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A B S T R A C T

THz imaging is significantly limited in its spatial resolution due to the
substantially longer wavelength of the associated frequencies, which
has made the problem of imaging beyond diffraction limit to be an
emerging challenge in the THz research community.

In this dissertation, an optimization-based THz data and imaging
enhancement concept is introduced. In this context, inverse problems
in THz data and image enhancement, such as parameter estimation,
image reconstruction, denoising and deblurring, are expressed as
mathematical optimization problems, in which the core components
are a physical model and an optimizer. Instead of solely maximizing
the subjective improvement in terms of the visual perception, the
optimizer minimizes an objective measure between the THz physical
model and the measured THz data. This concept enables various
kinds of computational optimization methods, for example, classical
gradient descent based optimizers and modern neural network based
optimizers, to solve the non-convex optimization problems and to
estimate the material-related THz parameters from the measured THz
data.

Experiments show that this concept is beneficial for resolution
enhancement, the ability to find energy minima, the requirements
of measured data size, the robustness of parameter estimation, and
computational resources. This study demonstrates the advantages
brought by the cross-disciplinary collaboration between the fields of
THz imaging and visual computing.
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Z U S A M M E N FA S S U N G

Die räumliche Auflösung der THz-Bildgebung ist aufgrund der wesent-
lich längeren Wellenlänge der zugehörigen Frequenzen erheblich
eingeschränkt, was das Problem der Bildgebung jenseits der Beu-
gungsgrenze zu einer neuen Herausforderung für die THz-Forschung
gemacht hat.

In dieser Dissertation wird ein optimierungsbasiertes Konzept
zur Verbesserung von THz-Daten und Bildgebung vorgestellt. In
diesem Zusammenhang werden inverse Probleme der THz-Daten-
und Bildverbesserung, wie z. B. Parameterschätzung, Bildrekonstruk-
tion, Rauschunterdrückung und Entschärfung, als mathematische
Optimierungsprobleme ausgedrückt, wobei die Kernkomponenten ein
physikalisches Modell und ein Optimierer sind. Anstatt nur die sub-
jektive Verbesserung in Bezug auf die visuelle Wahrnehmung zu max-
imieren, minimiert der Optimierer ein objektives Maß zwischen dem
physikalischen THz-Modell und den gemessenen THz-Daten. Dieses
Konzept ermöglicht es verschiedenen Arten von rechnergestützten
Optimierungsmethoden, z. B. klassischen gradientenabstiegsbasierten
Optimierern und modernen neuronalen Netzwerk-basierten Optimier-
ern, die nicht-konvexen Optimierungsprobleme zu lösen und die
materialbezogenen THz-Parameter aus den gemessenen THz-Daten
zu schätzen.

Experimente zeigen, dass dieses Konzept im Hinblick auf viele
Teilbereiche von Vorteil ist: für die Verbesserung der Auflösung, die
Fähigkeit, Energieminima zu finden, die Anforderungen an die Größe
der gemessenen Daten, die Robustheit der Parameterschätzung und
die Rechenressourcen. Diese Studie zeigt die Vorteile, die sich aus
der disziplinübergreifenden Zusammenarbeit zwischen den Bereichen
THz-Bildgebung und Visual Computing ergeben.
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1
I N T R O D U C T I O N

1.1 motivation

Since the beginning of THz imaging in the early 1990s [HN 95], it
has shown great potential in contact-free analysis, non-destructive
testing, and stand-off detection in various application fields, where a
wide variety of designs were proposed for the individual application,
such as semiconductor industry, biology, medicine, material analysis,
quality control, and security [Sieg 02; CDM 07; Jans+ 10]. In many of
these application fields, THz imaging is competing with established
imaging methodologies, such as optical inspection and X-ray imag-
ing. In comparison with imaging in the optical or X-ray parts of the
electromagnetic spectrum, THz imaging is significantly limited in its
spatial resolution due to the substantially longer wavelength of the
associated frequencies. While systematic enhancement is limited by
the dimension and precision of electronic and optical components,
the computational enhancement approaches are beneficial due to the
rapid development of modern computer science and applied mathe-
matics fields, especially the state-of-arts computational optimization
technologies.

1.2 challenges

In principle, the systematic resolution of a THz imaging system is
limited by its physical diffraction limit. However, as advanced compu-
tational imaging techniques have shown in recent years, it is indeed
possible to resolve a target visually beyond the systematic resolution.
This technology, which is commonly known as the super-resolution
beyond the diffraction limit, raises a challenge in the THz community,
whether a computational method can apply to THz imaging and can
enhance the visual resolution.

One technical barrier of computational THz imaging comes from
the very sophisticated THz physical model, which includes (but is
not limited to) scattering effect, optical refraction, single-path, and
multi-path reflection. This physical model is generally non-linear,
e.g. multiplied with a periodic function and commonly raises highly
ill-posed and non-convex problems from an image enhancement per-
spective.

Moreover, computational methods, such as machine learning meth-
ods, often require hundred-thousands of images and datasets for
testing and verification. Although THz systems have shown signifi-
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1.2 challenges 2
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(a) Classical image-based enhancement method considers a THz image as a medium
of information exchange. Visual computing expertise takes the THz image as input
images for further enhancement (e.g. deblurring, denoising, super-resolution, etc.).

System
Measurement Optimizer

THz 
High 

Quality 
ImageMaterial and 

Geometric 
Parameters

THz 
Data

Physical 
Model

Optimization-based Enhancement

(b) Inverse problems in the optimization-based THz data and image enhancement
method (e.g. parameter estimation, image reconstruction, etc.) are expressed as
mathematical optimization problems, in which the core components are a THz
physical model and an optimizer.

Figure 1.1: Overview of the optimization-based THz data and image en-
hancement concept.

cant breakthroughs, researchers have yet to resolve the difficulties to
obtain large-scale THz image datasets. This limited size of THz data
presents another technical barrier from a visual computing perspective,
that it would restrain from using methods that rely on large datasets.

Besides the restricted data size, the robustness of computational
enhancement methods is still in lack of study, whether the enhanced
images are solely improved visually or are enhanced by their physical
quantities. In addition, there is also a high practical interest to have
methods that can be run and implemented in reasonably limited
computational resources, such as time and memory.

These challenges can be difficult to overcome when existing THz
computational enhancement methods are image-based methods, i.e.
THz imaging systems reconstruct THz images from the measured THz
data as the results before visual computing algorithms take these re-
sults (without further knowledge on the THz physical model) as input
images for the visual enhancement, e.g. deblurring, denoising, super-
resolution, etc. In this image-based mentality as depicted in Fig. 1.1a,
the separation of either field would greatly limit the possibility of
in-depth co-design work. Therefore, the study of a cross-disciplinary
joint approach of optimization-based enhancement is necessary, as it
would review the benefit of this collaborative philosophy.



1.3 contribution 3

1.3 contribution

In this dissertation, an optimization-based THz data and image en-
hancement conceptual model is presented. In this context, as illus-
trated in Fig. 1.1b, inverse problems in THz data enhancement (e.g.
parameter estimation, image reconstruction, denoising, deblurring
etc.) are expressed as mathematical optimization problems, in which
the core components are a physical model and an optimizer. Instead
of solely maximizing the subjective improvement in terms of visual
perception, the optimizer minimizes an objective measure between the
THz physical model (i.e. the forward model) and the realistic measured
THz data. This optimization-based approach enables various kinds
of optimizers, e.g. classical gradient-descent-based optimizers, to esti-
mate the proper material-related THz parameters from the measured
THz data by minimizing an objective discrepancy (like ℓ2-squared
loss, mean-square-error), i.e. optimizing in mathematics terminology.
The measurement THz datasets are provided by colleagues from the
Institute of High Frequency and Quantum Electronics (HQE), Uni-
versity of Siegen using their FMCW THz imaging systems, and the
THz physical models are also mainly derived by HQE. The following
contributions to the mentioned challenges are presented:

• To enhance the spatial resolution of the FMCW THz system, a
novel method has been proposed by firstly reconstructing the
THz signal in depth-direction which yields a significant im-
provement in depth estimation and signal parameter extraction.
The resultant intensity THz image allows a 2D blind deconv-
olution process which enhances the lateral THz image resolution
beyond the diffraction limit. The method has been published
in [Wong+ 19a] and [Stoc+ 19].

