor aircraft with output
constraints,” Aerospace Science and Technology, vol. 105, p. 105 935, 2020.

[9] Institute of electrical and electronics engineers, time sensitive networking, Time-sensitive networking task
group, http://www.ieee802.org/1/pages/tsn.html, Last accessed on 2021-03-16, IEEE, 2017.

[10] S. AS6802, “Time-triggered ethernet,” SAE International, 2011.

[11] Institute of Electrical and Electronics Engineers, Inc., 802.1asrev - timing and synchronization for time-
sensitive application in time-sensitive networking task group, http://www.ieee802.org/1/pages/802.1AS-
rev.html, Last accessed on 2021-03-16, IEEE, 2017.

[12] T. Neagoe, V. Cristea, and L. Banica, “Ntp versus ptp in com puter networks clock synchronization,” in
2006 IEEE International Symposium on Industrial Electronics, IEEE, vol. 1, 2006, pp. 317–362.

[13] E. Heidinger, F. Geyer, S. Schneele, and M. Paulitsch, “A performance study of audio video bridging
in aeronautic ethernet networks,” in 7th IEEE International Symposium on Industrial Embedded Systems
(SIES’12), IEEE, 2012, pp. 67–75.

[14] A. S. Sethi and V. Y. Hnatyshin, The practical OPNET user guide for computer network simulation. Chapman
and Hall/CRC, 2012.

[15] Institute of Electrical and Electronics Engineers, Inc., 802.1qbv - enhancements for scheduled traffic, in time-
sensitive networking task group, http://www.ieee802.org/1/pages/802.1bv.html, Last accessed on
2021-03-16, IEEE, 2016.

[16] “Institute of electrical and electronics engineers, inc. 802.1cb - frame replication and elimination for
reliability.” (), [Online]. Available: http://www.ieee802.org/1/files/private/cb-drafts/d2/802-
1CB-D2-9.pdf,lastaccessed(11.04.2021)..

[17] J. Eidson and K. Lee, “Ieee 1588 standard for a precision clock synchronization protocol for networked
measurement and control systems,” in Sensors for Industry Conference, 2002. 2nd ISA/IEEE, Ieee, 2002,
pp. 98–105.

[18] J. Jasperneite, K. Shehab, and K. Weber, “Enhancements to the time synchronization standard ieee-1588
for a system of cascaded bridges,” in IEEE International Workshop on Factory Communication Systems,
Citeseer, 2004, pp. 239–244.

182

http://www.ieee802.org/1/pages/tsn.html
http://www.ieee802.org/1/pages/802.1AS-rev.html
http://www.ieee802.org/1/pages/802.1AS-rev.html
http://www.ieee802.org/1/pages/802.1bv.html
http://www.ieee802.org/1/files/private/cb-drafts/d2/802-1CB-D2-9.pdf, last accessed (11.04.2021).
http://www.ieee802.org/1/files/private/cb-drafts/d2/802-1CB-D2-9.pdf, last accessed (11.04.2021).

Bibliography

[19] S. Lee, “An enhanced ieee 1588 time synchronization algorithm for asymmetric communication link
using block burst transmission,” IEEE communications letters, vol. 12, no. 9, pp. 687–689, 2008.

[20] T Kokilavani, D. G. Amalarethinam, et al., “Load balanced min-min algorithm for static meta-task
scheduling in grid computing,” International Journal of Computer Applications, vol. 20, no. 2, pp. 43–49,
2011.

[21] D. M. Shila and T. Anjali, “Load aware traffic engineering for mesh networks,” Computer Communica-
tions, vol. 31, no. 7, pp. 1460–1469, 2008.

[22] L. T. Nguyen, R. Beuran, and Y. Shinoda, “A load-aware routing metric for wireless mesh networks,”
in 2008 IEEE Symposium on Computers and Communications, IEEE, 2008, pp. 429–435.

[23] F. Marini and B. Walczak, “Particle swarm optimization (pso). a tutorial,” Chemometrics and Intelligent
Laboratory Systems, vol. 149, pp. 153–165, 2015.

[24] R. Gomathi and J. M. L. Manickam, “Energy efficient shortest path routing protocol for underwater
acoustic wireless sensor network,” Wireless Personal Communications, vol. 98, no. 1, pp. 843–856, 2018.

[25] M. Pahlevan, N. Tabassam, and R. Obermaisser, “Heuristic list scheduler for time triggered traffic in
time sensitive networks,” ACM Sigbed Review, vol. 16, no. 1, pp. 15–20, 2019.

[26] T. Aladwani, “Types of task scheduling algorithms in cloud computing environment,” Scheduling Problems-
New Applications and Trends, 2020.

[27] H. Baniabdelghany, R. Obermaisser, and A. Khalifeh, “Extended synchronization protocol based on
ieee802. 1as for improved precision in dynamic and asymmetric tsn hybrid networks,” in 2020 9th
Mediterranean Conference on Embedded Computing (MECO), IEEE, 2020, pp. 1–8.

[28] H. Baniabdelghany, R. Obermaisser, and A. Khalifeh, “Time triggered scheduling algorithm for real-
time wireless systems,” in 2020 IEEE 18th International Conference on Industrial Informatics (INDIN), IEEE,
vol. 1, 2020, pp. 265–272.

[29] H. Baniabdelghany, R. Obermaisser, and A. Khalifeh, “A reliable job allocation scheduler for time-
triggered wireless networks,” in 2021 IEEE 24th International Symposium on Real-Time Distributed Com-
puting (ISORC), IEEE, 2021, pp. 1–10.

[30] H. Baniabdelghany, R. Obermaisser, and A. Khalifeh, “Reliable task allocation for time-triggered iot-
wsn using discrete particle swarm optimization,” IEEE Internet of Things Journal, 2021.

[31] A. Saifullah, D. Gunatilaka, P. Tiwari, et al., “Schedulability analysis under graph routing in wirelesshart
networks,” in 2015 IEEE Real-Time Systems Symposium, IEEE, 2015, pp. 165–174.

[32] A. Saifullah, Y. Xu, C. Lu, and Y. Chen, “End-to-end communication delay analysis in industrial wireless
networks,” IEEE Transactions on Computers, vol. 64, no. 5, pp. 1361–1374, 2014.

[33] H. Zhang, P. Soldati, and M. Johansson, “Performance bounds and latency-optimal scheduling for
convergecast in wirelesshart networks,” IEEE Transactions on Wireless Communications, vol. 12, no. 6,
pp. 2688–2696, 2013.

[34] M. Zimmerling, L. Mottola, P. Kumar, F. Ferrari, and L. Thiele, “Adaptive real-time communication for
wireless cyber-physical systems,” ACM Transactions on Cyber-Physical Systems, vol. 1, no. 2, pp. 1–29,
2017.

[35] B. Li, L. Nie, C. Wu, H. Gonzalez, and C. Lu, “Incorporating emergency alarms in reliable wireless
process control,” in Proceedings of the ACM/IEEE Sixth International Conference on Cyber-Physical Systems,
2015, pp. 218–227.

[36] P. Suriyachai, J. Brown, and U. Roedig, “Time-critical data delivery in wireless sensor networks,” in
International Conference on Distributed Computing in Sensor Systems, Springer, 2010, pp. 216–229.

