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Abstract

In recent years, small deviations between experimental measurements and predic-
tions from the Standard Model (SM) have been observed in bottom-quark decays,
which indicate that Lepton Flavour Universality (LFU) may be violated. These
small deviations, the so-called b-anomalies, have been observed in the two decay
channels b → cℓν̄ and b → sℓℓ. To ensure that the b-anomalies are not an underesti-
mation of the systematic uncertainties, we aim in this thesis to improve the precision
of flavour physics prediction while also providing insight on the tension between the-
ory prediction and experimental measurement by incorporating New Physics (NP)
effects and their impact on observables in the bottom-quark decay.

This dissertation is written in the form of a cumulative work based on our six
articles, four of which have been published in international peer-reviewed journals
[1–4] and the remaining two are being prepared for publication [5, 6]. First, we
investigate the background signals of the inclusive decay B → Xcℓν̄ that is relevant
for the extraction of |Vcb|. In order to increase precision, we argue that removing the
background signals from Monte-Carlo simulation data should be avoided because it
introduces uncertainties. Instead, we can precisely compute the background signals
using Heavy Quark Expansion (HQE).

In addition, we investigate the LFU symmetry of the SM in the semileptonic
B → Xcℓν̄ decays. Ratios of branching fractions between decays are used to probe
the LFU hypothesis, where our calculation of the LFU ratios for the SM takes into
account the mass effects in the total decay rate. We provide updated results for the
branching ratio of B → Xcτ ν̄. If there is a difference between SM predictions and
experimental data, this could indicate the presence of NP impacts.

We also investigate the possibility of NP effect in the inclusive semileptonic
B → Xcℓν̄ decay. The calculations rely on the HQE and use non-perturbative
parameters extracted from decay spectra. The extraction of HQE parameters is
done assuming the SM, but we explore the idea that NP effects might be hidden in
the HQE parameters. The primary goal is to lay the groundwork for a global fit
analysis that includes the full basis of NP operators, allowing for the extraction of
HQE parameters and consequently an updated result for |Vcb| with NP effects.

In the baryonic decay channel we investigate the possibility of the Lepton Flavour
Violation (LFV) for the exclusive decay Λb → Λℓ−

1 ℓ
+
2 using a full basis of NP oper-

ators for the first time. We investigate the branching ratio and forward-backward
symmetry of the decay quantitatively using both a model-independent and model-
dependent approach. We emphasize that the baryonic decay constrains the NP
Wilson coefficients differently from the mesonic decay, which has the potential to
further constrain the allowed parameter space for NP models. We can also improve
the constraint of the NP models by reducing the hadronic uncertainties caused by
the ten independent local form factors of Λb → Λ. To improve the control of the
uncertainties, we introduce a new parametrization for the local form factors in which
the form factor parameters are bounded due to orthonormal polynomials that diag-
onalize the form factor contribution within their respective dispersive bounds. We
show, using a Bayesian analysis of available lattice QCD data, that our model pro-
vides excellent control over systematic uncertainty when extrapolating to the region
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of large hadronic recoil.
As part of this thesis’s final project, we investigate the light-cone distribution

amplitude (LCDA) of the B meson. We are particularly interested in three-particle
LCDAs, which can be found in higher dimensional vacuum-to-meson matrix ele-
ments. These matrix elements can be parametrized in terms of two parameters.
To estimate the parameters, we propose alternative diagonal QCD sum rules. The
sum rules of our new approach have the advantage of being positive definite, which
means that we expect the quark-hadron duality to be more accurate than the pre-
vious studied sum rules.
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Zusammenfassung

In den letzten Jahren wurden kleine Abweichungen zwischen experimentellen Mes-
sungen und Vorhersagen des Standardmodells (SM) bei Bottom-Quark-Zerfällen be-
obachtet, was auf eine Verletzung der Lepton Flavour Universalität (LFU) hindeuten
könnte. Diese Abweichungen, die sogenannten b-Anomalien, wurden in den beiden
Zerfallskanälen b → cℓν̄ und b → sℓℓ beobachtet. Um sicherzustellen, dass die b-
Anomalien nicht eine Unterschätzung der systematischen Unsicherheiten sind, zielen
wir in dieser Arbeit darauf ab, die Genauigkeit der Vorhersagen der Flavour-Physik
zu verbessern und gleichzeitig einen Einblick in die Spannung zwischen der theoreti-
schen Vorhersage und der experimentellen Messung zu geben, indem wir die Effekte
der Neuen Physik (NP) und ihre Auswirkungen auf die Observablen im Bottom-
Quark-Zerfall berücksichtigen.

Diese Dissertation ist in Form einer kumulativen Arbeit geschrieben, die auf
unseren sechs Artikeln basiert, von denen vier in internationalen, von Experten be-
gutachteten Zeitschriften veröffentlicht wurden [1–4] und die restlichen zwei sind in
Vorbereitung zur Veröffentlichung [5,6]. Zunächst untersuchen wir die Hintergrund-
signale des inklusiven Zerfalls B → Xcℓν̄, der für die Extraktion von |Vcb| relevant
ist. Um die Genauigkeit zu erhöhen, argumentieren wir, dass die Subtraktion der
Hintergrundsignale aus den Monte-Carlo-Simulationsdaten vermieden werden sollte,
da dies Unsicherheiten mit sich bringt. Stattdessen können wir die Hintergrundsi-
gnale mithilfe der Heavy Quark Expansion (HQE) präzise berechnen.

Darüber hinaus untersuchen wir die LFU-Symmetrie des SM in den semilepto-
nischen B → Xcℓν̄ Zerfällen. Unsere Berechnung der LFU-Verhältnisse für das SM
berücksichtigt die Masseneffekte in der Gesamtzerfallsrate. Wir liefern aktualisier-
te Ergebnisse für das Verzweigungsverhältnis von B → Xcτ ν̄. Die Verzweigungs-
verhältnisse zwischen den Zerfällen werden verwendet, um die LFU-Hypothese zu
überprüfen. Wenn es einen Unterschied zwischen den SM-Vorhersagen und den ex-
perimentellen Daten gibt, könnte dies auf das Vorhandensein von Auswirkungen der
Neuen Physik hinweisen.

Wir untersuchen auch die Möglichkeit eines NP-Effekts im inklusiven semilep-
tonischen B → Xcℓν̄ Zerfall. Die Berechnungen beruhen auf der HQE und ver-
wenden nicht-perturbative Parameter, die aus Zerfallsspektren extrahiert werden.
Die Extraktion der HQE-Parameter erfolgt unter der Annahme des SM, aber wir
untersuchen die Idee, dass NP-Effekte in den HQE-Parametern versteckt sein könn-
ten. Das primäre Ziel ist es, den Grundstein für eine globale Fit-Analyse zu le-
gen, die die gesamte Basis der NP-Operatoren einschließt und die Extraktion von
HQE-Parametern und folglich ein aktualisiertes Ergebnis für |Vcb| mit NP-Effekten
ermöglicht.

Im baryonischen Zerfallskanal untersuchen wir erstmals die Möglichkeit der Lep-
ton Flavour Violation (LFV) für den exklusiven Zerfall Λb → Λℓ−

1 ℓ
+
2 unter Ver-

wendung einer vollständigen Basis von NP-Operatoren. Wir untersuchen das Ver-
zweigungsverhältnis und die Vorwärts-Rückwärts-Symmetrie des Zerfalls quantita-
tiv sowohl mit einem modellunabhängigen als auch mit einem modellabhängigen
Ansatz. Wir betonen, dass der baryonische Zerfall die NP-Wilson-Koeffizienten an-
ders einschränkt als der mesonische Zerfall, was das Potenzial hat, den zulässigen
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Parameterraum für NP-Modelle weiter einzuschränken. Wir können auch die Ein-
schränkung der NP-Modelle verbessern, indem wir die hadronischen Unsicherheiten
reduzieren, die durch die zehn unabhängigen lokalen Formfaktoren von Λb → Λ ver-
ursacht werden. Um die Kontrolle der Unsicherheiten zu verbessern, führen wir eine
neue Parametrisierung für die lokalen Formfaktoren ein, bei der die Formfaktorpa-
rameter aufgrund der Verwendung von orthonormalen Polynomen begrenzt sind, die
den Formfaktorbeitrag innerhalb ihrer jeweiligen dispersiven Grenzen diagonalisie-
ren. Anhand einer Bayes’schen Analyse verfügbarer Gitter-QCD-Daten zeigen wir,
dass unser Modell eine ausgezeichnete Kontrolle über die systematische Unsicherheit
bei der Extrapolation in den Bereich des großen hadronischen Rückstoßes bietet.

Im Rahmen des Abschlussprojekts dieser Arbeit untersuchen wir die Lichtkegel-
verteilungsamplitude (LCDA) des B-Mesons. Wir interessieren uns besonders für die
LCDAs von drei Teilchen, die in höherdimensionalen Vakuum-Meson-Matrixelementen
gefunden werden können. Diese Matrixelemente können mit zwei Parametern pa-
rametrisiert werden. Um die Parameter abzuschätzen, schlagen wir alternative dia-
gonale QCD-Summenregeln vor. Die Summenregeln unseres neuen Ansatzes haben
den Vorteil, dass sie positiv definit sind, was bedeutet, dass wir erwarten, dass die
Quark-Hadron-Dualität genauer ist als die bisher untersuchten Summenregeln.
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Chapter 1

Introduction

By creating scientific theories founded on logical principles, humanity has gathered
essential information and understanding of the underlying workings of the universe.
We are able to predict one of the most extreme events in the universe by comparing
theoretical hypotheses with empirical data obtained through experimental measure-
ments, such as the primordial energy inferno that occurred a split of a second after
the Big Bang [7]. One revolutionary idea that developed in the early 20th century is
quantum physics, which explains certain observations of the universe that are incom-
patible with classical physics understanding of the universe at the time. During the
same time period, crucial experimental findings regarding the electron [8], proton [9],
and neutron [10] − at that time believed to be the three basic building blocks of
matter − were made, laying the groundwork for fundamental particle physics. The
goal of elementary particle physics is to use the simplest set of physical principles to
describe the fundamental constituents of nature and their interactions. The Stan-
dard Model (SM) of particle physics provides the best understanding of nature in
these terms. The SM is a quantum field theory that describes the interactions of
all known fundamental particles and provides precise predictions of a wide range
of events and particle processes [11–13]. But like every theory, this one has certain
drawbacks as well. For example, there are 18 free parameters in the SM that are not
predicted by the theory. Six quark masses, three gauge couplings, two Higgs poten-
tial parameters, three charged-lepton masses and four Cabibbo-Kobayashi-Maskawa
(CKM) quark-flavour mixing parameters that need to be determined experimentally.
Specifically quark-flavour mixing parameters are affected by weak quark transitions
and can be over-constrained by many independent processes to test the Standard
Model. Disagreements between theory and experiment would hint the presence of
New Physics (NP).

Only the electromagnetic, strong, and weak forces are explained in the SM, which
makes it evident that the SM is not a full theory of nature. This is because general
relativity is not sufficiently described as a quantum field theory.

Furthermore, based on cosmological studies, it is estimated that just around 5
% of the known matter is described in the Standard Model. Dark matter and dark
energy make up the remaining 95 %, which the SM is unable to explain. Even
though it is obvious that SM is not the full theory of nature, it is nevertheless a very
practical and useful theory that can be applied at specific energy scales. Comparable
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to special relativity, which is a more general theory that applies when approaching
the speed of light, classical mechanics is still a very useful and practical theory for
the explanation of macroscopic phenomena where velocities are much lower than the
speed of light.

Nonetheless, the incredible collaborative theoretical and experimental effort over
the last few years has enabled us to test the Standard Model of particle physics with
unprecedented precision. This revealed various small deviations between theoretical
predictions and experimental measurements, specifically in semileptonic B meson
decays. These small deviations are known as b-anomalies, which point to a viola-
tion of the Lepton Flavour Universality (LFU). This is surprising given that LFU
is a fundamental property of the SM. It is possible to categorize the b-anomalies
into two groups: 1) deviations from the µ/e universality in the b → sℓℓ transitions,
and 2) deviations from the τ vs. light leptons universality in the b → cℓν̄ tran-
sitions. But this is not limited to semileptonic mesonic decay only; it could also
apply to semileptonic baryonic decay, such as Λb → Λ ℓ+

1 ℓ
−
2 where ℓ−

1 , ℓ
+
2 are two

different leptons, which is forbidden in the Standard Model. Another discrepancy
in the semileptonic B meson decay is the puzzling tension between the exclusive
B → D(∗)ℓν̄ and inclusive B → Xcℓν̄ determination of the CKM element |Vcb|,
which may indicate the presence of NP. The inclusive decay sums up all of the
kinematically possible final states of hadrons labeled by Xc, where Xc denotes a
charm-quark containing hadron. The exclusive decay, on the other hand, fully spec-
ifies the initial and final states of semileptonic decay. While the inclusive decay
alone relies on the Heavy Quark Expansion and the derivation of non-perturbative
parameters from data, the exclusive decays require knowledge of the form factors.
At the current state, the inclusive determination of |Vcb| has reached an impressive
relative uncertainty of 1.2 − 1.5% [14, 15]. There are a few more soft spots in the
SM, where tensions between theoretical predictions and experimental measurements
can be observed, which are all in the flavour sector of leptons and quarks. In light
of recent and possibly future experimental data, there are three reasons why it is
important to increase the precision of theoretical predictions. First to determine if
the b-anomalies are simply an underestimate of systematic uncertainties, statistical
fluctuations or evidence of NP. Second, in order to further constrain NP effects, even
if the b-anomalies are not confirmed as evidence of NP effects, greater theoretical
prediction precision is necessary. Third, in order for the theory to keep up with the
more precise data that will be made available by LHC Run II and Belle II, more
precision is required.

Therefore, we have made it our goal in this thesis to improve the precision of
semileptonic bottom-quark decays in both inclusive and exclusive while also exam-
ining the implications of potential NP effects.

The thesis is organized as follows. In Chapter 2, we will give a brief introduction
to the SM. In Chapter 3, we will introduce the concept of effective theories and
discuss the aspects of Heavy Quark Effective Theory. We explore the inclusive
semileptonic decay of the B meson in Chapter 4 and provide an overview of how
to derive the fully differential decay rate and discuss the relevant observables that
are subject for this thesis. We discuss the QCD sum rule method and demonstrate
how to derive a sum rule explicitly in Chapter 5. Six applications are presented in
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the following chapters 6 – 11, in which the heavy quark methods are used to either
improve precision or investigate the potential impacts of NP effects in bottom-quark
physics. All of these applications have already been published [1–4] or have been
submitted to a peer-reviewed journal [5, 6].

In Chapter 6 we discuss the background process b → u and b → c(τ → ℓν̄ν)ν̄.
For the extraction of the CKM element |Vcb| we need to subtract the background
decay from the experimental measured decay channel B → Xℓ. The background
signal is subtracted in the Belle experiment using generator-level Monte Carlo data.
Hence, we decided to discuss the calculation of the background signals within the
framework of Heavy Quark Expansion (HQE). We compare our results qualitatively
to the Monte Carlo data and argue that more precise measurements of |Vcb| can be
obtained by using the HQE results instead.

We make predictions for the inclusive B → Xcℓν̄ℓ LFU ratios in Chapter 7.
These inclusive ratios serve as a critical cross-check of the exclusive B → D(∗)ℓν̄ℓ
modes, where tensions exist between predictions and measurements.

In Chapter 8 we study the effects of the full basis of the NP operators in the
Weak Effective Theory on the inclusive semileptonic channel B → Xcℓν̄ for the
first time. We argue that NP could influence the moments of the inclusive decay.
We compute the lepton energy, hadronic and leptonic invariant mass moments for
different toy NP scenarios in order to illustrate the potential impacts of the theory
and we compare the results to SM predictions and experimental measurements. We
discuss how our findings could be used to perform a global fit that includes NP
contributions.

In Chapter 9, we discuss Lepton Flavour Violation (LFV) for the baryonic decay
Λb → Λℓ−

1 ℓ
+
2 using a full basis of New Physics operators for the first time as well. In a

model-independent framework and using two specific new physics models, we present
expected bounds on the branching ratio. Finally, we highlight the orthogonality of
the baryonic and mesonic LFV searches.

In Chapter 10 we investigate the ten local form factors of the Λb → Λℓ+ℓ− decay
by combining information of lattice QCD and dispersive bounds. We discuss that
our new approach provides a degree of control of the form-factor uncertainty at the
large hadronic recoil region.

In Chapter 11, we obtain new estimates for the two parameters that appear in
the second moments of the B meson light-cone distribution amplitudes, as defined
in the Heavy Quark Effective Theory. We consider the two-point QCD sum rule for
the diagonal correlation function and compare our results with prior findings in the
literature.

In the final Chapter 12 of this thesis, we summarize and discuss our results.
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Chapter 2

The Standard Model

Many theories emerged during the 1970s to explain the identities and properties
of elementary particles, as well as the forces that act between them. The Stan-
dard Model emerged as a collection of theories that have survived to the present
day [11, 12, 16, 17]. In the SM, particles with spin 1/2 are called fermions. The
fermions are classified into two types of particles: quarks and leptons. Each group
consist of six particles, which are assigned to three generations, see Table 2.1. In ad-
dition to quantum numbers such as electromagnetic charge, spin and parity, quarks
carry another quantum number known as colour. According to the SM, each particle
has their own anti-particle, which has the same mass but opposite electric charge
Q. Particles with spin 1 are called gauge bosons. The gauge bosons serve as media-
tors and the interactions are characterized by local gauge symmetries. The photon
mediates the electromagnetic interaction, which is associated with charged particles
and is a U(1)Q gauge group. The theory of photons as well as their interactions with
charged fermions are described by Quantum Electrodynamics (QED). Z0 and W±

bosons mediate the weak interaction. Whilst the W± boson have an electromagnetic
charge and thus can interact with the electromagnetic force. However, they exclu-
sively interact with left-handed particles. Contrarily, the Z0 boson is electric neutral
and can interact with both left- and right-handed particles. The theory of electro-
magnetic and weak interaction can be unified under the gauge group SU(2)L⊗U(1)Y ,
which spontaneously breaks down to U(1)Q. The gauge group SU(2)L is associated
with the weak isospin I and the group U(1)Y with the hypercharge Y . The strong
interaction is experienced by quarks and gluons carry the force. This is a gauge the-
ory in which the three coloured states of each flavour belong to the group SU(3)C
triplet representation. Note that, the gauge group SU(3)C is associated with the
colour charge C. The theory of the strong interaction is described by Quantum
Chromodynamics (QCD); for more information, see Section 2.3. Finally, the last
particle in the SM is the Higgs boson and was discovered in 2012 [18,19]. The Higgs
mechanism, which explains how the gauge bosons W± and Z0, the quarks and the
leptons acquire masses while maintaining gauge symmetry at the quantum level, is
related to the Higgs boson, which was first proposed in the 1960s [20–23].

An overview of the Standard Model can be found in Refs. [24–28].
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Generations
1 2 3 Charge Q Spin s

Quarks(
u
d

) (
c
s

) (
t
b

)
+2

3
−1

3

1
2
1
2

Leptons(
νe
e

) (
νµ
µ

) (
ντ
τ

)
0

−1
1
2
1
2

Gauge bosons
Photon γ 0 1
gluon g 0 1
Z0,W± 0,±1 1
Higgs H0 0 0

Table 2.1: Fundamental particle content of the Standard Model, which includes
quarks, leptons and gauge bosons and their quantum numbers; electromagnetic
charge and spin.

2.1 Electroweak sector
The electroweak sector of the Standard Model unifies the theory of electromagnetic
and weak interactions, which was originally developed by Glashow, Weinberg and
Salam [11,12,16]. The electroweak theory is based on the symmetry group SU(2)L⊗
U(1)Y , where fermions are forming left-handed doublets and right-handed singlets
according to the group SU(2)L. In the following we define left- and right-handed
fields as:

ψL,R = 1 ∓ γ5

2 ψ , (2.1)

where ψ represents the fermion field. The symmetry group U(1)Y transforms the
fermion field to obtain the quantum number Y . The Gell-Mann-Nishijima formula
relates the electromagnetic charge Q, hypercharge Y and the third component of
the weak isospin T3 to each other

Q = T3 + Y

2 , (2.2)

where the weak isospin describes the coupling of the particle with the gauge bosons
in the weak interactions, similar to the electromagnetic charge in QED.

The Lagrangian density of the electroweak sector consists of a gauge boson part,
Higgs part, fermion part and a Yukawa part, which describes the interaction between
fermionic and Higgs field. The Lagrangian can be expressed as:

LEW = LG + LH + LF + LY . (2.3)

The gauge bosonic part of the electroweak theory is defined as:

LG = −1
4
(
W a
µνW

µν
a +BµνB

µν
)
, (2.4)
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where the field strength tensors are given as

Bµν = ∂µBν − ∂νBµ for U(1)Y , (2.5)
W a
µν = ∂µW

a
ν − ∂νW

a
µ − g′ϵabcW b

µW
c
ν for SU(2)L . (2.6)

The gauge bosons of the electroweak interactions W±, Z0 and γ can be defined via
the gauge fields of Eq. (2.5) and (2.6).

The gauge bosons W± can be expressed as:

Wµ = 1√
2
(
W 1
µ ± iW 2

µ

)
, (2.7)

where the sign ± denotes the electromagnetic charge of the gauge boson. As already
mentioned, the Z0 boson can couple to left- and right-handed particles. However,
the W 3

µ gauge field can only couple to left-handed particles to preserve the isospin.
Additionally, the gauge field Bµ can not be directly related to the photon γ, since
Bµ can also couple with electromagnetic neutral neutrinos in contrast to the photon.
By writing a combination of the two gauge fields W 3

µ and Bµ, we can express the
two gauge bosons in the following:(

Zµ
Aµ

)
=
(

cos θW sin θW
− sin θW cos θW

)(
W 3
µ

Bµ

)
, (2.8)

where the θW is called Weinberg angle and is defined as:

cos θW = g√
g2 + g′2 . (2.9)

Under the symmetry group SU(2)L ⊗ U(1)Y the gauge bosons are massless to pre-
serve the gauge invariance. The acquiring of the mass will be through spontaneous
symmetry breaking of SU(2)L ⊗ U(1)Y → U(1)Q. The local symmetry breaking is
known as Higgs mechanism, where the Lagrangian density is given as:

LH = (Dµϕ)† (Dµϕ) − V (ϕ) . (2.10)

The complex Higgs field doublet is expressed in ϕ and the covariant derivative Dµ

is defined as:

Dµ = ∂µ + i
g

2Bµ − ig′T aW a
µ , (2.11)

where T a are the generators of SU(2)L. The potential V (ϕ) = −µ2|ϕ|2 + λ|ϕ|4,
where µ2, λ > 0 breaks the gauge symmetry spontaneously by means of the Higgs
mechanism. Hence, the field ϕ has a non-zero vacuum expectation value, where the
minimum is given as:

v =
(
µ2

2λ

)1/2

. (2.12)

The Higgs doublet has four real-valued component, but by choosing the unitary
gauge transformation we can parametrize the Higgs doublet as:

ϕ(x) = 1√
2

(
0

v + h(x)

)
, (2.13)
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where h(x) describes the Higgs boson and is a real-valued field. Finally, by inserting
Eq. (2.13) into Eq. (2.10) the electroweak gauge bosons W±, Z0 will acquire mass
terms. Moreover, the Higgs boson acquire the mass mh =

√
2µ. Since the symmetry

group U(1)Q is unbroken under the Higgs mechanism by construction, the photon
remains massless. The fermionic part of the electroweak sector is described by the
following Lagrangian density:

LF =
∑
ψ

ψ̄Li /DLψL + ψ̄Ri /DRψR . (2.14)

The covaiant derivatives are defined as:

(DL)µ = ∂µ + i
g

2YLBµ − ig′T aW a
µ , (2.15)

(DR)µ = ∂µ + i
g

2YRBµ , (2.16)

where YL,R denotes the hypercharge quantum number. To obtain the boson-fermion
interaction terms, we insert the definiton of the covariant derivative in Eq. (2.15),
(2.16) and also the definition of the gauge bosons in Eq. (2.7), (2.8) into the La-
grangian LF :

LF ⊇ LψW + LψA + LψZ (2.17)

with

LψW = g√
2
∑
ψ

[
ψ̄dLγµψ

u
LW

µ + h.c.
]
, (2.18)

LψA = −e
∑
ψ

Qψψ̄γµψA
µ , (2.19)

LψZ = g

4 cos θW
∑
ψ

[
ψ̄uγµ(1 − 4Qu sin2 θW − γ5)ψu

−ψ̄dγµ(1 + 4Qd sin2 θW − γ5)ψd
]
Zµ , (2.20)

where γµ are the Dirac matrices. Up until now, the fermionic part is still massless.
Within the electroweak sector, the Yukawa part of the LY describes the interaction
between fermion fields and Higgs fields and consequently explains how fermions
acquire their mass terms. We can split the Lagrangian into two parts:

LY = Lleptons
Y + Lquarks

Y . (2.21)

The first Yukawa part explains the interaction between lepton and Higgs field:

Lleptons
Y = −Y (ℓ)

ij

(
L̄iLϕ(x)

)
ℓjR + h.c. . (2.22)

The quantity Y ℓ is the 3 × 3 Yukawa matrix for leptons, LiL = (νiℓ, ℓi)
T is the

left-handed doublet with ℓi = e, µ, τ and ℓjR are the right-handed singlets. Except
for neutrinos, the leptons acquire mass terms by inserting the Higgs field from Eq.
(2.13) into Eq. (2.22).

In Section 2.2 we will go into greater detail about the second part of the La-
grangian in Eq. (2.21).
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2.2 The Cabbibo-Kobayashi-Maskawa Matrix
The quark masses are obtained by the Yukawa interaction term:

Lquarks
Y = −Y (d)

ij Q̄i
Lϕ(x)d̄jR − Y

(u)
ij Q̄i

Lϕ̄(x)uiR + h.c. , (2.23)

where Y (u,d) is the Yukawa matrix of the down-type quarks (d, s, b) and up-type
quarks (u, c, t). The quantity Qi

L = (uiL, diL)T with ui = (u, c, t) and di = (d, s, b)
is the left-handed doublet. The fields uiR and diR are the right-handed quark fields.
Through the Higgs mechanism we obtain the mass terms, which is proportional to
the Higgs vacuum-expectation value. Hence, we can express the Yukawa part as:

Lquarks
Y ⊇ − v√

2
(
Y

(d)
ij d̄iLd

j
R + Y

(u)
ij ūiLu

j
R + h.c.

)
. (2.24)

We diagonalize the bilinear terms with four 3 × 3 matrices V u,d
L,R, which yields the

mass eigenstates:

u′
L,R = V u

L,RuL,R , d′
L,R = V d

L,RdL,R . (2.25)

We define the diagonal mass matrices in the following way:

Mq = v√
2
V q
LY

(q)V q†
R with q = u, d . (2.26)

When we insert the the definition of the mass eigenstates in Eq. (2.25) for the quark
fields, the two Lagrangian density LψA and LψZ remain invariant due to unitarity
property of matrices V u,d

L,R. However, the Lagrangian density LqW in Eq. (2.18)
will have a product of unitarity matrices, which is known as Cabbibo-Kobayashi-
Maskawa (CKM) matrix [29,30]:

VCKM = V u
L · V d†

L =

 Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb

 , VCKM · V †
CKM = 1 . (2.27)

Moreover, the quark sector takes the form of:

LqW = g√
2
(
ū′
Lγ

µW+
µ + d̄′

Lγ
µW−

µ u
′
L

)
= g√

2
(
ūLγ

µVCKMW
+
µ d̄LV

†
CKMγ

µW−
µ uL

)
. (2.28)

Hence, the quark flavour can be changed when the interaction involves a charged
weak vector boson. The CKM matrix element is proportional to the transition of
down- to up-type quarks or vice versa. Transitions are possible not only between
quarks of the same generation, but also between quarks of different generations.

The experimental measurements show that the entries of the CKM matrix are
hierarchy based. In other words, transitions of different quark flavours between
different quark generations are suppressed, which is known as CKM suppression. In
fact, the CKM matrix is almost a unit matrix, where the matrix elements decrease
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Figure 2.1: Unitarity triangle.

in size with increasing distance to the diagonal. The CKM matrix has three real
angles and one phase that generates CP violation for three generations of quarks.
The CKM matrix can be parametrized in terms of the four parameters A, λ, ρ, η,
which was proposed by Wolfenstein [32]. In the Wolfenstein parametrization, the
CKM matrix is expanded in λ ≃ 0.22:

VCKM =

 1 − λ2/2 λ Aλ3(ρ− iη)
−λ 1 − λ2/2 Aλ2

Aλ3(−ρ− iη) −Aλ2 1

+ O(λ4) . (2.29)

By means of unitarity, we can display the CKM matrix as a triangle, in which
unitarity implies:∑

i

VijV
∗
ik = δjk ,

∑
j

VijV
∗
kj = δik . (2.30)

The above equation yields six vanishing combinations. A commonly used unitarity
relation is given as:

VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0 ⇒ 1 + VudV

∗
ub

VcdV ∗
cb

+ VtdV
∗
tb

VcdV ∗
cb

= 0 . (2.31)

A schematically illustration of the triangle based on Eq. (2.31) is shown in Fig. 2.1.
To obtain even more precise results, the apex of the triangle can be further

constrained using several independent channels and approaches, which is given as:

ρ̄+ iη̄ = VudV
∗
ub

VcdV ∗
cb

. (2.32)

Following the notation of [33], we can define the relation:

ρ+ iη =
√

1 − A2λ4(ρ̄+ iη̄)√
1 − λ2 (1 − A2λ4(ρ̄+ iη̄))

. (2.33)

The unitary triangle apex has been constrained significantly over the past ten years,
as seen in Figure 2.2.
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(a)

(b)

Figure 2.2: The constraints from the CKM fitter group in 2004 are shown in Fig.
(a) and the most recent result from 2021 is shown in Fig. (b) [31].

2.3 Quantum Chromodynamics
In this section we briefly discuss the framework of QCD, which describes the strong
interaction. The non-abelian group SU(3)C serves as the gauge group for QCD.
The group introduces the colour charge, where quarks and gluons can adopt three
different colours and transforms as triplets under SU(3)C . Because leptons do not
have a colour charge, they are not affected by the strong interaction.

In QCD, the local gauge transformation of the fields is written as:

ψ(x) → eiθ
ataψ(x) with a = 1, .., 8 . (2.34)

The quantity θa describes arbitrary functions and ta are the the SU(3) generators.
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The Lagrangian density of QCD is given as:

LQCD = −1
4G

µν
a G

a
µν +

∑
ψ

ψ̄
(
i /D −mψ

)
ψ , (2.35)

where ψ denotes the quark fields. When we substitute the partial derivative with
the covariant derivative, the Lagrangian LQCD becomes gauge invariant:

Dµ = ∂µ − igst
aAaµ , (2.36)

where gs is the strong coupling constant and Aaµ the gluon field. The commutation
relation of the generators are given as:

[ta, tb] ≡ ifabctc . (2.37)

Note that, fabc is the structure constant of SU(3). The field strength of the gluon
is defined as:

Gµν = Ga
µνt

a = i

gs
[Dµ, Dν ] . (2.38)

By inserting Eq. (2.36) into the gluon field strength we obtain:

Ga
µν = ∂µA

a
ν − ∂νA

a
µ + gsf

abcAbµA
c
ν . (2.39)

The non-abelian SU(3) group differs significantly from the abelian U(1) group. For
starters, the structure constants fabc are zero for abelian groups but non-zero for
non-abelian groups. When we insert Eq. (2.39) into Eq. (2.35) we see that the gluon
fields obtain third and fourth powers of the gauge fields, which translates to gauge
field self-interaction, a phenomenon not found in QED. The behavior of the running
coupling constant is another point in which QCD and QED differ significantly, see
Figure 2.3. Contrary to what the name implies, a coupling constant is not a constant
but rather depends on the energy scale µ. The coupling constant is determined by
the renormalisation scale µR. At the one-loop approximation, the running of the
strong coupling constant is given as [34]:

αs(µ, µR) = αs(µR)
1 + αs(µR)

12π (11Nc − 2nf ) log (µR/µ)
, (2.40)

where αs = g2
s/4π, the number of colours is denoted with Nc, while the number of ac-

tive quark flavours with nf . In contrast to QCD, the coupling constant of the abelian
gauge group of QED increases with the energy until it diverges, which is known as
the Landau pole. As a result, the coupling constant increases over short distances.
The strong coupling constant decreases for Nc = 3 and nf < 6 for short ranges and
high energy scales , i.e. αs(µ → ∞) → 0. This is known as asymptotic freedom [35].
However, QCD becomes non-perturbative for large distances and low energy scales
αs(µ → 0) → ∞ with quark confinement as a consequence. In other words, larger
distance between quarks increases the energy stored in the gauge fields such that a
new quark-antiquark pair can be created. The QCD scale ΛQCD describes the energy
scale on which the strong coupling constant diverges. This is called hadronisation
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(a) (b)

Figure 2.3: The coupling constant in QED (a) and QCD (b) is depicted schemati-
cally.

and takes place on the timescale of O(10−24 s). The hadronisation of the quarks im-
plies that they only exist in bound states called hadrons. Mesons (quark-antiquark
pair) and baryons (three quarks) are two sub-types of colour neutral hadrons.
Due to the non-perturbative nature, it is quite difficult to compute hadronic quan-
tities in QCD for low energy scales. The idea of effective field theories, such as
Heavy Quark Effective Theory, is important to perform such calculation in order to
overcome this challenge. More details about effective theories will be discussed in
Chapter 3.

2.4 Limitations of the Standard Model
Despite being one of the most powerful and precise theories in physics, the Stan-
dard Model cannot explain all natural phenomena and has some inconsistencies with
experimental measurements. In this section, we briefly discuss some notable short-
comings of the SM that motivate us to continue studying for a more fundamental
theory of nature.

One of the fundamental forces in the universe is not explained within the frame-
work of SM, namely gravity. The reason for this is that the gravitational force is
several orders of magnitude weaker than the other fundamental interactions. The
gravitational interaction becomes relevant at order of the Planck scale O(1019 GeV).
At this scale, however, the SM becomes incompatible with another extremely suc-
cessful theory, namely general relativity [36–39]. Furthermore, based on the cosmic
microwave background, the rotational curves of the galaxies and the absorption
lines of the hydrogen all indicate that there must be more matter than we visibly
see [40,41]. We observe that this non-baryonic matter does not or very rarely inter-
act with particles of the SM. This unknown matter must be explained by physics
beyond the SM and it is called dark matter [42]. Moreover, the vacuum energy of
the SM might not explain the accelerated expansion of the universe. Therefore, the
concept of dark energy has been introduced to fill the gap [43,44]. It has been shown,
that only 5% is visible matter and energy described by the SM. The universe consist
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of 27% of dark matter and 68% dark energy based on the latest measurements of
the Planck telescope within the ΛCDM model [45].

The question: why the universe exist of matter without antimatter is also a
unsolved mystery. This is puzzling, because after the big bang, we assume that
matter and antimatter are distributed equally. The matter-antimatter asymmetry
may be explained by later processes of CP violation, baryon number violation and
interactions out of thermal equilibrium can caused an excess of matter [46]. However,
only CP violations in weak decays have been experimentally observed, which is
insufficient to explain the universe’s matter-antimatter asymmetry [47–51].

In addition, neutrinos are assumed to be massless in the SM but it has been
observed that neutrinos have a small mass. The oscillations in the neutrino flavour
have been observed in solar neutrinos, atmospheric neutrinos, reactor neutrinos and
neutrino beams by detecting a deficit in the predicted flavour and an enhancement
of other neutrino flavors [52–59]. The mass eigenstates are linear combinations of the
flavour eigenstates. This is realised through the Pontecorvo–Maki–Nakagawa–Sakata
matrix, which is in analogy to the CKM matrix [60, 61]. As mentioned before, the
neutrino mass is very small compared to the other particle content in the SM, which
raises the question if they are generated by the Higgs mechanism.

Another mystery is why we only observe three generations of leptons and quarks,
whose masses change by orders of magnitude across generations. The fact that the
electroweak scale is significantly smaller than the Planck scale, which is the root of
the hierarchy problem, is also not explained within the framework of the Standard
Model.

There are also examples of observables with high precision predictions from the-
ory and experimental measurements with small deviations. The most prominent
example would be the measurement of the anomalous magnetic moment of muons,
which is predicted by QED with high precision [62]. The experiment shows a 4.2σ
deviation, which may indicate the presence of NP effects.
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Chapter 3

Effective Theories

Problems with separated scales appear frequently in nature and we intuitively un-
derstand that it is most convenient to only work with degrees of freedom that are
relevant at a specific scale. Otherwise, the problem quickly becomes intractable.
Effective theories are distinguished by the absence of degrees of freedom that are
irrelevant to the typical energy or distance scale of the problem in the Lagrangian.
The calculation of heavy particle interaction at low energy scale is a common ap-
plication for effective theories. When the energy scale is smaller than the heavy
particle rest mass, it does not enter the final state and is therefore not a relevant
degree of freedom for the effective Lagrangian.

In general, the Hamiltonian of the full theory is given as:

⟨f | Hfull |i⟩ , (3.1)

where |i⟩ denotes the initial state while ⟨f | the final state of the transition. The
effective theory is build using a large energy scale Λ in comparison to the energies
of the considered process. At a lower energy scale E, we want to define the effective
theory so that E ≪ Λ. By introducing the µ cut-off scale with E ≪ µ < Λ we can
separate the fields into high energy modes and low energy modes. High energy modes
do not propagate over large distances; instead, they appear as virtual particles that
can be removed from the theory, whereas low energy modes represent the relevant
external states at the energy scale E. This is achieved by applying the path integral
to these modes, which is known as integrating them out. For more details we refer to
Refs. [63,64]. However, this results in a theory that is non-local on scales ∆xµ ∼ 1/Λ
due to the fluctuations of the high energy modes. Despite this, we can expand the
result of the non-local theory in powers of 1/Λ, yielding a theory of local operators
Ok that contains just the effective theory low-energy modes.

The expansion is described by an effective Hamiltonian:

⟨f | Heff |i⟩ =
∑
k

1
Λdk−4Ck(µ) ⟨f | Ok(µ) |i⟩ . (3.2)

The coefficient Ck is called Wilson coefficient and it describes the short-distance
physics above Λ, which we integrated out. The long distance physics is encoded
in the operators Ok. The factor in front of the Wilson coefficient is determined
by the operators mass dimension [Ok] = dk, such that the Wilson coefficients are
dimensionless.
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Figure 3.1: Illustration of the different energy scales in flavour physics.

The effective Hamiltonian in Eq. (3.2) does not depend on the energy scale µ.
However, the values of the Wilson coefficients depend on µ. The dependence of the
Wilson coefficients are encoded in the anomalous dimensions, which can be deter-
mined through the renormalization-group-equation. At low energy, each operator
Ok contributes with:

(
E

Λ

)dk−4
=


≫ 1 if dk < 4 ,
O(1) if dk = 4 ,
≪ 1 if dk > 4 .

(3.3)

The dimension of the operator determines its relevance at low energies. We can
systematically expand the series in Eq. (3.2) with E/Λ and truncate the series at a
given operator dimension.

In this thesis we will study the weak decay of heavy hadrons. The two transitions
that are interesting are b → sℓ+ℓ− and b → cℓν̄. The three relevant energy scales
are shown in Figure 3.1. In our case the energy scale of the heavy quark will be
µ = mb. The energy scale µEW denotes the electroweak scale and corresponds to
the mass of the W± boson. The size of the energy scales roughly:

O(ΛQCD) ∼ 0.2 GeV , O(mb) ∼ 4 GeV , µEW ∼ 80 GeV . (3.4)
Furthermore, a high energy scale ΛNP can be taken into account to describe new
physics phenomena. We assume that NP effects occur at far higher energy scales
than the electroweak scale since particle colliders such as the LHC have not measured
new degrees of freedom pushing NP to 1 TeV or higher.

Based on the energy hierarchy in Figure 3.1, one can define the following effective
theories:

• When µEW < µ < ΛNP, the appropriate framework is the Standard Model
Effective Field Theory (SMEFT) theory, which is built with the Standard
Model fields as light degrees of freedom and takes into account operators that
preserve the SM symmetries. For more details we refer to Refs. [65].

• The effective theory in the region mb < µ < µEW is the Weak Effective Theory
(WET). This EFT is used to describe the decays of heavy hadrons [66].

• For the region of ΛQCD < µ < mb we use the Heavy Quark Effective Theory
(HQET). This effective theory is applied to heavy quark field interactions.
Within this framework, we expand in inverse powers of mb the Hamiltonian of
the full SM interaction. This EFT will be more discussed in detail in Section
3.2.
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3.1 Weak Effective Theory
The Weak Effective Theory is an effective framework for describing heavy hadron
that decay weakly at the scale µ = mQ. Because the top-quark, W±, Z0, and Higgs
bosons are massive in comparison to the hadron mass, i.e. mHad ≪ mW±,Z0,H0,t the
heavy degrees of freedom associated with them can be integrated out.

In this thesis the weak semileptonic decay b → cℓν̄ plays a significant role. There-
fore, this decay will be taken as an example to see how the Hamiltonian changes.
Note that, we refer to Ref. [66] for more information on the effective Hamiltonian
of the transition b → sℓℓ. In the full Standard Model, the interaction of the Hamil-
tonian of the weak decay b → cℓν̄ is given as:

Hint
full(b → cℓν̄) = −

(
g′

√
2

)2

Vcb [ū(pc)γµPLu(pb)] [ū(pe)γνPLv(pν)]

× 1
q2 −m2

W

(
gµν − qµqν

m2
W

)
, (3.5)

where q = (pb − pc) and PL = (1 − γ5)/2 is the left-handed projector. Note
that, the mass of the bottom-quark is much smaller than the intermediate W bo-
son. Moreover, the maximum momentum that the W boson propagator transferred
q2

max = (mb−mc)2 is also small compared to m2
W . Hence, the propagator 1/(q2−m2

W )
can be approximated by −1/m2

W and the term qµqν/m
2
W can be neglected. The W

boson propagator can be expressed in the effective theory as:
1

q2 −m2
W

(
gµν − qµqν

m2
W

)
→ − gµν

m2
W

. (3.6)

Our effective Hamiltonian exhibits a four-fermion interaction:

Hint
eff (b → cℓν̄) = 4GFVcb√

2
[ū(pc)γµPLu(pb)] [ū(pe)γνPLv(pν)] , (3.7)

where GF is the Fermi constant and is given as
GF√

2
= g′2

8m2
W

. (3.8)

Before the W boson and the associated theory of weak interactions were discovered,
Enrico Fermi proposed the four-fermion coupling. Similarly, many physical theories
begin as a proposed full theory and then evolve into an effective theory of a more
comprehensive theory of nature. For more details on the framework of WET, see
Ref. [66].

3.2 Heavy Quark Effective Theory
The HQET, which describes systems with a single heavy quark, is introduced in
this chapter. We begin by discussing the derivation of the effective Lagrangian and
introducing the HQET Feynman rules. In the next section, we discuss the Heavy
Quark Symmetries (HQS) that are important features of HQET from a phenomeno-
logical point of view, since these HQS are constraining the non-perturbative matrix
elements at low energy scale.
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3.3 Construction of the effective Lagrangian
We can derive the Lagrangian of the effective theory in two different ways. In the
first approach we identify and integrate out the heavy degrees of freedom from the
functional integral [67], which follows directly the idea of EFT. The second approach
is based on the reduction of the Dirac equation into the non-relativistic form [68]
and then recursively constructing higher order terms of the Lagrangian. The latter
approach, however, does not follow the typical steps of how to construct the EFT.
Hence, in the following we discuss the first approach in detail more. Note that,
the two approaches will yield different results, but they can be related by a field
redefinition. Both approaches leads to the same results for physical quantities.