• For the THz parameter estimation problem, a model-based auto-
encoder approach has been developed, in which the encoder
neural network predicts suitable model parameters, and the
decoder is fixed to the THz physical model. This allows the
encoding network to be trained in an unsupervised machine
learning approach, which makes the neural network feasible
without ground-truth labeled THz datasets and improves the
computation time much faster than classical optimizers. This
autoencoder has been published in [Wong+ 19b].

• A deep optimization prior approach, i.e. the reparameterization
of a pixel-wise non-convex THz model parameter estimation
problem via a spatially coupled 3D neural network, has been
proposed. Theoretically, the surjective reparameterization does
not eliminate critical points of the non-convex cost function but
yields a different gradient descent path, which allows this ap-
proach to find significantly better (local) minima compared to
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classical optimizers. The experiment demonstrates that this ap-
proach robustly reconstructs THz model parameters in low SNR
and shot noise situations, and the network is highly memory
efficient. Combining this approach with the modern blind de-
blurring method improves the lateral resolution enhancement
robustly under low SNR noise conditions in comparison to the
per-pixel curve fitting method. This approach has been pub-
lished in [Wong+ 22a] and [Wong+ 22b].

• A first insight into the joint material and geometric parameter
estimation for the THz multi-path reflection model is introduced.
This approach derives the comprehensive formulas that transfer
the measured data from the numerical aspect to the physical
space, and interpret the THz multi-path reflection as a func-
tional model of material and geometric parameters. The model
allows expressing the parameter estimation as the direct optimal
of the optimization problem, in which the theoretical analysis
and experiments demonstrate that the optimizer based on the
signal magnitude is generally better than the optimizer based
on the complex parts of the signal. However, experiments show
that so far this approach can not solve the optimization prob-
lem with sufficient robustness, and further investigation of the
optimization method is needed.

1.4 outline

In chapter 2, the fundamental knowledge of this dissertation, which
includes the THz system, numerical optimization, and machine learn-
ing, is provided. Chapter 3 introduces the computational THz image
enhancement method to enhance the spatial resolution of the FMCW
THz system. The model-based autoencoder approach for THz image
reconstruction is described in chapter 4. In chapter 5, the deep optimiz-
ation prior approach is explained in detail. Chapter 6 introduces the
joint material and geometric parameter estimation for the THz multi-
path reflection model preliminarily. Finally, chapter 7 summarizes the
dissertation and briefly discusses potential future works.



2
F U N D A M E N TA L S

This chapter provides some necessary fundamental knowledge for
this dissertation. In Sec. 2.1, an overview of THz 3-D imaging is
given, including the definitions of THz radiation, properties of THz
imaging systems, methods of FMCW technology, and the principle
of 3-D imaging. In Sec. 2.2, more details of the FMCW THz signals
and the corresponding signal processing are expressed in the form of
a mathematical model. Once the THz imaging is introduced, an in-
troduction to convex and non-convex optimization theory is provided
in Sec. 2.3, where different commonly used optimization methods are
briefly described. Sec. 2.4 overviews the basic principle of machine
learning and some terminology of modern deep neural network ar-
chitectures. At the end of this chapter, Sec. 2.5 describes the details of
the experimental system setup and the corresponding datasets used
in this dissertation.

2.1 thz 3-d imaging

frequency

wavelength

Microwaves Terahertz Infrared

Visible
Light

3 GHz

1mm

30 GHz

10mm

300 GHz

1mm

3 THz

100µm

30 THz

10µm

300 THz

1µm

3000 THz

100nm

Figure 2.1: Terahertz radiation is commonly referred to the band between
microwaves and infrared in the electromagnetic spectrum.

thz radiation The term terahertz radiation (THz, or T-ray) is
commonly referred to the electromagnetic spectrum around 1012 Hz.
This term is analogous to microwaves, infrared and X-rays radiations,
although it names a spectral band by its frequency unit [Lee 09].
In general, Terahertz band is referred to the radiation band applied
to sub-millimeter waves (see Fig. 2.1) that fills the wavelength range
between 1mm and 100µm (300 GHz − 3 THz in frequency) [Sieg 02].
This THz band lies between microwaves and the infrared band, where
the microwaves frequency band ends at 300 GHz. In contrast, when
the frequency goes beyond 3 THz, the spectral band crosses into the
far infrared radiation (around 10 THz) [Lee 09]. In the early era of THz

5



2.1 thz 3-d imaging 6

research, the optical imaging system could only handle the higher
frequency spectrum, while the electronic system could only work
on the lower THz frequency. During the last one or two decades of
development, both optical and electronic fields were trying to fill this
technological vacancy (also called terahertz gap) of efficient optical and
electronic devices for imaging in this THz spectrum. This is because
suitable electronic circuits that handle high-frequency signals and
appropriate optical systems for low frequency were difficult to build
in a robust, inexpensive, and coherent manner [Cham 04]. To have
a more comprehensive review of modern THz imaging technologies,
the reader is referred to [MJN 96], [Sieg 02] and [Tono 07].

Within this sub-millimeter band, THz radiation is well known for
its non-ionizing property while non-destructively penetrating many
visually opaque materials [Cham 04]. This free-of-hazardous char-
acteristic generates great interest in contact-free material analysis
and non-destructive testing in application areas such as bio-chemical
material analyses, civil security, package inspection, etc. in the semi-
conductor industry and the medical community [HN 95; MJN 96;
Sieg 02; Cham 04].

2.1.1 THz Imaging

Most of the modern THz systems can be categorized by their radi-
ation sources: active systems irradiate the object by the THz source
integrated with the active system, while passive systems use the THz
radiation from the natural environment only [Lee 09].

One important property of the THz imaging system is the co-
herence of the radiation source and the sensor-received signal. In
a coherent radiation system, the phase differences and frequencies
are all constantly detected and hence invariant during the acquisition
time, while incoherent systems can only obtain signals with vary-
ing phase differences and frequencies and thus can only obtain the
intensities of the signal. Hence, coherent systems can be used to
reconstruct the phase and amplitude of the scattered electronic field,
offering the possibility of obtaining additional information via more
sophisticated reconstruction techniques such as depth information
or material parameters of the objects. In general, atmospheric THz
radiation in passive systems can only provide an incoherent radiation
source; hence only active THz imaging systems with coherent THz
radiation sources are considered in this dissertation.

In addition to radiation coherence, the radiation mode is another
essential property, which mainly falls into two categories: pulsed
and continuous wave (CW) technologies [Tono 07]. The THz pulsed
method transmits femtosecond THz pulses to radiate the object, which
is commonly used in THz Time-Domain Spectroscopy (THz-TDS)
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Figure 2.2: Overview of FMCW imaging system.

systems [HN 95; MJN 96]. In contrast, the CW method radiates the
object continuously during the acquisition period.

Generally, the CW system is easier to integrate than the pulsed
system, which makes the CW method a much more affordable system
design, especially on applications operating with higher frequencies.

This dissertation builds on Frequency Modulated Continuous
Wave (FMCW) data with the benefit of enabling the reconstruction of
depth information and material properties, which are provided by the
Institute of High Frequency and Quantum Electronics (HQE).

