
Minimum Cost Multicuts for Image and
Motion Segmentation

Dissertation
to obtain the degree of

Doctor of Natural Sciences
(Dr. rer. nat.)

submitted by
Amirhossein Kardoost

submitted to the School of Science and Technology
of the University of Siegen

Siegen 2023

Day of Colloquium 10th of February 2023

Dean of the Faculty Prof. Dr. Holger Schönherr
University of Siegen, Germany

Examination Committee
Chair Prof. Dr. Andreas Kolb
Reviewer 1 Prof. Dr.-Ing. Margret Keuper
Reviewer 2 Prof. Dr.-Ing. Eddy Ilg

Prof. Dr. Michael Möller

Declaration

I hereby declare in lieu of an oath that I have drawn up the present work without any undue
assistance by third parties and without using any aids other than the ones specified. The data
and concepts taken, either directly or indirectly, from any other sources have been marked,
indicating the source.
The work has not been submitted to any other examining authority neither in Germany nor
abroad and neither in the same nor in any similar form.
Use of the services of any PhD mediation institute or of any similar organisation has not been
made.
Any family relationship, first-degree relationship, marriage, civil partnership or cohabitation
to the proposed members of the PhD Commission do not exist.

submitted by
Amirhossein Kardoost

March 2023

Acknowledgements

Hereby, I would like to express my deepest gratitude to all people who helped me to reach
the completion of this dissertation. Especially, I would like to thank my supervisor Margret
Keuper for her patience and fantastic support with helpful discussions and taught me how to
conduct high-quality research and do critical thinking. I would like to thank all my co-authors
for their constructive help and fruitful discussions. I would like to thank Eddy Ilg for agreeing
to be the co-examiner of this dissertation. Further, I would like to thank the examination
committee.

Thanks to all my colleagues, Kalun Ho, Kiril Gashteovski, Daniel Ruffinelli, and Samuel
Broscheit, for a lot of helpful advice and fruitful discussions. I thank Jovita Lukasik for
proofreading this dissertation and Hosna Sattar for providing valuable advice during difficult
situations.

I want to thank Annette Wiebusch and Christine Zizka for their help with the organi-
zational questions. Further, I would like to thank the funding from the DFG project KE
2264/1-1, which helped me to pursue this project.

I would like to thank my family for all the love and mental support during this journey.
My mother was always there for me in all difficult times and helped me to believe in myself.
My father always supported me well, and one of his wishes was for me to achieve this level.
Without my parents’ support, I could have never reached this stage in my life.

I want to thank my loving wife for being the most supportive partner; emotionally, she
was there in all the tough times during the writing of this dissertation. I am delighted that I
met her, fell in love, and married her, which all happened during the time of this dissertation.
I dedicate this dissertation to my wife (Sahar Mirsadri), my mother, and the memory of my
father.

Abstract

Clustering and its application in computer vision, such as image, mesh data, video, and
motion segmentation, are the main topics we discuss in this dissertation. The clustering of the
entities plays a crucial role in higher-level tasks such as action recognition, robot navigation,
scene understanding, and 3D reconstruction. One well-known and widely used clustering
framework is the minimum cost lifted multicut problem. This framework has recently found
many applications, such as image and mesh decomposition or multiple object tracking. It
addresses such issues in a graph-based model, where real-valued costs are assigned to the
edges between entities such that the minimum cut decomposes the graph into an optimal
number of segments. Solving the multicut problem is NP-hard and computationally expensive.
Therefore, we propose two variants of a heuristic solver (primal feasible heuristic), which
greedily generate solutions within a bounded time. Driven by a probabilistic formulation
of the minimum cost multicuts, we provide a measure for the uncertainties of the decisions
made during the optimization. We argue that access to such uncertainties is crucial for many
practical applications and evaluate the proposed uncertainty measure on image and motion
segmentation.

To track the object masks in the video, we use low-level cues such as optical flow
information and image boundaries and study the importance of such cues in providing
competing and high-quality results. While high-end computer vision methods for this
task rely on sequence-specific training of dedicated Convolutional Neural Network (CNN)
architectures, we show the potential of a variational model based on generic video information
from motion and color. The optical flow information is also used for the motion segmentation
task, where observable motion in videos can give rise to the definition of objects moving
with respect to the scene. This problem is usually tackled either by aggregating motion
information in long, sparse point trajectories or directly producing dense segmentations
per frame, relying on large amounts of training data. In this dissertation, we address the
problem with the sparse motion trajectories and emphasize that generic cues such as optical
flow information and image boundaries are crucial to address this and similar tasks. The
complex motion patterns, such as out-of-plane rotation or scaling movement of the objects,
add ambiguities to the segmentation problem. Utilizing the hyper-graphs resolve such

x

ambiguities by modeling translational motion to Euclidean or affine transformations. We
evaluate our proposed methods on well-known datasets of the addressed task and show that
the integration of the low-level cues improves the result on the higher-level tasks.

Zusammenfassung

Clustering und seine Anwendung in Computer Vision, wie Bild-, 3D Meshdaten-, Video- und
Bewegungssegmentierung, sind die Hauptthemen, die wir in dieser Dissertation behandeln.
Das Clustering von Entitäten spielt eine entscheidende Rolle bei übergeordneten Aufgaben
wie Aktivitätserkennung, Roboternavigation, Szenenverständnis und 3D-Rekonstruktion. Ein
bekanntes und weit verbreitetes Clustering-Verfahren ist das Minimum Cost Lifted Multicut
Problem. Dieses Framework hat in letzter Zeit viele Anwendungen gefunden, wie z. B. die
Zerlegung von Bildern und Meshes oder das Tracking von Objekten. Es behandelt solche
Probleme in einem Graph-basierten Modell, bei dem den Kanten zwischen Entitäten reell-
wertige Kosten zugewiesen werden, sodass der minimaler Schnitt den Graphen in eine
optimale Anzahl von Segmenten zerlegt. Die Lösung des Multicut-Problems ist NP-hart und
rechenaufwändig. Daher schlagen wir zwei Varianten eines heuristischen Lösers (primal
feasible Heuristik) vor, die innerhalb einer begrenzten Zeit Lösungen “greedy” erzeugen.
Angetrieben durch eine probabilistische Formulierung des Minimum Cost Multicuts liefern
wir ein Maß für die Unsicherheiten der Entscheidungen, die während der Optimierung
getroffen werden. Wir argumentieren, dass der Zugang zu solchen Unsicherheiten für viele
praktische Anwendungen von entscheidender Bedeutung ist und evaluieren das vorgeschla-
gene Unsicherheitsmaß im Kontext von Bild- und Bewegungssegmentierung.

Um die Objektmasken im Video zu verfolgen, verwenden wir niedriges Niveau-Hinweise
wie optische Flussinformationen und Bildgrenzen und untersuchen die Bedeutung solcher
Hinweise für die Bereitstellung konkurrierender und qualitativ hochwertiger Ergebnisse.
Während High-End-Computer-Vision-Methoden für diese Aufgabe auf sequenzspezifisches
Training spezieller Faltungsneuronales Netzwerk (CNN)-Architekturen angewiesen sind,
zeigen wir das Potenzial eines Variationsmodells, das auf generischen Videoinformatio-
nen aus Bewegung und Farbe basiert. Die optischen Flussinformationen werden auch für
die Bewegungssegmentierung verwendet, bei der beobachtbare Bewegungen in Videos zur
Definition von Objekten führen können, die sich in Bezug auf die Szene bewegen. Dieses
Problem wird in der Regel entweder durch die Aggregation von Bewegungsinformatio-
nen in langen, spärlichen Punkttrajektorien oder durch die direkte Erstellung von dichten
Segmentierungen pro Bild angegangen, wobei große Mengen von Trainingsdaten benötigt

xii

werden. In dieser Dissertation befassen wir uns mit dem Problem der spärlichen Bewe-
gungstrajektorien und betonen, dass allgemeine Hinweise wie optische Flussinformationen
und Bildgrenzen entscheidend sind, um diese und ähnliche Aufgaben zu lösen. Die kom-
plexen Bewegungsmuster, wie z. B. Rotation außerhalb der Ebene oder Skalierung der
Objekte, fügen dem Segmentierungsproblem Unklarheiten hinzu. Die Verwendung von
Hypergraphen löst solche Mehrdeutigkeiten durch die Modellierung von Translationsbe-
wegungen mit euklidischen oder affinen Transformationen. Wir evaluieren die von uns
vorgeschlagenen Methoden an bekannten Datensätzen der adressierten Aufgabe und zeigen,
dass die Integration der niedriges Niveau-Hinweise das Ergebnis bei den höherwertigen
Aufgaben verbessert.

Table of contents

List of figures xvii

List of tables xxv

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Statement . 5
1.3 Challenges . 6
1.4 Contributions . 8

1.4.1 Evaluation of Low-Level Video Cues 8
1.4.2 Self-Supervised Densification of Sparse Motion Segmentations . . 9
1.4.3 Higher Order Minimum Cost Multicuts 9
1.4.4 Efficient Solvers for Minimum Cost Multicuts 10
1.4.5 Uncertainty Prediction in Minimum Cost Multicuts 10
1.4.6 Contributions as a Co-author . 11

1.5 Own Publications . 12

2 Preliminaries 13
2.1 Datasets . 13

2.1.1 Video Segmentation . 13
2.1.2 Motion Segmentation . 15
2.1.3 Image Segmentation . 17
2.1.4 Mesh Segmentation . 17
2.1.5 Neuronal Structures Segmentation 18

2.2 Optical flow . 18
2.3 Image and Video Segmentation . 20
2.4 Motion Segmentation . 22

2.4.1 Trajectory based Motion Segmentation 24

xiv Table of contents

2.5 Minimum Cost Multicuts . 25
2.5.1 Minimum Cost Lifted Multicut Problem 27
2.5.2 Existing Solvers . 28
2.5.3 Applications . 30

2.6 Motion Segmentation Using Minimum Cost Multicuts 30

3 Video Instance Segmentation - Evaluation of Low-Level Video Cues 35
3.1 Introduction . 35
3.2 Related Work . 37
3.3 Proposed Approach . 39

3.3.1 Confident Label Propagation with Optical Flow 39
3.3.2 Variational Formulation . 40
3.3.3 Flow Magnitude and Flow Direction 41
3.3.4 Boundary Term . 42
3.3.5 Lost Object Retrieval . 42

3.4 Implementation Details . 43
3.5 Experiments and Results . 44

3.5.1 Ablation Study . 44
3.5.2 Results on DAVIS . 46
3.5.3 Results on SegTrack v2 . 48

3.6 Conclusion . 50

4 Motion Segmentation - Self-Supervised Densification of Sparse Motion Segmen-
tations 51
4.1 Introduction . 52
4.2 Related Work . 54

4.2.1 Motion Segmentation . 54
4.2.2 Sparse to Dense Labeling . 54

4.3 Proposed Self-Supervised Learning Framework 55
4.3.1 Annotation Generation . 55
4.3.2 Deep Learning Model for Sparse to Dense Segmentation 58

4.4 Experiments . 60
4.4.1 Implementation Details . 60
4.4.2 Sparse Trajectory Motion-Model 61
4.4.3 Knowledge Transfer . 61
4.4.4 Dense Segmentation of Moving Objects 62
4.4.5 Partly Trained Model . 62

Table of contents xv

4.4.6 Densification on FBMS59 . 63
4.5 Conclusion . 64

4.5.1 Relationship to the Self-Supervised Multiple Object Tracking Ap-
proach by Ho et al. [60] . 66

5 Motion Segmentation - Higher Order Minimum Cost Multicuts 67
5.1 Introduction . 68

5.1.1 Motion Segmentation . 68
5.2 Related Work . 69
5.3 Higher-Order Lifted Multicut Problem . 70
5.4 Local Search Algorithm . 71

5.4.1 Motion Segmentation . 74
5.4.2 Higher-Order Motion Models . 74

5.5 Experiments . 78
5.5.1 Motion Segmentation . 78

5.6 Conclusion . 87

6 Minimum Cost Multicuts – Efficient Solvers 89
6.1 Introduction . 89
6.2 Related Work . 90
6.3 Optimization Problem . 90
6.4 Objectives . 91
6.5 Proposed Approach . 92

6.5.1 Algorithms . 92
6.6 Experiments . 95

6.6.1 Image Decomposition . 95
6.6.2 Mesh Segmentation . 97
6.6.3 ISBI 2012 Challenge . 99

6.7 Conclusion . 101
6.7.1 End-to-End Multicut Graph Decomposition 103

7 Uncertainty Prediction in Minimum Cost Multicuts 105
7.1 Introduction . 105
7.2 Related Work . 106
7.3 Uncertainties in Minimum Cost (Lifted) Multicuts 108

7.3.1 Probability Measures . 108
7.3.2 Uncertainty Estimation Model . 109

xvi Table of contents

7.4 Evaluation and Results . 114
7.4.1 Motion Segmentation Results . 115
7.4.2 Multimodal Motion Segmentation 117
7.4.3 Densified Motion Segmentation 118
7.4.4 Image Decomposition . 120
7.4.5 Uncertainty on Minimum Cost Multicut Solutions from GAEC . . . 123

7.5 Conclusion . 123

8 Future Work and Conclusion 125
8.1 Limitations . 125
8.2 Future Work . 126
8.3 Conclusion . 127

Bibliography 129

List of figures 141

List of tables 143

List of figures

1.1 Examples of the video object and motion segmentation are provided from the
(left) 15th frame of the “bmx-bumps” sequence, where (middle) the person
and the bike are segmented separately and are considered as separate objects
from the DAVIS2017 [131]. (right) Due to the reason that the person and the
bike move together and have the same motion pattern, they are assigned the
same motion label (blue color) in the task of motion segmentation where the
ground-truth segmentation is provided from DAVIS2016 [128]. 2

1.2 The image and the ground-truth of the motion segmentation of one of the
frames on the “cars9” sequence from FBMS59, Ochs et al. [123], are pro-
vided. The segments from the motion segmentation result are as large as a
whole moving car or the part of the car moving at a distance. 3

1.3 Motion segmentation and the proposed uncertainty measure on a street
scene are shown. The uncertainty is high on incorrectly segmented points,
specifically the missed person. 4

1.4 Exemplary multi-label motion segmentation results showing (left) the image
and its sparse (middle) and dense (right) segmentation are shown. The
sparse segmentation is produced by Keuper et al. [88], and the dense seg-
mentation is the result of our proposed self-supervised learning based model
[81] which is based on U-Net [135] architecture. 4

2.1 (left) An exemplary image from the “soapbox” sequence is shown. (middle)
The binary object segmentation is provided from the DAVIS2016 [128] dataset.
Due to the reason that all the objects are moving together, this dataset can be
used for the motion segmentation task. (right) The multi-object segmentation
is shown for the same sequence from DAVIS2017 [131]. 15

2.2 The images and ground-truth segmentation for two sequences from the
SegTrack v2 dataset [104] are shown. 15

xviii List of figures

2.3 The motion segmentation task from two sequences from the FBMS59
dataset [123] and their ground-truth segmentation are shown. The “bear”
(left and middle-left) shows out-of-plane rotation movement, and the two
cars (middle-right and right) move in the same direction, showing the same
motion pattern. 16

2.4 One of the images on the test set of BSDS500 dataset [5] is shown as well as
the five different manual boundary segmentations. 16

2.5 Visualization of direction and magnitude of the optical flow fields bt+1 and
bt+2 from example frames of the “parkour” sequence of DAVIS2016 [128]
are shown. Consecutive flow information is highly correlated. 19

2.6 We depict different boundary estimations in the “bmx-bumps” sequence of
DAVIS2016 [128]. Such low-level cues help in guiding higher-level tasks
such as video segmentation. 20

2.7 Motion segmentation example is provided for frames 1 and 160 of the
“horses01” sequence (with their ground-truth motion segmentation) in the
FBMS59 [123] dataset. Due to the reason that the person and the horse move
together and have the same motion pattern, the same motion label (blue
color) is assigned. 23

2.8 (a) An example of a graph decomposition and its encodings. Switching green
and red labels will produce a different encoding for the same decomposition.
Dashed lines, in turn, constitute a multicut of a graph and uniquely define
its decomposition. (b) An example of a lifted graph decomposition and its
encoding. Blue lines denote lifted edges that connect vertices that are not
direct neighbors in the graph. (c) An example of 3rd-order costs that consider
three nodes at a time (light blue triangles) for a better join/cut decision. If a
higher-order cost does not correspond to a clique in the graph, we add lifted
edges in our work proposed in [101]. 29

3.1 Visualization of the proposed workflow is given. Starting from the images
in frame t and t +1 and an initial annotation, scribbles are extracted based
on optical flow. Then, warped scribbles, image color, and optical flow
values are used to generate label costs and boundary estimates to be fed
into a variational segmentation framework which produces the complete
segmentation of frame t +1. 37

List of figures xix

3.2 Visualization of the forward-backward consistency of the optical flow and
the employed label warping is provided. For input frames It and It+1 (row 1),
we check the point motion according to the backward and forward optical
flow fields bt+1 and ft for cycle consistency. For disoccluded points y in It+1

the distance d(f,b,y) is large. In corresponding regions, no labels can be
propagated. 40

3.3 The “soccerball” sequence from DAVIS2016 [128] provides an example of
an object reappearing after occlusion. For such objects, no labels can be
propagated. 43

3.4 Exemplary results for segmentation tracking on the DAVIS2016 (binary) and
DAVIS2017 (multi-label) benchmark are shown from different sequences and
the ground-truth (GT). We compare different state-of-the-art methods like
OSVOS-S [110], CINM [13], OSMN [164], and ours. 46

3.5 Sample results on the SegTrack v2 benchmark are shown (see Section 2.1). 48

4.1 Motion segmentation example is provided for frames 1 and 160 of the
“horses01” sequence (with their ground-truth motion segmentation) in the
FBMS59 [123] dataset. Due to the reason that the person and the horse are
moving together and have the same motion pattern, they are assigned the
same motion label (blue color). 52

4.2 Exemplary multi-label motion segmentation results showing (left) the image
and its sparse (middle) and dense (right) segmentation. The sparse segmen-
tation is produced by Keuper et al. [88] and the dense segmentation is the
result of the proposed model. 54

4.3 Sparsely segmented trajectories are produced by minimum cost multicut
(refered as MC on the figure) either with our Siamese-GRU model or simple
motion cues as in Keuper et al. [88] (top). The sparsely labeled points are
used to train the U-Net model (bottom). At test time, the U-Net model can
produce dense segmentations without requiring any sparse labels as input. . 58

4.4 Exemplary single-label motion segmentation results showing the five frames
and their sparse and dense segmentation for two different sequences, gener-
ated using the proposed U-Net model. The images are from the sequences
on the validation set of DAVIS2016 [128] dataset. 64

xx List of figures

4.5 Exemplary single- and multi-label motion segmentation results showing the
image and its sparse results, as well as dense segmentation for five frames in
three different sequences, generated using the proposed U-Net model. The
images are from the FBMS59 [123] dataset. Segmentations with fine details
are produced even when training labels are scarce; notice how scarce the
labels are for “rabbit” images in the 8th row. White areas are parts without
any label. 65

5.1 Samples of our Lifted motion-adaptive order (AOMC) segmentations den-
sified by Ochs and Brox [121] are shown. Our segmentations show little
over-segmentation even for articulated motion. 78

5.2 The person and the wall are assigned to the same cluster with the non-lifted
multicut approach from Keuper et al. [88] because of the camera motion.
The Lifted AOMC allows for correct segmentation. 78

5.3 The scaling motion of the white horse moving towards the camera causes
over-segmentation with a simple motion model from Keuper et al. [88]. With
the proposed Lifted AOMC, this can be avoided. 83

5.4 The two cars in the front move in the same direction. This leads to the same
cluster assignment with the non-lifted multicut approach [88]. The Lifted
AOMC can assign the distinct motion labels to the different cars. 84

5.5 The articulated motion leads to over-segmentation in [88]. Showing that the
Lifted AOMC performs better. 84

5.6 The failure cases are shown. With the proposed method, the dominant camera
motion causes strong over-segmentation. The proposed third-order model
can not appropriately model the motion. 85

5.7 Evaluation on the motion subtask of the VSB100 dataset [55, 144] is provided.
We compare our results to SC, Ochs et al. [123], the video segmentation ap-
proach VS, Galasso et al. [54], the superpixel tracking baseline from Galasso
et al. [55], and the multicut models with pairwise terms MCe, Keuper et al.
[88]. The proposed lifted adaptive order model (LAOMC) outperforms the
pairwise terms consistently. LAOMC∗ shows results based on FlowNet [66],
while LAOMC is computed on flows from Brox and Malik [26] for fair
comparison to Ochs et al. [123]. 86

5.8 Computation times in the log-scale of the problem instances from Set A and
B of FBMS59 with respect to the number of point trajectories are provided
(following Keuper [87]). 86

List of figures xxi

6.1 For the BSDS500 [5] image on the left (average ground-truth annotations
are depicted below it), we show intermediate states during the execution of
the GAEC solver [89] (top) and the proposed BEC-cut solver (bottom) after
20%, 40%, 60%, and 80% of the total merges have been executed. GAEC
tends to generate large segments that merge points across object boundaries.
These merges can not be “repaired”. In contrast, BEC-cut generates and
grows many segments simultaneously. It starts generating these segments in
the vicinity of the object boundaries. 91

6.2 Exemplary computation of ζ from χ before (top) and after (bottom) con-
traction of components a and b. χ encodes the sum of outgoing costs of a
component. 94

6.3 Depicted above is an evaluation of the heuristics GAEC, (Algorithm 7),
KLj [89] and the proposed BEC (Algorithm 8) and BEC-cut (Algorithm 9)
on the large and difficult lifted multicut problem instances from [89] with
lifting radius 20 (LMP20). These instances address the image decomposition
problem posed by the BSDS500 benchmark [5]. On the left, the variation
of information (VI), split additively into a distance due to false cuts and a
distance due to false joins, is depicted (lower is better); on the right, the
accuracy of boundary detection, split into recall and precision is shown
(higher is better). Error bars depict the 0.25 and 0.75-quantile. The result of
the proposed heuristics figure in between those of the solvers GAEC and KLj
in both metrics. In the region metric VI, the results of the proposed solvers
BEC and BEC-cut are very close to the results of KLj. 96

6.4 Depicted above is a comparison of Algorithm 9 (BEC-cut) and Algorithm 8
(BEC) with GAEC and KLj [89]. Every point corresponds to one instance of
the lifted multicut problem [89] defined with respect to one test image in the
BSDS500 benchmark [5] with lifting radius 10 (left) and 20 (middle and
right). The computation times of the proposed algorithms BEC-cut (middle)
and BEC (right) are close to the ones from GAEC while the resulting energy
is improved. 96

6.5 Qualitative segmentation results of the proposed BEC-cut solver on instances
from the BSDS500 benchmark (Section 2.1.3). The lifted multicut problems
are computed with lifted edges between all points at a distance less than 10. 97

xxii List of figures

6.6 Results from our proposed solver BEC-cut are provided as well as the GAEC
solver. The results from the solvers on the example from Figure 6.1 are
shown in the third column. GAEC only segments isolated pixels on the
boundary, while BEC-cut provides a meaningful segmentation into closed
segments. 98

6.7 Depicted above is a comparison of BEC with GAEC and KLj [89], initialized
with both BEC and GAEC, in terms of computation time over the resulting
objective value on the Princeton Shape Segmentation Benchmark. 101

6.8 The first frame of the stack in the test data of ISBI 2012 and the corresponding
segmentation boundaries are shown. The results for this dataset are acquired
with a BEC-cut solver. 101

6.9 Some results generated by the proposed BEC-cut heuristic are shown for the
Princeton Shape Segmentation Benchmark. The last row shows failure cases. 102

6.10 Some of the results for the Princeton shape segmentation benchmark are
provided for two heuristic solvers, BEC and KLj-BEC. The first four rows
show the successful segmentation, and the last two rows represent the failure
cases. The results corresponding to the solvers are shown in pairs of rows
for better comparison purposes. The results from BEC are acquired with less
computation time than KLj-BEC, while the segmentation qualities are similar.104

7.1 Motion segmentation and the proposed uncertainty measure on a street scene.
The uncertainty is high on incorrectly segmented points, specifically the
missed person. 106

7.2 Bayesian Network from Keuper et al. [89], defining a set of probability
measures on multicuts (MP) (black) and lifted multicuts (LMP) (blue) are
shown. 108

7.3 In the current decomposition of the exemplary graph G = (V,E) (top figure),
we study the node uncertainties as represented in Equation (7.11). For
instance, v1 is moved from one partition (red label) to the new possible
partitions (blue and green labels), and the cost change is estimated. The γα

represents the cost that minimizes the cost among these moves. 110

List of figures xxiii

7.4 Uncertainty measures on point trajectories for the two sequences from
FBMS59 (first two rows) and DAVIS2016 (last two rows) are shown. In
each row, from left to right, we provide an image, its ground-truth, the
segmentation, and our uncertainty estimation. The uncertainty values are dis-
cretized and color-coded for visualization purposes. White areas correspond
to the trajectories with high certainty. The uncertainty on thin, articulated
object parts is high. 115

7.5 Study on motion trajectory uncertainties on VI (left) and RI (right) on the
train set (top row) and on the test set (bottom row) of FBMS59. The metrics
improve by removing trajectories according to the proposed uncertainty mea-
sure. Notice that removing uncertain trajectories according to the likelihood
baseline deteriorates both VI and RI. 116

7.6 Study on the motion trajectory uncertainties on VI (left) and RI (right) on
train set (top row) and validation set (bottom row) of DAVIS2016 [128]. Our
results improve significantly over the baselines. 117

7.7 Visualization of eight different likely solutions and their energies (refer to
Equation (2.9) in Chapter 2, lower is better), as they can be generated by
the proposed method. The different solution candidates vary mainly along
object boundaries. The best segmentation with respect to the ground-truth
corresponds to the second image (from left) in the last row. 118

7.8 F-measure on the train set of FBMS59 when selecting n best segmenta-
tion proposals. The F-measure improves as the number of segmentation
candidates increases. 119

7.9 Densification of sparse segmentations using uncertainties. We compare the
result from our densification model in [81] (baseline) with the proposed
method, which uses uncertainties in the model training. Improvements can
be observed especially on thin structures such as limbs. 119

7.10 Exemplary images and segmentation uncertainties on the BSDS500 [5]
dataset. In each row, from left to right, the original images, ground-truth
segmentation, the resulting minimum cost lifted multicut segmentation, and
the proposed uncertainties are given. Bright areas in the uncertainty images
represent uncertain pixels. 120

xxiv List of figures

7.11 Visualization of removing uncertain pixels in BSDS500 images [5]. Notice
that removing uncertain pixels corresponds to removing pixels along the
object boundaries. The original image (left), its multicut solution (middle),
and the uncertainty measure (right) based on our model are shown in the
first row. The second row visualizes (from left to right) removing 10, 30, and
50 % of the most uncertain pixels. 121

7.12 Sparsification analysis in VI (left) and RI (right) on the BSDS500 [5] test
data. The proposed method shows a faster decrease in VI than the baseline
and reaches a higher RI. 122

7.13 Study on the trajectory uncertainty on the GAEC [89] solver is provided.
The experiment relates to the Variation of Information (VI) and Rand Index
(RI) on the train (left) and test (right) set of FBMS59 [123]. 122

7.14 Study on the trajectory uncertainty on the GAEC [89] solver is provided.
The experiment relates to the Variation of Information (VI) and Rand Index
(RI) on the train (left) and validation (right) set of DAVIS2016 [128]. 122

List of tables

3.1 Our results for different boundary estimation methods on the DAVIS2016

validation set are given. Motion boundaries (MB)s from Ilg et al. [66] are
studied when combined (w/ MB) or not combined (w/o MB) to each of the
boundary detectors. 44

3.2 Our results for train and validation sets of DAVIS2016 are given when: 1.
using FlowNet2.0 [65] instead of FlowNet3.0 [66], 2. not using lost object
retrieval (w/o LOR), 3. employing different components of spatial, color and
optical flow information. 45

3.3 Results on train and validation sets of DAVIS2016 are provided. We report
Mean (M), Recall (R) and Decay (D) of the evaluation metrics (F and J 2.1). 47

3.4 Results on the DAVIS2017 validation and test set are provided. 48
3.5 A comparison of our method with several state-of-the-art methods on the

SegTrack v2 dataset [104] is provided. The best results are shown with bold
font on each sequence. 49

4.1 The trajectories are segmented by 1. the method of Keuper et al. [88] and
2. our Siamese-GRU model. The densified results are generated based on
1. the method of Ochs et al. [123] and 2. the proposed U-Net model. The
results are provided for the validation set of DAVIS2016. 61

4.2 Sparse Motion Segmentation trained on DAVIS2016 (all sequences) and
evaluated on FBMS59 (train set). We compare to Keuper et al. [88] and their
variant only using motion cues. 61

xxvi List of tables

4.3 Evaluation of self-supervised training on sequences from DAVIS2016 vali-
dation and comparison with other methods is provided. Effect of adding
color information (RGB) to the edge maps (Sobel) is studied (ours) and com-
parison between (pre-trained) dense-CRF (dense), CRF-per-seq (per-seq)
and CRF-general (general) is provided (for different versions of CRF refer
to Section 4.4.4). We studied the effect of our best model while training it
only on 50%, 70%, and 90% of the frames in the last three rows. 63

4.4 We evaluate our densification method on FBMS59 (train) using sparse motion
segmentations from Keuper et al. [88]. The sparse trajectories are produced
with different flow estimation methods (LDOF [24] and FlowNet2 [65])
and densified with our proposed U-Net model (using edge maps (Sobel)
and color information (RGB) (ours)). Further, we study on different CRF
methods, (pre-trained) dense-CRF (dense) and CRF-general (general). For
more details about different versions of CRF refer to Section 4.4.4. 63

5.1 Segmentation results on the FBMS59 dataset on Set A (top) and Set B
(bottom). We report P: average precision in %, R: average recall in %, F:
F-measure in % and O: extracted objects with F ≥ 75%. All results are
computed for sparse trajectory sampling at an 8-pixel distance. Our result
HO MC is computed on the non-lifted purely higher-order model to allow
for a direct comparison to the listed competing methods. 80

5.2 Segmentation Results on FBMS59 on Set A (top) and Set B (bottom) are
provided. We report P: average precision, R: average recall, F: F-measure
and O: extracted objects with F≥ 75%. All results are computed for sparse
trajectory sampling at an 8-pixel distance. The proposed approach Lifted
AOMC performs best. 81

5.3 Segmentation results are provided for the proposed model Lifted AOMC
on the FBMS59 dataset on Set A (top) and Set B (bottom) for different
optical flow methods. We report P: average precision, R: average recall, F:
F-measure and O: extracted objects with F≥ 75%. All results are computed
for sparse trajectory sampling at an 8-pixel distance. 82

5.4 Results for densified segmentations on FBMS59 using annotations and met-
rics as in Bideau et al. [23] for freely moving 3D objects. For ∆Obj, lower
is better. Results for Keuper et al. [88], Taylor et al. [148], Tokmakov et al.
[149], Tokmakov et al. [150] and Bideau et al. [23] are taken from Bideau
et al. [23]. 83

List of tables xxvii

5.5 Evaluation on DAVIS2016 is provided. The more complex motion model in
Lifted AOMC is beneficial for this dataset of binary object segmentation.
Results marked with ∗ are taken from Tokmakov et al. [149]. 85

6.1 Written below are boundary and volume metrics measuring the distance
between the man-made decompositions of the BSDS500 benchmark [5] and
the decompositions defined by lifted multicuts (LMP) and top-performing
competing methods Arbeláez et al. [5], Arbelaez et al. [6], Dollár and Zitnick
[41]. Parameters are fixed for the entire data set (ODS). 99

6.2 Average computation time and objective value of the different solvers over
the Princeton Shape Segmentation Benchmark are provided. 99

6.3 Resulting RI and VI score for the 3D mesh segmentation instances of the
Princeton Segmentation Benchmark [32]. We evaluate the proposed solvers
BEC and BEC-cut and compare them to GAEC [89] and KLj [89] initialized
by GAEC. We also evaluate KLj, initialized with our results from BEC. . . 100

6.4 Objective value and run time of the proposed solvers, and fusion move
algorithm with the randomized proposal generator (FM-R), Beier et al. [15],
for the LMP for ISBI 2012 Challenge [27, 28] are provided. 100

7.1 Densification of the sparse trajectory segmentations on the FBMS59 train
set. We compare our model [81] in Chapter 4 to the variant trained using
uncertainties. 119

Chapter 1

Introduction

Clustering is the task of grouping entities where the objects in one group (i.e. cluster) are
more similar than those in different groups, Galushin and Kudinov [56]. In essence, we
are concerned about the clustering problem in this dissertation, where the objects inside the
clusters range from pixels in an image (in case of image segmentation) to motion trajectories
(in case of motion segmentation). The clustering problems are projected to the graph structure,
each node representing the object, and the edges correspond to the affinities between the
objects. For instance, neighboring pixels (nodes on the graph) are connected via an edge.
The graph’s decomposition generates the entities’ grouping for addressing problems.

In this dissertation, we study the application of the grouping task on different areas like
image, mesh data, a stack of microscope images, motion, and video instance segmentation.
Further, we investigate the formulations of relating these problems to the graph structure,
study the approaches for decomposition of the graph, and provide uncertainty measures on
the results.

1.1 Motivation

Video instance segmentation involves localizing, tracking, and segmenting the object in-
stances through consecutive frames. It is a preliminary technique to handle high-level tasks
such as object detection, action recognition, and 3D reconstruction of static and moving
objects. In such a task, finding the salient objects and tracking them through consecutive
frames is enhanced via appearance cues, pixel position, and color information under the
usage of the optical flow information, Wannenwetsch et al. [158], Ilg et al. [65], Weinzaepfel
et al. [159].

Mostly used information on the video instance segmentation task is the availability of the
optical flow information, such as flow magnitude and direction. We studied the effect of the

2 Introduction

Fig. 1.1 Examples of the video object and motion segmentation are provided from the (left)
15th frame of the “bmx-bumps” sequence, where (middle) the person and the bike are
segmented separately and are considered as separate objects from the DAVIS2017 [131].
(right) Due to the reason that the person and the bike move together and have the same
motion pattern, they are assigned the same motion label (blue color) in the task of motion
segmentation where the ground-truth segmentation is provided from DAVIS2016 [128].

low-level cues such as optical flow information and the boundary estimates on tracking the
instance segmentations through consecutive frames in a semi-supervised manner (see our
published work in [84]). Our approach can be combined with state-of-the-art Convolutional
Neural Network (CNN)-based segmentations in order to improve their respective results
and can even provide competitive results compared to such costly methods. Our method
facilitates the segmentation of fine details and thin structures.

In the video object segmentation task, Tsai et al. [153], Price et al. [132], Nagaraja et al.
[117], Paul et al. [126], the instance of the salient objects is tracked through the frames. For
instance, a person who rides a bike is being tracked through frames, where both person
and the bike are considered as two separate objects, see Figure 1.1. In the video instance
segmentation task, the object instances are separated and classified into their respective
categories. More specifically, each instance is considered as one object; i.e., in a video
sequence with several pedestrians to be tracked, each pedestrian is one instance. A similar
task to video segmentation is motion segmentation, as addressed in Brox and Malik [25], Li
et al. [105], Shi et al. [137], which is a task of segmenting the salient moving objects in a
video.

According to the Gestalt principle of common fate, Koffka [95], motion patterns of
objects are often more homogeneous than their appearance and provide robust cues for
moving object segmentation. Thus, from accurately estimated point-wise motions, object
motion models can fit through the formulation of a point grouping problem over local motion
similarities.

While the information gathered through multiple frames is helpful, handling a large
amount of data is costly, mainly due to high computational costs and requiring massive
resources to process the versatile data. The less computationally demanding task is image

1.1 Motivation 3

Fig. 1.2 The image and the ground-truth of the motion segmentation of one of the frames on
the “cars9” sequence from FBMS59, Ochs et al. [123], are provided. The segments from the
motion segmentation result are as large as a whole moving car or the part of the car moving
at a distance.

segmentation like Nieuwenhuis and Cremers [119], Bae et al. [8], where the task is to
partition an image domain into multiple disjoint components such that each component is a
meaningful part of the image. In this task, the ambiguity on the number of salient objects
increases due to not having access to enough information compared to the task of a video
object and motion segmentation.

One of the well-known frameworks for grouping and clustering is the minimum cost
multicut (MP) framework (known as correlation clustering), Chopra and Rao [36], Deza
et al. [40]. This framework is our main tool used to address the grouping problems where
the entities are projected to the vertices in the graph and the edges are connected based on
the affinity of the entities (see Section 2.5). This formulation does not require the number of
objects as a priori and provides that by the nature of the formulation. Further, the formulation
does not favor providing balanced or specific types of segments, meaning that the segments
can be as small as part of an object, see Figure 1.2.

The generalization of the MP is proposed in Keuper et al. [89], considering long-range
terms, named minimum cost lifted multicut (LMP).

Due to the NP-hard nature of the MP formulation, heuristic approaches are proposed, such
as Kernighan-Lin with joins (KLj) and Greedy Agglomerative Edge Contraction (GAEC) [89].
The KLj approach is more accurate and provides the results in a reasonable amount of time,
but GAEC is faster, while the results are less accurate. We propose two variants of a
heuristic solver (primal feasible heuristic) in the published work in [82]. The variants are
among the greedy approaches and generate solutions within a bounded amount of time
which experimentally show faster convergence speed than the KLj [89] and provide better
segmentation quality than the GAEC [89]. Although branch-and-bound algorithms, Andres
et al. [3], as well as Linear Programming (LP) relaxations, Kim et al. [92], Kappes et al.
[79], are feasible when applied to small problems, they do not scale easily as it is shown

4 Introduction

Image Ground-Truth Multicut Uncertainty

Fig. 1.3 Motion segmentation and the proposed uncertainty measure on a street scene are
shown. The uncertainty is high on incorrectly segmented points, specifically the missed
person.

Fig. 1.4 Exemplary multi-label motion segmentation results showing (left) the image and
its sparse (middle) and dense (right) segmentation are shown. The sparse segmentation is
produced by Keuper et al. [88], and the dense segmentation is the result of our proposed
self-supervised learning based model [81] which is based on U-Net [135] architecture.

in Levinkov et al. [102]. Instead, we propose a local search algorithm based on an efficient
move-making algorithm [89].