Following the machinery of Ref. [67], our starting point is the QCD Lagrangian:

LQCD = Q̄
(
i /D −mQ

)
Q+ Llight . (3.9)

Here, Q denotes the heavy quark field and Dµ is the QCD covariant derivative.
The Lagrangian Llight describes light quarks and gluons. For now we consider a
heavy meson which contains a heavy quark Q and a light quark q with momentum
pH = mH · v. The quantity mH denotes the mass of the meson and v the velocity
with v2 = 1. The momentum of the heavy quark can be decomposed into:

pµQ = mQv
µ + kµ , (3.10)

where the residual momentum is denoted with k, which satisfies |k| ∼ O(ΛQCD) ≪
mQ. Note that, the velocity v is a conserved quantity and not a dynamical degree of
freedom anymore in the heavy quark limit [69]. We redefine the heavy quark field,
where we extract the large part of the momentum into a phase:

Q(x) = e−imQv·x [hv(x) +Hv(x)] (3.11)

with

hv(x) = eimQv·xP+Q(x) and Hv(x) = eimQv·xP−Q(x) . (3.12)

The projectors in HQET are defined as:

P± = 1 ± /v

2 . (3.13)

The fields in Eq. (3.12) satisfy the following relations with the projectors:

P+hv(x) = hv(x) , P+Hv(x) = Hv(x) , P−hv(x) = P+Hv(x) = 0 . (3.14)

We can now re-express the QCD Lagrangian Eq. (3.9) now as:

LQCD = h̄vi(v ·D)hv − H̄v(iv ·D + 2mQ)Hv + h̄vi /D⊥Hv + H̄vi /D⊥hv , (3.15)

where we drop the Llight from now on. The covariant derivative D⊥ is defined
through Dµ = Dµ

⊥ + (v · D)vµ. The field hv is massless but the field Hv acquired
a mass term of 2mQ. The other terms are describing the couplings between Hv
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and hv. In the context of EFT, the field Hv denotes the heavy degrees of freedom,
while hv denotes the light degrees of freedom. For the construction of the EFT we
integrate out the heavy degrees of freedom. Therefore, we integrate over the field
Hv in the functional integrals. The generating functional that can be related to the
heavy field Hv can be expressed as:

Z[J, J̄ ] =
∫

DHvDH̄v exp
(

−i
∫

d4x
[
H̄vAHv − J̄Hv − H̄vJ

])
, (3.16)

where the external sources are defined as J̄ = h̄vi /D⊥, J = i /Dhv and A = i(v ·D) +
2mQ. The argument of the exponential function can be re-expressed by completing
the square and shifting the fields H̄v, Hv:

H̄vAHv + J̄Hv + H̄vJ =
(
H̄v − J̄A−1

)
A
(
Hv − A−1J

)
− J̄A−1J . (3.17)

As a next step, we can perform the Gaussian integration and identify the expression:

Z[J, J̄ ] =
∫

DHvDH̄v exp
(

−i
∫

d4xH̄vAHv

)
exp

(
i
∫

d4xJ̄A−1J
)

(3.18)

= πn/2
√
iDetA

exp
(∫

d4xJ̄A−1J
)

∼ exp
(
i
∫

d4xLHv
eff

)
. (3.19)

Note that, the determinant of Eq. (3.19) is a constant, i.e. it does not depend on
the gluon fields and thus has no physical effects. Hence, the effective Lagrangian
corresponding to the heavy field Hv is given as:

LHv
eff = J̄A−1J = h̄vi /D⊥

1
i(v ·D) + 2mQ

i /D⊥hv , (3.20)

where denominator denotes that the Lagrangian is non-local. Moreover, we can
obtain the same result with the replacement

Hv =
(

1
i(v ·D) + 2mQ

)
i /Dhv (3.21)

by using the equations of motion from Eq. (3.15). The propagator in Eq. (3.20)
takes the form of:

1
i(v ·D) + 2mQ

= 1
2mQ

∞∑
n=0

(
−i(v ·D)

2mQ

)n
, (3.22)

where v · D ≪ 2mQ. Based on Eq. (3.22) our effective Lagrangian can be written
as:

L1/mQ
= h̄vi(v ·D)hv − 1

2mQ

N∑
n=0

h̄v /D⊥

(
−i(v ·D)

2mQ

)n
/D⊥hv , (3.23)

where N is the truncation order. Finally, this is the expanded QCD Lagrangian up
to order O(1/mN+1

Q ), where the first term

LHQET = h̄vi(v ·D)hv (3.24)

represents a static heavy quark’s Lagrangian moving at four velocity v. This is
known as the HQET Lagrangian. Note that, we have a flavour and spin symmetry
that manifest in the first term. We will discuss these two symmetry in Section 3.5
in more detail.
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3.4 Feynman Rules of HQET
Here, we briefly introduce the Feynman rules of the HQET. The propagator of a
heavy quark is given as:

/p+mQ

p2 −m2
Q

= mQ/v + /k +mQ

2mQv · k + k2 −→ P+
1

v · k
, (3.25)

where mQ ≫ k. Hence, the HQET propagator is given as:

P+
i

v · k + iϵ
δab . (3.26)

The coefficient a, b = 1, ..8 are the colour indices in the adjoint representation of
SU(3). A vertex sandwiched between two propagators that are proportional to the
projector P+ can be replaced by the following way:

γµ → P+γ
µP+ = vµP+ → vµ . (3.27)

Thus, the heavy-quark-gluon vertex can be expressed as:

−igsvµtaij , (3.28)

where i, j = 1, 2, 3 are colour indices in the fundamental representation of SU(3).
Note that, the Feynman rules concerning the interaction of light quarks with gluon
and the self-interaction of gluons are remaining the same as in the full theory of
QCD.

3.5 Heavy Quark Symmetries
The HQS that arise in the limit mQ → ∞ are discussed in this section [70–72].
These HQS are significant HQET features, particularly when seen in the perspective
of phenomenology.

3.5.1 Flavour symmetry
The QCD Lagrangian has a flavour symmetry when the quarks become mass-
degenerated. The isospin symmetry results from the up- and down-quark degen-
eracy. Assuming that all quarks are massless, the chiral symmetry of QCD emerges.
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Because the colour charge of the quarks, rather than its mass, determines how quarks
and gluons interact. In the infinite mass limit this still remains true. Hence, the
flavour is no longer relevant when the heavy quark becomes a static source of colour.
For instance, we consider the Lagrangian of the transition b → c:

Lb→c
HQET = b̄vi(v ·D)bv + c̄vi(v ·D)cv =

(
b̄v, c̄v

)( i(v ·D) 0
0 i(v ·D)

)(
bv
cv

)
, (3.29)

where the velocities of the two heavy quarks are the same, i.e. v = v′. Eq. (3.29)
has a SU(2) symmetry and therefore for any unitary 2 × 2 matrix U we define the
transformation (

b′
v

c′
v

)
= U

(
bv
cv

)
(3.30)

in which the Lagrangian in Eq. (3.29) remains invariant.

3.5.2 Spin Symmetry
We can decompose the HQET Lagrangian into two spin components hv = h+s

v +h−s
v

by introducing a spin vector s with s · v = 0 and s2 = −1. Hence, we can express it
as:

h±s
v = S±hv with S± = 1

2(1 ± γ5/s) . (3.31)

The HQET Lagrangian can be expressed in terms of these projectors as:

LHQET = h̄+s
v i(v ·D)h+s

v + h̄−s
v i(v ·D)h−s

v (3.32)

=
(
h̄+s
v , h̄−s

v

)( i(v ·D) 0
0 i(v ·D)

)(
h+s
v

h−s
v

)
. (3.33)

Once again, we have a SU(2) symmetry and therefore for any 2 × 2 unitary matrix
U we define the transformation(

h+s
v

h−s
v

)′

= U

(
h+s
v

h−s
v

)
. (3.34)

In gauge theories, the interaction of the spin of a particle is given in the form of the
dimension-five operator σ⃗ ·B⃗ with coupling g/(2mQ), where σ⃗ are the Pauli matrices
and B⃗ denotes the chromomagnetic field in QCD and magnetic field in QED. It is
the QCD analogue of the Bohr magneton of the particle and consequently the spin
of a particle decouples in QCD.

The HQET Lagrangian remains invariant under the transformation. Similar as
in Section 3.5.1, this symmetry holds true only when the two heavy quarks have the
same velocities.
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3.5.3 Reparametrization Invariance
The last feature of HQET that will be discussed in this section is called reparametriza-
tion invariance (RPI). Recall that full QCD, which is Lorentz invariant, was our
starting point. It is obvious that when we introduce the velocity vector v our theory
is not Lorentz invariant anymore by fixing a direction that is arbitrary and could
also be slightly changed. The result of an HQET constructed with v and one con-
structed with v′ = v + δv should be the same, see Refs. [73–76]. By varying the
velocity:

v → v + δv and (v + δv)2 = 0 with v · δv = 0 (3.35)

we observe that the heavy-quark field and the covariant field are changing accord-
ingly as:

hv → hv + δ/v

2

(
1 + P−

i /D

2mQ + iv ·D

)
hv and iD → iD −mQδv . (3.36)

Note that, the transformation in Eq. (3.36) is responsible for relating different
orders in the 1/mQ expansion. Therefore, taking the Lagrangian in Eq. (3.23) and
inserting the definitions in Eq. (3.36) we obtain:

δRPIL1/mQ
= O(1/mN+2

Q ) , (3.37)

where N is the truncation order. By considering the leading term of Eq. (3.23) we
find

δRPI h̄vi(v ·D)hv = h̄vi(δv ·D)hv . (3.38)

The variation of the first subleading term cancels this term exactly, i.e.:

δRPI
1

2mQ

h̄v(i /D
⊥)2hv = −h̄v(iδv ·D)hv . (3.39)

Therefore, we have

δRPI

(
h̄vi(v ·D)hv + 1

2mQ

h̄v(i /D
⊥)2hv

)
= O(1/m2

Q) . (3.40)

The HQET Lagrangian is invariant under those shifts up to higher orders. This
results in a link between parameters of different orders in 1/mQ. For more details
on RPI, we refer to Refs. [73–78].
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Chapter 4

Inclusive Semileptonic B Meson
Decay

In this section we discuss the semileptonic b → cℓν̄ decay. We can distinguish two
types of decay processes: inclusive and exclusive decays. In the case of inclusive
decay, we sum up all of the kinematically possible final states of hadrons labeled by
Xc. The final state contains a single charm quantum number. In the case of exclusive
decays, we consider the pseudo-scalar B meson decaying into either a pseudo-scalar
D meson or the vector meson D∗. From an experimental point of view the inclusive
channel has much higher statistics compared to the exclusive channel. In this thesis
we will study the inclusive weak decays of hadrons that contain a b quark.

Our starting point is the matrix element for the inclusive process of B → Xcℓν̄

M(B → Xcℓν̄) = ⟨Xcℓν̄| Heff |B⟩

= 4GFVcb√
2

⟨Xcℓν̄| JH,µ(0) JµL(0) |B⟩ . (4.1)

The interaction is local because we integrated out the W boson. All operators are
taken at x = 0 unless we specify otherwise. The non-perturbative information about
the hadron binding is buried in the meson matrix element, which we will look into
further below. In the matrix element we also introduced the hadronic and leptonic
current, which can be separated since these two do not interfere with each other.
They read as

JµL = ℓ̄γµ PLν and JµH = c̄γµ PLb . (4.2)

For this process, the differential decay rate is given as:

dΓ =
∑
Xc

∑
spins

(
d3pℓ

(2π)32Eℓ

)(
d3pν

(2π)32Eν

)
|M(B → Xcℓν̄)|2(2π)4δ(4)(pB − (pℓ + pν + pXc))

(4.3)

For more details about the differential decay rate we refer to Ref. [25]. Note that,
the spins of the final states are not measured in the experiment. As a result, we
must average the incoming spin states and sum the outgoing spin states. The initial
particle only has one spin direction because it is a pseudo-scalar.
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By decomposing the matrix element into a hadronic and leptonic part we obtain:

|M(B → Xcℓν̄)|2 = 8G2
F |Vcb|2 ⟨B| J†

H,ν |Xc⟩ ⟨Xc| JH,µ |B⟩ ⟨0| Jν†
L |ℓν̄⟩ ⟨ℓν̄| JµL |0⟩ .

(4.4)

Therefore, the differential decay rate takes the form of:

dΓ = 16πG2
F |Vcb|2

(
d3pℓ

(2π)32Eℓ

)(
d3pν

(2π)32Eν

)
WµνL

µν , (4.5)

where Wµν denotes the hadronic part and Lµν the leptonic part.
The leptonic tensor can be evaluate as:

Lµν =
∑
spins

⟨0| Jν†
L |ℓν̄⟩ ⟨ℓν̄| JµL |0⟩

=
∑
spins

[ūℓγµPLvν̄ ] [v̄ν̄γνPLuℓ]

= Tr
(
γµPL/pν̄γ

νPL/pℓ

)
, (4.6)

where uℓ and ūℓ are the spinors for incoming and outgoing particles. Furthermore,
vν̄ and v̄ν̄ are the spinors for incoming and outgoing anti-particle. Evaluating the
trace we obtain for the leptonic tensor:

Lµν = 2 (pµℓ pνν̄ + pνℓp
µ
ν̄ − gµνpℓ · pν̄ − iϵµνρσpℓ,ρpν̄,σ) . (4.7)

We use the convention ϵ0123 = −ϵ0123 = +1 unless otherwise stated.
The hadronic tensor expresses how quarks bind in the B meson as follows:

Wµν = 1
2mB

∑
Xc

⟨B| J†
H,µ |Xc⟩ ⟨Xc| JH,ν |B⟩ (2π)3δ(4)(pB − q − pXc) (4.8)

= −gµνW1 + vµvνW2 − iϵµναβv
αqβW3 + qµqνW4 + (vµqν + vνqµ)W5 , (4.9)

where qµ = (pℓ + pν̄)µ is the momentum transfer to the leptons. In the last line
we decomposed the hadronic tensor into scalar structure functions Wi. The matrix
element in Eq. (4.9) will be expanded with the mass of the heavy quark, which
is referred to as the Heavy Quark Expansion (HQE). Using the HQE these decays
can be parametrized in perturbative Wilson coefficients and non-perturbative HQE
elements. To accomplish this, we employ the optical theorem, which says that the
production of intermediate states is connected to the imaginary part of the forward
transition amplitude. By applying the optical theorem we place the propagator
on-shell and use Cauchy theorem to obtain:

− 1
π

Im
( 1

∆0 + iϵ

)n+1
= (−1)n

n! δ(n)(∆0) . (4.10)

Thus, the exponent of the propagator shifts the derivative of the delta distribu-
tion. This is due to hadrons having a different mass than their constituent quarks.
However, unless we sum to infinity, the higher order terms in the expansion remain
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Figure 4.1: One loop forward scattering diagram, where the circle boxes represents
the current JH,µ. The double line represents the charm quark propagating in the
soft background field of the binding gluons, the solid line represents bottom-quark
and the wavy line the colour-singlet external current mediating the weak decay.

local. While considering the decay with an intermediate charm-quark, we begin with
a non-local forward matrix element of the form

Tµν = − i

2mB

∫
d4xe−iq·x ⟨B| T {J†

H,µ(x), JH,ν(0)} |B⟩

= −gµνT1 + vµvνT2 − iϵµναβv
αqβT3 + qµqνT4 + (vµqν + vνqµ)T5 . (4.11)

Again, we can decompose the matrix element into scalar structure functions Ti.
We visualize the process of Eq. (4.11) in Figure 4.1. The hadronic tensor can be
expressed using the optical theorem as follows:

− 1
π

ImTµν = Wµν with − 1
π

ImTi = Wi . (4.12)

Returning back to Eq. (4.11), where we insert the rephased but fully QCD bv
quark field

bv(x) = eimbv·xb(x) . (4.13)

Hence, we express the time-ordered product as

Tµν = 1
2mB

⟨B| b̄vΓ†
νSΓµbv |B⟩ , (4.14)

where Γµ denotes the gamma matrices and S the charm quark propagator with

S = 1
/pb − /q −mc

. (4.15)

Note that, the b quark momentum consists of the four velocity vector and the residual
momentum, i.e. pµb = mbv

µ + kµ. Following Refs. [79, 80], the charm propagator
transforms into the background-field (BGF) propagator by substituting k with the
covariant derivative:

SBGF = 1
/Q+ i /D −mc

(4.16)
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with Qµ = mbv
µ − qµ. An expansion can be obtained by writing this as a geometric

series in kµ/mb

SBGF =
[ ∞∑
n=0

(−1)n
[
(/Q−mc)−1(i /D)

]n]
(/Q−mc)−1 . (4.17)

At some mass dimension m, the operator-product expansion can be cut off and the
expansion takes the explicit form of

SBGF = 1
/Q−mc

− 1
/Q−mc

(i /D) 1
/Q−mc

+ 1
/Q−mc

(i /D) 1
/Q−mc

(i /D) 1
/Q−mc

+ . . .

(4.18)

We have an matrix elements in the form of:

⟨B| On+3
µ1···µn

|B⟩ = ⟨B| b̄v(iDµ1) . . . (iDµn)bv |B⟩ . (4.19)

These matrix elements must be evaluated and can be obtained directly from exper-
imental data. Finally, the time-ordered product in Eq. (4.14) can be written as an
OPE:

Tµν =
m∑
n=0

Cµ1...µn
n,µν (mb, vµ) ⟨B| On+3

µ1...µn
|B⟩ , (4.20)

where the Wilson coefficient Cµ1...µn
n,µν (mb, vµ) has a perturbative expansion in the

strong coupling constant αs.
At order O(1/m2

b), which is dimension 5 there are two matrix element:

2mB µ
2
π = − ⟨B| b̄viDρiDσbv |B⟩ Πρσ , (4.21)

2mB µ
2
G = 1

2 ⟨B| b̄v[iDρ, iDσ](−iσαβbv |B⟩ ΠαρΠβσ . (4.22)

Here Πµν = vµvν − gµν represents the projector onto the spatial components. These
parameters can usually be given a physical interpretation. Because µ2

π is clearly
related to the expectation value of the spatial momentum squared, it is known as
the kinetic term. Employing [iDµ, iDν ] = igsGµν and

γµγ5 → P+γµγ5P+ = sµ , (4.23)
σµν → P+σµνP+ = vαϵαµνβs

β , (4.24)

where sµ is the spin vector. We can recognize the chromo-magnetic moment s · B
as µ2

G to leading order in 1/mb. We define the spin-orbit term ρ3
LS and the Darwin

term ρ3
D in dimension 6, which corresponds to 1/m3

b as

2mB ρ
3
D = 1

2 ⟨B| b̄v [iDρ, [iDσ, iDλ]] bv |B⟩ Πρλvσ , (4.25)

2mB ρ
3
LS = 1

2 ⟨B| b̄v {iDρ, [iDσ, iDλ]} (−iσµν)bv |B⟩ ΠαρΠβλvσ . (4.26)

The spin-orbit term and Darwin term both relate to the curl s·∇×E and divergence
of the chromo-electric ∇ · E field, respectively.
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One can observe that for higher order power-corrections the set of parameters
grows factorially. For instance, dimension seven and eight each produce nine and
eighteen parameters, respectively [79–81]. The factorial growth of the parameters in
higher orders indicate that the HQE is an asymptotic series. Throughout the thesis
we only consider power-corrections up to O(1/m3

b).
Now by putting everything back to the time-ordered product in Eq. (4.20) and
taking the imaginary part according to Eq. (4.10) with ∆0 = (mbv − q)2 − m2

c we
obtain the hadronic tensor.

We have now covered all the crucial elements needed to describe the decay rate,
therefore it is time to identify observables so that we can compare our theoretical
findings to experimental measurements. By differentiating Eq. (4.3) we obtain the
fully differential rate

dΓ
dq2dEℓ dEν

= 1
2mB

(
d3pℓ

(2π)32Eℓ

)(
d3pν

(2π)32Eν

)
|M(B → Xcℓν̄)|2

× δ(Eℓ − p0
ℓ)δ(Eν − p0

ν)δ(q2 − (pℓ + pν)2) . (4.27)

The kinematical variables are the lepton energy Eℓ, the neutrino energy Eν and the
dilepton invariant mass q2 = (pℓ + pν)2. The squared amplitude |M(B → Xcℓν̄)|2
denotes the contraction of the hadronic and leptonic tensor. After the phase-space
integration over d3pℓ and d3pν we obtain for the inclusive decay b → cℓν̄:

dΓ
dq2dEℓdEν

= G2
F |V 2

cb|
2π3

(
W1q

2 +W2(2EℓEν − q2

2 ) +W3q
2(Eℓ − Eν)

)
θ(4EℓEν − q2) ,

(4.28)

where we consider the lepton to be massless. Note that, the Lorentz scalars W4,5 do
not contribute in the case of mℓ → 0.

Observables that are relevant to this thesis can now be defined. Our observables
include the following:

• We do not consider the differential decay width as an observable for the inclu-
sive decay because there are corners in the phase-space where the OPE breaks
down. Instead, we define moments using lepton energy cuts. The moments
are given as:

⟨On⟩Eℓ>E
cut
ℓ

=
∫
Eℓ>E

cut
ℓ

dO On dΓ
dO∫

Eℓ>E
cut
ℓ

dO dΓ
dO

, (4.29)

where Ecut
ℓ is the lepton energy cut and n denotes the n-th order of moment.

To lessen the correlation between the moments for higher order moments with
n > 1, we consider central moments in the form of:

⟨(O − ⟨O⟩)n⟩ =
n∑
i=0

(
n
i

)
⟨(O)i⟩ (− ⟨O⟩)n−i . (4.30)

As for the observables O we investigate in this work the lepton energy moments
⟨Eℓ⟩, the hadronic invariant mass moments ⟨Mx⟩ with

M2
x ≡ (pB − q)2 = (m2

B + q2 − 2mB(v · q)) (4.31)
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and the dilepton invariant mass moments ⟨q2⟩. For the q2 moments we con-
sider cuts of q2

cut instead of lepton energy cuts. The advantage of utilizing q2

moments is that they depend on a smaller number of HQE parameters be-
cause they are RPI observables, as demonstrated in Ref. [78]. Up to O(1/m4

b),
only eight parameters are required, whereas the traditional lepton energy and
hadronic mass moments depend on the entire set of 13 elements.

• In addition to the standard moments, we investigate the forward-backward
asymmetry observable, which was first introduced in Refs. [82]. The definition
of the observable can be derived from the differential decay rate as:

AFB =

∫ 0

−1
dzdΓ

dz −
∫ 1

0
dzdΓ

dz∫ 1

−1
dzdΓ

dz

, (4.32)

where the variable z describes the angle of the charged lepton

z ≡ cos θ = v · pν̄ℓ
− v · pℓ√

(v · q)2 − q2
. (4.33)

In the rest frame of lepton anti-neutrino system (q⃗ = 0⃗), the charged lepton
has the same flight direction as the B-meson.

• The branching ratio B(B → Xcℓν̄) is an additional observable that can be
compared with experimental measurements. We can also construct the ratio
of the total rates to test the Lepton Flavour Universality

Rℓ1/ℓ2 = Γ(B → Xcℓ1ν̄)
Γ(B → Xcℓ2ν̄) with ℓ1,2 = µ, e . (4.34)

To conclude, we emphasize that the inclusive semileptonic b → cℓν̄ are now the
standard method for determining the CKM element |Vcb|. These calculations use the
HQE and the moments of the decay spectra to directly extract the non-perturbative
parameters µ2

G, µ
2
π, ρ

3
LS, and ρ3

D from experimental data.
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Chapter 5

QCD Sum Rule

Because of the soft-gluon exchanges between the hadron constituents, the hadronic
matrix element cannot be calculated using QCD perturbation theory. We need
non-perturbative approaches for the computation of hadronic matrix elements. Lat-
tice simulations and QCD sum rules (QCDSRs) are currently the only QCD-based
methods for computing hadronic matrix elements. The central idea of lattice QCD
(LQCD) is to compute these integrals numerically while approximating the finite
discretized Euclidean space-time with quantum field theory’s path integral formu-
lation, where correlators are substituted by integrals over all possible classical field
configurations. Several advances in supercomputers and algorithms over the last
few years have enabled numerous computations of hadronic matrix elements using
LQCD. Note that, LQCD has the advantage of being systematically improveable,
which means that the level of uncertainty can be arbitrarily reduced throughout
time. However, the numerical procedures currently in use are still time and resource
intensive. Furthermore, LQCD is not usually capable of providing results across the
entire kinematical spectrum. Prominent examples are the form factors of B → K(∗)

and B → D(∗) [83–88]. So far, we have only discussed local hadronic matrix ele-
ments; LQCD calculations of non-local matrix elements are still in the early stages
of development.

This section provides an overview of the QCD sum rule method. For more
insightful reviews and early development we refer to Refs. [89–95]. Sum rules are
analytically determined relations between several hadronic parameters, thus this ap-
proach avoids the need for time consuming numerical evaluation. Furthermore, some
sum rule analytical expressions are not affected by the transition quark flavours. For
instance, the B-to-vector meson decays have the same sum rule such as B → K∗

and B → ρ. The input parameters stand as the only distinction between the two
sum rules. As a result, using QCDSRs rather than LQCD makes obtaining theo-
retical predictions of various hadronic matrix elements relatively simple and quick.
The primary drawback of QCDSRs is that their predictions have large uncertain-
ties that cannot be lowered below a specific threshold. In general, sum rules are
commonly dependent on an unphysical parameter known as the Borel parameter,
which generates non-trivially reducible systematic uncertainty. The presumption of
quark-hadron duality, which links the hadronic and partonic pictures, is another
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Figure 5.1: The contour C in the complex variable plane q2(z) = z around the
branch cut Re q2(z) > smin.

source of uncertainty.
In this work, we focus on SVZ sum rules, which was first proposed by Shifman,

Vainshtein, and Zakharov in the late 1970s [89]. The tools required, as well as how
to construct sum rules, are discussed in greater detail below.

5.1 Dispersion Relation
Let us consider the vacuum-to-vacuum correlator:

Πµν(q) = i
∫

d4x eiq·x ⟨0| T {Jµ(x), Jν,†(0)} |0⟩ , (5.1)

where Jµ = q̄γµq is a quark current. We can decompose the tensor-valued function
into a scalar-valued function

Πµν(q) = (qµqν − q2gµν)Π(q2) . (5.2)

The entire real axis is the domain of the scalar function Π(q2). We can also expand
the domain into the complex plane even though the physical world is not described
by the imaginary values of q2. However, we shall demonstrate that it is quite useful
to study the scalar function Π(q2) in the complex plane. To analytically extend the
real variable to the complex values q2 → z, the Cauchy theorem can be used to the
function Π(q2). Hence, we have:

Π(q2) = 1
2πi

∮
C

dz Π(z)
z − q2 , (5.3)

where q2 is a point within the closed curve C depicted in Figure 5.1. In the q2 ≫ 0
region, also known as the hadronic picture, the scalar function Π(q2) has bound state
poles and a branch cut denoted as smin that begins at the lowest continuum state in
the positive real axis. The singular points of a complex function are branch points
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that differ from poles. They are related to the fact that the function’s neighbourhood
is multi-valued.

Assume Π(q2) decreases sufficiently fast at |q2| → ∞. Thus Eq. (5.3) can be
simplified by taking the limits R → ∞ and r → 0 to:

1
2πi

∮
|z|=R

dz Π(z)
z − q2 → 0 for R → ∞ and 1

2πi

∮
r
dz Π(z)
z − q2 → 0 for r → 0 .

(5.4)

Our expression in Eq. (5.3) simplifies to:

Π(q2) = 1
2πi

∫ ∞

smin
dzΠ(z + iϵ) − Π(z − iϵ)

z − q2 , (5.5)

where ϵ is an infinitesimal positive number. We can reduce the numerator in the
above equation to the imaginary part Π(z+iϵ)−Π(z−iϵ) = 2i Im Π(z) for q2 > smin
using the Schwartz reflection principle. Finally, the hadronic dispersion relation is
obtained by

Π(q2) = 1
π

∫ ∞

smin
dz Im Π(z)

z − q2 − iϵ
. (5.6)

Note that, the infinitesimal −iϵ will not be explicitly displayed hereafter. It should
be noted that the above dispersion relation does not always converge, because the
assumption that Π(q2) decreases sufficiently fast at |q2| → ∞ does not hold in all
cases. A common method to make sure Eq. (5.6) converges is to subtract from
Π(q2) a few terms from its Taylor expansion at q2 = q2

0. Generally speaking, we can
write the dispersion relation as the following:

Π(q2) = (q2 − q2
0)(n+1)

π

∫ ∞

smin
dz ImΠ(z)

(z − q2
0)(n+1)(z − q2) + Π(q2

0)

+ (q2 − q2
0) d

dq2 Π(q2)
∣∣∣∣∣
q2=q2

0

+ · · · + (q2 − q2
0)n

n!

(
d

dq2

)n
Π(q2)

∣∣∣∣∣
q2=q2

0

. (5.7)

Note that, the Taylor expansion subtraction terms are not always known. In Section
5.3, we will discuss a mathematical trick for overcoming this problem.

We have only covered the hadronic matrix element amplitude along the positive
real axis up to this point. In the section that follows, we provide a brief explanation
of how to compute the hadronic matrix element in the negative region q2 ≪ 0 that
allows us to expand the correlator via OPE.

5.2 Operator-Product Expansion
The function Π(q2) is analytic for q2 ≪ 0, meaning there are no poles or singularities.
In the local OPE in the region m2

q − q2 ≫ Λ2
QCD, where mq is the quark mass, we

can expand the amplitude as:

Π(q2) =
∑
i

Ci(qš, µ) ⟨0| Oi(µ) |0⟩ , (5.8)
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where the contribution that dominates the most comes from quarks at short dis-
tances. The mass dimension of the operator is denoted with the index i. The vac-
uum expectation values of the QCD fields, also known as QCD vacuum condensates,
are represented by the matrix elements ⟨0| Oi |0⟩.

The short-distance contribution is encoded in the Wilson coefficients Ci, as we
already explained in Chapter 3, while the long-distance contribution is stored in the
operators Oi. The identity matrix, which is given by mass dimension zero in Eq.
(5.8), is the first matrix element:

⟨0| 1 |0⟩ = 1. (5.9)

Here we list all the relevant operators up to dimension six:

O3 = q̄q , O4 = αs
π
Ga
µνG

µν
a , O5 = gsq̄σ ·Gq , (5.10)

O6,1 = g3
sfabcG

a
µνG

νσ,bGµ,c
σ , O6,2 = αs(q̄Γαq)(q̄Γαq) , (5.11)

where the gluon field strength tensor is Ga
µν , fabc are the SU(3) structure constants,

and Γα are combinations of the Dirac matrices. Note that, the QCD vacuum con-
densates are genuine non-perturbative quantities. Many estimates for the values of
condensates are given in the literature, obtained from e.g. lattice QCD and sum
rules [89, 91,96–99].

5.3 Borel Transformation
In this section, we will go over the Borel transformation briefly. This transformation
is frequently used in the context of sum rules because it reduces the uncertainty that
stems form the quark-hadron duality approximation. The Borel transformation is
defined as [89]:

Π(M2) ≡ BM2Π(q2) = lim
−q2,n→∞
−q2/n=M2

(−q2)n+1

n!

(
d

dq2

)n
Π(q2) , (5.12)

where M2 is the Borel parameter. The two most prominent Borel transformation
examples are

BM2

(
1

z − q2

)k
= 1

(k − 1)!
e−z/M2

M2(k−1) and BM2(q2)k = 0 (5.13)

with k > 0. For instance, using the Borel transformation on Eq. (5.7), the dispersion
relation takes the form of:

Π(M2) = 1
π

∫ ∞

smin
dz Im Π(z)e−z/M2

. (5.14)

In the section that follows, we will see how much more practical the Borel transform
of Π(M2) is for suppressing the contribution from continuum states.
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5.4 Quark-Hadron Duality
In this section, we will explain briefly the concept of quark-hadron duality (QHD),
which is based on the assumption that perturbative QCD amplitudes can be re-
lated to the amplitudes describing hadrons as fundamental particles [100]. More
information is available in the classic review of Ref. [101].

We employ the QHD in this thesis to investigate the relationship between the
hadronic and OPE imaginary parts, i.e.:

∫ ∞

s0
dz Im ΠOPE(z)

z − q2 ≃
∫ ∞

smin
dz Im Πhad(z)

z − q2 , (5.15)

where the relation is referred to as global quark-hadron duality. Typically, the OPE
begins at a given threshold s0. Note that, the effective threshold of the OPE s0
and the continuum threshold smin are generally not the same. Because we cannot
compute ΠOPE(q2) with infinite precision, the QHD accuracy is limited. However,
if we could precisely calculate ΠOPE(q2) throughout the entire q2 complex plane, we
would not need duality at all since

ΠOPE(q2) ≡ Πhad(q2) , (5.16)

as discussed in Refs. [101]. In practice, one truncates ΠOPE(q2) at a given finite
order in the OPE and the strong coupling constant αs, resulting in systematic un-
certainties. But even if one could compute all terms in both series, it would be
pointless because they are factorially divergent (see Refs. [101]). Another source
of uncertainty is the duality violation, which occurs because ΠOPE(q2) is unable to
reproduce exactly the resonant structure of Πhad(q2) even for large positive q2 val-
ues [102]. These effects are expected to be small in the most of the applications, but
one must nonetheless take them into consideration.
Hence, we deal with intrinsic uncertainty when using the quark-hadron duality,
which is difficult to estimate.

Verifying that the tail of the OPE computation is not the main contribution to
the same integral that spans the entire positive region is a check that should always
be performed after calculating a sum rule. Therefore, to get reliable results from
the sum rule, we ensure that

Rcont = 1 −
∫∞
s0

dz Im ΠOPE(z)e−z/M2∫∞
0 dz Im ΠOPE(z)e−z/M2 ≃ 0.5 . (5.17)

This is also commonly used to determine the upper bound of the Borel parameter.

5.5 Example of a Sum Rule
After the discussion of all the necessary tools to calculate a sum rule, we demonstrate
how to derive an SVZ sum rule following the example of Ref. [95]. In this example
we derive the sum rule of the ρ meson decay constant fρ. The correlator Πµν

(ρ)(q) is
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the same as in Eq. (5.1) with the current Jµ(ρ) = 1/2(ūγµu− d̄γµd). The expression
of the OPE result is taken from Ref. [95]:

ΠOPE
(ρ) (M2) = M2

[
1

4π2

(
1 + αs(M)

π

)
+ mu +md

M4 ⟨q̄q⟩

+ 1
12M4 ⟨αs

π
Ga
µνG

µν
a ⟩ − 112π

81
αs
M6 ⟨q̄q⟩2

]
, (5.18)

where we performed the Borel transformation and includes the αs-correction and
QCD vacuum condensates up to mass dimension six. We proceed with the derivation
of the imaginary of Πhad(q2). In order to do that, we employ the unitarity relation:

(qµqν − q2gµν) Im Πhad
(ρ) (q2) = 1

2
∑∫
H

dτH(2π)4δ(4)(pH − q) ⟨0| Jµ(0) |H⟩ ⟨H| J†,ν(0) |0⟩ ,

(5.19)

where τH is the spectral density function and H(pH) stands for the ρ meson as well
as all other states with the same quantum numbers. The ρ meson-to-vacuum matrix
element is defined as:

⟨0| Jµ(ρ) |ρ(k, ϵ)⟩ = i√
2
ϵµmρfρ , (5.20)

where ϵµ is the polarisation vector. Thus, the imaginary part of Eq. (5.19) is given
as:

1
π

Im Πhad
(ρ) (q2) = f 2

ρ δ(q2 −m2
ρ) + τH(q2)θ(q2 − 4m2

π) , (5.21)

where the spectral function τH describes all higher and continuum states. Note that,
the lowest continuum state starts at the threshold 4m2

π. We obtain the dispersive
relation and perform the Borel transformation by inserting the imaginary part into
Eq. (5.14). As a result, we have:

1
π

∫ ∞

4m2
π

dz e−z/M2Im Πhad
(ρ) (z) = e−m2

ρ/M
2
f 2
ρ +

∫ ∞

4m2
π

dz e−z/M2
τH . (5.22)

We can now match the OPE result in Eq. (5.18) with the hadronic dispersion
relation. Thus, we obtain:

e−m2
ρ/M

2
f 2
ρ +

∫ ∞

4m2
π

dz e−z/M2
τH =

∫ ∞

0
dz e−z/M2

[
1

4π2

(
1 + αs(M)

π

)
+ mu +md

M4 ⟨q̄q⟩

+ 1
12M4 ⟨αs

π
Ga
µνG

µν
a ⟩ − 112π

81
αs
M6 ⟨q̄q⟩2

]
. (5.23)

We are finally now at the stage of determining the sum rule of the decay constant,
which is:

f 2
ρ =

∫ ∞

sρ
0

dz e
m2

ρ−z

M2

[
1

4π2

(
1 + αs(M)

π

)
+ mu +md

M4 ⟨q̄q⟩

+ 1
12M4 ⟨αs

π
Ga
µνG

µν
a ⟩ − 112π

81
αs
M6 ⟨q̄q⟩2

]
, (5.24)
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where sρ0 is the duality threshold of the ρ meson channel.

In conclusion, QCD sum rules are a perturbative method for computing hadronic ma-
trix elements in the non-perturbative domain starting from a correlator. Via the dis-
persion relation we compute the imaginary part of the correlator, which is described
in terms of intermediate bound states in addition to a continuum of multi-particle
states in the region of q2 ≫ 0. Both of these quantum numbers should correspond
to the correlator currents. By expanding it in the OPE, we calculate the imaginary
part of the hadronic matrix element in the region of q2 ≪ 0. Consequently, we sep-
arate the short-distance contributions from the long-distance contributions. In the
SVZ sum rules, the long-distance contributions are parametrized in terms of QCD
vacuum condensates. We can relate both regions of the hadronic matrix element to
each other by employing quark-hadron duality. The global quark-hadron duality is
used specifically to suppress the continuum contributions. A further method used
to suppress the continuum contribution and the tail of the OPE computation is
the Borel transformation, which also reduces the impact of potential quark-hadron
duality violations.
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Chapter 6

Project I: Impact of background
effects on the inclusive Vcb
determination

Published as an article in:
T. Mannel, M. Rahimi, K. K. Vos, JHEP 09 (2021) 051 [2].

Contributions of the authors to the article.
M. Rahimi contributed to the draft and did the analytical derivation and numerical
analysis of all expressions obtained in the article. Prof. Dr. Vos performed an inde-
pendent numerical study and worked on the draft. Prof. Dr. Mannel proposed the
project, supervised the calculations, discussed them and worked on the final draft.

Abstract: The determination of the CKM element Vcb from inclusive semileptonic
b → cℓν̄ decays has reached a high precision thanks to a combination of theoreti-
cal and experimental efforts. Aiming towards even higher precision, we discuss two
processes that contaminate the inclusive Vcb determination; the b → u background
and the contribution of the tauonic mode: b → c(τ → µνν̄)ν̄. Both of these con-
tributions are dealt with at the experimental side, using Monte-Carlo methods and
momentum cuts. However, these contributions can be calculated with high precision
within the Heavy-Quark Expansion. In this note, we calculate the theoretical pre-
dictions for these two processes. We compare our b → u results qualitatively with
generator-level Monte-Carlo data used at Belle and Belle II. Finally, we suggest to
change the strategy for the extraction of Vcb by comparing the data on B → Xℓ
directly with the theoretical expressions, to which our paper facilitates.
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6.1 Introduction
The determination of Vcb from inclusive b → cℓν decays relies on the heavy quark
expansion (HQE) and is in a very mature state (see e.g. [80,103–105]). The current
inclusive determination of Vcb = (42.21 ± 0.78) · 10−3 [106, 107] has an impressive
2% uncertainty. The analysis includes perturbative corrections up to α2

s terms [108–
112] and power corrections up to 1/m3

b . Higher-order terms up to 1/m5
b have been

classified [79] and studied using a lowest-lying state approximation [113]. These
higher-order terms are currently studied in more detail [114] using a new method to
determine inclusive Vcb from q2-moments [115] using reparametrization invariance
[78]. Recently, also α3

s corrections [116] and αs corrections to 1/m3
b terms [105] were

studied. In combination with the expected data from Belle II, we therefore foresee
a very precise determination of Vcb.

The current tension between the value of Vcb obtained from the inclusive determi-
nation and the one obtained from the exclusive channels B → Dℓν̄ and B → D∗ℓν̄
indicates that there may still be systematic effects which need to be understood
better (see e.g. [117–120]). While the exclusive determination requires the input
of form factors which are taken from lattice simulations (and/or using QCD sum
rules), the inclusive determination is assumed to be theoretically cleaner, as the re-
quired hadronic matrix elements can be obtained from data, at least up to the order
1/m3

b and possibly even to 1/m4
b . Therefore, the inclusive Vcb determination may

be pushed towards even higher precision. At the moment, the Vcb determination
is believed to be dominated by the theoretical uncertainties associated to missing
higher-order corrections (both in the perturbative scale αs and 1/m4

b).
In this quest even tiny effects and backgrounds need to be carefully studied before

a precision at the level of one percent (or even less) can be claimed. The current
method for extracting Vcb relies on taking lepton energy and hadronic invariant mass
moments of the B → Xcℓν̄ decay where ℓ = µ, e. However, the data taken at the
B factories are based on the inclusive B → Xℓ rate, from which the B → Xcℓν̄
is extracted using Monte-Carlo simulations. While the B → Xcℓν̄ is certainly the
dominant part, aiming towards a sub-percent precision requires a modified approach.
Overall, we identify two processes that contaminate the B → Xc signal and that
could be constrained using the HQE:

• The contribution of b → uℓν̄: Although this contribution is suppressed by
a factor (Vub/Vcb)2 and thus is not expected to make a significant contribution,
extreme precision will require to have a good control of it.

• The contribution of b → c(τ → ℓν̄ν)ν̄: This contribution is suppressed
only by the smaller phases space and by the branching fraction of τ → ℓνν̄. It
may be reduced by appropriate cuts, but still needs to be described with the
corresponding precision.

In the current note, we address these two contributions. Within the HQE, total rates
as well as various moments of kinematic distributions can be reliably calculated and
compared to the data. This may also include QED corrections, since in B → Xℓ the
X may not only include neutrinos but also photons. Obviously the HQE result for
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B → Xℓ will depend not only on mb, mc and Vcb and the HQE parameters, but also
on Vub and mτ . Using HQE calculations, we may check the quality of the extraction
of B → Xcℓν̄ from B → Xℓ by comparing our HQE results with the Monte-
Carlo simulations of the b → uℓν̄. In this note we study this comparison. For the
b → c(τ → ℓνν̄)ν̄, this comparison is more cumbersome due to different experimental
cuts and Monte-Carlo data is at the moment not available. For this five-body
decay, we therefore only provide the theoretical predictions. To our knowledge, no
theoretical study of these effects in inclusive decays has been performed.

For the upcoming Belle II analyses we suggest to change the strategy for the
extraction of Vcb by comparing the data on B → Xℓ directly to the corresponding
theoretical expressions, circumventing the problem of constructing first the data
for B → Xcℓν̄ by Monte-Carlo procedures. The aim of this note is to facilitate this
strategy by supplying the necessary theoretical expressions. In Section 6.2 we discuss
the lepton energy, hadronic invariant mass and q2-moments for the three-body decay
b → uℓν. We compare our result with the Monte-Carlo results. Moreover, we discuss
the aforementioned moments for the five-body decay b → c(τ → ℓνν̄)ν̄ in Section
6.4. We compare our results with the moments of three-body b → cℓν decay. Finally,
we conclude in Section 6.5.

6.2 Background from the B̄ → Xuℓν̄ℓ decay
The e+e− B factories Belle (II) and BaBar have a very clean environment, such that
a fully inclusive measurement of B → Xℓ can be performed, which is the basis of
the current inclusive Vcb determination. In the current analyses the contribution of
the b → cℓν̄ transition is extracted from B → Xℓ using Monte Carlo simulations
of the backgrounds. After the subtraction of the backgrounds the resulting data
is compared to the theoretical predictions for B → Xcℓν̄. This procedure induces
uncertainties related to the Monte Carlo simulations. At the moment, these induced
uncertainties may not be relevant as the Vcb extraction seems limited by theoret-
ical uncertainties related to missing higher-orders (see e.g. [14, 107, 113]). As the
extraction of Vcb is based on lepton and hadronic mass moments of different experi-
ments, at different energy cuts, it is challenging and clearly beyond the scope of this
theoretical paper to exactly estimate the effect of the MC simulations. The aim of
our paper is two-fold. First, we point out that the fully inclusive B → Xℓ can be
predicted theoretically at the same level of precision as B → Xcℓν̄, so the process of
background subtraction can be avoided completely, or at least to a large extend. It is
then of interest to compare this local HQE computation with the Monte Carlo data
used by Belle and Belle II qualitatively, to see how far the used methods differ from
the local HQE. In this way, we can access whether the currently used MC methods
underestimate or overestimate the uncertainty related to the B → Xu contribution.
To our knowledge this comparison was never made before.

To this end, we compute the inclusive rate for B → Xℓ by adding the contribu-
tions

dΓ(B → Xℓ) = dΓ(B → Xcℓν̄) + dΓ(B → Xuℓν̄) + dΓ(B → Xc(τ → ℓν̄ν)ν̄) (6.1)
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For fully inclusive observables such as (cut) moments each term on the right-hand
side can be computed individually in terms of the standard HQE based on the local
OPE.