2.1.2 Frequency Modulated Continuous Wave (FMCW)

In the radar community, the major advantages of the FMCW radar
system are commonly known as the wide dynamic range, low noise,
and high average radiation power [Dani 96]. To capture a THz 3-
D image, the remote sensing community combined linear FMCW
technology and Synthetic Aperture Radar (SAR) signal processing
technique [Ding+ 13; MHL 07], which can avoid building large lenses
at the THz range. Instead of synthesizing a linear array with a broad-
band radar, one common alternative method is to mechanically move
SAR transmitter-receiver (transceiver) sensors in a grid-like approach,
which makes the imaging system economically efficient.

Fig. 2.2 illustrates an overview of FMCW radar imaging system
and Fig. 2.3 shows the corresponding FMCW data processing [Stov 92;
CGM 95; Dani 96; Ding+ 13].

linear fm waveform A typical FMCW radar system transmits
a linear frequency-modulated (FM) wave on a repetitive approach,
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which is due to the ease of signal generation and processing. A
common name for this signal is chirp because a signal of rising fre-
quency over time is similar to the chirping sound of a bird. One
common transmitter (Tx) signal generation method is using a contin-
uously varying carrier frequency voltage-controlled oscillator (VCO)
controlled by a sawtooth-like sweep generator over a chosen frequency
range [ fmin, fmax] and a sweep duration period Tp [Coop+ 17]. Let
ST(t) be the time-domain signal generated by the transmitter (Tx):

fT(t) = fc + Krt (2.1)

ST(t) = aT · exp
[

i2π
∫ t

0
fT(t)dt

]
= aT · exp

[
i2π

(
fct +

Krt2

2

)]
(2.2)

where fT(t) is the instantaneous frequency of the transmitter chirp
signal ST(t), aT is the constant to determine the amplitude of the
transmitter signal, fc is the center frequency, and the starting frequency,
i.e. fT(0) = fc), Kr is a linear chirp rate. The bandwidth B of the pulse
is KrTp.

Notice that instead of a real signal, the transmitter chirp signal
ST(t) is modeled as a complex signal with real and imaginary channels,
where this analytical signal is generated by Hilbert Transform (or by
Discrete Hilbert Transform [Oppe 99] for transformation in discrete
time).

dechirping After the signal is returned from the object (the scat-
terer), the received signal from the Rx receiver SR(t) is delayed and
attenuated:

SR(t) = aR · exp

[
i2π

(
fc(t − τ) +

Kr(t − τ)2

2

)]
(2.3)

where aR is the amplitude of the receiver signal. Since the sweep
frequency fc is operating in THz and practically components are
impossible to detect in this frequency range, the Tx and Rx signals
are converted into the MHz frequency range by the frequency down-
conversion (see Fig. 2.2), where the down-converted carrier frequency
is denoted by fdc. This down-converted receiver signal is mixed with
a sample of down-converted transmitted waveform delayed by τ and
results in a difference of frequency. This process is called dechirping or
deramping of FM signal, while radar systems using this process is also
known as dechirp-on-receive systems.

Then, by a proper analog-to-digital (ADC) conversion, the resultant
dechirped signal has a frequency related to its time delay relative to
the delayed chirp signal, where the frequency is named as intermediate
frequency (IF) to distinguish from the wideband frequency of the
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Figure 2.3: Dechirp processing of FMCW data from transmit time-frequency
domain signal to dechirped intermediate frequency (IF) signal.

transceiver signal. The resultant IF signal SIF(t) is the mixing product
of the transmitted signal with the complex conjugate of the received
signal:

SIF(t) = ST(t) · SR(t) = aIF · exp

[
i2π(Krτt + fdcτ −

Krτ2

2
)

]
(2.4)

where SR denotes the complex conjugate of SR.

2.1.3 3-D Imaging

By applying a Fourier Transform, the dechirped IF signal is converted
to a range profile [MV 89], which represents the intensity of reflection
at these frequencies respectively. Because of the linear FM waveform,
these frequency profiles can also be interpreted as the profiles using
different times of traveling, and hence are further considered as the
reflective intensity at different depth positions. Therefore, these range
profiles can also be expressed as the spatial depth domain signal, which is
an essential component of FMCW THz imaging in the depth direction.
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z
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System

System
Movement

Figure 2.4: THz 3-D image is captured by grid based azimuth x, y movement
of the FMCW imaging system. The data at each depth position forms 2-D
images (range profile) with depth resolution ∆d.

By repeating this imaging procedure for each azimuth x, y position as
illustrated in Fig. 2.4, the entire THz 3-D image is captured.

By this FMCW 3-D imaging methodology, the system depth reso-
lution ∆d is:

∆d =
c

2B
(2.5)

where c is the speed of light and B = fmax − fmin is the system band-
width. Notice that the system azimuth x, y resolution (also referred
to as the lateral resolution) is independent of this FMCW scanning
approach but depends on the physical movement and optical compo-
nents.

2.2 fmcw thz single-path reflection model

sampling Consider the sampling rate is L samples per second, the
discrete IF signal SIF[n] is derived from (2.4):

SIF[n] = SIF

(
n
L
· Ts

)
= aIF · exp

[
i2π(KrτTs ·

n
L
+ fdcτ −

Krτ2

2
)

]
(2.6)

where Ts = Tp/L is the sampling period. In sampling theory, a proper
choice of sampling rate is critical to avoid aliasing.

Since the term Krτ2/2 has a practically neglectable value compared
to the term fdcτ (because the time delay τ is commonly measured in
the nano-second scale), by assuming µ = KrTsτ and ϕτ ≈ 2π ( fdcτ),
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the discrete IF signal a before deramp Fourier Transform is expressed
by:

a[n] = aIF · exp

(
i2πµ

n
L

)
· exp (iϕτ) (2.7)

Note that the discrete signal n in (2.7) represents the received IF
signal in the frequency domain (i.e. its frequency profile), which is no
longer denoting the continuous time domain signal in (2.2) nor the
discrete time domain signal n in (2.6).

windowing function The THz signal in the depth direction is
expressed as a modulated signal with a sinc-envelope in the spatial
model of the THz image in (2.7). To effectively suppress the sidelobe of
the sinc-envelope, one of the common signal processing approaches is
to introduce a windowing function, which is to multiply the Hamming
window H[n] to the discrete IF signal in (2.6) before the deramp Fast
Fourier Transform (FFT):

aHamming[z] = F {SIF[n] · H[z]} (2.8)

where H[n] = 0.54 − 0.46 cos

(
2π ·

n
L

)
(2.9)

However, this common signal processing practice introduces an extra
term to the spatial model, and it appears that the envelope of the
spatial domain signal is no longer a straightforward sinc function after
the deramping Fourier Transform. Therefore, to keep the simplicity
of the THz physical model, neither this Hamming nor any other
windowing function is included in the time domain signal for the
single-path reflection model in Chapters 3, 4 and 5.

zero-padding The signal processing community often includes
the zero-padding technique, which appends (pads) extra zeros to the
end of the frequency domain signal in (2.7) before the deramp Fourier
Transform. To express this zero-padding technique on the discrete
signal (2.7), let EN [z] be the zero-padded discrete IF signal by the
zero-padding factor Np:

aN [n] =

{
SIF[n], if 0 ≤ n < L

0, otherwise for n < L · Np
(2.10)

Hence, after the Fourier Transform, the signal length is increased from
L to L · Np. This zero-padding technique introduces more interpolation
points between sampling points while retaining the same signal power
and structure at these sampling positions. These extra interpolation
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points are very useful, especially in curve fitting and optimization
approaches.

discrete time fourier transform (dtft) For the deramping
transform, the Discrete Time Fourier Transform (DTFT) should be
used. Given an ideal square discrete time domain signal x[n]:

x[n] =

{
1, 0 ≤ n ≤ M − 1

0, otherwise
(2.11)

for 0 ≤ n ≤ N − 1 (2.12)

After DTFT, the corresponding discrete frequency signal is:

X[k] =
sin[2πkM/(2N)]

sin[2πk/(2N)]
· e

−i
2πk
N

M − 1
2


(2.13)

Moreover, by considering the time-shift property and the linearity
property,

x[n] · ej2πk0n/N F−→ X[k − k0]

ax[n − n0]
F−→ aX[k]

(2.14)

the discrete IF signal (2.7) is transformed to the discrete frequency
signal by DTFT.