The probabilistic formulation of the MP allows for the uncertainty estimation on the
generated results, see Figure 1.3. Such information can be used in many tasks such as
video object, motion, and image segmentation. Further, this work allows us to provide the
segmentation uncertainty on the node level and can be incorporated into any heuristic solvers
for the MP, (see our work in [83]).

Motion segmentation problem is addressed via the Recurrent Neural Networks (RNN)
in our work [81], for assigning the affinity cost for the pair of motion trajectories (spatio-
temporal curves) (see Section 2.4). Sparse motion segmentation, Ochs et al. [123], is
considered, where point trajectories are not sampled at every point but at a defined density.
Thereafter, the sparse results are densified by the self-supervised approach on a U-Net [135]
based network, see Figure 1.4.

The usage of the pair of motion trajectories or comparing two trajectories at a time is
not sufficient for segmenting higher-order motion patterns, such as out-of-plane rotation
and scaling effects (zoom-in and -out) or moving the object towards the camera. In our
work [101], such difficulties are addressed via the comparison of more than two trajectories

1.2 Problem Statement 5

at a time leading to better results. Moreover, geometric model-fitting has been addressed by
Evgeny Levinkov in this publication.

In the work of Ho et al. [60], which is led by Kalun Ho, the Multiple Object Tracking
(MOT) problem is addressed by utilizing the spatio-temporal features through consecutive
frames, and the LMP in a self-supervised manner. Further, an Auto-Encoder (AE) model
generates a latent representation of the features. The method is used for pedestrian tracking
tasks. We studied the usage of the MP framework on grouping problems such as image and
motion segmentation. The objective function of the MP includes several constraints which
can be injected into the loss function of the end-to-end trainable model. This model is trained
sub-optimally in the work of Song et al. [143]. In our work which is led by Steffen Jung [74],
the application of the edge detection to be used by image segmentation is addressed by
utilizing the end-to-end trainable model incorporating the edge penalties from the multicut
formulation into the objective function and via an adaptive Conditional Random Field (CRF)
to get tighter constraints and more valid solutions.

1.2 Problem Statement

Video instance segmentation is a demanding task in many applications such as action
recognition, robot navigation, and scene understanding. In this task, the objects interact
with each other and move through consecutive frames. One approach is to get a temporal
consistency on the objects and track them through the frames utilizing frame-by-frame optical
flow information. Providing a reliable segmentation of the static and moving objects through
space and time helps to produce the 3D reconstruction of all the objects. We propose a
flexible and probabilistic graph-based framework for image and motion segmentation. More
specifically, to address the video and motion segmentation, we use a problem formulation
based on a generalized MP, Chopra and Rao [36], Deza et al. [40]. With this problem
formulation, we get the advantage of solving the model selection problem, where the nature
of the formulation determines the number of objects. The “optimal multicut” provides an
optimal decomposition of the graph into an optimal number of clusters.

Observable motion in videos can give rise to the definition of objects moving with
respect to the scene. The task of segmenting such moving objects is referred to as motion
segmentation. There are two main approaches to address this problem, either by aggregating
motion information in long and sparse point trajectories or by producing per frame dense
segmentations relying on a model trained on a massive amount of training data. We propose
a method [81] for self-supervised motion segmentation without depending on a large amount
of training data and operating on single frames at the test time. The model for dense motion

6 Introduction

segmentation is trained by the noisy self-produced labels which generally transfers well for
the unlabeled pixels [81]. The MP framework is used for producing the noisy labels, which
provide the sparse motion segmentation using the sparse point trajectories. Handling of sparse
labels could be avoided if dense unsupervised motion segmentations were given. Although
in principle, dense trajectories can be generated by the motion segmentation algorithm,
the clustering algorithm does not scale linearly with the number of trajectories, and the
computational cost explodes.

Comparing the pair of trajectories is used to cluster the planar motion patterns such as
translation and in-plane rotation. The higher-order motion sub-spaces are used to compare
more than two trajectories simultaneously to handle ambiguous situations like the out-of-
plane rotation and scaling motions, for instance when the object moves toward the camera.

The MP is used on the pedestrian tracking task as well in Tang et al. [147], Ho et al.
[60], Tang et al. [146], Keuper et al. [90]. In the work of Ho et al. [60] which is based on
the prior work by Tang et al. [147], the bounding box position of the pedestrians is used to
produce the tracklets. The appearance of the objects within the bounding boxes is the cue
to provide affinity cost for the edges on the multicut graph. After that, the Klj [89] solver
provides a grouping of the bounding boxes, where ideally, the bounding boxes in one cluster
correspond to a specific pedestrian.

Accessing the confidence of the generated results on any problem such as image and
motion segmentation leads to the improvement of the solution. The confidence level can be
used for a higher-level interpretation of the results. Thanks to the structure and probabilistic
formulation of the MP, we provide a measure for the decisions made for node labels during
the optimization process [83]. Accessing such uncertainties is crucial in many applications
such as motion and image segmentation.

1.3 Challenges

One of the difficulties dealing with video instance segmentation is recognizing the object
saliency where the object is moving or attracting attention through consecutive frames.
The reliable and well-segmented results are used on higher-level tasks such as the 3D
reconstruction of the objects and proper action recognition. Further, on self-trained robots
and autonomous cars, understanding of the scene relies on the ability of the detection and
tracking of objects and motion patterns. Providing such information enhances the efficiency
of such systems.

Another difficulty is providing clean and sufficient data for deep-learning-based ap-
proaches. Such approaches require a large amount of data, and producing such data is

1.3 Challenges 7

troublesome. Indeed, providing clean data is very important because the training-based
model will provide more reliable results than being trained on noisy data. Despite the avail-
ability of some datasets such as DAVIS2016 [128] (for a single object) and DAVIS2017 [131]
(for single- and multi-object), where the pixel-level annotation for all the frames on the
sequences are provided, there is a big lack on temporally consistent video annotation. Plenty
of training-based models rely on proper training data; providing such data is time-consuming.
However, with access to such data, it is not guaranteed whether the model is robust in unseen
scenarios and can generalize to the data with different distributions than those used in the train-
ing stage. Currently, gaining acceptable results without relying on the huge amount of data
is getting more attention, focusing primarily on unsupervised [43] and self-supervised [14]
approaches.

One example of motion segmentation is a situation where both objects are moved together,
like a person who rides a bike; both objects are assigned to the same motion cluster, see
Figure 1.1, because they show the same motion pattern unless the person moves away from
the bike. Therefore, the result of the motion segmentation depends on the number of visible
actions within the video. One approach for motion segmentation is the usage of motion
trajectories (see Section 2.4.1). They consist of the points belonging to the consecutive
frames tracking a pixel position. Given any point on the motion trajectory, it is possible
to travel backward and forward through the seen frames. The moment the object starts to
move triggers a signal to separate the point belonging to the object from its surrounding on
the current and prior frames. On the other hand, frameworks relying solely on the object
appearance do not have access to the prior frames unless they perform based on the memory
units such as in Tokmakov et al. [150].

Consider a case where the person is waving while the other part of the body is stable;
in this scenario, a person’s hand is considered as a separate motion pattern from the other
body parts. In this case, the other body parts stick to the motion pattern of the background.
In scenarios like this, using the object appearance features helps to join the hand with its
corresponding body.

One challenge is determining the granularity level of the segmentation. Depending on
the application, one might be interested in the segmentation of the body parts for body
gesture detection or the segmentation of people on the scene for pedestrian tracking. In other
words, a fundamental challenge is determining the level of segmentation, such as determining
the actual object or object-part boundaries. The learning-based methods provide a proper
solution to this problem, although this needs a considerable amount of clean image and video
annotations.

8 Introduction

Due to dealing with video, or accessing multiple frames, processing a large amount
of data requires many processing resources, and handling such data is cumbersome. The
pre-computed frame-wise super-pixels is used in Vazquez-Reina et al. [154] to solve the
computational cost. Although the super-pixel computation is error-prone, propagation of the
errors on different levels of the segmentation granularity, hinders the better quality of the
results in the video segmentation.

In the MP framework, the entities are connected with their direct neighbors. In some
scenarios where there is an ambiguity along the object boundary to make a better cut decision,
the lifted multicut is used to connect the entities further with their non-neighboring ones
without modifying the set of feasible solutions, Keuper et al. [89]. Due to the NP-hard nature
of the problem, some heuristic solvers are proposed. Providing uncertainty measures on the
decisions made by the solvers helps in making better decisions on the tasks.

1.4 Contributions

In this dissertation, we provide methodological contributions to several aspects of video
and motion segmentation, which resulted in seven peer-reviewed publications. This section
provides a brief overview of the main contributions.

1.4.1 Evaluation of Low-Level Video Cues

A lightweight variational framework for online tracking of object segmentation in videos
based on optical flow and image boundaries is provided. While high-end computer vision
methods for this task rely on sequence-specific training of dedicated CNN architectures,
we show the potential of a variational model based on generic video information from
motion and color. Such cues are usually required for tasks such as robot navigation or
grasp estimation. We leverage them directly for video object segmentation and thus provide
accurate segmentations at potentially very low extra cost. Our simple method can produce
competitive results compared to the costly CNN-based methods with parameter tuning. We
evaluate our method on the datasets DAVIS2016, DAVIS2017, and SegTrack v2. Furthermore,
our approach can be combined with state-of-the-art CNN-based segmentations to improve
their respective results. This work is published in International Conference on Pattern
Recognition (ICPR), 2021 [84].

1.4 Contributions 9

1.4.2 Self-Supervised Densification of Sparse Motion Segmentations

Observable motion in videos can give rise to the definition of objects moving with respect to
the scene. The task of segmenting such moving objects is referred to as motion segmenta-
tion and is usually tackled either by aggregating motion information in long, sparse point
trajectories or by directly producing dense segmentations per frame relying on large amounts
of training data. We propose a self-supervised method to learn the densification of sparse
motion segmentation from single video frames. While previous approaches towards mo-
tion segmentation build upon pre-training on large surrogate datasets and use dense motion
information as an essential cue for pixel-wise segmentation, our model does not require
pre-training and operates at test time on single frames. It can be trained in a sequence-specific
way to produce high-quality dense segmentations from sparse and noisy input. We evaluate
our method on the well-known motion segmentation datasets FBMS59 and DAVIS2016. This
work is published in Asian Conference on Computer Vision (ACCV), 2020 [81].

1.4.3 Higher Order Minimum Cost Multicuts

The minimum cost lifted multicut problem is a generalization of the multicut problem and is
a means to optimize a decomposition of a graph w.r.t. both positive and negative edge costs.
It has been shown to be useful in a large variety of applications in computer vision thanks to
the fact that multicut-based formulations do not require the number of components given a
priori; instead, it is deduced from the solution. However, the standard multicut cost function
is limited to pairwise relationships between nodes, while several important applications
either require or can benefit from a higher-order cost function, i.e., hyper-edges. This paper
proposes a pseudo-boolean formulation for a higher-order motion segmentation [101]. It is
based on a formulation of any-order minimum cost lifted multicuts, which allows partitioning
of an undirected graph with pairwise connectivity such as to minimize costs defined over
any set of hyper-edges. As the proposed formulation is NP-hard and the branch-and-bound
algorithm, Andres et al. [3], (as well as obtaining lower bounds) is too slow in practice,
we propose an efficient local search algorithm for inference into resulting problems. We
demonstrate the versatility and effectiveness of our approach in several applications: 1) We
define a geometric multiple model fitting, more specifically, a line fitting problem on all
triplets of points and group points that belong to the same line together. 2) We formulate
homography and motion estimation as a geometric model fitting problem where the task
is to find groups of points that can be explained by the same geometrical transformation.
3) In motion segmentation, our model allows going from modeling translational motion to

10 Introduction

Euclidean or affine transformations, which improves the segmentation quality in terms of
F-measure.

This work is partly based on a prior conference publication by Keuper [87] and was done
with the equal contribution of Evgeny Levinkov, who contributed mainly to the geometric
model fitting part, while I contributed primarily to the motion segmentation task. This work is
published in Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2022 [101].

1.4.4 Efficient Solvers for Minimum Cost Multicuts

Despite its complexity, the minimum cost lifted multicut problem has found many applica-
tions in recent years, such as image and mesh decomposition or multiple object tracking. Its
solutions decompose a graph into an optimal number of segments optimized w.r.t. a cost
function defined on a superset of the edge set. While the currently available solvers for
this problem provide high-quality solutions in terms of the task to be solved, they can have
long computation times for more difficult problem instances. Here, we propose two variants
of a heuristic solver (primal feasible heuristic), which greedily generate solutions within a
bounded amount of time. Evaluations of image and mesh segmentation benchmarks show
the high quality of these solutions. This work is published in ACCV, 2018 [82].

1.4.5 Uncertainty Prediction in Minimum Cost Multicuts

The minimum cost lifted multicut approach has proven practically good performance in a
wide range of applications such as image decomposition, mesh segmentation, multiple object
tracking, and motion segmentation. It addresses such problems in a graph-based model,
where real-valued costs are assigned to the edges between entities such that the minimum
cut decomposes the graph into an optimal number of segments. Driven by a probabilistic
formulation of minimum cost multicuts, we provide a measure for the uncertainties of the
decisions made during the optimization. We argue that access to such uncertainties is crucial
for many practical applications and conduct an evaluation by means of sparsifications on
three different, widely used datasets in the context of image decomposition (BSDS500) and
motion segmentation (DAVIS2016 and FBMS59) in terms of Variation of Information (VI)
and Rand index (RI). This work is published in Uncertainty in Artificial Intelligence (UAI)
conference, 2021 [83].

1.4 Contributions 11

1.4.6 Contributions as a Co-author

In addition to these core contributions, I contributed as a co-author to two further publications
in related domains, which are briefly summarized below.

Application to Unsupervised Person Tracking

Multiple Object Tracking (MOT) is a long-standing task in computer vision. Current ap-
proaches based on the tracking by detection paradigm either require some sort of domain
knowledge or supervision to associate data correctly into tracks. This work presents a self-
supervised multiple object tracking approach based on visual features, and minimum cost
lifted multicuts. Our method is based on straight-forward spatio-temporal cues extracted
from neighboring frames in image sequences without supervision. Clustering based on
these cues enables us to learn the required appearance invariances for the tracking task and
train an AutoEncoder to generate suitable latent representations. Thus, the resulting latent
representations can serve as robust appearance cues for tracking even over large temporal
distances where no reliable spatio-temporal features can be extracted. Despite being trained
without using the provided annotations, we show that our model generates competitive results
on the challenging MOT Benchmark for pedestrian tracking. This work has been conducted
under the project lead of Kalun Ho and published in ACCV, 2020 [60].

Learning to Optimize

While the formulation of a Multicut Problem (MP) from independently estimated costs per
edge is highly flexible and intuitive, solving the MP is NP-hard and time-expensive. As
a remedy, recent work proposed to predict edge probabilities with awareness to potential
conflicts by incorporating cycle constraints in the prediction process. We argue that such
formulation while providing the first step towards end-to-end learnable edge weights, is
suboptimal since it is built upon a loose relaxation of the MP. Therefore, we propose an adap-
tive CRF that allows progressively considering more violated constraints and, consequently,
issuing solutions with higher validity. Experiments on the BSDS500 benchmark for natural
image segmentation and electron microscopic recordings show that our approach yields more
precise edge detection and image segmentation. This work is based on the master thesis
of Sebastian Ziegler under my co-supervision and has been consolidated further by Steffen
Jung. It is published in the German Conference on Pattern Recognition (GCPR), 2022. [74].

12 Introduction

1.5 Own Publications

Peer-Reviewed Conference Articles

1 Amirhossein Kardoost, Sabine Müller, Joachim Weickert, Margret Keuper, “Object
Segmentation Tracking from Generic Video Cues”. In: International Conference on
Pattern Recognition (ICPR), 2021. [84]

2 Amirhossein Kardoost, Kalun Ho, Peter Ochs, and Margret Keuper, “Self-supervised
Sparse to Dense Motion Segmentation”. In: Proceedings of the Asian Conference on
Computer Vision (ACCV), 2020. [81]

3 Amirhossein Kardoost and Margret Keuper. “Solving Minimum Cost Lifted Multicut
Problems by Node Agglomeration”. In: Proceedings of the Asian Conference on
Computer Vision (ACCV), 2018. [82]

4 Amirhossein Kardoost and Margret Keuper. “Uncertainty in Minimum Cost Multi-
cuts for Image and Motion Segmentation”. In: Uncertainty in Artificial Intelligence
(UAI), 2021. [83]

5 Kalun Ho, Amirhossein Kardoost, Franz-Josef Pfreundt, Janis Keuper, Margret Ke-
uper, “A Two-Stage Minimum Cost Multicut Approach to Self-Supervised Multiple
Person Tracking”. In: Proceedings of the Asian Conference on Computer Vision
(ACCV), 2020. [60]

6 Steffen Jung, Sebastian Ziegler, Amirhossein Kardoost, Margret Keuper. “Optimiz-
ing Edge Detection for Image Segmentation with Multicut Penalties”. In: German
Conference on Pattern Recognition, 2022. [74]

Peer-Reviewed Journal Article

7 Evgeny Levinkov∗, Amirhossein Kardoost∗, Bjoern Andres, Margret Keuper (∗ equal
contribution), “Higher-Order Multicuts for Geometric Model Fitting and Motion
Segmentation”, IEEE Transactions on Pattern Analysis and Machine Intelligence
(TPAMI), 2022. [101]

Chapter 2

Preliminaries

This chapter explains the prior knowledge required for following the subsequent chapters. We
start by explaining the datasets and their evaluation metrics used for our methods. Afterward,
we describe the low-level cues for video processing and, more explicitly, the consecutive
frames. One approach to tracking the objects or pixels on the frames is utilizing the optical
flow information. Subsequently, the well-known methods for motion and video instance
segmentation are explained. On motion segmentation, the spatio-temporal curves, also known
as point trajectories, and their use cases are illustrated.

The main optimization framework used for segment generation in this dissertation is
the minimum cost multicut (MP) and the generalization of it, minimum cost lifted multicut
(LMP). The objective function, the set of constraints, and the well-known heuristic solvers,
are explained. Further, the applications of this framework and the basic knowledge of using
it for motion segmentation are illustrated.

2.1 Datasets

In this dissertation, the proposed methods are evaluated on different datasets. In the section
below, the characteristics and evaluation metrics of these datasets are explained.

2.1.1 Video Segmentation

DAVIS Benchmark. The original version of the Densely Annotated Video Segmentation,
DAVIS2016 dataset from Perazzi et al. [128], is focused on high-precision binary video object
segmentation tracking of rigid and non-rigid moving objects. It contains 30 train and 20
validation sequences. The pixel-wise binary ground-truth segmentation is provided per
frame for each sequence. It has different challenges such as light change, object occlusion,

14 Preliminaries

dis-occlusion, and fast motion. Even though this dataset is produced for object segmentation,
it is commonly used to evaluate motion segmentation because only one object is moving in
each sequence, which makes the motion pattern of the foreground object to be different from
the background motion, see Figure 2.1.

The more recent dataset, DAVIS2017 from Pont-Tuset et al. [131], also includes the
segmentation of multiple objects. It consists of 90 sequences, which are separated into 60
train and 30 validation sequences. The dataset consists of more complicated scenarios where
the objects occlude/dis-occlude each other, see Figure 2.1.

The DAVIS datasets are evaluated in terms of boundary accuracy (also known as F-
measure) and Jaccard’s index, also known as Intersection over Union (IoU).

In the binary segmentation task, given the predictions from the algorithm and the ground-
truth segmentation, the precision (P), recall (R), and F-measure (F) are computed as in
the Equations (2.1), (2.2), and (2.3), respectively. The Jaccard’s index (J) is defined in the
Equation (2.4).

In the binary segmentation results where the pixel label is the same as the ground-truth
labeling, depending on the label sign (positive or negative), true positive (t p) or true negative
(tn) values are computed, counting the number of correctly labeled pixels. Otherwise, when
the label of the segmentation result does not agree with the ground-truth labeling, depending
on the label of the segmented pixel, false positive (f p) or false negative (f n) values are
computed. Utilizing these values, we get the precision (P), recall (R), and F-measure (F) as
follows.

P =
t p

t p+ f p
(2.1)

R =
t p

t p+ f n
(2.2)

Precision and recall measures are not directly comparable, but they represent cues
for under- or over-segmentation, Levinkov et al. [101]. The F-measure (or F1-score) in
Equation (2.3) is a harmonic mean of the precision and recall. While F-measure evaluates
the segmentation in terms of boundary accuracy, the boundaries of the segmentation result
never perfectly match the ground-truth segmentation.

F-measure = 2× P×R
P+R

(2.3)

Given the segmentation result, A, and the ground-truth segmentation, B, the Jaccard’s
index, Equation (2.4), accounts for those parts which overlap on the ground-truth labeling.

2.1 Datasets 15

Fig. 2.1 (left) An exemplary image from the “soapbox” sequence is shown. (middle) The
binary object segmentation is provided from the DAVIS2016 [128] dataset. Due to the
reason that all the objects are moving together, this dataset can be used for the motion
segmentation task. (right) The multi-object segmentation is shown for the same sequence
from DAVIS2017 [131].

Fig. 2.2 The images and ground-truth segmentation for two sequences from the SegTrack v2
dataset [104] are shown.

J =
|A∩B|
|A∪B|

(2.4)

SegTrack v2 Dataset. The dataset from Li et al. [104] consists of 14 sequences with
ground-truth annotation per frame and object. The sequences contain different object char-
acteristics, motion blur, occlusions, complex deformations, low resolution, and quality for
both binary and multi-object scenarios, see Figure 2.2. The standard evaluation metric is
Intersection over Union (IoU) defined in Equation (2.4).

2.1.2 Motion Segmentation

FBMS59 Dataset. The Freiburg-Berkeley Motion Segmentation, FBMS59 dataset from
Ochs et al. [123], an extended version of the BMS-26 benchmark from Brox and Malik
[25], is specifically designed for the motion segmentation task and consists of 29 train and
30 test sequences. The sequences contain between 19 to 800 frames and show the motion
of possibly multiple foreground objects. The sequences cover camera-shaking, rigid/non-

16 Preliminaries

Fig. 2.3 The motion segmentation task from two sequences from the FBMS59 dataset [123]
and their ground-truth segmentation are shown. The “bear” (left and middle-left) shows
out-of-plane rotation movement, and the two cars (middle-right and right) move in the same
direction, showing the same motion pattern.

Fig. 2.4 One of the images on the test set of BSDS500 dataset [5] is shown as well as the five
different manual boundary segmentations.

rigid motion, as well as occlusion/dis-occlusion of single and multiple objects. The dataset
provides manual annotations for all moving objects in the videos for every 20th frame and the
ground-truth definition files that down-weight annotated segments in some scenes, Levinkov
et al. [101], see Figure 2.3. The results on this dataset are evaluated based on the precision
(P) Equation (2.1), recall (R) Equation (2.2), and F-measure (F) Equation (2.3).

Hungarian Matching. In order to evaluate the motion segmentation result with the ground-
truth segmentation, it is compulsory to match the segments. Therefore, the minimum weight
bipartite matching or the Hungarian Matching from Kuhn [98] is used, Ochs et al. [123].
The algorithm finds the matching segments such that the number of misclassified points
belonging to the segments is minimized. The point is considered correctly classified if its
segment label corresponds to the matched ground-truth segmentation.

2.1 Datasets 17

VSB100 Dataset. A unified Video Segmentation Benchmark, VSB100 from Galasso et al.
[55], is originally proposed as a video segmentation dataset where the task is to mimic
human boundary level annotations, i.e. the segments do not necessarily have a notion of
objectness, Levinkov et al. [101]. The motion subtask of the dataset is used in Chapter 5 and
is evaluated in terms of boundary precision and recall (BPR) and the region metric volume
precision and recall (VPR) [101]. VPR assigns a spatio-temporal volume between the ground-
truth segmentation and the segmented results via the proposed approach to measure their
overlap, Galasso et al. [55]. BPR measures the quality of the segmentation boundary by
casting the boundary detection as a boundary from non-boundary pixel classification.

2.1.3 Image Segmentation

The Berkeley Segmentation Dataset (BSDS500) from Arbeláez et al. [5] consists of 200
train, 200 test, and 100 validation images, where for each image, five different human-made
annotations are provided, see Figure 2.4.

The images are evaluated by comparing the segmentation result with the different ground-
truth segmentations and regarding the region boundaries [5]. There is a precision-recall
framework from Martin et al. [112] for the evaluation of the segmentation result, where
the results are compared with the human-made annotations. The segmentation results
are measured based on the Variation of Information (V I), Meilă [115], and Rand Index
(RI) [115], a similarity measure between pairs of segmentations or clusters. Therefore,
the region of the segmentation and boundaries are evaluated. VI measures the distance
between two clusterings, i.e. the results, and the human-made annotations. It relates to
mutual information, and the lower value of V I corresponds to better results. Based on the
explanation in Section 2.1.1, the values of t p, tn, f p, and f n are used to compute RI as
in Equation (2.5).

RI =
t p+ tn

t p+ f p+ tn+ f n
(2.5)

2.1.4 Mesh Segmentation

The Princeton Shape Segmentation benchmark from Chen et al. [32] provides 380 meshes
consisting of 19 object categories with probabilistic human-made ground-truths [32]. The
Rand Index (RI), Meilă [115], and Variation of Information (V I) [115] are two metrics used
in this dataset.

18 Preliminaries

2.1.5 Neuronal Structures Segmentation

In the ISBI 2012 challenge, a stack of electron microscopy images of neuronal structures, Car-
dona et al. [27], Carreras et al. [28], is provided for 3D segmentation. The images are
produced by a serial section transmission electron microscope taken from the Drosophila
larva ventral nerve cord. The methods are evaluated based on the Rand Index (RI), and
Variation of Information (V I).

2.2 Optical flow

The optical flow field f : Ω→ R2 is a function assigning a displacement vector to every
point in the image domain Ω. For every point x ∈Ω in frame t, the optical flow ft(x) is the
displacement to the most likely location of x at time t +1. Similarly, the backward optical
flow bt+1(y) of any point y ∈Ω in frame t +1 is the displacement to its most likely location
in frame t.

To estimate the change in the movement of the pixel positions, one approach is to
constrain the match of the attributes of the pixels on the pair of frames. In the video, the
3D world scene is projected into the 2D space (image-domain Ω). Optical flow is a vector
field consisting of the horizontal and vertical changes in the pixel positions. Therefore, each
vector consists of a magnitude and direction showing the amount of movement of the pixel
and its direction between two frames, see Figure 2.5.

In the simple case, considering the static state of the illumination and color of the objects,
the horizontal (u) and vertical (v) movement of the pixel at the position (x,y) in the frame
I at time t to the next frame at time t +1 is computed as follows, Lucas and Kanade [107]
(known as Lucas and Kanade approach),

I(x,y, t)− I(x+u,y+ v, t +1) = 0 (2.6)

assuming that the u and v are small and I is smooth [107], the Equation (2.6) is linearised
by the first order Taylor expansion as follows [107],

Ixu+ Iyv+ It = 0 (2.7)

The optical flow estimation provides the amount of the change of the corresponding
pixels on the consecutive frames, Ix and Iy correspond to the partial derivative of image

2.2 Optical flow 19

It

It+1

It+2

flow magnitude flow direction

Fig. 2.5 Visualization of direction and magnitude of the optical flow fields bt+1 and bt+2
from example frames of the “parkour” sequence of DAVIS2016 [128] are shown. Consecutive
flow information is highly correlated.

with respect to x and y direction, and It represents the partial derivative of the image with
respect to the time dimension. However, such an algorithm is mathematically sound, but in
reality, the colors of the objects encounter a drastic change and the objects get occluded or
dis-occluded, which makes the problem much more challenging to handle.

Due to the progress in the deep learning-based approaches, the optical flow estimation
is addressed via several methods such as FlowNet2 proposed by Ilg et al. [65]. FlowNet2
improves on the flow estimation results of the FlowNet from Dosovitskiy et al. [42] and
a network for the small displacement estimation of the objects is added. The stack of the
encoder-decoder networks is utilized and trained by the FlyingChairs, Dosovitskiy et al. [42],
and the FlyingThings3D, Mayer et al. [113], datasets.

Off-the-shelf deep learning based approaches to low-level tasks such as boundary pre-
diction in Maninis et al. [109], Xie and Tu [161] and optical flow estimation in Ilg et al.
[65, 66] produce highly accurate image and motion boundaries, see Figure 2.6. At the same
time, such low level information is a basic component in state-of-the-art approaches to robot
navigation as in Kendoul et al. [85], Zingg et al. [170], McGuire et al. [114], grasp estimation
as in Hasegawa et al. [58], and visual SLAM from Lim et al. [106]. Thus, their computation
comes at little to no extra cost in many practical settings.

Label propagation by optical flow information has been previously used for example
in Nagaraja et al. [117], Tsai et al. [153], Price et al. [132], Paul et al. [126]. Optical

20 Preliminaries

input frame FlowNet2.0 [65] FlowNet3.0 [66]

SED [41] HED [161] COB [109]

Fig. 2.6 We depict different boundary estimations in the “bmx-bumps” sequence of
DAVIS2016 [128]. Such low-level cues help in guiding higher-level tasks such as video
segmentation.

flow magnitudes are employed as additional input for the network, e.g., in Khoreva et al.
[91], Voigtlaender and Leibe [155], to provide additional motion and saliency cues. However,
the exact localization quality of the optical flow is hardly used. Notably, He et al. [59] use
optical flow to create patch correspondences in a video. This provides diverse training data
and helps to improve the training of deep neural networks.

Several methods propagate the labels through consecutive frames based on information
from the optical flow as in Drayer and Brox [44], Tsai et al. [153], Khoreva et al. [91].
Badrinarayanan et al. [7] and Jain and Grauman [70] use in addition to the flow information
a Gaussian Mixture Model (GMM) and a Markov Random Field (MRF), respectively.

Access to better optical flow information enhances the quality of the relying tasks on such
cues. In the field of motion and video instance segmentation, as we deal with the consecutive
frames, the optical flow information is helpful to enhance the tracking and segmentation
results as we show in Chapter 3.

2.3 Image and Video Segmentation

Image Segmentation is the process of partitioning the image domain into multiple seg-
ments. One of the approaches to image segmentation is the usage of the U-Net architecture
proposed by Ronneberger et al. [135]. A U-Net is an encoder-decoder network with skip
connections. During encoding, characteristic appearance properties of the input are extracted
and are learned to be associated with objectness. In the decoding phase, the extracted

2.3 Image and Video Segmentation 21

properties are traced back to locations causing the observed effect, while details from the
downsampling phase are taken into account to ease the localization. In Ronneberger et al.
[135], end-to-end training of the model on few images perform acceptable results on the
ISBI dataset [27, 28] (see Section 2.1.5). We used the same network to provide the dense
motion segmentation based on the sparsely segmented images in Chapter 4.

Despite the usage of the deep learning-based approaches, various variational formulations
have been proposed for multi-label segmentation in still images, e.g. in Nieuwenhuis and
Cremers [119], Bae et al. [8]. In Nieuwenhuis and Cremers [119], image segmentation
from user scribbles is addressed in a variational framework considering the spatial and
color information of the pixels. In Müller et al. [116] such methods have been applied to
produce dense video segmentations from sparse seeds in a frame-by-frame manner, based on
automatically generated seeds from point trajectories, Keuper et al. [88], Keuper [87] (see
Section 2.4.1).

Video Segmentation is the process of partitioning the video sequence into multiple objects
available in at least one frame. One of the approaches for video segmentation is based on
the label propagation by optical flow, which has been previously used, for example, in Tsai
et al. [153], Price et al. [132], Nagaraja et al. [117], Paul et al. [126]. Unlike Price et al.
[132], which exclusively utilize temporal coherence, Nagaraja et al. [117] only uses color
consistency. The problem of label propagation in videos has also been addressed by deep
learning-based approaches such as in Perazzi et al. [127], Voigtlaender and Leibe [155], Bao
et al. [13], Maninis et al. [110], Siam et al. [141]. Such networks are trained on specific
datasets and the first frame annotation of a sequence to produce a segmentation of subsequent
frames.

In Maninis et al. [110], a spatio-temporal Markov Random Field (MRF) model is defined
over pixels to produce temporally consistent video object segmentation. In their approach,
spatial dependencies among pixels are encoded by a Convolutional Neural Network (CNN)
trained for the specific target sequence. In contrast, the OSVOS-S approach from Maninis
et al. [110] can be considered entirely complementary. They propose a one-shot video object
segmentation framework that explicitly does not rely on any temporal consistency within
the data, such that object occlusions and dis-occlusions can be handled particularly well. In
contrast, OSVOS-S [110] successively transfers generic, pre-trained, semantic information
to the task of video object segmentation by learning the appearance of the annotated (single)
object of the test sequence.

22 Preliminaries

2.4 Motion Segmentation

Motion segmentation is the task of segmenting motion patterns through consecutive frames
of a video sequence. This is in contrast to semantic segmentation, where one seeks to assign
pixel-wise class labels in an image. Further, it is different from video instance segmentation
where one is interested in tracking the object instances. Thus, for motion segmentation, we
need motion information and at least two frames to be visible to distinguish between motion
segments. According to the Gestalt principle of common fate from Koffka [95], motion
patterns of objects are often more homogeneous than their appearance and provide robust
cues for moving object segmentation.

Observable motion in videos gives rise to the definition of objects moving with respect to
the scene. The task of segmenting such moving objects is referred to as motion segmentation
and is usually tackled either by aggregating motion information in long, sparse point trajecto-
ries, (see Section 2.4.1), or by directly producing per frame dense segmentations relying on
large amounts of training data.

Common end-to-end trained CNN based approaches to motion segmentation are based on
single frame segmentations from optical flow such as in Tokmakov et al. [149, 150], Maczyta
et al. [108], Fragkiadaki et al. [49], Siam et al. [142]. Tokmakov et al. [150] make use of
large amounts of synthetic training data, Dosovitskiy et al. [42], to learn the concept of object
motion. Further, Tokmakov et al. [149] combine these cues with an ImageNet, Deng et al.
[39], pre-trained appearance stream and achieve long-term temporal consistency by using
a Gated Recurrent Unit (GRU) optimized on top. A binary video segmentation model is
trained and used to distinguish between static and moving elements. Siam et al. [142] use a
single convolutional network to jointly model motion and appearance cues for autonomous
driving. A frame-wise classification problem is formulated in Fragkiadaki et al. [49] to detect
motion saliency in videos. In Maczyta et al. [108] for each frame, multiple figure-ground
segmentations are produced based on motion boundaries. A moving objectness detector
trained on image and motion fields is used to rank the segment candidates. Variational
formulations based on optical flow are used in Cremers [37], Lao and Sundaramoorthi [99],
where Lao and Sundaramoorthi [99] employ a strong geometric model.

Addressing motion segmentation is different from video object segmentation, as in motion
segmentation, different motion patterns are segmented, which makes connected objects seem
like one object if they move together with the same motion pattern. For instance, we refer to
the case of a person riding a horse, see Figure 2.7. In contrast, in video object segmentation
we deal with two separate objects like in Hu et al. [63], Tsai et al. [153], Papazoglou and
Ferrari [125].

2.4 Motion Segmentation 23

Fig. 2.7 Motion segmentation example is provided for frames 1 and 160 of the “horses01”
sequence (with their ground-truth motion segmentation) in the FBMS59 [123] dataset. Due
to the reason that the person and the horse move together and have the same motion pattern,
the same motion label (blue color) is assigned.

In the deep learning-based approach of Tokmakov et al. [150] for motion segmentation,
two-stream networks are used for encoding the position and appearance information of the
objects. One of the streams is the appearance network, where a pre-trained deep convolutional
deeplab, Chen et al. [30], based network on the PASCAL VOC 2012, Everingham et al. [46],
is used. Another stream estimates the motion of the objects using the MP-Net from Tokmakov
et al. [149], and the CNN is pre-trained for the motion segmentation task. This appearance
and motion information is combined with the memory module, a GRU, Cho et al. [34], based
model, trained on the training split of the DAVIS2016 dataset [128]. The memory module
memorizes the position and appearance of the objects to provide reliable results when the
motion field estimation fails. Similarly, Jain et al. [69] employ a realistic dataset extracted
from pairs of frames from the ImageNet video dataset from Russakovsky et al. [136] to learn
object motion and appearance cues. While these approaches directly yield pixel-accurate
segmentations, they replace explicit motion model assumptions with vast training data and
can not inherently determine the number of moving objects.

In DyStaB from Yang et al. [165] unsupervised moving object segmentation is addressed
by partitioning the motion field with respect to a mutual-information-based objective and
learning object models from the segments. Yang et al. [162] propose a self-supervised
transformer model to segment optical flow fields into primary objects and background in
a generative way. The combination of appearance-based detectors and geometric motion
segmentation is used to segment rigid motions in Yang and Ramanan [163].

Methods like Bideau and Learned-Miller [21], Cremers [37] approach the problem in a
probabilistic way. In Bideau and Learned-Miller [21], motion segmentation is approached in a
probabilistic way, and the camera motion is subtracted from each frame for improved training.
In Bideau et al. [22], the idea of prior camera motion subtraction is used to allow for better
CNN training for frame-wise segmentation. Bideau et al. [23] propose a multi-step procedure
in which first the camera motion, fit using random sampling consensus (RANSAC), Fischler

24 Preliminaries

and Bolles [48], in the first frames, is subtracted, then a set of rigid motion models is fitted,
and last object segmentation proposals from CNNs are used to combine the rigid motion
parts into objects. In Irani and Anandan [67], a unified approach is proposed to handle the
moving object detection problem separately in the 2D and 3D scenes based on geometric
interpretations and the parallax motion analysis, Levinkov et al. [101].

2.4.1 Trajectory based Motion Segmentation

A different line of work for motion segmentation relies on point trajectories (point trajectories
are defined in this section). In Ochs et al. [123] motion trajectories are created based on
optical flow information, and a graph representing the trajectories and their affinities is
created. This graph represents the sparsely tracked points over the consecutive frames. The
produced graph is clustered based on several algorithms, such as spectral clustering, J. Shi
and Malik [68]. In this approach, the number of clusters m is required and needs to be
determined. Correspondingly, the m eigenvectors belonging to the m largest eigenvalues
are selected, each representing a specific motion pattern. The solution to spectral clustering
provides a sparse motion segmentation. To provide a dense result, the sparsely labeled
points are used with the variational framework to produce the dense results, i.e. the label and
the position of the points are used to leak the labels to the unlabeled points in an iterative
manner [123].