In the following we will use the known results of the HQE for dΓ(B → Xuℓν̄)
in the local OPE to compare to generator-level Monte Carlo results, which are used
for the background subtraction. In the next section, we compute the five-body
contribution dΓ(B → Xc(τ → ℓν̄ν)ν̄).

6.3 Set-up for inclusive decays
The semileptonic b → uℓν̄ decay is described by

HW = GFVub√
2
JαLJH,α + h.c., (6.2)

where JαL = ℓ̄γα(1−γ5)ν and JH,α = ūγα(1−γ5)b are the leptonic and hadronic cur-
rents, respectively. Equivalent as for the B̄ → Xcℓν̄ℓ, we obtain the triple differential
decay rate:

dΓ
dEℓdq2dEν

= G2
F |Vub|2

16π3 LµνW
µν , (6.3)

where Eℓ(ν) is the lepton (neutrino) energy and q2 is the dilepton invariant mass.
Here Lµν is the leptonic tensor and W µν is the hadronic tensor:

W µν = 1
4
∑
Xu

1
2mB

(2π)3 ⟨B̄| J†µ
H |Xu⟩ ⟨Xu| JνH |B̄⟩ δ(4)(pB − q − pXu) , (6.4)

where pXu is the total partonic momentum. Decomposing (6.4) into Lorentz scalars
gives

W µν = −gµνW1 + vµvνW2 − iϵµνρσvρqσW3 + qµqνW4 + (qµvν + vµqν)W5. (6.5)

leading to

dΓ
dEℓdq2dEν

= G2
F |Vub|2

2π3

[
q2W1 + (2EℓEν − q2

2 )W2 + q2(Eℓ − Eν)W3

1
2m

2
ℓ

(
−2W1 +W2 − 2(Eν + Eℓ)W3 + q2W4 + 4EνW5

)
− 1

2m
4
ℓW4

]
,

(6.6)

where we have omitted explicit θ-functions. When considering ℓ = e, µ, we set
mℓ → 0, such that W4,5 do not contribute. The W1,2,3 are now obtained using the
HQE.

The HQE has become an well-established tool in the study of inclusive B meson
decays, allowing the expression of observables in a double expansion of αs and 1/mb.
It is set up by redefining the heavy-quark field by splitting the momentum pQ of
the heavy quark as pQ = mQv + k, where v is a time-like vector and k the resid-
ual momentum. We can expand the residual momentum k ∼ O(ΛQCD) which yields
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mkin
b (4.546 ± 0.021) GeV

mc(3 GeV) (0.987 ± 0.013) GeV
(µ2

π(µ))kin (0.432 ± 0.068) GeV2

(µ2
G(µ))kin (0.360 ± 0.060) GeV2

(ρ3
D(µ))kin (0.145 ± 0.061) GeV3

(ρ3
LS(µ))kin (-0.169 ± 0.097) GeV3

αs(mb) 0.223

Table 6.1: Numerical inputs taken from [113]. For the charm mass, we use the MS
scheme at 3 GeV. All other hadronic parameters are in the kinetic scheme at µ = 1
GeV.

the standard operator-product expansion (OPE), which separates the short-distance
physics from non-perturbative forward matrix elements which contain chains of co-
variant derivatives (see e.g. [103]). This introduces the hadronic matrix elements,
µ2
G and µ2

π at 1/m2
b and ρ3

D and ρ3
LS at 1/m3

b which are defined as

2mBµ
2
π = − ⟨B(v)| b̄v(iD)2bv |B(v)⟩ , (6.7)

2mBµ
2
G = ⟨B(v)| b̄v(iDµ)(iDν)(−iσµν)bv |B(v)⟩ , (6.8)

2mBρ
3
D = ⟨B(v)| b̄v(iDµ)(iv ·D)(iDµ)bv |B(v)⟩ , (6.9)

2mBρ
3
LS = ⟨B(v)| b̄v(iDµ)(iv ·D)(iDν)(−iσµν)bv |B(v)⟩ . (6.10)

(and a proliferation of matrix elements at higher orders [78,79,115]).
In the following, we use this local OPE to compute different moments of the

b → uℓν̄ spectrum. The procedure follows closely the standard derivation of the
moments in b → cℓν̄.

6.3.1 Definition of the moments
In order to obtain the b → u local contribution, we calculate different moments of
the spectrum. We define normalized moments for a given observable denoted as O:

⟨On⟩Eℓ>E
cut
ℓ

=
∫
Eℓ>E

cut
ℓ

dO On dΓ
dO∫

Eℓ>E
cut
ℓ

dO dΓ
dO

, (6.11)

where Ecut
ℓ is the energy cut of the lepton ℓ = (e, µ) and n denotes the n-th order

of moment. In addition, we define central moments:

⟨(O − ⟨O⟩)n⟩ =
n∑
i=0

(
n
i

)
⟨(O)i⟩ (− ⟨O⟩)n−i , . (6.12)

Specifically, we discuss the lepton energy moments ⟨En
ℓ ⟩, hadronic mass moments

⟨Mn
x ⟩ and q2 (q2 = (pℓ+pν)2) moments ⟨(q2)n⟩. The moments can be obtained using
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Eq. (6.11) and the triple differential rate in Eq. (6.6). For the hadronic invariant
mass, this requires its relation to the partonic quantities:

⟨M2
x⟩ = ⟨p2

Xu
⟩ + Λ̄mb ⟨z⟩ + Λ̄2 (6.13)

where z ≡ 2(v · pXu)/mb and

Λ̄ = mB −mb − µ2
π − µ2

G

2mb

+ . . . , (6.14)

where the ellipses denote terms of higher orders in the 1/mb expansion. In our
HQE calculation, we include power-corrections up to order O(1/m3

b) and radiative-
corrections of order O(αs) to the partonic expression (see also [121]). We note that
in the massless limit, the coefficient of ρ3

D has a dependence on Xµ ≡ 8 lnm2
b/µ

2
4q,

where µ4q is a renormalization scale. This scale dependence is compensated by
the corresponding scale dependence of the matrix element of four-quark operators
(weak annihilation contributions). This has been investigated in detail in [121] (see
also [122,123]). For our numerical results, we use the expressions given in Appendix
A of [121] assuming 16 < Xµ < 40 as was done in that reference. This variation
is added as an uncertainty to our local HQE predictions. The numerical input
parameters for the computation of the moments are taken from [113] and given in
Table 6.1. In order to avoid renormalon ambiguities related to the pole mass, we
work in the short-distance kinetic mass scheme (used in [113] to extract Vcb). We
can relate the pole scheme to the kinetic scheme through a perturbative series, see
Appendix A.

6.3.2 Comparison between theory and Monte-Carlo
In order to discuss the reliability of the background-subtraction procedure based on
MC simulations we perform a direct comparison of the MC data with the theoret-
ical prediction for the moments. To this end, we compare the moments extracted
from MC simulations for the b → u transition only with the theoretically predicted
moments, including again only the b → u transitions.

In Figs. 6.1, 6.2 and 6.3, we show respectively the Eℓ, the Mx and q2-moments.
For these observables, we show the first moment (⟨Eℓ⟩), the second moment (⟨E2

ℓ ⟩)
and the central moments: (⟨(Eℓ − ⟨Eℓ⟩)2⟩) and (⟨(Eℓ − ⟨Eℓ⟩)3⟩) (and equivalently
for Mx and q2 moments). For our OPE results we show leading-order (LO), next-to-
leading-order (NLO) and NLO plus 1/m2

b and 1/m3
b power-corrections individually.

The NLO +1/m2
b + 1/m3

b is our final results, for which the blue band indicates the
uncertainty obtained by varying the input parameters in Table 6.1. To account for
missing αs corrections, we vary the scale of αs(µ) in the range mb/2 < µ < 2mb.
In addition, we take into account the correlation between the HQE parameters. As
these are not given in [113], we take those obtained in [106] assuming the correlations
are the same. We do not attribute an additional uncertainty for missing higher-order
terms. These theoretical predictions are then compared to generator-level Monte-
Carlo (MC) results used at Belle and Belle II. 1.

1We thank F. Bernlochner and L. Cao for providing us these generator-level MC results which
were obtained using [124].
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The crosses indicate the MC data points from several methods. These data points
were obtained by L. Cao by producing the events at the generator level, which were
then converted to moments at different cuts using the appropriate weight function.
No uncertainties from the Monte Carlo simulations were included. The MC data
point labelled BLNP uses the BLNP [125] description of the B → Xuℓν spectrum
where for the input parameters of the shape function b = 3.95 and Λ = 0.72 are used.
Besides, we show 5 points labelled DFN which is based on [126]. This DFN model
contains αs corrections convoluted with the non-perturbative shape function in an
ad-hoc exponential model [127]. The two parameters of this shape function in the
Kagan-Neubert scheme are taken from a fit to B → Xcℓν and B → Xsγ data [128]
(see also [129]). In the figures, the points labelled DFN present the central values of
the DFN, while (λ+

1 , λ
+
2 , λ

−
1 , λ

−
2 ) are obtained by varying Λ̄ and µ2

π within 1σ regions
obtained in [128]. These variations can be used to estimate the error of the DFN
model. This method, using the variation of the DFN models as an error, is used at
Belle (see also the recent Belle analysis of the B̄ → Xuℓν̄ [129]). For both the DFN
and the BLNP models, resonant contributions are included using a “hybrid Monte
Carlo”. This method is based on the partonic calculation described above convoluted
with a hadronization simulation based on Pythia, combined with B̄ → πℓν̄ and
B̄ → ρℓν̄ at small invariant partonic invariant masses (see [130,131]).

Comparing our results with the MC-generated results, we observe:

• for energy moments (Fig. 6.1): MC-results are in good agreement with
the HQE results. However, we observe a slight deviation from the central
values for the second and third central moments. It is known, that central
moments are sensitive to non-perturbative effects, and thus we conclude that
this small deviation indicates that the MC does not properly incorporate the
non-perturbative effects.

• for hadronic mass moments (Fig. 6.2): We observe that the MC results
exhibit a large spread which is significantly larger than the uncertainty of
the HQE prediction, in particular for small lepton energy cuts. Especially
the higher central moments are sensitive to non-perturbative effects, which
indicates that the models implemented in the MC do not properly describe
the non-perturbative aspects.

• for q2 moments (Fig. 6.3): The DFN models agrees well with the HQE
result within the estimated uncertainty. However, the BLNP model agrees well
with the HQE up to O(αs). Similarly to the central moments of the hadronic
invariant mass, the central moments of q2 are deviating from the OPE result.
Especially for the third central moment the BNLP model and DFN models
are spreading quite far away showing again that the non-perturbative effects
are not properly included.

A few extra comments concerning the Monte Carlo models should be made. The
DFN model mainly relies on perturbation theory (up to a smearing corresponding
to a shape function, mimicking some non-perturbative effects), and thus it is not
surprising that these models have difficulties to capture the non-perturbative contri-
butions that are properly described in the HQE. However, the BLNP approach can
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Figure 6.1: HQE results for lepton-energy moments with different energy cuts, show-
ing leading order (LO), next-to-leading-order (NLO) and consecutively added to that
1/m2

b and 1/m3
b terms. In addition, the crosses indicate the MC-results in the BLNP

and DFN model as described in the text.

in principle properly describe the results of the HQE, provided that its parameters
are adjusted to the local HQE (which we use here). This requires including also
the higher moments of the shape-function model as well including subleading shape
functions, again with properly adjusted moments. The visible deviation of BLNP
from the HQE predictions indicates that the version of BLNP employed in the MC
should be updated. In summary, for the energy moment, the MC is in agreement
with the HQE predictions, however, especially for the hadronic mass moments in
Fig. 6.2, we see that the HQE uncertainty is much smaller than the spread in the
MC models. Therefore, we expect our suggested procedure to be more precise for
these moments. Studying the full impact of abandoning the MC when dealing with
the B → Xu background requires a full experimental analysis, which should be per-
formed by the experimental collaborations. Such an analysis is clearly beyond the
scope of this theoretical paper.
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Figure 6.2: HQE results for hadronic-mass moments at different energy cuts com-
pared with MC-results. See text and Fig. 6.1 for explanation.
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Figure 6.3: HQE results for q2 moments with different energy cuts compared with
MC-results. See text and Fig. 6.1 for explanation.
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6.4 Background from the B̄ → Xc(τ → ℓν̄ℓντ )ν̄τ de-
cay

Next we consider the background contribution of b → cτ(→ ℓν̄ℓντ )ν̄τ . Similar to the
b → u background, this five-body contribution can be calculated exactly within the
HQE. Its contribution is expected to be small, due to phase space suppression and
the small branching fraction of τ → ℓν̄ν. Experimentally this five-body contribution
can be further reduced by for example cutting on the lepton momentum in the B
restframe and by constraining the invariant mass of the B-meson. Due to these
extra cuts, it is not as straightforward to compare our exact HQE results with
the experimentally used Monte-Carlo data as for the b → u contamination. In
the following, we present our theoretical calculations of this five-body contribution,
which may be used to improve the description of this background.

For our HQE calculation, we proceed by following [132] where the τ -contribution
to exclusive B → Dℓν decay was studied (see also [133]). To our knowledge, the
τ contribution to inclusive decays was never studied. Semitauonic B decays were
studied in [134].

In order to obtain lepton energy, hadronic mass and q2 moments, we construct the
differential decay rate of the B(pB) → Xc(pXc)(τ(q[τ ]) → µ(q[µ])νµ(q[ν̄µ])ντ (q[ντ ]))ν̄τ (q[ν̄τ ]):

d8Γ
dq2 dq2

[ντ ν̄µ] dp2
Xc

d2Ω dΩ∗ d2Ω∗∗ =

−
3G2

F |Vcb|2
√
λ(q2 −m2

τ )(m2
τ − q2

[ντ ν̄µ])B(τ → µνν)
217π5m8

τm
3
bq

2 WµνL
µν , (6.15)

with q2
[ντ ν̄µ] = (q[ν̄µ]+q[ντ ])2, d2Ω = d cos θ[τ ]dϕ, dΩ∗ = d cos θ∗

[µ], d2Ω∗∗ = d cos θ∗∗
[ν̄µ]dϕ∗∗

and λ ≡ λ(m2
b ,m

2
c , q

2) is the Källén-function. For the different angles we follow the
conventions in [132]. The lepton tensor is now given by

Lµν =
∑
spins

LµLν∗, (6.16)

with

Lµ = 1
q2

[τ ] −m2
τ + imτΓτ

[
ū(q[µ])γα(1 − γ5)v(q[ν̄µ])

]
×
[
ū(q[ντ ])γα(1 − γ5)(/q[τ ] +mτ )γµ(1 − γ5)v(q[ν̄τ ])

]
. (6.17)

For the τ , we use the narrow-width approximation Γτ ≪ mτ :∣∣∣∣∣∣ 1
(q2

[τ ] −m2
τ + imτΓτ )

∣∣∣∣∣∣
2

−→
Γτ ≪mτ

π

mτΓτ
δ(q2

[τ ] −m2
τ ) , (6.18)

where Γτ is the total width of the τ lepton. We want to obtain moments of the
differential spectrum with cuts on the lepton energy as before. The lepton energy
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of the muon Eℓ can be related to q2
[ντ ν̄µ] in the following way:

Eℓ = 1
2mb

βνν̄

(√
λ
√

1 − 2βτ sin θ[τ ] sin θ∗
[µ] cosϕ−

√
λ cos θ[τ ]

×
(
(1 − βτ ) cos θ∗

[µ] + βτ
)

+
(
m2
b − p2

Xc
+ q2

) (
βτ cos θ∗

[µ] − βτ + 1
))

(6.19)

with

βνν̄ =
m2
τ − q2

[ντ ν̄µ]

2m2
τ

and βτ = q2 −m2
τ

2q2 . (6.20)

The five-body phase-space is similar to the exclusive decay, but the contraction
of the hadronic tensor Wµν with the leptonic tensor Lµν differs from the exclusive
decay. We discuss the leptonic tensor and definitions of the four-vectors in more
detail in our upcoming work [135]. The hadronic tensor Wµν can be constructed
following the procedure given in [79] (see Eq. (6.6), where now also W4,5 are relevant).
Finally, we obtain the eight-fold differential decay rate. We explicitly verified that
our differential rate reduces to the total decay rate of b → cτ ν̄, i.e.:

Γtot(b → cτ(→ ℓν̄ν)ν̄) = Γtot(b → cτ ν̄)B(τ → ℓν̄ν) . (6.21)

We note that the branching ratios of τ → µν̄ν and τ → eν̄ν are almost identical.
Now we can compute the moments similarly to Sec. 6.2 by integrating the eight dif-
ferential rate over the appropriate kinematical variables. We do not include radiative
corrections for this process.

As we mentioned before, the decay b → cτ(→ ℓν̄ℓντ )ν̄τ is small compared to
b → cℓν̄. Hence, the total decay rate is given as:

Γtot(b → cτ(→ ℓν̄ℓντ )ν̄τ )
Γtot(b → cℓν̄) ∼ 4.0% (6.22)

In Fig. 6.4, we show for both the five and three-body decay, the total rate with a
muon energy cut Ecut

ℓ normalized by the corresponding decay rate without cut, i.e.
for the five-body decay:

Γtot(b → cτ(→ ℓν̄ℓντ )ν̄τ )|Eℓ>E
cut
ℓ

Γtot(b → cτ(→ ℓν̄ℓντ )ν̄τ )
. (6.23)

We find that the five-body decay decreases more rapidly when increasing the lepton
energy cut, which is expected as such a lepton-energy cut further reduces the already
suppressed phase space.

Finally, we obtain the lepton energy moments (Fig. 6.5), the hadronic mass
moments (Fig. 6.6) and the q2 moments (Fig. 6.7). We note that we have normalized
these moments to the corresponding five-body b → c(τ → ℓν̄ν)ν̄) rate. We show
both the leading-order (LO, dotted line) and leading-order plus power-corrections of
order O(1/m2

b) (solid line). In addition, we also plot the lepton energy moments of
the inclusive decay b → cℓν for comparison (red). The band presents an estimate of
the uncertainty obtained by varying each input parameter individually and adding
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Figure 6.5: Eℓ moments as a function of Ecut
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corrections (solid) for b → c(τ → ℓν̄ν)ν̄ (blue) and b → cℓν̄ (red) and their uncer-
tainty.

them in quadrature. To compensate for missed higher-order radiative and power-
corrections, we added an additional 30% uncertainty. We present these five-body
moments in this way, such that they can be compared to Monte-Carlo simulations
when this becomes available.

Note that for the five-body decay q2 ≡ (pτ + pν)2 = (pB − pXc)2 which obviously
is equivalent to the q2 defined in the three-body b → c decay. However, in Fig. 6.7
we plot the q2-moments including a lepton-energy cut which makes the two curves
representing the three and five-body decay distinguishable.

In Figs. 6.5 - 6.7, we observe again that the power-correction only give small
corrections in the case of lepton energy moments. However, the power-correction
are sizable in case of the hadronic invariant mass (Fig. 6.6).
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uncertainty.
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6.5 Conclusion

The determination of inclusive Vcb uses the B̄ → Xcℓν̄ rate, which is obtained
from the experimentally measured B̄ → Xℓ rate by subtracting (among others) the
background signals B̄ → Xuℓν̄ and B̄ → Xc(τ → ℓν̄ν)ν̄. The goal of this note is to
stress that these contributions can be exactly obtained within the local OPE/HQE
and thus could be included in an analysis of B → Xℓ without the need to subtract
these contributions (which induced uncertainties).

To facilitate this new strategy, we computed different moments for b → uℓν̄ at
next-to-leading order including power-corrections up to O(1/m3

b). We compared
our result with generator-level Monte-Carlo data used in Belle and Belle II [124].
Especially, for hadronic invariant mass moments we note sizable difference between
Monte-Carlo and HQE, which could be avoided when using the advocated strategy.

In addition, we computed for the first time the contributions of b → c(τ → ℓν̄ν)ν̄,
which contributes at the 4% level. In this case we do not have MC results to compare
to, but we present our results in such a way that this comparison could be made in
the future.

In preparation of the Belle II experimental analysis of inclusive Vcb, which will
reach an unprecedented precision, we advocate using the full B → Xℓ rate without
subtracting the b → u and b → c(τ → ℓν̄ν)ν̄ contributions. This strategy has the
potential to reduce the experimental uncertainties on Vcb even further.
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Appendix A Kinetic mass schemes
The relation between the pole mass scheme mb(µ = 0) and the kinetic scheme
mkin
b (µ) is [136,137]

mb(0) = mpole
b = mkin

b (µ) +
[
Λ̄(µ)

]
pert

+
[µ2
π(µ)]pert

2mkin
b (µ) + . . . , (6.24)

where µ is the cut-off energy employed in the kinetic mass scheme, which we set
µ = 1 GeV (see Table 6.1) and the ellipses represent higher-order terms in the 1/mb
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expansion. The HQET parameters are now defined as:

µ2
π(0) =

(
µ2
π(µ)

)
kin

−
[
µ2
π(µ)

]
pert

, (6.25)

µ2
G(0) =

(
µ2
G(µ)

)
kin

−
[
µ2
G(µ)

]
pert

, (6.26)

ρ3
LS(0) =

(
ρ3
LS(µ)

)
kin

−
[
ρ3
LS(µ)

]
pert

, (6.27)

ρ3
D(0) =

(
ρ3
D(µ)

)
kin

−
[
ρ3
D(µ)

]
pert

. (6.28)

The quantity
[
Λ̄(µ)

]
pert

describes the binding energy of the heavy meson and
[µ2
π(µ)]pert the residual kinetic energy. Their expression are given as:

[
Λ̄(µ)

]
pert

= 4
3CF

αs(mb)
π

µ

[
1 + αs(mb)β0

2π

(
log

(
mb

2µ

))
+ 8

3

]
, (6.29)

[
µ2
π(µ)

]
pert

= CF
αs(mb)
π

µ2
[
1 + αs(mb)β0

2π

(
log

(
mb

2µ

)
+ 13

6

)

−αs(mb)
π

CA

(
π2

6 − 13
12

)]
+ O

(
µ3

m3
b

)
, (6.30)

[
ρ3
D(µ)

]
pert

= 2
3CF

αs(mb)
π

µ3
[
1 + αs(mb)β0

2π

(
log

(
mb

2µ

)
+ 2

)

−αs(mb)
π

CA

(
π2

6 − 13
12

)]
+ O

(
µ4

m4
b

)
, (6.31)

[
µ2
G(µ)

]
pert

= O
(
µ3

m3
b

)
, (6.32)

[
ρ3
LS(µ)

]
pert

= O
(
µ4

m4
b

)
. (6.33)

Here CA = 3 and β0 = 11 − 2
3nf with nf = 3, i.e. three active massless quarks.
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Chapter 7

Project II: Standard Model
predictions for Lepton Flavour
Universality ratios of inclusive
semileptonic B decays
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Abstract: We present Standard Model predictions for lepton flavour universality
ratios of inclusive B → X(c)ℓν̄ℓ. For the ℓ = µ, e, these ratios are very close to
unity as expected. For the τ mode, we update the SM prediction for the branching
ratio including power-corrections in the heavy-quark expansion up to 1/m3

b . These
inclusive ratios serve as an important cross-check of the exclusive B → D(∗)ℓν̄ℓ
modes, in which tensions exists between the predictions and measurements in those
modes.
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7.1 Introduction
The inclusive B → Xcℓν̄ℓ decays, with ℓ = µ, e, are by now standard candles in
the determination of the CKM element |Vcb|. Employing the heavy quark expansion
(HQE), allows the parametrization of these decays in perturbative Wilson coeffi-
cients and non-perturbative HQE elements. Thanks to a combined theoretical and
experimental effort, these HQE parameters can be extracted from moments of the
decay spectrum giving an impressive 2% uncertainty on the inclusive Vcb determi-
nations [14, 15].

The experimental measurements of semileptonic B → Xc usually combine the
muon and electron modes (and B0 and B+). Recently, the Belle collaboration also
provided the first measurement of q2 moments, separately for the electron and muon
modes [138]. No deviations from lepton flavor universality were found. However,
given the discrepancies in the rare b → sℓℓ modes, it may be worth measuring the
ratio

Rµ/e(Xc) ≡ Γ(B → Xcµν̄µ)
Γ(B → Xceν̄e)

. (7.1)

In the Standard Model (SM), this ratio is expected to be close to one, but more
elaborate predictions are not available to our knowledge. In this paper, we provide
these predictions by taking into account the masses of the leptons, in light of upcom-
ing measurements. These results are interesting due to the recent inconsistencies
in the exclusive B → D∗ forward-backward asymmetry measurements (see [139] for
more details). Recently, also the final-state radiation effects in the forward-backward
asymmetry were studied in detail [140].

In this work, we do not include structure depend nor ultrasoft QED effects as
those are challenging to disentangle from the experimental detector efficiencies (for
recent works on QED effects in exclusive semileptonic B decays see e.g. [141–144].).

While the inclusive light-lepton modes have been studied in depth, the situation
is very different for the τ mode. Experimentally, only LEP results [145] and a un-
published Belle analysis [146] of the total rate exists, both having large uncertainties.
In addition, the LEP measurement requires assumptions about hadronic effects in
order to be interpreted. On the theoretical side, SM predictions for this mode exists
using the HQE parameters as input. In this paper, we update these predictions to
include HQE parameters up to 1/m3

b , which have a relatively large impact. These
higher-order terms were first studied in [134], but this reference misses some terms
in the ρ3

D coefficient. Here we correct these results. We point out that numerically,
the difference between our results and [134] is small. In light of the tensions in ratios
of the exclusive B → D(∗)ℓν̄ℓ versus B → D(∗)τ ν̄τ (see e.g. [147] for a recent review
on semileptonic τ modes), we stress the importance of an independent cross-check
in the inclusive channel. For this, the SM predictions derived in this short letter are
vital. These predictions can be used in the search for new physics, especially in the
tau sector where new measurements are expected soon.
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7.2 Inclusive decay of b → cℓν̄ℓ with massive lep-
tons

To calculate the inclusive b → c semileptonic rate, we employ the standard heavy-
quark expansion (HQE). This allows us to perform an operator product expansion
(OPE) for the triple differential rate in the lepton (neutrino) energy Eℓ(ν) and the
dilepton invariant mass q2 as

dΓ
dEℓdq2dEν

= G2
F |Vcb|2

16π3 LµνW
µν . (7.2)

Here Lµν is the lepton tensor and W µν the hadronic tensor as defined in e.g. [2].
Expressing the W µν tensor in Lorentz scalars as usual then gives

dΓ
dEℓdq2dEν

= G2
F |Vcb|2

2π3

[
q2W1 + (2EℓEν − q2

2 )W2 + q2(Eℓ − Eν)W3

1
2m

2
ℓ

(
−2W1 +W2 − 2(Eν + Eℓ)W3 + q2W4 + 4EνW5

)
− 1

2m
4
ℓW4

]
,

(7.3)

where we have omitted explicit θ-functions (see [148]).
In general, for B → Xcµν̄µ and B → Xceν̄e, lepton masses are neglected. How-

ever, for the much heavier decay involving the τ lepton: B → Xcτ ν̄τ , such an ap-
proximation cannot be made. We calculated the total inclusive rate including lepton
masses. This calculation differs from the standard case, as now also the structure
functions W4 and W5 in (7.3) contribute and because the phase space boundaries
are affected. We refer to [134,148] for details.

Considering terms up to 1/m3
b , we write the total rate as

Γ(B → Xcℓν̄ℓ) = Γ0

[
C

(0)
0 + αs

π
C

(1)
0 + C⊥

µ2
π

(µ2
π)⊥

m2
b

+ C⊥
µ2

G

(µ2
G)⊥

m2
b

+ C⊥
ρ3

D

(ρ3
D)⊥

m3
b

+ C⊥
ρ3

LS

(ρ3
LS)⊥

m3
b

]
,

(7.4)
where the coefficients depend on

ρ ≡ m2
c/m

2
b , η ≡ m2

ℓ/m
2
b , (7.5)

and
Γ0 ≡ G2

F |Vcb|2m5
b

192π3 (1 + Aew), (7.6)

which includes the electroweak correction Aew = 0.014 [149].
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We define the nonperturbative parameters as (see e.g. [80])

2mB (µ2
π)⊥ ≡ −⟨B|b̄v(iDρ)(iDσ)bv|B⟩Πρσ , (7.7)

2mB (µ2
G)⊥ ≡ 1

2⟨B|b̄v [iDρ, iDλ] (−iσαβ)bv|B⟩ΠαρΠβλ, (7.8)

2mB (ρ3
D)⊥ ≡ 1

2⟨B|b̄v [iDρ, [iDσ, iDλ]] bv|B⟩Πρλvσ, (7.9)

2mB (ρ3
LS)⊥ ≡ 1

2⟨B|b̄v {iDρ, [iDσ, iDλ]} (−iσαβ)bv|B⟩ΠαρΠβλvσ , (7.10)

where
Πµν = gµν − vµvν . (7.11)

The above definitions differ from e.g. [15,78,115] where the full covariant derivative
was used and not only the spatial component as above, linked via iDµ = vµivD+D⊥.
To differentiate, we therefore add a ⊥ superscript to HQE parameters. The relation
between the “perped” and full covariant derivative parameters is

(µ2
G)⊥ = µ2

G + ρ3
D + ρ3

LS

mb

, (7.12)

while (µ2
π)⊥ = µ2

π, (ρ3
LS)⊥ = ρ3

LS and (ρ3
D)⊥ = ρ3

D up to terms of order 1/m3
b (see

discussion in Appendix A of [115]).
We list all coefficients, except C(1)

0 in Appendix A, for completeness. Setting
η → 0, reproduces the well-known rate [78, 79,150]

The coefficients agree with [134] (and previous results in [151, 152] for C0, Cµ2
π

and Cµ2
G
) up to a difference in the Cρ3

D
. The discrepancy with [134] arises due to the

more involved integrations which now contain additional delta functions. For the
total rate, where no cut on lepton energy is required, it is easiest to first perform
the integration over the lepton energy Eℓ analytically (as the structure functions
W do not depend on Eℓ.). In the limit ρ = η, our calculation can be checked and
agrees with [153]. We have also contacted the authors of [134], who now agree with
our results1. Finally, after finalizing this paper, also [155] appeared in which the
αs corrections to the ρ3

D coefficient for massive leptons was calculated. At LO, this
paper reproduces our results.

We recalculated the perturbative corrections for the partonic rate C
(1)
0 which

agree with [156, 157]. Our analysis does not include α2
s corrections, which are

known [111] but only available for fixed mb/mc. To fully include such effects in
a state-of-the-art manner, a new analysis is required. We briefly discuss these cor-
rections in the following. We note that for η = 0, these corrections are even known
up to α3

s [158].
1After finalizing our paper, we were made aware of [154] which agrees with the calculation

in [134]. We assume that the difference with our result arises from the same reasons outlined
before. We note that also the recent [155] agrees with our result.
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mkin
b (4.573 ± 0.012) GeV

mc(2 GeV) (1.092 ± 0.008) GeV
(µ2

π(µ))kin (0.477 ± 0.056) GeV2

(µ2
G(µ))kin (0.306 ± 0.050) GeV2

(ρ3
D(µ))kin (0.185 ± 0.031) GeV3

(ρ3
LS(µ))kin (-0.130 ± 0.092) GeV3

Vcb (42.16 ± 0.51) · 10−3

Table 7.1: Numerical inputs taken from [14], where the HQE parameters are defined
in the perp basis. For the charm mass, we use the MS scheme at 2 GeV. All other
hadronic parameters are in the kinetic scheme at µ = 1 GeV.

7.3 SM predictions for inclusive rates including
masses

With the coefficients Ci for the total rate, we can now in principle predict the
branching ratios for semileptonic b → c decays. However, the light lepton decays
and their moments are used to determined the HQE parameters and Vcb. Therefore,
such predictions are not very instructive for light mesons. For those, we therefore
restrict ourselves to ratios of semileptonic modes. For the tau modes, we also discuss
the total branching ratio.

As is customary, we work in the kinetic mass scheme, which can be related to
the pole mass via a perturbative series [136, 137, 159]. For our numerical analysis,
we use the input values listed in Table 7.1 obtained from [14] obtained from leptonic
energy and hadronic invariant mass moments. These values can be compared with
those obtained from a recent analysis using q2 moments [15]. In the default analysis
of [15], also 1/m4

b terms were included, such that the HQE elements cannot directly
be compared. However, Table 6 provides the HQE parameters up to 1/m3

b in the full
covariant derivative basis, which can be directly compared. We note that the values
for mb and mc are similar, as these are used as constraints on the fit in [15]. However,
as was discussed in [15], especially the value of ρ3

D = 0.03 ± 0.02 GeV3 differs from
the value of [14] quoted in Table 7.1. The difference between the two should be
clarified, possibly by performing a combined analysis of lepton energy, hadronic
invariant mass and q2 moments. However, for our current analysis, because the
uncertainties on the HQE parameters from the q2 analysis are somewhat larger than
those from [14], we use the latter here as inputs. In the next section, we comment
on how our numerical results would differ if the values of [15] were used instead.
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Rτ/µ(Xc) · 10−2 Rτ/e(Xc) · 10−2 Rµ/e(Xc) · 10−2

ξLO 23.557 23.429 99.458
ξNLO 5.446 5.451 0.144
ξµ2

G
-2.165 -2.161 -0.0315

ξµ2
π

0 0 0
ξρ3

LS
0.4735 0.4726 0.0068

ξρ3
D

-6.785 -6.765 -0.0709

Table 7.2: SM predictions for the inclusive LFU ratios. We list the different contri-
butions independently of the value of the HQE parameters and separated according
to (7.13).

7.3.1 Lepton Flavour Universality Ratios
We define the ratios Rµ/e as in (7.1) and define equivalently Rτ/µ and Rτ/e. In such
ratios, Vcb drops out, but the HQE parameters do not completely, due to different
mass effects. We split the contributions R(Xc) according to

R(Xc) = ξLO + ξNLO

(
αs
π

)
+ ξµ2

G
(µ2

G)⊥ + ξµ2
π

(µ2
π)⊥ + ξρ3

LS
(ρ3
LS)⊥ + ξρ3

D
(ρ3
D)⊥ .

(7.13)
Using then the input for mb and mc as in Table 7.1, we find the SM predictions as
listed in Table 7.2. The coefficients ξ can then be used to obtain R(Xc) for any set
of HQE parameters. We note that µ2

π completely drops out in such ratios, because it
can be absorbed into the partonic rate because of reparametrization invariance (see
e.g. [78]). The effect of ρ3

D is relatively large even though this is a 1/m3
b contribution.

We do not include an additional uncertainty for missed higher-order terms of order
1/m4

b and beyond.
Using the HQE parameters as listed in Table 7.1, we find for the light leptons

Rµ/e(Xc)|NLO+1/m2
b
+1/m3

b
= 0.9945 ± 0.0001 . (7.14)

The uncertainty is obtained by combining all uncertainties of the input parameters
in quadrature. In addition, we vary the scale of αs(µ) from mb/2 < µ < 2mb.

For the τ modes, we find
Rτ/µ(Xc)|NLO+1/m2

b
+1/m3

b
= 0.220 ± 0.004

Rτ/e(Xc)|NLO+1/m2
b
+1/m3

b
= 0.218 ± 0.004 . (7.15)

This is in agreement with previous determination in [160], which includes terms up
to 1/m2

b in the 1S-scheme:
R(Xc)FLR = 0.223 ± 0.004 . (7.16)
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In this case, the uncertainty is dominated by mb and λ1 (i.e. the HQE element in
the infinite mass limit) and includes an additional uncertainty of half of the α2

s term.
It however does not include an additional uncertainty due the missed 1/m3

b terms.
Finally, also a calculation of only the partonic rates at O(α2

s) exists [111]

R(Xc)BM = 0.237 ± 0.031 , (7.17)

which is based on the on-shell scheme. It was found that α2
s effects in the Rτ/ℓ(Xc)

ratio are very small. While the ratio of leading order decay rates is a rapidly changing
function of mb,mc and mτ , radiative corrections to B(B → Xcτν) and B(B → Xcℓν)
are correlated, so they cancel out in the ratio that is largely independent of the quark
masses. Here we do not include these α2

s effects as [111] only provides them at fixed
mc/mb. However, we have verified that the α2

s corrections are only 2−3 % of the
NLO order contribution. Therefore, our uncertainty estimate obtained by varying
αs accounts for these effects. We also note that our αs corrections are half of those
in [111], due to the switch to the kinetic scheme. In addition, there are αs corrections
to HQE parameters that are not written in (7.13) and not take into account. These
corrections are known for massless leptons [?,161]. For massive leptons they became
available very recently [155], i.e. after finalizing our paper. The corrections of the
αs corrections to the chromomagnetic µ2

G and ρ3
D coefficients were found to be a the

sub-percent level, and thus well within our uncertainty. Given the large dependence
on the value of ρ3

D discussed below, which first has to be clarified, we leave update
these theoretical predictions to a future study.

Finally, we comment on the numerical differences for our predictions if we would
have used the inputs [15]. We note that for the q2 analysis, the extracted µ2

π has
a large uncertainty [15]. However, as this contribution drops out in the ratios this
does not affect our predictions. For the τ modes, we find that the predictions shift
by around 1σ. Specifically, we find

Rτ/µ(Xc)|q
2

NLO+1/m2
b
+1/m3

b
= 0.225 ± 0.004

Rτ/e(Xc)|q
2

NLO+1/m2
b
+1/m3

b
= 0.224 ± 0.004 , (7.18)

where we have added a subscript indicating that these predictions use the HQE
parameters from the q2 moments in [15].

7.3.2 Ratios for semileptonic B → X

Experimentally, in order to obtain the semileptonic B → Xc, the B → Xu back-
ground has to be dealt with. On the other hand, as pointed out in [2], this V 2

ub/V
2
cb

suppressed contribution can also be calculated in the local OPE. Naively taking the
B → Xc rate and setting ρ → 0 works up to 1/m2

b , but at order 1/m3
b additional

four-quark operators (weak annihilation) have to be introduced that cure the di-
vergence arising in the ρ3

D term (see e.g. [162] for references and discussions). For
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charm, such effects were studied in [163] using semileptonic D meson data from
CLEO [164]. For B → Xu, this issue will be discussed specifically in an upcoming
publication [165]. However, at the moment, we can make a reliable estimate for the
R(X) ratio by calculating the B → Xu effects by setting ρ3

D → 0. We then have

Γ(B → Xℓν̄ℓ) = Γ(B → Xcℓν̄ℓ) +
(

|Vub|
|Vcb|

)2

Γ(B → Xcℓν̄ℓ)|ρ→0,ρ3
D→0 . (7.19)

To derive ratios of the B → X semileptonic rates, we use the exclusive Vub determi-
nation from [166]:

Vub|excl. = (3.77 ± 0.15) · 10−3 , (7.20)
which is in agreement at the 1 − 2σ level with the recent inclusive determinations
[167]. For Vcb, we take the recent inclusive determination in Vcb = (42.16±0.51)·10−3

[14].
We then find

Rτ/µ(X) = 0.221 ± 0.004 , (7.21)

Rτ/e(X) = 0.220 ± 0.004 , (7.22)

Rµ/e(X) = 0.994 ± 0.001 . (7.23)

We do not quote the R(Xu) as there we do not have the V 2
ub suppression. As such,

weak annihilation and ρ3
D effects may play a bigger role.

Finally, we note that experimentally, usually a lower cut on the lepton energy Eℓ
employed. Alternatively, also a q2 cut can be imposed, as suggested first in [115],
where q2 moments of the spectrum are advertised. A q2 cut is easier to implement
for the αs corrections, therefore we also quote ratios with such a cut. Here we take
q2

cut = 3 GeV2 as a default cut. The full expression with an arbitrary q2
cut can be

provide by the authors. We find using the inputs in Table 7.1 of [14]

Rτ/µ(X)q2
cut

= 0.352 ± 0.004 , (7.24)

Rτ/e(X)q2
cut

= 0.352 ± 0.004 , (7.25)

Rµ/e(X)q2
cut

= 0.999 ± 0.001 . (7.26)

We also explicitly provide the ratios using the masses and HQE parameters listed
in Table 6 of [15] and Vcb = (42.69 ± 0.63) · 10−3 [15]. We obtain

Rτ/µ(X)q2
cut

= 0.359 ± 0.005 , (7.27)

Rτ/e(X)q2
cut

= 0.358 ± 0.005 , (7.28)

Rµ/e(X)q2
cut

= 0.998 ± 0.002 , (7.29)

which agrees with the determinations above at the 1 − 2σ level as expected, but
with larger uncertainties. This is due to the larger relative uncertainty on ρ3

D.
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B(B → Xcτ ν̄τ ) [%] B(B → Xτν̄τ ) [%]

ξLO 3.042 3.095
ξNLO -3.064 -3.020
ξµ2

G
-0.557 -0.564

ξµ2
π

-0.0727 -0.074
ξρ3

LS
0.122 0.123

ξρ3
D

-1.408 -1.408

Table 7.3: Predictions for the branching ratio within the local OPE, using Vcb =
(42.16±0.51) ·10−3 [14] and split according to (7.13). We quote the flavour-averaged
rate. Predictions for the charged or neutral B decay can be obtained by multiplying
with τB+,0/τB.

7.3.3 Inclusive decay of b → cτ ν̄τ

Using (7.4), we update the SM predictions for the branching ratio of the τ -mode.
Splitting the branching ratio as in (7.13) and taking Vcb = (42.16 ± 0.51) · 10−3 [14],
and mb and mc from Table 7.1, we find the contributions ξ given in Table 7.3. These
results use the averaged decay rate τB = 1.579 ps [145], which can be adjusted for the
B+,0 by multiplying with τB+,0/τB. As the branching ratio depends V 2

cb, predictions
using Vcb = (41.69 ± 0.63) · 10−3 [15] can be easily obtained by a re-scaling.

Using the inputs for the HQE parameters in Table 7.1, we can calculating the
branching ratio directly from the OPE:

B(B → Xcτ ν̄τ )OPE =(
2.34 ± 0.07|mb

± 0.03|mc ± 0.02|µ2
G

+ 0.01|ρ3
LS

+ 0.04|ρ3
D

+ 0.06|αs + 0.05|Vcb

)
%

= (2.34 ± 0.13)% , (7.30)

where we specify the different contributions to the uncertainty and in the last line
we summed these in quadrature. Again, we do not include an additional uncertainty
due to missed higher-order terms. For completeness we also quote the B+ and B0

rates separately

B(B+ → X+
c τ ν̄τ ) = (2.43 ± 0.13)% .

B(B0 → X0
c τ ν̄τ ) = (2.25 ± 0.13)% . (7.31)

Our value agrees with [134], despite a missed ρ3
D contribution in that paper. Finally,

following the procedure outlined in Sec. 7.3.2, we find the B → X rate as

B(B → Xτν̄τ ) = (2.39 ± 0.13) % . (7.32)
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These determinations are in agreement with the LEP measurement of the inclu-
sive branching fraction of the admixture of bottom baryons [145]

B(b-admix → Xτν̄τ ) = (2.41 ± 0.23)% , (7.33)

which only to leading order in the HQE can be interpreted as the individual hadron
rates.

In addition, there exists an unpublished Belle measurement of the Rτ/(e,µ)(X)
[146]:

R(X) ≡ B(B → Xτν̄τ )
B(B → Xℓν̄ℓ)

= 0.298 ± 0.022 , (7.34)

where ℓ = µ, e. Comparing this with our estimate in (7.21), we observe a slight
tension. Alternatively, we may also estimate the relation between R(X) and R(Xc),
by subtracting the theoretically calculated rate. We find

R(X) =


Rτ/µ(Xc)

(
1 + 1.012 |Vub|2

|Vcb|2

)
for ℓ = µ ,

Rτ/e(Xc)
(

1 + 1.014 |Vub|2

|Vcb|2

)
for ℓ = e .

(7.35)

Therefore, we will interpret R(X) = R(Xc). Comparing then (7.34) with our pre-
dictions in (7.15), we again observe a slight tension.