[37] F. Dobslaw, T. Zhang, and M. Gidlund, “End-to-end reliability-aware scheduling for wireless sensor
networks,” IEEE Transactions on Industrial Informatics, vol. 12, no. 2, pp. 758–767, 2014.

[38] D. Dujovne, T. Watteyne, X. Vilajosana, and P. Thubert, “6tisch: Deterministic ip-enabled industrial
internet (of things),” IEEE Communications Magazine, vol. 52, no. 12, pp. 36–41, 2014.

[39] R. Brummet, D. Gunatilaka, D. Vyas, O. Chipara, and C. Lu, “A flexible retransmission policy for in-
dustrial wireless sensor actuator networks,” in 2018 IEEE International Conference on Industrial Internet
(ICII), IEEE, 2018, pp. 79–88.

[40] M. Zhao, Y. Yang, and C. Wang, “Mobile data gathering with load balanced clustering and dual data
uploading in wireless sensor networks,” IEEE Transactions on Mobile Computing, vol. 14, no. 4, pp. 770–
785, 2014.

183

Bibliography

[41] P. Neamatollahi, S. Abrishami, M. Naghibzadeh, M. H. Y. Moghaddam, and O. Younis, “Hierarchi-
cal clustering-task scheduling policy in cluster-based wireless sensor networks,” IEEE Transactions on
Industrial Informatics, vol. 14, no. 5, pp. 1876–1886, 2017.

[42] F. Ren, J. Zhang, T. He, C. Lin, and S. K. D. Ren, “Ebrp: Energy-balanced routing protocol for data gath-
ering in wireless sensor networks,” IEEE transactions on parallel and distributed systems, vol. 22, no. 12,
pp. 2108–2125, 2011.

[43] S. Tyagi and N. Kumar, “A systematic review on clustering and routing techniques based upon leach
protocol for wireless sensor networks,” Journal of Network and Computer Applications, vol. 36, no. 2,
pp. 623–645, 2013.

[44] W. Yu, Y. Huang, and A. Garcia-Ortiz, “An altruistic compression-scheduling scheme for cluster-based
wireless sensor networks,” in 2015 12th Annual IEEE International Conference on Sensing, Communication,
and Networking (SECON), 2015, pp. 73–81. DOI: 10.1109/SAHCN.2015.7338293.

[45] Y. Liang and W. Peng, “Minimizing energy consumptions in wireless sensor networks via two-modal
transmission,” ACM SIGCOMM Computer Communication Review, vol. 40, no. 1, pp. 12–18, 2010.

[46] Y. Wu, X.-Y. Li, Y. Li, and W. Lou, “Energy-efficient wake-up scheduling for data collection and aggre-
gation,” IEEE Transactions on parallel and distributed systems, vol. 21, no. 2, pp. 275–287, 2009.

[47] D. Ye and M. Zhang, “A self-adaptive sleep/wake-up scheduling approach for wireless sensor net-
works,” IEEE transactions on cybernetics, vol. 48, no. 3, pp. 979–992, 2017.

[48] O. Chipara, C. Wu, C. Lu, and W. Griswold, “Interference-aware real-time flow scheduling for wireless
sensor networks,” in 2011 23rd Euromicro Conference on Real-Time Systems, IEEE, 2011, pp. 67–77.

[49] A. Jamthe, A. Mishra, and D. P. Agrawal, “Scheduling schemes for interference suppression in health-
care sensor networks,” in 2014 IEEE international conference on communications (ICC), IEEE, 2014, pp. 391–
396.

[50] S. S. Nirjon, J. A. Stankovic, and K. Whitehouse, “Iaa: Interference aware anticipatory algorithm for
scheduling and routing periodic real-time streams in wireless sensor networks,” in 2010 Seventh Inter-
national Conference on Networked Sensing Systems (INSS), IEEE, 2010, pp. 14–21.

[51] B. Fateh and M. Govindarasu, “Joint scheduling of tasks and messages for energy minimization in
interference-aware real-time sensor networks,” IEEE transactions on mobile computing, vol. 14, no. 1,
pp. 86–98, 2013.

[52] G. Joshi, S. Jardosh, and P. Ranjan, “Bounds on dynamic modulation scaling for wireless sensor net-
works,” in 2007 Third International Conference on Wireless Communication and Sensor Networks, IEEE, 2007,
pp. 13–16.

[53] T. Pering, T. Burd, and R. Brodersen, “The simulation and evaluation of dynamic voltage scaling algo-
rithms,” in Proceedings. 1998 International Symposium on Low Power Electronics and Design (IEEE Cat. No.
98TH8379), IEEE, 1998, pp. 76–81.

[54] W. Chen, J. Sun, L. Zhang, X. Liu, and L. Hong, “An implementation of ieee 1588 protocol for ieee 802.11
wlan,” Wireless networks, vol. 21, no. 6, pp. 2069–2085, 2015.

[55] R. Exel, “Clock synchronization in ieee 802.11 wireless lans using physical layer timestamps,” in 2012
IEEE International Symposium on Precision Clock Synchronization for Measurement, Control and Communica-
tion Proceedings, IEEE, 2012, pp. 1–6.

[56] A. Mahmood, G. Gaderer, H. Trsek, S. Schwalowsky, and N. Kerö, “Towards high accuracy in ieee
802.11 based clock synchronization using ptp,” in 2011 IEEE International Symposium on Precision Clock
Synchronization for Measurement, Control and Communication, IEEE, 2011, pp. 13–18.

[57] G. von Zengen, K. Garlichs, Y. Schrcöder, and L. C. Wolf, “A sub-microsecond clock synchronization
protocol for wireless industrial monitoring and control networks,” in 2017 IEEE International Conference
on Industrial Technology (ICIT), IEEE, 2017, pp. 1266–1270.

[58] A. Elsts, S. Duquennoy, X. Fafoutis, G. Oikonomou, R. Piechocki, and I. Craddock, “Microsecond-
accuracy time synchronization using the ieee 802.15. 4 tsch protocol,” in 2016 IEEE 41st Conference on
Local Computer Networks Workshops (LCN Workshops), IEEE, 2016, pp. 156–164.

[59] A. Tinka, T. Watteyne, and K. Pister, “A decentralized scheduling algorithm for time synchronized
channel hopping,” in International Conference on Ad Hoc Networks, Springer, 2010, pp. 201–216.

[60] D. Shrestha, Z. Pang, and D. Dzung, “Precise clock synchronization in high performance wireless com-
munication for time sensitive networking,” IEEE Access, vol. 6, pp. 8944–8953, 2018.

[61] H. Cho, J. Jung, B. Cho, Y. Jin, S.-W. Lee, and Y. Baek, “Precision time synchronization using ieee 1588
for wireless sensor networks,” in 2009 International Conference on Computational Science and Engineering,
IEEE, vol. 2, 2009, pp. 579–586.

184

https://doi.org/10.1109/SAHCN.2015.7338293

Bibliography

[62] A. Mahmood, G. Gaderer, and P. Loschmidt, “Software support for clock synchronization over ieee
802.11 wireless lan with open source drivers,” in 2010 IEEE International Symposium on Precision Clock
Synchronization for Measurement, Control and Communication, IEEE, 2010, pp. 61–66.