F {a[n]} = aIF ·
sin 2π(k−µ)M

2N

sin 2π(k−µ)
2N

· exp

[
−i

2π(k − µ)

N

(
M − 1

2

)]
· exp (iϕτ)

(2.15)
Because of the linear FM waveform, this discrete frequency domain

signal is linearly related to the time-of-travel of the THz radiation in
the air. As the speed-of-light in the air is known, this time-of-travel can
be further interpreted as the spatial displacement from the transmitter
to the object. Hence, these frequency profiles can be expressed as the
range profiles in terms of the depth positions of the object.

Therefore, these discrete frequencies k are interpreted as depth
positions z, and the spatial domain signal of the FMCW THz signal is
expressed as A[z] = F {a[n]}. By assuming M = L and N = L · Np,
the combination of (2.10), (2.13) and (2.15) yields
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A[z] = aIF ·
sin 2π(z−µ)L

2LNp

sin 2π(z−µ)
2LNp

· exp

[
−i

2π(z − µ)

LNp

(
L − 1

2

)]
· exp (iϕτ)

= aIF ·
sin π(z−µ)

Np

sin π(z−µ)
LNp

· exp

[
−i

(
π(z − µ)

Np
·

L − 1
L

)]
· exp (iϕτ)

As sinc(t) =
sin(πt)

πt
≈

sin(πt)
L sin(πt/L)

, and (L − 1)/L ≈ 1 when L

is large, the discrete spatial domain signal can be simplified as:

A[z] ≈ aIF · L · sinc
z − µ

Np
· exp

[
−i

(
π

Np
· (z − µ)

)]
· exp (iϕτ)

Therefore, by substituting ê = aIF · L, σ = 1/Np, ω = π/Np and
ϕ = ωµ + ϕτ, the discrete spatial domain FMCW THz model is:

A[z] ≈ ê · sinc (σ(z − µ)) · e−i(ωz−ϕ) (2.16)

where ê, µ, ϕ represent the physical properties of the object in the
z-direction. In this single-path reflection model, only one reflective im-
pulse (e.g. the impulse reflected on metal) is received by the receiver.
It is also possible to have a multi-path reflection model as the superposi-
tion of multiple received impulses (for example, the dielectric material
in THz radiation such as silicon), which is discussed in Chapter 6.

2.3 optimization

optimization problem In mathematics, an optimization prob-
lem [BBV 04; NW 06] is formulated as

minimize f0(u), u ∈ Rn

subject to fi(u) ≤ bi, i = 1, . . . , m
(2.17)

where the vector u = (u1, . . . , un) is the optimization variable, the func-
tion f0 : Rn → R is the objective function, functions fi : Rn → R are the
constraint functions based on constraints bi.

The solution of this optimization problem u∗ is called optimal,
when it has the lowest objective value among all vectors that satisfy
constraints such that

f0(u) ≥ f0(u∗), for any u with fi(u) ≤ bi

From this general form of the optimization problem (2.17), in
a particular case, a convex optimization problem is defined as the
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Figure 2.5: Example of a convex function. The line segment between any two
points on the function lies above the function itself. The global minimizer
(and also the solution) u∗ when ∇ f (u∗) = 0 is the global minima of the convex
function f .

optimization problem with convex set C and convex function f , where
a set C ⊂ Rn is called convex if

αu + (1 − α)v ∈ C (2.18)

for all u, v ∈ Rn and all α ∈ [0, 1]. Given a convex set C ∈ Rn, a convex
function f satisfies the inequality

f (αu + (1 − α)v) ≤ α f (u) + (1 − α) f (v) (2.19)

for all u, v ∈ C and all 0 ≤ α ≤ 1. As an example illustrated in Fig. 2.5,
in geometry, this inequality implies that the line segment between
(u, f (u)) and (v, f (v)) lies above the function f .

One important property of convex optimization is that given f
is convex and differentiable at u ∈ dom f , if ∇ f (u) = 0, then u is
a global minimizer of the function f (first-order condition). This global
minimizer serves as the desired solution u∗, while sometimes it is also
called global optima or global minima (Fig. 2.5).

In the visual computing community, the convex function is usually
referred to as a suitable discrepancy measure energy function, or also
commonly known as loss function. One classical optimization example
is the image denoising problem:

u∗ = arg min
u

∑ f (u) = arg min
u

∑Hg(u) + αR(u)

= arg min
u

∑ ∥u − g∥2
2 + α∥Du∥2

2
(2.20)

where u ∈ Rnx×ny is the latent clear image, g ∈ Rnx×ny is the measured
noisy image. The energy function f usually consists of two compo-
nents: the data term Hg measures the similarity of the desired solution
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Figure 2.6: Example of a denoising problem by solving the optimization
problem Eq. 2.20. L2 regularizer is not good at preserving details with sharp
edges.

u to the data g; the regularization term R enforces the smoothness
of the solution u, where the level of smoothness is controlled by the
regularization coefficient α, and D denotes the finite difference matrix
to compute the partial derivative ∇u.

Fig. 2.6 plots an example of a 1D signal denoising problem (i.e.
a simplified case of image denoising problem), where the optimal
solution u∗ is calculated by the close form solution of L2 regularization:

u∗ = (I + αDTD)−1g (2.21)

where I denotes the identity matrix. This example demonstrates that
the L2 regularizer ∥Du∥2

2 is not optimal for denoising near the sharp
edge as it introduces a blurry solution. In fact, in the visual com-
puting area, a L1 regularizer (i.e. ∥Du∥1) is more commonly adopted
for the preservation of edges and also for reducing shot noise, and
occasionally L0 or Lp<1 regularizers are used. However, it appears that
L1 or L0 regularization is a more sophisticated optimization problem,
because the norms may not be differentiable all over the set, and it is
a non-convex optimization problem.

In comparison with convex optimization, the non-convex optimiz-
ation problem is indeed a more challenging problem, to which there
is more than one local solution for the problem. In Fig. 2.7, examples
of non-convex optimization problems are illustrated, while there are
more than one local minima (Fig. 2.7a) or saddle points (also called criti-
cal points, see Fig. 2.7b) where ∇ f (u) = 0 without indicating a local
minimum. The aim of solving the non-convex optimization problem
is to find the global minima instead of local minima or critical points.
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(a) The minimizers at local domain are
called local minima.

(b) A saddle point is the point where a
local minimum in one variable locates
at a local maximum in another vari-
able.

Figure 2.7: Examples of non-convex functions in single variable and multiple
variables.

2.3.1 Gradient Descent Method

To solve an optimization problem, one of the most commonly used
methods is the gradient descent method due to its simplicity. Gradient
descent is an iterative procedure starting with an initial point u0 ∈ Rn,

uk+1 = uk − λk · ∇ f (uk), for k = 0, 1, 2, . . . (2.22)

where k denotes the k-th iterations, the gradient ∇ f is the vector
of partial derivatives of function f and λk ∈ R+ is the distance of
travel at the k-th step (named as step-size). Since the gradient descent
method (2.22) involves the first-order derivative ∇ f only, it is often
named the first-order gradient descent method. Fig. 2.8 shows ex-
amples of the gradient descent method for convex and non-convex
optimization problems respectively. Conceptually, the gradient de-
scent method starts with an initial estimation of variables, and then
descends to the possible desired minima according to the direction
(gradient) of the current position and the distance (step size) of one
step. In the convex optimization problem (Fig. 2.8a), the gradient
descent method converges to the global minima for an infinite number
of iteration k. In practice, a stopping criterion is usually introduced to
stop the iteration when the gradient is below a certain threshold (i.e.
∥∇ f (u)∥2 ≤ ε where ε is small and positive).