Besides calculating the rate directly from the OPE as in (7.30), we may also give
predictions of the branching ratio by multiplying them with the measured flavor-
averaged light-meson branching ratio. Following the detailed discussion in [147], we
take

B(B → Xcℓν̄ℓ) = (10.48 ± 0.13)%, (7.36)
which differs slightly from those quoted by [14] and [145]. Averaging our predictions
for the muon and electron ratios in (7.15), and multiplying with (7.36), we find

B(B → Xcτ ν̄τ )Exp+OPE ≡ B(B → Xcℓν̄ℓ)Rτ/ℓ(Xc) = (2.30 ± 0.05)% , (7.37)

which is in perfect agreement with, but has a much smaller uncertainty than our
direct calculation in (7.30). Using the inputs in [15], and the ratios in (7.18), we
find

B(B → Xcτ ν̄τ )q
2

Exp+OPE ≡ B(B → Xcℓν̄ℓ)Rτ/ℓ(Xc)|q
2 = (2.35 ± 0.05)% , (7.38)

which agrees at 1σ level.
Similarly, we can convert the unpublished Belle measurement in (7.34). In [146],

this is multiplied with the measured isospin-average branching fraction B(B →
Xℓν̄ℓ) = (10.86 ± 0.16)% to obtain B(B → Xτν̄τ ) = (3.23 ± 0.25)%. This is in
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2.2 2.4 2.6 2.8 3.0 3.2 3.4
B(B → Xcτν) [%]

Exp+OPE: NLO + 1/m2
b + 1/m3

b

Exclusive decay:
∑

Xc∈D(∗,∗∗) B(B → Xcτ ν̄τ )

OPE: NLO + 1/m2
b + 1/m3

b

BM: NNLO

FLR: NNLO + 1/m2
b

Incl. Belle (Unpublished)

LEP measurement

Figure 7.1: Comparison of our predictions for the branching ratio B(B → Xcτν)
with previous determinations and with the sum over exclusives from [168]. We also
quote the measurements of LEP and the unpublished Belle measurement (see text
for details).

tension with the value we find from the direct OPE calculation in (7.32). Using
(7.34), we multiply with (7.36) to find

B(B → Xcτ ν̄τ )Belle = (3.12 ± 0.23) %. (7.39)

Multiplying the previous theoretical determination of R(Xc) in (7.16) [160] with
with (7.36) gives

B(B → Xcτ ν̄τ )FLR = (2.34 ± 0.05)%, (7.40)
which is in agreement with the value reported in [168].

Finally, multiplying (7.17) with the branching ratio in (7.36) gives

B(B → Xcτ ν̄τ )BM = (2.47 ± 0.04)%. (7.41)

It is also interesting to compare our inclusive predictions with a sum over exclusive.
To this extend, we follow the recent [168]. Using the HFLAV-averaged SM predic-
tions for R(D) and R(D∗) and the measured rates for the light-modes, combined
with the prediction for B(B → D∗∗ℓν̄ℓ) [169], they find [168]∑

Xc∈D(∗,∗∗)

B(B → Xcτ ν̄τ ) = (2.14 ± 0.06) % . (7.42)

Interestingly, this sum over exclusive modes does not saturate our calculated fully
inclusive rate. In fact, using the HQE inputs from the q2 moment analysis predict a
larger branching ratio in (7.39) leaving more room for additional states to saturate
the rate. We summarize and visualize our findings in Fig. 7.1.
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7.4 Conclusion
We calculated the SM predictions for the lepton flavour universality ratios of semilep-
tonic inclusive B decays. In these predictions, we only considered the mass effects,
and included HQE parameters up to 1/m3

b . We corrected a previous calculation
in [134], which missed some terms in the ρ3

D contribution.
In addition, we present updated results of the Standard Model for the branching

ratio of the B → Xcτ ν̄τ decay. Experimentally, for this rate only a LEP measure-
ment and an unpublished Belle analysis are available. In light of the discrepancies
between data and experiment in the universality ratios of exclusive semileptonic
B → D(∗) update measurements of this observable are highly wanted. A detailed
analysis of the effect of new physics operators on inclusive semitauonic decays is in
progress [170].
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Appendix A Total rate
In this Appendix, we explicitly give the coefficients of the rate in (7.4).

We note that all these coefficients except Cρ3
D

agree with [134] when transform-
ing basis from the spatial derivative “perped” basis used here to the full covariant
derivative basis via (7.12). Explicitly this means that

Cµ2
π

= C⊥
µ2

π
, Cµ2

G
= C⊥

µ2
G
, Cρ3

D
= C⊥

ρ3
D

+ C⊥
µ2

G
, Cρ3

LS
= 0 . (7.43)

We find

C
(0)
0 = R

[
1 − 7ρ− 7ρ2 + ρ3 − (7 − 12ρ+ 7ρ2)η − 7(1 + ρ)η2 + η3

]
(7.44)

− 12
[
ρ2 ln (1 + ρ− η −R)2

4ρ − η2 ln(1 + η − ρ+R)2

4η − ρ2η2 ln (1 − ρ− η −R)2

4ρη

]
,

C⊥
µ2

G
= R

2
[
−3 + 5ρ− 19ρ2 + 5ρ3 + (5 + 28ρ− 35ρ2)η − (19 + 35ρ)η2 + 5η3

]
(7.45)

− 6
[
ρ2 ln (1 + ρ− η −R)2

4ρ − η2 ln(1 + η − ρ+R)2

4η − 5ρ2η2 ln (1 − ρ− η −R)2

4ρη

]
,
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In addition, we have

C⊥
µ2

π
= −C0

2 , C⊥
ρ3

LS
= −C⊥

µ2
G

(7.46)

C⊥
ρ3

D
= R

6

{
77 + 5ρ3 + ρ2(13 − 35η) + 13η − 59η2 + 5η3 − ρ(11 + 12η + 35η2)

}
(7.47)

+
η2(10ρ2 + 8η − 2) ln

[
(1 − ρ− η −R)2

4ηρ

]
+ (8 + 6ρ2 − 8η − 6η2) ln

[
(1 + ρ− η −R)2

4ρ

],
where R =

√
ρ2 + (−1 + η)2 − 2ρ(1 + η).
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Chapter 8

Project III: New physics
contributions to moments of
inclusive b → c semileptonic decays

Published as a preprint in:
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analysis of all expressions obtained in the article. Dr. Fael and Prof. Dr. Vos
performed an independent numerical study and worked on the draft.

Abstract: Inclusive semileptonic B → Xcℓν̄ℓ decays, where ℓ = µ, e, are by now
standard candles in the determination of the CKM element |Vcb|. These determina-
tions rely on the heavy-quark expansion and use moments of decay spectra to ex-
tract the non-perturbative parameters directly from data under the standard model
assumption. At the same time, new physics could influence the moments of the
inclusive decay. In this paper, we compute power-corrections and next-to-leading
order corrections in the strong coupling constant using the full basis of dimension-six
new physics operators for the inclusive B → Xcℓν̄ decay. We provide predictions
for lepton energy, hadronic and leptonic invariant mass moments, and perform a
phenomenological study to show the possible impact of new physics. Our results
could be used to perform a global fit including new physics contributions.
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8.1 Introduction
Semileptonic b → c decays provide important tests of the Standard Model (SM)
of particle physics as they are mediated by a tree-level weak transition. As such,
both the inclusive B → Xcℓν̄ℓ and exclusive B → D(∗)ℓν̄ℓ decays, where ℓ = µ, e,
are clean probes of the CKM element |Vcb|. For the exclusive decays, this requires
information on the B → D(∗) form factors, while the inclusive decay relies fully
on the heavy quark expansion (HQE) and the extraction of non-perturbative pa-
rameters from data. Thanks to a combined theoretical and experimental effort,
the inclusive determination of |Vcb| has reached an impressive 1.2 − 1.5% relative
uncertainty [14,15].

Despite this progress, the puzzling tension between the exclusive and inclusive
determination of Vcb persists and has received quite some attention recently (see
e.g. [119, 139, 171–175]). At the same time the possible New Physics (NP) origin
of this discrepancy has been investigated (see [176–178]). The search for such NP
has been boosted by the recent finding of the B anomalies, discrepancies between
experimental data and theoretical SM predictions in both the neutral (b → sℓℓ) and
charged (b → cτ ν̄τ ) current decay of B mesons.

In this paper, we consider the effect of possible new physics interactions on
moments of the inclusive B → Xcℓν̄ℓ decay, for light leptons. The effect of NP on
the moments of the b → c spectrum have so far only been studied in [134, 179],
where a subset of possible NP operators was included. NP contributions to the
total inclusive rate were included in the analysis of Ref. [177], while new tensor
interactions were discussed in [176].

Using the framework of the HQE, we consider the B → Xcℓν̄ℓ spectra including
the full set of NP dimension-six operators appearing in the weak effective theory
(WET) below the electroweak (EW) scale. We provide predictions for lepton energy
(Eℓ), hadronic (M2

X) and leptonic (q2) invariant mass moments. Moreover we study
also NP effects in forward-backward asymmetries which were proposed in [82] and
recently reconsidered in [140]. When considering the most general effective Hamilto-
nian for b → cℓν̄ℓ transition with dimension-six operators, we have three expansion
parameters in the HQE: the inverse of the EW scale GF = 1/(

√
2v2), 1/mb and

αs(mb). In order to properly catch the leading effects in the various moments, we
compute the following kind of contributions:

• NP contributions at tree level in the free-quark approximation. These terms
scale like G2

F ×α0
s × ( 1

mb
)0 in the prediction for the differential rate. Note that

the interference between SM and NP operators vanishes for scalar and tensor
currents when the leptons are considered massless.

• Power suppressed contributions up to order 1/m3
b also for the NP operator

contributions. These corrections scale like G2
F × α0

s × ( 1
mb

)2,3. Since the pre-
diction for q2 and M2

X central moments receive large contributions from power
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corrections, it is important to consider also the power suppressed terms for
the NP effects.

• Perturbative QCD NLO corrections to the NP effective interactions in the free
quark approximation, which scale like G2

F × α1
s × ( 1

mb
)0. For the second and

third central moments of M2
X , the αs corrections are effectively a leading-order

contribution since the partonic invariant mass differs from mc only starting at
O(αs).

In the end, our results could be included in a fit to the experimental data to constrain
possible NP contributions. We plan to implement this in the EOS software [180].
In the mean time, to show the impact of such an analysis, we illustrate the effect of
different NP scenarios with some phenomenological studies. Finally, we present a
toy fit to show the effect on the Vcb extraction, as the HQE parameters could mimic
the effect of NP.

This work is organised as follows. In Section 8.2 we introduce the set of dimension-
six operators which can contribute to the inclusive semileptonic B decay and discuss
the derivation of the NLO corrections for the NP operators. In Sec. 8.3 we present
the results for the NP contributions to moments, illustrate their effects using three
benchmark scenarios and study their impact on the extraction of the HQE param-
eters in global fits via a toy fit. In Sec. 8.4 we discuss the effects of NP in the
forward-backward asymmetries. We conclude in Sec. 8.5. In Appendix A, we give
the contribution to the total rate, while in Appendix B we give our results for the
different contributions to the moments.

8.2 Effective NP contributions to b → cℓν̄ℓ

We consider NP effects in b → cℓν̄ℓ decays arising from

Heff = 4GFVcb√
2

(1 + CVL
)OVL

+
∑

i=VR,SL,SR,T

CiOi

 , (8.1)

where the effective dimension-six operators are

OVL(R) =
(
c̄γµPL(R)b

) (
ℓ̄γµPLνℓ

)
, (8.2)

OSL(R) =
(
c̄PL(R)b

) (
ℓ̄PLνℓ

)
(8.3)

OT = (c̄ σµνPLb)
(
ℓ̄ σµνPLνℓ

)
. (8.4)

with PL(R) = 1/2 (1 ∓ γ5) and σµν = i
2 [γµ, γν ]. In the SM only OVL

contributes. We
have written out this contribution explicitly, such that all Wilson coefficients Ci are
zero in the SM. We do not consider interactions with right handed neutrinos (see
e.g. [181] for a discussion of these effects on exclusive B → D(∗)ℓν̄ℓ decays).
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Note that if one would consider NP effects in the SMEFT framework [182], there
would be an additional expansion in powers of 1/Λ, where Λ corresponds to the
NP scale above the EW scale. The tree-level matching of SMEFT operators onto
the effective Hamiltonian can be obtained from [183]. In the WET the expansion
parameter is 1/v, therefore from the SMEFT point of view the Wilson coefficients
in Eq. (8.1) would be further suppressed by the small ratio (v/Λ)2.

To study the effects of the NP operators on moments of the spectrum, we calcu-
late the triple differential decay rate in terms of the lepton (neutrino) energy Eℓ(ν)
and the dilepton invariant mass q2 = (pℓ + pν)2. We write

dΓSM+NP

dEℓdq2dEν
= G2

F |Vcb|2

16π3 W̃ ⊗ L̃ , (8.5)

where

W̃ ⊗ L̃ ≡ |1 + CVL
|2 (WµνL

µν)VL,VL
+ |CVR

|2 (WµνL
µν)VR,VR

+ |CSL
|2 (WL)SL,SL

+ |CSR
|2 (WL)SR,SR

+ |CT |2 (WµνρσL
µνρσ)T,T + Re((1 + CVL

)C∗
VR

) (WµνL
µν)VL,VR

+ Re(CSL
C∗
SR

) (WL)SL,SR
+ Re(CSL

C∗
T )(WµνL

µν)SL,T

+ Re(CSR
C∗
T )(WµνL

µν)SR,T . (8.6)

We split the contributions into the lepton (L) and hadronic (W ) tensors. We define

L =
∑

lepton spin
⟨0| J†

L |ℓν̄ℓ⟩ ⟨ℓν̄ℓ| JL′ |0⟩ , (8.7)

where we suppressed the Lorenz indices in the leptonic tensor. The indices L and
L′ can take the values SL,R, VL,R and T with

JSL,R
= (ℓ̄PLνℓ), JµVL,R

= (ℓ̄γµPLνℓ), JµαT = (ℓ̄σµαPLνℓ). (8.8)

We define the hadronic tensor in the following way:

W =
∑
Xc

1
2mB

(2π)3 ⟨B̄| J†
H |Xc⟩ ⟨Xc| JH′ |B̄⟩ δ(4)(pB − q − pXc), (8.9)

where pXc is the total momentum of the Xc state and also in this case we suppressed
the Lorenz indices. In the presence of NP interactions, the index H and H ′ can take
the values SL,R, VL,R and T where

JSL(R) = (c̄PL(R)b) , JµVL(R)
= (c̄γµPL(R)b) , JµαT = (c̄σµαPLb) . (8.10)

In Eq. (8.6) we neglected combinations of the form (WµL
µ)VL(R),SL(R)

and (WµρσL
µρσ)VL(R),T

since they do not contribute in the limit mℓ → 0 considered in this work. The
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hadronic tensors W can now be calculated using the heavy quark expansion (HQE)
(see e.g. [103]), expressing them in pertubatively calculable coefficients and hadronic
matrix elements scaling with inverse powers of mb. The number of matrix elements
proliferates at each higher order in 1/mb (see [78, 79, 115]). Here we only consider
terms up to 1/m3

b defined as: (see e.g. [80])

2mB (µ2
π)⊥≡−⟨B|b̄v(iDρ)(iDσ)bv|B⟩Πρσ ,

2mB (µ2
G)⊥≡1

2⟨B|b̄v [iDρ, iDλ] (−iσαβ)bv|B⟩ΠαρΠβλ,

2mB (ρ3
D)⊥≡1

2⟨B|b̄v [iDρ, [iDσ, iDλ]] bv|B⟩Πρλvσ,

2mB (ρ3
LS)⊥≡1

2⟨B|b̄v {iDρ, [iDσ, iDλ]} (−iσαβ)bv|B⟩ΠαρΠβλvσ , (8.11)

where vµ = pµB/mB is the velocity of the B meson and

Πµν = gµν − vµvν . (8.12)

In the following, we drop the “perp” superscript for simplicity. Alternative, the
HQE parameters can be defined with the full covariant derivative, related to the
spatial component via iDµ = vµ(iv · D) + Dµ

⊥. These definitions were used in
Refs. [15, 78, 115] as, in the reparametrization invariant (RPI) basis, it is beneficial
to use the full derivative (see discussion in Appendix A of [115] for the relation
between these two bases). In principle, the 1/m4

b terms can be included as recently
done for the q2 moment analysis [15]. The two 1/m4

b parameter extracted were found
to be consistent with zero. These higher-order corrections were also studied in [113]
using the lowest-lying state approximation. Therefore, for this study of NP effects,
we only consider terms up to 1/m3

b .

8.2.1 Next-to-leading order corrections
Besides these power-corrections, we also compute the NLO corrections to the triple
differential rate for the full NP operator basis in (8.1). For scalar NP interactions,
the NLO corrections to the q2 spectrum are already given in [184], using results
from [185]. The NLO corrections for the SM are well known for both the massive
and massless leptons in the semileptonic decay b → cℓν̄ℓ [108,121,126,157,186,187].

We compute the O(αs) for the structure functions of the hadronic tensor W
for the different currents which enter the fully differential decay width. We note
that it turns out to be more convenient to express the triple differential rate with
respect to u ≡ p2

Xc
− m2

c instead of Eν as in [187]. We then extract the predictions
for the various moments and forward-backward asymmetries with arbitrary cuts via
numerical integration of the differential rate over the allowed phase space, following
the approach described in [188].

77



(a) (b)

(c) (d)

Figure 8.1: One-loop forward scattering diagrams which contribute to the b → Xcℓν̄ℓ
differential rate at NLO. The black boxes represents one of the currents JH defined
in (8.10). Solid lines represent the quarks, curly lines the gluons and wavy lines the
color-singlet external current mediating the weak decay.

In general we can express the structure functions as:

WHH′(q2, (v · q)) = W
(0)
HH′(q2, (v · q)) + αs(µ)

π

[
W

(1)
HH′,virt(q2, (v · q)) +W

(1)
HH′,real(q2, (v · q))

]
,

(8.13)

where “virt” and “real” stand for virtual and real contributions, respectively. The
indices HH ′ run over all possible pairs of NP interactions, e.g. VLVR, SLSR, etc.

For the ultraviolet and infrared divergences, we use dimensional regularization
and define ϵ = (4 − d)/2, where d is the space-time dimensions. For the calculation
we use the Mathematica package FeynCalc [189]. The ultraviolet divergences in
the one-loop virtual diagrams are removed by using on-shell quark mass and wave
function renormalization. Furthermore, there are additional ultraviolet divergences
for the scalar and tensor currents. We therefore apply a renormalization of these
currents according to their one-loop anomalous dimension (see e.g. [190]). For the
computation of real emission we employed the inverse unitarity approach [191]. This
method allows us to rewrite the real emission diagram integrated over the gluon
phase-space as a multi-loop integral with cut propagators. We can then apply the
usual IBP reduction to reduce the real emission contribution to phase-space master
integrals which are then calculated explicitly. In the process of the reduction to
master integrals we take into account the cut in the gluon and charm intermediate
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state. For the real emission we encounter the following integral family:

I(a, b, c) =
(
4π e−γE

)−ϵ
Disc

∫ ddk
(2π)d

1
[k2]a[(pb − k)2 −m2

b ]b[(pb − q − k)2 −m2
c ]c

(8.14)

By applying the Cutkosky’s rules for the gluon and charm intermediate state:
1
k2 → (−2πi) δ(k2) ,

1
(pb − q − k)2 −m2

c

→ (−2πi) δ((pb − q − k)2 −m2
c) , (8.15)

we obtain the following master integrals:

I(1, 0, 1) =
(
4π e−γE

)−ϵ ∫ ddk
(2π)d (−2πi)2δ(k2)δ((pb − q − k)2 −m2

c)Θ(k0)

= − û

4πŝ

(
û√
ŝ

)−2ϵ (1
2 + ϵ+ O(ϵ2)

)
, (8.16)

I(1, 1, 1) =
(
4π e−γE

)−ϵ ∫ ddk
(2π)d

1
(pb + k)2 −m2

b

(−2πi)2δ(k2)δ((pb − q − k)2 −m2
c)Θ(k0)

=
(
û√
ŝ

)−2ϵ { 1
8π

√
λ

log
(

1 − q̂2 + ŝ+
√
λ

1 − q̂2 + ŝ−
√
λ

)

+ ϵ

4π
√
λ

[
Li2

(
2
√
λ

1 − q̂2 + ŝ+
√
λ

)
+ 1

4 log2
(

1 − q̂2 + ŝ+
√
λ

1 − q̂2 + ŝ−
√
λ

)]
+ O(ϵ2)

}
,

(8.17)

where ŝ = ρ+ û, λ = λ(1, q̂2, ŝ) and λ(x, y, z) = x2 +y2 + z2 −2xy−2xz−2yz is the
Källen function. The singularities of the real emissions are located at û = 0 with:

û = (1 − q̂)2 − ρ , 0 ≤ û ≤ ûmax = (1 −
√
q̂2)2 − ρ . (8.18)

We have to extract the singular behavior of the master integrals around û = 0 before
expanding in ϵ. The infrared divergences are extracted explicitly by using the plus
distribution:

û−1+aϵ = 1
aϵ
δ(û) ûmax +

[1
û

]
+

+ O(ϵ) . (8.19)

The integration of the plus distribution over a test function is defined as:∫ ûmax

0
f(û)

[1
û

]
+

dû =
∫ ûmax

0

f(û) − f(0)
û

dû . (8.20)
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In the sum between real and virtual corrections all the infrared divergences cancel.
For the γ5 definition in dimensional regularization we use the Larin prescription
[192], i.e.

γ5 = i

12ϵµ1µ2µ3µ4γ
µ1γµ2γµ3γµ4 , (8.21)

which requires an additional finite renormalization constant in order to restore the
correct Ward identity.

Note that, our method to compute the one-loop diagrams differs from [187] where
they regularize IR divergences via a finite gluon mass. Ref. [187] presented also the
corrections of O(αnsβn−1

0 ) (the so-called large-β0 limit). This can be also done in
our approach, however, we do not include them in this analysis. To summarize, in
this work we consider leading order, power-corrections up to O(1/m3

b) and next-to-
leading order corrections. Schematically:

dΓSM+NP

dEℓdq2dEν
= dΓLO

SM+NP
dEℓdq2dEν

+ dΓPow
SM+NP

dEℓdq2dEν
+
(
αs
π

) dΓNLO
SM+NP

dEℓdq2dEν
. (8.22)

8.2.2 Moments of the spectrum
In the following, we consider the lepton energy moments, dilepton invariant mass
(q2) moments and hadronic invariant mass moments of the b → c spectrum. The
first two can be easily obtained from the triple differential rate defined as in (8.5).
The hadronic invariant mass is related to these variables via

M2
X ≡ (pB − q)2 = (m2

B + q2 − 2mB(v · q)) . (8.23)

The normalized moments for observable M are then defined

⟨Mn⟩Eℓ>E
cut
ℓ

=
∫
Eℓ>E

cut
ℓ

dM Mn dΓ
dM∫

Eℓ>E
cut
ℓ

dM dΓ
dM

, (8.24)

where Ecut
ℓ is the energy cut of the lepton ℓ = (e, µ) and n denotes the n-th order

of moment. Similarly, for q2 moments, we consider moments with minimum cut q2
cut

on the value of q2. As is customary, we also calculate central moments defined as

⟨(M − ⟨M⟩)n⟩ =
n∑
i=0

n
i

 ⟨(M)i⟩ (− ⟨M⟩)n−i . (8.25)

The moments can be obtained using Eq. (8.24) and by integrating the triple differ-
ential rate over the allowed phase space.
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8.3 New physics in moments of B → Xcℓν̄ℓ

The moments can now be obtained from the triple differential rate in (8.5). We
write

⟨M⟩ = ξSM + |CVR
|2 ξ⟨VR,VR⟩

NP + |CSL
|2 ξ⟨SL,SL⟩

NP + |CSR
|2 ξ⟨SR,SR⟩

NP + |CT |2 ξ⟨T,T ⟩
NP

+ Re((CVL
− 1)C∗

VR
) ξ⟨VL,VR⟩

NP + Re(CSL
C∗
SR

) ξ⟨SL,SR⟩
NP + Re(CSL

C∗
T ) ξ⟨SL,T ⟩

NP

+ Re(CSR
C∗
T ) ξ⟨SR,T ⟩

NP , (8.26)

where we assume that the NP Wilson coefficients are smaller than one so that we
can expand the ratios in Eq. (8.24) up to quadratic NP couplings. The contribution
CVL

ξ
⟨VL⟩
NP drops out for normalized moments and in the branching ratio it is equivalent

to a rescaling of Vcb. The coefficients denoted by ξ depend on the bottom and charm
quark masses, the HQE parameters and the lepton energy cut or the q2 cut. For ξSM,
we agree with the numerical results at O(αs) given in [112] for the electron energy
andMX moments. The NP coefficients with NLO corrections are lengthy and require
numerical integration depending on the lepton energy (or q2) cut. Therefore, we do
not report explicitly our results. They can be obtained in Mathematica format from
the authors. However, to illustrate the effect of the NP contributions, we report
our predictions for the various central moments for benchmark values of the cuts.
We consider Ecut

ℓ = 1 GeV in case of the lepton energy and hadronic invariant mass
moments. For the q2 moments, we present results for q2

cut = 4 GeV2. In the next
section, we also illustrate the lepton energy or q2 cut dependence for specific NP
scenarios.

In Appendix B we report our predictions for the different moments. We work
in the kinetic scheme [159, 185, 193, 194]. We fix the value of the scale µ in mkin

b (µ)
at 1 GeV. For the charm quark mass we use the MS scheme and fix mc(2 GeV).
For the strong coupling constant we use αs(mkin

b ) = 0.2184 [195]. In addition, we
use the input values in Table 8.1. These are obtained from a global fit to lepton
energy and hadronic invariant mass moments of the B → Xcℓν̄ℓ spectra in [14]
(which updates the fit of [113]). Interestingly, the value of ρ3

D in Table 8.1 differs
from the determination of ρ3

D = (0.03 ± 0.02) GeV3 found in [15]. The latter uses q2

moments, which depend on a reduced RPI basis of HQE elements. Specifically, ρ3
LS

does not enter into the prediction of RPI quantities and the dependence on µ2
π is

very much reduced for normalized q2 moments. The difference between the values
for ρ3

D obtained from these two data sets requires further study, preferably via a
combined fit to all available data. These studies are in progress. On the contrary,
the lepton and hadronic mass moments depends on ρ3

LS and µ2
π, so we cannot use the

HQE parameter values from [15] for these moments. However, for the q2 moments
both determinations of HQE parameters can be used. We comment on this in the
next section.
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mkin
b (4.573 ± 0.012) GeV

mc(2 GeV) (1.092 ± 0.008) GeV
(µ2

π(µ))kin (0.477 ± 0.056) GeV2

(µ2
G(µ))kin (0.306 ± 0.050) GeV2

(ρ3
D(µ))kin (0.185 ± 0.031) GeV3

(ρ3
LS(µ))kin (-0.130 ± 0.092) GeV3

Table 8.1: Numerical inputs from [14]. The HQE parameters and the b-quark mass
are given in the kinetic scheme at µ = 1 GeV.

Our results in Appendix B show the impact of different NP contributions. As
stated already in the introduction, especially for the MX and q2 moments, the in-
clusion of 1/mb power corrections is crucial, while in addition for the former also
αs numerically plays an important role. In principle, the coefficients have an uncer-
tainty stemming from the input parameters. However, here we refrain from giving
those. We include them in the next section when discussing different NP scenarios.

From our results, we observe that for all moments the contribution proportional
to C2

T is sizable compared to ξSM. Especially for the third Eℓ and q2 moments,
tensor contributions can be as large as ten times the SM prediction or more (for
order one coefficients). Therefore, a moment analysis is expected to be able to
strongly constrain such contributions. It is also interesting to consider the case of
contributions from both CSL

and CT , because due to RGE running (see e.g. [196,
197]), tensor interactions always generate left-handed scalar interactions. We note
that q2 moments are only sensitive to the quadratic contributions, while lepton and
hadronic mass moments are also sensitive to interference. Assuming real couplings
and CSL

> CT (see discussion in [177]), we observe that the q2 moments mainly
constrain CSL

, while the lepton moments constrain the tensor part. Clearly, the
situation for the inclusive decay is not as straightforward as for the exclusive case,
because our current “SM prediction” depends on the input of the HQE elements
that are extracted from data. Nevertheless, we can visualize and investigate the
potential NP bounds for different scenarios by assuming that the SM prediction is
known (namely ξSM). We then define

δ ⟨M⟩ ≡ ⟨M⟩ − ⟨M⟩SM
⟨M⟩SM

(8.27)

where MSM = ξSM for the specific moment under consideration. Considering then a
10% measurement of the moments, i.e. δ ⟨M⟩ = ±0.1, leads to a constraint on the
NP parameters. Specifically, for the SL − T contributions we obtain

− 0.1 < |CSL
|2ξ̂⟨SL,SL⟩

NP + |CT |2ξ̂⟨T,T ⟩
NP + Re(CSL

C∗
T )ξ̂⟨SL,T ⟩

NP < 0.1 , (8.28)
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Figure 8.2: Illustration of complementarity of constraints on CSL
and CT from lepton

energy moments and q2 moments, assuming δ⟨M⟩ = ±0.1.

where
ξ̂i ≡ ξi

ξSM
, (8.29)

and the ξi can be found in Appendix B for the different moments and NP scenarios.
In order to illustrate the effects, we use these ξ’s, which are re-expanded in the
Wilson coefficients. The constraints obtained from (8.28) are illustrated in Fig. 8.2.
Interestingly, we see that the different moments give complementary bounds on NP,
similar as the B → D versus B → D∗ constraints in the exclusive case (for the latter
see [177]).

Similarly, in Fig. 8.3, we illustrate the possible bounds on CVL
and CVR

(left)
and CSL

and CSR
(right). In these cases, we see that the MX moments give much

weaker constraints than the lepton energy and q2 moments. We should stress that
the uncertainties on the MX moments are in general also larger as they are more
sensitive to higher-order HQE corrections. Comparing with the exclusive constraints
on CSL

versus CSR
in [177], we observe that such a SM measurement would constrain

NP along the CSL
= −CSR

plane, similar as the B → D exclusive mode, while
B → D∗ gives constraints orthogonal to that.

Finally, we note that the CSL,R
CT coefficient vanishes for q2 moments because

the differential rate has only a parity-odd contribution while q2 moments with a cut
on q2 are parity even observables. For lepton energy and hadronic mass moments,
the contribution proportional to CSR

CT is non-zero only due to power corrections.
Therefore, the sensitivity to these types of NP is limited.

8.3.1 Illustration for specific NP scenarios
To visualize the effect of possible NP in the moments of the B → Xcℓν̄ℓ spectrum
as a function of the lepton energy cut (or q2 cut), we consider three NP scenarios
specified in Table 8.2 allowing for either new scalar interactions (Scen. I), new tensor
and scalar interactions interactions (Scen. II) and new vector interactions (Scen. III).
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Figure 8.3: Illustration of the possible bounds on (left) CVL
versus CVR

and (right)
CSL

versus CSR
assuming a 10% SM measurement.

NP Scenarios CVL
CVR

CSR
CSL

CT

I 0 0 1 1 0
II 0 0 0 -1 0.5
III -1 0.5 0 0 0

Table 8.2: Three NP scenarios that we consider to visualize the effect of the NP
parameters in the moments. All Wilson coefficients are defined at the scale µ = mb.

These scenarios are just to illustrate how the NP contributions depend on the cut
and to the SM uncertainty. We stress that these scenarios may not be realistic in
light of current data on exclusive B → D(∗) decays, were the same NP operators
would contribute. Specifically Scenario II, where we allow for a rather large tensor
contribution, may be already excluded by the exclusive decays (see [177]). For
the scalar contributions, we pick CSR

= CSL
, based on Fig. 8.3 as we see that

this would give a large effect on the spectrum. Finally, as here we consider rather
large Wilson coefficients we do not re-expand the expression for the moments in
the Wilson coefficients. We observe in Figs. 8.4, 8.5 and 8.6 that the prediction
for all central moments are modified by the presence of NP contributions, but that
the cut-dependence remains similar as that of the SM prediction. For all cases, we
observe that the third central moment is most sensitive to NP effects.

Electron energy moments:

Figure 8.4 shows the lepton energy moments as a function of the lepton energy cut
for the SM and the three NP scenarios. In order to qualitatively understand the
sensitivity on possible NP effects, we show in these plots the experimental results
from Belle [198] and BaBar [199]. On the right-hand side, we show the impact of
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the NP scenarios by showing the absolute value of δ ⟨M⟩ defined in (8.27).
For simplicity, we only show an uncertainty band for the SM prediction obtained

by varying the inputs in Table 8.1 within their 1σ ranges. To account for missing
αs corrections, we vary the scale of αs(µ) in the range mb/2 < µ < 2mb. We
observe for electron energy moments, Scen. I is rather close to the SM, while Scen. II
and III cause a shift much larger than the SM uncertainty. These lepton energy
moments therefore seem rather sensitive to NP effects and it would be potentially
able to constrain NP via a full global analysis of these moments. Note also that the
contribution from power corrections are in general small for this kind of moments,
reducing the dependence on the value of the HQE parameters.

M2
X moments:

Results for the hadronic invariant mass moments are shown in Fig. 8.5. We observe
that these moments are sensitive to new scalar couplings, as Scen. I shows the largest
deviation from the SM prediction. On the other hand, both Scen. II and III lie within
the uncertainty of the SM error band, which is rather large. This happens because
for the MX moments the contribution from power corrections is very important and
the αs corrections are much larger compared to the partonic LO. The dependence of
the MX moments on the scale of αs is therefore much larger compared for instance
to the electron energy moments and so prevents a precise SM determination of these
kind of observables.

For the experimental data points we use the results of CLEO [200], Belle [201] and
BaBar [202]. The latter does not provide the central moments but only ⟨(M2

X)i=1,2,3⟩.
We have calculated the central moments using (8.25). We do not show the recent
results of Belle II [203] since the uncertainties are still rather large.

q2 moments:

For the q2 moments, we consider the SM and NP predictions at different values
of the q2 cut shown in Figure 8.6. For the plots on the left-hand side, we used
the HQE parameters from Table 8.1 from [14]. Comparing with the experimental
data points of Belle [138] and Belle II [204], we find large deviations. Interestingly,
these deviations cannot be accommodated by the three NP scenarios we consider. As
mentioned before, in [15], where these data were used to extract the HQE parameters
and Vcb, a value of ρ3

D incompatible with that in Table 8.1 was found. The mismatch
in Fig. 8.6 is a consequence of this: the q2 data pull ρ3

D to much smaller value. To
illustrate this, we show on the right-hand side of Fig. 8.6 the SM predictions using
the HQE parameters obtained in [15]. We observe good agreement with the data
points. In addition, the uncertainty of the SM prediction is rather large, reflecting
that these moments are more sensitive to the power corrections than the lepton
energy moments. This was already observed in [158]. Note that the ξ coefficients in
Appendix B are obtained using Table 8.1. As the goal of these scenarios is merely
to demonstrate the effect of different NP parameters, we do not present ξ’s using
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Figure 8.4: Lepton energy moments for the B → Xcℓν̄ℓ decay for the different NP
scenarios (see Tab. 8.2). The experimental results of BaBar is taken from [199] and
Belle from [198].
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Figure 8.5: Hadronic invariant mass moments for the B → Xcℓν̄ℓ decay different
NP scenarios (see Tab. 8.2). The experimental values of BaBar is taken from [202],
CLEO [200], Belle [201].
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B(B → Xcℓν̄) in %

ξSM 12.983|LO − 0.962|pow −
(
αs

π

)
16.101

ξ
⟨VR,VR⟩
NP 12.983|LO − 0.962|pow −

(
αs

π

)
16.101

ξ
⟨SL,SL⟩
NP 3.245|LO + 0.067|pow +

(
αs

π

)
2.783

ξ
⟨SR,SR⟩
NP 3.245|LO + 0.067|pow +

(
αs

π

)
2.783

ξ
⟨T,T ⟩
NP 155.802|LO − 16.493|pow −

(
αs

π

)
163.665

ξ
⟨VL,VR⟩
NP −8.453|LO + 1.332|pow +

(
αs

π

)
13.375

ξ
⟨SL,SR⟩
NP 4.226|LO + 0.380|pow +

(
αs

π

)
4.550

ξ
⟨SL,T ⟩
NP 0
ξ

⟨SR,T ⟩
NP 0

Table 8.3: Numerical values of the parameters for the branching ratio without lepton
energy cut for fixed B meson lifetime.

the HQE parameters from [15]. We observed the q2 moments are most sensitive
to Scen. I, while Scen. III has basically no effect. This is because for this scenario
there is a cancellation between the Wilson coefficients, rendering the effect almost
unobservable. For smaller values of CVL

, there is an effect on the moments and in
fact the q2 moments can put rather strong constraints as seen in Fig. 8.3.

8.3.2 Lepton Flavor Universality Ratios
In order to study NP in Lepton Flavor Universality Ratios of light leptons, we give
the analytic expression for the total rate in Appendix A.

For completeness, we also give the numerical coefficients including NLO correc-
tion. Writing the branching ratio in terms of ξi as in (8.26), with the only difference
that the ξSM term gets multiplied with |1 + CVL

|2, we find the coefficients listed in
Table 8.3. We used the iputs in Table 8.1 and a fixed value for the B meson lifetime
τB = 1.579 ps [205] and |Vcb| = (42.16 ± 0.51) · 10−3 [14]. However, we note that NP
would also affect the total lifetime of the B meson.

The expressions in the Appendix and our numerical results can be used to study
ratios of electron versus muon rates under the assumption of lepton-flavour univer-
sality violating new physics. Note that a lepton-flavour universal and diagonal NP
effect in CL can in principle be absorbed by a shift in Vcb. Recently, the SM pre-
dictions for lepton-flavour universality ratios were studied [4]. Because the current
data (see for example the q2 moments split up for electron and muon contributions
in [138]) do not indicate any deviation from lepton universality in the charged light
modes, we do not study these effects here further.
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Figure 8.6: Dilepton invariant mass moments (q2) for the B → Xcℓν̄ℓ decay in
comparison with Belle [138] and Belle II data [204]. (Left) Using the inputs in
Table 8.1 from [14](Right) using the inputs from [15].
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8.3.3 HQE parameters versus NP
The HQE parameters are extracted from moments of the b → c spectrum under the
assumption of the SM. However, it can be that NP mimics the effect of the HQE
parameters shifting the spectrum up or down. In fact, Fig. 8.6 shows that shifting
ρ3
D seems to be able to mimic the effect that NP may have on the spectrum. It would

therefore be interesting to perform a full analysis of the moments including NP. Such
an analysis lies beyond the scope of the current paper. However, we can illustrate
the possible effect with a simplified toy fit. To this extend, we generate pseudo
data points for the three NP scenarios in Table 8.2 for lepton energy and hadronic
invariant mass moments at different lepton energy cuts as well as q2 moments with
q2

cut. For this, we use the HQE parameters in Table 8.1. We generate 9 data points
per scenario: the first, second and third central moments with Ecut

ℓ = 1.0 GeV for
the lepton energy and hadronic invariant mass moments and with q2

cut = 4 GeV2

for q2 moments. For the uncertainty on these points, we vary the contribution
of ρ3

D by 30%, µ2
G by 20% and αs between its value at µ = mb/2 and µ = mb,

based on [14, 15]. As this render the uncertainty for the lepton energy moments
rather small, we add an additional uncertainty based on the current experimental
uncertainty. In addition, we also include the current experimental uncertainty for
the third q2 and MX moments as these are rather large.

In principle, these pseudo data points can then be used to fit for the HQE
parameters µ2

G, µ
2
π, ρ

3
LS, ρ

3
D using the SM expressions. In this way, our toy fit mimics

a situation that may happen in reality: i.e. NP is present but the extraction of HQE
parameters is done assuming the SM. We observe that for the three NP scenarios
in Table 8.2, our simple toy fit yields large χ2. The reason for this is that it is
challenging to accommodate the third moments, which are sensitive to NP, and first
lepton energy moments, which drives the fit due to its small uncertainty, at the same
time. Turning the argumentation around this may indicate that a full simultaneous
fit of the HQE parameters and NP parameters would give rather good constraints on
NP. In this endeavour, it seems crucial to improve the experimental inputs especially
on the third moments.

Finally, we may also consider a more realistic scenario taken from the analysis
of [177]: CT = 0.05 and CSL

= −0.5. Assuming no correlations between the pseudo
data points, we obtain a χ2/d.o.f. ≃ 2.4 and

µ2
G|toy = 0.40 GeV2, µ2

π|toy = 0.45 GeV2, ρ3
LS|toy = 0.09 GeV3, ρ3

D|toy = 0.11 GeV3.
(8.30)

Comparing with the values in Table 8.1, we find 1−2σ shifts, with a rather poor
fit quality. We note that this toy fit merely serves to illustrate how NP could be
hidden in the HQE extraction, because the fit is rather flexible in accounting for
such variations. Strong conclusions should not be made from this fit, except that it
may be worth performing a full analysis on data. On the other hand, we also note
that this may be challenging due to the large number of extra parameters.
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8.4 Forward-backward asymmetry
In this section, we consider the forward-backward asymmetry discussed in [82] and
more recently in [140]. The asymmetry is defined as

AFB ≡

∫ 0

−1
dzdΓ

dz −
∫ 1

0
dzdΓ

dz∫ 1

−1
dzdΓ

dz

, (8.31)

where

z ≡ cos θ = v · pν̄ℓ
− v · pℓ√

(v · q)2 − q2
, (8.32)

and θ is the angle between spacial momenta of the lepton and the B meson in the
rest-frame of the dilepton pair.

As discussed in [140], including a lepton energy cut Ecut
ℓ in the AFB definition

leads to a cusp in the differential spectrum in the variable z, which can be prob-
lematic in experimental analysis. To circumvent this issue, Ref. [140] proposed to
study AFB with a minimum cut on q2 instead of Eℓ. We therefore consider only q2

cuts, which also considerably simplifies the calculation. We refer to [140] for details
of the calculation.

Writing our results as in (8.26), we find the ξ’s listed in Table 8.4. We consider
for the first time the αs-corrections, both for the SM and for NP scenarios. In the
upper part of Fig. 8.7, we show the differential distribution in z normalized to 1/Γ0
as defined in Appendix A for the SM and our three NP scenarios in Table 8.2. Our
normalization, i.e. using only 1/Γ0, differs from that used by [82,140], but our results
for the SM are in agreement. In the lower panel of Fig. 8.7, we show the prediction for
AFB as a function of q2

cut where we plot the different SM contributions for illustration.
The plots shows that forward-backward asymmetry and the differential distribution
are sensitive the NP contributions and can distinguish among our three different
scenarios. The forward-backward asymmetry has not been measured so far, but our
analysis shows the potential for understanding the SM and possibly to constrain NP
contributions.
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AFB · 10−2

ξSM 24.603|LO − 2.928|pow −
(
αs

π

)
6.63

ξ
⟨VR,VR⟩
NP −25.387|LO + 0.769|pow +

(
αs

π

)
4.47

ξ
⟨SL,SL⟩
NP −8.683|LO − 0.333|pow −

(
αs

π

)
15.91

ξ
⟨SR,SR⟩
NP −8.683|LO − 0.333|pow −

(
αs

π

)
15.91

ξ
⟨T,T ⟩
NP −254.730|LO + 40.911|pow +

(
αs

π

)
2.13

ξ
⟨VL,VR⟩
NP −24.208|LO + 4.025|pow +

(
αs

π

)
7.53

ξ
⟨SL,SR⟩
NP 12.104|LO − 1.415|pow −

(
αs

π

)
24.67

ξ
⟨SL,T ⟩
NP 49.207|LO + 0.954|pow +

(
αs

π

)
51.17

ξ
⟨SR,T ⟩
NP 2.20|pow

Table 8.4: Numerical values of the parameters for the AFB given in Eq. (8.26). We
consider q2

cut = 4 GeV2.

8.5 Conclusion
We investigated New Physics effects on the semileptonic channel B → Xcℓν̄ℓ. For
the first time, we compute power-corrections up to O(1/m3

b) and αs-corrections for
the full basis of the New Physics operators in the WET over the full differential
decay width. These corrections are necessary to properly describe the dominant
NP contributions to central moments of dilepton invariant mass q2 and hadronic
invariant mass M2

X .
We compared SM predictions, using HQE parameters obtained from experimen-

tal data, and experimental measurements to the moments of lepton energy, hadronic
invariant mass and dilepton momentum for different toy New Physics scenarios. In
addition, we also computed the forward-backward asymmetry. The main goal of
this work is to pave the way for a global fit analysis, which includes the full base
of NP operators. To further constrain such global fit, one may take advantage of
lattice results for the HQE parameters, extracted from meson mass calculations at
different quark mass values [206], and scattering matrix for B → Xcℓν̄ℓ [207, 208].
Such results, even if preliminary, could enhance the predictive power of the HQE
by better assessing the non-perturbative inputs. We aim to perform such a fit using
the EOS software [180].
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Figure 8.7: (Upper part) The differential rate for B → Xcℓν̄ℓ as a function of
z without lepton energy cut and relative size of the NP scenarios w.r.t. the SM
prediction. (Lower part) Forward-backward asymmetry as a function of the q2 cut
for the three NP scenarios in Table 8.2 and their relative size w.r.t. the SM.