[63] A. Mahmood, R. Exel, and T. Sauter, “Delay and jitter characterization for software-based clock syn-
chronization over wlan using ptp,” IEEE Transactions on industrial informatics, vol. 10, no. 2, pp. 1198–
1206, 2014.

[64] A. Mahmood, R. Exel, and T. Sauter, “Performance of ieee 802.11’s timing advertisement against synctsf
for wireless clock synchronization,” IEEE Transactions on Industrial Informatics, vol. 13, no. 1, pp. 370–
379, 2016.

[65] M. Buevich, N. Rajagopal, and A. Rowe, “Hardware assisted clock synchronization for real-time sensor
networks,” in 2013 IEEE 34th Real-Time Systems Symposium, IEEE, 2013, pp. 268–277.

[66] J. Chen, Y. Li, Y. Song, and H. Chen, “Hardware-assisted clock synchronization in ieee 802.11 wireless
real-time application,” 2007.

[67] J. Wu, L. Zhang, Y. Bai, and Y. Sun, “Cluster-based consensus time synchronization for wireless sensor
networks,” IEEE Sensors Journal, vol. 15, no. 3, pp. 1404–1413, 2014.

[68] Z. Wang, P. Zeng, M. Zhou, D. Li, and J. Wang, “Cluster-based maximum consensus time synchroniza-
tion for industrial wireless sensor networks,” Sensors, vol. 17, no. 1, p. 141, 2017.

[69] D. K. Lam, K. Yamaguchi, Y. Nagao, M. Kurosaki, and H. Ochi, “An improved precision time protocol
for industrial wlan communication systems,” in 2016 IEEE International Conference on Industrial Technol-
ogy (ICIT), IEEE, 2016, pp. 824–829.

[70] S. Schriegel, H. Trsek, and J. Jasperneite, “Enhancement for a clock synchronization protocol in hetero-
geneous networks,” in 2009 International Symposium on Precision Clock Synchronization for Measurement,
Control and Communication, IEEE, 2009, pp. 1–5.

[71] A. Mahmood and F. Ring, “Clock synchronization for ieee 802.11 based wired-wireless hybrid networks
using ptp,” in 2012 IEEE International Symposium on Precision Clock Synchronization for Measurement,
Control and Communication Proceedings, IEEE, 2012, pp. 1–6.

[72] G. M. Garner and H. Ryu, “Synchronization of audio/video bridging networks using ieee 802.1 as,”
IEEE Communications Magazine, vol. 49, no. 2, pp. 140–147, 2011.

[73] M. Bauer, G. May, and V. Jain, “A wireless gateway approach enabling industrial real-time communi-
cation on the field level of factory automation,” in Proceedings of the 2014 IEEE Emerging Technology and
Factory Automation (ETFA), IEEE, 2014, pp. 1–8.

[74] Y. Quan and G. Liu, “Drifting clock model for network simulation in time synchronization,” in 2008 3rd
International Conference on Innovative Computing Information and Control, IEEE, 2008, pp. 385–385.

[75] P. Loschmidt, R. Exel, and G. Gaderer, “Highly accurate timestamping for ethernet-based clock syn-
chronization,” Journal of Computer Networks and Communications, vol. 2012, 2012.

[76] A. Swidan, H. B. Abdelghany, R. Saifan, and Z. Zilic, “Mobility and direction aware ad-hoc on demand
distance vector routing protocol,” Procedia Computer Science, vol. 94, pp. 49–56, 2016.

[77] A. Mildner, “Time sensitive networking for wireless networks-a state of the art analysis,” Network,
vol. 33, 2019.

[78] L. Zhang, D. Goswami, R. Schneider, and S. Chakraborty, “Task-and network-level schedule co-synthesis
of ethernet-based time-triggered systems,” in 2014 19th Asia and South Pacific Design Automation Confer-
ence (ASP-DAC), IEEE, 2014, pp. 119–124.

[79] S. Amin and R. Obermaisser, “Time-triggered scheduling of query executions for active diagnosis in
distributed real-time systems,” in 2017 22nd IEEE International Conference on Emerging Technologies and
Factory Automation (ETFA), IEEE, 2017, pp. 1–9.

[80] S. Amin and R. Obermaisser, “A time-triggered scheduling algorithm for active diagnosis in heteroge-
neous distributed systems,” in 2018 IEEE International Conference on Computational Science and Engineer-
ing (CSE), IEEE, 2018, pp. 44–55.

[81] V. C. Gungor and G. P. Hancke, “Industrial wireless sensor networks: Challenges, design principles, and
technical approaches,” IEEE Transactions on industrial electronics, vol. 56, no. 10, pp. 4258–4265, 2009.

[82] S. Hong, X. S. Hu, T. Gong, and S. Han, “On-line data link layer scheduling in wireless networked
control systems,” in 2015 27th Euromicro Conference on Real-Time Systems, IEEE, 2015, pp. 57–66.

[83] T. Zhang, T. Gong, S. Han, Q. Deng, and X. S. Hu, “Distributed dynamic packet scheduling frame-
work for handling disturbances in real-time wireless networks,” IEEE Transactions on Mobile Computing,
vol. 18, no. 11, pp. 2502–2517, 2018.

185

Bibliography

[84] T. Zhang, T. Gong, Z. Yun, S. Han, Q. Deng, and X. S. Hu, “Fd-pas: A fully distributed packet schedul-
ing framework for handling disturbances in real-time wireless networks,” in 2018 IEEE Real-Time and
Embedded Technology and Applications Symposium (RTAS), IEEE, 2018, pp. 1–12.

[85] J. Song, S. Han, A. Mok, et al., “Wirelesshart: Applying wireless technology in real-time industrial pro-
cess control,” in 2008 IEEE Real-Time and Embedded Technology and Applications Symposium, IEEE, 2008,
pp. 377–386.

[86] W. Ye, J. Heidemann, and D. Estrin, “Medium access control with coordinated adaptive sleeping for
wireless sensor networks,” IEEE/ACM Transactions on networking, vol. 12, no. 3, pp. 493–506, 2004.

[87] Y. Chen, H. Zhang, N. Fisher, G. Yin, et al., “Probabilistic per-packet real-time guarantees for wireless
networked sensing and control,” IEEE Transactions on Industrial Informatics, vol. 14, no. 5, pp. 2133–2145,
2018.

[88] T. Zhang, T. Gong, S. Han, Q. Deng, and X. S. Hu, “Fully distributed packet scheduling framework
for handling disturbances in lossy real-time wireless networks,” IEEE Transactions on Mobile Computing,
2019.

[89] Y. Jin, J. Jin, A. Gluhak, K. Moessner, and M. Palaniswami, “An intelligent task allocation scheme for
multihop wireless networks,” IEEE Transactions on Parallel and Distributed Systems, vol. 23, no. 3, pp. 444–
451, 2011.

[90] Y. Jin, S. Vural, A. Gluhak, and K. Moessner, “Dynamic task allocation in multi-hop multimedia wireless
sensor networks with low mobility,” Sensors, vol. 13, no. 10, pp. 13 998–14 028, 2013.

[91] J. Yang, H. Zhang, Y. Ling, C. Pan, and W. Sun, “Task allocation for wireless sensor network using
modified binary particle swarm optimization,” IEEE Sensors Journal, vol. 14, no. 3, pp. 882–892, 2013.