However, as shown in Fig. 2.8a, the gradient descent method can
converge to the local minima for non-convex optimization problems,
which depends on the selection of the initial point (initiliazation) and
the step size. In general, the traditional gradient descent method (2.22)
is slow in convergence or unreliable for non-convex functions [GBC 16],
even if there are some state-of-arts acceleration methods like momen-
tum [Poly 63; Nest 03].
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(a) The gradient descent method converges to the global
minima for convex optimization problems.

(b) The gradient descent method can converge to the local
minima for non-convex optimization problems.

Figure 2.8: Examples of the gradient descent method to solve optimization
problems.

2.3.2 Stochastic Gradient Descent (SGD) Method

To solve non-convex optimization problems, the Stochastic Gradient
Descent (SGD) method is an extension of the gradient descent method.
As [SB 14] explained, SGD randomly selects a vector vk for each
iteration k:

uk+1 = uk − λk · vk, s.t. E[vk|uk] ∈ ∇ f (uk) (2.23)

where E[vk|uk] denotes the expected value of the random vector vk.
As an illustration, SGD does not require the update direction for each
iteration to exactly match the gradient itself, as shown in Fig. 2.9.
Instead, the direction is allowed with a variation, and its expected value
(i.e. E[vk|uk]) at each iteration must match the gradient direction (i.e.
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Figure 2.9: An illustration of optimization steps by the gradient descent
method (green) and the Stochastic Gradient Descent method (SGD, yellow)
on the non-convex function f (u1, u2) = (u4

1/4 − u3
1/3 − u2

1) + (u2
2). The

mean of 20 steps of SGD (purple) shows that SGD only requires the expected
value of update steps to match the gradient direction.

∇ f (uk)). SGD is a crucial algorithm for solving non-convex optimiz-
ation problems, especially in modern machine learning, because SGD
allows the optimization on a subset of the variable (batch) which makes
it computationally efficient in terms of memory and time, even with a
large batch size and a large number of neurons.

In recent years, Adam [KB 14] and AdamW [LH 18] are two of
the most popular methods among the variants of SGD algorithms,
which are both first-order stochastic gradient descent methods with
low order moment estimation and exponential decays of weights.

2.3.3 Second-order Optimization Methods

Besides the first-order condition ∇ f (u∗) = 0, the second-order condition
∇2 f (u∗) > 0 also determines the local minima u∗, if the Hessian
∇2 f exists and is continuous in the local neighborhood [NW 06]. By
considering the second-order Taylor series approximation of f (uk)

near uk,

uk+1 = uk −
(
∇2 f (uk)

)−1
∇ f (uk) (2.24)

this iterative method finds the local minima of the function f by us-
ing the local approximation of the Taylor expansion. This method
is commonly named Newton’s Method, which is probably the most
important second-order optimization method. Conceptually, in addition
to the direction of step (gradient), the second-order method consid-
ers the curvature information of the function landscape. Besides the
second-order Hessian matrix, an extension of Newton’s Method called
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Figure 2.10: Examples of hand-written digits from the MNIST dataset. Cour-
tesy from [LeCu 98].

the Trust Region approach [CL 96] introduces a boundary of steps
(i.e. ∥uk+1 − uk∥2 ≤ ∆k) bounded by a trust-region radius ∆k at each
iteration.

Newton’s method is well-known for its fast convergence rate, typ-
ically quadratic when compared to first-order methods. Also, due
to the additional curvature information, the second-order method
may avoid the local minima or saddle points for non-convex optimiz-
ation problems, giving it a significant advantage over gradient descent
methods. However, the explicit computation of the Hessian matrix
∇2 f is a computationally expensive process (∇2 f ∈ Rn×n for u ∈ Rn).
To overcome this memory limitation, the Quasi-Newton method re-
places the computation of the Hessian matrix with an approximation
matrix, which is updated after each step to take account of the ad-
ditional knowledge gained during the step. Until now, even the
most commonly used quasi-Newton method, the Limited-memory
BFGS algorithm (LBFGS [LN 89]), is still difficult to handle large-scale
non-convex optimization problems such as the one arising in deep
learning.

2.4 machine learning

supervised and unsupervised learning Since the first ma-
chine learning program was developed in the 1950s [Samu 59], ma-
chine learning has been a prominent area in the field of pattern recog-
nition and artificial intelligence. Machine Learning (ML) is broadly
defined in modern research [Mitc 97] as a computational algorithm
that improves its performance at some tasks through some kind of
experience. Consider the example of recognizing handwritten digits
in Fig. 2.10 [Bish 06], the aim is to build a machine that takes images
as input and that produces the identity of the digit 0, . . . , 9 as the
output. Applications in which the training data comprises examples of
the input vectors along with their corresponding target vectors (labels)
are known as supervised learning problems. Classification problems are
situations, such as the digital recognition example, in which the goal
is to assign each input vector to one of a finite number of discrete
categories. If the desired output consists of one or more continuous
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Figure 2.11: A plot of polynomial curve fitting with various orders to the
data.

variables, then the task is called regression. An example of a regression
problem would be the prediction of the yield in a chemical manufac-
turing process in which the inputs consist of the concentrations of
reactants, the temperature, and the pressure.

Besides, when the training data consists of a set of input vectors
without any corresponding target values, these problems are com-
monly referred to as unsupervised learning problems. Some examples
of unsupervised learning are clustering which discovers groups of sim-
ilar examples within the data, or dimensional reduction which projects
the data from a high-dimensional space down to a lower dimensional
space while retaining most of the relevant information.

Consider the regression problem illustrated in Fig. 2.11, which does
a polynomial curve fitting to the measured data using a 1D function
f with different orders. Notice that the low order (e.g. first order in
yellow color) polynomials curve gives relatively poor fits to the data,
and hence bad representations of the measurement. The appropriate
order (e.g. third order in purple color) polynomials give the best overall
fitting to the data. When the polynomial order is further increased (e.g.
ninth order in green color), the polynomial curve has more freedom of
movement, passes exactly through each data point, and minimizes the
error. However, the fitted curve oscillates wildly and gives a very bad
representation of the underlying function. This undesired behavior
is known as over-fitting in machine learning. To solve this over-fitting
problem, the machine learning theory introduces validation datasets,
which select and exclude a subset of data from the training dataset.
Instead of training this validation dataset, the machine evaluates the
loss of this validation dataset during the training process. When there
is an over-fitting like in Fig. 2.11, instead of a decreasing loss during
training, the validation loss should be increasing and greater than
the training loss, while this loss difference is commonly referred to
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Figure 2.12: Nonlinear model of a neuron, labeled k.

as a generalization gap. Therefore, the samples of data are commonly
separated into training, validation, and testing sets, where testing sets
are used solely for evaluation.

2.4.1 Neural Network

Artificial neural networks, often known as neural networks, were one of
the most prominent machine learning approaches. Historically, neural
networks arose from a biological motivation of mimicking the behavior
of neurons, such that the knowledge is stored by the inter-neuron
connection, known as synaptic weights [Hayk 10]. Fig. 2.12 illustrates
the mathematical model of neurons, which was first introduced in
1958 [Rose 58] and was later known as Rosenblatt’s perception. In
mathematical terms, the k-th neuron is expressed as:

yk = φ

(
m

∑
j=1

wkjxj + bk

)
(2.25)

where x1, x2, . . . , xm are the input signals; wk1, wk2, . . . , wkm are the
respective synaptic weights of the neuron; φ is an activation function
for limiting the amplitude of the neuron; bk denotes the bias to control
the net input of the activation function; and yk is the output signal of
the neuron. In machine learning terminology, generally the network
learnable parameters θ mainly consist of the weights w and biases b
of all learnable neurons.