Appendix A NP contributions to the total rate
We decompose the prediction of the total rate in two parts:

Γ(B → Xcℓν̄) = Γ0
(
ΓLO

NP(B → Xcℓν̄) + ΓPow
NP (B → Xcℓν̄)

)
(8.33)

where
Γ0 = G2

F |Vcb|2m5
b

192π3 (1 + Aew) (8.34)
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and Aew = 0.014 [149]. The LO result in the free quark approximation is given by

ΓLO
NP(B → Xcℓν̄) = ΓLO

SM(B → Xcℓν̄)
(

|1 + CVL
|2 + |CVR

|2 + 1
4
(
|CSL

|2 + |CSR
|2
)

+ 12|CT |2
)

+ ΓLO
mix(B → Xcℓν̄)

(
Re((1 + CVL

)CVR
) − 1

2Re(CSL
CSR

)
)
, (8.35)

with

ΓLO
SM = (1 − 8ρ− 12ρ2 log(ρ) + 8ρ3 − ρ4) , (8.36)

ΓLO
mix = −4√

ρ (1 + 9ρ+ 6ρ(1 + ρ) log(ρ) − 9ρ2 − ρ3) . (8.37)

Our result agrees with the leading-order (LO) results from [177]. The contribution
from the power corrections is

ΓPow
NP (B → Xcℓν̄) = µ2

π

m2
b

Γµ
2
π

SM

(
|1 + CVL

|2 + |CVR
|2 + 1

4(|CSL
|2 + |CSR

|2) + 12|CT |2

−2√
ρ
(
ρ3 + 9ρ2 − 9ρ− 6(ρ+ 1)ρ log(ρ) − 1

)(
Re((1 + CVL

)C∗
VR

)

−1
2Re(CSL

C∗
SR

)
))

+
(
µ2
G

m2
b

− ρ3
LS

m3
b

)(
Γµ

2
G

SM

(
|1 + CVL

|2 + |CVR
|2
)

−1
8
(
5ρ4 − 32ρ3 + 72ρ2 − 32ρ+ 12(ρ− 4)ρ log(ρ) − 13

)
(|CSL

|2 + |CSR
|2)

−2
(
15ρ4 − 64ρ3 + 24ρ2 + 12(3ρ+ 4)ρ log(ρ) + 25

)
|CT |2

+
2√

ρ

3
(
13ρ3 − 27ρ2 − 6(3ρ2 − 3ρ+ 2) log(ρ) + 27ρ− 13

)
Re((1 + CVL

)C∗
VR

)

−3√
ρ
(
ρ3 − 3ρ2 − 2(ρ2 − 5ρ− 2) log(ρ) − 9ρ+ 11

)
Re(CSL

C∗
SR

)
)

+ ρ3
D

m3
b

(
Γρ

3
D

SM

(
|1 + CVL

|2 + |CVR
|2
)

+ 1
24
(

− 5ρ4 − 8ρ3 + 12(3ρ2 + 8ρ+ 8) log(ρ)

−184ρ+ 197
) (

|CSL
|2 + |CSR

|2
)

+ 2
(

− 5ρ4 − 8ρ3 + 32ρ2 + 4(9ρ2 − 8ρ+ 8) log(ρ)

−56ρ+ 37
)
|CT |2 + 2

(
ρ3 − 15ρ2 + 6(ρ2 − ρ− 2) log(ρ) + 39ρ− 25

)

× Re((1 + CVL
)C∗

VR
) +

2√
ρ

6
(
ρ3 + 9ρ2 + (−18ρ2 + 90ρ+ 60) log(ρ)

−153ρ+ 143
)

Re(CSL
C∗
SR

)
)

(8.38)
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with

Γµ
2
π

SM = −1
2ΓLO

SM , (8.39)

Γµ
2
G

SM = −1
2(5ρ4 − 24ρ3 + 24ρ2 + 12ρ2 log(ρ) − 8ρ+ 3) , (8.40)

Γρ
3
LS

SM = 1
2
(
5ρ4 − 24ρ3 + 24ρ2 + 12ρ2 log(ρ) − 8ρ+ 3

)
, (8.41)

Γρ
3
D

SM = 1
6
(
−5ρ4 − 8ρ3 + 24ρ2 + 12(3ρ2 + 4) log(ρ) − 88ρ+ 77

)
. (8.42)

For the power-corrections O(1/m2
b) of (1+CVL

)CVR
our result agrees with [179] cLcR

term.

Appendix B NP effects on the moments
In this Appendix, we list the coefficients ξ defined in 8.26. We categorize the con-
tributions of leading-order, power-corrections and αs corrections.
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Chapter 9

Project IV: Lepton flavour
violation in rare Λb decays

Published as an article in:
M. Bordone, M. Rahimi, K. K. Vos, Eur.Phys.J.C 81 (2021) 8, 756 [3].

Contributions of the authors to the article.
M. Rahimi contributed to the draft and did the analytical derivation and numerical
analysis of all expressions obtained in the article. Dr. Bordone and Prof. Dr. Vos
performed an independent numerical study and worked on the draft.

Abstract: Lepton flavour violation (LFV) naturally occurs in many new physics
models, specifically in those explaining the B anomalies. While LFV has already
been studied for mesonic decays, it is important to consider also baryonic decays
mediated by the same quark transition. In this paper, we study LFV in the baryonic
Λb → Λℓ1ℓ2 using for the first time a full basis of New Physics operators. We
present expected bounds on the branching ratio in a model-independent framework
and using two specific new physics models. Finally, we point out the interplay and
orthogonality between the baryonic and mesonic LFV searches.
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9.1 Introduction
The incredible joint theoretical and experimental effort carried out in the last years
allows us to probe the Standard Model (SM) of particle physics with an unprece-
dented precision. This brought to light some deviations between theoretical predic-
tions and experimental measurements in semileptonic B meson decays [209–223].
These discrepancies, the so-called B anomalies, hint at Lepton Flavour Universality
(LFU) violation. This is quite surprising, as LFU is one of the foundation of the
SM.

The B anomalies can be split into two classes: i) deviations in µ/e universality
in b → sℓ+ℓ− and ii) deviations in τ vs. light leptons universality in the b → cℓν̄
transitions. These exciting findings may indicate the presence of New Physics (NP)
particles, and have inspired a plethora of theoretical and experimental work. The
NP explanations for B anomalies span a broad class of new heavy particles, from
vectors to scalars states [224–268]. However, a common feature in all of these models
is the prediction of sizeable effects for Lepton Flavour Violating (LFV) B, τ and µ
decays. Current upper bounds on these modes largely constrain the allowed param-
eter space for NP models, and upcoming experimental analyses will be fundamental
to corroborate or falsify these NP hypotheses.

When searching for LFV decays mediated by b → sℓ1ℓ2 transitions, it is crucial
to consider both mesonic and baryonic decays. Although mediated by the same
underlying partonic transition, these two types of decays provide orthogonal infor-
mation on possible NP models. A striking example of this is the NP analysis of
Λb → Λµ+µ− decays [269], which shows that even though B → Kµ+µ− angular
distribution seems to be affected by some short-distance NP [270–273], the latter
is not visible in the Λb → Λµ+µ− angular observables. It is therefore natural to
assume that Λb → Λℓ−

1 ℓ
+
2 decays provide complementary information compared to

their mesonic counterparts B+ → K+ℓ1ℓ2 or B̄s → ℓ1ℓ2 decays. More precisely,
the spin structure of the Λb → Λ decays induces a richer set of hadronic matrix
elements. Therefore, Λb → Λ decays probe different parameter space than their
mesonic counter parts. In addition, the Λb baryon is copiously produced at LHCb
and the dataset collected with Run 1 and Run 2 allow to make precision measure-
ment of observables constructed from Λb decays (see e.g. [274]).

In this paper, we calculate for the first time the angular distribution of Λb →
Λℓ−

1 ℓ
+
2 decays using a full base of NP operators (partial results are available in

[275, 276]). To achieve this, we use the decomposition of the Λb → Λ hadronic ma-
trix elements in [277] and the lattice QCD determination of the corresponding form
factors [278]. We then use model independent constraints to derive upper bounds
for the branching ratio of Λb → Λℓ−

1 ℓ
+
2 decays and specific models to provide pre-

dictions in a few scenarios [252,253].
This paper is organised as follows: in Sect. 9.2 we highlight the main steps of our
calculation and provide numerical results in a generic scenario. In Sect. 9.3 we use
constraints on various LFV mesonic decays to put bounds on the branching ratio of
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Λb → Λℓ−
1 ℓ

+
2 , for different choices of leptons in the final state and make predictions

for specific models. We conclude in Sect. 9.4.

9.2 The angular distribution of Λb → Λ ℓ−
1 ℓ

+
2

In this Section, we introduce the concepts that we need for the study of phenomeno-
logical aspects in Sect. 9.3.

We consider the following effective Hamiltonian for LFV b → sℓ−
1 ℓ

+
2 transitions:

Heff = −4GF√
2
VtbV

∗
ts

αem

4π
∑

i=9,10,S,P

Cℓ1ℓ2
i (µ)Oℓ1ℓ2

i (µ) + C ′ℓ1ℓ2
i (µ)O′ℓ1ℓ2

i (µ)
, (9.1)

where the relevant operators are defined by

Oℓ1ℓ2
9 = (s̄γµPLb)(ℓ̄1γ

µℓ2), Oℓ1ℓ2
10 = (s̄γµPLb)(ℓ̄1γ

µγ5ℓ2),

Oℓ1ℓ2
S = (s̄PRb)(ℓ̄1ℓ2), Oℓ1ℓ2

P = (s̄PRb)(ℓ̄1γ5ℓ2) , (9.2)

Oℓ1ℓ2
T = (s̄σµνb)(ℓ̄1σµνℓ2) , Oℓ1ℓ2

T5 = (s̄σµνb)(ℓ̄1σµνγ5ℓ2) ,

and the operators with flipped chirality O′ℓ1ℓ2
i are obtained from Oℓ1ℓ2

i by replacing
PL ↔ PR, where PL/R = 1

2(1 ∓ γ5). Notice that the operator O7:

O7 = mb

e
(s̄σµνPRb)F µν (9.3)

cannot generate LFV contributions due to the universality of electromagnetic in-
teractions. We parametrise the hadronic matrix elements for Λb(p, sΛb

) → Λ(k, sΛ)
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decays using an helicity decomposition [277–280]:

⟨Λ(k, sΛ)|s̄ γµ b|Λb(p, sΛb
)⟩ = + ūΛ(k, sΛ)

[
f0(q2) (mΛb

−mΛ)q
µ

q2

+ f+(q2)mΛb
+mΛ

s+

(
pµ + kµ − (m2

Λb
−m2

Λ)q
µ

q2

)

+ f⊥(q2)
(
γµ − 2mΛ

s+
pµ − 2mΛb

s+
kµ
)]

uΛb
(p, sΛb

),

(9.4)

⟨Λ(k, sΛ)|s̄ γµγ5 b|Λb(p, sΛb
)⟩ = − ūΛ(k, sΛ) γ5

[
g0(q2) (mΛb

+mΛ)q
µ

q2

+ g+(q2)mΛb
−mΛ

s−

(
pµ + kµ − (m2

Λb
−m2

Λ)q
µ

q2

)

+ g⊥(q2)
(
γµ + 2mΛ

s−
pµ − 2mΛb

s−
kµ
)]

uΛb
(p, sΛb

) ,

(9.5)

⟨Λ(k, sΛ)| s̄iσµνb |Λb(p, sΛb
)⟩ = + ūΛ(k, sΛ)

{
2h+(q2)p

µkν − pνkµ

s+

+ h⊥(q2)
[
mΛb

+mΛ

q2 (qµγν − qνγµ) − 2
(

1
q2 + 1

s+

)
(pµkν − pνkµ)

]

+ h̃+(q2)
[
iσµν − 2

s−
(mΛb

(kµγν − kνγµ)

−mΛ(pµγν − pνγµ) + pµkν − pνkµ)
]

+ h̃⊥(q2)mΛb
−mΛ

q2s−

[
(m2

Λb
−m2

Λ − q2)(γµpν − γνpµ)

− (m2
Λb

−m2
Λ + q2)(γµkν − γνkµ)

+ 2(mΛb
−mΛ)(pµkν − pνkµ)

]}
uΛb

(p, sΛb
) (9.6)
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with q = p− k, s± = (mΛb
±mΛ)2 − q2, and sΛb

and sΛ are the spin of the Λb and Λ
baryons, respectively. Applying equations of motion to Eqs. (9.4)–(9.6), we obtain
the following matrix elements for scalar and pseudoscalar operators:

⟨Λ(k, sΛ)|s̄ b|Λb(p, sΛb
)⟩ = mΛb

−mΛ

mb(µ) −ms(µ)f0ūΛ(k, sΛ)uΛb
(p, sΛb

) , (9.7)

⟨Λ(k, sΛ)|s̄γ5b|Λb(p, sΛb
)⟩ = mΛb

+mΛ

mb(µ) +ms(µ)g0ūΛ(k, sΛ)γ5uΛb
(p, sΛb

) , (9.8)

which agree with the expressions in Ref. [277]. In the following, we take the masses
in MS using mb(mb) = 4180 MeV [281] and ms(mb) = 78 MeV [282].

9.2.1 Differential decay width and numerical analysis
We decompose the spin-independent double-differential decay width as

1
Γ(0)

dΓ(Λb(p, sΛb
) → Λ(k, sΛ)ℓ−

1 (p1)ℓ+
2 (p2))

d cos θdq2 = a+ b cos θℓ + c cos2 θℓ , (9.9)

with Γ(0) = α2
emG

2
F|VtbV

∗
ts|2

2048π5m3
Λb
q2

√
λH

√
λL. We define λH ≡ λ(m2

Λb
,m2

Λ, q
2) and λL ≡

λ(q2,m2
ℓ1 ,m

2
ℓ2), where λ is the usual Källén function defined as λ(a, b, c) = a2 +

b2 + c2 − 2a(b + c) − 2bc. Here cos θℓ is the helicity angle in the dilepton frame as
defined in Appendix A. The coefficients a, b and c are one of the main result of
this work and have been calculated using the operator base in Eq. (9.1) and the
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decomposition for the hadronic matrix elements in Eqs. (9.4)–(9.6). We find:

a = − 1
q2

{
|f0|2

(mΛb
−mΛ)2

q2 s+[|Cℓ1ℓ2
10+ |2(mℓ1 +mℓ2)2q− + |Cℓ1ℓ2

9+ |2(mℓ1 −mℓ2)2q+]

+ |f⊥|2s−[|Cℓ1ℓ2
10+ |2(λL + 2q2q+) + |Cℓ1ℓ2

9+ |2(λL + 2q2q−)]

+ |f+|2(mΛb
+mΛ)2s−[|Cℓ1ℓ2

10+ |2 q+ + |Cℓ1ℓ2
9+ |2 q−]

+ |g0|2
(mΛb

+mΛ)2

q2 s−[|Cℓ1ℓ2
10− |2(mℓ1 +mℓ2)2q− + |Cℓ1ℓ2

9− |2(mℓ1 −mℓ2)2q+]

+ |g⊥|2s+[|Cℓ1ℓ2
10− |2(λL + 2q2q+) + |Cℓ1ℓ2

9− |2(λL + 2q2q−)]

+ |g+|2(mΛb
−mΛ)2s+[|Cℓ1ℓ2

10− |2q+ + |Cℓ1ℓ2
9− |2q−]

+ 16|h+|2s−[(mℓ1 +mℓ2)2q−|Cℓ1ℓ2
T |2 + (mℓ1 −mℓ2)2q+|Cℓ1ℓ2

T5 |2]

+ 16|h̃+|2s+[(mℓ1 −mℓ2)2q−|Cℓ1ℓ2
T |2 + (mℓ1 +mℓ2)2q+|Cℓ1ℓ2

T5 |2]

+ 16|h⊥|2 s−

q2 (mΛb
+mΛ)2[q−((mℓ1 +mℓ2)2 + q2)|Cℓ1ℓ2

T |2 + q+((mℓ1 +mℓ2)2 + q2)|Cℓ1ℓ2
T5 |2]

+ 16|h̃⊥|2 s+

q2 (mΛb
−mΛ)2[q+((mℓ1 −mℓ2)2 + q2)|Cℓ1ℓ2

T |2 + q−((mℓ1 +mℓ2)2 + q2)|Cℓ1ℓ2
T5 |2]

}

− (q−|Cℓ1ℓ2
P− |2 + q+|Cℓ1ℓ2

S− |2)s−(mΛb
+mΛ)2

(mb +ms)2 |g0|2 − (q−|Cℓ1ℓ2
P+ |2 + q+|Cℓ1ℓ2

S+ |2)s+(mΛb
−mΛ)2

(mb −ms)2 |f0|2

− 2s+

q2
(mΛb

−mΛ)2

mb −ms

[Re(Cℓ1ℓ2
10+C

∗ℓ1ℓ2
P+ )(mℓ1 +mℓ2)q− + Re(Cℓ1ℓ2

9+ C∗ℓ1ℓ2
S+ )(mℓ1 −mℓ2)q+]|f0|2

− 2s−

q2
(mΛb

+mΛ)2

mb +ms

[Re(Cℓ1ℓ2
10−C

∗ℓ1ℓ2
P− )(mℓ1 +mℓ2)q− + Re(Cℓ1ℓ2

9− C∗ℓ1ℓ2
S− )(mℓ1 −mℓ2)q+]|g0|2

− 8
q2

{
(mℓ1 +mℓ2)(mΛb

+mΛ)s−q−Re(Cℓ1ℓ2
9+ C∗ℓ1ℓ2

T )
[
Re(f+ h

∗
+) + 2Re(f⊥ h

∗
⊥)
]

+ (mℓ1 −mℓ2)(mΛb
−mΛ)s+q+Re(Cℓ1ℓ2

10− C∗ℓ1ℓ2
T )

[
Re(g+ h̃

∗
+) + 2Re(g⊥ h̃

∗
⊥)
]

+ (mℓ1 +mℓ2)(mΛb
−mΛ)s+q−Re(Cℓ1ℓ2

9− C∗ℓ1ℓ2
T5 )

[
Re(g+ h̃

∗
+ + 2Re(g⊥ h̃

∗
⊥))

]

+ (mℓ1 −mℓ2)(mΛb
+mΛ)s−q+Re(Cℓ1ℓ2

10+ C∗ℓ1ℓ2
T5 )

[
Re(f+ h̃

∗
+ + 2Re(f⊥ h̃

∗
⊥))

]}
,

(9.10)
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b = 2
q4

[
Re(f0f

∗
+)(|Cℓ1ℓ2

9+ |2 + |Cℓ1ℓ2
10+ |2) + Re(g0g

∗
+)(|Cℓ1ℓ2

9− |2 + |Cℓ1ℓ2
10− |2)

]√
λHλL(m2

ℓ2 −m2
ℓ1)(m2

Λb
−m2

Λ)

− 4[Re(Cℓ1ℓ2
9− C∗ℓ1ℓ2

10+ ) + Re(Cℓ1ℓ2
9+ C∗ℓ1ℓ2

10− )]Re(f⊥g
∗
⊥)
√
λHλL

−
2(m2

Λb
−m2

Λ)
q2(mb −ms)

√
λHλL[Re(Cℓ1ℓ2

10+C
∗ℓ1ℓ2
P+ )(mℓ1 −mℓ2) + Re(Cℓ1ℓ2

9+ C∗ℓ1ℓ2
S+ )(mℓ1 +mℓ2)]Re(f0f

∗
+)

−
2(m2

Λb
−m2

Λ)
q2(mb +ms)

√
λHλL[Re(Cℓ1ℓ2

10−C
∗ℓ1ℓ2
P− )(mℓ1 −mℓ2) + Re(Cℓ1ℓ2

9− C∗ℓ1ℓ2
S− )(mℓ1 +mℓ2)]Re(g0g

∗
+)

+ 64
q4 (|Cℓ1ℓ2

T |2 + |Cℓ1ℓ2
T5 |2)(m2

ℓ2 −m2
ℓ1)(m2

Λb
−m2

Λ)
√
λHλLRe(h⊥h̃

∗
⊥)

− 8
q2

{
Re(Cℓ1ℓ2

9+ C∗ℓ1ℓ2
T )(mℓ1 −mℓ2)(mΛb

−mΛ)
√
λHλL

[
Re(f0h

∗
+) + 2Re(f⊥h̃

∗
⊥)
]

+ Re(Cℓ1ℓ2
10− C∗ℓ1ℓ2

T )(mℓ1 +mℓ2)(mΛb
+mΛ)

√
λHλL

[
Re(g0h̃

∗
+) + 2Re(g⊥h

∗
⊥)
]

+ q2 (mΛb
−mΛ)

(mb −ms)
Re(Cℓ1ℓ2

S+ C∗ℓ1ℓ2
T )

√
λHλLRe(f0 h

∗
+) + q2 (mΛb

+mΛ)
(mb +ms)

Re(Cℓ1ℓ2
P− C∗ℓ1ℓ2

T )

(9.11)

×
√
λHλLRe(g0 h̃

∗
+) + Re(Cℓ1ℓ2

9− C∗ℓ1ℓ2
T5 )(mℓ1 −mℓ2)(mΛb

+mΛ)
√
λHλL

[
Re(g0h̃

∗
+) + 2Re(g⊥h

∗
⊥)
]

+ Re(Cℓ1ℓ2
10+ C∗ℓ1ℓ2

T5 )(mℓ1 +mℓ2)(mΛb
−mΛ)

√
λHλL

[
Re(f0h

∗
+) + 2Re(f⊥h̃

∗
⊥)
]

+ q2 (mΛb
+mΛ)

(mb +ms)
Re(Cℓ1ℓ2

S− C∗ℓ1ℓ2
T5 )

√
λHλLRe(g0h̃

∗
+) + q2 (mΛb

−mΛ)
(mb −ms)

Re(Cℓ1ℓ2
P+ C

∗ℓ1ℓ2
T5 )

√
λHλLRe(f0h

∗
+)
}
,

(9.12)

c = + (|Cℓ1ℓ2
9+ |2 + |Cℓ1ℓ2

10+ |2)λLλH
q2s+

[
− |f+|2 (mΛb

+mΛ)2

q2 + |f⊥|2
]

+ (|Cℓ1ℓ2
9− |2 + |Cℓ1ℓ2

10− |2)λLλH
q2s−

[
− |g+|2 (mΛb

−mΛ)2

q2 + |g⊥|2
]

+ (|Cℓ1ℓ2
T |2 + |Cℓ1ℓ2

T5 |2)4λL
q2

[
s−|h+|2 + s+|h̃+|2 − (mΛb

+mΛ)2s−

q2 |h⊥|2 − (mΛb
−mΛ)2s+

q2 |h̃⊥|2
]
,

(9.13)104



with Cℓ1ℓ2
X± = (Cℓ1ℓ2

X ± C ′ℓ1ℓ2
X ), q± = (mℓ1 ± mℓ2)2 − q2 and σµν = i/2[γµ, γν ]. Our

results agree with [280] when setting mℓ1 = mℓ2 = 0 and with [283] for mℓ1 = mℓ2 .
However, we note that our convention for the helicity angle cos θℓ has the opposite
sign that the one in [280] . We also note that our formulae above disagree with
Ref. [276], in the specific in terms proportional to (mℓ1 − mℓ2)2|Cℓ1ℓ2

9+ |2|f0|2 and
(mℓ1 − mℓ2)2|Cℓ1ℓ2

9+ |2|g0|2. We ascribe these differences to an incorrect treatment of
mass effects in [276]. Our formulae for the angular coefficients a, b, c also hold for
Λb → Λ∗ℓ−

1 ℓ
+
2 decays, when setting the additional perpendicular Λb → Λ∗ form factor

to zero. This is a reasonable approximation as in the Heavy-Quark-Expansion, this
form factor is suppressed by ΛQCD/mb [284–286].
In the following, we focus on the branching ratio and forward-backward asymmetry:

dBℓ1ℓ2

dq2 = 2Γ(0)τΛb

(
a+ c

3

)
, (9.14)

dAℓ1ℓ2FB
dq2 =

∫ 1
0 d cos θ dΓ

d cos θdq2 −
∫ 0

−1 d cos θ dΓ
d cos θdq2∫ 1

0 d cos θ dΓ
d cos θdq2 +

∫ 0
−1 d cos θ dΓ

d cos θdq2

= b

2
(
a+ c

3

) , (9.15)

where the branching ratio B = τΛb
Γ, where τΛb

is the mean life of the Λb baryon [287]
and Γ the total width. To evaluate the size of LFV Λb → Λℓ−

1 ℓ
+
2 decay, we provide

the q2-integrated quantities of Eqs. (9.14)–(9.15). For simplicity, we set C ′ℓ1ℓ2
i = 0.

We further set Cℓ1ℓ2
T (5) = 0. This choice is discussed at the beginning of Sect. 9.3.

Using the values for the masses from PDG [281], CKM factors from the UT-fit
collaboration [288] and lattice QCD inputs for the form factors [278], we obtain

108 · Bℓ1ℓ2 = ξℓ1ℓ29 |Cℓ1ℓ2
9 |2 + ξℓ1ℓ210 |Cℓ1ℓ2

10 |2 + ξℓ1ℓ2S |Cℓ1ℓ2
S |2 + ξℓ1ℓ2P |Cℓ1ℓ2

P |2

+ ξℓ1ℓ29S Re(Cℓ1ℓ2
9 C∗ℓ1ℓ2

S ) + ξℓ1ℓ210P Re(Cℓ1ℓ2
10 C∗ℓ1ℓ2

P ) , (9.16)

Aℓ1ℓ2FB =
[
ρℓ1ℓ2(|Cℓ1ℓ2

10 |2 + |Cℓ1ℓ2
9 |2) + ρℓ1ℓ2910 Re(Cℓ1ℓ2

9 C∗ℓ1ℓ2
10 )

+ ρℓ1ℓ29S Re(Cℓ1ℓ2
9 C∗ℓ1ℓ2

S ) + ρℓ1ℓ210PRe(Cℓ1ℓ2
10 C∗ℓ1ℓ2

P )
]/

Γℓ1ℓ2 , (9.17)

with the numerical values for the coefficients ξℓ1ℓ2i and ρℓ1ℓ2i listed in Tables 9.1–
9.2 and Γℓ1ℓ2 is the integrated width. We present only explicit results for the final
states τ±µ∓ and µ±e∓. The results for τ±e∓ can easily be obtained from the above
results and agree within 1σ with those of τ±µ∓. The quoted uncertainties only
include those from the form factors, which are the dominant ones. The correlation
matrices between the two sets of {ξℓ1ℓ2i , ρℓ1ℓ2i } coefficients are given in Appendix B.
The ξℓ1ℓ2i coefficients in Table 9.1 do not depend on the charges of the final state
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ℓ1 = µ, ℓ2 = τ ℓ1 = µ, ℓ2 = e

ξℓ1ℓ29 2.15 ± 0.11 3.13 ± 0.20
ξℓ1ℓ210 2.08 ± 0.10 3.13 ± 0.20
ξℓ1ℓ2S 0.980 ± 0.057 1.83 ± 0.11
ξℓ1ℓ2P 1.06 ± 0.06 1.83 ± 0.11
ξℓ1ℓ29S −0.973 ± 0.059 0.142 ± 0.013
ξℓ1ℓ210P 1.20 ± 0.07 0.144 ± 0.013

Table 9.1: Numerical values for the parameters of Eq. (9.16). The coefficients do
not depend on the charges of the final state leptons, except for ξℓ1ℓ29S which changes
sign when switching the charges of the leptons, i.e. ξτµ9S = −ξµτ9S and ξeµ9S = −ξµe9S.
The uncertainties only include those from the form factor which are the dominant
ones.

ℓ1 = µ, ℓ2 = τ ℓ1 = τ, ℓ2 = µ ℓ1 = µ, ℓ2 = e ℓ1 = e, ℓ2 = µ

ρℓ1ℓ2 1.26 ± 0.08 −1.26 ± 0.08 −0.025 ± 0.005 0.025 ± 0.005
ρℓ1ℓ2910 −5.09 ± 0.24 −5.09 ± 0.24 −9.16 ± 0.55 −9.16 ± 0.55
ρℓ1ℓ29S −2.23 ± 0.12 −2.23 ± 0.12 −0.283 ± 0.023 −0.283 ± 0.023
ρℓ1ℓ210P 1.99 ± 0.11 −1.96 ± 0.11 −0.280 ± 0.023 0.280 ± 0.023

Table 9.2: Coefficients for the numerator of Aℓ1ℓ2FB . We give the values in units of
10−21 GeV−1. This factor is compensated by the size of the decay width in Eq. (9.17).

leptons, except for ξµτ9S which depends on (mℓ1 − mℓ2) and thus switches sign when
switching the charges of the final state leptons, i.e. ξτµ9S = −ξµτ9S . Besides, we note
that for µe final states, ξℓ1ℓ29 = ξℓ1ℓ210 and ξℓ1ℓ2S = ξℓ1ℓ2P , such that only the combination
|Cℓ1ℓ2

9 |2 + |Cℓ1ℓ2
10 |2 and |Cℓ1ℓ2

P |2 + |Cℓ1ℓ2
S |2 can be constrained. The coefficients ρℓ1ℓ2i in

Table 9.2 are reported in units of 10−21 GeV−1, which is then compensated in Aℓ1ℓ2FB
by the size of the decay width.

9.3 Phenomenological implications
In the following, we discuss the implications of the available constraints on LFV
B-meson decays and which bounds they imply on the observables in the baryonic
modes. In order to do so, we need to choose which NP operators are present. Since
no NP particles have been observed so far above the electroweak scale, we choose to
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work with the SMEFT:

Leff = LSM − 1
M2

{
[C(3)
lq ]ijαβ(Q̄iγµσaQj)(L̄αγµσaLβ) + [C(1)

lq ]ijαβ(Q̄iγµQj)(L̄αγµLβ)

+[Cledq]ijαβ(Q̄idjR)(ēαRLβ)
}
,

(9.18)
where we adopt the so-called Warsaw basis [182]. Here we denote with Q and L
the left-handed quark and lepton doublets, respectively, and with eR and dR the
right-handed charged leptons and down-type quarks, respectively. We further de-
note ϵ = iσ2 and M is the effective scale which can be associated with the mass of
the heavy NP degrees of freedom.
The operators in Eq. (9.18) are the complete set of dimension-6 semileptonic op-
erators that can contribute to b → sℓ1ℓ2 transitions. We note that none of these
operators contain a tensor current; nonetheless, at low energy, the operator Oℓ1ℓ2

T (5)
defined in Eq. (9.2) could be generated through effective operators containing a co-
variant derivative [289]. However, as tensor operators provide a poor explanation
for B anomalies (see e.g. [290]), we do not consider them in our analysis.

The Wilson coefficients of the operators in Eq. (9.18) can be constrained from
low-energy processes as well as high-pT data, and in general a flavour structure
has to be assumed to reduce the number of independent NP parameters. In the
following, we choose to consider only constraints from low-energy data and first do
not to assume any hierarchy for the NP couplings. In Sect. 9.3.2 we then study
particular scenarios, where a more complex structure for NP couplings in flavour
space is assumed. For the b → sℓ1ℓ2 transition we are interested in, we set i = 2 and
j = 3 and generic α = ℓ1 and β = ℓ2 in Eq. (9.18). Performing now the tree-level
matching onto Eq. (9.1), we have

Cℓ1ℓ2
9 = −Cℓ1ℓ2

10 = + v2

Λ2
π

αem|VtbV ∗
ts|
(
[C(3)
lq ]23ℓ1ℓ2 + [C(1)

lq ]23ℓ1ℓ2
)
,

C ′ ℓ1ℓ2
9 = +C ′ ℓ1ℓ2

10 = + v2

Λ2
π

αem|VtbV ∗
ts|

[Cld]23ℓ1ℓ2 ,

Cℓ1ℓ2
S = −Cℓ1ℓ2

P = + v2

Λ2
π

αem|VtbV ∗
ts|

[Cleqd]23ℓ1ℓ2 ,

C ′ ℓ1ℓ2
S = +C ′ ℓ1ℓ2

P = + v2

Λ2
π

αem|VtbV ∗
ts|

[C∗
leqd]32ℓ1ℓ2 .

(9.19)
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Observable Upper Bound

B(B̄s → µ±τ∓) 3.5 · 10−5 [291]
B(B̄s → µ±e∓) 5.4 · 10−9 [292]

B(B+ → K+τ−µ+) 4.5 · 10−5 [293]
B(B+ → K+µ−τ+) 3.9 · 10−5 [294]
B(B+ → K+µ−e+) 7.0 · 10−9 [295]
B(B+ → K+e−µ+) 6.4 · 10−9 [295]

Table 9.3: Experimental upper limits for LFV B decays at 90% C.L..

ℓ−
1 = µ−, ℓ+

2 = τ+ ℓ−
1 = µ−, ℓ+

2 = e+

c9+
ℓ1ℓ2 1.09 1.75
c10+
ℓ1ℓ2 1.14 1.75
cSℓ1ℓ2 1.47 2.68
cPℓ1ℓ2 1.58 2.68
cS9
ℓ1ℓ2 −1.35 0.21
cP10
ℓ1ℓ2 1.66 0.21

Table 9.4: Predictions for the coefficients describing B+ → K+ℓ−
1 ℓ

+
2 decays using

the hardonic form factors from Ref. [83, 296]. We note that these coefficients are
independent of the charges of the leptons, except for cS9

ℓ1ℓ2 which changes sign de-
pending on the charge of the heavier lepton.

9.3.1 Model-independent approach
First, we consider the constraints on several combinations of Wilson coefficients
from measurements of mesonic LFV decays. We consider the branching ratios of
the decay modes B̄s → ℓ−

1 ℓ
+
2 and B → Kℓ−

1 ℓ
+
2 , for which the experimental upper
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limits at 90% C.L. are reported in Table 9.4. Using Eq. (9.1), we have:

B(B̄s → ℓ−
1 ℓ

+
2 ) = τBs

64π3
α2

emG
2
F |VtbV ∗

ts|2

m3
Bs

f 2
Bs
λ1/2(m2

Bs
,m2

ℓ1 ,m
2
ℓ2)×

×

[m2
Bs

− (mℓ1 −mℓ2)2]
∣∣∣∣∣(mℓ1 +mℓ2)Cℓ1ℓ2

10− + m2
Bs

mb +ms

Cℓ1ℓ2
P−

∣∣∣∣∣
2

+ [m2
Bs

− (mℓ1 +mℓ2)2]
∣∣∣∣∣(mℓ1 −mℓ2)(Cℓ1ℓ2

9− ) + m2
Bs

mb +ms

(Cℓ1ℓ2
S− )

∣∣∣∣∣
2
 ,

(9.20)
and

B(B+ → K+ℓ−
1 ℓ

+
2 ) = 10−8

{
c9+
ℓ1ℓ2

∣∣∣Cℓ1ℓ2
9+

∣∣∣2 + c10+
ℓ1ℓ2

∣∣∣Cℓ1ℓ2
10+

∣∣∣2 + cSℓ1ℓ2

∣∣∣Cℓ1ℓ2
S+

∣∣∣2

+ cPℓ1ℓ2

∣∣∣Cℓ1ℓ2
P+

∣∣∣2 + cS9
ℓ1ℓ2 Re[C∗ℓ1ℓ2

S+ Cℓ1ℓ2
9+ ] + cP10

ℓ1ℓ2 Re[C∗ℓ1ℓ2
P+ Cℓ1ℓ2

10+ ]
}
,

(9.21)
Both Eqs. (9.20)–(9.21) agree with previous results in the literature [297,298]. Using
again the values for the masses from PDG [281], CKM factors from the UT-fit
collaboration [288], fBs = 215 MeV [299] and Lattice QCD/Light Cone Sum Rule
results in Refs. [83, 296], we find the coefficients ciℓ1ℓ2 in Eq. (9.21) as listed in
Table 9.4. Similar as for ξ9S, the coefficient cS9

ℓ1ℓ2 is proportional to mℓ1 − mℓ2

and thus changes sign depending on charge of the heavier lepton. We stress that
the numbers in Table 9.4 are strongly dependent on the choice for αem. Here we
take αem = 1/133. A different choice can be implemented by rescaling the ciℓ1ℓ2
coefficients.

Finally, we use the experimental upper bounds listed in Table 9.3 and Eqs. (9.20)–
(9.21) to constrain different combinations of couplings Cℓ1,ℓ2

i . As stated before, we
do not consider τe decays as the constraints coming from these decays are similar
to those from the τµ channel. Furthermore, for simplicity we also do not consider
the O′ℓ1ℓ2

i operators. This choice is motivated by the fact that these operators are
unappealing when trying to fit b → sℓℓ data [270–273,300]. Nevertheless, we stress
that the baryonic channels have a different dependence on the primed operators with
respect to the mesonic ones, which may be interesting to consider once scenarios
involving these operators become more interesting to explain the B anomalies.

The obtained bounds for τµ and µe finals states are given in Fig. 9.1 and in
Fig. 9.2, respectively. We consider three 2-dimensional scenarios, in which we allow
only some combinations of NP Wilson coefficients to be non-zero: Cℓ1ℓ2

9 and Cℓ1ℓ2
10 ,

Cℓ1ℓ2
S and Cℓ1ℓ2

P and the SMEFT inspired one, where Cℓ1ℓ2
9 = −Cℓ1ℓ2

10 and Cℓ1ℓ2
S =

−Cℓ1ℓ2
P . For the Cℓ1ℓ2

9 − Cℓ1ℓ2
10 and Cℓ1ℓ2

S − Cℓ1ℓ2
P scenarios, which are independent
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Figure 9.1: Model independent constrains on different combinations of Wilson coef-
ficients obtained from the 90% C.L. upper limits on meson b → sµ±τ∓ transitions.

of the charge configuration in the final state, we only consider the strongest bound
in Table 9.3. As the interference between Cℓ1ℓ2

9 and Cℓ1ℓ2
S depends on the charge

configuration of the leptons in the final state, we present plots for both the τ+µ−

and τ−µ+ final states. We note that the B̄s → τ−τ+ decay only gives a very weak
constraint in the Cℓ1ℓ2

9 = −Cℓ1ℓ2
10 plane ranging from −200 to 200. From comparison

of the plots in Fig. 9.1, we find large differences between the τ+µ− and the τ−µ+.
Hence, we stress that it is important to analyse these final states separately. For the
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Figure 9.2: Model independent constrains on different combinations of Wilson coef-
ficients obtained from the 90% C.L. upper limits on meson b → sµ±e∓ transitions.

electron, the differences between µ−e+ and µ+e− are negligible and we only present
one figure.

As the mesonic B+ → K+ℓ1ℓ2 and B̄s → ℓ1ℓ2 are mediated by the same quark
level transition, we can use the obtained upper limits on combinations of Wilson
coefficients and convert those into upper limit on the branching ratio and forward-
backward asymmetry for Λb → Λℓ1ℓ2 decays using Eq. (9.17). When allowing for
only one NP Wilson coefficient to be nonzero at a time, for example allowing only
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Bµτ (Bτµ) × 10−5 Beµ = Bµe × 10−8

Cℓ1ℓ2
9 ̸= 0, Cℓ1ℓ2

10 ̸= 0, Cℓ1ℓ2
S = Cℓ1ℓ2

P = 0 < 7.7 (7.7) < 1.1
Cℓ1ℓ2
S ̸= 0, Cℓ1ℓ2

P ̸= 0, Cℓ1ℓ2
9 = Cℓ1ℓ2

10 = 0 < 2.7 (2.7) < 0.06
Cℓ1ℓ2

9 = −Cℓ1ℓ2
10 , Cℓ1ℓ2

S = −Cℓ1ℓ2
P < 7.4 (11) < 1.1

Table 9.5: Upper limits for the branching ratio of Λb → Λ LFV decays obtained
in a model independent way by considering their mesonic counter parts. Bounds
are at 90% C.L.. For the first two scenarios, the branching ratios are independent
of the charge configuration. However for the SMEFT scenario this is not the case
anymore, hence we present both branching ratios for µ−τ+ and in brackets τ−µ+.

Cℓ1ℓ2
9 ̸= 0, the corresponding bounds can be easily obtained by calculating the

scale factor between ciℓ1ℓ2 of the meson B → K LFV decay and ξℓ1ℓ2i of the baryon
Λb → Λ decay using Table 9.1 and Table 9.4 and re-scaling the upper limit of the
mesonic decay accordingly. In addition, comparing the coefficients in these Tables,
we observe that the ratios ciℓ1ℓ2/c

j
ℓ1ℓ2 and ξℓ1ℓ2i /ξℓ1ℓ2j are very similar for i, j = 9, 10

and i, j = S, P . Therefore, the sensitivities for LFV B → K and Λb → Λ decays
are rather similar when considering the Cℓ1ℓ2

9 − Cℓ1ℓ2
10 only and Cℓ1ℓ2

S − Cℓ1ℓ2
P only

scenarios. Upper limits (at 90% C.L.) for the branching ratio of Λb → Λℓ1ℓ2 derived
from their mesonic counter parts for the three scenarios are presented in Table 9.5.
These values should be interpreted as follows: any future experimental upper limit
on the baryonic mode below the quoted value gives stronger constraints on the
Wilson coefficients than those obtained from the current mesonic upper limits.

The complementarity of the mesonic and the baryonic LFV channels specifically
arises when considering both (axial)vector and (pseudo)scalar operators. This com-
plementarity is caused the difference between the ratios ciℓ1ℓ2/c

j
ℓ1ℓ2 and ξℓ1ℓ2i /ξℓ1ℓ2j for

i = S9, P10 and j = S, P, 9, 10. We expect a similar complementarity also when both
tensor operators and (axial)vector operators are present. We illustrate quantitatively
this in Fig. 9.3 for the SMEFT scenario where Cℓ1ℓ2

9 = −Cℓ1ℓ2
10 , Cℓ1ℓ2

S = −Cℓ1ℓ2
P . We

present the current meson constraints combined with two possible constraints on
the Λb → Λµ−τ+ branching ratio and observe that the mesonic modes place strong
constraints on scalar/pseudoscalar interactions while the baryonic channel is more
sensitive to Cµτ

9 and Cµτ
10 .

Finally, we consider the integrated forward-backward asymmetry Aℓ1ℓ2FB which
provides orthogonal information compared to the branching ratio. From Eq. (9.17)
we note the following properties: Aℓ1ℓ2FB is identically zero if Cℓ1ℓ2

9 = Cℓ1ℓ2
10 = 0, and in

the case in which only Cℓ1ℓ2
9 = −Cℓ1ℓ2

10 ̸= 0 Aℓ1ℓ2FB is independent on the values of Cℓ1ℓ2
9

and Cℓ1ℓ2
10 . In the latter scenario, we find for Cℓ1ℓ2

9 = −Cℓ1ℓ2
10 and Cℓ1ℓ2

S = Cℓ1ℓ2
P = 0

AτµFB = 0.14 ± 0.01 , AµτFB = 0.40 ± 0.03 , AeµFB = AµeFB = 0.33 ± 0.04 .
(9.22)
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Figure 9.3: Illustration of the orthogonality between current mesonic and possible
future baryonic constraints.

A measurement or an upper limit different from these values provides interesting
complementary information. This is illustrated in Fig. 9.4, where we consider for
the µ−τ+ final state a future scenario in which an upper limit of AµτFB < 0.3 and
Bµτ < 7.7 · 10−5 are considered. As we can see from Fig. 9.4, the information on
AτµFB helps to rule out a large part of the allowed space in the Cℓ1ℓ2

9 − Cℓ1ℓ2
10 plane.

9.3.2 Explicit models
As mentioned, in many models that explain LFU violation, also LFV naturally oc-
curs. Since our aim is not to perform a detailed analysis of all the observables in
low-energy phenomenology, we choose to focus here on two specific models that ex-
plain the B anomalies. We choose two interesting solutions, which are the most
favourite in the literature: the combination of the scalar leptoquarks S1 and S3 and
the vector leptoquark U1. For these models we provide predictions for observables
in Λb → Λℓ−

1 ℓ
+
2 decays.
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Figure 9.4: Illustration of how the forward-backward asymmetry provides orthogonal
constraints to the branching ratio of Λb → Λµ−τ+. The shaded area present the
allowed region for an upper limit AµτFB < 0.3, compared to an upper limit for the
branching ratio of 7.7 · 10−5.