[92] W. Guo, J. Li, G. Chen, Y. Niu, and C. Chen, “A pso-optimized real-time fault-tolerant task allocation
algorithm in wireless sensor networks,” IEEE Transactions on Parallel and Distributed Systems, vol. 26,
no. 12, pp. 3236–3249, 2014.

[93] W. Yu, Y. Huang, and A. Garcia-Ortiz, “Distributed optimal on-line task allocation algorithm for wire-
less sensor networks,” IEEE Sensors Journal, vol. 18, no. 1, pp. 446–458, 2017.

[94] P. Neamatollahi, M. Naghibzadeh, S. Abrishami, and M.-H. Yaghmaee, “Distributed clustering-task
scheduling for wireless sensor networks using dynamic hyper round policy,” IEEE Transactions on Mo-
bile Computing, vol. 17, no. 2, pp. 334–347, 2017.

[95] L. Dai, Z. Shen, T. Chen, and Y. Chang, “Analysis and modeling of task scheduling in wireless sensor
network based on divisible load theory,” International Journal of Communication Systems, vol. 27, no. 5,
pp. 721–731, 2014.

[96] L. Dai, Y. Chang, and Z. Shen, “An optimal task scheduling algorithm in wireless sensor networks,”
International Journal of Computers Communications & Control, vol. 6, no. 1, pp. 101–112, 2011.

[97] T. Xie and X. Qin, “An energy-delay tunable task allocation strategy for collaborative applications in
networked embedded systems,” IEEE Transactions on Computers, vol. 57, no. 3, pp. 329–343, 2008.

[98] T. Gong, T. Zhang, X. S. Hu, Q. Deng, M. Lemmon, and S. Han, “Reliable dynamic packet scheduling
over lossy real-time wireless networks,” in 31st Euromicro Conference on Real-Time Systems (ECRTS 2019),
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2019.

[99] L. Zhang, K. Li, Y. Xu, J. Mei, F. Zhang, and K. Li, “Maximizing reliability with energy conservation for
parallel task scheduling in a heterogeneous cluster,” Information Sciences, vol. 319, pp. 113–131, 2015.

[100] F. F. Marshall, M. Mu’azu, I. Umoh, A. Salawudeen, B. Sadiq, and D. Ikpe, “A modified real-time fault-
tolerant task allocation scheme for wireless sensor networks,” Kinetik: Game Technology, Information Sys-
tem, Computer Network, Computing, Electronics, and Control, vol. 4, no. 1, pp. 45–54, 2018.

[101] Q. Han, T. Wang, and G. Quan, “Enhanced fault-tolerant fixed-priority scheduling of hard real-time
tasks on multi-core platforms,” in 2015 IEEE 21st International Conference on Embedded and Real-Time
Computing Systems and Applications, IEEE, 2015, pp. 21–30.

[102] M. Pandya and M. Malek, “Minimum achievable utilization for fault-tolerant processing of periodic
tasks,” IEEE Transactions on Computers, vol. 47, no. 10, pp. 1102–1112, 1998.

[103] R. Melhem, D. Mosse, and E. Elnozahy, “The interplay of power management and fault recovery in
real-time systems,” IEEE Transactions on Computers, vol. 53, no. 2, pp. 217–231, 2004.

[104] T. Wei, P. Mishra, K. Wu, and J. Zhou, “Quasi-static fault-tolerant scheduling schemes for energy-
efficient hard real-time systems,” Journal of Systems and Software, vol. 85, no. 6, pp. 1386–1399, 2012.

186

Bibliography

[105] Q. Han, M. Fan, L. Niu, and G. Quan, “Energy minimization for fault tolerant scheduling of periodic
fixed-priority applications on multiprocessor platforms,” in 2015 Design, Automation & Test in Europe
Conference & Exhibition (DATE), IEEE, 2015, pp. 830–835.

[106] Y. Guo, D. Zhu, and H. Aydin, “Generalized standby-sparing techniques for energy-efficient fault tol-
erance in multiprocessor real-time systems,” in 2013 IEEE 19th International Conference on Embedded and
Real-Time Computing Systems and Applications, IEEE, 2013, pp. 62–71.

[107] H. Chetto and M. Chetto, “Some results of the earliest deadline scheduling algorithm,” IEEE Transac-
tions on software engineering, vol. 15, no. 10, pp. 1261–1269, 1989.

[108] K. Ramamritham and J. A. Stankovic, “Scheduling algorithms and operating systems support for real-
time systems,” Proceedings of the IEEE, vol. 82, no. 1, pp. 55–67, 1994.

[109] K. W. Tindell, A. Burns, and A. J. Wellings, “Allocating hard real-time tasks: An np-hard problem made
easy,” Real-Time Systems, vol. 4, no. 2, pp. 145–165, 1992.

[110] A. M. Terrasa Barrena, “Flexible real-time linux a new environment for flexible hard real-time systems,”
Ph.D. dissertation, Universitat Politècnica de València, 2012.

[111] J. M. Yabarrena, J. A. Herrera, and G. A. Caurin, “Embedded application development. a procedure
based on vxworks© real-time operating system,” SAE Technical Paper, Tech. Rep., 2010.

[112] M. A. Rivas and M. G. Harbour, “Marte os: An ada kernel for real-time embedded applications,” in
International Conference on Reliable Software Technologies, Springer, 2001, pp. 305–316.

[113] Z. Zhang, Distributed real-time operating system (DRTOS) modeling in SpecC. Iowa State University, 2006.

[114] K. M. Zuberi and K. G. Shin, “A causal message ordering scheme for distributed embedded real-time
systems,” in Proceedings 15th Symposium on Reliable Distributed Systems, IEEE, 1996, pp. 210–219.

[115] H. Kopetz, “Event-triggered versus time-triggered real-time systems,” in Operating Systems of the 90s
and Beyond, Springer, 1991, pp. 86–101.

[116] F. Scheler and W. Schröder-Preikschat, “Time-triggered vs. event-triggered: A matter of configuration?”
In ITG FA 6.2 Workshop on Model-Based Testing, GI/ITG Workshop on Non-Functional Properties of Embedded
Systems, 13th GI/ITG Conference Measuring, Modelling, and Evaluation of Computer and Communications,
VDE, 2006, pp. 1–6.

[117] H. Kopetz, “Time-triggered real-time computing,” IFAC Proceedings Volumes, vol. 35, no. 1, pp. 59–70,
2002.

[118] A. Avizienis, J.-C. Laprie, B. Randell, et al., Fundamental concepts of dependability. University of Newcastle
upon Tyne, Computing Science, 2001.

[119] N. Xiong, Y. Yang, M. Cao, J. He, and L. Shu, “A survey on fault-tolerance in distributed network
systems,” in 2009 International Conference on Computational Science and Engineering, IEEE, vol. 2, 2009,
pp. 1065–1070.

[120] R. Obermaisser and P. Peti, “The fault assumptions in distributed integrated architectures,” SAE Trans-
actions, pp. 789–801, 2007.

[121] ——, “A fault hypothesis for integrated architectures,” in 2006 International Workshop on Intelligent So-
lutions in Embedded Systems, IEEE, 2006, pp. 1–18.

[122] H. Kopetz, “The fault hypothesis for the time-triggered architecture,” in Building the Information Society,
Springer, 2004, pp. 221–233.