Starting from this neuron model, a neuron network is defined
as a direct graph consisting of nodes (neurons) with interconnecting
synaptic and activation links [Hayk 10]. Fig. 2.13 illustrates an example
of a fully connected neural network, where the neurons are organized
in the form of layers. In this neural network, an input layer of source
nodes connects to the hidden layers before projecting onto the output
layers, where the term hidden refers to the fact that this part of the
neural network is invisible from either the input or output of the
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Figure 2.13: The network architecture of a fully connected neural network
with one hidden layer and one output layer.

Function signals

Error signals

Figure 2.14: Illustration of forward propagation of function signals and
backpropagation of error signals.

network. By adding one or more hidden layers, the network can
extract higher-order statistics from its input. The network is described
as fully connected only if every neuron in each layer of the network is
connected to every other node in the adjacent forward layer.

To train a feed-forward neural network, the back-propagation is
a widely used algorithm in machine learning. The basic idea is to
compute partial derivatives of the loss function L realized by the
network with respect to all adjustable weight vectors w, which implies
that training the neural network is to solve an optimization problem by
updating the network weights using the gradient descent method.
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First, considering the single neuron model (2.25), the function
signals yj appearing at the output of neuron j, the error signal ej and
the loss function L (takes square loss as a simple example) are:

vj =
m

∑
i=0

wji · yi (2.26)

yj = φ
(
vj
)

(2.27)

ej = dj − yj (2.28)

L =
1
2
· e2

j (2.29)

where yi are the input signals of neuron j, dj is the desired response
vector (i.e. annotated label), m is the total number of inputs applied
to neuron j, and the weight wj0 equals the bias bj applied to neuron j.
By applying the chain rule, the partial derivative of the loss function
with respect to the network weights is:

∂L
∂wji

=
∂L
∂ej

·
∂ej

∂yj
·

∂yj

∂vj
·

∂vj

∂wji
(2.30)

= −ej · φ′(vj) · yi (2.31)

Assuming all functions and weights are differentiable in the context, the
gradient ∇wji applied to wji is:

∇wji = −τ ·
∂L

∂wji
= τ · δj · yi (2.32)

where δj = ej · φ′(vj) (2.33)

where τ is the learning rate parameter of the back-propagation algo-
rithm and δj denotes the local gradient. The minus sign accounts for
gradient descent in weight space (i.e. seeking the direction for weight
change that reduces the value of L).

From (2.33), a key factor involved in the calculation of the weight
adjustment ∇wji is the error signal ej. In this context, two distinct cases
can be identified: neuron j is an output node and neuron j is a hidden
neuron. In case one where neuron j is an output node, this is simple to
handle because the error signal ej can be computed directly by (2.28).
In case two where neuron j is a hidden neuron, by considering the
error signal flow to the output neuron k, the back-propagation formula
of the local gradient δj yields:

δj = φ′(vj) · ∑
k

δkwkj, where neuron j is hidden (2.34)

More details of intermediate mathematical equations are referred
to [Hayk 10, Section 4.4]. Since the term ∑k δkwkj only contains terms
in later layers, the local gradient δj can be calculated from output to
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input on the network [Ripl 07], which is the weighted sum of the δ-s
computed for the neurons in the next hidden or output layer that is
connected to neuron j [Hayk 10].

Conceptually, as a feed-forward network depicted in Fig. 2.14, the
forward function signal is an input stimulus signal that comes from the
input layer of the network propagating forward (neuron-by-neuron)
through the layers to the output end; the error signal, which is induced
when the error function is computed by the difference between the
output nodes of the network and the labels, originates at an output
neuron of the network and propagates backward (layer-by-layer) until
the input layer.

2.4.2 Deep Learning

In the early stages development of neural networks, networks were
generally believed to be very difficult to train, which could be simply
because these networks were computationally too costly to allow ex-
periments with the hardware available at the time. However, with the
rapid development of parallelable and distributable computational de-
vices, neural networks were getting more layers (deeper and bigger) and
more complicated structures, especially because of the breakthroughs
made since 2006 [HOT 06]. Nowadays, the term deep learning, which
commonly refers to machine learning using a deep neural network,
extends beyond the neuroscience perspective. Instead, deep learning
is mostly interpreted from the perspective of function approximation
problems, which mainly focuses on applied mathematics fields such as
linear algebra, probability, information theory, and numerical optimiz-
ation. A more detailed history of deep learning development can be
found in [GBC 16, Section 1.2].

Deep Learning has revolutionized the field of computer vision over
the past decade, pushing previously infeasible tasks such as faithful
image classification beyond a human accuracy level on challenging
data sets like ImageNet [Deng+ 09]. In addition, the availability of a
significant amount of training data has enabled deep learning tech-
niques to dominate several areas of image reconstruction, such as de-
noising [Zhan+ 17], deblurring [Xu+ 14], super-resolution [Dong+ 15],
inpainting [Path+ 16], or the reconstruction of images from different
modalities such as medical [Litj+ 17] or time-of-flight data [Su+ 18].

While a lot of earlier research has focused on manually construct-
ing parts of the mapping represented by the network, and merely
learning simple parts, e.g. linear, of the overall function, the suc-
cess of deep learning is based on two fundamental pillars: First, the
realization that a large number of image processing related tasks
can be represented extremely well by the network that is a deeply
nested composition of convolutions (i.e. local linear filters) and simple
component-wise non-linearities (e.g. setting negative entries to zero).
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Figure 2.15: The architecture of LeNet-5, a renowned convolutional neural
network for digits recognition. Courtesy of [LeCu+ 98]. The input image is
sent through a sequence of nested, parameterized convolutions followed by a
simple activation such as the rectified linear unit (ReLU) and sub-sampling
layers (also called pooling). Modern deep networks have far more than 7

convolutional layers, often more than 100 channels per layer, and additionally
use skip connections and batch normalization (not depicted here).

Second, the computational power to train such deep networks on the
desired task in an end-to-end fashion.

Fig. 2.15 illustrates the architecture of LeNet-5 [LeCu+ 98], a
renowned design of Convolutional Neural Networks (CNN) for classi-
fying images: The input image is filtered with several convolutions
with filter parameters named learnable kernels (i.e. synaptic weights
and bias in classical neural networks terminology). These learnable
convolutional filters are commonly named convolutional layers.

For the activation functions, modern deep neural networks utilize
simple activation functions, especially the rectified linear unit [GBB 11]
(ReLU, i.e. φ(x) = max(0, x)) for its computational simplicity, or the
Leaky ReLU [MHN+ 13] to ensure a non-zero gradient over the entire
domain.

A technique called stride and sub-sampling operations called pool-
ing layers compose many layers of such convolutions and simple ac-
tivation functions, along with slowly decreasing the resolution of
the structure by simply omitting every other computation. Finally,
the likelihood of each class is calculated as weighted linear combi-
nations of all outputs of the long chain of convolutions, i.e. the fully
connected layers (structured like a classic feed-forward neural network
in Fig. 2.13). Skip connections [He+ 16] and batch normalization
techniques [IS 15] are two extremely significant extensions of the ba-
sic prototype demonstrated in Fig. 2.15 that enable training through
ever-deeper networks.

For computational tasks where the output image needs to retain
the spatial structure of the input image, it is common to first decrease
the spatial resolution, similar to the classification network above, and
then increase it again, possibly with the help of previously computed
high resolution features, as is done, for example, in the celebrated
U-net architecture [RFB 15] (shown in Fig. 2.16). In such architectures,
the resolution-decreasing part is frequently referred to as an encoder,
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Figure 2.16: An architecture of classic U-Net. Courtesy of [RFB 15].

compressing the representation of an image to a few key parameters,
and the resolution-increasing part is referred to as the decoder.