Here, long-term motion information is first used to establish sparse but coherent motion
segments over time. Dense segmentations are usually generated in a post-processing step
such as Ochs et al. [123] or our proposed motion segmentation approach in [81]. However,
in contrast to end-to-end CNN-based motion segmentation approaches, trajectory-based
methods have the desirable property of directly handling multiple motion patterns.

The Euclidean difference between two local motion descriptors such as optical flow
vectors or point trajectories measures how well the behavior of the two entities can be
described by a single translational motion model. A simple model with only pairwise
potentials can yield good performance in practice, Ochs et al. [123], Keuper et al. [88]. While
being successful in providing segmentations in simple scenarios, more complex motion
patterns can not be resolved with only pairwise potentials. For example, scaling effects (such
as zooming in/out of the camera or movement of objects toward the camera), out-of-plane
rotation, and highly non-rigid motion of object parts hinder providing high-quality motion
segmentations. Therefore, higher-order motion models that can simultaneously compare
more than two motion vectors are required.

Two motion vectors can be used to estimate the transformations describing translation,
rotation, and scaling. Therefore, given any three points, via residual errors, it is possible to

2.5 Minimum Cost Multicuts 25

estimate the motion of the points by one Euclidean transformation. The motion differences
can be described by the costs of at least order three. Four motion vectors can be used to
estimate affine motion differences and at least five motion vectors are required to assign the
cost to differences in homographies, Keuper [87].

Point Trajectory. Point trajectories are spatio-temporal curves represented by their frame-
wise sub-pixel-accurate (x,y)-coordinates. They can be generated by tracking points using
optical flow by the method of Brox et al. [25]. The resulting trajectory set aims for a
minimal target density (e.g. one trajectory in every 8 pixels). Trajectories are initialized
in a video frame and end when the point cannot be tracked reliably anymore, e.g. due to
occlusion. To achieve the desired density, possibly new trajectories are initialized throughout
the video. Using trajectories brings the benefit of accessing the object motion in prior frames.
The partial derivative of the sub-pixel-accurate (x,y)-coordinates with respect to the time
dimension produces the motion trajectories.

Point trajectory based motion segmentation algorithms have proven to be robust and fast
in Ochs et al. [123], Keuper et al. [88], Keuper [87], Brox and Malik [25], Fragkiadaki et al.
[52], Shi et al. [137], Rao et al. [133]. By a long-term analysis of a whole video shot at
once by the means of such trajectories, even objects that are static for most of the time and
only move for few frames can be identified, i.e. the model would not “forget” that a car has
been moving, even after it has been static for a while. The same argument allows articulated
motion to be assigned to a common moving object.

Point trajectories build the basis for many motion segmentation methods such as Brox
and Malik [25], Fragkiadaki et al. [49, 51], Ochs et al. [123], Keuper et al. [88]. For a video
of length N, Brox and Malik [25] yield n point trajectories pi with the maximum length N,
where n depends on the desired sampling rate. Due to occlusions and mistakes in the optical
flow estimation, most trajectories are significantly shorter than N, and some trajectories start
after the first frame to ensure even point sampling throughout the sequence.

2.5 Minimum Cost Multicuts

The minimum cost multicut problem (MP) by Chopra and Rao [36], also known as correlation
clustering, is a binary edge labeling problem defined on a graph with real-valued edge costs.
The edges define an affinity between the entity (node) pairs, which participate in the cut/join
decisions of the multicut solver. Specifically, the costs and the constraints of the multicut
problem lead to the pairwise decisions on the entity pairs in the graph. The feasible solutions
to the MP propose decompositions of the graph, and the optimal solution corresponds to the

26 Preliminaries

Maximum A Posteriori probability (MAP) estimate, Andres et al. [3]. Yet, the problem is
shown to be NP-hard, Bansal et al. [12]. While optimal solutions or solutions within bounds
of optimality can be found for small instances, Demaine et al. [38], Swoboda and Andres
[145], Andres et al. [2, 3], most practical applications depend on heuristic solvers such as
Keuper et al. [89], Beier et al. [17, 16]. The branch-and-bound, Andres et al. [3], algorithms,
as well as Linear Programming (LP) relaxations, Kim et al. [92], Kappes et al. [79], are
feasible when applied to small problems, but they do not easily scale, Levinkov et al. [102].

The formulation is flexible and can easily be adapted to any clustering problem. Specifi-
cally, entities are represented by nodes in a graph, and real-valued costs are assigned to edges
corresponding to the node affinities. The minimum cost multicut then decomposes the graph
into an optimal number of segments.

Despite the requirement for the model selection and providing the number of clusters to
the spectral clustering, in the MP approach, the number of clusters is determined implicitly
by the nature of the problem. This formulation is attractive because the feasible solutions of
the multicut problem relate one-to-one to the decompositions of a graph, and the MP does
not favor balanced solutions a priori, J. Shi and Malik [68]. Furthermore, multicut algorithms
are easy to use: They take as input a graph and, for every edge, a real-valued cost of the
incident vertices being in distinct components and output a 01-labeling of the edges, which
induces a decomposition of the graph. Assigned real-valued cost of the incident vertices
ideally reflects the logit of the probability of the edge being cut, i.e. log 1−pe

pe
+ log 1−p∗

p∗ , for
a cut probability pe at edge e, and a prior probability p∗ ∈ (0,1) of cuts.

In the following, the minimum cost multicut problem [36, 40] is defined. Given any
graph G = (V,E), a cost function c : E→ R and edge labels y : E→{0,1}, the optimization
problem states in Equation (2.8) is the instance of the multicut problem with respect to the
graph G and costs c.

min
y∈{0,1}E ∑

e∈E
ceye (2.8)

s.t. ∀C ∈ cycles(G) ∀e ∈C : ye ≤ ∑
e′∈C\{e}

ye′ .

The inequality constraints stated over all cycles of G ensure that the edge labeling y
induces a decomposition of G. It is sufficient to ensure these constraints on the subset of all
chordless cycles in Chopra and Rao [36]. Cycle inequalities ensure that there is not only one

2.5 Minimum Cost Multicuts 27

cut edge in any chordless cycle. The multicut problem allows assigning a cost or reward for
every edge e ∈ E to be cut.

On the image segmentation task, the nodes can represent the pixels, and the neighboring
pixels represent the edges of the graph. Similarly, on the point clouds, after triangulation
of the points and acquiring the mesh data, each triangle and its neighbors correspond to the
nodes and edges of the graph, respectively. Further, on the task of object tracking or motion
segmentation, each motion trajectory (see Section 2.4.1) represents a node on the graph, and
the trajectories meeting each other on the same or neighboring frames create an edge on the
graph.

2.5.1 Minimum Cost Lifted Multicut Problem

The minimum cost lifted multicut problem (LMP) has first been proposed by Keuper et al.
[89], where its promise for the decomposition of pixel grid graphs as well as 3D shape
meshes have been shown. It has been successfully applied in fields like multiple object
tracking, Tang et al. [147], and motion segmentation, Keuper [87], and became known
to produce state-of-the-art results on the segmentation of electron microscopic stacks of
neuronal structures, Beier et al. [15, 18]. However, the multicut cost function, Demaine et al.
[38], Bansal et al. [12], can assign a cost or a reward only to direct neighbors in the graph,
which can be a severe limitation in specific applications. For example, in the case of image
segmentation and a 4-connected graph, the final solution is likely to deteriorate significantly
since inter-pixel edge probability estimates tend to be noisy. Introducing additional (lifted)
edges into the multicut objective allows to capture of information in a non-local neighborhood
but preserves the original feasible set of solutions, Keuper et al. [89]. It is a generalization of
the MP, Chopra and Rao [36], Deza et al. [40], see Figure 2.8 (b).

The LMP is defined with respect to a graph G = (V,E) and a graph G′ = (V,E ′) with
E ⊆ E ′ and a cost function c′ : E ′→ R which allows to assign, for every edge in E ′ a cost or
reward for being cut. Its feasible solutions relate one-to-one to decompositions of the graph
G. Rigorously, for any undirected graph G = (V,E), any F ⊆

(V
2

)
\E and any c′ : E∪F→R,

the linear program written in Equation (2.9) - (2.12) is an instance of the LMP with respect
to G, F and c′.

min
y∈{0,1}E′

∑
e∈E ′

c′eye (2.9)

28 Preliminaries

s.t. ∀C ∈ cycles(G) ∀e ∈C : ye ≤ ∑
e′∈C\{e}

ye′ (2.10)

∀vw ∈ F ∀P ∈ vw− paths(G) : yvw ≤ ∑
e∈P

ye (2.11)

∀vw ∈ F ∀C ∈ vw− cuts(G) : 1− yvw ≤ ∑
e∈C

(1− ye) (2.12)

The linear inequalities in Equations (2.10) - (2.12) constrain y such that {e ∈ E|ye == 1}
is a multicut of G. They ensure further that, for any edge uv ∈ F,yuv = 0 iff there exists a
path (uv-path) in the original graph G along which all edges are connected, i.e., labeled 0.

However, there are two main limitations of the multicut problem: 1) It allows specifying
costs or rewards only for direct neighbors in the graph, which limits the expressiveness of
the cost functions only to local neighborhoods. An important difference of the lifted edges
is that they only define a cost between vertices but not connectivity, thus preserving the
original feasible set of solutions. See Horňáková et al. [62] for detailed proof that the LMP
is not simply equivalent to a multicut problem with more edges. 2) It allows specifying only
pairwise edge costs, which is not enough for some applications. For example, for the motion
segmentation task, we need 3rd-order costs, while homography estimation requires 5th-order
costs [101]. Kim et al. [92] and Kappes et al. [79] proposed a formulation that allows to
specify costs of arbitrary order, see Figure 2.8 (c). They used a cutting-plane algorithm to
solve emerging models, which is impractical for large real-world instances due to the linear
programming-solver’s bottleneck. While this formulation is extremely useful, it turned out to
be truly harder than the NP-hard MP, Horňáková et al. [62].

2.5.2 Existing Solvers

A canonical approach to solving instances of the MP is to solve the linear programming
relaxation of the multicut polytope, Chopra and Rao [36] as, for example, proposed in
Demaine et al. [38]. This procedure, with subsequent thresholding to produce feasible
solutions, has found wide applications Kim et al. [92, 93], Kappes et al. [78]. Yet, despite its
NP-hardness, the MP has been solved to optimality for some practically relevant instances
such as Andres et al. [3], Kappes et al. [77]. Yet, for larger problem instances, heuristic

2.5 Minimum Cost Multicuts 29

(a) (b) (c)

Fig. 2.8 (a) An example of a graph decomposition and its encodings. Switching green and
red labels will produce a different encoding for the same decomposition. Dashed lines,
in turn, constitute a multicut of a graph and uniquely define its decomposition. (b) An
example of a lifted graph decomposition and its encoding. Blue lines denote lifted edges that
connect vertices that are not direct neighbors in the graph. (c) An example of 3rd-order costs
that consider three nodes at a time (light blue triangles) for a better join/cut decision. If a
higher-order cost does not correspond to a clique in the graph, we add lifted edges in our
work proposed in [101].

solvers such as Cut,Glue & Cut (CGC) by Beier et al. [17], Kernighan–Lin (KL) [86, 77]
and its variant Kernighan–Lin with joins (KLj) by Keuper et al. [89], or the Fusion Moves
approach by Beier et al. [16] need to be employed. They have been shown to generate
reasonable solutions in practice, although no theoretical guarantee can be provided.

In the following, two of the solvers, specifically Greedy Agglomerative Edge Contraction
(GAEC) and KLj from Keuper et al. [89] are provided in Algorithms 1 and 2, respectively.
In GAEC, it starts from the decomposition of the graph into single nodes. The nodes are
joined iteratively, such that in each iteration, the objective function is reduced maximally.
The algorithm terminates if there is not any join available which decreases the objective
function [89]. In Algorithm 1, G = (V,E) represents the main graph, G′ = (V,E ∪ E ′)
the lifted graph, with the set of costs c assigned on the edges.

In KLj, the update_bipartition algorithm, Algorithm 3, is used to look into the transfor-
mations of the nodes between the clusters and selects the transformation which decreases the
objective function maximally [89]. It does so by performing either of the following cases: 1.
moving a connected set of nodes between two neighboring components, 2. moving a con-
nected set of nodes to a new component, or 3. by merging two components. This is illustrated
more in (Section 5.4). This can be implemented efficiently based on the original algorithm
from Kernighan and Lin [86] by keeping track of the hypothetical costs of moving vertices
between neighboring components as given in Algorithm 2. The output of the algorithm is the
01 labeling of the edges.

30 Preliminaries

Algorithm 1: GAEC [89]

1 E := E , E ′ := E ′, V :=V
2 G := G and G ′ := G′

3 foreach ab ∈ E ′ do
4 χab := cab

5 while E ̸= /0 do
6 ab := argmax

a′b′∈E
χa′b′

7 if χab < 0 then
8 break

9 contract ab in G and G ′

10 foreach ab ̸= ab′ ∈ E ′ do
11 χab′ := χab′+χbb′

Algorithm 2: KLj [89]

1 E := E ∪E ′, V :=V
2 G := G′

3 while no_changes do
4 foreach ab ∈ E do
5 if has_changed(a) or

has_changed(b) then
6 update_bipartition(G ,a,b)

7 foreach a ∈ V do
8 if has_changed(a) then
9 while no_changes do

10 update_bipartition(G ,a, /0)

2.5.3 Applications

Formulations of the image segmentation problem like Arbeláez et al. [5] as MP have been
considered in Alush and Goldberger [1], Andres et al. [2, 3, 4], Bagon and Galun [9], Beier
et al. [16, 17], Kappes et al. [78, 79, 80], Kim et al. [92, 93], Nowozin and Jegelka [120],
Yarkony et al. [166, 167]. Further, the minimum cost (lifted) multicut problem has been
widely applied in computer vision for applications ranging from image segmentation, Keuper
et al. [89], to multiple object tracking, Keuper [87], Horňáková et al. [62], Tang et al.
[147], Hornáková et al. [61], connectomics, Beier et al. [18], cell tracking [134], instance
segmentation, Kirillov et al. [94], motion segmentation, Keuper et al. [88], Keuper [87], and
pose estimation, Pishchulin et al. [130].

In this dissertation, the formulation is widely applied in different applications such as
motion, mesh data, and image segmentation. The application of such a framework is used,
and we also proposed two efficient heuristic solvers and a measure for the uncertainties of
the decisions made during the optimization.

2.6 Motion Segmentation Using Minimum Cost Multicuts

Formulations of MPs have been successfully used for motion segmentation, like in Keuper
et al. [88], Keuper [87]. This application aims to segment motion patterns of the foreground
objects with respect to the scene and irrespective of the camera motion, scaling movements,
and out-of-plane rotation of the objects, Ochs et al. [123]. One widely used paradigm to
tackle this problem is to define motion trajectory, (see Section 2.4.1), where the trajectories

2.6 Motion Segmentation Using Minimum Cost Multicuts 31

Algorithm 3: update_bipartition

1 G = (V ,E ∪E ′,c) partitions a and b, and edge costs c

2 Da∪b = compute_differences(E ,E ′,a,b)
3 BDY ← compute_boundary_nodes(E ′,a,b)
4 ∆ join← compute_gain_from_joining(E ′,E ,a,b)
5 S|a∪b| = 0 // cumulative gain
6 M = [.] // empty move vector
7 for i← 1 to |BDY | do
8 v∗← argmaxv (D(a∪b)∩BDY)
9 M.push_back(v∗)

10 G = G
11 foreach e ∈G.edges(v∗) do
12 if same_partition(G.nodes(e)\v∗) then
13 Dv∗ ← Dv∗−2ce

14 else
15 Dv∗ ← Dv∗+2ce

16 Si = Si−1 +Dv∗

17 BDY ← update_boundary(v∗,E ′,a,b)

18 k← argmaxiSi // best number of moves
19 if ∆ join > Sk and ∆ join > 0 then
20 join_partitions(y,a,b);

21 else if Sk > 0 then
22 move_nodes(y,a,b,k)

are cast to the nodes in a graph, and their affinities are used to compute costs on the edges,
by calculating the pairwise differences on point trajectories (second-order costs). Such
differences are calculated only for trajectories with at least two frames in common, Keuper
et al. [88], and based on motion, color, and spatial distance cues.

The motion distance is computed as in Equation (2.13). The motion difference of two
trajectories pi and p j at time t is computed as follows, Ochs et al. [123].

dmotion
t (pi, p j) =

∥∂t pi−∂t p j∥
σt

. (2.13)

Here, ∂t pi and ∂t p j represent the partial derivatives of pi and p j with respect to the time
dimension. The σt represents the variation of the optical flow defined in Ochs et al. [123].
The motion distance of two trajectories is defined by the maximum motion available over
time, Keuper [87],

32 Preliminaries

dmotion(pi, p j) = max
t

dmotion
t (pi, p j). (2.14)

Color and spatial distances dcolor and dspatial are computed as average distances over the
joint lifetime of two trajectories, Keuper [87], as proposed in Keuper et al. [88]. The costs
are computed by non-linear combination of these three cues.

ci j = max(θ̄0 + θ1 dmotion(pi, p j) (2.15)

+ θ2 dspatial(pi, p j)

+ θ3 dcolor(pi, p j) ,

θ0 + θ1 dmotion(pi, p j))

As proposed in Keuper et al. [88], weights and intercept values θ are assigned1.
Due to the reason that the clustering algorithm does not scale linearly with the number of

trajectories, tracking all the pixels generates a considerable amount of trajectories, which
consecutively, makes the clustering algorithm explode computationally. Therefore, one often
considers sparse motion segmentation, Ochs et al. [123], where point trajectories are not
sampled at every point but a defined density. With this approach, the segmentations do not
cover all the image pixels.

While in Keuper et al. [88], Keuper [87] the partitioning of trajectories into motion
segments use the multicut problem, other approaches employ sparse subspace clustering, El-
hamifar and Vidal [45], or spectral clustering and normalized cuts, Ochs and Brox [122], Shi
and Malik [138], Fragkiadaki and Shi [50]. In spectral clustering, a model selection is
needed to determine the final number of segments. In contrast, the minimum cost multicut
formulation allows for direct optimization of the number of components via repulsive cost.

In this setting, the solution to the motion segmentation problem is sparse, which requires
further computation to produce dense results. There are different methods to provide dense
motion segmentations from the sparse results, like the variational approach from Ochs
et al. [123] and our proposed self-supervised approach [81] (see Section 4). By evaluating
the motion segmentation datasets, such as DAVIS2016 [128] and FBMS59 [123], (see
Section 2.1), and show that there is a gap between the sparse and dense results. This is
because on the method of Ochs et al. [123] the variational approach makes the labels of
the sparse results leak to unwanted regions, e.g., loosely textured areas of the image. The
advantage of using the trajectory-based motion segmentation via multicuts is that it generates

1Specifically, θ̄0 = 6, θ0 = 2, θ1 = θ3 =−0.02 and θ2 =−4.

2.6 Motion Segmentation Using Minimum Cost Multicuts 33

the multi-label results, while in the training-based approach of Tokmakov et al. [149] the
outcomes are binary, which makes no distinction between different motion patterns.

Despite the efficiency of the approach of Keuper et al. [88], using the pairwise differences
is not able to handle complicated situations like the out-of-plane rotation, scaling motion
of the objects (when the object moves towards the camera), and when the objects move
simultaneously in the same direction, refer to Figure 2.3. Such cases lead to either over-
segmentation of the motion patterns or assigning the same label to similar motion patterns.
To address such ambiguities, the higher order motion sub-spaces is used to compare more
than two trajectories at a time, Keuper [87], Levinkov et al. [101], (see Section 5), where we
show the efficiency of our approach by evaluating on DAVIS2016 [128], FBMS59 [123], and
VSB100 [55] datasets (see Section 2.1).

Utilizing the multicut approach for motion segmentation, we produce uncertainty mea-
sures on the segmentation results in [83], (see Section 7), driven by a probabilistic formulation
of minimum cost multicuts. Access to such uncertainties is crucial for motion segmentation
to correct the erroneous results. Further, we investigate the potential benefits of the predicted
uncertainties for improving on the self-supervised sparse to dense motion segmentation
results [81] (see Section 7).

In the next chapter, Chapter 3, we dive into the solutions for the video instance segmentation,
and we study the effect of low-level cues such as the optical flow and edge maps information
on the task. In Chapter 4, we study the motion segmentation task via the usage of motion
trajectories, where we provide a sparse segmentation of the motion trajectories and densify
them in a self-supervised manner. We extend our model for motion segmentation to solve
complex cases like out-of-plane motion patterns or scaling effects of the objects via hyper-
graphs in Chapter 5. After discussing the video and motion segmentation tasks, we investigate
the minimum cost (lifted) multicut formulation and propose two new heuristic solvers in
Chapter 6. By studying the probabilistic behavior of the minimum cost multicut, in Chapter 7,
we offer an informative uncertainty measure on the decisions made by minimum cost solvers
on the image and motion segmentation tasks. Finally, in Chapter 8, limitations, possible
future work, and conclusions are provided.

Chapter 3

Video Instance Segmentation -
Evaluation of Low-Level Video Cues

In this chapter, we study the effect of the low-level cues such as optical flow information and
the boundary estimates on tracking the instance segmentations through consecutive frames.
More specifically, we propose a lightweight variational framework for online tracking of
object segmentations in videos based on optical flow and image boundaries. While high-
end computer vision methods for this task rely on sequence-specific training of dedicated
convolutional neural network (CNN) architectures, we show the potential of a variational
model based on generic video information from motion and color. Such cues are usually
required for many tasks such as robot navigation or grasp estimation. We leverage them
directly for video object segmentation and thus provide accurate segmentations at potentially
very low extra cost. Our simple method can provide competitive results compared to the
costly CNN-based methods with parameter tuning. Furthermore, we show that our approach
can be combined with state-of-the-art CNN-based segmentations to improve their respective
results. We evaluate our method on the datasets DAVIS2016, DAVIS2017 and SegTrack v2 (see
Section 2.1). This work is published in the International Conference on Pattern Recognition
(ICPR), 2021 [84].

3.1 Introduction

Object detection and segmentation play a crucial role in applications such as grasp esti-
mation, Hasegawa et al. [58], affordance detection, Nguyen et al. [118], or human-robot
interaction, Siam et al. [141]. While these steps are generally challenging on their own, they
become even more so when we assume automotive settings in dynamic environments. Then,

36 Video Instance Segmentation - Evaluation of Low-Level Video Cues

potentially moving objects of interest are to be segmented and tracked from video under
camera ego-motion. High-end computer vision algorithms on this task usually rely on an
object and video-specific training such as Nagaraja et al. [117], Perazzi et al. [127], Voigt-
laender and Leibe [155] of CNNs and show, with few exceptions, limited applicability to
online settings while they come at high computational costs.

Despite generally good results, for example, on the challenging DAVIS video segmen-
tation benchmark, Perazzi et al. [128], Wang et al. [157], the boundary localization and
occlusion handling are far from being solved by these approaches. However, off-the-shelf
deep learning-based approaches to low-level tasks such as boundary prediction, Maninis et al.
[109], Xie and Tu [161], and optical flow estimation, Ilg et al. [65, 66], produce highly accu-
rate image and motion boundaries. At the same time, such low level information is a basic
component in state-of-the-art approaches to robot navigation, Kendoul et al. [85], Zingg et al.
[170], McGuire et al. [114], grasp estimation, Hasegawa et al. [58], and visual SLAM, Lim
et al. [106]. Thus, their computation comes at little to no extra cost in many practical settings.

In this chapter, we provide a lightweight variational formulation that can leverage low-
level cues such as boundary and optical flow estimations from generic models and incorporate
them into a simple frame-by-frame label propagation framework.

Our model facilitates the segmentation of fine details and thin structures. Furthermore,
since our framework allows for modular integration of low-level cues, it can function as an
evaluation platform for such cues with respect to video segmentation applications.

None of the currently evaluated optical flow or boundary estimation methods are trained
or finetuned on the relevant datasets used in this chapter. We thus prove the potential of
generic low-level cues for object segmentation tracking and show that the gap to highly
optimized CNN methods is negligible.

Additionally, we evaluate the proposed variational method as a postprocessing step for
such highly optimized CNN-based models currently defining the state-of-the-art on the
DAVIS2016 [128] and DAVIS2017 dataset [131], (see Section 2.1), and show an improvement
of the segmentation quality in this scenario. This experiment proves that off-the-shelf
boundary and motion estimates carry complementary information currently not captured in
dedicated CNN-based methods.

Contributions. In summary, our main contributions are:

– We provide a lightweight formulation for video object segmentation using variational
label propagation. Once optical flow and boundary estimates are computed (without
sequence/dataset specific finetuning), our approach facilitates the online generation of
tracked video object segmentations within milliseconds.

3.2 Related Work 37

Input
costs

h1

It

It+1

+

forward and backward
optical flow

warped scribbles

optical flow split into
direction and magnitude

motion boundaries

image boundaries

boundary metric

h2
annotation for frame t

segmentation for
frame t+1

variational optimization

bt+1

ft

Fig. 3.1 Visualization of the proposed workflow is given. Starting from the images in frame
t and t + 1 and an initial annotation, scribbles are extracted based on optical flow. Then,
warped scribbles, image color, and optical flow values are used to generate label costs and
boundary estimates to be fed into a variational segmentation framework which produces the
complete segmentation of frame t +1.

– We incorporate optical flow and color features to facilitate the retrieval of lost objects
due to intermediate tracking mistakes or full object occlusion.

– We study the effect of different state-of-the-art boundary, Dollár and Zitnick [41], Xie
and Tu [161], Maninis et al. [109], and optical flow estimation methods in our proposed
formulation, Ilg et al. [66, 65].

– Our approach can be used to refine state-of-the-art CNN-based results whenever
available.

We evaluate our method on the video object segmentation datasets DAVIS2016 [128],
DAVIS2017 [131] and SegTrack v2 [104] (see Section 2.1) and provide an ablation study on
the impact of all employed cues on DAVIS2016. Our approach yields competitive results on
SegTrack v2 and can compete with several but not all CNN-based methods on the DAVIS
benchmarks. Used as a post-processing, our formulation allows us to improve existing results
and provides fine object details.

3.2 Related Work

Various variational formulations have been proposed for multi-label segmentation in still
images, e.g. in Nieuwenhuis and Cremers [119], Bae et al. [8]. In Nieuwenhuis and Cremers
[119], image segmentation from user scribbles is addressed in a variational framework

38 Video Instance Segmentation - Evaluation of Low-Level Video Cues

considering the spatial and color information. In Müller et al. [116] such methods have been
applied to produce dense video segmentations from sparse seeds in a frame-by-frame manner,
based on automatically generated seeds from point trajectories, Keuper et al. [88], Keuper
[87], (see Section 2.4.1). In contrast to Nieuwenhuis and Cremers [119], Müller et al. [116],
we directly introduce highly informative low-level cues into the variational formulation.
Our variational formulation is derived from Nieuwenhuis and Cremers [119]. Yet, we don’t
require user scribbles and use optical flow to propagate labels semi-densely across frames.

Label propagation by optical flow has been previously used for example in Tsai et al.
[153], Price et al. [132], Nagaraja et al. [117], Paul et al. [126]. Unlike Price et al. [132],
which exclusively utilizes temporal coherence, Nagaraja et al. [117] only uses color con-
sistency. Our approach employs optical flow to propagate the labels through consecutive
frames and, additionally, to provide information for the data term of our formulation (see
Section 3.3.2).

The problem of label propagation in videos has also been addressed by deep learning
approaches like Perazzi et al. [127], Voigtlaender and Leibe [155], Bao et al. [13], Maninis
et al. [110], Siam et al. [141]. Such networks are trained on specific datasets and the first
frame annotation of a sequence to produce a segmentation of subsequent frames. Optical flow
magnitudes are employed as additional input for the network, e.g. in Voigtlaender and Leibe
[155], to provide additional saliency cues. However, the exact localization quality of optical
flow is hardly used. Notably, He et al. [59] use optical flow to create patch correspondences in
a video to improve the training of deep neural networks. Jampani et al. [71] use the similarity
of features in neural networks to disseminate information in videos. In Maninis et al. [110],
a spatio-temporal Markov Random Field (MRF) model is defined over pixels to produce
temporally consistent video object segmentation. In their approach, spatial dependencies
among pixels are encoded by a CNN trained for the specific target sequence. In contrast, the
OSVOS-S approach from Maninis et al. [110] can be considered to be fully complementary.
They propose a one-shot video object segmentation framework that explicitly does not rely
on any temporal consistency within the data, such that object occlusions and dis-occlusions
can be handled particularly well. In contrast, OSVOS-S [110] successively transfers generic,
pre-trained, semantic information to the task of video object segmentation by learning the
appearance of the annotated (single) object of the test sequence. To show the benefit of our
model for the refinement of CNN predictions, we particularly evaluate on OSVOS-S, which
can be considered most complementary.

3.3 Proposed Approach 39

3.3 Proposed Approach

In the following, we describe the details of our approach. Figure 3.1 gives an overview of its
workflow. We assume that an image sequence I1, . . . , Iℓ is given, where ℓ is the number of
frames. We further assume that we are given a full annotation S t = ∪n

i=1S
t

i with n segments
for frame t, where ∩n

i=1S
t

i = /0. The task is to subsequently infer the segmentation of the
remaining frames using this first annotation. The proposed method computes optical flow
in forward and backward direction to infer label scribbles for It+1 from It and S t. Optical
flow is also used, along with pure image information, to generate costs for all labels and to
extract motion boundaries for exact object delineation. In conjunction with generic image
boundaries, these cues are used to generate the full segmentation of It+1 using a variational
formulation.

3.3.1 Confident Label Propagation with Optical Flow

The optical flow is explained in Section 2.2 and is used for assigning a displacement vector
to every point in the image domain Ω. Given the pair of frames, for points y that are visible
in both frames t and t +1, the distance d(f,b,y) = ∥y− ft(bt+1(y))∥2 equals to zero, see
Figure 3.2. For those points, the label from location bt+1(y) in frame t can be directly
transferred to location y in frame t +1. Whenever a point y is occluded in frame t, this is no
longer valid. In these cases, d(f,b,y)> 0. For those locations, the label of y in t +1 needs
to be inferred from other cues.

For real world image sequences, optical flow estimations are often not perfectly accurate
such that d(f,b,y) > 0 for almost all y ∈ Ω. Thus, there is need for a heuristic on the
matching confidence, which is defined by conf(f,b,y) in Equation (3.1), Sundberg et al.
[144]. In practice, we assume the optical flow matching to be confident (i.e. conf(f,b,y) = 1)
if d(f,b,y) is sufficiently small and set

conf(f,b,y) =

1, if d(f,b,y)< τ,

0, otherwise,
(3.1)

with a small threshold τ . For confident regions in frame t, labels from uniformly sampled
points are propagated to frame t +1 and considered scribble points. Refer to the Figure 3.1
(left) for a visualization. These propagated labels are used for the data term (cost) creation
of the variational formulation (see Section 3.3.2). Additionally, the direct warping of labels
in regions with high confidence renders our approach very efficient: we only need to infer

40 Video Instance Segmentation - Evaluation of Low-Level Video Cues

d(f,b,y1) = 0 d(f,b,y2)> 0

It It+1

annotation for It flow inconsistencies propagated labels

Fig. 3.2 Visualization of the forward-backward consistency of the optical flow and the
employed label warping is provided. For input frames It and It+1 (row 1), we check the
point motion according to the backward and forward optical flow fields bt+1 and ft for cycle
consistency. For disoccluded points y in It+1 the distance d(f,b,y) is large. In corresponding
regions, no labels can be propagated.

labels for a small fraction of the image. The intuition of this procedure is the following:
Whenever we are certain that points y in frame t +1 and x in frame t refer indeed to the same
real-world object point, the label of x should be propagated irrespective of any other features.
It is sufficient to infer labels for non-confident regions.

3.3.2 Variational Formulation

We follow the work of Chambolle et al. [29] and formulate the multiple-label segmentation
problem as a minimal partitioning problem. The objective is to partition the image domain
Ω⊂ R2 into Ω1, . . .Ωn ⊂ R2 such as to optimize

min
Ω1,...,Ωn⊂Ω

λ

2

n

∑
i=1

Per(Ωi;Ω)+
n

∑
i=1

∫
Ωi

hi(x)dx, (3.2)

s.t. Ω = ∪n
i=1Ωi, ∀i ̸= j Ωi∩Ω j = /0.

The potential functions hi : R→ R+ represent the costs for each individual pixel to be
assigned to label i, and Per(Ωi;Ω) is the perimeter of region i in Ω. Usually, the perimeter
is measured according to an underlying image-induced metric, Nieuwenhuis and Cremers
[119]. The regularization parameter λ steers the penalization of longer boundaries. For an

3.3 Proposed Approach 41

image I : Ω→ Rd
+ with d channels, a common weighting function is

Per(Ωi;Ω) =
∫

Ωi

exp(−γ|∇I(x)|)dx (3.3)

where ∇I is the Jacobian of I, |∇I| denotes its Frobenius norm, and γ is a positive scalar.
If partial annotations Si ⊂Ω of I are provided for labels i, the potential functions h can be
defined as spatially varying color or feature distributions like in Nieuwenhuis and Cremers
[119]

hi(x) =− log
1
|Si|

∫
Si

Gρi ·Gσ dxSi , (3.4)

with Gρi = kρi(x−xSi) and Gσ = kσ (I(x)− I(xSi)). Here |Si| denotes the area occupied by
label i, kσ and kρi are Gaussian distributions in the feature and the spatial domain, respectively.
Usually, color is used as pixel features. It can be complemented for example with cues from
optical flow such as its magnitude or direction.

The subscripts ρi and σ denote the respective standard deviations. The parameter ρi is
assigned based on the Euclidean distance of the unlabeled feature points in I to each of the
scribble points for label i and σ is assigned experimentally. By xSi and I(xSi) we represent
the position (x,y) and feature (e.g. RGB) information of the partial annotation Si ⊂ Ω in
the image I, respectively. Equation (3.4) shows how spatial and color features of the partial
annotations are used to generate costs for each label i in image I.

3.3.3 Flow Magnitude and Flow Direction

Besides being useful for the tracking of ego-motion and 3D scene reconstruction, for example,
by visual SLAM [106], optical flow information, (see Section 2.2), is a straight-forward
cue for video label propagation. Here, we additionally leverage optical flow information
in the data term hi Equation (3.4) to create the label costs. Such information is expected
to provide: 1) cues for object saliency and 2) cues for the object label, since motion only
changes gradually over time. Hence, we concatenate the normalized flow magnitude (fmag)
and direction (fdir) to the original color information of the image in frame t + 1 for the
segmentation. With this additional information, I : Ω→ R3

+ in Equation (3.4) is replaced by

J :=

 I
α · fmag

θ · fdir

 , (3.5)

42 Video Instance Segmentation - Evaluation of Low-Level Video Cues

where fmag : Ω→ R+, fdir : Ω→ R+ and α and θ are weighting factors which are assigned
as 0.5 to account for the strong expected correlation between color values. Thus, the range
of values in the RGB channels are between 0 and 255 while values in fmag and fdir range
between 0 and 127.5. Finetuning of these parameters for specific datasets is possible and
will most likely improve the results. However, the proposed approach attempts not to fit such
parameters to any specific dataset for simplicity. It is important to notice that the produced
optical flow estimations are not always accurate. More specifically, the flow information is
produced with models trained on common optical flow benchmark datasets, which differ
from the datasets we evaluate and use in our approach. Yet, our model benefits even from
noisy optical flow estimations.

3.3.4 Boundary Term

In the variational formulation from Equation (3.2), the perimeter “Per” is computed based
on an image induced metric such as given in Equation (3.6). This metric can be replaced by
more evolved, learning-based boundary estimations E : Ω→ R+ such as Dollár and Zitnick
[41], Maninis et al. [109], Xie and Tu [161]. For example, Müller et al. [116] propose to
weight the region boundaries according to pseudo-probabilities

g(x) = exp(E (x)β/Ē), (3.6)

with Ē :=
2
Ω

∫
Ω

|E (x)|dx and β > 0, and employ boundary estimates from Dollár and Zitnick

[41] for the generation of object segmentations.
However, any approach to image (e.g. HED [161]), object (e.g. COB [109]), or motion

(e.g. FlowNet3.0 [66]) boundary estimation could be used. We study the effect of each of the
mentioned boundary estimation methods on the validation set of DAVIS2016 in Section 3.5.1.
For this study, off-the-shelf trained models of Dollár and Zitnick [41], Xie and Tu [161],
Maninis et al. [109], Ilg et al. [66] are employed to generate boundary estimates (refer to
Figure 2.6). Please notice that none of the employed models is trained nor finetuned on the
datasets under consideration.

3.3.5 Lost Object Retrieval

In the video object segmentation scenario, objects can become partially or fully occluded for
several video frames. In this case, the respective label gets lost. Figure 3.3 illustrates this
problem: The foreground object (a soccer ball) moves to the left and is partially covered by a

3.4 Implementation Details 43

frame 1 frame 5 frame 6

Fig. 3.3 The “soccerball” sequence from DAVIS2016 [128] provides an example of an object
reappearing after occlusion. For such objects, no labels can be propagated.

tree. As it reappears, no labels can be propagated. We propose a simple approach to Lost
Object Retrieval (LOR), which fixes this issue in many practical scenarios.

We create partial annotations of the missing object using the confidence values from Equa-
tion (3.1) and the color information given in the annotated keyframe. As soon as the object
reappears (i.e. is disoccluded) in frame It+1 to be segmented, the confidence of the label
propagation in the respective image area should be low, since d(f,b,y) is high in case of
disocclusion (see Figure 3.2).

Thus, we select all positions with low confidence for the label propagation as candidates
for LOR. Then, we compute the color similarity of the positions in It+1 with the lost object’s
mean color extracted from the annotated keyframe. Finally, we create partial labels for the
object using the calculated color similarities by selecting the points with a color distance
below a predefined threshold (here set to 5.0). Such a low value is necessary to prevent
wrong partial label generation and ensures that we retrieve lost objects whenever the color
similarity of respective regions is high. This approach works well in practice. However, it
might fail when different objects on a video are similar in color. Here, we apply LOR in the
binary segmentation scenario only.