[123] S. Osaki et al., “Reliability evaluation of some fault-tolerant computer architectures,” 1980.

[124] “Error detection in computer networks.” (), [Online]. Available: https://www.geeksforgeeks.org/
error-detection-in-computer-networks/,lastaccessed(08.05.2021)..

[125] “Error correcting codes - hamming codes.” (), [Online]. Available: https://www.tutorialspoint.com/
error-correcting-codes-hamming-codes,lastaccessed(08.05.2021)..

[126] “Error-detecting codes - checksums.” (), [Online]. Available: https://www.tutorialspoint.com/
error-detecting-codes-checksums,lastaccessed(08.05.2021)..

[127] “Understanding the cyclic redundancy check.” (), [Online]. Available: https://www.cardinalpeak.
com/blog/understanding-the-cyclic-redundancy-check/,lastaccessed(08.05.2021)..

[128] T. Mandel and J. Mache, “Investigating crc polynomials that correct burst errors.,” in ICWN, 2009,
pp. 632–637.

[129] P. Liu and Y. Wang, “Multiphase damage confinement system for databases,” in Research Directions in
Data and Applications Security, Springer, 2003, pp. 75–87.

187

https://www.geeksforgeeks.org/error-detection-in-computer-networks/,last accessed (08.05.2021).
https://www.geeksforgeeks.org/error-detection-in-computer-networks/,last accessed (08.05.2021).
https://www.tutorialspoint.com/error-correcting-codes-hamming-codes,last accessed (08.05.2021).
https://www.tutorialspoint.com/error-correcting-codes-hamming-codes,last accessed (08.05.2021).
https://www.tutorialspoint.com/error-detecting-codes-checksums, lastaccessed (08.05.2021).
https://www.tutorialspoint.com/error-detecting-codes-checksums, lastaccessed (08.05.2021).
https://www.cardinalpeak.com/blog/understanding-the-cyclic-redundancy-check/, last accessed (08.05.2021).
https://www.cardinalpeak.com/blog/understanding-the-cyclic-redundancy-check/, last accessed (08.05.2021).

Bibliography

[130] F. Jambon, “Error recovery representations in interactive system development,” in Third Annual ERCIM
Workshop on “User Interfaces for All”, Obernai, France, 1997, pp. 177–182.

[131] “Fault treatment patterns.” (), [Online]. Available: https : / / www . oreilly . com / library / view /
patterns-for-fault/9780470319796/ch08.html#:~:text=After%20an%20error%20is%20processed,

cause%20the%20same%20error%20again.,lastaccessed(08.05.2021)..

[132] M. Khayyambashi, H. Soltani, and M. Sadeghi, “The study of hardware redundancy techniques to
provide a fault tolerant system,”

[133] S. A. Shernta and A. A. Tamtum, “Using triple modular redundant (tmr) technique in critical systems
operation,” in Proceeding Book of First Conference for Engineering Sciences and Technology (CEST-2018)(Part
1), 2018.

[134] P. Balasubramanian, “Asic-based design of nmr system health monitor for mission/safety–critical ap-
plications,” SpringerPlus, vol. 5, no. 1, pp. 1–16, 2016.

[135] M. Murakami, “Task-based dynamic fault tolerance for humanoid robots,” in 2006 IEEE International
Conference on Systems, Man and Cybernetics, IEEE, vol. 3, 2006, pp. 2197–2202.

[136] “Fault tolerance.” (), [Online]. Available: https://tiagobluiz.com/2019/04/21/sec- 3- fault-
tolerance/.,lastaccessed(09.05.2021)..

[137] T. Lehtonen et al., “On fault tolerance methods for networks-on-chip,” 2009.

[138] E. Dubrova, “Hardware redundancy,” in Fault-Tolerant Design, Springer, 2013, pp. 55–86.

[139] J. Losq, “A highly efficient redundancy scheme: Self-purging redundancy,” IEEE Computer Architecture
Letters, vol. 25, no. 06, pp. 569–578, 1976.

[140] A. Sengupta and S. Bhadauria, “Bacterial foraging driven exploration of multi cycle fault tolerant dat-
apath based on power-performance tradeoff in high level synthesis,” Expert Systems with Applications,
vol. 42, no. 10, pp. 4719–4732, 2015.

[141] A. Eghbal, P. M. Yaghini, H Pedram, and H. Zarandi, “Designing fault-tolerant network-on-chip router
architecture,” International Journal of Electronics, vol. 97, no. 10, pp. 1181–1192, 2010.

[142] L. Chen and A. Avizienis, “N-version programming: A fault-tolerance approach to reliability of soft-
ware operation,” in Proc. 8th IEEE Int. Symp. on Fault-Tolerant Computing (FTCS-8), vol. 1, 1978, pp. 3–
9.

[143] J. H. Cho, H. Kim, S. Wang, et al., “A novel method for providing precise time synchronization in a dis-
tributed control system using boundary clock,” IEEE Transactions on Instrumentation and Measurement,
vol. 58, no. 8, pp. 2824–2829, 2009.

[144] D. Mills, J. Martin, J. Burbank, and W. Kasch, “Network time protocol version 4: Protocol and algo-
rithms specification,” 2010.

[145] “Combining ptp with ntp to get the best of both worlds.” (2016), [Online]. Available: https://www.
redhat.com/en/blog/combining-ptp-ntp-get-best-both-worlds.

[146] T. Instruments, “An-1728 ieee 1588 precision time protocol time synchronization performance,” Appli-
cation Report SNLA098A, vol. 10, 2013.

[147] B. Hofmann-Wellenhof, H. Lichtenegger, and E. Wasle, GNSS–global navigation satellite systems: GPS,
GLONASS, Galileo, and more. Springer Science & Business Media, 2007.

[148] E. Biglieri, R. Calderbank, A. Constantinides, A. Goldsmith, A. Paulraj, and H. V. Poor, MIMO wireless
communications. Cambridge university press, 2007.

[149] O. Edfors, M. Sandell, J. van de Beek, D. Landström, and F. Sjöberg, An introduction to orthogonal
frequency-division multiplexing. Luleå tekniska universitet, 1997.

[150] J. So and N. H. Vaidya, “Multi-channel mac for ad hoc networks: Handling multi-channel hidden ter-
minals using a single transceiver,” in Proceedings of the 5th ACM international symposium on Mobile ad hoc
networking and computing, 2004, pp. 222–233.

[151] B. Alawieh, Y. Zhang, C. Assi, and H. Mouftah, “Improving spatial reuse in multihop wireless networks-
a survey,” IEEE Communications Surveys & Tutorials, vol. 11, no. 3, pp. 71–91, 2009.

[152] M. Kodialam and T. Nandagopal, “Characterizing the capacity region in multi-radio multi-channel
wireless mesh networks,” in Proceedings of the 11th annual international conference on Mobile computing
and networking, 2005, pp. 73–87.

[153] P. Gupta and P. R. Kumar, “The capacity of wireless networks,” IEEE Transactions on information theory,
vol. 46, no. 2, pp. 388–404, 2000.