The S1 + S3 scalar leptoquarks scenario [252]
Here we focus on the S1 + S3 scenario, following the analysis in Ref. [252]1. The
main idea there is to apply the Froggatt-Nielsen mechanism [301], that explains
the hierarchies of quark masses, as a power counting for NP operators, and thereby
providing simultaneously an explanation for the B-anomalies and the flavour puzzle.
Converting the formalism of Ref. [252] to the Wilson coefficients defined in Eq. (9.1),
we find:

Cℓ1ℓ2
9 = −Cℓ1ℓ2

10 = v2

M2
π

αem|VtbV ∗
ts|

|g3|2S̃3ℓ2
QLS̃

∗2ℓ1
QL (9.23)

where M is the mass of the heavy scalar leptoquarks, S̃iℓiQL is the spurion associated
with the S3 scalar leptoquark and encodes the Froggatt-Nielsen power counting, and
g3 is an overall coupling which is expected to be of O(1). Notice that the scalar
leptoquark S1 does not contribute to b → sℓ−

1 ℓ
+
2 transitions. With this, we find

Cµτ
9 = −Cµτ

10 = − (0.41 ± 0.07) ,

Cτµ
9 = −Cτµ

10 = (10 ± 2) . (9.24)

For the modes with electrons and muons in the final states, we find Ceµ
9 ∝ 10−3 and

1The analysis Ref. [252] provides qualitatively the same results as Ref. [248].
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a even lower value for Cµe
9 . Therefore, we conclude that the corresponding branching

ratios are too small to be measured by any experiment in the near future.
Focusing then on the final states with muons and taus, using the Wilson coefficients
in (9.24) and our results in Sect. 9.2 gives

Bµτ = (7.1 ± 2.5) · 10−9 ,

Bτµ = (4.2 ± 1.7) · 10−6 ,

(9.25)

where the errors are dominated by the ones on the NP Wilson coefficients. Note
that since this model predicts Cℓ1ℓ2

9 = −Cℓ1ℓ2
10 , Aℓ1ℓ2FB is independent from any Wilson

coefficients and assumes the value in Eq. (9.22). From Fig. 9.4 we can conclude that
the Cℓ1ℓ2

9 = −Cℓ1ℓ2
10 scenario would be excluded by the measurement of Aℓ1ℓ2FB . Hence,

this stresses the importance of obtaining experimental constraints on this observable.

The U1 vector leptoquark scenario [253]
Other interesting NP models are those with a vector leptoquark, usually denoted
U1. In fact, this NP particle is the only one able to accommodate both classes of B
anomalies on its own. Among the various possibilities available in the literature, we
focus on [253], where the vector leptoquark is a massive state originating from the
Spontaneus Symmetry Breaking of a gauge groupe larger than the SM one. As a
consequence of the gauge representation of the U1 vector leptoquark, not only vector
and axial vector couplings, but also scalar and pseudoscalar couplings are generated.
In particular, the latter are very useful in explaining the large discrepancies in b →
cτ ν̄ data and as a consequence, generate sizeable b → sℓ1ℓ2 interactions. Therefore,
we expect very different signatures for the U1 model than the ones in the scalar
leptoquark case. In Ref. [253] several cases are taken into account, where the flavour
structure of the NP couplings has a U(2)5 flavour symmetry [302] or not, and where
(pseudo-)scalar couplings are present or not. In the following we report results for
the case in which no U(2)5 flavour symmetry is assumed. We note that using the
scenario based on th U(2)5 flavour symmetry yields very similar results. We also
note that given the flavour structure assumed in Ref. [253], the couplings of the
vector leptoquark to electrons is zero, hence no effect is predicted for Λb → Λe±µ∓.
In the notation of Ref. [253] we have

Cℓ1ℓ2
9 = −Cℓ1ℓ2

10 = + 2π
αem|VtbV ∗

ts|
CUβ

2ℓ1
L (β3ℓ2

L )∗ ,

Cℓ1ℓ2
S = −Cℓ1ℓ2

P = + 4π
αem|VtbV ∗

ts|
CUβ

2ℓ1
L (β3ℓ2

R )∗ ,

(9.26)

where CU is a normalisation constant which contains the mass of the vector lepto-
quark normalised to the electroweak vacuum-expectation value and the gauge cou-
pling of the leptoquark. The factor βjβL(R) represents the coupling in flavour space to
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left(right)-handed fermions. In the following we neglect the uncertainties on the fit-
ted parameters obtained from [253] due to their large and asymmetric distributions.
Either way, this scenario provides a useful benchmark that allows us to predict the
size of LFV Λb → Λ decays. We first look at the case β3β

R = 0. We find
Cτµ

9 = −Cτµ
10 = − 5.93 ,

Cµτ
9 = −Cµτ

10 = + 2.90 .
(9.27)

The predictions for Aℓ1ℓ2FB in this case are the same as in Eq. (9.22). The corresponding
integrated branching ratios are:

Bτµ = 1.5 × 10−6

Bµτ = 3.6 × 10−7 .

(9.28)

In the case where β3β
R ̸= 0, we find
Cτµ

9 = −Cτµ
10 = − 4.47 , Cτµ

S = −Cτµ
P = 0 ,

Cµτ
9 = −Cµτ

10 = 2.03 , Cµτ
S = −Cµτ

P = 4.06 ,
(9.29)

which yields
Bτµ = 8.5 × 10−7 and AτµFB = 0.14 ,

Bµτ = 5.3 × 10−7 and AµτFB = 0.12 .
(9.30)

Some comments are in order. In the scenario where Cℓ1ℓ2
S(P ) = 0, Aℓ1ℓ2FB is independent

from the Wilson coefficients and its value is given in Eq. (9.22). We find that
Bτµ > Bµτ due to a factor of two between the respective NP couplings. In the case
where we have also Cµτ

S = −Cµτ
P ̸= 0, we find that Bµτ is surprisingly small due to

the negative interference between Cµτ
S and Cµτ

P . On the other hand, AµτFB is found
to be smaller than AτµFB, hence providing a possible way to distinguish the different
scenarios.

9.3.3 LHCb prospects
The results found in the above Sections indicate that Λb → Λℓ1ℓ2 decays are very
good probes of physics beyond the SM and provide in certain scenarios complemen-
tary bounds with respect to the ones from B̄ → ℓ1ℓ2 and B+ → K+ℓ1ℓ2 decays. Here
we want to comment on the prospective for measurement of Λb → Λℓ1ℓ2 decays at
the LHCb experiment.
If we consider measurement carried out with the same dataset, we expect for the
measured yields:

N (Λb → Λ(→ pπ)ℓ1ℓ2)
N (B+ → K+ℓ1ℓ2)

= B(Λb → Λ(→ pπ)ℓ1ℓ2)|theory

B(B+ → K+ℓ1ℓ2)|theory

fΛb

fB+
rΛb/B+ , (9.31)
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where fΛb
/fB+ is the ratios of the fragmentation functions for the Λb and the B+

modes, respectively, and rΛb/B+ is a correction factor due to different reconstruction
efficiencies. In Ref. [303], the ratio fΛb

/(fu + fd) is measured. Using isospin rela-
tions, we can write fΛb

/fB+ = 2fΛb
/(fu + fd) = (0.518 ± 0.036). The ratio of the

predicted values of the theoretical branching ratios depends on the NP model and
final state leptons. However, as we noted already in Sect. 9.3.1, the branching ratios
for the baryon and the meson case are very similar in size: therefore, for an order
of magnitude estimate, we consider them to be equal. The last piece of information
needed is the ratio rΛb/B+ , that is difficult to estimate without a thorough simulation
of the LHCb detector. However, in order to give an estimate, we use the information
in Refs. [214, 304], that are based on the same integrated luminosity. From these
papers we extract

N (Λb → Λ(→ pπ)µ−µ+)
N (B+ → K+µ−µ+) ≈ 0.31 . (9.32)

This means that we expect the efficiency for the reconstruction of the Λb to be
roughly 1.67 times less than that of the B+, when also taking into account the
fragmentation fractions effect. Hence we set rΛb/B+ = 1.67. We expect that all the
other correction factors due to the reconstruction of the leptons in the final state
cancel out since we are comparing the same leptonic final states in both decays.
This yields

B(Λb → Λ(→ pπ)ℓ1ℓ2) ≈ 1.67 fΛb

fB+
B(B+ → K+ℓ1ℓ2) . (9.33)

Using the current upper limit on B(B+ → K+τ+µ−), we thus expect that LHCb
can reach the following sensitivity:

B(Λb → Λ(→ pπ)µ−τ+) ≲ 6.5 · 10−5 , (9.34)

for Run 1 and 2 datasets. In the above estimate, we have not included any correction
for the trigger efficiency, which can be different for the baryonic and mesonic mode.
The estimate in Eq. (9.34) can be compared to the model dependent and model
independent bounds on B(Λb → Λτ+µ−) found in the previous Sections. In partic-
ular, the expected upper bound from LHCb would already give better constraints
than the corresponding ones from the mesonic decays, as illustrated in Fig. 9.3. We
also stress that future runs will improve the upper limit in Eq. (9.34) of at least a
factor of roughly two with Run 3 and a factor of three with further runs [274].

9.4 Conclusions

In this paper, we present the first full analysis of Λb → Λℓ−
1 ℓ

+
2 lepton flavour violating

(LFV) decays in terms of possible new physics operators. The main results of this
paper are Eqs. (9.10)–(9.13), where the coefficients of the angular distributions for
Λb → Λℓ−

1 ℓ
+
2 decays are given. We study the interplay between the baryonic and

117



mesonic searches for LFV, where for the latter upper limits are already available.
We convert these upper limits into constraints on the branching ratio and forward-
backward asymmetry for Λb → Λℓ−

1 ℓ
+
2 decays. We find that the Λb → Λℓ−

1 ℓ
+
2

decays provide different constraints on the new physics Wilson coefficients than
B̄s → ℓ−

1 ℓ
+
2 and B+ → K+ℓ−

1 ℓ
+
2 decays, and have the potential to reduce the allowed

parameter space for new physics models. We then analyse quantitatively the size of
Λb → Λℓ−

1 ℓ
+
2 decays in specific scenarios that can address B anomalies, using as a

reference [252] and [253]. Our findings indicate that the predicted branching ratio
for Λb → Λℓ−

1 ℓ
+
2 for these scenarios are such that they can further constrain the

new physics couplings. As a final prospective, we estimate the reach of LHCb for
Λb → Λℓ−

1 ℓ
+
2 decays, finding that an upper limit of B(Λb → Λµ−τ+) ≲ 6.5 · 10−5 can

be reached with Run 1 and Run 2 data.
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Appendix A Details on kinematics
In the Λb rest frame (Λb − RF), the momenta are defined as

qµ|Λb−RF = (q0, 0, 0,−|q⃗|) , (9.35)

kµ|Λb−RF = (mΛb
− q0, 0, 0, |q⃗|) . (9.36)

where

q0|Λb−RF =
m2

Λb
−m2

Λ + q2

2mΛb

, and |q⃗||Λb−RF =

√
λ(m2

Λb
,m2

Λ, q
2)

2mΛb

, (9.37)

where λ is the usual Källen function defined as λ(a, b, c) = a2+b2+c2−2a(b+c)−2bc.
In the dilepton rest frame we have that qµ|2ℓ−RF =

√
q2(1, 0, 0, 0), and

pµ1 |2ℓ−RF = (Eℓ1 ,−|p⃗2||2ℓ−RF sin θℓ, 0,−|p⃗2||2ℓ−RF cos θℓ) , (9.38)

pµ2 |2ℓ−RF = (Eℓ2 ,+|p⃗2||2ℓ−RF sin θℓ, 0,+|p⃗2||2ℓ−RF cos θℓ) , (9.39)

where

|p⃗2||2ℓ−RF =

√
λ(q2,m2

ℓ1 ,m
2
ℓ2)

2
√
q2 , and Eℓ1,2 =

q2 +m2
ℓ1,2 −m2

ℓ2,1

2
√
q2 . (9.40)
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The two reference systems are connected by the following relation for any vector:

xµ||Λb−RF = Λµνx
Tµ , Λ =


γ 0 0 −βγ
0 1 0 0
0 0 1 0

−βγ 0 0 γ

 (9.41)

where Λµν is a Lorentz transformation along the z axis. It’s parameters are:

γ = q0|Λb−RF√
q2 , and β = |q⃗||Λb−RF

q0|Λb−RF
(9.42)

Appendix B Correlations

We present correlation matrices for the set of coefficients {ξℓ1ℓ2i , ρℓ1ℓ2i }, with the same
ordering as in Tables 9.1–9.2. In Table 9.6 we present the correlations for µe final
states and in Table 9.7 the ones for µτ final states.

1 1 0.617 0.617 0.643 0.643 -0.728 0.820 -0.839 -0.839
1 1 0.617 0.617 0.643 0.643 -0.728 0.820 -0.839 -0.839

0.617 0.617 1 1 0.885 0.885 -0.559 0.451 -0.778 -0.778
0.617 0.617 1 1 0.885 0.885 -0.559 0.451 -0.778 -0.778
0.643 0.643 0.885 0.885 1 1 -0.835 0.438 -0.911 -0.911
0.643 0.643 0.885 0.885 1 1 -0.835 0.437 -0.911 -0.911
-0.728 -0.728 -0.559 -0.559 -0.835 -0.835 1 -0.434 0.932 0.932
0.820 0.820 0.451 0.451 0.438 0.438 -0.434 1 -0.517 -0.517
-0.839 -0.839 -0.778 -0.778 -0.911 -0.911 0.932 -0.517 1 1
-0.839 -0.839 -0.778 -0.778 -0.911 -0.911 0.932 -0.517 1 1

Table 9.6: Correlation matrix for the Λb → Λµ−e+ parameters.
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1 0.997 0.709 0.716 -0.742 0.742 0.835 0.857 -0.877 0.877
0.997 1 0.747 0.755 -0.787 0.788 0.858 0.838 -0.900 0.900
0.709 0.747 1.00 0.999 -0.962 0.947 0.715 0.466 -0.835 0.835
0.716 0.755 0.999 1 -0.971 0.958 0.734 0.470 -0.846 0.846
-0.742 -0.787 -0.962 -0.971 1 -0.999 -0.841 -0.481 0.899 -0.899
0.742 0.788 0.947 0.958 -0.999 1 0.857 0.480 -0.903 0.903
0.835 0.858 0.715 0.734 -0.841 0.857 1 0.519 -0.964 0.964
0.857 0.838 0.466 0.470 -0.481 0.480 0.519 1 -0.544 0.544
-0.877 -0.900 -0.835 -0.846 0.899 -0.903 -0.964 -0.544 1 -1
0.877 0.900 0.835 0.846 -0.899 0.903 0.964 0.544 -1 1

Table 9.7: Correlation matrix for the Λb → Λµ−τ+ parameters.
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Chapter 10

Project V: Dispersive bounds for
local form factors in Λb → Λ
transitions

Published as a preprint in:
T. Blake, S. Meinel, M. Rahimi, D. van Dyk [5].
At the time of writing, this work is being prepared for publication in a peer-reviewed
journal.

Contributions of the authors to the article.
M. Rahimi contributed to the draft and did the analytical derivation and numerical
analysis of all expressions obtained in the article. Dr. van Dyk performed an
independent numerical study and worked on the draft. Dr. Meinel provided the
lattice-QCD data and along with Dr. Blake, discussed the results and worked on
the draft.

Abstract: We investigate the ten independent local form factors relevant to the
b-baryon decay Λb → Λℓ+ℓ−, combining information of lattice QCD and disper-
sive bounds. We propose a novel parametrization of the form factors in terms
of orthonormal polynomials that diagonalizes the form factor contributions to the
dispersive bounds. This is a generalization of the unitarity bounds developed for
meson-to-meson form factors. In contrast to ad-hoc parametrizations of these form
factors, our parametrization provides a degree of control of the form-factor uncer-
tainties at large hadronic recoil. This is of phenomenological interest for theoretical
predictions of, e.g., Λb → Λγ and Λb → Λℓ+ℓ− decay processes.
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10.1 Introduction
For the last decade, decays involving b → sµ+µ− transitions have been a focus of
flavour physics community due to the substantial number of so-called “b anoma-
lies”. These anomalies are a pattern of deviations between theoretical expectations,
within the Standard Model of particle physics (SM), and experimental measure-
ments, chiefly by the LHCb experiment [305–310]. Compatible experimental results,
for many of these measurements, have since been obtained by the ATLAS [311,312],
CMS [313–315], and Belle [316] experiments.

There is substantial interest in corroborating the b anomalies through decay
channels that feature complementary sources of theoretical systematic uncertainties
and complementary sensitivity to effects beyond the SM. The decay Λb → Λ(→
pπ−)µ+µ− is a prime candidate for this task [280]. In contrast to B → K∗(→
Kπ)µ+µ− decays, the local form factors for Λb → Λµ+µ− decays correspond to
transition matrix elements between stable single-hadron states in QCD. This allows
precise lattice QCD calculations using standard methods, and results for the Λb → Λ
form factors have been available for some time [278]. Measurements of Λb → Λ(→
pπ−)µ+µ− observables [317,318] have been included in global fits of the b → sµ+µ−

couplings [269,271,319,320], and dedicated analyses for effects beyond the SM, even
accounting for production polarization of the Λb, have been performed in recent
years [269, 321]. Lepton-flavor universality violation in baryonic b → sℓ+ℓ− decay
modes has also been studied theoretically; in Ref. [3] the angular distribution of
Λb → Λℓ+ℓ− has been computed for the full base of New Physics operator (partial
results are available in Ref. [275, 276]). Measurements by LHCb are also available
for the branching fraction of the Λb → Λγ decay [318].

In this work, we investigate one of the two main sources of theoretical uncer-
tainties that arise in the predictions of Λb → Λℓ+ℓ− and Λb → Λγ transitions; the
hadronic form factors of local s̄Γ b currents of mass dimension three. The complete
set of scalar-valued hadronic form factors describing these currents is comprised of
ten independent functions of the dilepton invariant mass squared, q2. A convenient
Lorentz decomposition of the hadronic matrix elements is achieved in terms of he-
licity amplitudes [277]. Here, we set out to improve the description of the form
factors as functions of q2 across the whole kinematic phase space available to the
Λb → Λℓ+ℓ− decay. To that end, we derive dispersive bounds for the form factors
in the six s̄Γb currents: the (pseudo)scalar, the (axial)vector, and the two tensor
currents. We demonstrate that previous analyses of dispersive bounds for baryon-
to-baryon form factors [322–325] overestimate the saturation of the bounds (see also
the discussion in Ref. [173]). Our formulation of the bounds uses polynomials that
are orthonormal on an arc of the unit circle in the variable z (see Sec. 10.2.4 for
the definition). As a consequence, benefits inherent to meson-to-meson form-factor
parametrizations with dispersive bounds now also apply to our approach. We illus-
trate the usefulness of our formulation of the dispersive bounds for the form factor
parameters for Λb → Λ, but note that it applies similarly to other ground-state
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baryon to ground-state baryon form factors (e.g. Λb → Λc transitions). As inputs,
we use lattice QCD determinations of the form factors at up to three different points
in q2. Our analysis also paves the way for the application of the bounds directly,
through a modified z-expansion, within future lattice QCD studies. This is likely to
increase the precision of future form-factor predictions, especially at large hadronic
recoil where q2 ≃ 0.

In Sec. 10.2, we briefly recap the theory of the local form factors for baryon-to-
baryon transitions and their dispersive bounds. We then propose a new parametriza-
tion for the full set of form factors in Λb → Λ transitions, which diagonalizes
the dispersive bound. In Sec. 10.3, we illustrate the power of our parametriza-
tion based on lattice QCD constraints for the Λb → Λ form factors. We highlight
how the form-factor uncertainties in the low momentum transfer region are affected
by our parametrization and the different types of bounds we apply. We conclude in
Sec. 10.4.

10.2 Derivation of the dispersive Bounds
We begin with a review of the Lorentz decomposition of the hadronic matrix elements
in Sec. 10.2.1. We then introduce the two-point correlation functions responsible for
the dispersive bound and their theoretical predictions within an operator product
expansion in Sec. 10.2.2. The hadronic representation of the correlation functions is
discussed in Sec. 10.2.3. Our proposed parametrization is introduced in Sec. 10.2.4.

10.2.1 Lorentz decomposition in terms of helicity form fac-
tors

A convenient definition of the form factors is achieved when each helicity amplitude
corresponds to a single form factor:

⟨Λ(k)| s̄Γµb |Λb(p)⟩ ε∗
µ(λ) ∝ fΓ

λ (q2) , (10.1)

where q2 = (p− k)2, and ε is the polarization vector of a fictitious vector mediator
with polarization λ. For 1/2+ → 1/2+ transitions, this definition is achieved by the
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Lorentz decomposition [277]:

⟨Λ(k, sΛ)| s γµ b |Λb(p, sΛb
)⟩ = uΛ(k, sΛ)

[
fVt (q2) (mΛb

−mΛ)q
µ

q2 (10.2)

+ fV0 (q2)mΛb
+mΛ

s+

(
pµ + kµ − (m2

Λb
−m2

Λ)q
µ

q2

)

+ fV⊥ (q2)
(
γµ − 2mΛ

s+
pµ − 2mΛb

s+
kµ
)]

uΛb
(p, sΛb

) ,

⟨Λ(k, sΛ)| s γµγ5 b |Λb(p, sΛb
)⟩ = −uΛ(k, sΛ) γ5

[
fAt (q2) (mΛb

+mΛ)q
µ

q2 (10.3)

+ fA0 (q2)mΛb
−mΛ

s−

(
pµ + kµ − (m2

Λb
−m2

Λ)q
µ

q2

)

+ fA⊥ (q2)
(
γµ + 2mΛ

s−
pµ − 2mΛb

s−
kµ
)]

uΛb
(pΛb

, sΛb
),

⟨Λ(k, sΛ)| s iσµνqν b |Λb(p, sΛb
)⟩ = −uΛ(k, sΛ)

[
fT0 (q2) q

2

s+

(
pµ + kµ − (m2

Λb
−m2

Λ)q
µ

q2

)
(10.4)

+ fT⊥(q2) (mΛb
+mΛ)

(
γµ − 2mΛ

s+
pµ − 2mΛb

s+
kµ
)]

uΛb
(p, sΛb

) ,

⟨Λ(k, sΛ)| s iσµνqνγ5 b |Λb(p, sΛb
)⟩ = −uΛ(k, sΛ) γ5

[
fT5

0 (q2) q
2

s−

(
pµ + kµ − (m2

Λb
−m2

Λ)q
µ

q2

)
(10.5)

+ fT5
⊥ (q2) (mΛb

−mΛ)
(
γµ + 2mΛ

s−
pµ − 2mΛb

s−
kµ
)]

uΛb
(p, sΛb

) ,

where we abbreviate σµν = i
2 [γµ, γν ] and s± = (mΛb

±mΛ)−q2. The labelling of the
ten form factors follows the conventions of Ref. [280]. Each form factor, fΓ

λ , arises
in the current s̄Γb in a helicity amplitude with polarization λ = t, 0,⊥. We refer
to Ref. [280] for details and the relations between the form factors and the helicity
amplitudes. Note that the matrix elements for the scalar and pseudo-scalar current
can be related to the vector and axial-vector current of the timelike-polarized form
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factors fVt and fAt via the equations of motion:

⟨Λ(k, sΛ)| s b |Λb(p, sΛb
)⟩ = qµ

mb −ms

⟨Λ(k, sΛ)| s γµ b |Λb(p, sΛb
)⟩

= fVt (q2)mΛb
−mΛ

mb −ms

uΛ(k, sΛ) uΛb
(p, sΛb

) , (10.6)

⟨Λ(k, sΛ)| s γ5 b |Λb(p, sΛb
)⟩ = − qµ

mb +ms

⟨Λ(k, sΛ)| s γµγ5 b |Λb(p, sΛb
)⟩

= fAt (q2)mΛb
+mΛ

mb +ms

uΛ(k, sΛ) γ5 uΛb
(p, sΛb

) . (10.7)

Although the ten functions, fΓ
λ (q2), are a-priori independent, some relations exist

at specific points in q2. These so-called endpoint relations arise due to two different
mechanisms. First, the hadronic matrix elements on the left-hand sides of Eq. (10.2)
to Eq. (10.5) must be free of kinematic singularities. Two such singularities can arise,
as spurious poles at q2 = 0 and q2 = q2

max ≡ (mΛb
−mΛ)2. They are removed by the

following identities:

fVt (0) = fV0 (0) , fAt (0) = fA0 (0) , (10.8)

fA⊥ (q2
max) = fA0 (q2

max) , fT5
⊥ (q2

max) = fT5
0 (q2

max) . (10.9)

In addition to the above, an algebraic relation between σµν and σµνγ5 ensures that

fT5
⊥ (0) = fT⊥(0) . (10.10)

See also Ref. [326] for additional discussion of endpoint relations for baryon transi-
tion form factors.

10.2.2 Two-point correlation functions and OPE represen-
tation

Dispersive bounds for local form factors have a successful history. They were first
used for the kaon form factor [327–329] and have also successfully been applied to
exclusive B → π [330,331] and B → D(∗) [322,332,333] form factors1. In the latter
case, the heavy-quark expansion renders the bounds phenomenologically more use-
ful due to relations between all form factors of transitions between doublets under
heavy-quark spin symmetry [340], see Refs. [117,118,120] for recent phenomenolog-
ical updates and analyses up to order 1/m2 in the heavy-quark expansion, respec-
tively. The application of the bound to form factors arising in baryon-to-baryon

1See also applications [334–338] of the dispersive matrix method [339].
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Figure 10.1: Sketch of the analytic structure of the baryon-to-baryon form factors
in the variable q2 (left) and the variable z (right). The q2 range of semileptonic
decays is marked “SL”. The baryon/antibaryon pair production is marked “pair
prod.”. The form factors develop a branch cut below the baryon/antibaryon pair
production threshold due to rescattering of virtual baryon/antibaryon pairs into,
e.g., B̄K(∗) pairs.

transitions is more complicated [173, 323], chiefly due to the fact that for any form
factor, F , its first branch point, tF+, does not coincide with the threshold for bary-
on/antibaryon pair production, tFth. Instead, the branch points lay to the left of
the pair production points, at the pair production threshold for the correspond-
ing ground-state meson/antimeson pair. We show a sketch of this structure in the
left-hand side of Figure 10.1.

The dispersive bounds connect a theoretical computation of a suitably-chosen
two-point function with weighted integrals of the squared hadronic form factors.
For concreteness and brevity we derive the dispersive bound for the vector current
JµV and its hadronic form factors. The generalization to the currents

JµV = s̄γµb , JµA = s̄γµγ5b , (10.11)

JµT = s̄σµνqνb , JµT5 = s̄σµνqνγ5 b (10.12)

is straight-forward following the same prescription as JµV . As we will see below, the
results for scalar and pseudo-scalar currents can be obtained from the vector and
axial currents, respectively.

We define Πµν
V to be the vacuum matrix elements of the two point function with

two insertions of JV :

Πµν
V (Q) = i

∫
d4x eiQ·x ⟨0| T {JµV (x), Jν†

V (0)} |0⟩ , (10.13)

where Qµ is the four-momentum flowing through the two-point function. This
tensor-valued function can be expressed in terms of two scalar-valued functions:

Πµν
V (Q) = P µν

J=0(Q)ΠJ=0
V (Q2) + P µν

J=1(Q)ΠJ=1
V (Q2) , (10.14)
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Γ J form factors χJΓ|OPE [10−2] n

V 0 fVt 1.42 1
V 1 fV0 , fV⊥ 1.20 /m2

b 2
A 0 fAt 1.57 1
A 1 fA0 , fA⊥ 1.13 /m2

b 2
T 1 fT0 , fT⊥ 0.803 /m2

b 3
T5 1 fT5

0 , fT5
⊥ 0.748 /m2

b 3

Table 10.1: The values of χJΓ(Q2 = 0)|OPE as taken from Ref. [341], which include
terms at next-to-leading order in αs and subleading power corrections. The number
of derivatives for each current Γ = V,A, S, P, T, T5 is provided as n. Note that the
results for χ in the rows for Γ = T, T5 differ from those given in Ref. [341] by a
factor of 1

4 , which is due to differences in convention for the tensor current. The
value of the b-quark mass is taken as mb = 4.2 GeV.

using the two projectors

P µν
J=0(p) = pµpν

p2 , P µν
J=1(p) = 1

3

(
pµpν

p2 − gµν
)
. (10.15)

Note that the two tensor currents do not feature a J = 0 component, i.e., the
coefficients of the projectors PJ=0 vanish for these currents.

The functions ΠJ=0
V (Q2) and ΠJ=1

V (Q2) feature singularities along the real Q2

axis, which will be discussed below. These singularities are captured by the discon-
tinuities of ΠJ=0

V and ΠJ=1
V . It is now convenient to define a new function, χJV , which

is completely described in terms of the discontinuities of the functions ΠJ=1
V :

χJ=1
V (Q2) = 1

n!

(
d

dQ2

)n
ΠJ=1
V (Q2) = 1

2πi

∫ ∞

0
dt Disc ΠJ=1

V (t)
(t−Q2)n+1 . (10.16)

Here, the number of derivatives n (also known as the number of “subtractions”) is
chosen to be the smallest number that yields a convergent integral. Note that in
general the functions χ for the scalar and pseudo-scalar currents require a different
value of n than the functions for the vector and axial currents, respectively, despite
the fact that they can be extracted from the vector and axial two-point correlators.

The dispersive bound is constructed by equating two different representation of
χV with each other, based on the assumption of global quark hadron duality:

χJV

∣∣∣∣∣
OPE

= χJV

∣∣∣∣∣
hadr

. (10.17)
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The left-hand side representation is obtained from an operator product expansion
(OPE) of the time-ordered product that gives rise to Πµν

V (Q). For s̄Γb currents, the
most recent analysis of these OPE results, including subleading contributions, has
been presented in Ref. [341] for all the dimension-three currents considered in this
work. We summarize results of the analysis for Q2 = 0 in Table 10.1, where we also
list the values for n on a per-current basis.
The right-hand side representation is obtained from the hadronic matrix elements of
on-shell intermediate states. We will discuss this representation and its individual
terms in the next section.

10.2.3 Hadronic representation of the bound
We continue to discuss the bounds for the case of the vector current, and concretely,
the scalar-valued two-point function ΠJ=1

V ,

ΠJ=1
V = [PJ=1]µν Πµν

V . (10.18)

Its discontinuity due to a hadronic intermediate state, Hs̄b, with flavour quantum
numbers B = −S = 1 can be obtained using

Disc ΠJ
Γ = i

∑
spin

∫
dρ (2π)4δ(4)

(
q −

n∑
i

pi

)
P µν
J (q) ⟨0| JµΓ |Hbs̄(p1, . . . , pn)⟩

× ⟨Hbs̄(p1, . . . , pn)| Jν†
Γ |0⟩ , (10.19)

where the dρ is the phase-space element of the n-particle intermediate state. Below
we consider the cases of one- and two-particle intermediate states, with:

∫
dρ =



∫ d3p

(2π)32Ep⃗
for one-particle states,

∫ d3p1

(2π)32Ep⃗1

∫ d3p2

(2π)32Ep⃗2

for two-particle states.
(10.20)

One-particle contributions

Here, we discuss contributions due to a single asymptotic on-shell state Hbs̄ with
flavour quantum numbers B = −S = 1, which excludes states that strongly decay
such as radially excited states. We continue to use the case Γ = V as an example,
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with J = 1. In that case, the discontinuity receives a single contribution:

Disc ΠJ=1
V (q2)

∣∣∣∣∣
1pt

= i
∫

dρ (2π)4δ(4)(q − p)
∑
λ

[PJ=1]µν ⟨0| JµV |B̄∗
s (p, λ)⟩ ⟨B̄∗

s (p, λ)| Jν†
V |0⟩

(10.21)

= i
∫

dρ (2π)4δ(4)(q − p)m2
B∗

s
f 2
B∗

s
(10.22)

= 2πδ(q2 −m2
B∗

s
)θ(q0)m2

B∗
s
f 2
B∗

s
, (10.23)

where λ is the polarization of the B̄∗
s meson and mB∗

s
its mass. States other than

the B∗
s do not contribute, since either their matrix elements with the Γ = V current

vanish; their projection onto the J = 1 state vanish; or they decay strongly. The
generalization to Γ = A and J = 0 is straightforward:

Disc ΠJ=0
V (q2)

∣∣∣∣∣
1pt

= 2πδ(q2 −m2
B∗

s,0
)θ(q0)m2

B∗
s,0
f 2
B∗

s,0
, (10.24)

Disc ΠJ=0
A (q2)

∣∣∣∣∣
1pt

= 2πδ(q2 −m2
Bs

)θ(q0)m2
Bs
f 2
Bs
, (10.25)

Disc ΠJ=1
A (q2)

∣∣∣∣∣
1pt

= 2πδ(q2 −m2
Bs,1)θ(q0)m2

Bs,1f
2
Bs,1 . (10.26)

Here Bs is the ground-state pseudoscalar meson with a very well-known decay con-
stant fBs = 230.7 ± 1.3 MeV [342], Bs,1 is the axial vector meson, and B∗

s,0 is the
scalar meson. In brief, the (pseudo)scalar current receives a contribution from a
(pseudo)scalar on-shell state, and the axialvector current receives a contribution
from an axialvector on-shell state. Although sub-BK-threshold Bs,1 or B∗

s,0 states
have not yet been seen in the experiment, there are indications in lattice QCD analy-
ses that such sub-threshold states exist [343]. However, the values of their respective
decay constants are presently not very well known; estimates have been obtained,
via QCD sum rule at next-to-leading order, in Ref. [344, 345]. Nevertheless, these
states produce a pole both in the two-point functions ΠJ

Γ and in their associated
form factors, which is a necessary information for the formulation of the dispersive
bounds and the form factor parametrization. From this point forward, we assume
the presence of a single pole due to a JP = {0+, 1−, 0−, 1+} state contributing to
form factors with (Γ, J) = {(V, 0), (V, 1), (A, 0), (A, 1)}, respectively.

The cases for currents with Γ = T and Γ = T5 benefit from further explanation.
For these currents one might assume that tensor, i.e., JP = 2±, states play a leading
role. However, these states do not contribute at all, since their matrix elements
vanish:

⟨0| s̄σµν(γ5)b |Bs(JP = 2±)⟩ = 0 . (10.27)
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This can readily be understood, since the above matrix elements are antisymmetric
in the indices µ and ν, while the polarization tensors of JP = 2± mesons are sym-
metric quantities. Nevertheless, the currents Γ = T and Γ = T5 do feature poles
due to one-particle contributions, which arise from states with JP = 1±. We obtain:

Disc ΠJ=1
T (q2)

∣∣∣∣∣
1pt

= 2πδ(q2 −m2
B∗

s
)θ(q0)m4

B∗
s
(fTB∗

s
)2 , (10.28)

Disc ΠJ=1
T5 (q2)

∣∣∣∣∣
1pt

= 2πδ(q2 −m2
Bs,1)θ(q0)m4

Bs,1(fTBs,1)2. (10.29)

where fB∗
s ,T and fBs,1,T are the decay constants of the respective state for a tensor

current:

⟨0| JµT |B̄∗
s (p)⟩ = im2

B∗
s
fTB∗

s
ϵµ ⟨0| JµT5 |B̄s,1(p)⟩ = −im2

Bs,1f
T
Bs,1ϵ

µ . (10.30)

Plugging the results for the discontinuities into Eq. (10.23) we obtain:

χJ=1
V (Q2)

∣∣∣∣∣
1pt

=
m2
B∗

s
f 2
B∗

s

(m2
B∗

s
−Q2)n+1 , χJ=0

V (Q2)
∣∣∣∣∣
1pt

=
m2
B∗

s,0
f 2
B∗

s,0

(m2
B∗

s,0
−Q2)n+1 , (10.31)

χJ=1
A (Q2)

∣∣∣∣∣
1pt

=
m2
Bs,1f

2
Bs,1

(m2
Bs,1 −Q2)n+1 , χJ=0

A (Q2)
∣∣∣∣∣
1pt

= m2
Bs
f 2
Bs

(m2
Bs

−Q2)n+1 , (10.32)

χJ=1
T (Q2)

∣∣∣∣∣
1pt

=
m4
B∗

s
(fTB∗

s
)2

(m2
B∗

s
−Q2)n+1 , χJ=1

T5 (Q2)
∣∣∣∣∣
1pt

=
m4
Bs,1(fTBs,1)2

(m2
Bs,1 −Q2)n+1 . (10.33)

The one-particle contributions each amount to about 10% of the respective OPE
result.

Two-particle contributions

Here, we focus on the contributions to χ due to an intermediate ΛbΛ̄ state. By means
of unitarity we can express the discontinuity of the two-particle correlator ΠJ

Γ(t) as
a sum of intermediate Hbs̄ states with flavour quantum numbers B = −S = 1:

Disc ΠJ
Γ = i

∑
spins

∫
dρ (2π)4δ(4)(q − (p1 + p2))[PJ ]µν ⟨0| JµΓ |Λb(p1, sΛb

)Λ̄(−p2, sΛ)⟩

× ⟨Λ̄(−p2, sΛ)Λb(p1, sΛb
)| Jν†

Γ |0⟩ + further positive terms . (10.34)

Note that further two-particle contributions for which dispersive bounds have been
applied include B̄K, B̄K∗ and B̄sϕ [341]. The effect of each of those two-particle
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contributions would decrease the upper bound only by 1–4% [341], i.e., by a smaller
amount than the one-particle contributions.

We can evaluate the phase-space integration in the rest frame of the two-particle
system as

∫
dρ (2π)4δ(4)(q − (p1 + p2)) = 1

8π

√
λ(m2

Λb
,m2

Λ, q
2)

q2 θ(q2 − sΛbΛ), (10.35)

with sΛbΛ = (mΛb
+mΛ)2. From this we obtain

Disc ΠJ
Γ = i

8π

√
λ(m2

Λb
,m2

Λ, q
2)

q2 θ(q2 − sΛbΛ)[PJ ]µν ⟨0| JµΓ |ΛbΛ̄⟩ ⟨Λ̄Λb| Jν†
Γ |0⟩ (10.36)

where in the last line we dropped all further positive terms. In the following we
summarize the contraction between helicity operators and matrix elements that can
be expressed via local form factors.

[PJ ]µν ⟨0| JµV |Λ̄Λb⟩ ⟨Λ̄Λb| Jν†
V |0⟩ =


2(mΛb

−mΛ)2

q2 s+(q2)|fVt |2 for J = 0,

2s−(q2)
3q2

(
(mΛb

+mΛ)2|fV0 |2 + 2q2 |fV⊥ |2
)

for J = 1,

(10.37)

[PJ ]µν ⟨0| JµA |Λ̄Λb⟩ ⟨Λ̄Λb| Jν†
A |0⟩ =


2s−(q2)
q2 (mΛb

+mΛ)2|fAt |2 for J = 0,

2s+(q2)
3q2

(
(mΛb

−mΛ)2|fA0 |2 + 2q2 |fA⊥ |2
)

for J = 1,

(10.38)

[PJ ]µν ⟨0| JµT |Λ̄Λb⟩ ⟨Λ̄Λb| Jν†
T |0⟩ =


0 for J = 0,

2s−(q2)
3

(
2(mΛb

+mΛ)2|fT⊥ |2 + q2 |fT0 |2
)

for J = 1,
(10.39)

[PJ ]µν ⟨0| JµT5 |Λ̄Λb⟩ ⟨Λ̄Λb| Jν†
T5 |0⟩ =


0 for J = 0,

2s+(q2)
3

(
2(mΛb

−mΛ)2|fT5
⊥ |2 + q2 |fT5

0 |2
)

for J = 1,
(10.40)

where the sum over the baryon spins is implied.

131



10.2.4 Parametrization
We relate the OPE representation to the hadronic representation of the functions
χJΓ through Eq. (10.17). Using Γ = V and J = 1 again as an example, the dispersive
bound takes the form

χJ=1
V (Q2)

∣∣∣∣∣
OPE

≥ χJ=1
V (Q2)

∣∣∣∣∣
1pt

+
∫ ∞

sΛbΛ
dt 1

24π2

√
λ(m2

Λb
,m2

Λ, t)
t2(t−Q2)n+1 s−(t) (10.41)

×
(
(mΛb

+mΛ)2|fV0 (t)|2 + 2t|fV⊥ (t)|2
)
,

where the last term is the two-particle contribution due to the ground-state baryons.
Our intent is now to parametrize the Λb → Λ form factors (here: fV0 , fV⊥ ) in such
a way that their parameters enter the two-particle contributions to χΓ in a simple
form. Concretely, we envisage a contribution that enters as the 2-norm of the vector
of parameters.

In general, the bounds are best represented by transforming the variable t to the
new variable z, defined as

z(t; t0, t+) =
√
t+ − t−

√
t+ − t0√

t+ − t+ √
t+ − t0

. (10.42)

In the above, t0 corresponds to the zero of z(t) and is a free parameter that can
be chosen, and t+ corresponds to lowest branch point of the form factors. The
mapping from t = q2 to z is illustrated in Figure 10.1. The integral comprising the
two-particle contribution starts at the pair-production threshold tth.

When discussing the dispersive bounds for e.g. B → D or B → π form factors,
one has tth = t+. The integral of the discontinuity along the real t axis in the mesonic
analogue of Eq. (10.41) then becomes a contour integral along the unit circle |z| = 1.
For an arbitrary function g,

∫ ∞

tth=t+
dtDisc g(t) = 1

2

∮
|z|=1

dz
∣∣∣∣∣dt(z)dz

∣∣∣∣∣ Disc g(t(z))

= i

2

∫ +π

−π
dα

∣∣∣∣∣dt(z)dz

∣∣∣∣∣ eiα Disc g(t(eiα)) . (10.43)

The contribution to the integrand from a form factor F is then written as |ϕF |2|F |2,
where the outer function ϕF is constructed such that the product ϕFF is free of
kinematic singularities on the unit disk |z| < 1 [330,332,333,340,346]. The product
of outer function and form factor is then commonly expressed as a power series in
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z, which is bounded in the semileptonic region. Powers of z are orthonormal with
respect to the scalar product

⟨zn|zm⟩ ≡
∮

|z|=1

dz
iz
zn,∗zm =

∫ +π

−π
dα zn,∗zm

∣∣∣
z=eiα

= 2πδnm , (10.44)

that is, when integrated over the entire unit circle. As a consequence, for an analytic
function on the z unit disk that is square-integrable on the z unit circle, the Fourier
coefficients exist only for positive index n and coincide with the Taylor coefficients
for an expansion in z = 0. The contribution to the dispersive bound can then be
expressed as the 2-norm of the Taylor coefficients. For more details of the derivation,
we refer the reader to Ref. [339].

For b → s transitions, B̄sπ intermediate states produce the lowest-lying branch
cut. However, production of a B̄sπ state from the vacuum through a s̄b current
violates isospin symmetry and is therefore strongly suppressed. For the purpose
of this analysis we set t+ to the first branch point that contributes in the isospin
symmetry limit:

t+ ≡ (mB +mK)2 . (10.45)
The integral contribution for B̄K intermediate states can then be mapped onto the
entire unit circle in z as discussed above, and their contributions to the dispersive
bound can be expressed as the 2-norm of their Taylor coefficients. However, inter-
mediate states with larger pair-production thresholds cover only successively smaller
arcs of the unit circle, and the correspondence of the 2-norm of the Taylor coeffi-
cients and their contributions to the dispersive bound does not hold any longer. The
branch point at t+ arises from scattering into on-shell B̄K intermediate states.

In the following, we discuss the application of the series expansion to baryon-
to-baryon form factors in the presence of a dispersive bound. The main difference
between our approach and other parametrizations is that we do not assume the
lowest branch point t+ to coincide with the baryon/antibaryon threshold tth > t+.
As a consequence, the contour integral representing the form factor’s contribution
to its bound is supported only on the arc of the unit circle with opening angle 2αΛbΛ,
where

αΛbΛ = arg z((mΛ +mΛb
)2) . (10.46)

Specifically, Eq. (10.41) becomes

1 ≥ 1
48π2χJ=1

V (Q2)
∣∣∣
OPE

∫ +αΛbΛ

−αΛbΛ
dα

∣∣∣∣∣dz(α)
dα

dt(z)
dz

∣∣∣∣∣
√
λ(m2

Λb
,m2

Λ, t)
t2(t−Q2)n+1 s−(t)

×
(
(mΛb

+mΛ)2|fV0 (t)|2 + 2t|fV⊥ (t)|2
)

(10.47)

≡
∫ +αΛbΛ

−αΛbΛ
dα

(
|ϕfV

0
(z)|2|fV0 (z)|2 + |ϕfV

⊥
(z)|2|fV⊥ (z)|2

)
z=eiα

, (10.48)
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where t = t(z(α)), and we dropped the one-particle contributions for legibility. Here,
ϕfV

0
(z), ϕfV

⊥
(z) are the outer functions for the form factors fV0 and fV⊥ . The full list of

expressions for the outer functions of all baryon-to-baryon form factors is compiled
in Appendix B.