3.4 Implementation Details

Parameter Settings. Our approach has several parameters. The γ in Equation (3.3) is
trivially set to 1

255 and the normalization factors α and θ in Equation (3.5) are set to 0.5
for all datasets. The λ in Equation (3.2) is determined via grid search in the interval
{5,10, ...,60} for the first two images of each sequence: We assume that the object size
does not change drastically in two consecutive frames, and thus select the λ yielding the
smallest deviation in size between the foreground objects in the generated segmentation and
the first frame annotation. We set τ in Equation (3.1) to a fixed value of 5 for DAVIS2016

and DAVIS2017. For SegTrack v2, τ is set to the mean optical flow magnitude to account for
strong motion variations. The value σ in Equation (3.4) is set to 64 for all sequences in all

44 Video Instance Segmentation - Evaluation of Low-Level Video Cues

Table 3.1 Our results for different boundary estimation methods on the DAVIS2016 validation
set are given. Motion boundaries (MB)s from Ilg et al. [66] are studied when combined (w/
MB) or not combined (w/o MB) to each of the boundary detectors.

F(%) J(%)

Method w/o MB w/ MB w/o MB w/ MB

SED [41] 56.72 64.71 62.64 69.09
HED [161] 59.77 67.33 63.65 70.99
COB [109] 60.47 68.39 63.71 71.58

datasets. We expect that parameter finetuning would improve the results further. Yet, we skip
this step for simplicity.

Optimization. Assigning labels to each object is an optimization problem that we solve
using the iterative primal-dual algorithm of Chambolle et al. [29]. Stopping criteria for this
iterative approach are based on a maximum number of iterations initially set to 3000. It is
increased to 6000 whenever the calculated objective value in iteration 3000 is above 600000.
The optimization stops earlier when the decrease in objective value between consecutive
iterations is below 10. The computation time for the optimization is proportional to the
number of iterations and objects to be segmented.

3.5 Experiments and Results

We evaluate our method on binary and multi-object segmentation tasks on the DAVIS2016 [128],
DAVIS2017 [131] and SegTrack v2 [104] datasets. The datasets and evaluation metrics are
illustrated in Section 2.1.

3.5.1 Ablation Study

In the following, we evaluate the impact of the employed cues such as boundary terms,
optical flow, and lost object retrieval to our model on the DAVIS2016 dataset.

Boundary Terms

The boundary term used in Equation (3.6) is crucial to our approach. We evaluate segmen-
tation results when [41] (SED), [161] (HED), and [109] (COB) are used directly and when
they are combined with motion boundaries extracted from FlowNet3.0 [66] (see Figure 2.6).

3.5 Experiments and Results 45

Table 3.2 Our results for train and validation sets of DAVIS2016 are given when: 1. using
FlowNet2.0 [65] instead of FlowNet3.0 [66], 2. not using lost object retrieval (w/o LOR), 3.
employing different components of spatial, color and optical flow information.

F(%) J(%)

Method train val train val

FlowNet2.0 [65] 71.98 68.05 75.64 71.46

w/o LOR 67.50 63.81 72.21 68.30

w/o fmag + fdir 69.66 58.17 68.36 59.51
w/o fdir 71.93 67.19 75.24 69.45
our full model 73.49 68.39 77.68 71.58

In this case, motion boundaries are simply summed up before non-maximum suppression.
All boundary estimations are generated based on existing models, including Ilg et al. [66],
who directly estimate motion boundaries along with the optical flow. We emphasize that none
of these models is trained on DAVIS2016,2017 nor SegTrack v2. In Table 3.1, we report the
resulting F-measure (F) and Jaccard’s index (J) values (see Section 2.1). The combination of
COB and motion boundaries works best. All further results are based on this setting.

Flow Estimation Methods

Optical flow information is a central component of our model. It is used to 1) generate scribble
points for subsequent frames, 2) compute the data terms hi in the variational optimization,
and 3) to compute motion boundaries to complement generic image boundaries (refer to
Figure 2.6). Only a few optical flow methods produce motion boundary estimates directly as
an additional output, which is why our setup is based on FlowNet3.0 [66]. However, motion
boundaries can be computed from strong gradients of any estimated optical flow field, such
as generated by Weinzaepfel et al. [159], Bailer et al. [10], Ilg et al. [65]. Thus, we compare
here the performance of our full model when we replace all optical flow information from
FlowNet3.0 [66] with FlowNet2.0 [65]. The results in Table 3.2 show a decrease in the
segmentation accuracy. Since the difference in optical flow quality is known to be small
between the two approaches, the decrease in segmentation quality indicates a rather strong
impact of the better motion boundaries from FlowNet3.0.

46 Video Instance Segmentation - Evaluation of Low-Level Video Cues

image GT [110] [110] + ours [13] [13] + ours [164] ours

Fig. 3.4 Exemplary results for segmentation tracking on the DAVIS2016 (binary) and
DAVIS2017 (multi-label) benchmark are shown from different sequences and the ground-
truth (GT). We compare different state-of-the-art methods like OSVOS-S [110], CINM [13],
OSMN [164], and ours.

Lost Object Retrieval

In Table 3.2, we evaluate the impact of lost object retrieval (LOR) on our method. The
numbers indicate a significant improvement in the segmentations due to LOR. Specifically,
the results of our model improve by 3−5% on the train and validation sets of DAVIS2016

when LOR is added.

Data Term

In Table 3.2, we provide an ablation study on the data term creation. To do so, we remove
from our full model, the optical flow direction (w/o fdir) and both the optical flow direction
and magnitude (w/o fmag + fdir). In this case, only color information is used. Our full
model performs better than the two alternatives, thus both fmag and fdir provide meaningful
segmentation cues.

3.5.2 Results on DAVIS

In Table 3.3, we report the mean (M), recall (R) and decay (D) values for F-measure (F) and
Jaccard’s index (J) over the DAVIS2016 dataset splits for the state-of-the-art methods OSVOS-
S [110], MSK [127], VPN [71], SIAMMASK [156], CTN [72], PLM [168], OFL [153], BVS
[111], FCP [129], and JMP [47], as well as for our approach. The main difference between
ours and the competing methods is that we neither learn a model such as OSVOS-S, MSK,
VPN, SIAMMASK, CTN, or PLM nor work at the super-pixel level and iteratively optimize
the optical flow for the achieved segmentation, as is the case for OFL. We only use tracking

3.5 Experiments and Results 47

Table 3.3 Results on train and validation sets of DAVIS2016 are provided. We report Mean
(M), Recall (R) and Decay (D) of the evaluation metrics (F and J 2.1).

train

Measure F(%) J(%)
M R D M R D

C
N

N

MSK [127] 76.1 88.9 9.8 80.7 93.9 8.8
VPN [71] 77.0 94.3 13.1 78.3 95.4 7.2
CTN [72] 72.8 88.3 14.7 76.9 90.0 13.5

no
n-

C
N

N

OFL [153] 70.9 83.1 21.9 73.2 83.0 20.2
BVS [111] 70.1 83.7 25.1 70.9 82.7 24.1
FCP [129] 58.3 67.6 7.2 66.2 82.0 6.5
JMP [47] 62.3 73.2 36.5 63.2 73.7 35.8

ours 73.5 88.6 13.8 77.7 90.2 12.5

validation

Measure F(%) J(%)
M R D M R D

C
N

N

OSVOS-S [110] 87.5 95.9 8.2 85.6 96.8 5.5
[110] + ours 87.6 95.9 8.1 86.0 96.9 5.6
CINM [13] 85.0 92.1 14.7 83.4 94.9 12.3
[13] + ours 87.7 93.0 14.3 84.2 95.6 12.1
MSK [127] 75.4 87.1 9.0 79.7 93.1 8.9
VPN [71] 65.5 69.0 14.4 70.2 82.3 12.4

SIAMMASK [156] 67.8 79.8 2.1 71.7 86.8 3.0
CTN [72] 69.3 79.6 12.9 73.5 87.4 15.6

PLM [168] 62.5 73.2 14.7 70.2 86.3 11.2

no
n-

C
N

N

OFL [153] 63.4 70.4 27.2 68.0 75.6 26.4
BVS [111] 58.8 67.9 21.3 60.0 66.9 28.9
FCP [129] 49.2 49.5 −1.1 58.4 71.5 −2.0
JMP [47] 53.1 54.2 38.4 57.0 62.6 39.4

ours 68.4 78.4 17.8 71.6 81.0 16.8

for segmentation. Yet, our method outperforms all remaining non-deep-learning-based
approaches, and CNN approaches such as PLM [168] or SIAMMASK [156]. Qualitative
results are shown in Figure 3.4. Visually, the generated segmentation results are appealing,
and fine details are well captured.

48 Video Instance Segmentation - Evaluation of Low-Level Video Cues

Table 3.4 Results on the DAVIS2017 validation and test set are provided.

F(%) J(%)

Method val test val test

ours 56.5 44.0 54.5 41.5

OSMN [164] 57.1 44.9 52.5 37.7
FAVOS[33] 61.8 44.2 54.6 42.9
OSVOS-S [110] 71.3 62.1 64.7 52.9
OSVOS-S [110] + ours 71.4 62.2 65.2 53.7
CINM [13] 74.0 70.5 67.2 64.5
CINM [13] + ours 74.1 70.6 67.4 64.7

image proposed result ground-truth

Fig. 3.5 Sample results on the SegTrack v2 benchmark are shown (see Section 2.1).

Cost Terms from CNN Segmentation

Here, we evaluate the proposed method as a postprocessing step for state-of-the-art CNN
predictions. If our method indeed carries complementary information to the appearance cues
learned, for instance, by OSVOS-S [110], we should be able to achieve an improvement.
In Table 3.3 and Table 3.4, we specifically report the results of our method when we use
plain CNN predictions from OSVOS-S [110] and CINM [13] as data terms (costs) (OSVOS-
S + ours and CINM + ours) in the DAVIS2016 and DAVIS2017 datasets, respectively. In all
settings, segmentation results are improved by our method.

3.5.3 Results on SegTrack v2

In the following, we evaluate our proposed model on the SegTrack v2 dataset (see Section 2.1).
In Table 3.5, we compare our results to the state-of-the-art methods JOTS [160], MSK [127]
and [104]. Li et al. [104] propose two variants of their method: 1. the online version Segment

3.5 Experiments and Results 49

Table 3.5 A comparison of our method with several state-of-the-art methods on the SegTrack
v2 dataset [104] is provided. The best results are shown with bold font on each sequence.

Sequence/Object SPT+CSI MSK JOTS SPT Ours

Unsupervised ✓ × × ✓ ✓
Online × ✓ ✓ ✓ ✓

Girl 89.2 - 84.6 89.1 62.5
Birdfall 62.5 - 78.7 62.0 73.4
Parachute 93.4 - 94.4 93.2 94.7
Cheetah-D. 37.3 - 66.1 40.1 37.8
Cheetah-C. 40.9 - 35.3 41.3 56.2
Monkeydog-M. 71.3 - 82.2 58.8 14.7
Monkeydog-D. 18.9 - 21.1 17.4 30.6
Penguin-#1 51.5 - 94.2 51.4 79.9
Penguin-#2 76.5 - 91.8 73.2 78.5
Penguin-#3 75.2 - 91.9 69.6 83.1
Penguin-#4 57.8 - 90.3 57.6 63.5
Penguin-#5 66.7 - 76.3 63.4 64.8
Penguin-#6 50.2 - 88.7 48.6 89.0
Drift-#1 74.8 - 67.3 73.8 43.7
Drift-#2 60.6 - 63.7 58.4 80.2
Hummingb.-#1 54.4 - 58.3 45.4 36.8
Hummingb.-#2 72.3 - 50.7 65.2 77.2
Frog 72.3 - 56.3 65.8 79.0
Worm 82.8 - 79.3 75.6 82.7
Soldier 83.8 - 81.1 83.0 81.6
Monkey 84.8 - 86.0 84.1 87.6
Bird of Paradise 94.0 - 93.0 88.2 84.9
BMX-Person 85.4 - 88.9 75.1 78.7
BMX-Bike 24.9 - 5.70 24.6 9.9

Mean per object 65.9 67.4 71.8 62.7 65.7
Mean per seq. 71.2 - 72.2 68.0 68.6

Pool Tracking (SPT), 2. the offline version with the subsequent refinement of the segments
within each frame, i.e., Composite Statistical Inference (CSI). Similar to SPT, our method
operates in an online fashion and does not require dataset-specific training. However, we
only use tracking information to compute segments, whereas SPT incrementally trains a
global model of the appearance of objects. Yet, our approach produces results within the
range of the top performing methods and improves over SPT. Several qualitative results for
SegTrack v2 are given in Figure 3.5. Our segmentation is able to capture fine details of the

50 Video Instance Segmentation - Evaluation of Low-Level Video Cues

objects, such as the slender legs of the frog (in the frog sequence) and the arm and hand of
the monkey (in the monkey sequence).

3.6 Conclusion

We have proposed a variational method for single and multiple object segmentation tracking
scenarios. It leverages optical flow and image boundary estimations for the propagation of
labels through video sequences, where a keyframe annotation is provided. Deep learning-
based methods address video object segmentation with high computational complexity
and sequence-specific training. In contrast, our approach only considers the first frame
annotations and achieves competitive results without an expensive training procedure. In
application scenarios that require optical flow as an input (for example, for robot navigation),
the computation of video object segmentations with our method comes at very low extra
costs. Our proposed method produces visually appealing segmentations and preserves fine
details on the DAVIS2016, DAVIS2017, and SegTrack v2 datasets.

Chapter 4

Motion Segmentation - Self-Supervised
Densification of Sparse Motion
Segmentations

In Chapter 3, the importance of the optical flow information and the estimated image
boundaries in tracking the segmentation masks is shown. Studying different optical flow
and edge map generation methods emphasizes the importance of the underlying techniques
for higher-level tasks, such as video object and motion segmentation. In this chapter, we
elaborate on the motion segmentation task relying on optical flow estimation and boundary
predictions.

Observable motion in videos can give rise to the definition of objects moving with
respect to the scene. The task of segmenting such moving objects is referred to as motion
segmentation. It is usually tackled either by aggregating motion information in long, sparse
point trajectories or by directly producing per frame dense segmentations relying on large
amounts of training data (Section 2.4). We propose a self-supervised method to learn the
densification of sparse motion segmentations from single video frames. While previous
approaches towards motion segmentation build upon pre-training on large surrogate datasets
and use dense motion information as an essential cue for pixel-wise segmentation, our model
does not require pre-training and operates at test time on single frames. It can be trained in a
sequence-specific way to produce high-quality dense segmentations from sparse and noisy
input. We evaluate our method on the well-known motion segmentation datasets FBMS59
and DAVIS2016, (see Section 2.1), which is published in Asian Conference on Computer
Vision (ACCV), 2020 [81].

52 Motion Segmentation - Self-Supervised Densification of Sparse Motion Segmentations

Fig. 4.1 Motion segmentation example is provided for frames 1 and 160 of the “horses01”
sequence (with their ground-truth motion segmentation) in the FBMS59 [123] dataset. Due
to the reason that the person and the horse are moving together and have the same motion
pattern, they are assigned the same motion label (blue color).

4.1 Introduction

The importance of motion for visual learning has been emphasized in recent years. Following
the Gestalt principle of common fate from Koffka [95], motion patterns within an object
are often more homogeneous than its appearance and provide reliable cues for segmenting
(moving) objects in a video. Motion segmentation is the task of segmenting motion patterns
and differs from semantic segmentation, where one seeks to assign pixel-wise class labels
in an image. Thus, for motion segmentation, we need motion information and at least two
frames to be visible to distinguish between motion segments. Ideally, such motion patterns
separate meaningful objects, e.g. an object moving w.r.t. the scene, refer to Figure 4.1. To
illustrate the importance of motion segmentation, consider an autonomous driving scenario.
A first step to classifying potential danger caused by the presence of a possibly static object,
for instance, a parking car, is the knowledge about its mobility. Unknowingly waiting for
the observation that the door of the parking car suddenly opens may be too late to avoid
an accident. The speed of the autonomously driving vehicle must be adjusted based on the
mobility and danger of other objects. While models for the direct prediction of pixel-wise
motion segmentations are highly accurate, Tokmakov et al. [150, 149], they can only take
very limited account of an object’s motion history.

In this chapter, we propose a model to produce high quality dense segmentations from
sparse and noisy input (i.e. densification). It can be trained in a sequence specific way using
sparse motion segmentations as training data, i.e. the densification model can be trained in a
self-supervised way. Our approach is based on sparse (semi-dense) motion trajectories, (see
Section 2.4.1), that are extracted from videos via optical flow, Figure 4.2-middle. Point
trajectory based motion segmentation algorithms have proven to be robust and fast like
in Ochs et al. [123], Keuper et al. [88], Keuper [87], Brox and Malik [25], Fragkiadaki et al.
[52], Shi et al. [137], Rao et al. [133] (see Section 2.4.1). By a long-term analysis of a whole
video shot at once by means of such trajectories, even objects that are static for most of the

4.1 Introduction 53

time and only move for few frames can be identified, i.e. the model would not “forget” that a
car has been moving, even after it has been static for a while. The same argument allows
articulated motion to be assigned to an ordinary moving object.

In our approach, we use object annotations that are generated using an established, sparse
motion segmentation technique, Keuper et al. [88]. We also propose an alternative, a Gated
Recurrent Unit (GRU)-based multicut model, which allows to learn the similarity between the
motion of two trajectories and potentially allows for a more flexible application. In the next
chapter, more than two trajectories are considered to resolve complex and non-translational
motion patterns (see Section 5). In both cases, the result is a sparse segmentation of video
sequences, providing labels only for points lying on the original trajectories, e.g. every 8
pixels, refer to Figure 4.2-middle. Pixel-wise segmentations from such sparse segmentations
can be generated by variational methods like Ochs et al. [123]. To better leverage the
consistency within the video sequences, we propose to train sequence-specific densification
models using only the sparse motion segmentations as labels.

Specifically, we train a U-Net, Ronneberger et al. [135], like model to predict dense
segmentations from given images, see Figure 4.2-right, while we only have sparse and
potentially noisy labels. The training task can thus be interpreted as label densification. Yet,
the resulting model does not need sparse labels at test time but can generalize to unseen
frames.

In contrast to end-to-end motion segmentation methods such as Tokmakov et al. [149], we
are not restricted to binary labels but can distinguish between different motion patterns belong-
ing to different objects and instances per image and only require single images to be given at
test time. Also, in contrast to such approaches, our model does not rely on the availability of
large surrogate datasets such as ImageNet, Deng et al. [39], or FlyingChairs, Dosovitskiy et al.
[42], for pre-training but can be trained directly on the sequences from the FBMS59, Ochs
et al. [123], and DAVIS2016, Perazzi et al. [128], datasets (see Section 2.1).

Contributions. To summarize, we make the following contributions:

• We provide an improved affinity graph for motion segmentation in the minimum cost
multicut framework using a GRU model. Our model generates a sparse segmentation
of motion patterns.

• We utilize the sparse and potentially noisy motion segmentation labels to train a U-Net
model to produce class agnostic and dense motion segmentation. Sparse motion labels
are not required during prediction.

54 Motion Segmentation - Self-Supervised Densification of Sparse Motion Segmentations

Fig. 4.2 Exemplary multi-label motion segmentation results showing (left) the image and
its sparse (middle) and dense (right) segmentation. The sparse segmentation is produced
by Keuper et al. [88] and the dense segmentation is the result of the proposed model.

• We provide competitive video object segmentation and motion segmentation results on
the FBMS59 [123] and DAVIS2016 [128] datasets (see Section 2.1).

4.2 Related Work

Our goal is to learn to segment moving objects based on their motion pattern. For efficiency
and robustness, we focus on point trajectory-based techniques as initial cues (refer to Sec-
tion 2.4.1). Trained in a sequence specific way, our model can be used for label densification.
We, therefore, consider the following related work in the motion segmentation and sparse to
dense labeling areas.

4.2.1 Motion Segmentation

Our GRU approach uses the same graph construction policy as Keuper et al. [88] for motion
segmentation, (Section 2.4), while the edge costs are assigned using a Siamese (also known
as a twin) gated recurrent network. The Siamese networks, Chopra et al. [35], are metric
learning approaches used to provide a comparison between two different inputs. Similar
trajectory embeddings have been used in Bhattacharyya et al. [19] to predict a pedestrian’s
future walking direction. For motion segmentation, we stick to the formulation as a minimum
cost multicut problem (MP), Keuper et al. [88], (see Section 2.5).

4.2.2 Sparse to Dense Labeling

While the trajectory-based motion segmentation methods can propagate object information
through frames, they produce sparse results. Therefore, specific techniques, e.g. Ochs et al.
[123], Müller et al. [116] are needed to produce dense results. A commonly used densification
approach is the variational framework of Ochs et al. [123]. In this approach, the underlying

4.3 Proposed Self-Supervised Learning Framework 55

color and boundary information of the images are used for the diffusion of the sparsely
segmented trajectory points, which sometimes leak the pixel labels to unwanted regions,
e.g., loosely textured areas of the image. Furthermore, Fragkiadaki et al. [51] address the
densification problem using Gabriel graphs as per frame superpixel maps. Gabriel edges
bridge the gaps between contours using geometric reasoning. However, super-pixel maps
are prone to neglect the fine structure of the underlying image and lead to low segmentation
quality.

Our method benefits from trajectory-based methods for producing a sparse multi-label
segmentation. A sparsely trained U-Net [135] produces dense results for each frame purely
from appearance cues, potentially specific for a scene or sequence.

4.3 Proposed Self-Supervised Learning Framework

We propose a self-supervised learning framework for sparse-to-dense segmentation of the
sparsely segmented point trajectories. In other words, a U-Net model is trained from sparse
annotations to estimate dense segmentation maps (see Section 4.3.2). The sparse annota-
tions can be provided either with some potentially unsupervised state-of-the-art trajectory
segmentation methods as in Keuper et al. [88] or our proposed Siamese-GRU model.

4.3.1 Annotation Generation

Point trajectories are generated from optical flow estimation method of Brox and Malik
[25] (Section 2.4.1). Such point trajectories are clustered by the MP approach, Andres et al.
[3], (refer to Section 2.5 for the definition of MP), with respect to their underlying motion
model estimated (i) from a translational motion model or (ii) from a proposed Siamese GRU
network.

Translational Motion Affinities can be assigned based on motion distances of each tra-
jectory pair with some temporal overlap, Keuper et al. [88]. For trajectories, A and B, the
frame-wise motion distance at time t is computed by

dt(A,B) =
∥∂tA−∂tB∥

σt
. (4.1)

It solely measures in-plane translational motion differences, normalized by the variation
of the optical flow σt (refer to Ochs et al. [123] for more information). The ∂tA and ∂tB
represent the partial derivatives of A and B with respect to the time dimension.

56 Motion Segmentation - Self-Supervised Densification of Sparse Motion Segmentations

The overall motion distance of a pair of trajectories A and B is computed by maximum
pooling over their joint lifetime,

dmotion(A,B) = max
t

dt(A,B) (4.2)

Color and spatial cues are added in Keuper et al. [88] for robustness. Instead of us-
ing translational motion affinities, we propose a Siamese-GRU based model to provide
associations between the trajectory pairs.

Siamese Gated Recurrent Units (GRUs). In prior work by Keuper et al. [88], the pairwise
terms between trajectories were computed based on a translational motion model as in
Equation (4.1), and included color and spatial cues. Here, we aim to learn these terms for
pairs of trajectories. To learn encodings for these spatio-temporal curves, we use a siamese
GRU network, in which each trajectory of a trajectory pair is first encoded individually using
shared weights to learn to predict pairwise similarities.

The proposed network consists of two legs with shared weights, whereas in our model,
each leg consists of a GRU model, which takes a motion trajectory as input. Specifically, for
two trajectories A and B, the ∂A and ∂B (a partial derivative of the trajectories with respect
to the time dimension) on the common life-time of the trajectories are given to each leg of
the Siamese-GRU model. The partial derivatives represent their motion information, while
no information about their location in image coordinates is provided. The motion cues are
embedded by the bidirectional-GRU network, i.e. the hidden units are gathered for each time
step (the time step N is explained in the next paragraph). Afterward, the difference between
two embedded motion vectors embed∂A and embed∂B is computed as

d(embed∂A,embed∂B)
=

h

∑
i=1

(embed∂Ai− embed∂Bi)
2, (4.3)

where h denotes the number of hidden units for each time step. The result of the
Equation (4.3) is a vector that is consequently given to two fully connected layers and
the final similarity value is computed by a Sigmoid function. Therefore, for each pair of
trajectories given to the Siamese [35] GRU network, it provides a measure of their likelihood
of belonging to the same motion pattern.

The joint lifetime of the two trajectories could, in practice, be different from pair to pair,
and the GRU network requires a fixed number of time steps as input (N). This problem is
dealt with as follows:

If the joint lifetime of the two trajectories is less than N, each trajectory is padded with
its respective final partial derivative value in the intersection. Otherwise, when the joint

4.3 Proposed Self-Supervised Learning Framework 57

lifetime has more than N time steps, the time step t with maximum motion distance, similar
to Equation (4.2), is determined for the entire lifetime,

tA,B = argmax
t

dt(A,B). (4.4)

The trajectory values are extracted before and after t to reach the required number of time
steps N. The reason for doing this is that the vital part of the trajectories is not lost. Consider
a case where an object does not move in the first x frames and starts moving from frame
x+1, essential information will be available around frames x and x+1, and it is better not to
lose such information by cutting this part out.

In our approach, the frame-wise Euclidean distance of trajectory embeddings (extracted
from the hidden units) of the GRU model is fed to a fully connected layer for dimensionality
reduction. Consequently, the values are passed to a Sigmoid function for classification
into the classes 0 (same label - pair of trajectories belong to the same motion pattern) or
1 (different label - pair of trajectories belong to different motion patterns) using a Mean
Squared Error (MSE) loss.

To produce the ground-truth labeling to train the Siamese-GRU model, a subset of the
edges in the produced graph G = (V,E) by the method of Keuper et al. [88] are sampled (see
Section 2.4.1). For each edge, which corresponds to a pair of trajectories, we look into
each trajectory and its label in the provided ground-truth segmentation. We only take those
trajectories which belong to precisely one motion pattern in the provided ground-truth. Some
trajectories change their labels while passing through frames that are considered unreliable.
Furthermore, the same amount of edges with label 0 (same motion pattern) and label 1
(different motion pattern) are sampled to have a balanced training signal. At test time, costs
for each edge E in graph G = (V,E) are generated by the trained Siamese-GRU network.

Trajectory Clustering yields a grouping of trajectories according to their modeled or
learned motion affinities. We formalize the motion segmentation problem as MP like
in Keuper et al. [88]. It aims to optimally decompose a graph G = (V,E), where trajectories
are represented by nodes V and their affinities define costs on the edges E. In our approach,
the costs are assigned using the Siamese-GRU model.

While the MP is NP-hard, Bansal et al. [12], heuristic solvers like Kernighan and Lin
[86], Keuper et al. [89], Beier et al. [15], Bailoni et al. [11] are expected to provide practical
solutions. We use the Kernighan Lin [86] implementation from Keuper et al. [88] (refer to
Section 2.5.2). This solver is proved to be practically successful in motion segmentation, Ke-
uper et al. [88], Keuper [87], image decomposition and mesh segmentation, Keuper et al.
[89], scenarios.

58 Motion Segmentation - Self-Supervised Densification of Sparse Motion Segmentations

Input sequence

Trajectory Segmetnation

MC on trajectory Graph

Input
Image from

Sequence

Output
Segmenation
Map

Sparse Cross
Entropy Loss

U-Net

Fig. 4.3 Sparsely segmented trajectories are produced by minimum cost multicut (refered as
MC on the figure) either with our Siamese-GRU model or simple motion cues as in Keuper
et al. [88] (top). The sparsely labeled points are used to train the U-Net model (bottom). At
test time, the U-Net model can produce dense segmentations without requiring any sparse
labels as input.

4.3.2 Deep Learning Model for Sparse to Dense Segmentation

We use the sparse motion segmentation annotated video data as described in Section 4.3.1
for our deep learning-based sparse-to-dense motion segmentation model. Specifically, the
training data consist of input images (video frames) or edge maps and their sparse motion
segmentations, which we use as annotations. Although the loss function only applies at the
sparse labels, the network learns to predict dense segmentations.

Deep Learning Model

We use a U-Net type architecture proposed by Ronneberger et al. [135] for dense segmen-
tation, which is known for its high-quality predictions in tasks such as semantic segmen-
tation, Siam et al. [140, 139], Fu et al. [53]. A U-Net is an encoder-decoder network with
skip connections. During encoding, characteristic appearance properties of the input are ex-
tracted and are learned to be associated with objectness. In the decoding phase, the extracted
properties are traced back to locations causing the observed effect, while details from the
downsampling phase are taken into account to ease the localization (see Figure 4.3 for more
information). The output is a dense (pixel-wise) segmentation of objects, i.e., a function
u : Ω→{1, . . . ,K}, where Ω is the image domain, and K is the number of classes which cor-
responds to the number of trajectory labels. This means that after clustering the trajectories,
each cluster takes a label, and overall we have class-agnostic motion segmentation of sparse
trajectories. Such labels are only used during training.

4.3 Proposed Self-Supervised Learning Framework 59

Loss Function

The U-Net is trained via the Binary Cross Entropy (BCE) and Cross-Entropy (CE) loss
function for the single and multiple object cases, respectively. As labels are only present at a
sparse subset of pixels, the loss function is restricted to those pixels. Intuitively, since the
label locations where the loss is evaluated are unknown to the network, it is forced to predict
a label at every location. (A more detailed discussion is provided below.)

Dense Predictions with Sparse Loss Functions

At first glance, a sparse loss function may not force the network to produce a meaningful
dense segmentation. Since trajectories are generated according to a simple deterministic
criterion, namely extreme points of the local structure tensor, Brox and Malik [25], the
network could internally reproduce this generation criterion and focus on labeling such
points only. We observed precisely the problematic behavior mentioned above and, therefore,
suggest variants for the learning process employing either RGB images or (deterministic)
Sobel edge maps, Kanopoulos et al. [75], as input. One remedy is to alleviate the local
structure by smoothing the input RGB image, making it harder for the network to pick up on
local dominant texture and stimulating the usage of globally extracted features associated
with movable object properties.

Conditional Random Filed (CRF) Segmentation Refinement

To build the fine-grained segmentation maps from the blurred images, we employ Conditional
Random Fields (CRF): We compare

• the fully connected pre-trained CRF layer (dense-CRF) [97], with parameters learned
from pixel-level segmentation [31] and

• a CRFasRNN [169] model, which we train using the output of our U-Net model as
unaries on our same sparse annotations. To generate a training signal even in case the
U-Net output perfectly fits the sparse labels; we add Gaussian noise to the unaries.

Discussion: Sparse Trajectories vs. Dense Segmentation

The handling of sparse labels could be avoided if dense unsupervised motion segmentations
were given. Although, in principle, dense trajectories can be generated by the motion seg-
mentation algorithm, the clustering algorithm does not scale linearly with the number of
trajectories, and the computational cost explodes. Instead of densely tracking pixels through-
out the video, a frame-wise computationally affordable densification step, for example, based

60 Motion Segmentation - Self-Supervised Densification of Sparse Motion Segmentations

on variational or inpainting strategies like in Ochs et al. [123], could be used. However, some
sparse labels might be erroneous, an issue that can be amplified by densification. Although
some erroneous labels can also be corrected by [123], especially close to object boundaries,
we observed that the negative effect prevails when it comes to learning from such unsuper-
vised annotations. Moreover, variational methods often rely on local information to steer the
propagation of label information in the neighborhood. In contrast, the U-Net architecture can
incorporate global information and possibly objectness properties to construct its implicit
regularization.

4.4 Experiments

We evaluate the performance of the proposed models on the two datasets DAVIS2016 [128]
and FBMS59 [123], which contain challenging video sequences with high-quality segmenta-
tion annotations of moving objects (Section 2.1).

4.4.1 Implementation Details

Our Siamese-GRU model with 2 hidden units (h = 2, Equation (4.3)) and experimentally
selected 25 time steps (N = 25, for more information refer to Section 4.3.1) is trained for 3
epochs, a batch size of 256 and a learning rate of 0.001 where the trajectories are produced by
large displacement optical flow (LDOF), Brox et al. [24], at 8 pixel sampling on the training
set of DAVIS2016, Perazzi et al. [128].

We employ two different strategies of using the sparse motion segmentations of the
resulting trajectories as labels, depending on whether we face binary (DAVIS2016) or multi-
label (FBMS59) problems. In the case of a single label, the most frequent trajectory label
overall frames and second most frequent label per frame are considered as background and
foreground, respectively. For multi-label cases, the most frequent class-agnostic labels are
selected, i.e., we take only those labels which are frequent enough compared to the other
labels.

Our U-Net model is trained in a sequence-specific way. For instance, such a model can
be used for label densification and is trained using color and edge-map data with a learning
rate of 0.01 and batch size of 1 for 15 epochs. The overall train and prediction process
takes around (maximally) 30 minutes per sequence on an NVIDIA Tesla V100 GPU. The
CRFasRNN, Zheng et al. [169], is trained with a learning rate of 0.0001, batch size 1 and 10
epochs with 5 and 10 inference iterations at train and test time, respectively.

4.4 Experiments 61

Table 4.1 The trajectories are segmented by 1. the method of Keuper et al. [88] and 2.
our Siamese-GRU model. The densified results are generated based on 1. the method of
Ochs et al. [123] and 2. the proposed U-Net model. The results are provided for the validation
set of DAVIS2016.

Traj. Seg. Method Densification Method Jaccard Index

Keuper et al. [88] Ochs et al. [123] 55.3
Keuper et al. [88] U-Net model (ours) 58.5
Siamese-GRU (ours) Ochs et al. [123] 57.7
Siamese-GRU (ours) U-Net model (ours) 66.2

Table 4.2 Sparse Motion Segmentation trained on DAVIS2016 (all sequences) and evaluated
on FBMS59 (train set). We compare to Keuper et al. [88] and their variant only using motion
cues.

Precision Recall F-measure #of extracted objs.

Keuper et al. [88] (motion cues) 83.88 69.97 76.30 20
Keuper et al. [88] (full) 83.69 73.17 78.07 27
Siamese-GRU (ours - transfer) 81.01 70.07 75.14 24

4.4.2 Sparse Trajectory Motion-Model

We first evaluate our GRU model for sparse motion segmentation on the validation set of
DAVIS2016 [128]. Therefore, in the first iteration, we produce densified segmentations using
the variational approach from Ochs et al. [123]. The results are given in Table 4.1 (line 3) and
show an improvement over the motion model from Keuper et al. [88] by 2% in Jaccard index.
In the following experiments on DAVIS2016, we thus use sparse labels from our Siamese
GRU approach.

4.4.3 Knowledge Transfer

Next, we investigate the generalization ability of this motion model. We evaluate the
DAVIS2016-trained GRU-model on the train set of FBMS59 [123]. Results are given in
Table 4.2. While this model performs below the hand-tuned model of Keuper et al. [88] on
this dataset, results are comparable, especially considering that our GRU model does not use
color information. In further experiments on FBMS59, we use sparse labels from Keuper
et al. [88].

62 Motion Segmentation - Self-Supervised Densification of Sparse Motion Segmentations

4.4.4 Dense Segmentation of Moving Objects

Next, we evaluate our self-supervised dense segmentation framework with sequence-specific
training on the color images as well as edge maps on the validation set of DAVIS2016 [128]. Ta-
ble 4.1 shows that this model, trained on the GRU-based labels, outperforms the model trained
on the motion models from Keuper et al. [88] as well as the densification of Ochs et al. [123]
by a large margin. Table 4.3 (top) provides a comparison between different versions of
our model, the densification model of Ochs et al. [123], and the per-frame evaluation of
Tokmakov et al. [150] on DAVIS2016. Tokmakov et al. [150] use large amounts of data for
pre-training. Their better-performing model variants require optical flow and full sequence
information to be given at test time. Our results based on RGB and edge maps are better than
those solely using edge maps. We also compare the different CRF versions:

• pre-trained dense-CRF from Krähenbühl and Koltun [97],

• our trained CRFasRNN from Zheng et al. [169] model trained per sequence (CRF-per-
seq),

• CRFasRNN [169] trained on all frames in the train set of DAVIS2016 (CRF-general)
with sparse labels

All CRF versions improve the F-measure. The CRF-general performs on par with dense-
CRF by only using our sparse labels for training. See Figure 4.4 and Figure 4.5 for qualitative
results of our model on DAVIS2016 [128] and FBMS59 [123] datasets, respectively. We show
on-par performance with the layered optimization approach by Lao and Sundaramoorthi [99]
in DAVIS2016 with Jaccard’s index of 68.3 versus ours: 67.1.

4.4.5 Partly Trained Model

We further evaluate how well our model works for video frames for which no sparse labels are
given during training. Please note that, throughout the sequences, the appearance of an object
can change drastically. In Table 4.3 (bottom), we report results for the sequence-specific
U-Net model + CRF-general trained on the first 50%, 70% and 90% of the frames and
evaluated on the remaining frames. While there is some loss in Jaccard’s index compared to
the model evaluated on seen frames (above), the performance only drops slightly as smaller
portions of the data are used for training.

4.4 Experiments 63

Table 4.3 Evaluation of self-supervised training on sequences from DAVIS2016 validation
and comparison with other methods is provided. Effect of adding color information (RGB)
to the edge maps (Sobel) is studied (ours) and comparison between (pre-trained) dense-CRF
(dense), CRF-per-seq (per-seq) and CRF-general (general) is provided (for different versions
of CRF refer to Section 4.4.4). We studied the effect of our best model while training it only
on 50%, 70%, and 90% of the frames in the last three rows.

% of frames Jaccard Index F-measure

variational [123] 100 57.7 57.1
appearance + GRU [150] 100 59.6 -
sobel + dense 100 62.6 54.0
sobel + RGB (ours) 100 61.3 49.0
ours + dense 100 67.1 60.2
ours + per-seq 100 66.2 60.3
ours + general 100 66.2 62.1

ours + general 50 59.6 50.4
ours + general 70 62.3 53.5
ours + general 90 63.4 55.4

Table 4.4 We evaluate our densification method on FBMS59 (train) using sparse motion
segmentations from Keuper et al. [88]. The sparse trajectories are produced with different
flow estimation methods (LDOF [24] and FlowNet2 [65]) and densified with our proposed
U-Net model (using edge maps (Sobel) and color information (RGB) (ours)). Further, we
study on different CRF methods, (pre-trained) dense-CRF (dense) and CRF-general (general).
For more details about different versions of CRF refer to Section 4.4.4.