188

https://www.oreilly.com/library/view/patterns-for-fault/9780470319796/ch08.html#:~:text=After%20an%20error%20is%20processed,cause%20the%20same%20error%20again., last accessed (08.05.2021).
https://www.oreilly.com/library/view/patterns-for-fault/9780470319796/ch08.html#:~:text=After%20an%20error%20is%20processed,cause%20the%20same%20error%20again., last accessed (08.05.2021).
https://www.oreilly.com/library/view/patterns-for-fault/9780470319796/ch08.html#:~:text=After%20an%20error%20is%20processed,cause%20the%20same%20error%20again., last accessed (08.05.2021).
https://tiagobluiz.com/2019/04/21/sec-3-fault-tolerance/., last accessed (09.05.2021).
https://tiagobluiz.com/2019/04/21/sec-3-fault-tolerance/., last accessed (09.05.2021).
https://www.redhat.com/en/blog/combining-ptp-ntp-get-best-both-worlds
https://www.redhat.com/en/blog/combining-ptp-ntp-get-best-both-worlds

Bibliography

[154] K. Jain, J. Padhye, V. N. Padmanabhan, and L. Qiu, “Impact of interference on multi-hop wireless net-
work performance,” Wireless networks, vol. 11, no. 4, pp. 471–487, 2005.

[155] A. D. Gore and A. Karandikar, “Link scheduling algorithms for wireless mesh networks,” IEEE Com-
munications Surveys & Tutorials, vol. 13, no. 2, pp. 258–273, 2010.

[156] O. Goussevskaia, Y. A. Oswald, and R. Wattenhofer, “Complexity in geometric sinr,” in Proceedings of
the 8th ACM international symposium on Mobile ad hoc networking and computing, 2007, pp. 100–109.

[157] D. Yang, X. Fang, N. Li, and G. Xue, “A simple greedy algorithm for link scheduling with the physical
interference model,” in GLOBECOM 2009-2009 IEEE Global Telecommunications Conference, IEEE, 2009,
pp. 1–6.

[158] M. Kodialam and T. Nandagopal, “Characterizing achievable rates in multi-hop wireless networks: The
joint routing and scheduling problem,” in Proceedings of the 9th annual international conference on Mobile
computing and networking, 2003, pp. 42–54.

[159] J. Grönkvist and A. Hansson, “Comparison between graph-based and interference-based stdma schedul-
ing,” in Proceedings of the 2nd ACM international symposium on Mobile ad hoc networking & computing, 2001,
pp. 255–258.

[160] G. R. Hiertz, D. Denteneer, L. Stibor, Y. Zang, X. P. Costa, and B. Walke, “The ieee 802.11 universe,”
IEEE Communications Magazine, vol. 48, no. 1, pp. 62–70, 2010.

[161] R. L. Peterson, D. E. Borth, and R. E. Ziemer, An introduction to spread-spectrum communications. Prentice-
Hall, Inc., 1995.

[162] M. A. Youssef, A. Vasan, and R. E. Miller, “Specification and analysis of the dcf and pcf protocols in
the 802.11 standard using systems of communicating machines,” in 10th IEEE International Conference
on Network Protocols, 2002. Proceedings., IEEE, 2002, pp. 132–141.

[163] M Molle and L. Kleinrock, “Virtual time csma: Why two clocks are better than one,” IEEE transactions
on Communications, vol. 33, no. 9, pp. 919–933, 1985.

[164] D. Tardioli, “Real time communications in wireless ad-hoc networks. the rt-wmp protocol,” Ph.D. dis-
sertation, Universidad de Zaragoza, 2010.

[165] S. S. Sawwashere and U. N. Sonali, “Rts/cts frame synchronization to minimize the hidden node prob-
lem in wireless network,” International Journal of Advanced Research in Computer Science and Software
Engineering, vol. 4, pp. 570–575, 2014.

[166] G. Fokus-STEP, “Analyzing the rts/cts mechanism in the dfwmac media access protocol for wireless
lans,”

[167] S. Ray, J. B. Carruthers, and D. Starobinski, “Rts/cts-induced congestion in ad hoc wireless lans,” in
2003 IEEE Wireless Communications and Networking, 2003. WCNC 2003., IEEE, vol. 3, 2003, pp. 1516–
1521.

[168] S. Xu and T. Saadawi, “Does the ieee 802.11 mac protocol work well in multihop wireless ad hoc net-
works?” IEEE communications Magazine, vol. 39, no. 6, pp. 130–137, 2001.

[169] M. Ali, U. Saif, A. Dunkels, et al., “Medium access control issues in sensor networks,” ACM SIGCOMM
Computer Communication Review, vol. 36, no. 2, pp. 33–36, 2006.

[170] W.-Z. Song, R. Huang, B. Shirazi, and R. LaHusen, “Treemac: Localized tdma mac protocol for real-time
high-data-rate sensor networks,” Pervasive and Mobile Computing, vol. 5, no. 6, pp. 750–765, 2009.

[171] F. Santos, L. Almeida, P. Pedreiras, L. S. Lopes, and T. Facchinetti, “An adaptive tdma protocol for soft
real-time wireless communication among mobile autonomous agents,” in Proc. of the Int. Workshop on
Architecture for Cooperative Embedded Real-Time Systems, WACERTS, Citeseer, vol. 2004, 2004, pp. 657–
665.

[172] W. Shen, T. Zhang, M. Gidlund, and F. Dobslaw, “Sas-tdma: A source aware scheduling algorithm
for real-time communication in industrial wireless sensor networks,” Wireless networks, vol. 19, no. 6,
pp. 1155–1170, 2013.

[173] J. Kim, J. Lim, C. Pelczar, and B. Jang, “Rrmac: A sensor network mac for real time and reliable packet
transmission,” in 2008 IEEE International Symposium on Consumer Electronics, IEEE, 2008, pp. 1–4.

[174] T. Zheng and K. Ki-Il, “A survey on real-time mac protocols in wireless sensor networks,” Communica-
tions and Network, vol. 2010, 2010.

[175] B. K. Singh and K. E. Tepe, “A novel real-time mac layer protocol for wireless sensor network applica-
tions,” in 2009 IEEE International Conference on Electro/Information Technology, IEEE, 2009, pp. 338–343.

189

Bibliography

[176] T. Watteyne, I. Augé-Blum, and S. Ubéda, “Dual-mode real-time mac protocol for wireless sensor net-
works: A validation/simulation approach,” in Proceedings of the first international conference on Integrated
internet ad hoc and sensor networks, 2006, 2–es.

[177] T. Watteyne and I. Augé-Blum, “Proposition of a hard real-time mac protocol for wireless sensor net-
works,” in 13th IEEE International Symposium on Modeling, Analysis, and Simulation of Computer and
Telecommunication Systems, IEEE, 2005, pp. 533–536.

[178] C Caccamo and L. Y. Zhang, “The capacity of implicit edf in wireless sensor networks,” in 15th Euromi-
cro Conference on Real-Time Systems, 2003. Proceedings., IEEE, 2003, pp. 267–275.

[179] M. Caccamo, L. Y. Zhang, L. Sha, and G. Buttazzo, “An implicit prioritized access protocol for wireless
sensor networks,” in 23rd IEEE Real-Time Systems Symposium, 2002. RTSS 2002., IEEE, 2002, pp. 39–48.