Recently, the seminal deep image prior work [UVL 18b] proposed
to use an implicit regularization of a reconstruction process through
a suitable parameterization via a neural network, which is now com-
monly known as network reparameterization. This network repara-
meterization approach tries to benefit from the beneficial structure of
deep neural networks with less or no information about the desired
predictions, which is also known under the names of weakly-supervised
or unsupervised learning. This technique is gaining attention in con-
vex optimization applications like image denoising, reconstruction,
super-resolution, and inpainting.

2.5 experimental setup

In this section, details of the all-electronic THz imaging system are
given in Sec. 2.5.1. The details of measurement and synthetic datasets
used in this chapter are provided in Sec. 2.5.2.

2.5.1 All-electronic FMCW THz Imaging System

The all-electronic FMCW THz imaging system is based on hollow-
waveguide multipliers and mixers, operating in a frequency modu-
lated continuous wave (FMCW) mode for measuring depth informa-
tion [Ding+ 13]. The components operate at a center frequency of
577GHz with a bandwidth of 126GHz.

Fig. 2.17 illustrates the working mechanism of the imaging system,
and Fig. 2.18 shows the imaging system unit. Regarding the structural
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Figure 2.17: An illustration of the working mechanism of the THz 3D imaging
system, where the transmitter (Tx) and the receiver (Rx) are mounted on the
same platform.

Figure 2.18: Photo of the THz 3D imaging system.

setup, both the transmitter (Tx) and the receiver (Rx) are mounted in
a monostatic geometry, i.e. share the same observation direction. The
imaging unit, consisting of Tx, Rx, and optical components, is moved
along the x and y direction using stepper motors and linear stages.
The beam splitter and two hyperbolic lenses focus the beam radiated
from the transmitter to the target and then focus the beam reflected
from the target back to the receiver.

For the FMCW operation, a voltage controlled oscillator (VCO) is
tuned from 14.28 − 17.78GHz (see Fig. 2.19). The signal at the output
of the VCO is distributed to the Tx and the Rx using a power splitter.
For transmission, the signal is then upconverted to 514 − 640GHz
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Figure 2.19: Schematic of the THz 3D imaging system setup and the host PC.

with a chain of multipliers. The signal is digitized with 10 MS (mega-
samples) per second sampling rate and transferred to the host PC
after being down-converted to the intermediate frequency (IF) range
using a sub-harmonic mixer, which is fed with the 6th harmonic of the
VCO signal An additional delay between the Tx and Rx path cause a
frequency offset in the intermediate frequency signal for proper data
acquisition.

This imaging unit takes a depth profile of the object at each lateral
position to acquire a full 3D image. The data is acquired with a lateral
step size of 262.5µm in the xy-direction. During measurements, the
motor controller and the data acquisition are synchronized to enable
on-the-fly measurements. An adequate integration time and velocity
are chosen to provide enough time for the acquisition of 1400 samples
per depth profile and 36 averages per sample. The total per-pixel
acquisition time for such an averaged depth profile is 5ms.

The resolution of the setup is measured as 793.7µm using a metallic
USAF 1951 Resolving Power Test Target scaled to the THz frequency
range, which is close to the theoretical ideal expectation of 622µm
(numerical aperture NA= 0.508 @ 578GHz). This is achieved by mea-
suring minimum dimension which obtains more than 3dB intensity
difference. Due to the monostatic scanning approach, no optical mag-
nification or vignetting occurs. The system’s depth resolution ∆d is
defined by

∆d =
c0

2 × B
(2.35)
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where c0 is the speed of light in air, and B is the system bandwidth.
Therefore, by calculation, this imaging system has ∆d = 1210µm depth
resolution.

system calibration Before each experimental measurement,
system calibration is performed to ensure that the measured signals
are correlated to the reference target [Ding+ 13]. In all experiments of
this thesis, an isotropic metallic target is chosen as a reference target,
which has a strong and stable reflection upon the THz radiation.
Hence, a single measurement of the metallic target is recorded as the
Smax signal, while a free space measurement is recorded as the Smin
signal. The calibration procedure is formulated as:

Snorm =
Smeasure − Smin

Smax − Smin
(2.36)

where Snorm is the normalized stored signal and Smeasure is the mea-
surement signal before calibration.

system setup for multi-layer reflection datasets For
multi-layer reflection datasets (see Sec. 2.5.2.2), some of the settings are
adjusted: the system is operating from 499.96 GHz to 733.38 GHz. The
data is acquired by 1400 samples per depth profile and 106 averages
per sample, while the lateral step size remains at 262.5µm in the
xy-direction.

2.5.2 Datasets

In this dissertation, evaluations are based on measurement datasets
and synthetic datasets based on single-path reflection (Sec. 2.5.2.1)
as well as multi-path reflection (Sec. 2.5.2.2), where the number of
samples is denoted by Nx for horizontal, Ny for vertical, and Nz for
depth direction respectively.

2.5.2.1 Single-path Reflection Datasets

measurement datasets Evaluations in Chapters 3, 4 and 5 are
based on the following measurement datasets:

• MetalPCB: A nearly planar “USAF” target is etched on a cir-
cuit board (Fig. 2.20). The dataset has been acquired using the
setup described in Sec. 2.5.1 and has the resolutions Nx = 446,
Ny = 446, Nz = 1400. The lateral per-pixel distance (i.e. the
sensor mechanical movement distance) is 262.5µm. The target is
etched using the standard size scale of USAF target MIL-STD-
150A [Stan 59].
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Figure 2.20: MetalPCB datasets are measured by metal on a PCB board test
target fabricated according to USAF 1951 MIL-STD-150A standard, where
the group and row numbers indicate the lines per millimeter according
to [Stan 59]. Group 0 Element 4 is indicated.

Figure 2.21: StepChart datasets are measured by a metallic step object with
a reference zero.

• StepChart: A metallic step chart with steps varying from 4000µm
to 50µm, and a reference plane to locate the reference zero po-
sition (Fig. 2.21). The dataset has also been acquired using the
setup in Sec. 2.5.1 with the resolutions Nx = 575, Ny = 113,
Nz = 1400. The lateral per-pixel distance is 262.5µm.

It should be noted that the THz system has a lateral resolution of
622µm as its ideal diffraction limit, an experimentally measured lateral
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(a) SynthUSAF (b) SynthObj

Figure 2.22: Synthetic datasets are generated by 3D objects from a
USAF resolution target and an engine bearing part from MVTec ITODD
datasets [Dros+ 17]

resolution of 793.7µm and a depth accuracy of ∆d = 1210µm as its
diffraction limits (see Sec. 2.5.1).

Due to the memory limitation of machine learning approaches
(see Chapters 4 and 5), MetalPCB datasets are cropped out by 91

measurements in the spatial depth direction centered around the main
lobe for experiments in Chapters 4 and 5, i.e. Nz = 91. Details of the
cropping window are described in Chapter 3 Sec. 3.3.1.

synthetic datasets In addition to measurement datasets, the
following synthetic datasets are simulated for experiments in Chap-
ter 5:

• SynthUSAF: The ground truth THz model parameters are syn-
thetically generated using the THz model equation (2.16) based
on a tiled planar USAF object (Fig. 2.22a).

• SynthObj: The ground truth THz model parameters are syn-
thetically generated from a 3D object (Fig. 2.22b) from MVTec
ITODD datasets [Dros+ 17].

To simulate different noise levels, two synthetic noise models are
used:

• +AWGN: adding Additive White Gaussian Noise (AWGN) by
−20 to 10dB peak-SNR (PSNR) to the frequency domain signal,
with a static background noise level and a varying signal power.

• +ShotNoise: On top of the AWGN, a random salt-and-pepper
noise signal with a power of 60dB higher is added for 10% of
the pixels.