Precision Recall F-measure

Ochs et al. [123] 85.31 68.70 76.11
Lao et al. [99] 90.04 65.09 76.02
LDOF + ours + dense 89.35 67.67 77.01
FlowNet2 + ours + dense 89.59 68.29 77.56
FlowNet2 + ours + general 89.27 68.20 77.33

4.4.6 Densification on FBMS59

Next, we evaluate our sequence-specific model for label densification on FBMS59 [123].
We study on two different variants of optical flow (FlowNet2, Ilg et al. [65], and Large
Displacement Optical Flow (LDOF), Brox et al. [24]) for trajectory generation and sparse
motion segmentation, Keuper et al. [88]. The results in Table 4.4 show that the proposed
approach outperforms the approach of Ochs et al. [123] as well as the geometric, layered
optimization approach by Lao and Sundaramoorthi [99]. Improved optical flow leads to

64 Motion Segmentation - Self-Supervised Densification of Sparse Motion Segmentations

Fig. 4.4 Exemplary single-label motion segmentation results showing the five frames and their
sparse and dense segmentation for two different sequences, generated using the proposed
U-Net model. The images are from the sequences on the validation set of DAVIS2016 [128]
dataset.

improved results overall. The different CRF versions do not provide significantly different
results.

4.5 Conclusion

In this chapter, we have addressed the segmentation of moving objects from single frames.
To that end, we proposed a GRU-based trajectory embedding to produce high-quality sparse
segmentations automatically. Furthermore, we closed the gap between sparse and dense
results by providing a self-supervised U-Net model trained on sparse labels and relying only
on edge maps and color information. The trained model on sparse points provides single and
multi-label dense segmentations. The proposed approach generalizes to unseen sequences
from FBMS59 and DAVIS2016 and offers competitive and appealing results.

4.5 Conclusion 65

Fig. 4.5 Exemplary single- and multi-label motion segmentation results showing the image
and its sparse results, as well as dense segmentation for five frames in three different se-
quences, generated using the proposed U-Net model. The images are from the FBMS59 [123]
dataset. Segmentations with fine details are produced even when training labels are scarce;
notice how scarce the labels are for “rabbit” images in the 8th row. White areas are parts
without any label.

66 Motion Segmentation - Self-Supervised Densification of Sparse Motion Segmentations

4.5.1 Relationship to the Self-Supervised Multiple Object Tracking Ap-
proach by Ho et al. [60]

In Ho et al. [60] we have proposed a self-supervised multiple object tracking approach based
on visual features, and minimum cost lifted multicuts. The work has been conducted under
the project lead of Kalun Ho, which is why we here only briefly discuss the relationship to the
above-described approach. The method proposed in Ho et al. [60] is based on spatio-temporal
cues for tracking the bounding box of multiple pedestrians. Similarly to the here presented
motion segmentation setup, [60] proposes to employ a minimum cost multicut clustering
to pre-group similar data points by spatio-temporal pattern. While the approach proposed
in this chapter groups point trajectories, the work on multiple object tracking presented in
[60] groups person detections. The pre-grouped detections are then used as a self-supervised
training signal to train an auto-encoder to generate a suitable latent representation to provide
robust appearance cues. Such cues can then be employed to re-identify persons over large
temporal distances where there are no reliable spatio-temporal features. The goal is to learn a
latent space representation to serve the match score for the same object appearing in different
video frames [60]. The latent space of the same pedestrians is similar in the latent space.
This is similar to our approach where we train the U-Net model by utilizing the noisy and
sparse samples to generate the label for the unlabeled pixels on the sequence frames. By
training the U-Net, the model learns to provide a similar latent representation for the pixels
belonging to the same motion pattern.

Chapter 5

Motion Segmentation - Higher Order
Minimum Cost Multicuts

In the previous chapter, we studied the motion segmentation task utilizing motion trajecto-
ries (see Section 2.4.1). To provide an informative segmentation, pairs of trajectories are
used at a time to generate the costs on the edges of the multicut formulation. However, there
are situations where comparing two trajectories can not resolve the complex motion patterns,
such as out-of-plane rotation and scaling movements, i.e. movement of the object towards
the camera. Then, higher order edges are required to address this problem by comparing
more than two trajectories at a time. This chapter is based on a formulation of any-order
minimum cost lifted multicuts, which allows partitioning an undirected graph with pairwise
connectivity to minimize costs defined over any hyper-edges. As the proposed formulation
is NP-hard and the branch-and-bound algorithm (as well as obtaining lower bounds) is too
slow in practice, we propose an efficient local search algorithm for inference into resulting
problems [101]. We demonstrate the versatility and effectiveness of our approach in several
applications: 1) We formulate homography and motion estimation as a geometric model
fitting problem where the task is to find groups of points that can be explained by the same ge-
ometrical transformation. 2) In motion segmentation our model allows going from modeling
translational motion to Euclidean or affine transformations, which improves the segmentation
quality in terms of the F-measure. This work is published in the Transactions on Pattern
Analysis and Machine Intelligence (TPAMI) 2022 [101] and substantially consolidates a
previous paper by Keuper [87] that proposed the idea as well as an evaluation of FBMS59.
The paper has shared first authors contributions with Evgeny Levinkov who implemented
and evaluated the framework in the context of all geometric model fitting. Here, we omit this
contribution on geometric model fitting entirely and solely show the theoretical concept from
our published work [101] with a simplified reformulation of the model in Keuper [87], the

68 Motion Segmentation - Higher Order Minimum Cost Multicuts

application to motion segmentation as in Keuper [87] as well as the consolidated evaluation
additionally contributed in Levinkov et al. [101].

5.1 Introduction

Given the interesting properties of the minimum cost multicut (MP), Chopra and Rao [36],
and its generalization, minimum cost lifted multicut (LMP), Keuper et al. [89], which are
explained in Section 2.5. Kim et al. [92] proposed a higher-order multicut formulation that
allows to model dependencies between more than two nodes. This chapter combines the
LMP with higher order multicuts in one formulation. This generalization allows us to apply
multicut formulation to motion segmentation problems, which require higher-order non-local
costs and can have a variable number of objects in each problem.

On the downside, Bansal et al. [12] showed that solving the multicut problem is exactly
NP-hard. This result extends to the above-mentioned multicut-based formulations. Although
branch-and-bound, Andres et al. [3], algorithms, as well as Linear Programming (LP)
relaxations like in Kim et al. [92], Kappes et al. [79], are feasible when applied to small
problems, they do not easily scale, Levinkov et al. [102]. Instead, we propose a local search
algorithm based on an efficient move-making algorithm, Keuper et al. [89]. This original
heuristic by Keuper et al. [89] offers feasible solutions for the (second order) minimum
cost lifted multicut problem. Here, we extend it to handle also higher-order terms and their
combinations. Such heuristics do not guarantee the quality of solutions or computation time
but work well in practice, Levinkov et al. [102], and provide feasible solutions at any time.
Thanks to the affordable runtime of our proposed local search algorithm, we were able to
apply higher order (lifted) multicuts to large problems, which we describe in detail below.

5.1.1 Motion Segmentation

The motion segmentation is illustrated in Section 2.4. In this chapter, we study motion
segmentation by using motion trajectories (Section 2.4.1). The usage of two motion vectors
is adequate to describe translation, rotation, and scaling transformations. Thus, for any
three points, one can estimate how well their motion can be explained by one Euclidean
transformation through residual errors. Costs that describe such motion differences are thus
at least of order three. Affine motion differences can be estimated from four motion vectors,
and to assign costs to differences in homographies, the minimum required order is five. Our
model offers the flexibility to combine edges of varying order in one problem instance. The

5.2 Related Work 69

motion segmentation benchmarks yield rather large problem sizes such that we are limited to
models up to order three in this setting and prove the practicality of the results.

One additional adversity in motion segmentation is distinguishing between different
objects with similar underlying motion patterns. Lifted Multicuts, Keuper et al. [89], have
shown to resolve such ambiguities appropriately in the context of image segmentation. We
show that higher-order graphs with third-order edges and their combination with lifted
edges propose better motion segmentations and disambiguate complex motion patterns like
similarly moving objects, scaling motions, and out-of-plane rotations of the objects.

Contributions. In summary, we show the practical benefit of using higher-order lifted
minimum cost multicuts for motion segmentation. In contrast to previous approaches, our
model allows the segmentation of noisy data into segments with respect to motion models
beyond in-plane translation by combining second and third-order edges and allows for
efficient optimization.

5.2 Related Work

Motion Segmentation. Our approach relies on the LMP formulation, (see Section 2.5.1),
for hyper-graph decomposition. In contrast to spectral clustering, the multicut formulation
does not suppose any balancing criterion. Moreover, we directly infer segmentations from
the hyper-graph without projecting onto its primal graph. In contrast to Higher-Order Markov
Random Field (MRF), the proposed approach allows higher-order edges to connect vertices
globally, violating the Markov property. Further, MRFs and Conditional Random Fields
(CRF)s aim to infer a node labeling with labels given a priori, while multicut approaches aim
at figuring an edge labeling yielding an optimal number of segments.

We cast motion segmentation, (see Section 2.4), as a point trajectory, (see Section 2.4.1),
grouping problem and treat it like a model fitting problem to generate segments based on
different motion pattern. In a similar way, it has previously been addressed in Brox and
Malik [25], Lezama et al. [103], Ochs and Brox [122], Li et al. [105], Shi et al. [137], Ochs
et al. [123], Ji et al. [73], Keuper et al. [88]. From sparse motion segmentations, frame-wise
dense segmentations can be computed by variational approaches like Ochs and Brox [121]
or through learning, such as our proposed model in previous chapter [81].

Our approach directly estimates rigidly moving object parts in a single step, account-
ing for camera motion using third-order models, and does not depend on external object
proposals, Levinkov et al. [101].

70 Motion Segmentation - Higher Order Minimum Cost Multicuts

5.3 Higher-Order Lifted Multicut Problem

A decomposition of a graph G = (V,E) can be represented by assigning to each vertex an
identifier of a component it belongs to, i.e., a vertex labeling. The drawback of such an
encoding is that a permutation of components’ identifiers will result in a different vertex
labeling while encoding the same decomposition. This ambiguity creates problems during
optimization that are hard to deal with because the search space of feasible solutions can be
factorially large. An alternative approach is to assign either 0 or 1 to each edge such that
edges labeled 1 connect nodes only inside connected components, refer to Figure 2.8 (a) in
Chapter 2.

Such 01-edge labeling, complying with constraints we define below, is called a multicut
of a graph. Minimum cost multicut problem (MP), (refer to Section 2.5 for the definition
of MP), allows to optimize for the 01-edge labeling, or in other words, to find an optimal
decomposition of a graph. This is precisely the setting in the applications we consider in this
chapter, as we do not know beforehand how many moving objects the data contains.

Below, we combine the lifted multicuts, (see Section 2.5.1), and higher-order multicuts
in a joint formulation.

Definition. For a simple, connected graph G = (V,E) and lifted edges F , such that F ⊆(V
2

)
\E, let V = {U |U ∈ 2V , |U | ≥ 2} denote the set of connected subsets of nodes in G. For

a given cost function c : V → R, written below is an instance of the higher-order minimum
cost lifted multicut problem [101].

min
y∈{0,1}E∪F ∑

U∈V
cU ∏
{v,w}∈(U

2)∩{E∪F}
yvw , (5.1)

with y subject to the following linear constraints

∀C ∈ cycles(G),∀e ∈C :

(1− ye)≤ ∑
e′∈C\{e}

(1− ye′) (5.2)

∀ f = {v,w} ∈ F,∀P ∈ vw-paths(G) :

(1− y f)≤ ∑
e∈P

(1− ye) (5.3)

∀ f = {v,w} ∈ F,∀T ∈ vw-cuts(G) :

y f ≤ ∑
e∈T

ye . (5.4)

5.4 Local Search Algorithm 71

Cycle inequalities (5.2) ensure that the cut in graph G does not have holes. Path inequali-
ties (5.3) guarantee that ∀ f = {v,w} ∈ F , y f can be assigned value 1, iff there exists a path
P in graph G, that connects vertices v and w. Otherwise, the solver has two options: either
create such a path or set y f = 0. Cut inequalities (5.3) guarantee, that ∀ f = {v,w} ∈ F , y f

can be assigned value 0, iff there exists a cut T in graph G, that separates vertices v and w.
Otherwise, the solver has to either create such a cut or set y f = 1.

Note that in our formulation (5.1), the set of decompositions is defined over a pairwise
connected graph G. The costs, however, are determined over connected subsets U ∈ 2V of
nodes of arbitrary cardinality larger than 1. Normally, only subsets of fixed cardinality k
are used, e.g. V =

(V
k

)
. However, one can define a cost function over several cardinalities

K ⊂ N \ {1}. It is easy to see that in case K = {2} we get the lifted multicut formulation
from Keuper et al. [89]. Therefore, here we propose a strictly more general formulation.

Keuper et al. [89] showed the connection of optimization problem in Equation (5.1) with
V =

(V
2

)
to finding the most likely multicut in Bayesian sense: Let p(yvw = 1 | xvw) be a

conditional probability estimate for two nodes {v,w} ∈ V to belong together given some
features xvw. If we set costs as cvw = log 1−p(yvw=1|xvw)

p(yvw=1|xvw)
, then minimizing Equation (5.1) is

the same as performing Maximum A Posteriori (MAP) inference in the induced Bayesian
network. The extension from 2nd-order sets to higher-order cases is straightforward. This
allows us to interpret solutions of Equation (5.1) in terms of local probabilities.

If p(∏{v,w}∈(U
2)∩{E∪F} yvw = 1 | xU) is greater than 0.5 for some U ∈ V , then the corre-

sponding cost cU is less than 0. This means that all nodes in U are likely to belong together.
We call such terms attractive. Conversely, if p(∏{v,w}∈(U

2)∩{E∪F} yvw = 1 | xU) is less than
0.5, then the corresponding cost cU is greater than 0 and acts as a penalty. We call such terms
repulsive.

5.4 Local Search Algorithm

A branch-and-bound method in Gurobi [57] is implemented for the 3rd-order case by lineariz-
ing the objective in Equation (5.1), but a solution could not be obtained even for the smallest
problem we consider in 12 hours. Toward scalable algorithms, Keuper et al. [89] define a
generalization of Kernighan and Lin’s primal local search algorithm for graph partitioning
problems to the case of lifted multicut problem. We generalize their algorithm further to
lifted multicut problems to include costs of arbitrary order.

Overview. The algorithm takes an instance of the higher-order lifted multicut problem and
an initial decomposition of G and outputs a decomposition of G whose higher-order lifted

72 Motion Segmentation - Higher Order Minimum Cost Multicuts

Algorithm 4: Kernighan-Lin Algorithm. The function UPDATE_BOUNDARY is given in
Algorithm 5.

Data: weighted, undirected graph G = (V,E), lifted edges F , cost function c, starting
01-edge labeling y0 ∈ {0,1}E∪F

Result: 01-edge labeling yt−1

1 t← 1
2 while t < max_iter and yt ̸= yt−1 do
3 foreach (A,B) ∈ adjacent_components(yt−1) do
4 yt ← update_boundary(G,F,c,A,B)

5 foreach A ∈ components(yt) do
6 yt ← update_boundary(G,F,c,A, /0)

multicut has an objective value lower than or equal to that of the initial decomposition. As
the original KLj-Algorithm, Keuper et al. [89], it always maintains, throughout its execution,
a feasible decomposition of G. The pseudo-code is given in Algorithm 4. New components
are introduced by updating a boundary of a component against an empty set /0, as given by
lines 5–6, exactly as in the 2nd-order version, Keuper et al. [89], refer to Algorithm 2 in
Chapter 2.

Function UPDATE_BOUNDARY (refer to Algorithm 5) receives two components A and
B and updates the cut between only them. It constructs a sequence M of elementary trans-
formations of the components A and B greedily such that every consecutive move-operation
increases the cumulative gain S maximally (or decreases it minimally). Therefore, the opera-
tion COMPUTE_GAINS computes, at the beginning of each execution of UPDATE_BOUNDARY,
for every element v ∈ A∪B the difference in the objective function (gain) when v is moved
from A to B or from B to A. These differences are updated as described in Algorithm 5, ll.
9-21. To escape local optima, we determine i∗ = argmaxiSi such as to maximize the total gain
of the sequence of operations. If the objective value can be decreased by executing either
the first i∗ elementary transformations or by joining the components A and B the optimal
of these two operations is carried out. While components are defined with respect to the
graph G = (V,F), differences in objective value are computed with respect to the graph
G′ = (V,E ∪F).

In Keuper et al. [89] as well as in our algorithm, all transformations of feasible solutions
are local, resulting in changes of the objective value that are computed in linear time (in the
size of the graph).

The combination of the locality of individual transformations and the non-locality of
sequences of transformations has proven effective for diverse applications, Levinkov et al.
[102]. As in KLj [89], the number of outer iterations of Algorithm 4 is not bounded by a

5.4 Local Search Algorithm 73

Algorithm 5: Function UPDATE_BOUNDARY greedily moves vertices from one component
to the other.

Data: weighted, undirected graph G = (V,E), lifted edges F , cost function c, a pair of
partitions A and B

Result: 01-edge labeling y

1 DA∪B← compute_gains(G,F,c,A,B)
2 Ω← find_boundary_nodes(V,E,A,B)
3 ∆ join← compute_gain_from_joining(G,F,c,A,B)
4 S0 = 0
5 M = [] // array to store moves
6 for i← 1 to |Ω| do
7 v∗← argmaxv∈Ω DA∪B

// w.l.o.g. let v∗ ∈ A
8 foreach U ∈ {U ′ |U ′ ∈ V ,v∗ ∈U ′,U ′ ⊆ A∪B} do
9 U ′←U \{v∗}

10 if U ′ ⊆ A then
11 foreach w ∈U ′ do
12 Dw← Dw− cU

13 else if U ′ ⊆ B then
14 foreach w ∈U ′ do
15 Dw← Dw + cU

16 if |U ′∩A|= 1 then
17 w←U ′∩A
18 Dw← Dw− cU

19 if |U ′∩B|= 1 then
20 w←U ′∩B
21 Dw← Dw + cU

22 M.push(v∗) // move v∗ from A to B
23 Si← Si−1 +Dv∗ // cumulative gain
24 Ω← update_boundary(v∗,E,A,B)

25 i∗← argmaxiSi // best number of moves
26 if ∆ join > Si∗ and ∆ join > 0 then
27 join_components(y,A,B)

28 undo_moves(y,A,B, i∗) // undo moves after i∗

polynomial, and we cannot give any guarantee for convergence. However, in practice, the
algorithm converged in less than 50 iterations for the experiments described in Section 5.5.

Implementation Details. For efficiency, we pre-compute all the gains for vertices in A∪B
(line 1), refer to Algorithm 5, and keep track of the vertices that currently lie on the boundary

74 Motion Segmentation - Higher Order Minimum Cost Multicuts

Ω between A and B (lines 2 and 21); this dramatically improves the runtime for sparse graphs.
We iteratively pick a vertex v∗ with the largest gain (line 7), which can also be negative.
Then, we update gains of all other vertices in A and B, that are in subsets U that contain
v∗ (lines 8–18). Note that in the case of 2nd-order costs, updates as given in lines 10–18
specialize to the corresponding updates in Keuper et al. [89]. In the end, we find which first
i∗ moves produce the most significant decrease (note, i∗ can also be 0), and either merge A
and B together (lines 23–24) or undo the moves after i∗ (line 25).

5.4.1 Motion Segmentation

Point Trajectories. Tracking the single object point in the image plane produces a spatio-
temporal curve, named point trajectory. Set of point trajectories, detailed in Section 2.4.1, pro-
vide the basis for many motion segmentation methods such as Brox and Malik [25], Fragki-
adaki et al. [49, 51], Ochs et al. [123], Keuper et al. [88]. We use the precomputed optical
flow from Brox and Malik [26] to allow for a direct comparison to prior work and to generate
dense long-term point trajectories using the method from Brox and Malik [25]. Initially, n
point trajectories pi are produced by [25] for a video of length N. Actually, n depends on
the desired sampling rate and most trajectories are shorter than the N, due to occlusions and
mistakes in the optical flow estimation. Some trajectories are started after the first frame to
ensure even point sampling over the sequence, Keuper [87].

5.4.2 Higher-Order Motion Models

For practical reasons, we restrict ourselves to edge potentials of orders two and three; however
it is not sufficient to accurately describe object motion in a 3D environment recorded with a
possibly moving camera. This lets us to measure the difference of point motions according
to Euclidean motion models, i.e. from the group of transformations describing translation,
rotation, and scaling in the 2D plane. Excluding the reflections, this is a subset of group of
similarity transformations in the 2D plane, Keuper [87].

Furthermore, we argue that in any case, the easiest model that can explain the motion
of a set of points with a single transformation should be used. We can assume the two
points belong to the same object without looking at further points around them, if they move
according to the same translational motion model. Looking at more complex motion models
adds information, only if their motion is different according to a purely translational model.
This leads us to a motion-adaptive graph construction strategy [87].

5.4 Local Search Algorithm 75

Algorithm 6: Motion Adaptive Graph Construction [87].
Data: set of point trajectories V with pk ∈V with k ∈ {1 . . .n}
Result: weighted undirected higher-order graph G = (V,E), cost vector c

1 G← (V,E = /0)
2 c = []

3 foreach (u,v) ∈
(V

2

)
do

4 cuv← compute_translational_motion_cost(pu, pv)
5 E← E ∪ (u,v) // add edge
6 if c≤ 0 then
7 c.push(cuv)

8 else
9 foreach w ∈V \{u,v} do

10 cuvw← compute_HO_motion_cost(pu, pv, pw)
11 E← E ∪ (u,w)∪ (v,w) // add edge
12 c.push(cuvw)

Motion-Adaptive Graph Construction. We present the higher-order graph G construc-
tion from the pairwise costs computed from motion differences. The algorithm is described
in Algorithm 6. We compute cost of belonging to the same translational motion model for
any pair of trajectories. If this cost produce repulsive signal; i.e., positive, we look at all
further points to compute for every three-tuple the cost of belonging to the same motion
model for scaling, translation, and rotation. Afterwards, the respective third-order edges are
inserted as well as their costs.

With this strategy, second and third-order potentials are integrated without losing model
capacity. Moreover, compared to generating the full graph with higher-order potentials, it
yields a significant space reduction in practice [87].

Lifted Graph Construction. For every trajectory the set of its 12 spatially nearest neigh-
bors N are computed, to construct a higher-order lifted graph G′ = (V,E ∪ F). Algo-
rithm 6 is used to compute the edge set E of edges between direct neighbors in G′. It
contains exactly all pairwise edges ei j ∈ E for which at least one of the following condi-
tions holds: (1) pi ∈N (p j), (2) p j ∈N (pi) (3) the maximum spatial distance between the
trajectories pi and p j is below 40 pixels [87].

Second-Order Costs. The pairwise differences in point trajectories are used to compute
the second-order costs. Such differences are calculated only for trajectories that have at least
two frames in common. We compute such differences based on color, motion, and spatial

76 Motion Segmentation - Higher Order Minimum Cost Multicuts

distance cues, since it has proven successful in the work of Keuper et al. [88]. The motion
distance in Equation (5.5), is exactly what we used in the last chapter in Equation (4.1). As
suggested by Ochs et al. [123], we define the pairwise motion difference of two trajectories
at time t as

dmotion
t (pi, p j) =

∥∂t pi−∂t p j∥
σt

. (5.5)

Here, ∂t pi and ∂t p j are the partial derivatives of pi and p j with respect to the time dimension
and σt , which is defined in Ochs et al. [123], is the variation of the optical flow. The motion
distance of two trajectories is defined by the maximum over time [87],

dmotion(pi, p j) = max
t

dmotion
t (pi, p j). (5.6)

color and spatial distances dcolor and dspatial are computed as average distances over the
common lifetime of two trajectories which is proposed in Keuper et al. [88]. The costs are
computed by the non-linear combination of these three cues

ci j = max(θ̄0 + θ1 dmotion(pi, p j) (5.7)

+ θ2 dspatial(pi, p j)

+ θ3 dcolor(pi, p j) ,

θ0 + θ1 dmotion(pi, p j))

with weights and intercept values θ as proposed in Keuper et al. [88]1.

Third-Order Costs. As proposed in Ochs and Brox [122], we compute third-order motion
differences. For any two trajectories pi and p j, we estimate the Euclidean motion model
Ti j(t), which consists of translation v := (v1,v2)

⊤, rotation Rα , and scaling s as

α = arccos

(
(pi(t ′)− p j(t ′))⊤(pi(t)− p j(t))
∥pi(t ′)− p j(t ′)∥ · ∥pi(t)− p j(t)∥

)
(5.8)

s =
∥pi(t ′)− p j(t ′)∥
∥pi(t)− p j(t)∥

v =
1
2
(

pi(t ′)+ p j(t ′)− sRα(pi(t)+ p j(t))
)
,

1Specifically, θ̄0 = 6, θ0 = 2, θ1 = θ3 =−0.02 and θ2 =−4.

5.4 Local Search Algorithm 77

where t and t ′ denote the first and last point in time where both trajectories co-exist, respec-
tively. The distance to any third trajectory pk existing from t to t ′ can then be measured by
dt

i j(pk) = ∥Ti j(t)pk(t)− pk(t ′)∥ [87]. For numerical reasons, dt
i j(pk) is normalized by

γ
t
i j =

1
σt

(
1
2

(
∥pi(t)− p j(t)∥
∥pi(t)− pk(t)∥

+
∥pi(t)− p j(t)∥
∥p j(t)− pk(t)∥

)) 1
4

, (5.9)

where σt represents the optical flow variation as in Equation (5.5). To render distances
symmetric, Ochs and Brox [122] offer to utilize the maximum,

dt
max(i, j,k) = max(γ t

i jd
t
i j(pk),γ

t
ikdt

ik(p j),γ
t
jkdt

jk(pi)), (5.10)

which produces an over-estimation of the true distance. It can lead to problems in the
multicut framework; however, this is unproblematic in a spectral clustering scenario, where
distances define positive point affinities. Over-estimated distances generate under-estimated
join probabilities and consecutively leads to switching the sign of the cost function towards
repulsive terms. We compute both dt

max(i, j,k) and, dt
min(i, j,k), to avoid this effect. For

both, we compute the maximum motion distance over the common lifetime of pi, p j and pk

as dmax(i, j,k) = maxtdt
max(i, j,k) and dmin(i, j,k) = maxtdt

min(i, j,k). We evaluate the costs
c(dmax(i, j,k)) and c(dmin(i, j,k)) for both distances as c(d) = θ0 + θ1d and compute the
final edge costs [87]

ci jk =


c(dmin(i, j,k)) if c(dmax(i, j,k))> 0

c(dmax(i, j,k)) if c(dmin(i, j,k))< 0

0 otherwise.

(5.11)

Therefore, we make sure not to set any costs for edges whose underlying motion is controver-
sial. We set θ0 = 1 and θ1 =−0.08 manually.

Implementation Details. In practice, pairwise edges ei j in G and G′ are inserted only if
the spatial distance between pi and p j is below 100 pixels even for lifted edges in F . This is
in analogy to Keuper et al. [88]. Due to the fact that for nearby points, the approximation
of the true motion by a simplified model is usually better than for points at a considerable
distance. Furthermore, since the number of pairwise edges increases quadratically with the
maximal spatial distance, this heuristic decreases the computational load significantly. We
introduce an edge sampling strategy for third-order edges for the same reason. We compute
the maximum pairwise distance d for every triplet of points. We randomly sample 100

d2 %

78 Motion Segmentation - Higher Order Minimum Cost Multicuts

Fig. 5.1 Samples of our Lifted motion-adaptive order (AOMC) segmentations densified
by Ochs and Brox [121] are shown. Our segmentations show little over-segmentation even
for articulated motion.

MCe [88] ours

Fig. 5.2 The person and the wall are assigned to the same cluster with the non-lifted multicut
approach from Keuper et al. [88] because of the camera motion. The Lifted AOMC allows
for correct segmentation.

from all triplets with 20 < d < 300, while we insert all edges ei jk with d ≤ 20. This prevents
a too strong imbalance of long-range edges over short-range edges [87].

5.5 Experiments

5.5.1 Motion Segmentation

We apply the proposed higher-order lifted multicut model on the motion segmentation
benchmark FBMS59 [123] (see Section 2.1). The results reported in tables 5.1 and 5.2 and
in Figure 5.8 have been previously shown in Keuper [87]. In figures 5.1, 5.2, 5.3, 5.4, 5.5,
and 5.6 the images in different frames from the same sequences as in Keuper [87] are shown.

The data set has been split into subsets of 29 train and 30 test sequences. Yet, the model
parameters used in the evaluation have not been optimized on the training set but rather
heuristically on single training sequences. First, by the time of submission, neither of the
state-of-the-art methods like Ochs and Brox [122], Ochs et al. [123], Keuper et al. [88]

5.5 Experiments 79

was fully training-based, and second, the training set of FBMS consists of only 29 sparsely
annotated sequences and is therefore relatively small. To avoid confusion, we denote the
original training split by Set A and the original test split by Set B.

FBMS59 [123] provides manual annotations for all moving objects in the videos for every
20th frame and ground-truth definition files that down weight annotated segments in some
scenes. Thus, objects in some sequences that contain severe camera motion, for example, a
mistakenly segmented wall in Figure 5.2, attain a lower weight in the evaluation. All objects
that move in at least one frame are segmented in all annotated frames. A second set of
ground-truth annotations at a similar level of sparsity has later been provided in Bideau and
Learned-Miller [20] to evaluate a slightly different motion segmentation paradigm. In Bideau
et al. [23], Bideau and Learned-Miller [20], it was argued that all freely moving objects in 3D
space but nothing more should be segmented per frame. Specifically, this means that objects
moving only in a few frames are only to be segmented in these frames. Scene geometry and
camera motion yielding apparent motion in the image plane, such as the wall in the example
of Figure 5.2, are not considered. Our work addresses the task originally annotated by Ochs
et al. [123]. It aims to segment all objects that move in at least one frame of a sequence and
does not provide full 3D motion segmentations, as we limit ourselves to third-order motion
terms. Yet, we find it interesting to consider both sets of annotations during evaluation to
allow for a comparison to the respective competing methods. Note that also the evaluation
metrics differ slightly. Both Ochs et al. [123] and Bideau and Learned-Miller [20] measure
precision, recall and F-measure, where Ochs et al. [123] evaluate precision and recall over all
frames and compute the F-measure in the end, while Bideau and Learned-Miller [20] evaluate
the F-measure per frame and report the mean value. In addition, Ochs et al. [123] report the
number of objects O that are segmented with an F-measure above 0.75. Instead, Bideau et al.
[23] propose the ∆Obj metric, which measures the average absolute difference between the
number of ground-truth objects in each frame and the number of segmented objects in this
frame. While O should be large, ∆Obj should be small.

For our evaluation, we employ the annotations provided in Ochs et al. [123] when
considering the metric proposed therein. We use the annotations from Bideau and Learned-
Miller [20] when evaluating using the metric proposed in Bideau et al. [23] to allow for
direct comparison to their work. We start with an evaluation using annotations and metrics
from Ochs et al. [123].

Evaluation. First, we evaluate a purely higher-order non-lifted version of our model to
assess the capacity of our model components. All pairwise costs are removed in this model,
and all edges are connectivity-defining. We compare this simple model to the purely motion-

80 Motion Segmentation - Higher Order Minimum Cost Multicuts

Table 5.1 Segmentation results on the FBMS59 dataset on Set A (top) and Set B (bottom).
We report P: average precision in %, R: average recall in %, F: F-measure in % and O:
extracted objects with F≥ 75%. All results are computed for sparse trajectory sampling at
an 8-pixel distance. Our result HO MC is computed on the non-lifted purely higher-order
model to allow for a direct comparison to the listed competing methods.

Set A (29 sequences) P [%, ↑] R [%, ↑] F [%, ↑] O [↑]

SC [123] 85.10 62.40 72.0 17/65
Higher-Order SC [122] 81.55 59.33 68.68 16/65
MC [88] 84.94 71.22 77.48 23/65
HO MC (ours) 83.20 74.34 78.52 29/65

Set B (30 sequences) P [%, ↑] R [%, ↑] F [%, ↑] O [↑]

SC [123] 79.61 60.91 69.02 24/69
Higher-Order SC [122] 82.11 64.67 72.35 27/69
MC [88] 82.87 69.89 75.83 27/69
HO MC (ours) 82.92 68.82 75.22 27/69

based version of Keuper et al. [88] and Ochs et al. [123], Ochs and Brox [122]. The affinities
in Ochs and Brox [122] are defined most similarly to our proposed higher-order costs,
while Ochs et al. [123] and Keuper et al. [88] only consider translational motion. While
Ochs et al. [123] and Ochs and Brox [122] follow a spectral clustering approach, as the
proposed approach, Keuper et al. [88] formulate a multicut problem. The results are given
in Table 5.1 in terms of precision, recall, F-measure, and the number of extracted objects.
From Table 5.1, it is observable that our higher-order lifted multicut model outperforms the
higher-order spectral clustering method from Ochs and Brox [122] by about 10% on Set A
and 3.5% on Set B. The imbalance is remarkable, while there is a clear improvement on
both sets. A similarly remarkable imbalance is observable when comparing the performance
between the two spectral clustering methods Ochs et al. [123] and Ochs and Brox [122].
The higher-order model [122] leads to a lower F-measure on Set A compared to [123]. Yet
it outperforms Ochs et al. [123] by about 3% on Set B. This shows an indication that the
motion statistics in both splits are significantly different. We can observe an improvement
in Set A when we compare our higher-order model to the pairwise minimum cost multicut
model from Keuper et al. [88]. Both models perform almost equally on Set B.

We show the evaluation of our higher-order multicut model with the motion-adaptive
order, denoted AOMC (refer to Algorithm 6) in Table 5.2. This model has access to similar
pairwise cues as the color and motion-based version from Keuper et al. [88], denoted by
MCe. It also has access to the higher-order motion cues from Equation (5.11), Keuper [87].

5.5 Experiments 81

Table 5.2 Segmentation Results on FBMS59 on Set A (top) and Set B (bottom) are provided.
We report P: average precision, R: average recall, F: F-measure and O: extracted objects
with F≥ 75%. All results are computed for sparse trajectory sampling at an 8-pixel distance.
The proposed approach Lifted AOMC performs best.

Set A (29 sequences) P [%, ↑] R [%, ↑] F [%, ↑] O [↑]

MCe [88] 86.73 73.08 79.32 31/65
HOPMC 87.66 74.15 80.34 31/65
AOMC 82.29 76.17 79.11 32/65

Lifted HOPMC 87.07 70.84 78.12 28/65
Lifted AOMC 86.20 78.35 82.08 34/65

Set B (30 sequences) P [%, ↑] R [%, ↑] F [%, ↑] O [↑]

MCe [88] 87.88 67.7 76.48 25/69
HOPMC 85.00 67.75 75.40 25/69
AOMC 84.48 73.08 78.37 27/69

Lifted HOPMC 87.07 70.84 78.12 28/69
Lifted AOMC 87.82 71.45 78.79 24/69

We also generate graphs that simply contain all pairwise costs ci j and all third-order
edges with costs ci jk without any adaptation with respect to the costs as a sanity check
for the motion-adaptive graph construction. This additive model is denoted by HOPMC
(higher-order + pairwise multicut). All three approaches produce similar results on Set A,
whereas the proposed AOMC shows especially good performance on the test set with about
2% improvement over MCe, proposed by Keuper et al. [88], in F-measure [87].

A slightly further improvement is acquired on Set B by lifted versions of both types of
problems (HOPMC and AOMC). However, on Set A, the segmentation quality of Lifted
HOPMC is below the one of MCe by around 1%. In contrast, all competing methods and
baselines are outperformed by the proposed Lifted AOMC.

In Table 5.3, we evaluate the effect of the quality of the point trajectories when they are
computed from different models for optical flow estimation like Brox and Malik [26], Ilg
et al. [65, 66]. The proposed approach, Lifted AOMC, consistently outperforms the pairwise
MCe [88] on comparable optical flow estimations. The overall differences are small; however,
the most recent FlowNet [66] performs best.

In Figure 5.1, several examples of pixel-segmentations computed from our sparse seg-
mentation using Ochs and Brox [121] are shown. The densified segmentation results look
reasonable. In the bear example, still the over-segmented results appear due to the articulated
motion of the leg. One of the horses is missed in the horses05 sequence. However, the small
objects such as the phone in the marple13 sequence can be correctly segmented. Such densi-

82 Motion Segmentation - Higher Order Minimum Cost Multicuts

Table 5.3 Segmentation results are provided for the proposed model Lifted AOMC on the
FBMS59 dataset on Set A (top) and Set B (bottom) for different optical flow methods. We
report P: average precision, R: average recall, F: F-measure and O: extracted objects with
F≥ 75%. All results are computed for sparse trajectory sampling at an 8-pixel distance.

Set A Flow P [%, ↑] R [%, ↑] F [%, ↑] O [↑]

MCe [88] LDOF [26] 86.73 73.08 79.32 31/65
Lifted AOMC 86.20 78.35 82.08 34/65
MCe [88] FlowNet [65] 89.63 73.38 80.69 29/65
Lifted AOMC 88.22 77.34 82.42 33/65
MCe [88] FlowNet [66] 89.77 75.78 82.19 34/65
Lifted AOMC 89.19 79.35 83.98 38/65

Set B Flow P [%, ↑] R [%, ↑] F [%, ↑] O [↑]

MCe [88] LDOF [26] 87.88 67.7 76.48 25/69
Lifted AOMC 87.82 71.45 78.79 24/69
MCe [88] FlowNet [65] 86.73 68.77 76.71 26/69
Lifted AOMC 86.89 69.81 77.42 24/69
MCe [88] FlowNet [66] 84.59 7019 76.72 27/69
Lifted AOMC 88.39 72.12 79.43 26/69

fied segmentations, computed from sparse results using FlowNet [66], can be evaluated by
the metrics from Bideau et al. [23] with their matching annotations from Bideau and Learned-
Miller [20]. Table 5.4 shows our results in the setting by Bideau et al. [23], i.e. considering a
frame-wise evaluation on all freely moving 3D objects. While the F-measure of our model is
similar to the one reached by Keuper et al. [88], the ∆Obj metric is significantly improved,
i.e. lower, and almost on par with the results from Bideau et al. [23], which are dedicated
to this setting. Evaluating binarized segmentations (Table 5.4) allows for a comparison to
learning based encoder-decoder models such as Tokmakov et al. [149]. Without learning
any prior on object saliency, our F-measure for binary segmentation on FBMS59 is 76.16%
and thus slightly better than the learned model from plain motion cues in Tokmakov et al.
[149] with 74.79%, but inferior to Tokmakov et al. [150], who learn an additional appearance
stream and reach 86.96% [23].