[180] A. Krohn, M. Beigl, C. Decker, T. Zimmer, et al., “Tomac–real-time message ordering in wireless sensor
networks using the mac layer,” in International Workshop on Networked Sensing Systems (INSS), 2005.

[181] E. Egea-López, J. Vales-Alonso, A. S. Martínez-Sala, J. García-Haro, P. Pavón-Mariño, and M. B. Del-
gado, “A wireless sensor networks mac protocol for real-time applications,” Personal and Ubiquitous
Computing, vol. 12, no. 2, pp. 111–122, 2008.

[182] E. Egea-López, J. Vales-Alonso, A. S. Martínez-Sala, J. García-Haro, P. Pavón-Mariño, and M. V. Bueno-
Delgado, “A real-time mac protocol for wireless sensor networks: Virtual tdma for sensors (vts),” in
International Conference on Architecture of Computing Systems, Springer, 2006, pp. 382–396.

[183] H. Li, P. Shenoy, and K. Ramamritham, “Scheduling messages with deadlines in multi-hop real-time
sensor networks,” in 11th IEEE Real Time and Embedded Technology and Applications Symposium, IEEE,
2005, pp. 415–425.

[184] J. Chen, P. Zhu, and Z. Qi, “Pr-mac: Path-oriented real-time mac protocol for wireless sensor network,”
in International Conference on Embedded Software and Systems, Springer, 2007, pp. 530–539.

[185] G. Lu, B. Krishnamachari, and C. S. Raghavendra, “An adaptive energy-efficient and low-latency mac
for tree-based data gathering in sensor networks,” Wireless Communications and Mobile Computing, vol. 7,
no. 7, pp. 863–875, 2007.

[186] J. A. Afonso, L. A. Rocha, H. R. Silva, and J. H. Correia, “Mac protocol for low-power real-time wireless
sensing and actuation,” in 2006 13th IEEE International Conference on Electronics, Circuits and Systems,
IEEE, 2006, pp. 1248–1251.

[187] E. Tovar and F. Vasques, “Real-time fieldbus communications using profibus networks,” IEEE transac-
tions on Industrial Electronics, vol. 46, no. 6, pp. 1241–1251, 1999.

[188] G. Prytz, “A performance analysis of ethercat and profinet irt,” in 2008 IEEE International Conference on
Emerging Technologies and Factory Automation, IEEE, 2008, pp. 408–415.

[189] J. L. Sobrinho and A. S. Krishnakumar, “Equb-ethernet quality of service using black bursts,” in Pro-
ceedings 23rd Annual Conference on Local Computer Networks. LCN’98 (Cat. No. 98TB100260), IEEE, 1998,
pp. 286–296.

[190] N. Malcolm and W. Zhao, “The timed-token protocol for real-time communications,” Computer, vol. 27,
no. 1, pp. 35–41, 1994.

[191] D. Miorandi and S. Vitturi, “Analysis of master-slave protocols for real-time-industrial communications
over ieee802. 11 wlans,” in 2nd IEEE International Conference on Industrial Informatics, 2004. INDIN’04.
2004, IEEE, 2004, pp. 143–148.

[192] F. Hanssen and P. G. Jansen, Real-time communication protocols: an overview. Citeseer, 2003.

[193] A. TTTech Computertechnik, “Tttech computertechnik ag, schönbrunner straße, a-1040 vienna, aus-
tria,” TTP/C Protocol, 1999.

[194] H. Kopetz, A. Ademaj, P. Grillinger, and K. Steinhammer, “The time-triggered ethernet (tte) design,”
in Eighth IEEE International Symposium on Object-Oriented Real-Time Distributed Computing (ISORC’05),
IEEE, 2005, pp. 22–33.

[195] W. Steiner and G. Bauer, “Ttethernet: Time-triggered services for ethernet networks,” in Digital Avionics
Systems Conference, 2009. DASC’09. IEEE/AIAA 28th, 2009, p. 1.

[196] J. Imtiaz, J. Jasperneite, and L. Han, “A performance study of ethernet audio video bridging (avb)
for industrial real-time communication,” in 2009 IEEE Conference on Emerging Technologies & Factory
Automation, IEEE, 2009, pp. 1–8.

[197] I. W. Group et al., “Local and metropolitan area networks-virtual bridged local area networks,” IEEE
Std 802.1 Q-1998, 1999.

190

Bibliography

[198] P. Pop, M. L. Raagaard, S. S. Craciunas, and W. Steiner, “Design optimisation of cyber-physical dis-
tributed systems using ieee time-sensitive networks,” IET Cyber-Physical Systems: Theory & Applications,
vol. 1, no. 1, pp. 86–94, 2016.

[199] S. S. Craciunas, R. S. Oliver, M. Chmelík, and W. Steiner, “Scheduling real-time communication in
ieee 802.1 qbv time sensitive networks,” in Proceedings of the 24th International Conference on Real-Time
Networks and Systems, 2016, pp. 183–192.

[200] I. of Electrical and I. Electronics Engineers, P802.1qci – per-stream filtering and policing, in time-sensitive
networking task group, https://1.ieee802.org/tsn/802-1qci/, Last accessed on 2021-03-16, IEEE,
2017.

[201] Institute of Electrical and Electronics Engineers, Inc., P802.1qcc – stream reservation protocol (srp) enhance-
ments and performance improvements, draft 1.6, https://www.ieee802.org/1/files/private/cc-drafts/d1/802-
1Qcc-d1-6.pdf, IEEE, 2017.

[202] D. Cavalcanti, S. Bush, M. Illouz, G. Kronauer, A. Regev, and G. Venkatesan, “Wireless tsn-definitions
use cases & standards roadmap,” Avnu Alliance, pp. 1–16, 2020.

[203] M. Pahlevan, “Time sensitive networking for virtualized integrated real-time systems,” 2020.

[204] T. Issariyakul and E. Hossain, “Introduction to network simulator 2 (ns2),” in Introduction to network
simulator NS2, Springer, 2009, pp. 1–18.

[205] R. L. Patel, M. J. Pathak, and A. J. Nayak, “Survey on network simulators,” International Journal of
Computer Applications, vol. 975, p. 8887, 2018.

[206] “Scalable network technologies.” (), [Online]. Available: https://www.scalable-networks.com/.,
lastaccessed(20.05.2021)..

[207] “Omnet++ discrete event simulator.” (), [Online]. Available: https://omnetpp.org/.,lastaccessed(20.
05.2021)..

[208] M. Pahlevan, B. Balakrishna, and R. Obermaisser, “Simulation framework for clock synchronization in
time sensitive networking,” in 2019 IEEE 22nd International Symposium on Real-Time Distributed Comput-
ing (ISORC), IEEE, 2019, pp. 213–220.

[209] W. Wojdak, “Rapid spanning tree protocol: A new solution from an old technology,” Reprinted from
CompactPCI Systems, 2003.

[210] “Link aggregation.” (), [Online]. Available: https://en.wikipedia.org/wiki/Link_aggregation..

[211] F. Cristian, “Probabilistic clock synchronization,” Distributed computing, vol. 3, no. 3, pp. 146–158, 1989.

[212] C. W. Nicholls and P. Wu, Method and system for correcting oscillator frequency drift, US Patent 8,674,778,
2014.

[213] Y. Liu, K. Xu, and M. Wei, “A study on mems oscillators ‘frequency drift of temperature,” in MATEC
Web of Conferences, EDP Sciences, vol. 189, 2018, p. 11 002.