A form factor’s contribution to the bound is expressed in terms of an integral
with a positive definite integrand. Hence, we immediately find that a parametriza-
tion that assumes integration over the full unit circle rather than the relevant pair
production arc |α| < αΛbΛ overestimates the saturation of the dispersive bound
due to that form factor. To express the level of saturation due to each term in
Eq. (10.48) as a 2-norm of some coefficient sequence, we expand the form factors in
a basis of polynomials pn(z). These polynomials must be orthonormal with respect
to the scalar product

⟨pn|pm⟩ ≡
∮

|z|=1
| arg z|≤αΛbΛ

dz
iz
p∗
n(z) pm(z) =

∫ +αΛbΛ

−αΛbΛ
dα p∗

n(z) pm(z)
∣∣∣
z=eiα

= δnm .

(10.49)
The polynomials pn(z) are the Szegő polynomials [347], which can be derived via
the the Gram-Schmidt procedure; see details in Appendix A. A computationally
efficient and numerically stable evaluation of the polynomials can be achieved using
the Szegő recurrence relation [347], which we use in the reference implementation of
our parametrization as part of the EOS software. The first five so-called Verblunsky
coefficients that uniquely generate the polynomials are listed in Append A.

Our series expansion for the parametrization of the local form factors now takes
the form

fΓ
λ (q2) = 1

P(q2)ϕfΓ
λ
(z)

∞∑
i=0

aifΓ
λ
pi(z), (10.50)

where P(q2) = z(q2; t0 = m2
pole, t+) is the Blaschke factor, ϕfΓ

λ
(z) is the outer func-

tion and pi(z) are the orthonormal polynomials. The Blaschke factor takes into
account bound-state poles below the lowest branch point t+ without changing the
contribution to the dispersive bound [339]. Here, we assume each form factor to have
a single bound-state pole, with the masses given in Table 10.2. For our parametriza-
tion, we choose t0 = q2

max = (mΛb
−mΛ)2. The rationale as is as follows: at negative

values of z, the Szegő polynomials oscillate as functions of their index n. Our choice
of t0 means that the entire semileptonic phase is mapped onto the positive real z axis.
Given that the lattice data does not show any oscillatory pattern, this choice appears
to be the most appropriate. While our parametrization appears to feature all of the
benefits inherent to the BGL parametrization for meson-to-meson form factors [332],
this is not the case. The BGL parametrization uses the zn monomials, which are
bounded on the open unit disk. As a consequence, the form factor parametrization
for processes such as B̄ → D are an absolutely convergent series [339]. This benefit
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does not translate to the baryon-to-baryon form factors.2 The polynomials pn are
not bounded on the open unit disk. In fact, the Szegő recurrence relation combined
with the Szegő condition provide that pn(z = 0) increase exponentially with n for
large n. Nevertheless, our proposed parametrization proves to be useful to limit the
truncation error, as demonstrated in Sec. 10.3.

Based on Eq. (10.37)–(10.40), we arrive at strong unitarity bounds on the form-
factor coefficients:

∞∑
i=0

|aifV
t

|2 ≤ 1 −
χJ=0
V

∣∣∣
1pt

χJ=0
V

∣∣∣
OPE

,
∞∑
i=0

|aifA
t

|2 ≤ 1 −
χJ=0
A

∣∣∣
1pt

χJ=0
A

∣∣∣
OPE

,

(10.51)

∞∑
i=0

{
|aifV

0
|2 + |aifV

⊥
|2
}

≤ 1 −
χJ=1
V

∣∣∣
1pt

χJ=1
V

∣∣∣
OPE

,
∞∑
i=0

{
|aifA

0
|2 + |aifA

⊥
|2
}

≤ 1 −
χJ=1
A

∣∣∣
1pt

χJ=1
A

∣∣∣
OPE

,

(10.52)

∞∑
i=0

{
|aifT

0
|2 + |aifT

⊥
|2
}

≤ 1 −
χJ=1
T

∣∣∣
1pt

χJ=1
T

∣∣∣
OPE

,
∞∑
i=0

{
|aifT 5

0
|2 + |aifT 5

⊥
|2
}

≤ 1 −
χJ=1
T5

∣∣∣
1pt

χJ=1
T5

∣∣∣
OPE

.

(10.53)

Note that here we also subtracted the one-particle contributions, which are discussed
in Sec. 10.2.3. However, this subtraction decreases the bound by only ∼ 10%. In our
statistical analysis of only Λb → Λ form factors, we find that this subtraction is not
yet numerically significant. Nevertheless, we advocate to include the one-particle
contributions in global fits of the known local b → s form factors, where their impact
will likely be numerically relevant.

At this point, we have not yet employed the endpoint relations given in Eq. (10.8)
- (10.10). By using the endpoint relations, we can express the zeroth coefficient of
fVt , f

A
t , f

A
⊥ , f

T
⊥ , f

T5
0 in terms of coefficients of other form factors.

Our proposed parametrization has two tangible benefits. First, each form factor
parameter ak is bounded in magnitude, |ak| ≤ 1. The N dimensional parameter
space is therefore restricted to the hypercube [−1,+1]N . We refer to this type of
parameter bound as the weak bound3. It facilitates fits to theoretical or phenomeno-
logical inputs on the form factors, since the choice of a prior is not subjective.

2It also does not transfer to form factors for processes such as B̄s → Ds or B̄s → K̄, which
suffer from the same problem: branch cuts below their respective pair-production thresholds. Our
approach can be adjusted for these form factors.

3Our definitions of weak and strong bounds differ from the definitions proposed in Ref. [120].
There, what we call the weak bound is not considered in isolation, and what we call the strong
bound is labelled a “weak bound”, in contrast to a “strong bound” that affects more than one
decay process.
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Form factor Pole spin-parity
JP

mpole in GeV

fV0 , f
V
⊥ , f

T
0 , f

T
⊥ 1− 5.416

fVt 0+ 5.711
fA0 , f

A
⊥ , f

T5
0 , fT5

⊥ 1+ 5.750
fAt 0− 5.367

Table 10.2: List of Bs meson pole masses appearing in the different form factors.
The values are taken from Refs. [343,348].

Second, the form factor parameters are restricted by the strong bounds Eq. (10.51)
to Eq. (10.53). In the absence of the small number of exact relations between the
form factors that we discussed earlier, this strong bound is in fact an upper bound
on the sum of the squares of the form-factor parameters. As a consequence, the
parameter space is further restricted to the combination of four hyperspheres, one
per bound.4 The strong bounds imply that the sequence of form factor parameters
asymptotically falls off faster than 1/

√
k. This behaviour does not prove absolute

convergence of the series expansion of the form factors, which would require a fall
off that compensates the exponential growth of the polynomials. Nevertheless, we
will assume sufficient convergence of the form factors from this point on. Below, we
check empirically if the strong bound suffices to provide bounded uncertainties for
the form factors in truncated expansions.

10.3 Statistical Analysis

10.3.1 Data Sets
To illustrate the power of our proposed parametrization, we carry out a number of
Bayesian analyses to the lattice QCD results for the full set of Λb → Λ form factors as
provided in Ref. [278]. These analyses are all carried out using the EOS software [349],
which has been modified for this purpose. Our proposed parametrization for the
Λb → Λ form factors is implemented as of EOS version 1.0.2 [350]. The form factors
are constrained by a multivariate Gaussian likelihood that jointly describes synthetic
data points of the form factors, up to three per form factor. Each data point
is generated for one of three possible values of the momentum transfer q2: q2

i ∈
{13, 16, 19} GeV2. The overall q2 range is chosen based on the availability of lattice

4The form factor relations mix the parameters of form factors that belong to different strong
bounds, thereby making a geometric interpretation less intuitive.
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QCD data points in Ref. [278]. The synthetic data points are illustrated by black
crosses in Figs. 10.2–10.3.

Reference [278] provides two sets of parametrizations of the form factors in the
continuum limit and for physical quark masses, obtained from one “nominal” and
one “higher-order” fit to the lattice data. The nominal fit uses first-order z expan-
sions, which are modified with correction terms that describe the dependence on
the lattice spacing and quark masses. The higher-order fit uses second-order z ex-
pansions and also includes higher-order lattice-spacing and quark-mass corrections.
The parameters that only appear in the higher-order fit are additionally constrained
with Gaussian priors. In the case of lattice spacing and quark masses, these priors
are well motivated by effective field theory considerations [278]. In the higher-order
fit, the coefficients a2

fΓ
λ

of the z expansion are also constrained with Gaussian priors,
centered around zero and widths equal to twice the magnitude for the correspond-
ing coefficients a1

fΓ
λ

obtained within the nominal fit. This choice of prior was less
well motivated but has little effect in the high-q2 region. Ref. [278] recommends
to use the following procedure for evaluating the form factors in phenomenological
applications: the nominal-fit results should be used to evaluate the central val-
ues and statistical uncertainties, while a combination of the higher order-fit and
nominal-fit results should be used to estimate systematic uncertainties as explained
in Eqs. (50)–(56) in Ref. [278].

To generate the synthetic data points for the present work, we first updated both
the nominal and the higher-order fits of Ref. [278] with minor modifications: we now
enforce the endpoint relations among the form factors at q2 = 0 exactly, rather than
approximately as done in Ref. [278], and we include one additional endpoint relation
fT5

⊥ (0) = fT⊥(0), which is not used in Ref. [278].
The synthetic data points for fV0 , fA0 and fT⊥ at q2 = 13 GeV2, and fA0 and fT5

0
at 19 GeV2, have strong correlation with other data points. This can be understood,
since five exact relations hold for these form factors either at q2 = 0 or q2 = (mΛb

−
mΛ)2 between pairs of form factors. We remove the synthetic data points listed
above, which renders the covariance matrix regular and positive definite. We arrive
at a 25 dimensional multivariate Gaussian likelihood. The likelihood is accessible
under the name

Lambda_b->Lambda::f_time+long+perpˆV+A+T+T5[nominal,no-prior]DM:2016A

as part of the constraints available within the EOS software.

10.3.2 Models
In this analysis, we consider a variety of statistical models. First, we truncate the
series shown in Eq. (10.50) at N = 2, 3 or 4. The number of form factor parameters
is 10(N + 1), due to a total of ten form factors under consideration. Since we
implement the five form factors relations exactly, the number of fit parameters is
smaller than the number of form factor parameters by five. Hence, we arrive at
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between P = 25 and P = 45 fit parameters. We use three different types of priors in
our analyses. An analysis labelled “w/o bound” uses a uniform prior, which is chosen
to contain at least 99% of the integrated posterior probability. An analysis labelled
“w/ weak bound” uses a uniform prior on the hypercube [−1,+1]P , thereby applying
the weak bound for all fit parameters. An analysis labelled “w/ strong bound” uses
the same prior as the weak bound. In addition, we modify the posterior to include
the following element, which can be interpreted either as an informative non-linear
prior or a factor of the likelihood. For each of the six bounds B({an}), we add the
penalty term [117] 0 ρB < 1,

100(ρB − 1)2 otherwise
(10.54)

to −2 ln Posterior. Here, ρB = ∑
n |an|2, and the sum includes only the parameters

affected by the given bound B. The additional terms penalize parameter points
that violate any of the bounds with a one-sided χ2-like term. The factor of 100
corresponds to the inverse square of the relative theory uncertainty on the bound,
which we assume to be 10%. This uncertainty is compatible with the results obtained
in Ref. [341]. In the above, we use unity as the largest allowed saturation of each
bound. As discussed in Sec. 10.2.3, one-body and mesonic two-body contributions to
the bounds are known. They could be subtracted from the upper bounds. However,
we suggest here to include these contributions on the left-hand side of the bound in
a global analysis of the available b → s form factor data. A global analysis clearly
benefits from this treatment, which induces non-trivial theory correlations among
the form factor parameters across different processes. It also clearly goes beyond
the scope of the present work.

For N = 2, the number of parameters is equal to the number of data points,
and we arrive at zero degrees of freedom. For N > 2, the number of parameters
exceeds the number of data points. Hence, a frequentist statistical interpretation
is not possible in these cases. Within our analyses, we instead explore whether the
weak or strong bounds suffice to limit the a-posteriori uncertainty on the form fac-
tors, despite having zero or negative degrees of freedom.

10.3.3 Results
We begin with three analyses at truncation N = 2, using each of the three types
of priors defined above. In all three analyses, we arrive at the same best-fit point.
This indicates clearly that the best-fit point not only fulfills the weak bound, but
also the strong bound. We explicitly confirm this by predicting the saturation of the
individual bounds at the best-fit point. These range between 12% (for the 1− bound)
and 33% (for the 1+ bound), which renders the point well within the region allowed
by the strong bound. Accounting for the known one-particle contributions does not
change this conclusion. At the maximum-likelihood point, the χ2 value arising from
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Figure 10.2: Uncertainty bands for the a-posteriori form-factor predictions of the
ten form factors. The bands comprise the central 68% probability interval at every
point in q2. We show the form factor results at N = 2 in the absence of any bounds,
using weak bounds |aiV,λ| < 1, and using the strong bounds (see text), respectively.
The markers indicate the synthetic lattice data points.
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Figure 10.3: Uncertainty bands for the a-posteriori form-factor predictions of the
ten form factors. The bands comprise the central 68% probability interval at every
point in q2. We show the form factor results at N ∈ {2, 3, 4} when using the strong
bound. Note that for N > 2 we have more parameters than data points. Finite
uncertainty envelopes are enforced by the bound. The markers indicate the synthetic
lattice data points.
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the likelihood is compatible with zero at a precision of 10−5 or better. For each of
the three analyses, we obtain a unimodal posterior and sample from the posterior
using multiple Markov chains and the Metropolis-Hastings algorithm [351,352]. We
use these samples to produce posterior-predictive distributions for each of the form
factors, which are shown in Figures 10.2–10.3 on the left-hand side. We observe
that the strong bound has some impact on the form factor uncertainties, chiefly far
away from the region where synthetic data points are available. For N = 2, we do
not find a significant reduction of the uncertainties due to the application of the
strong bound. Rather, it influences the shape of the form factors and suppresses
the appearance of local minima in the form factors close to q2 = 0, which become
visible when extrapolating to negative q2. The modified shape aligns better with the
naive expectation that the form factors rise monotonically with increasing q2 below
the first subthreshold pole. It also provides confidence that, with more precise
lattice QCD results, analyses of the nonlocal form factors at negative q2 can be
undertaken. This opens the door toward analysis in the spirit of what has been
proposed in Refs. [353,354].

We continue with three analyses using the strong bound, for N = 2, N = 3, and
N = 4. Due to the nature of the orthonormal polynomials, the best-fit point for
N = 2 is not expected to be nested within the N = 3 and N = 4 solutions. Similarly,
the N = 3 best-fit point is not nested within the N = 4 solution. In all three cases,
we find a single point that maximizes the posterior. For all three points we find
that the bounds are fulfilled and consequently we obtain χ2 values consistent with
zero. The form-factor shapes are compatible between the N = 2, 3 and 4 solutions.
We show the a-posteriori form factor envelopes at 68% probability together with the
median values in Figure 10.3. A clear advantage of our proposed parameterization
is that the uncertainties in the large recoil region, i.e. away from the synthetic data
points, do not increase dramatically when N increases. This is in stark contrast
with a scenario without any bounds on the coefficients an, where the a-posteriori
uncertainty for the form factors would be divergent for negative degrees of freedom.
This indicates that the bounds are able to constrain the parameterization even in
an underconstrained analysis and gives confidence that the series can be reliably
truncated in practical applications of this method. Figure 10.4 shows the saturation
of the strong bound for the different form factors with N = 2, 3 and 4. For N = 2,
the bounds are saturated between 10 − 30%. This is as large or even larger than the
one-particle contributions, which saturate the bounds to ∼ 10% and much larger
than the two-particle mesonic contributions, which saturate the bounds by only 1–
4% [341]. As N increases, the average saturation of the bounds increases. This is
expected as additional parameters have to be included in the bound. The observed
behaviour of the bound saturation provides further motivation for a global analysis
of all b → s form factor data.

Based on the updated analysis of the lattice data of Ref. [278], we produce
a-posteriori prediction obtain for the tensor form factor fT⊥ at q2 = 0 from our
analyses. We use this form factor as an example due to its phenomenological rel-
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evance in predictions of Λb → Λγ observables. Moreover, its location at q2 = 0
provides the maximal distance between a phenomenologically relevant quantity and
the synthetic lattice QCD data points, thereby maximizing the parametrization’s
systematic uncertainty. Applying the strong bound, we obtain

fT⊥(q2 = 0)
∣∣∣
N=2

= 0.190 ± 0.043 ,

fT⊥(q2 = 0)
∣∣∣
N=3

= 0.173 ± 0.053 ,

fT⊥(q2 = 0)
∣∣∣
N=4

= 0.166 ± 0.049 .

(10.55)

We observe a small downward trend in the central value and stable parametric
uncertainties. The individual bands are compatible with each other within their
uncertainties. We remind the reader that our results are obtained for negative
degrees of freedom and should therefore not be compared with the behaviour of a
regular fit. Our results should be compared with

fT⊥(q2 = 0)
∣∣∣

[278]
= 0.166 ± 0.072 . (10.56)

This value and its uncertainty is obtained from the data and method described
in Ref. [278], however, includes the exact form factor relation Eq. (10.10), which
has not been previously used. Our parametrization exhibits a considerably smaller
parametric uncertainty.

10.4 Conclusion
In this work we have introduced a new parametrization for the ten independent
local Λb → Λ form factors. Our parametrization has the advantage that the pa-
rameters are bounded, due to the use of orthonormal polynomials that diagonalize
the form factors’ contribution within their respective dispersive bounds. Using a
Bayesian analysis of the available lattice QCD results for the Λb → Λ form fac-
tors, we illustrate that our parametrization provides excellent control of systematic
uncertainties when extrapolating from low to large hadronic recoil. To that end,
we investigate our parametrization for different truncations and observe that the
extrapolation uncertainty does not increase significantly within the kinematic phase
space of Λb → Λℓ+ℓ− decays. We point out that the dispersive bounds are able to
constrain the form factor uncertainties to such an extent that a massively undercon-
strained analyses still exhibit stable uncertainty estimates. This is a clear benefit
compared to other parametrizations.

For future improvements of the proposed parametrization, one can insert the
framework of dispersive bounds directly into the lattice-QCD analysis. Moreover,
by including the one-particle contributions, as discussed in Sec. 10.2.3, and other
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Figure 10.4: Relative saturation of the form factors with their respective spin-parity
number JP obtained from posterior samples. The saturation’s are shown for different
truncation’s of N , where the coefficients are constrained through the strong unitarity
bound. The vertical bands comprise the central 68% probability interval.

two-particle contributions, as discussed in Sec. 10.2.3, in a global analysis of the
available b → s form factor data, we would expect even more precise results to be
obtained for the form factors as the upper bound would be even more saturated.
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Appendix A Orthonormal polynomials
In this section we discuss briefly how to obtain the orthonormal polynomials pN(z),
which enter the series expansion in Eq. (10.50) to parameterize the form factors
of the Λb → Λ transition. The functions can be derived with the Gram-Schmidt
orthogonalization process in the basis {1, z, . . . , zN} and fulfill Eq. (10.49). The
orthonormal functions are defined on the arc of the unit circle that covers the angle
between −αΛbΛ and +αΛbΛ, see Eq. (10.46). The orthonormal polynomials are given
by

pn(z) = p′
n(z)√

⟨p′
n(z)|p′

n(z)⟩
, (10.57)

where

p′
n(z) = zn −

n−1∑
j=0

⟨p′
j(z)|zn⟩ · p′

j(z) , p′
0(z) = 1 . (10.58)

The orthonormal polynomials for Λb → Λ can be evaluated efficiently using the
orthogonal Szegő polynomials via a recurrence relation [347]. We use

Φ0(z) = 1 , Φ∗
0(z) = 1 ,

Φn(z) = zΦn−1 − ρn−1Φ∗
n−1 , Φ∗

n(z) = Φ∗
n−1 − ρn−1zΦn−1 ,

(10.59)

which holds for real z. The orthonormal polynomials then follow from

pn(z) = Φn(z)
Nn

, Nn =
[
2αΛbΛ

n−1∏
i=0

(
1 − ρ2

i

)]1/2

, (10.60)

where 2αΛbΛ = 3.22198 and the Verblunsky coefficients are

{ρ0, . . . ρ4} = {+0.62023,−0.66570,+0.68072,−0.68631,+0.68877} , (10.61)

as obtained from the Gram-Schmidt procedure.
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Appendix B Outer functions
The modulus squares of the outer functions for the different form factors are

|ϕfV
t

(z)|2 = (mΛb
−mΛ)2

16π2χJ=0
V (Q2)

∣∣∣
OPE


√
λ(m2

Λb
,m2

Λ, t)
t2(t−Q2)n+1 s+(t)


t=t(z(α))

∣∣∣∣∣dz(α)
dα

dt(z)
dz

∣∣∣∣∣ ,
(10.62)

|ϕfV
0

(z)|2 = (mΛb
+mΛ)2

48π2χJ=1
V (Q2)

∣∣∣
OPE


√
λ(m2

Λb
,m2

Λ, t)
t2(t−Q2)n+1 s−(t)


t=t(z(α))

∣∣∣∣∣dz(α)
dα

dt(z)
dz

∣∣∣∣∣ ,
(10.63)

|ϕfV
⊥

(z)|2 = 1
24π2χJ=1

V (Q2)
∣∣∣
OPE


√
λ(m2

Λb
,m2

Λ, t)
t(t−Q2)n+1 s−(t)


t=t(z(α))

∣∣∣∣∣dz(α)
dα

dt(z)
dz

∣∣∣∣∣ ,
(10.64)

|ϕfA
t

(z)|2 = 3 |ϕfV
0

(z)|2 with replacement χJ=1
V (Q2)

∣∣∣
OPE

→ χJ=0
A (Q2)

∣∣∣
OPE

,

(10.65)

|ϕfA
0

(z)|2 = 1
3 |ϕfV

t
(z)|2 with replacement χJ=0

V (Q2)
∣∣∣
OPE

→ χJ=1
A (Q2)

∣∣∣
OPE

,

(10.66)

|ϕfA
⊥

(z)|2 = 1
24π2χJ=1

A (Q2)
∣∣∣
OPE


√
λ(m2

Λb
,m2

Λ, t)
t(t−Q2)n+1 s+(t)


t=t(z(α))

∣∣∣∣∣dz(α)
dα

ds(z)
dz

∣∣∣∣∣ ,
(10.67)

|ϕfT
⊥

(z)|2 = (mΛb
+mΛ)2

24π2χJ=1
T (Q2)

∣∣∣
OPE


√
λ(m2

Λb
,m2

Λ, t)
t(t−Q2)n+1 s−(t)


t=t(z(α))

∣∣∣∣∣dz(α)
dα

dt(z)
dz

∣∣∣∣∣
(10.68)

|ϕfT
0

(z)|2 = 1
48π2χJ=1

T (Q2)
∣∣∣
OPE


√
λ(m2

Λb
,m2

Λ, t)
(t−Q2)n+1 s−(t)


t=t(z(α))

∣∣∣∣∣dz(α)
dα

dt(z)
dz

∣∣∣∣∣ ,
(10.69)
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|ϕfT 5
⊥

(z)|2 = (mΛb
−mΛ)2

24π2χJ=1
T5 (Q2)

∣∣∣
OPE


√
λ(m2

Λb
,m2

Λ, t)
t(t−Q2)n+1 s+(t)


t=t(z(α))

∣∣∣∣∣dz(α)
dα

dt(z)
dz

∣∣∣∣∣ ,
(10.70)

|ϕfT 5
0

(z)|2 = 1
48π2χJ=1

T5 (Q2)
∣∣∣
OPE


√
λ(m2

Λb
,m2

Λ, t)
(t−Q2)n+1 s+(t)


t=t(z(α))

∣∣∣∣∣dz(α)
dα

dt(z)
dz

∣∣∣∣∣ ,
(10.71)

where the value of χJΓ(Q2)
∣∣∣
OPE

can be found in Table 10.1. We can re-express the
Källen function as λ(m2

Λb
,m2

Λ, t) = s−(t)s+(t). Our choice of outer functions ϕfΓ
λ
(z)

must satisfy Eq. (10.62) - (10.71) and must be analytical within the open unit disk
|z| < 1. This can be achieved by replacing poles within the unit disk with

( 1
t−X

)m
→
(

−z(t,X)
t−X

)m
. (10.72)

Note that any poles of 1/s+(t) are at t = (mΛb
+ mΛ)2, which is mapped by the

z transformation to the boundary of the unit disk. Hence, we do not require any
modification to these terms.

Following Ref. [333, 339], we compactly express the outer functions of the form
factors in a general form:

ϕfΓ
λ
(z) = N√

(16 + 8 · c) · d · π2χJΓ
∣∣∣
OPE

ϕ1(z)e/4ϕ2(z)f/4ϕ3(z)(n+g)/2ϕ4(z) (10.73)

with N = (mΛb
+mΛ)a(mΛb

−mΛ)b and

ϕ1(z) =
(

s−(t)
z(t, (mΛb

−mΛ)2)

)
, (10.74)

ϕ2(z) = s+(t) , (10.75)

ϕ3(z) =
(

−z(t, 0)
t

)
, (10.76)

ϕ4(z) =
√

4(t+ − t0)(1 + z)1/2(1 − z)−3/2 . (10.77)

The coefficient a–g are listed in Table 10.3.
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Outer
function a b c d e f g

ϕfV
t

0 1 0 1 1 3 3
ϕfV

0
1 0 1 2 3 1 3

ϕfV
⊥

0 0 1 1 3 1 2
ϕfA

t
1 0 1 2

3 3 1 3
ϕfA

0
0 1 0 3 1 3 3

ϕfA
⊥

0 0 1 1 1 3 2
ϕfT

0
0 0 1 2 3 1 1

ϕfT
⊥

1 0 1 1 3 1 2
ϕfT 5

0
0 0 1 2 1 3 1

ϕfT 5
⊥

0 1 1 1 1 3 2

Table 10.3: Summary of the outer functions for each form factor, in terms of the
parameters for the general decomposition of all outer functions in Eq. (10.73).
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Chapter 11

Project VI: QCD sum rules for
parameters of the B-meson
distribution amplitudes

Published as an article in:
M. Rahimi, M. Wald, Phys.Rev.D 104 (2021) 1, 016027 [1].

Contributions of the authors to the article.
M. Rahimi and M. Wald contributed to the draft and did the analytical derivation
and numerical analysis of all expressions obtained in the article.

Abstract: We obtain new estimates for the parameters λ2
E, λ2

H and their ratio R =
λ2
E/λ

2
H , which appear in the second moments of the B-meson light-cone distribution

amplitudes defined in the heavy-quark effective field theory. The computation is
based on two-point QCD sum rules for the diagonal correlation function and includes
all contributions up to mass dimension seven in the operator-product expansion.
For the ratio we get R = (0.1 ± 0.1) with λ2

H = (0.15 ± 0.05) GeV2 and λ2
E =

(0.01 ± 0.01) GeV2.
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11.1 Introduction
Light-cone distribution amplitudes (LCDAs) are of great importance in exclusive
B-meson decays like B → ππ or B → πK in the heavy quark limit and allow for the
study of CP -violation in weak interactions. They parametrize matrix elements of
nonlocal heavy-light currents separated along the light-cone at leading order in the
heavy-quark effective theory (HQET) [69] in terms of expansions in wave functions
of increasing twist [355, 356]. In particular, LCDAs appear in factorization theo-
rems such as QCD factorization [355, 357, 358], since these amplitudes encode the
nonperturbative nature of the strong interactions and are crucial in B-meson de-
cay form factor computations. General definitions have been obtained in [355,356].
Contrary to light-meson distribution amplitudes, which also appear in factorization
theorems, the properties of the B-meson distribution amplitudes are less known.
However, they have been extensively studied recently. Their evolution equations
have been investigated for the leading twist two-particle LCDA in [359–363] and
for higher twist amplitudes in [364]. Moreover, the decay B → γℓν is of particular
interest, because it provides a simple example to probe the light-cone structure of
the B-meson. Here, the photon has a large energy compared to the strong interac-
tion scale Λ, so QCD factorization can be used to study parameters like the inverse
moment λB [365–371].

Three-particle LCDAs have also been investigated e.g. in [356, 372], where the
corresponding Mellin moments have been defined and identities between two-particle
and three-particle LCDAs have been found. In general, these three-particle LCDAs
occur in higher dimensional vacuum to meson matrix elements including nonlocal
quark operators. But in the case of local quark operators, these matrix elements can
be expressed in terms of the parameters λ2

E,H , which also contribute to the second
Mellin moments of the three-particle B-meson distribution amplitudes.

These are the parameters of particular interest in this work. They have been
first investigated by Grozin and Neubert [356] within the framework of QCD sum
rules [89,373,374]. All contributions to the operator-product expansion (OPE) [375]
in local vacuum condensates up to mass dimension five have been considered there.
Up to mass dimension four, the leading order contribution is of O(αs), while the
leading order of the mass dimension five condensate contributes at O(α0

s).
The extraction of these parameters is connected to a rather large uncertainty,

because the sum rules turn out to be unstable with respect to the variation of
the Borel parameter. Notice that such a dependence is not unexpected, since it
is well known [376–378] that higher dimensional condensates tend to give large
contributions to correlation functions including higher dimensional operators.

Further study by Nishikawa and Tanaka [378] lead to deviations from the original
values for λ2

E,H . These authors argued in their work that a consistent treatment of all
O(αs) contributions should resolve the stability problem, which is related to the fact
that the OPE does not converge for the parameters λ2

E,H in [356]. For this analysis,
they included the O(αs) corrections of the coupling constant F (µ) as well, which,
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albeit leading to good convergence of the OPE, obey large higher order perturbative
corrections [379, 380]. Moreover, they included as an additional nonperturbative
correction the dimension six diagram of O(αs) in order to check the convergence of
the OPE beyond mass dimension five and calculated the O(αs) corrections for the
dimension five condensate. After performing a resummation of the large logarithmic
contributions, which results into more stable sum rules and into a more convergent
OPE compared to [356], they obtained new estimates for the parameters λ2

E,H . If
we compare the estimates from [356] and [378] in Table 11.3, we see that the values
for λ2

E,H differ by approximately a factor of three, although the ratio λ2
E/λ

2
H gives

nearly the same value.
It is therefore timely to investigate new alternative sum rules which also allow

for the predictions of λ2
E,H . Instead of analysing a correlation function with a three-

particle and a two-particle current, we consider sum rules based on a diagonal corre-
lation function of two quark-antiquark-gluon three-particle currents. We include all
leading order contributions up to mass dimension seven. The advantage of this sum
rule is that it is positive definite and hence we expect that the quark-hadron duality
is more accurate compared to [356,378]. But due to the high mass dimension of the
correlation function, we see that the OPE does not show better convergence than in
the nondiagonal case. Moreover, the continuum and higher excited states are dom-
inating the sum rule. This problem will be resolved by considering combinations of
the parameters λ2

E,H , in particular the R-ratio R = λ2
E/λ

2
H .

The paper is organized as follows: In Sec. 11.2 we derive the sum rules for the
parameters λ2

E,H and the sum (λ2
H +λ2

E). Sec. 11.3 is devoted to the computation of
the OPE contributions which enter the sum rules. In Sec. 11.4 we present the nu-
merical analysis of the sum rules and state our final results for the parameters λ2

E,H .
Additionally, we investigate the ratio given by the quotient of these parameters.
Finally, we conclude in Section 11.5.

11.2 Derivation of the QCD Sum Rules in HQET
In this chapter we derive the sum rules for the diagonal quark-antiquark-gluon three-
particle correlation function. Before we start, the definition of the HQET parameter
λ2
E,H is in order [356]:

⟨0| gsq̄ α⃗ · E⃗ γ5hv |B̄(v)⟩ = F (µ)λ2
E , (11.1)

⟨0| gsq̄ σ⃗ · H⃗ γ5hv |B̄(v)⟩ = iF (µ)λ2
H . (11.2)

From a physical point of view, these quantities parametrize the local vacuum to B̄-
meson matrix elements, which contain the chromoelectric and chromomagnetic fields
in HQET. The chromoelectric field is given by Ei = G0i and H i = −1

2ϵ
ijkGjk denotes
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the chromomagnetic field, with Gµν = Ga
µνT

a. Here, the tensor Gµν = i
gs

[Dµ, Dν ]
is the field strength tensor, while gs corresponds to the strong coupling constant.
Furthermore, the fields q̄ in Eq. (11.1) and (11.2) indicate light quark fields, whereas
the field hv denotes the HQET heavy quark field. Moreover, v is the velocity of the
heavy B̄-meson. The Dirac matrices αi are given by γ0γi and σi = γiγ5. In addition
to that the HQET decay constant F (µ) is defined via the matrix element

⟨0| q̄γµγ5hv |B̄(v)⟩ = iF (µ)vµ (11.3)

and can be related to the B(B̄)-meson decay constant in QCD up to one loop
order [381]:

fB
√
mB = F (µ)K(µ) = F (µ)

[
1 + CFαs

4π

(
3 · lnmb

µ
− 2

)

+ ...
]

+ O
( 1
mb

)
. (11.4)

Its explicit scale dependence has to cancel with the one of the matching prefactor in
order to lead to the constant fB. Values for fB can be found in [382] and estimate
this decay constant to be:

fB = (192.0 ± 4.3) MeV . (11.5)

The coupling constant F (µ) will be of particular importance for the derivation of
the relevant low-energy parameters in the following QCD sum rule analysis. But
since we are investigating the sum rules at leading order accuracy, corrections of the
order O(αs) and O

(
1
mb

)
will be neglected.

As already discussed before, Grozin and Neubert [356] introduced the parameters
λ2
E,H . For this, they considered the correlation function shown in Eq. (11.6). The

starting point for our calculation is the correlation function given in Eq. (11.7).

ΠGN = i
∫

ddxe−iωv·x ⟨0|T{q̄(0)Γµν1 gsGµν(0)hv(0)

× h̄v(x)γ5q(x)} |0⟩ , (11.6)

Πdiag = i
∫

ddx e−iωv·x ⟨0|T{q̄(0)Γµν1 gsGµν(0)hv(0)

× h̄v(x)Γρσ2 gsGρσ(x)q(x)} |0⟩ . (11.7)

Notice that at this point we do not require a specific choice of the quantities Γµν1
and Γρσ2 , which indicate an arbitrary combination of Dirac γ-matrices, but in the
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following steps it is convenient to choose these matrices such that combinations of
the HQET parameters λ2

E,H are projected out. This requires that the perturbative
and nonperturbative contributions to the OPE in Sec. 11.3 are computed for general
Γµν1 and Γρσ2 . Since we are considering a diagonal Greens function, the structure of
Γρσ2 is directly related to Γµν1 by replacing indices. From now on we use the notation:

Γ1 ≡ Γµν1 , (11.8)

Γ2 ≡ Γρσ2 . (11.9)

Moreover, we are working in the B̄-meson rest frame, where v = (1, 0⃗)T , in order
to simplify the calculations.

The next step in the derivation of the sum rules will be to exploit the unitary
condition, where the ground state B̄-meson is separated from the continuum and
excited states:

1
π

ImΠdiag(ω) =
∑
n

(2π)3δ(ω − pn) ⟨0| q̄(0)Γ1gsGµν(0)hv(0) |n⟩

× ⟨n| h̄v(x)Γ2gsGρσ(x)q(x) |0⟩ dΦn

= δ(ω − Λ̄) ⟨0| q̄(0)Γ1gsGµν(0)hv(0) |B̄⟩ ⟨B̄| h̄v(0)Γ2gsGρσ(0)q(0) |0⟩

+ ρhadr.(ω)Θ(ω − ωth) . (11.10)

In Eq. (11.10), we introduced the binding energy Λ̄ = mB −mb, which is one of the
important low-energy parameters in this formalism. Furthermore, we separated the
full n-particle contribution in the first line into a ground state contribution, which
will be the dominant contribution in our chosen stability window, and a continuum
contribution including broad higher resonances. In the case of QCD correlation
functions, the exponential in Eq. (11.7) would generally take the form e−iqx with q
denoting the external momentum. Due to the fact that there is no spatial component
in the B-meson rest frame, transitions from the ground state to the excited states
in Eq. (11.10) are possible by injecting energy q0 into the system. In this work we
explicitly chose q = ω · v such that we end up with the correlation function shown
in Eq. (11.7).

The matrix elements occurring in (11.10) can be decomposed in the following
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way [356,378]:

⟨0| q̄(0)Γ1gsGµν(0)hv(0) |B̄⟩ = −i
6 F (µ){λ2

H(µ)

× Tr[Γ1P+γ5σµν ] + [λ2
H(µ) − λ2

E(µ)]

× Tr[Γ1P+γ5(ivµγν − ivνγµ)]}. (11.11)

Notice that the second decomposition is indeed valid since the B-meson ground
state explicitly depends on the velocity v and σµν = i

2 [γµ, γν ] corresponds to the
usual antisymmetric Dirac tensor. In (11.11) we made use of the covariant trace
formalism, further investigated in [356,383].

The next step will be to use the standard dispersion relation, after using the
residue theorem and the Schwartz reflection principle 1:

Πdiag(ω) = 1
π

∫ ∞

0
ds ImΠdiag(s)
s− ω − i0+

= 1
Λ̄ − ω − i0+

⟨0| q̄(0)Γ1gsGµν(0)hv(0) |B̄⟩

× ⟨B̄| h̄v(0)Γ2gsGρσ(0)q(0) |0⟩ +
∫ ∞

sth
ds ρhadr.(s)
s− ω − i0+ . (11.12)

In Eq. (11.12) we introduce the threshold parameter sth, which is another rele-
vant low-energy parameter that separates the ground state contribution from higher
resonances and continuum contributions.

We can now move on and evaluate the ground state contribution:

⟨0| q̄(0)Γ1gsGµν(0)hv(0) |B̄⟩ ⟨B̄| h̄v(0)Γ2gsGρσ(0)q(0) |0⟩ = −i
6 F (µ)

[
λ2
H(µ)Tr[Γ1P+γ5σµν ]

+ [λ2
H(µ) − λ2

E(µ)]Tr[Γ1P+γ5(ivµγν − ivνγµ)]
]

(11.13)

× −i
6 F †(µ)

[
λ2
H(µ)Tr[γ5P+Γ2σρσ]

− [λ2
H(µ) − λ2

E(µ)]Tr[γ5P+Γ2(ivργσ − ivσγρ)]
]
.

1For more details on QCD sum rules or HQET sum rules, see [95,384]
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Notice that the term involving the difference of both HQET parameter (λ2
H − λ2

E)
does not change its sign under complex conjugation.

In order to derive the sum rules which ultimately determine the parameters λ2
E,H ,

we make an explicit choice for the matrices Γ1 and Γ2 [356]. Following the same
approach as [356], we choose our gamma matrices Γ1,2 as:

Γ1 = i

2σµνγ5 (11.14)

to obtain the (λ2
H + λ2

E)2 sum rule. Furthermore, for the projection of the λ4
H sum

rule we choose

Γ1 = i

1
2δ

ν
α − vνv

α

σµαγ5 (11.15)

and for λ4
E:

Γ1 = ivνv
ασµαγ5 . (11.16)

Notice that these choices are Lorentz covariant in comparison to Eq. (11.1) and
(11.2). The corresponding expressions for Γ2 can be obtained from Γ1 by replacing
µ → ρ, ν → σ.
Using the relation in Eq. (11.13), we can obtain expressions for ΠE,H and ΠHE:

ΠE,H(ω) = F (µ)2 · λ4
E,H · 1

Λ̄ − ω − i0+
+
∫ ∞

sth
ds

ρhadr.
E,H (s)

s− ω − i0+ (11.17)

ΠHE(ω) = F (µ)2 · (λ2
H + λ2

E)2 · 1
Λ̄ − ω − i0+

+
∫ ∞

sth
ds ρhadr.

HE (s)
s− ω − i0+ (11.18)

Note that the threshold parameter sth in Eq. (11.17) does not necessarily coincide
with the threshold parameter in Eq. (11.18).

To parametrize the hadronic spectral density, we make use of the global and
semilocal quark-hadron duality (QHD) [100, 385] in order to connect the hadronic
spectral density with the spectral density which is described by the OPE [95, 373,
375, 381]. This is the essential idea of this formalism. However, power suppressed
nonperturbative effects become dominant in comparison to the perturbative contri-
bution for −|ω| ≈ ΛQCD. In the QCD sum rule approach [373], these effects are
parametrized in terms of a power series of local condensates as a consequence of the
non-trivial QCD vacuum structure. These condensates carry the quantum numbers
of the QCD vacuum. For convenience, we show explicitly in Appendix A the ex-
pansion and averaging of the vacuum matrix element (11.7) in order to obtain the
quark condensate ⟨0| q̄q |0⟩, the gluon condensate ⟨0|Ga

µνG
a
ρσ |0⟩, the quark-gluon

condensate ⟨0| q̄gsσ ·Gq |0⟩ and the triple-gluon condensate ⟨0| g3
sf

abcGa
µνG

b
ρσG

c
αλ |0⟩.
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Although we can handle the Euclidean region, the physical states described by
the spectral function in Eq. (11.17) and (11.18) are defined for ω ∈ R. But since
there is no estimate for the hadronic spectral density ρhadr.

X (s), we need to make use
of two statements. First, we exploit that for ω ≪ 0 the hadronic and the OPE
spectral functions coincide at the global level:

Πhadr.
X = ΠOPE

X for X ∈ {H,E,HE}. (11.19)

Asymptotic freedom guarantees that this equality holds. Moreover, we need to
employ the semilocal quark-hadron duality, which connects the spectral densities:

∫ ∞

sth
X

ds ρhadr.
X (s)

s− ω − i0+ =
∫ ∞

sth
X

ds ρOPE
X (s)

s− ω − i0+ , (11.20)

where X needs be chosen according to (11.19). In the low-energy region, where
nonperturbative effects dominate, the duality relation is largely violated due to
strong resonance peaks, while in the high-energy region these peaks become broad
and overlapping. Once a sum rule is obtained, the approximations made by QHD
are consistent (see Section 11.4 for more details). So it is necessary to work in
the transition region where the condensates are important, but still small and local
enough such that perturbative methods can be applied.

Based on the relations in Eq. (11.19), (11.20), we separate the integral over the
OPE spectral density by introducing the threshold parameter sth. Hence, we end
up with the following form for the sum rules:

F (µ)2 · λ4
E,H

1
Λ̄ − ω − i0+

=
∫ sth

0
ds

ρOPE
E,H (s)

s− ω − i0+ , (11.21)

F (µ)2 · (λ2
H + λ2

E)2 1
Λ̄ − ω − i0+

=
∫ sth

0
ds ρOPE

HE (s)
s− ω − i0+ . (11.22)

Finally, we perform a Borel transformation, which removes possible subtraction
terms and leads further to an exponential suppression of higher resonances and
the continuum. In addition to that, the convergence of our sum rule is improved.
Generally, the Borel transform can be defined in the following way [95,384]:

BMf(ω) = lim
n→∞,−ω→∞

(−ω)n+1

Γ(n+ 1)

( d
dω

)n
f(ω), (11.23)

where f(ω) illustrates an arbitrary test function. Furthermore, we keep the ratio
M = −ω

n
fixed, M denotes the Borel parameter.

After applying this transformation, we derive the final form of our sum rule

156



expressions:

F (µ)2 · λ4
E,H · e−Λ̄/M =

∫ ωth

0
dω ρOPE

E,H (ω) e−ω/M

=
∫ ωth

0
dω 1

π
ImΠOPE

E,H (ω) e−ω/M , (11.24)

F (µ)2 · (λ2
H + λ2

E)2 · e−Λ̄/M =
∫ ωth

0
dω ρOPE

HE (ω) e−ω/M

=
∫ ωth

0
dω 1

π
ImΠOPE

HE (ω) e−ω/M . (11.25)

These are the QCD sum rules presented in the paper. In order to obtain reliable
values for the parameters λ2

E,H from the sum rules in Eq. (11.24) and (11.25), the
Borel parameter M needs to be chosen accordingly together with the threshold pa-
rameter ωth. The next step will be to determine the spectral function ΠOPE

X (s),
which is given by the OPE:

ΠOPE
X (ω) = CX

pert(ω) + CX
q̄q ⟨q̄q⟩ + CX

G2 ⟨αs
π
G2⟩

+ CX
q̄Gq ⟨q̄gsσ ·Gq⟩ + CX

G3 ⟨g3
sf

abcGaGbGc⟩

+ CX
q̄qG2 ⟨q̄q⟩ ⟨αs

π
G2⟩ + ... (11.26)

The Wilson coefficients C in Eq. (11.26) will be discussed in Sec. 11.3. Moreover,
we define a more convenient notation for the condensate contributions:

⟨q̄q⟩ := ⟨0| q̄q |0⟩ , ⟨G2⟩ := ⟨0|Ga
µνG

a,µν |0⟩ ,

⟨q̄gsσ ·Gq⟩ := ⟨0| q̄gsGµνσµνq |0⟩ ,

⟨g3
sf

abcGaGbGc⟩ := ⟨0| g3
sf

abcGa
µνG

b,νρGc,µ
ρ |0⟩ . (11.27)

As previously mentioned, the condensates are uniquely parametrized up to mass
dimension five. Starting at dimension six and higher, there occur many different
possible contributions, but some of them are related by QCD equations of motions
and Fierz identities [386] to each other 2. Note that in the power expansion of Eq.
(11.26) we have only stated the dimension six and seven condensates, which give a
leading order contribution to the parameters λ2

E,H .
2A list is given for example in the review [98].
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Moreover, there are many estimates for the values of the condensates given in
the literature, which have been obtained from e.g. lattice QCD, sum rules [98], but
obtaining values for condensates of dimension six and higher is an ongoing task due
to the mixing with lower dimensional condensates. Because of the lack of these
values, the vacuum saturation approximation [89] is exploited in many cases, where
a full set of intermediate states is introduced into the higher dimensional condensate
and the assumption is used that only the ground state gives a dominant contribution.
Thus, the higher dimensional condensate will be effectively reduced to a combination
of lower dimensional condensates 3.