In the following, we discuss several example segmentations in detail [87].
Figure 5.3 shows the trajectory segmentation quality under scaling. In the horses05

sequence, the motion of the white horse towards the camera shows the scaling. This creates
over-segmentation in the competing method MCe [88], which can not solve higher-order
motion models. The segmentation can be improved with the proposed Lifted AOMC.

Both figures 5.4 and 5.2 show examples where the same label is assigned to distinct
objects that move similarly. In the cars2 sequence in Figure 5.4, this effect is due to similar

5.5 Experiments 83

Table 5.4 Results for densified segmentations on FBMS59 using annotations and metrics
as in Bideau et al. [23] for freely moving 3D objects. For ∆Obj, lower is better. Results
for Keuper et al. [88], Taylor et al. [148], Tokmakov et al. [149], Tokmakov et al. [150] and
Bideau et al. [23] are taken from Bideau et al. [23].

P [%, ↑] R [%, ↑] F [%, ↑] ∆Obj [↓]

MCe [88] 74.64 62.03 63.59 7.7
Taylor at al. [148] 72.69 54.36 56.32 11.7
Bideau et al. [23] 74.23 63.07 64.97 4
Lifted AOMC 73.29 60.26 63.58 4.41

bi
na

ry Tokmakov at al. [149] 87.29 72.19 74.79 -
Tokmakov et al. [150] 92.40 85.07 86.96 -
Lifted AOMC 79.98 76.97 76.16 -

MCe [88] ours

Fig. 5.3 The scaling motion of the white horse moving towards the camera causes over-
segmentation with a simple motion model from Keuper et al. [88]. With the proposed Lifted
AOMC, this can be avoided.

real-world object motion, whereas, in the marple10 sequence, the effect is caused because of
the camera motion and the scene geometry. In both scenarios, the formulation of the Lifted
AOMC problem lets us tell the distinct objects apart. However, in the marple10 sequence
(Figure 5.2), we can see a spurious segment in the background, which is probably caused by
non-exact flow.

In Figure 5.5, an example of the goats01 sequence is shown. Here, the pairwise method
from Keuper et al. [88] causes the head and body of the goat in front are segmented into
distinct components, because of the obvious articulated motion. Although our proposed
third-order model can not explicitly handle articulation, the over-segmentation can be fixed
in this case.

A failure case of the proposed method is shown in Figure 5.6. Due to the dominant
camera motion in a scene with complex geometry, the Euclidean motion model particularly
badly fits. Therefore, our model leads to the segmentation of the scene into its depth layers
and, consequently, to strong over-segmentation [87].

84 Motion Segmentation - Higher Order Minimum Cost Multicuts

MCe [88] ours

Fig. 5.4 The two cars in the front move in the same direction. This leads to the same cluster
assignment with the non-lifted multicut approach [88]. The Lifted AOMC can assign the
distinct motion labels to the different cars.

MCe [88] ours

Fig. 5.5 The articulated motion leads to over-segmentation in [88]. Showing that the Lifted
AOMC performs better.

Next, we evaluate our approach on two additional datasets widely considered for motion
segmentation, the DAVIS2016 dataset [128] and the VSB100 dataset [55, 144]. Both have
originally been designed for different purposes. DAVIS2016 is a dataset, (see Section 2.1 for
the information about the datasets), for binary video object segmentation which has been
used to learn appearance and motion patterns of salient objects in videos, e.g. in Tokmakov
et al. [150]. While the sequences may contain several moving objects, the task is to track
the segmentation of the dominant object throughout the sequence. Complementary to this,
the VSB100 dataset is originally proposed as a video segmentation dataset where the task
is to mimic human boundary level annotations, i.e., the segments do not necessarily have
a notion of objectness. This general purpose multi-label video segmentation dataset has
a motion subtask which can be used to evaluate motion segmentation approaches before,
e.g. as in Keuper et al. [88]. Table 5.5 shows our results on the DAVIS2016 dataset in terms
of the Jaccard index (J) and the F-measure (F), which measures the boundary fidelity of the
segmentation. We compare the results by Keuper et al. [88] which is, like ours, a method for
multi-label motion segmentation. The proposed approach improves significantly over those
results. Yet, note that dedicated video object segmentation approaches recently proposed

5.5 Experiments 85

MCe [88] ours

Fig. 5.6 The failure cases are shown. With the proposed method, the dominant camera motion
causes strong over-segmentation. The proposed third-order model can not appropriately
model the motion.

Table 5.5 Evaluation on DAVIS2016 is provided. The more complex motion model in Lifted
AOMC is beneficial for this dataset of binary object segmentation. Results marked with ∗ are
taken from Tokmakov et al. [149].

MCe [88] Lifted AOCM

train val trainval train val trainval

J mean [↑] 53.4 55.2∗/54.59 53.9 62.7 57.79 60.74
J recall [↑] 59.5 57.5∗/58.41 59.04 74.18 64.72 70.40
J decay [↓] -1.57 2.2∗/ 4 0.66 3.8 3.75 3.78
F mean [↑] 51.86 55.2∗/52.35 52.05 61.55 57.55 59.94
F recall [↑] 56.39 61.0∗/54.60 55.67 72.36 67.63 70.47
F decay [↓] 2.5 3.4∗ / 4.25 3.23 7.05 5.39 6.38

in Yang et al. [165, 162] yield higher numbers on the DAVIS benchmark with a mean Jaccard
index of up to 80% on the validation set.

The evaluation of our model on the motion subtask of VSB100 is given in Figure 5.7 in
terms of boundary precision and recall (BPR) and the region metric volume precision and
recall (VPR). It can be seen that the proposed higher-order model with adaptive edge order
outperforms the previous models on this task. As expected, the differences in the BPR are
rather small while they are more significant in VPR. The dashed lines indicate the results of
our model using FlowNet [66] to compute optical flow, while the solid lines are based on
Brox and Malik [26] to ensure fair comparison to Keuper et al. [88] and Ochs et al. [123].
The improved optical flow has a slightly larger impact on the BPR values, indicating that
the issues addressed by more robust optical flow estimation and the issues addressed by our
more complex motion model are complementary.

86 Motion Segmentation - Higher Order Minimum Cost Multicuts

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Recall

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
re

c
is

io
n

Bourndary Global PR Curve

human
SC
baseline
VS
MC
LAOMC
LAOMC*

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Recall

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
re

ci
s
io

n

Volume Global PR Curve

Fig. 5.7 Evaluation on the motion subtask of the VSB100 dataset [55, 144] is provided. We
compare our results to SC, Ochs et al. [123], the video segmentation approach VS, Galasso
et al. [54], the superpixel tracking baseline from Galasso et al. [55], and the multicut models
with pairwise terms MCe, Keuper et al. [88]. The proposed lifted adaptive order model
(LAOMC) outperforms the pairwise terms consistently. LAOMC∗ shows results based on
FlowNet [66], while LAOMC is computed on flows from Brox and Malik [26] for fair
comparison to Ochs et al. [123].

10 3 10 4 10 5

nodes

10 1

10
2

10 3

10 4

co
m

p
u

ta
tio

n
 t

im
e

 in
 s

e
co

n
d

s

Set A
Set B

Fig. 5.8 Computation times in the log-scale of the problem instances from Set A and B of
FBMS59 with respect to the number of point trajectories are provided (following Keuper
[87]).

Scalability Analysis on FBMS59. Last, we evaluate our proposed heuristic in terms of
computation times for the higher-order minimum cost lifted multicut problems (compare
Algorithm 4), following Keuper [87]. Figure 5.8 shows the computation times of our full

5.6 Conclusion 87

pipeline on FBMS59 with respect to the number of point trajectories. The runtime distribution
represents linear runtime behavior and shows that for most instances heuristic solutions can
be generated in a few minutes. Yet, the number of large problem instances is very few to
make any claim [87].

5.6 Conclusion

We presented a multicut-based approach that can be applied to computer vision tasks such
as motion segmentation. To do so, we proposed a pseudo-boolean formulation that allows
defining costs on subsets of vertices of arbitrary cardinality and includes lifted edges. In
motion segmentation, higher than simple pair-wise costs allow modeling object motion
more precisely (Euclidean instead of in-plane translational motion). Since the emerging
higher-order multicut problem is NP-hard to solve exactly, we proposed an efficient local
search algorithm for inference. Our approach yields either competitive or state-of-the-art
results, is highly flexible and is easy to apply.

Chapter 6

Minimum Cost Multicuts – Efficient
Solvers

In the last chapters, we studied the application of the video object and motion segmentation
using the minimum cost lifted multicut (LMP) framework. This framework is further used
in the multiple-person tracking method proposed by Ho et al. [60]. Due to the NP-hard
nature of the problem, the available solvers provide the results at a high computational
cost. This hinders the generation of the results on the larger problem instances. While the
currently available solvers for this problem provide high-quality solutions, they can have
long computation times for more difficult problem instances. Here, we propose two variants
of a heuristic solver (primal feasible heuristic), which greedily generate solutions within a
bounded amount of time. Evaluations of image and mesh segmentation benchmarks show the
high quality of these solutions. This work is published in the Asian Conference on Computer
Vision (ACCV), 2018 [82].

6.1 Introduction

This chapter tackles the fast, heuristic optimization of a graph decomposition problem, the
LMP (for the definition of the LMP refer to Section 2.5.1). More specifically, we propose a
modification of a very simple primal feasible heuristic, the greedy additive edge contraction
(GAEC) algorithm from Keuper et al. [89] (refer to Algorithm 1 in Chapter 2). The proposed
algorithm produces results that are close to the ones generated by KLj [89] with a computation
time similar to the one from GAEC [89] and a guaranteed worst-case complexity. We evaluate
the proposed heuristic on instances of (1) image segmentation problems on the BSDS500
dataset from Arbeláez et al. [5], (2) mesh segmentation problems on the Princeton Shape

90 Minimum Cost Multicuts – Efficient Solvers

Segmentation benchmark from Chen et al. [32], and (3), the challenging 3D segmentation
instance from the ISBI 2012 challenge on segmentation of neuronal structures from electron
microscopy images used in Beier et al. [15, 18] (see Section 2.1). In all scenarios, the
proposed algorithm can generate high-quality results at a significantly reduced computation
time.

6.2 Related Work

There are many solvers proposed for the LMP (Section 2.5.2). The two solvers, KLj
from Keuper et al. [89] and Fusion Moves from Beier et al. [15] can be applied to the LMP,
which is of interest in this chapter. Both have proven to provide good solutions in practice,
generating results on par with the state-of-the-art in image segmentation in terms of the
BSDS500 benchmark from Arbeláez et al. [5], the PSB dataset for shape segmentation
from Chen et al. [32], and the ISBI2012 challenge on segmentation of neuronal structures
in image stacks from Cardona et al. [27], Carreras et al. [28]. For problem instances, for
example, on the image segmentation task, these heuristics still need several minutes to
converge, while Fusion Moves [15] has an edge on KLj in terms of computation time at the
price of a greedy data pre-clustering.

The proposed approach is built on the entirely greedy approach of GAEC, which has been
proposed as an initialization procedure for KLj in Keuper et al. [89]. As GAEC, KLj, and
Fusion Moves, the proposed approach can not provide any bounds for the proposed solution.
However, in contrast to KLj and Fusion Moves, it can provide a guaranteed worst-case
complexity. In practice, it generates results with a computation time slightly higher than
GAEC, while the resulting objective values can be close to the ones from KLj.

6.3 Optimization Problem

In this chapter, we propose a heuristic solver for the LMP [89] (see Section 2.5.1 for the
definition of LMP). This problem is of interest because its feasible solutions relate one-to-one
to decompositions of a graph and because it provides a principled way to define a more
general cost function decompositions than the minimum cost multicut problem (MP). A
decomposition of the graph G = (V,E) is any partition Π of the vertices V such that every
component V ′ ∈Π induces a connected subgraph of G.

6.4 Objectives 91

6.4 Objectives

To generate fast solutions to LMP, we investigate the GAEC solver proposed in Keuper
et al. [89] (refer to Algorithm 1 in Chapter 2). While other heuristic solvers such as the
one proposed by Beier et al. [15] generate better solutions in terms of the resulting energy,
GAEC is one of the fastest currently available, although it operates directly on the nodes of
the original graph without any local pre-clustering. GAEC provides deterministic solutions
created in a greedy procedure of edge contractions and thus provides low computation times
even for large and difficult problem instances [89]. While GAEC provides relatively low
energy solutions on MP, it has major difficulties finding acceptable solutions to LMP. Where
does this discrepancy come from? To analyze this effect, we visualize intermediate GAEC
solutions in Figure 6.1-top. We observe that large clusters are built pretty quickly. They tend
to grow by adding small clusters or isolated nodes. In this scenario, long-range repulsive
edges are not in the scope of the greedy optimization until almost all nodes have been merged.
Thus, the “difficult parts” of the problem, i.e., those parts possibly causing conflicts with
respect to the objective, are only considered when most nodes have already been irreversibly
merged.

G
A

E
C

B
E

C
-c

ut

20% 40% 60% 80%

Fig. 6.1 For the BSDS500 [5] image on the left (average ground-truth annotations are depicted
below it), we show intermediate states during the execution of the GAEC solver [89] (top)
and the proposed BEC-cut solver (bottom) after 20%, 40%, 60%, and 80% of the total
merges have been executed. GAEC tends to generate large segments that merge points across
object boundaries. These merges can not be “repaired”. In contrast, BEC-cut generates and
grows many segments simultaneously. It starts generating these segments in the vicinity of
the object boundaries.

We conclude that the GAEC algorithm would benefit from two aspects: (1) avoid creating
very unbalanced clusters early on, such that repulsive edges are in the scope of intermediate
regions early on, and (2) use information about repulsive edges directly as a criterion for
merges.

92 Minimum Cost Multicuts – Efficient Solvers

6.5 Proposed Approach

We want to base our heuristic on the fast GAEC solver from Keuper et al. [89] and follow
a similar, greedy merging scheme such that running times remain affordable for large and
difficult problem instances. To tackle aspects (1) avoid creating very unbalanced clusters
early on and (2) use information about repulsive edges in the merge criterion, we define an
improved ranking scheme for the next best edge to be contracted. In the basic version of
our proposed heuristic, we only tackle aspect (1) by presenting a greedy “Balanced Edge
Contraction” (BEC) scheme. Instead of using the plain edge potentials as a merge criterion
as in GAEC (see Algorithm 7, line 6), we propose to normalize these potentials by the size
of the components to be merged (Algorithm 8, line 6). Note that this normalization only
affects the order in which attractive edges are merged, not the actual edge potentials or the
cut objective.

To tackle aspect (2), we formulate a secondary merge criterion. Ultimately, we want to
find a cut that minimizes the total energy of the cut (not maximize the energy of the joined
components). We are motivated to encourage the solver to pursue this objective during
the greedy optimization: We want to make the join decisions that minimize the outgoing
potentials of resulting components, i.e., the intermediate cut.

To formalize this, lets look at the graph Gd = (V,Ed) defined on G′, and assign to every
vertex v in V a unary potential dv = ∑{b|evb∈E ′} cvb, i.e. the degree of v. The outgoing
potentials of a component in G resulting from joining two vertices u and v can be computed
as du +dv−2cu,v. Then, we define for edges uv ∈ Ed , edge weights cd

u,v = du +dv−2cu,v.
Minimizing these “dual” edge weights is used as a secondary join criterion in Algorithm 9,
BEC-cut.

This modification of the order in which segments are agglomerated affects the intermedi-
ate stages of the solution during the optimization. Figure 6.1-bottom shows such intermediate
optimization stages after 20%, 40%, 60%, and 80% of the total merges have been computed
by the proposed algorithm. Unlike GAEC, it generates many small node agglomerations
along both sides of the boundaries. Thus, repulsive terms on the boundary are in scope early
on.

6.5.1 Algorithms

Algorithms 8 and 9 are adaptations of greedy agglomeration, more specifically, greedy
additive edge contraction (Algorithm 7). Both take as input an instance of the LMP, (see
Section 2.5.1), defined by G= (V,E), F and c : E∪F→R (refer to Equations (2.9) - (2.12) in
Chapter 2) and construct as output a decomposition of the graph G. Both algorithms maintain

6.5 Proposed Approach 93

Algorithm 7: GAEC [89]

1 E := E , E ′ := E ′

2 V :=V
3 foreach ab ∈ E ′ do
4 χab := cab

5 while E ̸= /0 do
6 ab := argmax

a′b′∈E
χa′b′

7 if χab < 0 then
8 break

9 contract ab in G and G ′

10 foreach ab ̸= ab′ ∈ E ′ do
11 χab′ := χab′+χbb′

Algorithm 8: BEC

1 E := E , E ′ := E ′

2 V :=V
3 foreach ab ∈ E ′ do
4 χab := cab

5 while E ̸= /0 do
6 ab := argmax

a′b′∈E

χa′b′
|a′|+|b′|

7 if χab < 0 then
8 break

9 contract ab in G and G ′

10 foreach ab ̸= ab′ ∈ E ′ do
11 χab′ := χab′+χbb′

a decomposition of G, represented by graph G = (V ,E) whose nodes a ∈ V are components
of G and whose edges ab ∈ E connect any components a and b of G which are neighbors in
G. Objective values are computed with respect to the larger graph G′ = (V,E ∪F) and c.

Balanced Edge Contraction (BEC)

Starting from the decomposition into single nodes, in every iteration, a pair of neighboring
components is joined, for which the join decreases the objective value. While for the basic
GAEC algorithm, an edge is picked such that the objective value decreases maximally,
we propose to weight the prospective gain by the size of the components. This weighting
encourages components of similar size to merge earlier than components of different sizes if
both merges are advantageous. Intuitively, this should lead to several balanced clusters (as
opposed to one large cluster and many single nodes) at intermediate optimization states. If
no join strictly decreases the objective value, the algorithm terminates.

BEC-cut

Starting from the decomposition into single nodes, at every iteration, a pair of neighboring
components is joined, for which the join decreases the objective value. If a unique pair of
neighboring components exists whose join strictly decreases the size-weighted objective
value maximally, this join is executed. From the set of all possible joins that decrease
the weighted objective value maximally, the join is executed, which minimizes the sum of
outgoing costs, i.e. the prospective value ζ of the resulting component. Refer to Figure 6.2

94 Minimum Cost Multicuts – Efficient Solvers

a b
χ

ab

ag

afad

ae
χ

χχ

χ

ab

ag

afad

ae
χ

χχ

χ

a
ζ = + +ad

χ
ae

χ χ
ab

b
ζ = + +af

χ
ag

χ χ
ab

ab
ζ = +ad

χ
ae

χ

+af
χ

ag
χ+

Fig. 6.2 Exemplary computation of ζ

from χ before (top) and after (bottom)
contraction of components a and b. χ

encodes the sum of outgoing costs of a
component.

Algorithm 9: BEC-cut

1 E := E , E ′ := E ′

2 V :=V
3 foreach ab ∈ E do
4 χab := cab

5 foreach a ∈ V do
6 ζa := ∑{b|eab∈E ′} cab

7 while E ̸= /0 do
8 S := argmax

a′b′∈E

χa′b′
|a′|+|b′|

9 ab := argmin
a′b′∈S

ζa′+ζb′−2χa′b′
|a′|+|b′|

10 if χab < 0 then
11 break

12 contract ab =: ā in G and G ′

13 ζā = ζa +ζb−2χab
14 foreach ab ̸= ab′ ∈ E ′ do
15 χab′ := χab′+χbb′

for an illustration of the computation of ζ . If no join strictly decreases the objective value,
the algorithm terminates.

Implementation

Our implementation is built upon GAEC [89] (Section 2.5.2). As GAEC, it uses ordered
adjacency lists for the graph G and for a graph G ′ = (V ,E ′) whose edges ab ∈ E ′ connect
any components a and b of G for which there is an edge vw ∈ E ∪ F with v ∈ a and
w ∈ b. It uses a disjoint set data structure for the partition of V and a priority queue
for an ordered sequence of costs χ : E → R of feasible joins, with a secondary sorting
criterion χ̄ : E → R, χ̄ab =

ζa+ζb−2χab
|a|+|b′ defined on ζ for Algorithm 9 (compare line 9). As

GAEC, its worst-case time complexity O(|V |2 log |V |) is due to a sequence of at most
|V | contractions, in each of which at most degG ′ ≤ |V | edges are removed, each in time
O(logdegG ′) ∈ O(log |V |).

6.6 Experiments 95

6.6 Experiments

We evaluate the proposed heuristics on types of problem instances and with respect to three
different tasks: lifted pixel-grid graphs from Keuper et al. [89] defined on the image seg-
mentation problems of the BSDS500 [5] benchmark, lifted graphs on 3D shape meshes [89]
defined on the Princeton Shape Segmentation benchmark [32] and the lifted superpixel
adjacency graph from Beier et al. [18] defined on the ISBI 2012 challenge data, a volumetric
electron microscopic recording of neuronal structures [27, 28].

6.6.1 Image Decomposition

On the image segmentation task posed by the BSDS500 benchmark [5], we apply the
proposed solvers BEC (Algorithm 8) and BEC-cut (Algorithm 9) to the LMP instances
proposed in Keuper et al. [89]. These problem instances represent pixel grid graphs. Lifted
“long-range” edges are inserted to connect all pixels within a pre-defined pixel radius to
provide more “global” information to the optimization problem. Lifting radii of 20 pixels
showed the best performance in Keuper et al. [89].

Figure 6.3 shows the results of the proposed solvers in comparison to GAEC and KLj
initialized with GAEC in terms of the variation of information (VI), Meilă [115], (see
Figure 6.3-left, lower is better) and the boundary precision and recall (see Figure 6.3-right,
higher is better). To evaluate these metrics, results at different levels of granularity need
to be generated. This can be done by modifying the prior probability of a cut in the lifted
multicut problem instances. Every point in the plots of Figure 6.3 shows, for one cut prior and
algorithm, the average over all the test images in the benchmark. While BEC and BEC-cut
show almost equivalent performance, the improvement over GAEC [89] especially on the
region metric VI, is evident. Figure 6.4 shows scatter plots of the computation times and
resulting objective values for the algorithms GAEC and KLj [89] and the proposed solvers
(BEC-cut and BEC). Concerning the objective value, both BEC-cut and BEC yield a clear
improvement over GAEC while significantly faster than KLj.

Some qualitative results are shown in Figure 6.5 for the proposed BEC-cut solver and
lifting radius 10. Although it is a greedy merging procedure, it can produce nicely closed
contours on these problem instances. Here we provide exemplary results for the BSDS500
benchmark to compare GAEC and our proposed solver BEC-cut.

In Figure 6.6, some of the results are shown, which are acquired by the GAEC [89]
solver and our proposed approach BEC-cut. Our proposed approach provides an image
decomposition in comparable runtime as GAEC while the quality of the segmentations is
significantly better. GAEC [89] fails to generate closed contours. Figure 6.6-right shows

96 Minimum Cost Multicuts – Efficient Solvers

000

001

002

003

004

005

006

007

008

009

010

011

012

013

014

015

016

017

018

019

020

021

022

023

024

025

026

027

028

029

030

031

032

033

034

035

036

037

038

039

040

041

042

043

044

000

001

002

003

004

005

006

007

008

009

010

011

012

013

014

015

016

017

018

019

020

021

022

023

024

025

026

027

028

029

030

031

032

033

034

035

036

037

038

039

040

041

042

043

044

ECCV
#***

ECCV
#***

0 1 2 3 4
0

1

2

3

4

VI (false cut)

V
I
(
fa

ls
e

jo
in

)

LMP20 GAEC

LMP20 GAEC+KLj

LMP20 BEC

LMP20 BEC-cut

000

001

002

003

004

005

006

007

008

009

010

011

012

013

014

015

016

017

018

019

020

021

022

023

024

025

026

027

028

029

030

031

032

033

034

035

036

037

038

039

040

041

042

043

044

000

001

002

003

004

005

006

007

008

009

010

011

012

013

014

015

016

017

018

019

020

021

022

023

024

025

026

027

028

029

030

031

032

033

034

035

036

037

038

039

040

041

042

043

044

ECCV
#***

ECCV
#***

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Boundary Recall
B
o
u
n
d
a
r
y

P
r
e
c
is
io

n

Fig. 6.3 Depicted above is an evaluation of the heuristics GAEC, (Algorithm 7), KLj [89]
and the proposed BEC (Algorithm 8) and BEC-cut (Algorithm 9) on the large and difficult
lifted multicut problem instances from [89] with lifting radius 20 (LMP20). These instances
address the image decomposition problem posed by the BSDS500 benchmark [5]. On the
left, the variation of information (VI), split additively into a distance due to false cuts and
a distance due to false joins, is depicted (lower is better); on the right, the accuracy of
boundary detection, split into recall and precision is shown (higher is better). Error bars
depict the 0.25 and 0.75-quantile. The result of the proposed heuristics figure in between
those of the solvers GAEC and KLj in both metrics. In the region metric VI, the results of
the proposed solvers BEC and BEC-cut are very close to the results of KLj.

000

001

002

003

004

005

006

007

008

009

010

011

012

013

014

015

016

017

018

019

020

021

022

023

024

025

026

027

028

029

030

031

032

033

034

035

036

037

038

039

040

041

042

043

044

000

001

002

003

004

005

006

007

008

009

010

011

012

013

014

015

016

017

018

019

020

021

022

023

024

025

026

027

028

029

030

031

032

033

034

035

036

037

038

039

040

041

042

043

044

ECCV
#***

ECCV
#***

−3 −2 −1 0

·106

101

102

103

104

Objective value

R
u
n
t
im

e
[s
]

KLj

GAEC

BEC-cut

000

001

002

003

004

005

006

007

008

009

010

011

012

013

014

015

016

017

018

019

020

021

022

023

024

025

026

027

028

029

030

031

032

033

034

035

036

037

038

039

040

041

042

043

044

000

001

002

003

004

005

006

007

008

009

010

011

012

013

014

015

016

017

018

019

020

021

022

023

024

025

026

027

028

029

030

031

032

033

034

035

036

037

038

039

040

041

042

043

044

ECCV
#***

ECCV
#***

−3 −2 −1 0

·107

102

103

104

Objective value

R
u
n
t
im

e
[s
]

KLj

GAEC

BEC-cut

000

001

002

003

004

005

006

007

008

009

010

011

012

013

014

015

016

017

018

019

020

021

022

023

024

025

026

027

028

029

030

031

032

033

034

035

036

037

038

039

040

041

042

043

044

000

001

002

003

004

005

006

007

008

009

010

011

012

013

014

015

016

017

018

019

020

021

022

023

024

025

026

027

028

029

030

031

032

033

034

035

036

037

038

039

040

041

042

043

044

ECCV
#***

ECCV
#***

−3 −2 −1 0

·107

102

103

104

Objective value

R
u
n
t
im

e
[s
]

KLj

GAEC

BEC

Fig. 6.4 Depicted above is a comparison of Algorithm 9 (BEC-cut) and Algorithm 8 (BEC)
with GAEC and KLj [89]. Every point corresponds to one instance of the lifted multicut
problem [89] defined with respect to one test image in the BSDS500 benchmark [5] with
lifting radius 10 (left) and 20 (middle and right). The computation times of the proposed
algorithms BEC-cut (middle) and BEC (right) are close to the ones from GAEC while the
resulting energy is improved.

6.6 Experiments 97

Fig. 6.5 Qualitative segmentation results of the proposed BEC-cut solver on instances from
the BSDS500 benchmark (Section 2.1.3). The lifted multicut problems are computed with
lifted edges between all points at a distance less than 10.

the final results from the proposed BEC-cut and the GAEC [89] solver on the example
from Figure 6.1. GAEC [89] only segments isolated pixels on the boundary while BEC-cut
provides a meaningful segmentation into closed segments. In Table 6.1, we report quantitative
results for additional BSDS500 [5] metrics. On BSDS500, both versions of the proposed
solvers perform similarly well, while BEC-cut is slightly better in terms of the objective
value and has a marginally longer computation time.

6.6.2 Mesh Segmentation

Next, we evaluate on the Princeton Shape Segmentation benchmark [32] (Section 2.1.4). In
this dataset, we apply the LMP formulation defined in Keuper et al. [89] in their experiments
on mesh segmentation. The local edge costs for e ∈ E are computed using curvatures and
dihedral angle features. Lifted edges are then inserted up to a fixed node distance of 70
(defined on the graph) and for cut prior of 0.55 as proposed in [89] using their code 1.
Consequently, the created problem instances are solved by the proposed solvers. Qualitative
results including failure cases are shown in Figure 6.9.

Table 6.2 compares the resulting objective functions and the consumed optimization time
of the different approaches. On this dataset, the optimization by KLj initialized with GAEC
or BEC converges surprisingly fast. This might be an indication of a meaningful initial
segmentation in these cases. Among the greedy heuristics, BEC yields the lowest objective

1https://www.mpi-inf.mpg.de/fileadmin/inf/d2/levinkov/iccv-2015/code.tar.gz

98 Minimum Cost Multicuts – Efficient Solvers
B

E
C

-c
ut

G
A

E
C

[8
9]

Fig. 6.6 Results from our proposed solver BEC-cut are provided as well as the GAEC solver.
The results from the solvers on the example from Figure 6.1 are shown in the third column.
GAEC only segments isolated pixels on the boundary, while BEC-cut provides a meaningful
segmentation into closed segments.

values. Initializing KLj with the proposed BEC produces a better objective value than KLj
initialized with GAEC, Keuper et al. [89].

Table 6.3 provides a comparison between different solvers in terms of Rand’s Index
(RI) (higher is better) and Variation of Information (VI) (lower is better). Additionally, to
report the plain results of our proposed solvers, we evaluate the quality of solutions from
KLj, initialized with our solutions, i.e., KLj-BEC. The iterative, local move making heuristic
KLj [89] is known to benefit from good initializations.

The evaluation shows that both proposed heuristics outperform GAEC. Specifically,
BEC yields an improvement of 0.05 on the RI and a decrease of 0.08 in the VI. On this
dataset, BEC performs better than BEC-cut. In fact, it yields a RI value close to the one from
KLj-GAEC with the same lifting parameters. KLj, initialized with BEC, yields slightly better
results than KLj initialized with GAEC in terms of the VI. The last column shows results
from Keuper et al. [89], which could be obtained by KLj-GAEC when the lifting radius and
cut prior were optimized per instance. KLj, initialized by BEC, almost meets these results.

Some of the results for the BEC and KLj-BEC solvers are provided in Figure 6.10. The
results generated from our proposed solver BEC are comparable with the KLj-BEC, while
BEC demands less computation time. A scatter plot showing the resulting computation times
and objective values per instance is given in Figure 6.7.

6.6 Experiments 99

Table 6.1 Written below are boundary and volume metrics measuring the distance between
the man-made decompositions of the BSDS500 benchmark [5] and the decompositions
defined by lifted multicuts (LMP) and top-performing competing methods Arbeláez et al.
[5], Arbelaez et al. [6], Dollár and Zitnick [41]. Parameters are fixed for the entire data set
(ODS).

Boundary Volume

F-measure Covering RI VI [115]

gPb-owt-ucm [5] 0.73 0.59 0.83 1.69
SE+MS+SH [41]+ucm 0.73 0.59 0.83 .71
SE+multi+ucm [6] 0.75 0.61 0.83 1.57

LMP10 GAEC 0.71 0.51 0.80 2.33
LMP10 BEC 0.71 0.56 0.82 1.85
LMP10 BEC-cut 0.71 0.56 0.82 1.84
LMP10 GAEC-KLj 0.73 0.58 0.82 1.76

LMP20 GAEC 0.71 0.52 0.80 2.22
LMP20 BEC 0.71 0.56 0.82 1.81
LMP20 BEC-cut 0.71 0.56 0.82 1.81
LMP20 GAEC-KLj 0.73 0.58 0.82 1.74

Table 6.2 Average computation time and objective value of the different solvers over the
Princeton Shape Segmentation Benchmark are provided.

GAEC [89] KLj-GAEC [89] BEC BEC-cut KLj-BEC-cut KLj-BEC

Avg. Comp. time [s] 576 755 589 574 797 755

Avg. Objective Value
(lower is better) -17840450 -18988930 -18484140 -18057480 -18991920 -18989332

6.6.3 ISBI 2012 Challenge

In the ISBI 2012 challenge, a stack of electron microscopy images of neural structures
[27, 28] is provided for segmentation (see Section 2.1.5).

We applied the proposed BEC, and BEC-cut solver to the instance of the LMP defined
in Beier et al. [18]. The instance is based on a superpixel adjacency graph, i.e., every
node corresponds to a superpixel and is connected to its direct neighbors. An additional
lifted edge set encodes long-range information. All edge weights are learned from training
data using two random forest classifiers; one is trained to predict whether two adjacent
superpixels should be assigned to the same cluster, and the other one learns this prediction
for non-adjacent superpixels. The trained classifiers are used to assign weights to the edges

100 Minimum Cost Multicuts – Efficient Solvers

Table 6.3 Resulting RI and VI score for the 3D mesh segmentation instances of the Princeton
Segmentation Benchmark [32]. We evaluate the proposed solvers BEC and BEC-cut and
compare them to GAEC [89] and KLj [89] initialized by GAEC. We also evaluate KLj,
initialized with our results from BEC.

GAEC [89] BEC (proposed) BEC-cut (proposed) KLj-GAEC [89] KLj-BEC KLj-GAEC-opt [89]

RI VI RI VI RI VI RI VI RI VI RI VI

Human 0.77 1.90 0.84 1.77 0.85 1.74 0.86 1.63 0.86 1.60 0.87 1.79
Cup 0.83 0.53 0.88 0.44 0.86 0.45 0.88 0.40 0.89 0.37 0.90 0.39
Glasses 0.61 1.38 0.82 0.85 0.78 1.04 0.84 0.78 0.84 0.77 0.90 0.68
Airplane 0.89 0.93 0.91 0.92 0.91 0.86 0.91 0.84 0.91 0.85 0.92 0.83
Ant 0.93 0.70 0.97 0.48 0.96 0.52 0.97 0.43 0.97 0.44 0.98 0.42
Chair 0.85 0.85 0.92 0.67 0.89 0.84 0.92 0.58 0.92 0.58 0.93 0.55
Octopus 0.96 0.41 0.97 0.41 0.97 0.44 0.97 0.37 0.97 0.37 0.98 0.33
Table 0.87 0.48 0.91 0.40 0.83 0.63 0.93 0.29 0.93 0.29 0.94 0.29
Teddy 0.92 0.76 0.93 0.76 0.92 0.78 0.95 0.55 0.95 0.55 0.96 0.50
Hand 0.67 1.75 0.80 1.47 0.76 1.72 0.84 1.23 0.84 1.23 0.85 1.32
Plier 0.72 1.38 0.84 1.12 0.81 1.19 0.88 0.93 0.91 0.85 0.93 0.84
Fish 0.73 1.20 0.75 1.26 0.76 1.30 0.80 1.12 0.80 1.11 0.80 1.09
Bird 0.90 1.01 0.92 0.98 0.91 1.01 0.92 0.91 0.92 0.91 0.93 0.99
Armadillo 0.88 1.88 0.91 1.75 0.90 1.87 0.91 1.63 0.91 1.62 0.92 1.48
Bust 0.57 2.12 0.66 2.32 0.63 2.46 0.68 2.29 0.68 2.29 0.69 2.25
Mech 0.80 0.66 0.81 0.72 0.80 0.66 0.84 0.60 0.84 0.59 0.84 0.59
Bearing 0.79 0.76 0.82 0.75 0.83 0.70 0.84 0.69 0.84 0.69 0.84 0.69
Vase 0.77 1.02 0.80 1.06 0.77 1.13 0.84 0.87 0.84 0.87 0.84 0.87
FourLeg 0.81 1.94 0.82 1.98 0.81 2.04 0.83 1.87 0.83 1.89 0.84 1.72

Average 0.81 1.14 0.86 1.06 0.84 1.13 0.88 0.95 0.88 0.94 0.89 0.93

Table 6.4 Objective value and run time of the proposed solvers, and fusion move algorithm
with the randomized proposal generator (FM-R), Beier et al. [15], for the LMP for ISBI 2012
Challenge [27, 28] are provided.

Algorithm Comp. time [s]
Objective Value
(lower is better) V Rand V Info

FM-R 10.43 -1.948524 0.9822 0.9884
BEC 2.53 -1.944767 - -
BEC-cut 2.59 -1.944964 0.9811 0.9883

and lifted edges, respectively. Table 6.4 shows the results we achieve on this data with our
heuristic solvers BEC and BEC-cut. At a significantly reduced computation time, we can
get results close to the state-of-the-art in terms of objective value and segmentation quality.
Figure 6.8 represents the first frame in the stack of the test data from ISBI 2012 with the
corresponding segmentation boundaries resulting from the proposed BEC-cut solver.

6.7 Conclusion 101

000

001

002

003

004

005

006

007

008

009

010

011

012

013

014

015

016

017

018

019

020

021

022

023

024

025

026

027

028

029

030

031

032

033

034

035

036

037

038

039

040

041

042

043

044

000

001

002

003

004

005

006

007

008

009

010

011

012

013

014

015

016

017

018

019

020

021

022

023

024

025

026

027

028

029

030

031

032

033

034

035

036

037

038

039

040

041

042

043

044

ECCV
#***

ECCV
#***

−1.5 −1 −0.5 0

·108

101

102

103

104

Objective value

R
u
n
t
im

e
[s
]

KLj-GAEC

GAEC

KLj-BEC

BEC

Fig. 6.7 Depicted above is a comparison of BEC with GAEC and KLj [89], initialized with
both BEC and GAEC, in terms of computation time over the resulting objective value on the
Princeton Shape Segmentation Benchmark.