[214] F. Smirnov, M. Glaß, F. Reimann, and J. Teich, “Optimizing message routing and scheduling in auto-
motive mixed-criticality time-triggered networks,” in 2017 54th ACM/EDAC/IEEE Design Automation
Conference (DAC), IEEE, 2017, pp. 1–6.

[215] E. Schweissguth, P. Danielis, D. Timmermann, H. Parzyjegla, and G. Mühl, “Ilp-based joint routing and
scheduling for time-triggered networks,” in Proceedings of the 25th International Conference on Real-Time
Networks and Systems, 2017, pp. 8–17.

[216] R. E. Moraes, W. W. dos Reis, H. R. Rocha, and D. J. Coura, “Power-efficient and interference-free link
scheduling algorithms for connected wireless sensor networks,” Wireless Networks, pp. 1–20, 2019.

[217] S. Kurt and B. Tavli, “Path-loss modeling for wireless sensor networks: A review of models and com-
parative evaluations.,” IEEE Antennas and Propagation Magazine, vol. 59, no. 1, pp. 18–37, 2017.

[218] “Snap library 4.0, user reference documentation.” (2017), [Online]. Available: https://snap.stanford.
edu/snap/doc/snapuser-ref/index.html.

[219] A. Damaso, N. Rosa, and P. Maciel, “Reliability of wireless sensor networks,” Sensors, vol. 14, no. 9,
pp. 15 760–15 785, 2014.

[220] E. Elbeltagi, T. Hegazy, and D. Grierson, “Comparison among five evolutionary-based optimization
algorithms,” Advanced engineering informatics, vol. 19, no. 1, pp. 43–53, 2005.

[221] R. V. Kulkarni and G. K. Venayagamoorthy, “Particle swarm optimization in wireless-sensor networks:
A brief survey,” IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews),
vol. 41, no. 2, pp. 262–267, 2010.

191

https://1.ieee802.org/tsn/802-1qci/
https://www.scalable-networks.com/., last accessed (20.05.2021).
https://www.scalable-networks.com/., last accessed (20.05.2021).
https://omnetpp.org/., last accessed (20.05.2021).
https://omnetpp.org/., last accessed (20.05.2021).
https://en.wikipedia.org/wiki/Link_aggregation.
https://snap.stanford.edu/snap/doc/snapuser-ref/index.html
https://snap.stanford.edu/snap/doc/snapuser-ref/index.html

Bibliography

[222] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proceedings of ICNN’95-International Con-
ference on Neural Networks, IEEE, vol. 4, 1995, pp. 1942–1948.

[223] Annualized failure rate, 2020. [Online]. Available: https : / / sciencing . com / calculate - failure -
rates-6403358.html.

[224] W. Guo, N. Xiong, A. V. Vasilakos, G. Chen, and C. Yu, “Distributed k–connected fault–tolerant topol-
ogy control algorithms with pso in future autonomic sensor systems,” International Journal of Sensor
Networks, vol. 12, no. 1, pp. 53–62, 2012.

[225] S. Helwig, J. Branke, and S. Mostaghim, “Experimental analysis of bound handling techniques in par-
ticle swarm optimization,” IEEE Transactions on Evolutionary computation, vol. 17, no. 2, pp. 259–271,
2012.

[226] J. Goossens and C. Macq, “Limitation of the hyper-period in real-time periodic task set generation,” in
In Proceedings of the RTS Embedded System (RTS’01, Citeseer, 2001.

[227] S. Lv, Y. Lu, and Y. Ji, “An enhanced ieee 1588 time synchronization for asymmetric communication
link in packet transport network,” IEEE Communications Letters, vol. 14, no. 8, pp. 764–766, 2010.

[228] M. Pahlevan and R. Obermaisser, “Genetic algorithm for scheduling time-triggered traffic in time-
sensitive networks,” in 2018 IEEE 23rd International Conference on Emerging Technologies and Factory Au-
tomation (ETFA), IEEE, vol. 1, 2018, pp. 337–344.

192

https://sciencing.com/calculate-failure-rates-6403358.html
https://sciencing.com/calculate-failure-rates-6403358.html

	Title Page
	Acknowledgements
	Zusammenfassung
	Abstract
	Contents
	List of Figures
	List of Tables
	List of Abbreviations
	1 Introduction
	1.1 Context and Motivation
	1.2 Thesis Objectives and Contributions
	1.3 Thesis Structure

	2 Related Work and Research Gap
	2.1 Requirements for Hybrid TSN Networks
	2.2 Related Work
	2.3 Research Gap

	3 Background Theory
	3.1 Real-time Systems
	3.2 Distributed Real-Time Systems
	3.3 Time-Triggered and Event-Triggered Embedded Systems
	3.4 Dependability
	3.5 Techniques for Fault Tolerance in Critical Systems
	3.6 NTP vs PTP Timing Protocols
	3.7 IEEE 802.1AS Standard Protocol
	3.8 Link Scheduling in Wireless Networks
	3.9 IEEE 802.11 Standard Protocol
	3.10 Real-time Communication Protocols in Wireless Systems
	3.11 Real-time Communication Protocols in Wired Systems

	4 System Model
	4.1 System Model
	4.2 Task and Message Scheduling Model
	4.3 Description for Our Hybrid Modelling Approach

	5 Extending TSN Capabilities over Hybrid Systems
	5.1 Introduction
	5.2 IEEE 802.11/Wi-Fi and TSN Support
	5.3 Modelling of Hybrid TSN Networking in a Simulation Framework

	6 Time Synchronization for Improved Precision in an Asymmetric TSN Hybrid Network Using Extended IEEE802.1AS
	6.1 The Frequency Drift in a TSN-enabled Node
	6.2 Modelling the Timing of Delay Response Messages
	6.3 Path Deviation Delay Filter Test
	6.4 Hybrid Network Simulation Models for Clock Synchronization Process
	6.5 Optimization of 802.1AS in a TSN Hybrid Domain
	6.6 Evaluation of the Improved IEEE 802.1AS Protocol

	7 Task and Message Scheduling Algorithm for Hybrid TSN Systems
	7.1 Introduction
	7.2 Problem Formulation of TMS
	7.3 Time Slot Message Scheduling Model
	7.4 Task and Message Scheduling Algorithm
	7.5 Evaluation of TMS Algorithm

	8 Reliable Task and Message Scheduling Algorithms for Hybrid TSN Systems
	8.1 Introduction
	8.2 Problem Formulation of R-TMS
	8.3 Message Scheduling Over Redundant Routes
	8.4 Reliability Model of the Wireless TSN System
	8.5 Reliable Task and Message Scheduling (R-TMS) Algorithm
	8.6 Simulation Setup to Evaluate R-TMS
	8.7 Problem Formulation of OR-TMS
	8.8 Discrete Particle Swarm Optimization (DPSO)
	8.9 Evaluation of a Task Scheduling Instance (A Particle’s Position)
	8.10 Trace Particles Using DPSO
	8.11 Simulation Setup to Evaluate OR-TMS
	8.12 OR-TMS Based Metascheduler

	Chapter 9 Conclusion and Future Directions
	9.1 Conclusion
	9.2 Future Work
	Bibliography