11.3 Computation of the Wilson Coefficients
In this chapter, the leading perturbative and nonperturbative contributions to the
correlation function in (11.17) and (11.18) are calculated up to dimension seven.
Since the leading order of the diagonal correlator of two three-particle currents is
of O(αs) in the strong coupling constant, we only investigate contributions up to
this order in perturbation theory. For the perturbative contribution we choose the
Feynman gauge for the background field, while the nonperturbative contributions to
the OPE are evaluated in the fixed-point or Fock-Schwinger (FS) gauge [387,388]:

xµA
µ(x) = 0 and Aµ(x) =

∫ 1

0
du uxνGνµ(ux). (11.28)

In the FS gauge, we set the reference point to x0 = 0. This reference point would
occur in all intermediate steps of the calculation and cancel in the end of the cal-
culation. It is well known that this gauge is particularly useful in QCD sum rule
computations.

Within the framework of QCD sum rules, the long-distance effects are encoded
in local vacuum matrix elements of increasing mass dimension. In order to obtain
these local condensates, the gluon field strength tensor is expanded in its spacetime
coordinate x, which results in a simple relation between the gluon field Aµ and the
field strength tensor Gµν . Additionally, gluon fields do not interact with the heavy
quark in HQET, which can be easily seen by considering the heavy-quark propagator
in position space [378]:

hv(0)h̄v(x) = Θ(−v · x) δ(d−1)(x⊥)P+ P

× exp
igs ∫ 0

v·x
dsv · A(sv)

 . (11.29)

3This has already been done for the dimension seven condensate in Eq. (11.26).
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Here, xµ⊥ = xµ − (v · x)vµ, P+ = (1 + /v)/2 denotes the projection operator and P
illustrates the path ordering operator. Besides these simplifications, there are three
additional vanishing subdiagrams depicted in Fig. 11.5 due to the FS gauge.

Generally, all diagrams can be evaluated in position space like in [356,378], but
in this work we choose to work in momentum space. We make use of dimensional
regularization for the loop integrals with the convention d = 4 − 2ϵ. Fig. 11.1-11.5
4 show the diagrams which need to be computed in order to obtain the Wilson
coefficients in Eq. (11.26). The calculation of these coefficients proceeds in the
following way: First, we use FeynCalc [189] to decompose tensor integrals to scalar
integrals. In the next step, these scalar integrals are reduced to master integrals by
integration-by-parts identities using LiteRed [390]

We start by considering the perturbative contribution and the contribution from
the quark condensate in Fig. 11.1:

(a) (b)

Figure 11.1: Feynman diagrams for the perturbative and ⟨q̄q⟩ condensate contribu-
tion. The double line denotes the heavy quark propagator. The solid line denotes
the light quark propagator and the curly line denotes the gluon propagator.

CX
pert(ω) = 2αs

π3 · CFNc · Tr[Γ1P+Γ2/v] · µ̄4ϵ

× Γ(−6 + 4ϵ) · Γ(2 − ϵ) · ω6−4ϵe4iπϵ

×
[
Γ(2 − ϵ) · T 1

µρνσ + Γ(3 − ϵ) · T 2
µρνσ

]
, (11.30)

CX
q̄q(ω) = −αs

π
· CF · Tr[Γ1P+Γ2] · µ̄2ϵ · Γ(−3 + 2ϵ)

× ω3−2ϵe2iπϵ
[
Γ(2 − ϵ) · T 1

µρνσ + Γ(3 − ϵ) · T 2
µρνσ

]
, (11.31)

4All diagrams in this work have been created with JaxoDraw [389].
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with

µ̄2 := µ2eγE

4 , (11.32)

T 1
µρνσ := gµρgνσ − gµσgνρ , (11.33)

T 2
µρνσ := − gνσvµvρ + gµσvνvρ + gνρvµvσ − gµρvνvσ . (11.34)

Notice that the tensor structures of T 1,2
µρνσ satisfy the symmetries imposed by the field

strength tensors Gµν and Gρσ. In particular, the expressions are anti-symmetric
under the exchange of {µ ↔ ν}, {ρ ↔ σ} and symmetric under the combined
exchanges {µ ↔ ρ, ν ↔ σ} and {µ ↔ ν, ρ ↔ σ}. The Wilson coefficient for the
gluon condensate and higher mass dimension correction for the quark condensate
share the same tensor structure as the coefficients stated in Eq. (11.30) and (11.31).
Furthermore, the mass dimension five contribution with the non-Abelian vertex in
Eq. (11.39) and the dimension seven contribution in Eq. (11.41) make use of these
tensor structures as well.

(a) (b)

Figure 11.2: (a) shows the Feynman diagram for the dimension four contribution,
(b) a schematic illustration of the dimension five condensate originating from the
higher order expansion of the dimension three contribution in Fig. 11.1.

The Wilson coefficient of the gluon condensate, which corresponds to Fig. 11.2
(a) can be expressed as:

CX
G2(ω) = Tr[Γ1P+Γ2/v] · µ̄2ϵ

(4 − 2ϵ)(3 − 2ϵ)

× Γ(−2 + 2ϵ) · Γ(2 − ϵ) · ω2−2ϵe2iπϵ · T 1
µρνσ . (11.35)

The mass dimension five contributions are given as:

CX
q̄Gq,1(ω) = − αs

π
· CF · Tr[Γ1P+Γ2] · µ̄2ϵ

(4 − 2ϵ)

× Γ(−3 + 2ϵ) · Γ(3 − ϵ) · ω1−2ϵe2iπϵ · T 1
µρνσ , (11.36)
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(a) (b) (c)

Figure 11.3: Feynman diagrams for dimension five condensate contributions.

CX
q̄Gq,2(ω) = αs

4π · CF · µ̄2ϵ

(4 − 2ϵ)(3 − 2ϵ) · Γ(−1 + 2ϵ) · Γ(1 − ϵ)

× ω1−2ϵe2iπϵ ·
[
Tr[Γ1P+Γ2σµνσρσ]

− (1 − ϵ) · Tr[Γ1P+Γ2/vi(vµγν − vνγµ)σρσ]
]
, (11.37)

CX
q̄Gq,3(ω) = αs

4π · CF · µ̄2ϵ

(4 − 2ϵ)(3 − 2ϵ)Γ(−1 + 2ϵ) · Γ(1 − ϵ)

× ω1−2ϵe2iπϵ ·
[
Tr[Γ1P+Γ2σµνσρσ]

+ (1 − ϵ) · Tr[Γ1P+Γ2σµν i(vργσ − vσγρ)/v]
]
, (11.38)

CX
q̄Gq,4(ω) = iαs

32π · CACF · µ̄2ϵ

(2 − ϵ)(3 − 2ϵ) · Tr[Γ1P+Γ2σ
χβ]

× Γ(−1 + 2ϵ) · Γ(1 − ϵ) · ω1−2ϵe2iπϵ·

[
{gµχT 1

νρβσ − (β ↔ χ)} + (1 − ϵ)

×
(
{vβgµρ(vσgνχ − vνgσχ) − (ρ ↔ σ)} +

{vνgµχ(vσgβρ − vρgβσ) − (β ↔ χ)}
)]

− (µ ↔ ν) , (11.39)
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Although the other contributions for the mass dimension five condensate (Fig. 11.3)
possess a more complicated tensor structure, all symmetries described before are still
satisfied. We obtain the total Wilson coefficient for the mass dimension five conden-
sate if we sum up all four previous contributions, namely CX

q̄Gq = ∑4
k=1 C

X
q̄Gq,k. The

(a) (b)

Figure 11.4: Feynman diagrams for the dimension six and dimension seven conden-
sate, which contribute to the leading order estimate of λ2

E,H .

last two diagrams depicted in Fig. 11.4 are of mass dimension six and seven. Their
contributions are expected to be smaller compared to the dimension five contribu-
tions, such that we observe that the OPE starts to converge. Other contributions to
mass dimension six are vanishing or are of O(α2

s). Thus, the triple-gluon condensate
is the only relevant condensate at this order and the Wilson coefficient reads:

CX
G3(ω) = µ̄2ϵ

64π2 · Bµλρνσα · Γ(2ϵ) · Γ(1 − ϵ) · ω−2ϵe2iπϵ

×
[
Tr[−i · Γ1P+Γ2/vσ

λα] + Tr[Γ1P+Γ2(vαγλ − vλγα)]]
]
, (11.40)

where the expression Bµλρνσα is defined in Appendix A. Finally, we state the expres-
sion for the dimension seven contribution:

CX
q̄qG2(ω) = −Tr[Γ1P+Γ2] ·

T 1
µρνσ

ω + i0+ · π2

2Nc(4 − 2ϵ)(3 − 2ϵ) . (11.41)

(a) (b) (c)

Figure 11.5: Vanishing subdiagrams in the Fock-Schwinger gauge.

According to Eq. (11.17) and (11.18), we still need to take the imaginary part
of these diagrams. We choose to compute directly the loop diagrams and take the
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imaginary part of the resulting expression. Following Cutkosky rules, another ap-
proach would be to perform the calculation by considering all possible cuts for the
diagrams. Apart from the diagrams in Fig. 11.3, the diagrams are finite. (a) and
(b) in Fig. 11.3 include both a three-particle and a two-particle cut, where the
latter requires a non-trivial renormalization procedure [391]. The optical theorem
states that both calculations yield the same result. Besides the diagram in Fig. 11.2
(b), all diagrams in Fig. 11.1-11.4 can generally be calculated by using perturba-
tive methods. Fig. 11.2 (b) stems from higher order corrections in the expansion
of the nonperturbative quark condensate in Eq. (11.61). Moreover, the diagrams
contributing to the quark-gluon condensate in Fig. 11.3 (a) and (b) obey the same
structure as the contributions in [356, 378] and hence a cross-check is possible af-
ter replacing the quark condensate by the quark-gluon condensate and keeping in
mind that the Lorentz structures differ. By taking the imaginary part of all Wil-
son coefficients discussed above, plugging the results into Eq. (11.24), (11.25) and
performing the integration over ω up to the threshold parameter ωth, we obtain the
final expression for the sum rules shown in Eq. (11.44) to Eq. (11.46).

For convenience, we introduced the function:

Gn(x) := 1 −
n∑
k=0

xk

k! e
−x. (11.42)

We see that the sum rules for λ4
E,H in Eq. (11.45) and (11.46) have got the same

expression for the perturbative contribution. This contribution is in addition to that
positive, since we are studying a positive-definite correlation function in Eq. (11.7).
Furthermore, the quark, the gluon and the triple-gluon condensate in Eq. (11.45),
(11.46) have different signs and the Wilson coefficients in Eq. (11.37), (11.38) and
(11.39) vanish for λ4

E. This will have implications on the stability of the sum rule
for the parameter λ4

E and will be investigated in Sec. 11.4. The dimension three,
four and six condensates do not appear in Eq. (11.44), since the signs differ in Eq.
(11.46) compared to (11.45).

All sum rules involve the decay constant F (µ), whose calculation in terms of the
correlation function can be found, e.g. in Ref. [378]. For consistency, we will retain
the result at leading order in αs

F 2(µ) · e−Λ̄/M = 2NcM
3

π2 ·G2

(
ωth
M

)
− ⟨q̄q⟩

+ 1
16M2 ⟨q̄gsG · σq⟩ . (11.43)
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F (µ)2 · (λ2
H + λ2

E)2 e−Λ̄/M = αsCACF
π3 · 24M7 ·G6

(
ωth
M

)
− αsCFCA

4π · ⟨q̄gsσ ·Gq⟩ ·M2·

G1

(
ωth
M

)
− 3αsCF

2π · ⟨q̄gsσ ·Gq⟩ ·M2 ·G1

(
ωth
M

)
− π2

2Nc

⟨q̄q⟩ ⟨αs
π
G2⟩ ,

(11.44)

F (µ)2 · λ4
H e

−Λ̄/M = αsCACF
π3 · 12M7 ·G6

(
ωth
M

)
− αsCF

π
⟨q̄q⟩ · 6 ·M4 ·G3

(
ωth
M

)

+ 1
2 ⟨αs

π
G2⟩ ·M3 ·G2

(
ωth
M

)
− αsCFCA

8π · ⟨q̄gsσ ·Gq⟩ ·M2 ·G1

(
ωth
M

)

− 3αsCF
4π · ⟨q̄gsσ ·Gq⟩ ·M2 ·G1

(
ωth
M

)
+ ⟨g3

sf
abcGaGbGc⟩
64π2 ·M ·

G0

(
ωth
M

)
− π2

4Nc

⟨q̄q⟩ ⟨αs
π
G2⟩ , (11.45)

F (µ)2 · λ4
E e

−Λ̄/M = αsCACF
π3 · 12M7 ·G6

(
ωth
M

)
+ αsCF

π
⟨q̄q⟩ · 6 ·M4 ·G3

(
ωth
M

)

− 1
2 ⟨αs

π
G2⟩ ·M3 ·G2

(
ωth
M

)
− αsCF

2π · ⟨q̄gsσ ·Gq⟩ ·M2 ·G1

(
ωth
M

)

− ⟨g3
sf

abcGaGbGc⟩
64π2 ·M ·G0

(
ωth
M

)
− π2

4Nc

⟨q̄q⟩ ⟨αs
π
G2⟩ .

(11.46)

11.4 Numerical Analysis
In this section we first compute the HQET parameters by using the sum rules in Eq.
(11.43), (11.44), (11.45) and (11.46) following the procedure described in Sec. 11.3.
In particular, we consider the ratios (11.44) to (11.46) divided by (11.43) in order to
cancel the dependence on the low-energy parameter Λ̄ and the decay constant F (µ).
The numerical inputs for the necessary parameters are given in Table 11.1. But when
we investigate the optimal window for the Borel parameter M , we observe that the
sum rules are dominated by higher resonances and the continuum contribution. This
questions the reliability of our estimates
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Parameters Value Ref.

αs(1 GeV) 0.471 [195]
⟨q̄q⟩ (−0.242 ± 0.015)3 GeV3 [392]

⟨αs

π
G2⟩ (0.012 ± 0.004) GeV4 [98]

⟨q̄gG · σq⟩ / ⟨q̄q⟩ (0.8 ± 0.2) GeV2 [393]
⟨g3
sf

abcGaGbGc⟩ (0.045 ± 0.045) GeV6 [89]
Λ̄ (0.55 ± 0.06) GeV [206]

Table 11.1: List of the numerical inputs, which will be used in our analysis. The
vacuum condensates are normalized at the point µ = 1 GeV. For the strong coupling
constant we use the two-loop expression with Λ(4)

QCD = 0.31 GeV.

for λ2
E,H(1 GeV) and their ratio:

R(µ) = λ2
E(µ)
λ2
H(µ) (11.47)

at µ = 1 GeV. Hence, we study different combinations of Eq. (11.44), (11.45),
(11.46) and (11.43).

We plot higher dimensional contributions for λ4
H in the lower part of Fig. 11.6

(a) and we observe that each power correction enhances the total value of λ4
H .

The dimension five contribution leads to the largest contribution in Fig. 11.6 (a).
The fact that correlation functions with a large mass dimension experience large
contributions from local condensates with a high mass dimension for small values
of the Borel parameter M is a well known fact. Moreover, the contributions from
dimensions greater than five become smaller indicating convergence of the OPE. The
upper plot in Fig. 11.6 (a) shows the sum of all contributions up to mass dimension
seven for different threshold parameters ωth. This variation of the parameter ωth
indicates the stability of the sum rule, since the Borel parameter M and ωth are
correlated. Furthermore, it can be explicitly seen that in the highly nonperturbative
regime with small M the condensate contributions become dominant and therefore
the sum rule becomes unreliable. To find the optimal window for the threshold ωth,
we vary the function F (µ) in Eq. (11.43) for different values of ωth, see Fig. 11.7 (a).
As we can see, the decay constant F (µ) gives reliable values in the interval 0.8 GeV ≤
ωth ≤ 1.0 GeV. In order to confirm that our threshold choice gives reasonable results,
we compute the physical decay constant fB by using Eq. (11.4), see Fig. 11.7
(b). We observe in Fig. 11.7 (b) that for M ≥ 0.8 GeV the dependence on the
threshold parameter ωth between 0.8 GeV and 1.0 GeV becomes stable and reliable.
Although the error of the decay constant fB given in Eq. (11.5) is small, we assume
a conservative uncertainty of 50%, because we neglect the O(αs) contributions for
the HQET decay constant F (µ), which are known to be large and moreover our
sum rules only account for the contributions up to mass dimension seven. The
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Figure 11.6: Fig. (a), (b) and (c) show the full OPE of Eq. (11.44), (11.45) and
(11.46) within the threshold interval 0.8 GeV ≤ ωth ≤ 1.0 GeV, respectively. The
lower figures illustrate the individual contributions to the OPE for ωth = 0.9 GeV.
The plots only show the central values.

corresponding analysis in [378] shows the impact of these corrections, which reduce
the uncertainty of the analysis to 15% − 20%. Another method to determine the
interval for the threshold parameter ωth is by taking the derivative with respect to
the Borel parameter ∂/∂(−1/M) in Eq. (11.45). Dividing this expression by the
original sum rule in Eq. (11.45) yields an estimate for the parameter Λ̄ which needs
to be compatible with the value stated in Table 11.1. Both methods give the same
interval for ωth, namely 0.8 GeV ≤ ωth ≤ 1.0 GeV.
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Figure 11.7: Fig. (a) shows the comparison of the central values of the decay
constant F (µ) for different values of ωth. The value of the binding energy can be
found in Table 11.1. Fig. (b) shows the comparison of the central values of the
physical decay constant fB with different values of ωth. The dashed line indicates
the lattice result and the shaded green area illustrates its corresponding uncertainty.

Similarly, we plot higher dimensional contributions for the sum rule in Eq.
(11.44) in Fig. 11.6 (b). The lower plot illustrates each order of the power expan-
sion individually. Here, we see that the dimension three, four and six condensates
do not contribute to the sum rule. The terms corresponding to the dimension five
condensate provide again the largest contribution and beyond this dimension the
power expansion is expected to converge, which is indicated by the small contribu-
tion of mass dimension seven. Again, the upper plot in Fig. 11.6 (b) shows the
value of (λ2

H + λ2
E)2 as a function of M for different threshold parameter ωth. The

determination of the threshold window for ωth follows the same argumentation as
for the sum rule in Eq. (11.45). In particular, both methods lead again to the same
conclusion and we obtain the interval 0.8 GeV ≤ ωth ≤ 1.0 GeV.

The sum rule for the parameter λ4
E in Eq. (11.46) requires further investigation.

Fig. 11.6 (c) presents in the upper plot the sum of all contributions up to mass
dimension seven, while in the lower plot each contribution is considered individu-
ally. In comparison to the sum rules in Eq. (11.44) and Eq. (11.45), the mass
dimension three and four condensates contribute with the opposite sign to this sum
rule. Since these contributions are large, this sum rule becomes unreliable and un-
stable compared to the previously studied sum rules. Additionally, the dominant
dimension five contributions from Eq. (11.37), (11.38) and (11.39) do not appear in
this sum rule, thus the extraction of an estimate for λ2

E from this sum rule gives an
unreliable value. Moreover, we observe that the dimension seven contribution also
gives a sizeable contribution, which questions the convergence of the OPE itself.

The fact that this sum rule becomes unstable can be seen from the threshold
interval for ωth. Only the argumentation via the decay constants F (µ) and fB give
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an appropriate interval, namely 0.55 GeV ≤ ωth ≤ 0.65 GeV. Furthermore, the
variation of the threshold seems to give larger deviations than for the sum rules in
Eq. (11.44) and (11.45) indicating a less stable sum rule with larger uncertainties.

To obtain the lower bound for the Borel parameter M , we choose a value where
the dimension seven condensate contribution is smaller than 40% of the total OPE.
Notice that too small values of M spoil the convergence of the OPE since the
condensate contributions become dominant. For the sum rules in Eq. (11.44) and
(11.45), this condition is fulfilled for 0.5 GeV ≤ M . Based on Fig. 11.6 (a) and
11.6 (b), we also see that for 0.5 GeV ≤ M the sum rule starts to become more
reliable. As already mentioned, the sum rule for λ4

E in Eq. (11.46) is more unstable
compared to λ4

H and (λ2
H + λ2

E)2. Hence, this method to obtain the lower bound
of M does not work for λ4

E. Instead, we choose the values based on Fig. 11.6 (c).
We see that for 0.5 GeV ≤ M the OPE becomes more reliable and therefore a good
choice for the lower bound. This estimate of the lower bound is taken into account
in the uncertainty analysis.

For the determination of the upper bound of the Borel parameter we introduce:

Rcont. = 1 −
∫ ωth

0 dω 1
π
ImΠOPE

X (ω)e−ω/M∫∞
0 dω 1

π
ImΠOPE

X (ω)e−ω/M (11.48)

for X ∈ {H,E,HE} . The value of Rcont. guarantees that the ground state still
gives a sizeable contribution compared to the higher resonances and continuum
contribution. For reliable results of the sum rule we expect Rcont. ≤ 50% for M ≤
Mmax. Thus, Eq. (11.48) fixes the upper bound for the Borel parameter. But in the
case of Eq. (11.44), (11.45) and (11.46), the continuum contribution is dominant,
which is to be expected from the large mass dimension of the considered correlation
function in Eq. (11.7). Therefore, an upper bound for M is not feasible according
to this method.

To resolve this problem, we consider two combinations of the sum rules in Sec.
11.3, which have the feature that Rcont. becomes about 50% for a reasonable value
of M . The combinations are the following:

(λ2
H + λ2

E)2

λ4
H

= (1 + R)2 and F (µ)2e−Λ̄/M + F (µ)2e−Λ̄/Mλ4
H

F (µ)2e−Λ̄/M − F (µ)2e−Λ̄/Mλ4
E

(11.49)

with R defined in Eq. (11.47). The combination (1 + R)2 is an appropriate choice,
because the dominant mass dimension five contributions due to Eq. (11.45) lower
the value of Rcont. significantly. On the other hand, the second combination in Eq.
(11.49) is dominated by the large O(α0

s) contributions from F (µ) such that λ4
E,H

become only small corrections. For both combinations in Eq. (11.49) the parameter
is Rcont. ≤ 50% for Mmax = 0.8 GeV.

In Table 11.2 we summarize the lower and upper bounds for the parameters M
and ωth.
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Sum rule Borel window threshold window

Eq. (11.49) 0.5 GeV ≤ M ≤ 0.8 GeV 0.8 GeV ≤ ωth ≤ 1.0 GeV

Table 11.2: Summary of the threshold and Borel window for the combination in Eq.
(11.49).

In Fig. 11.8 (a) and 11.8 (b) we plot both combinations as a function of M for
different values of ωth within its threshold window.

Finally, we are at the point to extract R and λ2
E,H based on Eq. (11.49). The

uncertainties of λ2
E,H and for the ratio R are partially determined by varying each

input parameter individually according to their uncertainty, see Table 11.1. For the
strong coupling constant we use the two-loop expression with Λ(4)

QCD = 0.31 GeV
to obtain αs(1 GeV) = 0.471. We vary Λ(4)

QCD in the interval 0.29 GeV ≤ Λ(4)
QCD ≤

0.33 GeV, which corresponds to the running coupling αs(1 GeV) = 0.44 − 0.50. In
the last step, we square each uncertainty in quadrature:

R(1 GeV) = 0.1 +
+0.03
−0.03


ωth

+
+0.01
−0.02


M

+
+0.01
−0.01


αs

+
+0.01
−0.01


⟨q̄q⟩

+
+0.02
−0.03


⟨ αs

π
G2⟩

+
+0.05
−0.04


⟨q̄gG·σq⟩

+
+0.02
−0.02


⟨g3

sf
abcGaGbGc⟩

= 0.1 ± 0.07 (11.50)

λ2
H(1 GeV) =

[
0.150 +

+0.002
−0.003


ωth

+
+0.002
−0.004


M

+
+0.001
−0.001


⟨ αs

π
G2⟩

+
+0.001
−0.001


⟨q̄gG·σq⟩

+
+0.001
−0.001


⟨g3

sf
abcGaGbGc⟩

]
GeV2

= (0.150 ± 0.006) GeV2 (11.51)
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For λ2
H , the variation of the strong coupling constant αs, the dimension three and

dimension six condensates do not change the central value significantly. Therefore,
these uncertainties can be neglected.

λ2
E(1 GeV) =

[
0.010 +

+0.004
−0.005


ωth

+
+0.002
−0.003


M

+
+0.001
−0.001


αs

+
+0.003
−0.003


⟨q̄q⟩

+
+0.003
−0.004


⟨ αs

π
G2⟩

+
+0.007
−0.006


⟨q̄gG·σq⟩

+
+0.002
−0.002


⟨g3

sf
abcGaGbGc⟩

]
GeV2

= (0.010 ± 0.009) GeV2 . (11.52)

Notice that the threshold parameter ωth and the Borel parameter M are corre-
lated, which can be deduced from the determination of the Borel window and the
threshold interval. But since the variation of ωth with respect to M is negligible,
it is possible to choose one point in the parameter space of both parameters where
the conditions from above are satisfied and obtain an estimate for the uncertainty
by varying ωth.

Besides these contributions, there are other uncertainties due to several approxi-
mations and systematic errors. Since we truncated the perturbative series at O(αs)
and the power corrections at dimension seven, we introduce another error which
is more complicated to determine. Moreover, there is also an intrinsic uncertainty
caused by the sum rule approach, for instance generated by the use of the quark-
hadron duality. The total uncertainties stated in Eq. (11.50), (11.51) and (11.52)
only list those quantities, which give deviations from the central values.

Before we state our final results, we will first derive upper bounds on the param-
eters λ2

E,H . Due to the diagonal structure of the correlation function, we know that
the spectral density is positive definite. By performing the limit ωth → ∞ in Eq.
(11.45) and (11.46), we include all possible higher resonances and continuum con-
tributions into our analysis. Thus, we obtain a consistent upper bound onto these
parameters as it was already done in the case of fD/fDs decay constants in [394].
The values for the upper bounds within the Borel window in Fig. 11.8 (a) and 11.8
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Figure 11.8: Fig. (a) shows the Borel sum rule for (1+R)2 for the window 0.8 GeV ≤
ωth ≤ 1.0 GeV. The shaded green area illustrates the Borel window. Similarly, Fig.
(b) shows the Borel sum rule for (F (µ)2e−Λ̄/M + F (µ)2e−Λ̄/Mλ4

H)/(F (µ)2e−Λ̄/M −
F (µ)2e−Λ̄/Mλ4

E) for the window 0.8 GeV ≤ ωth ≤ 1.0 GeV.

(b) are:

λ2
H < 0.48+0.17

−0.24 GeV2 , (11.53)

λ2
E < 0.41+0.19

−0.24 GeV2 . (11.54)

Now we extract our predictions for these parameters based on our sum rule analysis.
We expect that these estimates should lie within the bounds of (11.53) and (11.54).
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A conservative estimate of the uncertainties leads to the following final results:

λ2
E(1 GeV) = (0.01 ± 0.01) GeV2 , (11.55)

λ2
H(1 GeV) = (0.15 ± 0.05) GeV2 , (11.56)

R = 0.1 ± 0.1 . (11.57)

If we consider instead directly Eq. (11.44), (11.45) and take the Borel window and
the threshold parameter ωth as shown in Table 11.2, we obtain the values:

λ2
E(1 GeV) = (0.05 ± 0.03) GeV2 , (11.58)

λ2
H(1 GeV) = (0.16 ± 0.05) GeV2 , (11.59)

R = 0.3 ± 0.2 . (11.60)

Note that we can also use (11.46) to obtain the value for λ2
E, however the threshold

window must be chosen as 0.55 GeV ≤ ωth ≤ 0.65 GeV as shown in Fig. 11.6 (c).
Although the sum rules in Eq. (11.44) to (11.46) are dominated by continuum

contributions and higher resonances for the Borel window given in Table 11.2, we
see that the set of parameters and their ratio R in Eq. (11.58) to (11.60) reproduce
the values for λ2

E,H and R in Eq. (11.55) to (11.57) within the errors. In particular
the estimate for λ2

H does not change much, which indicates that the continuum
contributions are well approximated by the sum rules in Eq. (11.45). All values
lie within the bounds given in Eq. (11.53) and (11.54). Our result for λ2

E in Eq.
(11.55) is close to the result in [378] and agrees within the error, see Table 11.3.
Additionally, our result for λ2

H tends towards the result in [356].

11.5 Conclusion
In this work we suggested alternative diagonal QCD sum rules in order to estimate
the HQET parameters λ2

E,H and their ratio R = λ2
E/λ

2
H . We included all leading

contributions to the diagonal correlation function of three-particle quark-antiquark-
gluon currents up to mass dimension seven. The advantage of these sum rules are
that they are positive definite and we expect that the quark-hadron duality is more
accurate compared to the previously studied correlation functions in [356,378]. But
we observe dominant contributions from the continuum and higher resonances due
to the large mass dimension of the correlation function within these sum rules. This
is why we consider combinations of these sum rules studied in Section 11.4, which
satisfy the condition that the ground state contribution still gives a sizeable effect.
Moreover, the OPE is expected to converge for the two sum rules in Eq. (11.44) and
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(11.45) shown in Fig. 11.6 (a) and 11.6 (b), because the investigated contributions
beyond mass dimension five become smaller. However, the OPE in Eq. (11.46)
needs additional higher order corrections, since the contribution of dimension five
and seven are both large, which makes the sum rule unstable, see Fig. 11.6 (c).

For a consistent treatment of the leading order contributions we also included
only the O(α0

s) contributions for the HQET decay constant F (µ), although it is
known that the O(αs) contributions are sizeable [379]. Our results compared to the
values obtained in [356,378] are listed in Table 11.3.

Parameters Ref. [356] Ref. [378] this work

R(1 GeV) (0.6 ± 0.4) (0.5 ± 0.4) (0.1 ± 0.1)
λ2
H(1 GeV) (0.18 ± 0.07) GeV2 (0.06 ± 0.03) GeV2 (0.15 ± 0.05) GeV2

λ2
E(1 GeV) (0.11 ± 0.06) GeV2 (0.03 ± 0.02) GeV2 (0.01 ± 0.01) GeV2

Table 11.3: Comparison of our results for the parameters λ2
E,H and R at µ = 1 GeV.

With these new sum rules we obtain independent estimates for the parameters
λ2
E,H and the R-ratio, which are important ingredients for the second moments of

the B-meson light-cone distribution amplitudes in B-meson factorization theorems.
For future improvements of our sum rules we suggest to include O(α2

s) corrections
to the OPE and consider even higher mass dimension in the power expansion of
local vacuum condensates. In this case it would also be necessary to include the
O(αs) contributions for F (µ). Especially the sum rule in (11.46) will benefit greatly
since we expect the convergence of the OPE, which results in better determination
of λ2

E,H and consequently R.

Acknowledgements

We would like to thank Alexander Khodjamirian for proposing this project to us,
for his constant feedback throughout the work and for reading the manuscript. We
thank Thomas Mannel for useful discussion and reading the manuscript. Addi-
tionally, we are grateful to Thorsten Feldmann and Alexei Pivovarov for helpful
discussions. This research was supported by the Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation) under grant 396021762 - TRR 257.

Appendix A Parametrization of the QCD conden-
sates

Here we present the condensates that we have used in the work. All results are
based on [395] if not stated otherwise. First, we Taylor expand the following matrix
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element:
⟨0| q̄(0)Γ1P+Γ2 q(x) |0⟩ = ⟨0| q̄(0)Γ1P+Γ2q(0) |0⟩

+ xµ ⟨0| q̄(0)Γ1P+Γ2Dµq(0) |0⟩

+ xµxν

2 ⟨0| q̄(0)Γ1P+Γ2DµDνq(0) |0⟩

+ · · · (11.61)

The first term in Eq.(11.61) corresponds to the quark condensate.

⟨0| q̄iα(0)Γ1,αβP+,βγΓ2,γδ q
j
δ(0) |0⟩ = 1

4Nc

· Tr[Γ1P+Γ2] ⟨q̄q⟩ δij, (11.62)

where (i, j) are color indices and (α, β, γ, δ) are spinor indices. The second term in
Eq.(11.61) does not contribute. Making use of the Dirac equation, we can rewrite
the covariant derivative as:

/Dq = −imqq . (11.63)

We assume mq = 0 for light quarks.
Before we consider the third term in more detail, we parametrize the dimension

five matrix element:

⟨0| q̄iα(0)gsGµν(0)qjδ(0) |0⟩ = ⟨0| q̄gsσ ·Gq |0⟩ · 1
4Ncd(d− 1)δ

ij · (σµν)δα . (11.64)

The third term in Eq.(11.61) corresponds to the quark-gluon condensate.
xµxν

2 ⟨0| q̄iα(0)DµDνq
j
δ(0) |0⟩ = x2

16Ncd
δijδαδ ⟨0| q̄gsσ ·Gq |0⟩ . (11.65)

The gluon condensate can be parametrized as:

⟨0|Ga
µνG

b
ρσ |0⟩ = δab

d(d− 1)(N2
c − 1) ⟨G2⟩ (gµρgνσ − gµσgνρ) . (11.66)

Next is the parametrization of the triple-gluon condensate, which was denoted
as Bµλρνσα in Eq. (11.40). The decomposition of the triple-gluon condensate has
been investigated in [396]:

⟨g3
sf

abcGa
µνG

b
ρσG

c
αλ⟩ = ⟨g3

sf
abcGaGbGc⟩

d(d− 1)(d− 2) ·
(
gµλgρνgσα + gµσgραgλν + gρλgµαgνσ + gανgµρgσλ−

gµσgρλgαν − gµλgραgνσ − gρνgµαgσλ − gσαgµρgνλ

)
. (11.67)

The expression in Eq. (11.67) corresponds to the tensor Bµλρνσα introduced in Eq.
(11.40).
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Chapter 12

Summary

In recent years, we have seen small deviations between Standard Model (SM) pre-
dictions and experimental measurements, especially in the quark and lepton flavour
sectors, which may indicate the presence of New Physics (NP). B mesons in par-
ticular open up a wide range of possibilities for flavour studies. The large mass of
the bottom-quark allows us to perform calculations within the framework of Heavy
Quark Effective Theory (HQET). Given the increasing amount of data that Belle II
and the LHCb will make available, we must aim to reduce theoretical uncertainty
to the same level as experimental uncertainty in order to probe the Standard Model
while also constraining potential NP effects.

This thesis has contributed to the systematic improvement of the precision of
flavour physics prediction while also shedding light on the tension between theory
prediction and experimental measurement by incorporating NP effects and their im-
pact on observables.

First, we looked into how to improve the precision of the inclusive determination
of |Vcb|, which employs the B → Xcℓν̄ rate calculated from the measured B → Xℓ.
In the current stage, the background signals b → uℓν̄ and b → c(τ → ℓν̄ν)ν̄ (among
others) are simulated using Monte-Carlo data and subtracted from B → Xℓ, in-
troducing uncertainties. We argue that the background signals can be computed
precisely within the Heavy Quark Expansion (HQE) and thus could be included
in the B → Xℓ analysis without the need to subtract these contributions in order
to obtain a more precise value of |Vcb|. We computed different moments for the
b → uℓν̄ process at next-to-leading order including power-corrections. We com-
pared our findings to generator-level Monte-Carlo data and we observe significant
differences between Monte-Carlo and HQE, particularly for the hadronic invariant
mass moments, which might be avoided by employing the suggested approach. In
addition, for the first time, we calculated b → c(τ → ℓν̄ν)ν̄ contributions (which
contribute at a rate of 4 %). Despite the lack of Monte-Carlo data to compare it,
we report our findings so that future comparisons can be made. In order to pre-
pare for the Belle II experimental study of inclusive |Vcb|, which will achieve an
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unprecedented level of precision, we argue for using the full B → Xℓ rate without
subtracting the b → uℓν̄ and b → c(τ → ℓν̄ν)ν̄ contributions. With this strategy,
the experimental uncertainties on |Vcb| could be reduced even further.

The Lepton Flavour Universality (LFU) ratios of semileptonic inclusive B meson
decays were also investigated. In the SM, the coupling of electroweak gauge bosons
to leptons is independent of lepton flavour. The LFU symmetry of the SM can
be investigated in the semileptonic B → Xcℓν̄ decays. The observables used to
probe the LFU hypothesis are ratios of branching fractions between decays with
ℓ = τ, µ, e. In the case of small deviations between SM predictions and experimental
measurements, this could indicate the presence of NP effects. Additionally, since
there are tensions between SM predictions and experimental measurements in the
exclusive B → D(∗)ℓν̄ modes, the inclusive ratios serve as an important cross-check
of those modes. Our calculation of the LFU ratios for the semileptonic inclusive
B decay takes into account the mass effects in the total rate. Furthermore, we
include next-to-leading order corrections in the strong coupling constant and HQE
parameters up to 1/m3

b . We revised an earlier result concerning the ρ3
D contribution

of the total rate. We provide updated results for the branching ratio of the B →
Xcτν decay, which is in agreement with LEP measurements. Additionally, we can
compare our inclusive calculation against the sum over exclusive B decays. Using the
HFLAV-averaged SM predictions for R(D) andR(D∗) and the measured rates for the
light-modes, combined with the prediction for the branching ratio B(B → D∗∗ℓν̄),
we observe that the sum over exclusive modes does not saturate our calculated
inclusive rate.

The standard method for determining the CKM element |Vcb| is the inclusive
semileptonic B → Xcℓν̄ decay. These determinations rely on the HQE and use mo-
ments of decay spectra to extract non-perturbative parameters directly from data
under the SM assumption. We explored the possibility that NP may be present in
the inclusive semileptonic B → Xcℓν̄ decay but the extraction of HQE parameters
is done assuming the SM. Hence, we investigate the NP effects in the semileptonic
decay as well as their potential impact on the moments of the inclusive decay and
thus on the extraction of non-perturbative parameters in HQE. We accomplish this
by computing power-corrections up to 1/m3

b and next-to-leading order corrections
in the strong coupling constant to the full basis of dimension-six NP operators for
the first time. In the next step, we compared SM predictions to the moments of lep-
ton energy, hadronic invariant mass, dilepton momentum and the forward-backward
asymmetry for various toy NP scenarios using HQE parameters obtained from ex-
perimental data and experimental measurements. Furthermore, we want to look
into the potential impact of the HQE parameters under the assumption of NP. To
begin, we generate pseudo data points for the moments of lepton energy, hadronic
invariant mass and dilepton momentum in a realistic NP scenario. In principle,
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these pseudo data points can then be used to fit the HQE parameters using the SM
expressions. In this way our toy fit simulates a real-world situation: NP is present,
but HQE parameters are extracted assuming the SM. We observe 1 − 2σ shifts be-
tween our toy fit result and the result obtained by assuming simply SM. We should
note that the fit is fairly flexible in compensating for such variation, so it merely
helps to illustrate how NP can be mimicked in the HQE extraction. The primary
goal of this work is to lay the groundwork for a global fit analysis that includes the
complete set of NP operators, allowing for the extraction of |Vcb| with NP effects.

We also studied the Lepton Flavour Violating (LFV) Λb → Λℓ−
1 ℓ

+
2 decay using

for the first time a full basis of NP operators. We provide the analytical result
for the angular distribution of Λb → Λℓ−

1 ℓ
+
2 decay and investigate the interaction

between baryonic and mesonic searches for LFV, where upper bounds for the latter
are available already. In a model-independent approach, we convert these upper
limits into constraints on the branching ratio and forward-backward asymmetry for
Λb → Λℓ−

1 ℓ
+
2 decays. We found that the Λb → Λℓ−

1 ℓ
+
2 decay provides different

constraints on the NP Wilson coefficients than the B̄s → ℓ−
1 ℓ

+
2 and B+ → K+ℓ−

1 ℓ
+
2

decays and has the potential to reduce the allowed parameter space for NP models.
We investigate the branching ratio and forward-backward symmetry of the Λb →
Λℓ−

1 ℓ
+
2 decay quantitatively in two model-dependent approaches with specific NP

scenarios that could address the b-anomalies. Our findings suggest that the predicted
branching ratio for Λb → Λℓ−

1 ℓ
+
2 for these scenarios can constrain the NP couplings

further.
We can also improve the constraint of the NP models by reducing the hadronic

uncertainties caused by the ten independent Λb → Λ local form factors. We inves-
tigate a new parametrization for the local form factors in order to better control
the hadronic uncertainties. Our parametrization has the advantage that it bounds
the parameters due to the use of orthonormal polynomials that diagonalize the form
factors contribution within their respective dispersive bounds. We show that our
parametrization provides excellent control of systematic uncertainties when extrap-
olating from low to large hadronic recoil by performing a Bayesian analysis of the
available lattice QCD results for the Λb → Λ form factors. We investigate our
parametrization for various truncation’s and find that the extrapolation uncertainty
of Λb → Λ decays does not increase significantly within the kinematic phase space.
We show how dispersive bounds can constrain form factor uncertainties to the point
where massively underconstrained analyses still show stable uncertainty estimates.
This is a clear advantage over other parametrizations. Unlike ad-hoc parametriza-
tions of these form factors, our parametrization allows us to control the form-factor
uncertainties at large hadronic recoil, which is phenomenologically interesting for
theoretical predictions of processes such as Λb → Λγ and Λb → Λℓ−ℓ+ decay. We
propose to incorporate the framework of dispersive bounds directly into the lattice-
QCD analysis. In addition, these results can be improved even further by including
the one-particle contributions and other two-particle contributions in a global anal-
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ysis of the available b → s form factor data, as the upper bound would be even more
saturated.

As part of this thesis’s final project, we investigated the light-cone distribution
amplitude (LCDA) of the B meson. LCDAs are important in exclusive B meson
decays such as B → ππ or B → πK, because they allow us to study CP violation
in weak interactions. We focus on three-particle LCDAs of the B meson, which are
found in higher dimensional vacuum to meson matrix elements with non-local quark
operators. These matrix elements can be parametrized in terms of the λ2

E,H param-
eters for local quark operators, which also contribute to the second moments of the
three-particle B meson distribution amplitudes. In order to estimate the two HQET
parameters λ2

E,H and their ratio R = λ2
E/λ

2
H , we proposed alternative diagonal QCD

sum rules. We included all leading contributions to the diagonal correlation function
of three-particle quark-antiquark gluon currents up to mass dimension seven. The
advantage of these sum rules is that they are positive definite, and we anticipate
that the quark-hadron duality will be more accurate than previously studied corre-
lation functions in the literature. The dominant contributions from the continuum
and higher resonances due to the large mass dimension of the correlation function
within these sum rules are a disadvantage of our approach. We can overcome this
limitation by considering sum rule combinations that satisfy the condition that the
ground state contribution still has a significant effect. Our sum rule for the pa-
rameter λ2

H yields a result within the 1 − 2σ interval of existing literature results.
The sum rule seems to be stable because the operator-product expansion (OPE) is
expected to converge as the investigated contributions beyond mass dimension five
become smaller. While the sum rule of parameter λ2

E produces unreliable results
due to OPE convergence. The OPE requires additional higher order corrections
because the contributions of dimensions five and seven are both large, making the
sum rule unstable. In order to improve our sum rules in the future, we suggested to
include next-to-leading order corrections to the OPE and considering even higher
mass dimension in the power expansion of local vacuum condensates. The sum rule
of λ2

E, in particular, will benefit greatly because we anticipate convergence of the
OPE, resulting in better determination of the parameter.

Flavour physics has advanced significantly thanks to a collaborative theoretical
and experimental effort, yet there are still many intriguing problems and mysteries
to be explored. We may finally know whether the tension between the Standard
Model predictions and experimental measurements of the b-anomalies will either
vanish or persist. Thanks to the enormous amount of data from the Belle II and
LHCb experiments. We will be able to narrow the scope of NP effects in both cases
and gain additional knowledge about the nature of bottom-quark decays.
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