Fig. 6.8 The first frame of the stack in the test data of ISBI 2012 and the corresponding
segmentation boundaries are shown. The results for this dataset are acquired with a BEC-cut
solver.

6.7 Conclusion

In this chapter, we propose two heuristic solvers, BEC and BEC-cut. Both are modifications
of the greedy agglomerative heuristic GAEC and provide a bounded worst-case complexity.
We evaluate our solvers on three application scenarios: image decomposition, 3D mesh

102 Minimum Cost Multicuts – Efficient Solvers

Fig. 6.9 Some results generated by the proposed BEC-cut heuristic are shown for the Princeton
Shape Segmentation Benchmark. The last row shows failure cases.

segmentation, and segmentation of neuronal structures from volumetric electron microscopic
data. In all scenarios, the proposed solvers yield results close to the ones from more elaborate

6.7 Conclusion 103

solvers KLj from Keuper et al. [89] or Fusion Moves from Beier et al. [15], while the
computation time is significantly lower.

While we here proposed a purely heuristic solver based on a primal feasible heuristic,
we acknowledge that end-to-end learnable weights in the context of MP are desirable. I
contributed to one such approach as a co-author in the context of a supervised master thesis
in the work briefly summarized in the following paragraph.

6.7.1 End-to-End Multicut Graph Decomposition

Song et al. [143] proposed an end-to-end trainable network for the human-pose estimation
where the cycle inequality constraints of the multicut are used as higher-order potentials in a
Conditional Random Field (CRF), as they always consist of three edge variables. The learned
edge weights are sub-optimal because they are built on the loose relaxation of the multicut
problem, Jung et al. [74]. In work based on the master thesis of Sebastian Ziegler and
consolidated further by Steffen Jung [74], we have proposed an adaptive cooling-based CRF
formulation to enforce more binary edge weights (close to 0 or 1). This leads to less violated
cycle constraints. In this approach, all the triangles in the multicut graph are transformed
into binary cubic problems. The model sets a low cost on the valid edge label configuration
(e.g., (join, join, join), (join, cut, cut), and (cut, cut, cut)) and a high cost for invalid edge
label configuration (e.g., (cut, join, cut)) [74]. The model pushes the edge values larger or
equal to 0.5 to get closer to 1 and edge values below 0.5 to get closer to 0. The approach is
evaluated on the BSDS500 [5] and ISBI challenge [15, 18], where it shows improvements
over the approach by Song et al. [143].

104 Minimum Cost Multicuts – Efficient Solvers
B

E
C

K
L

j-
B

E
C

B
E

C
K

L
j-

B
E

C
B

E
C

K
L

j-
B

E
C

Fig. 6.10 Some of the results for the Princeton shape segmentation benchmark are provided
for two heuristic solvers, BEC and KLj-BEC. The first four rows show the successful
segmentation, and the last two rows represent the failure cases. The results corresponding to
the solvers are shown in pairs of rows for better comparison purposes. The results from BEC
are acquired with less computation time than KLj-BEC, while the segmentation qualities are
similar.

Chapter 7

Uncertainty Prediction in Minimum Cost
Multicuts

In the last chapter, we proposed two solvers for the minimum cost (lifted) multicut (LMP)
framework. It addresses the problems in a graph-based model, where real-valued costs are
assigned to the edges between entities such that the minimum cut decomposes the graph
into an optimal number of segments. Driven by a probabilistic formulation of minimum cost
multicuts (MP), in this chapter, we provide a measure for the uncertainties of the decisions
made during the optimization. We argue that access to such uncertainties is crucial for
many practical applications and conduct an evaluation by means of sparsifications on three
different, widely used datasets in the context of image decomposition (BSDS500, Arbeláez
et al. [5]) and motion segmentation (DAVIS2016, Perazzi et al. [128] and FBMS59, Ochs et al.
[123]) in terms of variation of information (VI) and Rand index (RI), (for the information
about the datasets refer to Section 2.1). This work is published in the Uncertainty in Artificial
Intelligence (UAI) conference, 2021 [83].

7.1 Introduction

Andres et al. [3], relate the minimum cost multicut to a probabilistic model, which was further
extended in Keuper et al. [89] to lifted multicuts. They show that if the edge costs are set
according to logits of the cut probability between nodes, the minimum cost multicut provides
the Maximum A Posteriori probability (MAP) estimate. Motivated by this finding, edge cost
definitions based on cut probability estimates have become common practice, even in settings
where the final solution is estimated using primal feasible heuristics such as Keuper et al.
[88], Beier et al. [16] to account for the NP-hardness of the problem, Bansal et al. [12].

106 Uncertainty Prediction in Minimum Cost Multicuts

image ground-truth multicut uncertainty

Fig. 7.1 Motion segmentation and the proposed uncertainty measure on a street scene. The
uncertainty is high on incorrectly segmented points, specifically the missed person.

In this chapter, we argue that considering the (approximate) MAP solution solely is not
satisfying in all scenarios. For instance, in an automotive setting, it might be required to assess
the uncertainty in predicting the number of moving objects and their shapes. Therefore, we
propose to employ the probabilistic model from Andres et al. [3] and derive, for a proposed
solution, a measure for the uncertainty of each node-to-label assignment. An example is
provided in Figure 7.1 for sparse motion segmentation. Based on sparse point trajectories, we
apply the motion model derived by Ochs et al. [123] and provide the minimum cost multicut
solution, Keuper et al. [88]. Depending on the exact parameters employed, the person
standing nearby the street can not be correctly segmented. Yet, the uncertainty indicates
potential mistakes in the prediction.

The proposed uncertainty measure is directly derived from the probabilistic multicut
formulation and can be applied to any given decomposition. We evaluate our approach in the
context of MP for sparse motion segmentation using the model from Keuper et al. [88] on the
datasets FBMS59 [123] and DAVIS2016 [128] (see Section 2.1). Further, we investigate the
potential benefits of the predicted uncertainties for generating dense motion segmentations
from sparse ones. Such densifications can be computed using convolutional neural networks
trained in a self-supervised way, for example, using our proposed approach in [81] which is
explained in Chapter 4. Last, we evaluate the proposed uncertainty measure in the context
of LMP for image decomposition on BSDS500 [5]. In both applications, motion and
image segmentation, we show via sparsification plots that subsequently removing uncertain
predictions from the solution improves segmentation metrics. The proposed measure is thus
a robust indicator of the uncertainty of a given solution.

7.2 Related Work

In the following, we summarize related work with respect to the uncertainty estimation and
the prior work on multicuts in the considered application domains.

7.2 Related Work 107

Our proposed uncertainty measure is defined on the formulation of the minimum cost
(lifted) multicut problem (see Section 2.5.1 for the definition) and can be applied to any given
solution. We perform a thorough evaluation in the context of the widely used KLj and GAEC
heuristics from Keuper et al. [89]. For all of the applications of the minimum cost (lifted)
multicut, (see Section 2.5.3), one can easily imagine use-cases that benefit from a measure of
uncertainty. We evaluate the proposed approach on image and motion segmentation tasks.

Uncertainty Estimation. Kohli and Torr [96] proposed a measure of uncertainty for the
graph cut solutions using the min-marginals associated with the label assignments in a
Markov Random Field (MRF). Concerning minimum cost multicuts, Kappes et al. [76]
measure the uncertainty of image partitions by an approximate marginal distribution using
cost perturbations and induced edge label flips. The proposed approach is complementary
to this method as it does not measure the uncertainty of a binary edge labeling but assesses
the uncertainty of the induced node labeling. In Tomczak et al. [151], the Perturb and MAP
(PM) approach is used for learning a restricted Boltzmann machine. In this method, each of
the observable and hidden variables is flipped to check the change in the energy function.
We propose a measure of uncertainty on the cut/join decisions of the graph in minimum
cost (lifted) multicut formulation. To show the applicability of our uncertainty measure in
real-world scenarios, we evaluate on two motion segmentation and one image decomposition
benchmarks.

More specifically, we study the proposed uncertainty measure on motion segmenta-
tion (Section 2.4) in the datasets FBMS59 [123] and DAVIS2016 [128] (Section 2.1). Ad-
ditionally, we use uncertainties to improve the training of the densification model of ours
in [81] (refer to Chapter 4).
Image Decomposition For image decomposition, the MP is defined over sets of pixels
or superpixels, for example, in Arbeláez et al. [5], Keuper et al. [89], Kappes et al. [79, 78],
Andres et al. [2]. In this scenario, the pixels act as nodes in the graph, and their connectivity
is defined by edges [2], i.e., directly neighboring pixels are connected. The extension
of this problem using lifted mulitucts is defined in Keuper et al. [89], where lifted edges
are used to encode long-range information while the connectivity of the original graph is
preserved. This can lead to an improved pixel-level clustering behavior. Kappes et al. [79]
use a higher order multicut model on superpixels for the task. Orbanz and Buhmann [124]
provide a non-parametric Bayesian model for histogram clustering to determine the number
of image segments, utilizing the Dirichlet process mixture model. Cutting plane and integer
programming techniques are used in Kappes et al. [78] for image decomposition. Further,
they proposed an approximate solution by solving polynomial-size linear programming.

108 Uncertainty Prediction in Minimum Cost Multicuts

f

X

𝒴

e

 ∈ E
f ∈ F

𝑦
𝑦e

e

Fig. 7.2 Bayesian Network from Keuper et al. [89], defining a set of probability measures on
multicuts (MP) (black) and lifted multicuts (LMP) (blue) are shown.

7.3 Uncertainties in Minimum Cost (Lifted) Multicuts

7.3.1 Probability Measures

Andres et al. [3] show that minimum cost multicuts (MP) can be derived from a Bayesian
model (see Figure 7.2), and their solutions correspond to the maximum a posteriori estimates.
In the following, we summarize this probabilistic model and its extension to lifted multicuts
(LMP) from Keuper et al. [89], upon which we build the proposed uncertainty estimation.

Probability Measures on MP and LMP. For a graph G = (V,E), Andres et al. [3] assume
that likelihoods pXe|Ye are computed based on an affinity definition of the nodes in graph G.
Further, the costs assigned to the edges are assumed to be independent of each other and
the graph’s topology G. Moreover, the prior p(Ye) is assumed to be identical for all edges
e ∈ E and is specified by a value β ∈ (0,1), so that pYe=1 = β and pYe=0 = 1−β . In this
setting, they show that the MP maximizes the posterior probability pY |X ,Y of a joint labeling
y ∈ {0,1}|E|. By definition, the Maximum a Posteriori (MAP) is then

pY |X ,Y ∝ pY |Y ·∏
e∈E

pYe|Xe · pYe . (7.1)

for the MP, Figure 7.2 (the black part) [3], and it can be extended to the LMP, Figure 7.2 (the
blue part) as follows [89]

pY |X ,Y ∝ pY |Y ·∏
e∈E

pYe|Xe · pYe ·∏
f∈F

pY f |XE · pY f . (7.2)

7.3 Uncertainties in Minimum Cost (Lifted) Multicuts 109

In both cases, pY |Y indicates the feasibility of a solution, i.e.

pY |Y(YE ′ ,y) ∝

1 if y ∈ YE ′

0 otherwise
. (7.3)

where E ′ = E for the MP and E ′ = E ∪F for the LMP.
Equations (7.1) and (7.2) can be maximized by minimizing their negative log-likelihoods.

This leads to the definition of instances of the MP (see Equation (2.8)) and LMP (see
Equation (2.9)), by setting edge costs according to

∀e ∈ E : ce = log
pYe|Xe(0,xe)

pYe|Xe(1,xe)
+ log

1−β

β
. (7.4)

The value of the scalar β is the cut prior and assumed to be 0.5 for a bias-free case.

7.3.2 Uncertainty Estimation Model

Based on the probabilistic formulation of the MP (7.1) and LMP (7.2), we can study the
uncertainty of given feasible solutions. More specifically, we aim to assign to every node
in V confidence reflecting the certainty of the assigned label. The simplest attempt to this
goal would be to directly assess the posterior probability of the solution. In the following,
we briefly sketch this baseline approach before introducing the proposed measure.

Baseline Approach. For every node vi ∈V we propose, as a baseline approach, to draw
an uncertainty measure from the proxy to the posterior probability, for example, in Equa-
tion (7.1). Thus, the confidence of the given label A of node vi is

∏
e=(vi,v j),v j∈A

pYe|Xe(0,xe). ∏
e=(vi,v j),v j∈V\A

pYe|Xe(1,xe). (7.5)

This measure intuitively aggregates the local join probabilities of all edges adjacent to
vi and joined (set to 0) in the current solution, and the local cut probabilities of all edges
adjacent to vi and cut (set to 1) in the current solution. Accordingly, Equation (7.5) yields a
low value if the local probabilities for the given solution are low.

A potential issue with this simple approach from Equation (7.5) is that it under-estimates
the confidence in many practical scenarios, especially when the local probabilities are

110 Uncertainty Prediction in Minimum Cost Multicuts

Fig. 7.3 In the current decomposition of the exemplary graph G = (V,E) (top figure), we
study the node uncertainties as represented in Equation (7.11). For instance, v1 is moved
from one partition (red label) to the new possible partitions (blue and green labels), and the
cost change is estimated. The γα represents the cost that minimizes the cost among these
moves.

uncertain and the connectivity is dense. Then, the product of local probabilities will issue a
low value even if all local cues agree. Therefore, we describe in the following the derivation
of the proposed, calibrated uncertainty measure.

Uncertainty Estimation. Given an instance of the LMP and its solution, we employ the
probability measures in equations (7.1) (MP) and (7.2) (LMP). We iterate through nodes
vi ∈ {1, . . . , |V |} in vicinity of a cut, i.e. ∃e ∈NE(vi) with e ∈ E and ye = 1. Assuming that
vi belongs to segment A and its neighbour v j according to E belongs to the segment B, the
amount of cost change γB is computed in the linear cost function (defined in (2.8) and (2.9))
by moving vi from cluster A to cluster B as

γB = ∑
v j∈NE′(vi)∩A

c(vi,v j)− ∑
v j∈NE′(vi)∩B

c(vi,v j). (7.6)

Thus, in γB, we accumulate all costs of edges from vi that are not cut in the current decom-
position and subtract all costs of edges that are cut in the current decomposition but would
not be cut if vi is moved from A to B. Note that, while the cost change is computed over all
edges in E ′ for lifted graphs, only the uncertainty of nodes with an adjacent cut edge in E
can be considered to preserve the feasibility of the solution. For each node vi, the number of
possible moves depends on the labels of its neighbors NE(vi), and Equation (7.6) allows us
to assign a cost to any such node-label change. Altogether, we assess the uncertainty of a
given node label by the cheapest, i.e., the most likely, possible move

7.3 Uncertainties in Minimum Cost (Lifted) Multicuts 111

γi = min
B

γB. (7.7)

and set γi to ∞ if no move is possible. The minimization in Equation (7.7) corresponds to
considering the local move of vi which maximizes

∏
e=(vi,v j),v j∈A

pYe|Xe(1,xe)

pYe|Xe(0,xe)
· ∏

e=(vi,v j),v j∈B

pYe|Xe(0,xe)

pYe|Xe(1,xe)
. (7.8)

To produce an uncertainty measure for each node in the graph, we apply the logistic
function on Equation (7.7)

uncertainty =
1

1+ exp(−γi)
(7.9)

as it is the inverse of the logit function used in the cost computation in Equation (7.4). In the
following, we show the expansion of Equation (7.9) by injecting the corresponding values
for γi. To determine γi, the minimum change in the cost is computed among all the possible
transitions between the clusters for each node vi ∈ V (refer to Figure 7.3 for an example),
such that

uncertainty =
1

1+ exp(−min
B

γB)
(7.10)

where

γB = ∑
v j∈NE′(vi)∩A

c(vi,v j)− ∑
v j∈NE′(vi)∩B

c(vi,v j). (7.11)

The resulting uncertainty measure is thus of the form

112 Uncertainty Prediction in Minimum Cost Multicuts

uncertainty

=
1

1+ exp

 ∑
v j∈NE′(vi)∩B

c(vi,v j)− ∑
v j∈NE′(vi)∩A

c(vi,v j)

 . (7.12)

According to the Bayesian model and the findings in Andres et al. [3], the costs c(vi,v j)

for each e := (vi,v j) ∈ E are computed via Equation (7.4),

∀e ∈ E : ce = log
pYe|Xe(0,xe)

pYe|Xe(1,xe)
+ log

1−β

β
. (7.13)

For simplicity and to be compatible with our experiments, we set the value of β = 0.5
(i.e. we assume an unbiased decomposition), which makes log 1−β

β
= 0.

We insert c(vi,v j) = log
pYe|Xe(0,xe)

pYe|Xe(1,xe)
, (e = (vi,v j)) into Equation (7.12) and denote v j ∈

NE ′(vi) ∩ B by e,B where e = (vi,v j),v j ∈ B and v j ∈ NE ′(vi) ∩ A by e,A where e =

(vi,v j),v j ∈ A, and get

uncertainty

=
1

1+ exp

(
∑
e,B

log
pYe|Xe(0,xe)

pYe|Xe(1,xe)
−∑

e,A
log

pYe|Xe(0,xe)

pYe|Xe(1,xe)

)

=
1

1+ exp

(
log∏

e,B

pYe|Xe(0,xe)

pYe|Xe(1,xe)
− log∏

e,A

pYe|Xe(0,xe)

pYe|Xe(1,xe)

)

=
1

1+ exp

(
log∏

e,B

pYe|Xe(0,xe)

pYe|Xe(1,xe)
+ log∏

e,A

pYe|Xe(1,xe)

pYe|Xe(0,xe)

)

7.3 Uncertainties in Minimum Cost (Lifted) Multicuts 113

=
1

1+ exp

(
log

(
∏
e,B

pYe|Xe(0,xe)

pYe|Xe(1,xe)
.∏

e,A

pYe|Xe(1,xe)

pYe|Xe(0,xe)

))

=
1

1+

(
∏
e,B

pYe|Xe(0,xe)

pYe|Xe(1,xe)
.∏

e,A

pYe|Xe(1,xe)

pYe|Xe(0,xe)

)

=
1

1+

∏
e,B

pYe|Xe(0,xe)

∏
e,B

pYe|Xe(1,xe)
.

∏
e,A

pYe|Xe(1,xe)

∏
e,A

pYe|Xe(0,xe)


(7.14)

Note that in the denominator, we have exactly 1 + the term from Equation (7.8). With a
slight reformulation, we get

=

∏
e,A

pYe|Xe(0,xe).∏
e,B

pYe|Xe(1,xe)

∏
e,A

pYe|Xe(0,xe).∏
e,B

pYe|Xe(1,xe)+∏
e,B

pYe|Xe(0,xe).∏
e,A

pYe|Xe(1,xe)
(7.15)

or by a simplified notation pYe|Xe(1,xe) =: pc for cut probabilities and pYe|Xe(0,xe) =: p j

for join probabilities.

∏
e,A

pYe|Xe(0,xe).∏
e,B

pYe|Xe(1,xe)

∏
e,A

pYe|Xe(0,xe).∏
e,B

pYe|Xe(1,xe)+∏
e,B

pYe|Xe(0,xe).∏
e,A

pYe|Xe(1,xe)
(7.16)

where the nominator is the product of the local posterior probabilities of the observed solution
A at node vi (compare Equation (7.1) for pYe const.) and is proportional to the posterior of
the chosen node label if vi has at most two labels in the local neighborhood. The denominator
sums trivially to one in the case of |NE ′(vi)|= 1. For the more common case of |NE ′(vi)| ≥ 1,
expression (7.16) can be interpreted as a “calibrated” probability. It normalizes the posterior
probability of the MAP solution with the sum of posteriors of this solution and the second
most likely one. Intuitively, if all solutions have a low absolute posterior probability, the
relatively best one can still have a high certainty.

114 Uncertainty Prediction in Minimum Cost Multicuts

7.4 Evaluation and Results

We evaluate the proposed uncertainty measure in two common application scenarios of mini-
mum cost multicuts: motion segmentation and image segmentation. For motion segmentation,
we conduct experiments on the datasets FBMS59, Ochs et al. [123], and DAVIS2016, Perazzi
et al. [128], (see Section 2.1). On both datasets, we compute point trajectories, as well as
the segmentation using the method from Keuper et al. [88], which computes edges between
point trajectories as pseudo-probabilities from a simple motion model (refer to Section 2.4).
Additionally, we highlight the potential benefit of a robust uncertainty measure: It not only
allows us to produce several hypotheses of solutions. We can also employ the estimated
uncertainties in our densification framework in [81] (see Chapter 4) to compute improved,
dense motion segmentations from sparse ones. Last, we evaluate the proposed uncertainty
measure on the image segmentation task posed by the BSDS500 dataset by Arbeláez et al.
[5], employing the LMP instances from Keuper et al. [89].

Parameter Setting. In the MP and LMP, the value β (as in Equation (7.4)) is set to 0.5
(unbiased) to be comparable with the baseline methods in the evaluated datasets. The LMP
on images requires the value τ to be set, corresponding to the radius until which to insert
lifted edges. We set τ = 20 as in Keuper et al. [89].

Metrics. In both applications, we evaluate our uncertainty measure based on the variation
of information (VI), Meilă [115], and Rand index (RI) [115]. We study the effect of measured
uncertainties by means of sparsification. The most uncertain nodes are removed subsequently,
and in each step, VI and RI are measured. Ideally, VI should drop, and RI should increase
monotonically as more uncertain nodes are removed. In Meilă [115] it is shown that VI
is a more reliable indicator than the RI concerning the density of the results since the RI
depends heavily on the granularity of the decomposition. Specifically, the more pixels or
motion trajectories are removed during sparsification, the less reliable the RI becomes, which
is why both metrics are reported in all our experiments. It is essential to note that the high
uncertainty of a node indicates that the label assigned to the node after the termination of
the solver tends to flip. Therefore, removing those nodes from the decomposition should
improve the quality of the decomposition in terms of VI and RI. We compared our approach
with the proposed baseline approaches.

7.4 Evaluation and Results 115

Fig. 7.4 Uncertainty measures on point trajectories for the two sequences from FBMS59
(first two rows) and DAVIS2016 (last two rows) are shown. In each row, from left to right,
we provide an image, its ground-truth, the segmentation, and our uncertainty estimation. The
uncertainty values are discretized and color-coded for visualization purposes. White areas
correspond to the trajectories with high certainty. The uncertainty on thin, articulated object
parts is high.

7.4.1 Motion Segmentation Results

To study the proposed uncertainty measure, we first compute minimum cost multicuts on the
motion segmentation instances of FBMS59 and DAVIS2016. On these decompositions, we
compute the proposed uncertainties. In Figure 7.4, we depict example images from sequences
of FBMS59 and DAVIS2016, their ground-truth segmentation, trajectory segmentation and
the proposed uncertainty measures. The uncertainty measures are in the range of 0 (lowest
uncertainty) to 1 (highest uncertainty). As can be seen, the sparse segmentations show good
overall accuracy but tend to have issues on dis-occlusion areas, for example, behind the
driving car in the last row, and on object parts under articulated motion, such as the legs of
the horse in the second row and the legs of the person in the third row. In all these regions,
the estimated uncertainty is high. Next, we assess the proposed uncertainties in terms of
sparsification plots as done in Ilg et al. [64], i.e., by subsequently removing nodes in the order

116 Uncertainty Prediction in Minimum Cost Multicuts

VI (lower is better) RI (higher is better)

Fig. 7.5 Study on motion trajectory uncertainties on VI (left) and RI (right) on the train set
(top row) and on the test set (bottom row) of FBMS59. The metrics improve by removing
trajectories according to the proposed uncertainty measure. Notice that removing uncertain
trajectories according to the likelihood baseline deteriorates both VI and RI.

of their decreasing uncertainty from the solution. We compare our results to the Likelihood
baseline defined in Equation (7.5) as well as to a random baseline. In the random baseline,
the trajectories are removed subsequently at random. In this case, neither improvement nor
decay of the segmentation metric should be expected.

FBMS59. The Variation of Information (VI) and the Rand index (RI) are provided in
Figure 7.5 for the FBMS59-train and FBMS59-test. The most uncertain trajectories are
removed until reaching 10% of the density of the trajectories. Interestingly, removing highly
uncertain trajectories accounts for the reduction in VI (lower is better) and improves the
RI (higher is better), indicating the effectiveness of the proposed uncertainty measure. The
VI continuously improves as more uncertain trajectories are removed. Yet, the RI becomes
unsteady when getting closer to the lowest density. Recall that the RI depends on the
granularity of the solution (see Meilă [115]), so this behavior is to be expected as more and
more ground-truth segments are not considered in the sparse solution.

7.4 Evaluation and Results 117

VI (lower is better) RI (higher is better)

Fig. 7.6 Study on the motion trajectory uncertainties on VI (left) and RI (right) on train
set (top row) and validation set (bottom row) of DAVIS2016 [128]. Our results improve
significantly over the baselines.

DAVIS2016. The evaluation on the DAVIS2016 train and validation sets in Figure 7.6 indi-
cates a similar behaviour as seen on FBMS59 and shows the effect of our approach. Notice
that our approach provides better uncertainty measures than the baselines (Random Baseline
and Likelihood Approach, refer to Section 7.3.2. Again, the likelihood baseline even shows
an increase in VI during sparsification, proving the importance of using the denominator in
Equation (7.16).

7.4.2 Multimodal Motion Segmentation

In the following, we briefly sketch how the proposed approach can be leveraged to generate
multiple, likely solutions. After the termination of the heuristic solver, the nodes in the
graph G = (V,E) are moved between different clusters to compute the cost differences in
Equation (7.6). Given the N clusters, the node from cluster A is moved to other N−1 clusters,
and the cost change is computed. Therefore, a vector with the number of different partitions

minus one (N−1) is computed for each node. This leads to
N× (N−1)

2
vectors, each with

118 Uncertainty Prediction in Minimum Cost Multicuts

image uncertainty

-127910 -127894 -127894 -127205

-126093 -121703 -111809 -108825

Fig. 7.7 Visualization of eight different likely solutions and their energies (refer to Equa-
tion (2.9) in Chapter 2, lower is better), as they can be generated by the proposed method.
The different solution candidates vary mainly along object boundaries. The best segmentation
with respect to the ground-truth corresponds to the second image (from left) in the last row.

|V | values. To produce multiple segmentations, such vectors are ordered based on their
magnitude, i.e., their associated energy increase. Each such vector holds the costs for moving
nodes from cluster A to cluster B. The label of the node v is changed from cluster A to cluster
B if ∆cost(A,B)v ≈ 0. With this approach, it is possible to generate n best clusterings, which
differ in the labels of uncertain points. In Figure 7.7, we visualize an example of eight such
potential solutions and their energies. The variance is strongest on the object boundaries and
the car in the foreground. It coincides with the estimated uncertainties. In Figure 7.8, we
allow the evaluation script of FBMS59 to choose the best among the n most likely solutions
for n ∈ {1, ...,10}. By taking more solutions into account, the F-measure improves.

7.4.3 Densified Motion Segmentation

To create actual pixel-level segmentations from sparse segmentations a separate model needs
to be learned. For example Ochs et al. [123] proposes a variational model while in [81] we

7.4 Evaluation and Results 119

Fig. 7.8 F-measure on the train set of FBMS59 when selecting n best segmentation proposals.
The F-measure improves as the number of segmentation candidates increases.

image multicut uncertainty baseline proposed

Fig. 7.9 Densification of sparse segmentations using uncertainties. We compare the result
from our densification model in [81] (baseline) with the proposed method, which uses
uncertainties in the model training. Improvements can be observed especially on thin
structures such as limbs.

Table 7.1 Densification of the sparse trajectory segmentations on the FBMS59 train set. We
compare our model [81] in Chapter 4 to the variant trained using uncertainties.

Precision Recall F-measure

[81] 89.35 67.67 77.01
Ours (uncertainty-aware) 88.17 68.96 77.40

employ a U-Net [135] based model, which is trained in a self-supervised manner, using the
sparsely segmented trajectories as labels, (see Chapter 4). In the following, we employ our
uncertainties to enhance the self-supervised training signal in this model in the FBMB59

120 Uncertainty Prediction in Minimum Cost Multicuts

Fig. 7.10 Exemplary images and segmentation uncertainties on the BSDS500 [5] dataset. In
each row, from left to right, the original images, ground-truth segmentation, the resulting
minimum cost lifted multicut segmentation, and the proposed uncertainties are given. Bright
areas in the uncertainty images represent uncertain pixels.

dataset. As a pre-processing, our denisification model in [81] remove small segments from
the training data such that the remaining uncertain points are mostly on thin, articulated
object parts. For each segment A in the decomposition of graph G, the mean uncertainty
is computed as µA. The highly uncertain nodes, where uv > µA, in the highly uncertain
segments µA > φ are assumed to be hard examples for the network and are therefore used
more often than other points during training (with factor 1000). In Table 7.1, we report the
Precision, Recall, and F-measure of the proposed training and the original model in [81]
which is explained in Chapter 4. Using this simple trick, the F-Measure can be improved by
0.4%. Qualitative results are provided in Figure 7.9.

7.4.4 Image Decomposition

As the last application, we evaluate the proposed uncertainty measure on the image segmen-
tation task in the context of minimum cost lifted multicuts. The evaluation is computed on
the BSDS500 dataset using the problem instances and solutions from Keuper et al. [89].
Figure 7.10 visualizes the node (pixel) level uncertainty on several example images from the

7.4 Evaluation and Results 121

Fig. 7.11 Visualization of removing uncertain pixels in BSDS500 images [5]. Notice that
removing uncertain pixels corresponds to removing pixels along the object boundaries. The
original image (left), its multicut solution (middle), and the uncertainty measure (right)
based on our model are shown in the first row. The second row visualizes (from left to right)
removing 10, 30, and 50 % of the most uncertain pixels.

BSDS500 [5] dataset (see Section 2.1.3). As expected, the node level uncertainty is higher
along the object boundaries, where label changes are likely to happen.

Removing the most uncertain pixels corresponds to removing object boundaries, as
depicted in Figure 7.11. As the segmentation becomes sparser, entire object parts, such
as the squirrel’s tail, will be removed from the solution. In Figure 7.12, the VI and RI
metrics are provided concerning the pixel densities. As expected, removing highly uncertain
pixels increases the RI and decreases VI. Thus, an improvement can be observed in both
metrics. Again, we compare our approach to the probability-driven baseline and a random
baseline. Unlike before, the probability-driven baseline performs reasonably in this setting.
Yet, the proposed measure can achieve a faster decrease in VI and a higher increase in RI,
thus showing more robust behavior. The relatively good performance of the baseline in
comparison to its results on motion segmentation can be explained by the way local cut
probabilities are computed in this setting. Specifically, they are derived by Keuper et al. [89]
from edge maps and thus have consistently low values in homogeneous regions. Therefore,
the normalization by the denominator in the proposed measure (refer to Equation (7.16))
becomes less important.

122 Uncertainty Prediction in Minimum Cost Multicuts

VI (lower is better) RI (higher is better)

Fig. 7.12 Sparsification analysis in VI (left) and RI (right) on the BSDS500 [5] test data.
The proposed method shows a faster decrease in VI than the baseline and reaches a higher
RI.

Fig. 7.13 Study on the trajectory uncertainty on the GAEC [89] solver is provided. The
experiment relates to the Variation of Information (VI) and Rand Index (RI) on the train (left)
and test (right) set of FBMS59 [123].

Fig. 7.14 Study on the trajectory uncertainty on the GAEC [89] solver is provided. The
experiment relates to the Variation of Information (VI) and Rand Index (RI) on the train (left)
and validation (right) set of DAVIS2016 [128].

7.5 Conclusion 123

7.4.5 Uncertainty on Minimum Cost Multicut Solutions from GAEC

In Figures 7.13 and 7.14, we provide an additional evaluation of the proposed uncertainty
measure in the motion segmentation setting. Specifically, we compute solutions for the motion
segmentation problem instances on the FBMS59 and DAVIS2016 datasets. While we evaluated
using the widely employed high-quality solutions from the KLj heuristic, here we additionally
assess uncertainties on a faster, lower quality solver, GAEC [89]. It can be seen that the
sparsification plots behave as expected. The VI decreases as the segmentation becomes
sparser and the RI increases. However, it can be seen that for the poorer segmentation results,
the RI does not increase as monotonically as for KLj. Specifically, when considering the
high sparsity regime, the RI metric becomes brittle, indicating that entire labels might have
been removed from the solution.

7.5 Conclusion

The minimum cost lifted multicut problem has been widely studied in different computer
vision and data analysis applications such as motion segmentation and image decomposition.
Due to the probabilistic behavior of the multicut problem, the final decomposition of the
nodes in the proposed graph can be seen as relaxed decisions rather than hard decisions
on label assignment to the nodes of the graph. We study this probabilistic behavior and
provide an informative uncertainty measure in the node uncertainties. We showed that
removing uncertain nodes according to the proposed measure improves the variation of
information (VI) and the Rand index (RI) in two applications of motion segmentation and
image decomposition. Further, we showed the application of such uncertainties to train a
self-supervised model for motion segmentation. The proposed uncertainty measure can be
combined with any minimum cost multicut-based formulation.

Chapter 8

Future Work and Conclusion

In this Chapter, we discuss the limitations of our proposed approaches. We then illustrate
possible future works which could improve the results. Finally, we finish this dissertation
with a conclusion.

8.1 Limitations

In the video instance segmentation task, which is discussed in Chapter 3, the optical flow and
edge maps are used to track the segmentation of the objects to the subsequent frames and
provide the instance segmentation via the variational framework. The performance of the
approach depends on the quality of these underlying information.

In this dissertation, the clustering tasks are projected into the graph structure and de-
composed via the minimum cost lifted multicut (LMP) framework proposed in Keuper
et al. [89]. Further, in the work described in Section 6.7.1, we have proposed an adaptive
cooling-based Conditional Random Field (CRF) formulation in the end-to-end multicut graph
decomposition to enforce more binary edge weights. This model injects the set of multicut
constraints into the objective function. The generation of such constraints, more specifically,
the valid and invalid cycle inequalities, is produced beforehand to optimize the model over
such constraints. Moreover, this model depends on the post-processing of the produced edge
maps to get the Intervening Contour Cues (ICC), Leung and Malik [100]. Such data are
processed offline and before processing through the graph decomposition model.

In the motion segmentation task, in Chapters 4 and 5, the sparse motion segmentation
is proposed. To generate the dense motion segmentation, the sparsely segmented results
need to pass through a post-processing stage. Although, in principle, dense trajectories
can be generated by the motion segmentation algorithm, the clustering algorithm does not
scale linearly with the number of trajectories, and the computational cost explodes. In the

126 Future Work and Conclusion

higher-order motion segmentation approach, in Chapter 5, the combination of the second and
third-order costs is used to handle the complex motion patterns. The better results can be
generated using higher order edges, considering such edges make the result generation more
intense regarding the time and memory consumption.

8.2 Future Work

As for any proposed methods, there is always some room for improvement; here, we describe
future works that ideally could enhance either the performance or the quality of the final
results. In the case of video instance segmentation, where the objects are tracked from the
first frame mask [84], explained in Chapter 3, instead of the variational framework, one
approach for tracking the segments is the usage of optical flow information and creating
the multicut problem where the nodes correspond to the tracked segment labels through
the frames; similar to the motion segmentation except that instead of motion trajectories
the point trajectories are used. This will be similar to the work of Keuper et al. [89], while
instead of an image (one frame) the sequence of frames is used with the usage of optical flow
information.

The end-to-end trainable model proposed by Song et al. [143] for graph decomposition
via injecting the multicut constraints into the objective function of the real-world multi-
person pose estimation problem is addressed. We presented an adaptive CRF that allows us
to progressively consider more violated constraints and, consequently, to issue solutions with
higher validity in work led by Steffen Jung [74]. Therefore, we confirm the efficiency of our
approach in the image segmentation task. The model requires the offline processing of the
edge maps with the ICC [100] for production of the set of cycle inequality constraints (see
Section 6.7.1). One possibility is to generate such constraints online without pre-processing
the edge maps. This model is proposed for the multicut problem; one option is to extend this
to the lifted multicut problem, which requires more constraints to be considered. Moreover,
the improvement of this model can lead to the end-to-end trainable model for multi-label
dense motion segmentation. The graph production of the multicut problem is generated
offline as well; for instance, in the work of motion segmentation, Chapters 4 and 5. This
means the whole sequence of frames must be seen before providing the motion segmentation.
This makes the solution generation in an offline manner.

We proposed Gated Recurrent Unit (GRU) based model to provide the affinity costs
between the pair of trajectories in [81], see Chapter 4, for the edges on the produced graph.
We only used the position of the pixels to provide the similarities between the trajectories.
One possibility is to include appearance features by considering the patches around each

8.3 Conclusion 127

sub-pixel position. Moreover, vision transformers like Touvron et al. [152] can be replaced
with the GRU model to get the results faster and more accurately.

8.3 Conclusion

The clustering problem, its frameworks, and its application in different fields such as image,
mesh data, video, and motion segmentation are studied in this dissertation. We used a
graph-based framework to project the applications to the nodes and edges on the graph. One
well-known framework that does not require prior knowledge, such as the number of clusters,
and does not favor balanced or specific properties of the clusters, is the minimum cost
(lifted) multicut framework. Due to the NP-hard nature of the problem, different heuristics
are proposed; in this dissertation, we proposed two variants of a heuristic solver (primal
feasible heuristic), which greedily generate solutions within a bounded amount of time
and evaluated on image and mesh segmentation benchmarks. Relying on the probabilistic
formulation of minimum cost multicuts, we proposed a measure for the uncertainties of the
decisions made during the optimization. Our approaches ranged from the applications of the
multicut framework, such as in mesh data, image, motion, and video instance segmentation,
to the methods for decomposing the problem instances (multicut graphs) and the uncertainty
estimation.

Bibliography

[1] Alush, A. and Goldberger, J. (2012). Ensemble segmentation using efficient integer
linear programming. TPAMI. 30

[2] Andres, B., Kappes, J. H., Beier, T., Köthe, U., and Hamprecht, F. A. (2011). Probabilistic
image segmentation with closedness constraints. In ICCV. 26, 30, 107

[3] Andres, B., Kröger, T., Briggman, K. L., Denk, W., Korogod, N., Knott, G., Köthe,
U., and Hamprecht, F. A. (2012). Globally optimal closed-surface segmentation for
connectomics. In ECCV. 3, 9, 26, 28, 30, 55, 68, 105, 106, 108, 112

[4] Andres, B., Yarkony, J., Manjunath, B. S., Kirchhoff, S., Turetken, E., Fowlkes, C.,
and Pfister, H. (2013). Segmenting planar superpixel adjacency graphs w.r.t. non-planar
superpixel affinity graphs. In EMMCVPR. 30

[5] Arbeláez, P., Maire, M., Fowlkes, C., and Malik, J. (2011). Contour detection and
hierarchical image segmentation. TPAMI. xviii, xxi, xxiii, xxiv, xxvii, 16, 17, 30, 89, 90,
91, 95, 96, 97, 99, 103, 105, 106, 107, 114, 120, 121, 122

[6] Arbelaez, P., Pont-Tuset, J., Barron, J., Marques, F., and Malik, J. (2014). Multiscale
combinatorial grouping. In CVPR. xxvii, 99

[7] Badrinarayanan, V., Galasso, F., and Cipolla, R. (2010). Label propagation in video
sequences. In CVPR. 20

[8] Bae, E., Lellmann, J., and Tai, X.-C. (2013). Convex relaxations for a generalized
Chan-Vese model. In EMMCVPR. 3, 21, 37

[9] Bagon, S. and Galun, M. (2011). Large scale correlation clustering optimization. CoRR.
30

[10] Bailer, C., Taetz, B., and Stricker, D. (2015). Flow fields: Dense correspondence fields
for highly accurate large displacement optical flow estimation. In ICCV. 45

[11] Bailoni, A., Pape, C., Wolf, S., Beier, T., Kreshuk, A., and Hamprecht, F. A. (2019). A
generalized framework for agglomerative clustering of signed graphs applied to instance
segmentation. CoRR. 57

[12] Bansal, N., Blum, A., and Chawla, S. (2004). Correlation clustering. Machine Learning.
26, 27, 57, 68, 105

130 Bibliography

[13] Bao, L., Wu, B., and Liu, W. (2018). CNN in MRF: Video object segmentation via
inference in a CNN-based higher-order spatio-temporal MRF. In CVPR. xix, 21, 38, 46,
47, 48

[14] Bardes, A., Ponce, J., and LeCun, Y. (2021). Vicreg: Variance-invariance-covariance
regularization for self-supervised learning. CoRR. 7

[15] Beier, T., Andres, B., Köthe, U., and Hamprecht, F. A. (2016). An efficient fusion move
algorithm for the minimum cost lifted multicut problem. In ECCV. xxvii, 27, 57, 90, 91,
100, 103

[16] Beier, T., Hamprecht, F. A., and Kappes, J. H. (2015). Fusion moves for correlation
clustering. In CVPR. 26, 29, 30, 105

[17] Beier, T., Kroeger, T., Kappes, J. H., Köthe, U., and Hamprecht, F. A. (2014). Cut, glue,
& cut: A fast, approximate solver for multicut partitioning. In CVPR. 26, 29, 30

[18] Beier, T., Pape, C., Rahaman, N., Prange, T., Stuart, B., Bock, D., Cardona, A., Knott,
G. W., Plaza, S. M., Scheffer, L. K., Ullrich, K., Kreshuk, A., and Hamprecht, F. A. (2017).
Multicut brings automated neurite segmentation closer to human performance. Nature
Methods. 27, 30, 90, 95, 99, 103

[19] Bhattacharyya, A., Fritz, M., and Schiele, B. (2018). Long-term on-board prediction of
people in traffic scenes under uncertainty. In CVPR. 54

[20] Bideau, P. and Learned-Miller, E. (2016). A detailed rubric for motion segmentation.
79, 82

[21] Bideau, P. and Learned-Miller, E. G. (2016). It’s moving! A probabilistic model for
causal motion segmentation in moving camera videos. CoRR. 23

[22] Bideau, P., Menon, R. R., and Learned-Miller, E. (2018a). Moa-net: Self-supervised
motion segmentation. In ECCV workshop. 23

[23] Bideau, P., RoyChowdhury, A., Menon, R. R., and Learned-Miller, E. (2018b). The
best of both worlds: Combining cnns and geometric constraints for hierarchical motion
segmentation. In CVPR. xxvi, 23, 79, 82, 83

[24] Brox, T., Bregler, C., and Malik, J. (2009). Large displacement optical flow. In CVPR.
xxvi, 60, 63

[25] Brox, T. and Malik, J. (2010). Object segmentation by long term analysis of point
trajectories. In ECCV. 2, 15, 25, 52, 55, 59, 69, 74

[26] Brox, T. and Malik, J. (2011). Large displacement optical flow: descriptor matching in
variational motion estimation. TPAMI. xx, 74, 81, 82, 85, 86

[27] Cardona, A., Saalfeld, S., Preibisch, S., Schmid, B., Cheng, A., Pulokas, J., Tomancak,
P., and Hartenstein, V. (2010). An integrated micro- and macroarchitectural analysis of the
drosophila brain by computer-assisted serial section electron microscopy. PLOS Biology.
xxvii, 18, 21, 90, 95, 99, 100

Bibliography 131

[28] Carreras, I. A., Turaga, S. C., Berger, D. R., San, D. C., Giusti, A., Gambardella, L. M.,
Schmidhuber, J., Laptev, D., Dwivedi, S., Buhmann, J. M., Liu, T., Seyedhosseini, M.,
Tasdizen, T., Kamentsky, L., Burget, R., Uher, V., Tan, X., Sun, C., Pham, T. D., Bas, E.,
Uzunbas, M. G., Albert, C., Schindelin, J., and Seung, H. S. (2015). Crowdsourcing the
creation of image segmentation algorithms for connectomics. Frontiers in Neuroanatomy.
xxvii, 18, 21, 90, 95, 99, 100

[29] Chambolle, A., Cremers, D., and Pock, T. (2012). A convex approach to minimal
partitions. SIAM Journal on Applied Mathematics. 40, 44

[30] Chen, L., Papandreou, G., Kokkinos, I., Murphy, K., and Yuille, A. L. (2018). Deeplab:
Semantic image segmentation with deep convolutional nets, atrous convolution, and fully
connected crfs. TPAMI. 23

[31] Chen, L.-C., Papandreou, G., Kokkinos, I., Murphy, K., and Yuille, A. L. (2015).
Semantic image segmentation with deep convolutional nets and fully connected crfs. In
ICLR. 59

[32] Chen, X., Golovinskiy, A., and Funkhouser, T. (2009). A benchmark for 3D mesh
segmentation. ACM Transactions on Graphics (Proc. SIGGRAPH). xxvii, 17, 90, 95, 97,
100

[33] Cheng, J., Tsai, Y.-H., Hung, W.-C., Wang, S., and Yang, M.-H. (2018). Fast and
accurate online video object segmentation via tracking parts. In CVPR. 48

[34] Cho, K., van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk,
H., and Bengio, Y. (2014). Learning phrase representations using RNN encoder–decoder
for statistical machine translation. In Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing (EMNLP). 23

[35] Chopra, S., Hadsell, R., and LeCun, Y. (2005). Learning a similarity metric discrimina-
tively, with application to face verification. In CVPR. 54, 56

[36] Chopra, S. and Rao, M. R. (1993). The partition problem. Mathematical Programming.
3, 5, 25, 26, 27, 28, 68

[37] Cremers, D. (2003). A variational framework for image segmentation combining
motion estimation and shape regularization. In CVPR. 22, 23

[38] Demaine, E. D., Emanuel, D., Fiat, A., and Immorlica, N. (2006). Correlation clustering
in general weighted graphs. Theoretical Computer Science. 26, 27, 28

[39] Deng, J., Dong, W., Socher, R., Li, L. J., Li, K., and Fei-Fei, L. (2009). Imagenet: A
large-scale hierarchical image database. In CVPR. 22, 53

[40] Deza, M. M., Laurent, M., and Weismantel, R. (1997). Geometry of cuts and metrics.
Mathematical Methods of Operations Research-ZOR. 3, 5, 26, 27

[41] Dollár, P. and Zitnick, C. L. (2013). Structured forests for fast edge detection. In ICCV.
xxvii, 20, 37, 42, 44, 99

132 Bibliography

[42] Dosovitskiy, A., Fischer, P., Ilg, E., Häusser, P., Hazırbaş, C., Golkov, V., v.d. Smagt,
P., Cremers, D., and Brox, T. (2015). Flownet: Learning optical flow with convolutional
networks. In ICCV. 19, 22, 53

[43] Dosovitskiy, A., Springenberg, J. T., Riedmiller, M., and Brox, T. (2014). Discriminative
unsupervised feature learning with convolutional neural networks. In Advances in Neural
Information Processing Systems. 7

[44] Drayer, B. and Brox, T. (2016). Object detection, tracking, and motion segmentation
for object-level video segmentation. CoRR. 20

[45] Elhamifar, E. and Vidal, R. (2013). Sparse subspace clustering. In ICCV. 32

[46] Everingham, M., Gool, L. V., Williams, C. K. I., Winn, J., and Zisserman, A. (2012).
The PASCAL Visual Object Classes Challenge 2012 (VOC2012) Results. 23

[47] Fan, Q., Zhong, F., Lischinski, D., Cohen-Or, D., and Chen, B. (2015). JumpCut:
Non-successive mask transfer and interpolation for video cutout. ACM Transactions on
Graphics. 46, 47

[48] Fischler, M. A. and Bolles, R. C. (1981). Random sample consensus: a paradigm for
model fitting with applications to image analysis and automated cartography. Communi-
cations of the ACM. 24

[49] Fragkiadaki, K., Arbelaez, P., Felsen, P., and Malik, J. (2015). Learning to segment
moving objects in videos. In CVPR. 22, 25, 74

[50] Fragkiadaki, K. and Shi, J. (2011). Detection free tracking: Exploiting motion and
topology for segmenting and tracking under entanglement. In CVPR. 32

[51] Fragkiadaki, K., Zhang, G., and Shi, J. (2012a). Video segmentation by tracing
discontinuities in a trajectory embedding. In CVPR. 25, 55, 74

[52] Fragkiadaki, K., Zhang, W., Zhang, G., and Shi, J. (2012b). Two-granularity tracking:
Mediating trajectory and detection graphs for tracking under occlusions. In ECCV. 25, 52

[53] Fu, J., Liu, J., Wang, Y., Zhou, J., Wang, C., and Lu, H. (2019). Stacked deconvolutional
network for semantic segmentation. IEEE Transactions on Image Processing. 58

[54] Galasso, F., Keuper, M., Brox, T., and Schiele, B. (2014). Spectral graph reduction for
efficient image and streaming video segmentation. In CVPR. xx, 86

[55] Galasso, F., Nagaraja, N., Cardenas, T., Brox, T., and B.Schiele (2013). A unified video
segmentation benchmark: Annotation, metrics and analysis. In ICCV. xx, 17, 33, 84, 86

[56] Galushin, S. and Kudinov, P. (2015). Scenario grouping and classification methodol-
ogy for postprocessing of data generated by integrated deterministic-probabilistic safety
analysis. Science and Technology of Nuclear Installations. 1

[57] Gurobi Optimization, LLC (2021). Gurobi Optimizer Reference Manual. 71

Bibliography 133

[58] Hasegawa, S., Wada, K., Kitagawa, S., Uchimi, Y., Okada, K., and Inaba, M. (2019).
Graspfusion: Realizing complex motion by learning and fusing grasp modalities with
instance segmentation. In ICRA. 19, 35, 36

[59] He, Y., Chiu, W., Keuper, M., and Fritz, M. (2017). Std2p: RGBD semantic segmenta-
tion using spatio-temporal data driven pooling. In CVPR. 20, 38

[60] Ho, K., Kardoost, A., Pfreundt, F.-J., Keuper, J., and Keuper, M. (2020). A two-stage
minimum cost multicut approach to self-supervised multiple person tracking. In ACCV.
xv, 5, 6, 11, 12, 66, 89

[61] Hornáková, A., Henschel, R., Rosenhahn, B., and Swoboda, P. (2020). Lifted disjoint
paths with application in multiple object tracking. In ICML. 30

[62] Horňáková, A., Lange, J. H., and Andres, B. (2017). Analysis and optimization of
graph decompositions by lifted multicuts. In ICML. 28, 30

[63] Hu, Y. T., Huang, J. B., and Schwing, A. G. (2018). Unsupervised Video Object
Segmentation Using Motion Saliency-Guided Spatio-Temporal Propagation. In ECCV. 22

[64] Ilg, E., Çiçek, Ö., Galesso, S., Klein, A., Makansi, O., Hutter, F., and Brox, T. (2018a).
Uncertainty estimates and multi-hypotheses networks for optical flow. In ECCV. 115

[65] Ilg, E., Mayer, N., Saikia, T., Keuper, M., Dosovitskiy, A., and Brox, T. (2017). Flownet
2.0: Evolution of optical flow estimation with deep networks. In CVPR. xxv, xxvi, 1, 19,
20, 36, 37, 45, 63, 81, 82

[66] Ilg, E., Saikia, T., Keuper, M., and Brox, T. (2018b). Occlusions, motion and depth
boundaries with a generic network for disparity, optical flow or scene flow estimation. In
ECCV. xx, xxv, 19, 20, 36, 37, 42, 44, 45, 81, 82, 85, 86

[67] Irani, M. and Anandan, P. (1998). A unified approach to moving object detection in 2d
and 3d scenes. TPAMI. 24

[68] J. Shi and Malik, J. (2000). Normalized cuts and image segmentation. TPAMI. 24, 26

[69] Jain, S., Xiong, B., and Grauman, K. (2017). Fusionseg: Learning to combine motion
and appearance for fully automatic segmentation of generic objects in videos. arXiv
preprint arXiv:1701.05384. 23

[70] Jain, S. D. and Grauman, K. (2014). Supervoxel-consistent foreground propagation in
video. In Fleet, D., Pajdla, T., Schiele, B., and Tuytelaars, T., editors, ECCV. 20

[71] Jampani, V., Gadde, R., and Gehler, P. V. (2017). Video propagation networks. In ICCV.
38, 46, 47

[72] Jang, W. D. and Chang-Su, K. (2017). Online video object segmentation via convolu-
tional trident network. In CVPR. Institute of Electrical and Electronics Engineers Inc. 46,
47

[73] Ji, P., Li, H., Salzmann, M., and Dai, Y. (2014). Robust motion segmentation with
unknown correspondences. In ECCV. 69

134 Bibliography

[74] Jung, S., Ziegler, S., Kardoost, A., and Keuper, M. (2022). Optimizing edge detection
for image segmentation with multicut penalties. In GCPR. 5, 11, 12, 103, 126

[75] Kanopoulos, N., Vasanthavada, N., and Baker, R. L. (1988). Design of an image edge
detection filter using the sobel operator. IEEE Journal of solid-state circuits. 59

[76] Kappes, J., Swoboda, P., Savchynskyy, B., Hazan, T., and Schnörr, C. (2016a). Multicuts
and perturb & map for probabilistic graph clustering. Journal of Mathematical Imaging
and Vision. 107

[77] Kappes, J. H., Andres, B., Hamprecht, F. A., Schnörr, C., Nowozin, S., Batra, D., Kim,
S., Kausler, B. X., Kröger, T., Lellmann, J., Komodakis, N., Savchynskyy, B., and Rother,
C. (2015a). A comparative study of modern inference techniques for structured discrete
energy minimization problems. IJCV. 28, 29

[78] Kappes, J. H., Speth, M., Andres, B., Reinelt, G., and Schnörr, C. (2011). Globally
optimal image partitioning by multicuts. In EMMCVPR. 28, 30, 107

[79] Kappes, J. H., Speth, M., Reinelt, G., and Schnörr, C. (2016b). Higher-order seg-
mentation via multicuts. Computer Vision and Image Understanding. 3, 26, 28, 30, 68,
107

[80] Kappes, J. H., Swoboda, P., Savchynskyy, B., Hazan, T., and Schnörr, C. (2015b).
Probabilistic correlation clustering and image partitioning using perturbed multicuts. In
SSVM. 30

[81] Kardoost, A., Ho, K., Ochs, P., and Keuper, M. (2020). Self-supervised sparse to dense
motion segmentation. In ACCV. xvii, xxiii, xxvii, 4, 5, 6, 9, 12, 24, 32, 33, 51, 69, 106,
107, 114, 118, 119, 120, 126

[82] Kardoost, A. and Keuper, M. (2018). Solving minimum cost lifted multicut problems
by node agglomeration. In ACCV. 3, 10, 12, 89

[83] Kardoost, A. and Keuper, M. (2021). Uncertainty in minimum cost multicuts for image
and motion segmentation. In UAI. 4, 6, 10, 12, 33, 105

[84] Kardoost, A., Müller, S., Weickert, J., and Keuper, M. (2021). Object segmentation
tracking from generic video cues. In ICPR. 2, 8, 12, 35, 126

[85] Kendoul, F., Fantoni, I., and Nonami, K. (2009). Optic flow-based vision system for
autonomous 3d localization and control of small aerial vehicles. Robotics and Autonomous
Systems. 19, 36

[86] Kernighan, B. W. and Lin, S. (1970). An efficient heuristic procedure for partitioning
graphs. Bell Systems Technical Journal. 29, 57

[87] Keuper, M. (2017). Higher-order minimum cost lifted multicuts for motion segmenta-
tion. In ICCV. xx, 10, 21, 25, 27, 30, 31, 32, 33, 38, 52, 57, 67, 68, 74, 75, 76, 77, 78, 80,
81, 82, 83, 86, 87

Bibliography 135

[88] Keuper, M., Andres, B., and Brox, T. (2015a). Motion trajectory segmentation via
minimum cost multicuts. In ICCV. xvii, xix, xx, xxv, xxvi, 4, 21, 24, 25, 30, 31, 32, 33,
38, 52, 53, 54, 55, 56, 57, 58, 61, 62, 63, 69, 74, 76, 77, 78, 80, 81, 82, 83, 84, 85, 86,
105, 106, 114

[89] Keuper, M., Levinkov, E., Bonneel, N., Lavoué, G., Brox, T., and Andres, B. (2015b).
Efficient decomposition of image and mesh graphs by lifted multicuts. ICCV. xxi, xxii,
xxiv, xxvii, 3, 4, 6, 8, 26, 27, 29, 30, 57, 68, 69, 71, 72, 74, 89, 90, 91, 92, 93, 94, 95, 96,
97, 98, 99, 100, 101, 103, 105, 107, 108, 114, 120, 121, 122, 123, 125, 126

[90] Keuper, M., Tang, S., Andres, B., Brox, T., and Schiele, B. (2020). Motion segmentation
multiple object tracking by correlation co-clustering. TPAMI. 6

[91] Khoreva, A., Benenson, R., Ilg, E., Brox, T., and Schiele, B. (2017). Lucid data
dreaming for object tracking. In The 2017 DAVIS Challenge on Video Object Segmentation
- CVPR Workshops. 20

[92] Kim, S., Nowozin, S., Kohli, P., and Chang, D. Y. (2011). Higher-order correlation
clustering for image segmentation. In NeurIPS. 3, 26, 28, 30, 68

[93] Kim, S., Yoo, C. D., and Nowozin, S. (2014). Image segmentation using higher-order
correlation clustering. TPAMI. 28, 30

[94] Kirillov, A., Levinkov, E., Andres, B., Savchynskyy, B., and Rother, C. (2017). In-
stancecut: From edges to instances with multicut. In CVPR. 30

[95] Koffka, K. (1935). Principles of Gestalt Psychology. Hartcourt Brace Jovanovich,
NewYork. 2, 22, 52

[96] Kohli, P. and Torr, P. H. S. (2006). Measuring uncertainty in graph cut solutions –
efficiently computing min-marginal energies using dynamic graph cuts. In ECCV. 107

[97] Krähenbühl, P. and Koltun, V. (2011). Efficient inference in fully connected crfs with
gaussian edge potentials. In Advances in neural information processing systems. 59, 62

[98] Kuhn, H. W. (1955). The hungarian method for the assignment problem. Naval
Research Logistics Quarterly. 16

[99] Lao, D. and Sundaramoorthi, G. (2018). Extending layered models to 3d motion. In
ECCV. 22, 62, 63

[100] Leung, T. and Malik, J. (1998). Contour continuity in region based image segmentation.
In ECCV. 125, 126

[101] Levinkov, E., Kardoost, A., Andres, B., and Keuper, M. (2022). Higher-order multicuts
for geometric model fitting and motion segmentation. TPAMI. xviii, 4, 9, 10, 12, 14, 16,
17, 24, 28, 29, 33, 67, 68, 69, 70

[102] Levinkov, E., Kirillov, A., and Andres, B. (2017). A comparative study of local search
algorithms for correlation clustering. In GCPR. 4, 26, 68, 72

[103] Lezama, J., Alahari, K., Sivic, J., and Laptev, I. (2011). Track to the future: Spatio-
temporal video segmentation with long-range motion cues. In CVPR. 69

136 Bibliography

[104] Li, F., Kim, T., Humayun, A., Tsai, D., and Rehg, J. M. (2013a). Video segmentation
by tracking many figure-ground segments. In ICCV. xvii, xxv, 15, 37, 44, 48, 49

[105] Li, Z., Guo, J., Cheong, L., and Zhou, S. (2013b). Perspective motion segmentation
via collaborative clustering. In ICCV. 2, 69

[106] Lim, H., Lim, J., and Kim, H. J. (2014). Real-time 6-dof monocular visual slam in a
large-scale environment. In ICRA. 19, 36, 41

[107] Lucas, B. D. and Kanade, T. (1981). An iterative image registration technique with an
application to stereo vision. In Proceedings of the 7th international joint conference on
Artificial intelligence - Volume 2. 18

[108] Maczyta, L., Bouthemy, P., and Meur, O. (2019). Cnn-based temporal detection of
motion saliency in videos. Pattern Recognition Letters. 22

[109] Maninis, K., Pont-Tuset, J., Arbeláez, P., and Gool, L. V. (2017). Convolutional
oriented boundaries: From image segmentation to high-level tasks. TPAMI. 19, 20, 36,
37, 42, 44

[110] Maninis, K.-K., Caelles, S., Chen, Y., Pont-Tuset, J., Leal-Taixé, L., Cremers, D., and
Van Gool, L. (2018). Video object segmentation without temporal information. TPAMI.
xix, 21, 38, 46, 47, 48

[111] Märki, N., Perazzi, F., Wang, O., and Sorkine-Hornung, A. (2016). Bilateral space
video segmentation. In CVPR. 46, 47

[112] Martin, D. R., Fowlkes, C. C., and Malik, J. (2004). Learning to detect natural image
boundaries using local brightness, color, and texture cues. TPAMI. 17

[113] Mayer, N., Ilg, E., P.Häusser, Fischer, P., Cremers, D., Dosovitskiy, A., and Brox, T.
(2016). A large dataset to train convolutional networks for disparity, optical flow, and
scene flow estimation. In CVPR. 19

[114] McGuire, K., de Croon, G., De Wagter, C., Tuyls, K., and Kappen, H. (2017). Efficient
optical flow and stereo vision for velocity estimation and obstacle avoidance on an
autonomous pocket drone. IEEE Robotics and Automation Letters. 19, 36

[115] Meilă, M. (2007). Comparing clusterings—an information based distance. J. Multivar.
Anal. 17, 95, 99, 114, 116

[116] Müller, S., Ochs, P., Weickert, J., and Graf, N. (2016). Robust interactive multi-label
segmentation with an advanced edge detector. In Pattern Recognition. 21, 38, 42, 54

[117] Nagaraja, N., Schmidt, F., and Brox, T. (2015). Video segmentation with just a few
strokes. In ICCV. 2, 19, 21, 36, 38

[118] Nguyen, A., Kanoulas, D., Caldwell, D. G., and Tsagarakis, N. G. (2017). Object-
based affordances detection with convolutional neural networks and dense conditional
random fields. In IROS. 35

[119] Nieuwenhuis, C. and Cremers, D. (2013). Spatially varying color distributions for
interactive multilabel segmentation. TPAMI. 3, 21, 37, 38, 40, 41

Bibliography 137

[120] Nowozin, S. and Jegelka, S. (2009). Solution stability in linear programming relax-
ations: Graph partitioning and unsupervised learning. In ICML. 30

[121] Ochs, P. and Brox, T. (2011). Object segmentation in video: a hierarchical variational
approach for turning point trajectories into dense regions. In ICCV. xx, 69, 78, 81

[122] Ochs, P. and Brox, T. (2012). Higher order motion models and spectral clustering. In
CVPR. 32, 69, 76, 77, 78, 80

[123] Ochs, P., Malik, J., and Brox, T. (2014). Segmentation of moving objects by long term
video analysis. TPAMI. xvii, xviii, xix, xx, xxiv, xxv, 3, 4, 15, 16, 23, 24, 25, 30, 31, 32,
33, 52, 53, 54, 55, 60, 61, 62, 63, 65, 69, 74, 76, 78, 79, 80, 85, 86, 105, 106, 107, 114,
118, 122

[124] Orbanz, P. and Buhmann, J. (2008). Nonparametric bayesian image segmentation.
ICCV. 107

[125] Papazoglou, A. and Ferrari, V. (2013). Fast object segmentation in unconstrained
video. In ICCV. 22

[126] Paul, M., Mayer, C., Gool, L. V., and Timofte, R. (2020). Efficient video semantic
segmentation with labels propagation and refinement. In WACV. 2, 19, 21, 38

[127] Perazzi, F., Khoreva, A., Benenson, R., Schiele, B., and Sorkine-Hornung, A. (2017).
Learning video object segmentation from static images. In CVPR. 21, 36, 38, 46, 47, 48

[128] Perazzi, F., Pont-Tuset, J., McWilliams, B., Gool, L. V., Gross, M., and Sorkine-
Hornung, A. (2016). A benchmark dataset and evaluation methodology for video object
segmentation. In CVPR. xvii, xviii, xix, xxiii, xxiv, 2, 7, 13, 15, 19, 20, 23, 32, 33, 36, 37,
43, 44, 53, 54, 60, 61, 62, 64, 84, 105, 106, 107, 114, 117, 122

[129] Perazzi, F., Wang, O., Gross, M., and Sorkine-Hornung, A. (2015). Fully connected
object proposals for video segmentation. In ICCV. 46, 47

[130] Pishchulin, L., Insafutdinov, E., Tang, S., Andres, B., Andriluka, M., Gehler, P., and
Schiele, B. (2016). Deepcut: Joint subset partition and labeling for multi person pose
estimation. In CVPR. 30

[131] Pont-Tuset, J., Perazzi, F., Caelles, S., Arbeláez, P., Sorkine-Hornung, A., and
Van Gool, L. (2017). The 2017 DAVIS challenge on video object segmentation.
arXiv:1704.00675. xvii, 2, 7, 14, 15, 36, 37, 44

[132] Price, B. L., Morse, B. S., and Cohen, S. (2009). LIVEcut: Learning-based interactive
video segmentation by evaluation of multiple propagated cues. In ICCV. 2, 19, 21, 38

[133] Rao, S. R., Tron, R., Vidal, R., and Ma, Y. (2008). Motion segmentation via robust
subspace separation in the presence of outlying, incomplete, or corrupted trajectories. In
CVPR. 25, 52

[134] Rempfler, M., Lange, J. H., Jug, F., Blasse, C., Myers, E., Menze, B., and Andres, B.
(2017). Efficient algorithms for moral lineage tracing. ICCV. 30

138 Bibliography

[135] Ronneberger, O., P.Fischer, and Brox, T. (2015). U-net: Convolutional networks for
biomedical image segmentation. In Medical Image Computing and Computer-Assisted
Intervention (MICCAI). Springer. (available on arXiv:1505.04597 [cs.CV]). xvii, 4, 20,
21, 53, 55, 58, 119

[136] Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z.,
Karpathy, A., Khosla, A., Bernstein, M., Berg, A. C., and Fei-Fei, L. (2015). ImageNet
Large Scale Visual Recognition Challenge. IJCV. 23

[137] Shi, F., Zhou, Z., Xiao, J., and Wu, W. (2013). Robust trajectory clustering for motion
segmentation. In ICCV. 2, 25, 52, 69

[138] Shi, J. and Malik, J. (1998). Motion segmentation and tracking using normalized cuts.
In ICCV. 32

[139] Siam, M., Elkerdawy, S., Jagersand, M., and Yogamani, S. (2017). Deep semantic
segmentation for automated driving: Taxonomy, roadmap and challenges. In International
Conference on Intelligent Transportation Systems. 58

[140] Siam, M., Gamal, M., Abdel-Razek, M., Yogamani, S., and Jagersand, M. (2018a).
Rtseg: Real-time semantic segmentation comparative study. In International Conference
on Image Processing. 58

[141] Siam, M., Jiang, C., Lu, S. W., Petrich, L., Gamal, M., Elhoseiny, M., and Jägersand,
M. (2019). Video object segmentation using teacher-student adaptation in a human robot
interaction (HRI) setting. In ICRA. 21, 35, 38

[142] Siam, M., Mahgoub, H., Zahran, M., Yogamani, S., Jagersand, M., and El-Sallab, A.
(2018b). Modnet: Motion and appearance based moving object detection network for
autonomous driving. In International Conference on Intelligent Transportation Systems
(ITSC). 22

[143] Song, J., Andres, B., Black, M., Hilliges, O., and Tang, S. (2019). End-to-end learning
for graph decomposition. In ICCV. 5, 103, 126

[144] Sundberg, P., Brox, T., Maire, M., Arbeláez, P., and Malik, J. (2011). Occlusion
boundary detection and figure/ground assignment from optical flow. In CVPR. xx, 39, 84,
86

[145] Swoboda, P. and Andres, B. (2017). A message passing algorithm for the minimum
cost multicut problem. In CVPR. 26

[146] Tang, S., Andres, B., Andriluka, M., and Schiele, B. (2016). Multi-person tracking by
multicut and deep matching. CoRR. 6

[147] Tang, S., Andriluka, M., Andres, B., and Schiele, B. (2017). Multiple people tracking
by lifted multicut and person re-identification. In CVPR. 6, 27, 30

[148] Taylor, B., Karasev, V., and Soattoc, S. (2015). Causal video object segmentation from
persistence of occlusions. In CVPR. xxvi, 83

Bibliography 139

[149] Tokmakov, P., Alahari, K., and Schmid, C. (2017a). Learning motion patterns in
videos. In CVPR. xxvi, xxvii, 22, 23, 33, 52, 53, 82, 83, 85

[150] Tokmakov, P., Alahari, K., and Schmid, C. (2017b). Learning video object segmenta-
tion with visual memory. In ICCV. xxvi, 7, 22, 23, 52, 62, 63, 82, 83, 84

[151] Tomczak, J., Zareba, S., Ravanbakhsh, S., and Greiner, R. (2018). Low-dimensional
perturb-and-map approach for learning restricted boltzmann machines. Neural Processing
Letters. 107

[152] Touvron, H., Cord, M., Douze, M., Massa, F., Sablayrolles, A., and Jegou, H. (2021).
Training data-efficient image transformers and distillation through attention. In ICML,
Proceedings of Machine Learning Research. 127

[153] Tsai, Y. H., Yang, M. H., and Black, M. J. (2016). Video segmentation via object flow.
In CVPR. 2, 19, 20, 21, 22, 38, 46, 47

[154] Vazquez-Reina, A., Avidan, S., Pfister, H., and Miller, E. (2010). Multiple hypothesis
video segmentation from superpixel flows. In ECCV. 8

[155] Voigtlaender, P. and Leibe, B. (2017). Online adaptation of convolutional neural
networks for video object segmentation. In BMVC. 20, 21, 36, 38

[156] Wang, Q., Zhang, L., Bertinetto, L., Hu, W., and Torr, P. H. (2019a). Fast online object
tracking and segmentation: A unifying approach. In CVPR. 46, 47

[157] Wang, Z., Xu, J., Liu, L., Zhu, F., and Shao, L. (2019b). Ranet: Ranking attention
network for fast video object segmentation. ICCV. 36

[158] Wannenwetsch, A. S., Keuper, M., and Roth, S. (2017). Probflow: Joint optical flow
and uncertainty estimation. In ICCV. 1

[159] Weinzaepfel, P., Revaud, J., Harchaoui, Z., and Schmid, C. (2013). DeepFlow: Large
displacement optical flow with deep matching. In ICCV. 1, 45

[160] Wen, L., Du, D., Lei, Z., Li, S. Z., and Yang, M. H. (2015). JOTS: Joint online
tracking and segmentation. In CVPR. 48

[161] Xie, S. and Tu, Z. (2015). Holistically-nested edge detection. In ICCV. 19, 20, 36, 37,
42, 44

[162] Yang, C., Lamdouar, H., Lu, E., Zisserman, A., and Xie, W. (2021a). Self-supervised
video object segmentation by motion grouping. In ICCV. 23, 85

[163] Yang, G. and Ramanan, D. (2021). Learning to segment rigid motions from two
frames. In CVPR. 23

[164] Yang, L., Wang, Y., Xiong, X., Yang, J., and Katsaggelos, A. K. (2018). Efficient
video object segmentation via network modulation. CVPR. xix, 46, 48

[165] Yang, Y., Lai, B., and Soatto, S. (2021b). Dystab: Unsupervised object segmentation
via dynamic-static bootstrapping. In CVPR. 23, 85

140 Bibliography

[166] Yarkony, J., Ihler, A., and Fowlkes, C. (2012). Fast planar correlation clustering for
image segmentation. In ECCV. 30

[167] Yarkony, J., Zhang, C., and Fowlkes, C. (2015). Hierarchical planar correlation
clustering for cell segmentation. In EMMCVPR. 30

[168] Yoon, J. S., Rameau, F., Kim, J., Lee, S., Shin, S., and Kweon, I. S. (2017). Pixel-level
matching for video object segmentation using convolutional neural networks. In ICCV.
46, 47

[169] Zheng, S., Jayasumana, S., Romera-Paredes, B., Vineet, V., Su, Z., Du, D., Huang, C.,
and Torr, P. (2015). Conditional random fields as recurrent neural networks. In ICCV. 59,
60, 62

[170] Zingg, S., Scaramuzza, D., Weiss, S., and Siegwart, R. (2010). Mav navigation
through indoor corridors using optical flow. In ICRA. 19, 36

List of figures

List of tables

	Title
	Acknowledgements
	Abstract
	Zusammenfassung
	Table of contents
	List of figures
	List of tables
	1 Introduction
	1.1 Motivation
	1.2 Problem Statement
	1.3 Challenges
	1.4 Contributions
	1.4.1 Evaluation of Low-Level Video Cues
	1.4.2 Self-Supervised Densification of Sparse Motion Segmentations
	1.4.3 Higher Order Minimum Cost Multicuts
	1.4.4 Efficient Solvers for Minimum Cost Multicuts
	1.4.5 Uncertainty Prediction in Minimum Cost Multicuts
	1.4.6 Contributions as a Co-author

	1.5 Own Publications

	2 Preliminaries
	2.1 Datasets
	2.1.1 Video Segmentation
	2.1.2 Motion Segmentation
	2.1.3 Image Segmentation
	2.1.4 Mesh Segmentation
	2.1.5 Neuronal Structures Segmentation

	2.2 Optical flow
	2.3 Image and Video Segmentation
	2.4 Motion Segmentation
	2.4.1 Trajectory based Motion Segmentation

	2.5 Minimum Cost Multicuts
	2.5.1 Minimum Cost Lifted Multicut Problem
	2.5.2 Existing Solvers
	2.5.3 Applications

	2.6 Motion Segmentation Using Minimum Cost Multicuts

	3 Video Instance Segmentation - Evaluation of Low-Level Video Cues
	3.1 Introduction
	3.2 Related Work
	3.3 Proposed Approach
	3.3.1 Confident Label Propagation with Optical Flow
	3.3.2 Variational Formulation
	3.3.3 Flow Magnitude and Flow Direction
	3.3.4 Boundary Term
	3.3.5 Lost Object Retrieval

	3.4 Implementation Details
	3.5 Experiments and Results
	3.5.1 Ablation Study
	3.5.2 Results on DAVIS
	3.5.3 Results on SegTrack v2

	3.6 Conclusion

	4 Motion Segmentation - Self-Supervised Densification of Sparse Motion Segmentations
	4.1 Introduction
	4.2 Related Work
	4.2.1 Motion Segmentation
	4.2.2 Sparse to Dense Labeling

	4.3 Proposed Self-Supervised Learning Framework
	4.3.1 Annotation Generation
	4.3.2 Deep Learning Model for Sparse to Dense Segmentation

	4.4 Experiments
	4.4.1 Implementation Details
	4.4.2 Sparse Trajectory Motion-Model
	4.4.3 Knowledge Transfer
	4.4.4 Dense Segmentation of Moving Objects
	4.4.5 Partly Trained Model
	4.4.6 Densification on FBMS59

	4.5 Conclusion
	4.5.1 Relationship to the Self-Supervised Multiple Object Tracking Approach by Ho et al. Ho2020ACCV

	5 Motion Segmentation - Higher Order Minimum Cost Multicuts
	5.1 Introduction
	5.1.1 Motion Segmentation

	5.2 Related Work
	5.3 Higher-Order Lifted Multicut Problem
	5.4 Local Search Algorithm
	5.4.1 Motion Segmentation
	5.4.2 Higher-Order Motion Models

	5.5 Experiments
	5.5.1 Motion Segmentation

	5.6 Conclusion

	6 Minimum Cost Multicuts – Efficient Solvers
	6.1 Introduction
	6.2 Related Work
	6.3 Optimization Problem
	6.4 Objectives
	6.5 Proposed Approach
	6.5.1 Algorithms

	6.6 Experiments
	6.6.1 Image Decomposition
	6.6.2 Mesh Segmentation
	6.6.3 ISBI 2012 Challenge

	6.7 Conclusion
	6.7.1 End-to-End Multicut Graph Decomposition

	7 Uncertainty Prediction in Minimum Cost Multicuts
	7.1 Introduction
	7.2 Related Work
	7.3 Uncertainties in Minimum Cost (Lifted) Multicuts
	7.3.1 Probability Measures
	7.3.2 Uncertainty Estimation Model

	7.4 Evaluation and Results
	7.4.1 Motion Segmentation Results
	7.4.2 Multimodal Motion Segmentation
	7.4.3 Densified Motion Segmentation
	7.4.4 Image Decomposition
	7.4.5 Uncertainty on Minimum Cost Multicut Solutions from GAEC

	7.5 Conclusion

	8 Future Work and Conclusion
	8.1 Limitations
	8.2 Future Work
	8.3 Conclusion

	Bibliography
	List of figures
	List of tables