All synthetic datasets are generated using the size of cropped
MetalPCB, i.e. Nx = 446, Ny = 446, Nz = 91.
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Figure 2.23: MPTarget datasets are measured by a metallic frame containing
four different dielectric materials: Fused Silica, Silicon, PVC, and COC
(bottom right). No supporting structure is under any of these four materials
(i.e. only air behind materials).

2.5.2.2 Multi-path Reflection Datasets

For multi-path reflection datasets, the number of samples is denoted
by Nx for the horizontal direction, Ny for the vertical direction, L for
the frequency domain respectively.

measurement datasets Evaluations in Chapter 6 are based on
the following measurement dataset:

• MPTarget: A metallic frame containing four different dielectric
materials: Fused Silica, Silicon, PVC, and COC (Fig. 2.23). Note
that there is no supporting structure beneath these four materials,
i.e. there is only air behind the materials. The datasets have
been acquired by the setup described in Sec. 2.5.1 and has the
resolutions Nx = 413, Ny = 413, and the number of samples in
the frequency domain L = 1400.

Fig. 2.24 shows the sum of the measured signal magnitudes in
the MPTarget datasets, where signal magnitudes are calibrated to the
metallic region. The reduced signal magnitudes by these four materials
indicate that the four dielectric materials are partially transmitting and
partially absorbing the THz radiation energy in the operating THz
frequency range.

To have a reference value of the material parameters, the complex
refractive index of these four materials are measured by the Institute
of High Frequency and Quantum Electronics (HQE) from 200 GHz
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Figure 2.24: The sum of the measured signal magnitudes in MPTar-
get datasets.
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Figure 2.25: Measured complex refractive index of all four dielectric materials
in the MPTarget datasets from 200 GHz to 4.495 THz. The measured refrac-
tive index within the operating frequency (from 499.96 GHz to 733.38 GHz)
are averaged on real and imaginary parts individually and are taken as the
reference complex refractive index η for comparison in Chapter 6.

to 4.495 THz respectively and are plotted in Fig. 2.25. The measured
refractive index within the operating frequency, which is 499.96 GHz−
733.38 GHz, is averaged on real and imaginary parts individually and
is taken as the reference complex refractive index η for comparison
in Chapter 6. For the material thickness, around 10 measurements
(mechanically by the HQE) are taken across each material respectively,
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Material refractive index η thickness

FuseSilica 1.9224 − 0.0039i 1016µm
Silicon 3.3986 − 0.0014i 1005µm

PVC 1.8174 − 0.0309i 5010µm
COC 1.5324 − 0.0008i 3058µm

Table 2.1: Reference material and geometric parameters of all four materials
in the MPTarget datasets: the complex refractive index η and the measured
thickness in µm.

and then the average thickness is calculated as the reference value.
Table 2.1 summarizes the reference value of material and geometric
parameters in the MPTarget datasets.

synthetic datasets The theoretical analysis and evaluation in
Chapter 6 are based on these synthetic datasets:

• SynthMPT: The ground truth material and geometric parameters
are chosen by the reference values of all four dielectric materials
in Table 2.1. The THz data is simulated based on the multi-path
reflection model (see Sec. 6.2 and (6.8)).

• SynthMPT∗Hamm: The ground truth material and geometric
parameters are chosen by the reference values of all four dielec-
tric materials in Table 2.1. The THz data is simulated based
on the multi-path reflection model and the Hamming window.
More details will be given in Chapter 6.



3
C O M P U TAT I O N A L I M A G E E N H A N C E M E N T

3.1 motivation

A wide range of technological approaches to realize THz imaging sys-
tems have been demonstrated [HN 95; Coop+ 11; Ding+ 13; Kahl+ 12]
in recent years, that frequency modulated THz signals allow to sense
temporal or phase shifts to the object’s surface, making the 3D THz
imaging possible. Despite the fact that in most of these approaches,
THz imaging is performed close to the diffraction limit, the compara-
tively low spatial resolution associated with the long THz radiation
wavelengths significantly hampers the application range. There is a
huge interest to increase the spatial resolution of THz imaging beyond
the diffraction limit, to make this technique competitive in comparison
to established methods of other imaging modalities, such as optical or
X-ray.

Hence, THz imaging below the diffraction limit is an emerging
area [CDM 07], which can roughly be classified into two alternatives:
by system enhancements or by computational approaches. System
enhancements include for example, interferometric sensing [JDM 01]
to increase the depth sensitivity in THz time-of-flight imaging, or
near-field sensing approaches [CKC 03] which demonstrate a nano-
meter scale lateral resolution by circumventing the diffraction limit.
Computational image enhancement techniques aim at improving the
resolution by utilizing numerical procedures and additional signal or
system information, e.g. oversampled THz imaging signals, without
introducing additional equipment effort and cost.

Depending on the THz image acquisition mode, there are several
approaches for computational image enhancement. THz imaging
super-resolution (also referred to as high-resolution or image restora-
tion) is often associated with spatial resolution enhancement in the
xy-direction [XFL 14; Li+ 08; Ding+ 10; Hou+ 14; AA 16]. In con-
trast, depth resolution enhancement is associated with improvement
in azimuth direction (z-direction) [Walk+ 12; CHP 10; Taka+ 09].

The majority of research focuses on the lateral resolution of 2D THz
images, where the Lucy-Richardson deconvolution algorithm [Lucy 74;
Rich 72] is one of the most frequently used methods: Knobloch et al. [Knob+ 02]
firstly applied Lucy-Richardson deconvolution on THz images; Li et al. [Li+ 08]
proposed to use the Lucy-Richardson deconvolution algorithm for a
coherent THz 2D imaging system; Ding et al. [Ding+ 10] used the Lucy-
Richardson deconvolution for a THz reflective 2D imaging system;
Xu et al. [XFL 14] proposed a THz time-domain spectroscopy im-

35
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Figure 3.1: The computational THz image enhancement approach concen-
trates on the optimization-based enhancement, the quality of THz image, the
THz data processing, and the physical model (3.3).

age high-resolution reconstruction model incorporating a 2D wavelet
decomposition and a Lucy-Richardson deconvolution to reconstruct
a high-resolution THz image from four low-resolution images and
to reconstruct a high-resolution image from a single degraded 2D
low-resolution image.

In this chapter, a novel method to enhance the THz image resolu-
tion beyond the diffraction limit is described, attaining a lateral (xy)
resolution increase and a depth (z) accuracy increase. The concept is
demonstrated for a Frequency Modulated Continuous Wave (FMCW)
THz scanning system operating at 514 − 640GHz, but can certainly
be adapted to other THz imaging techniques. This method combines
the depth accuracy with the lateral resolution enhancement to achieve
a jointly improved spatial resolution and accuracy in both, xy- and
z-direction.

As illustrated in Fig. 3.1, this approach concentrates on the optimiz-
ation based enhancement, the quality of THz image, the THz data
processing, and the physical model (3.3) within the overall context of
the optimization-based enhancement concept (Fig. 1.1b). The details
of the pre-processing and the curve fitting procedure are described in
Sec. 3.2.1 and Sec. 3.2.2 respectively, while Sec. 3.2.3 provides details
about the initialization of the curve fitting. Sec. 3.2.8 describes the 2D
deconvolution procedure for the reconstructed THz intensity image.
In Sec. 3.3, the evaluation of the computational result of the method is
depicted.

3.2 methodology

In the THz 3D imaging system mentioned in [Ding+ 13], the signal
was assumed to have an ideal flat target with perfect orthogonal align-
ment to the THz sensor. However, perfect planarity and orthogonality
require high precision in the manufacturing procedure and calibra-
tion of the acquisition setup. To study more realistic THz imaging
scenarios, non-planar targets (see Figs. 2.20 and 2.21), which are not
perfectly orthogonally aligned to the sensor, are examined such that
the distance between sensor to a lateral pixel in xy-direction is an
unknown variable.
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Figure 3.2: Block diagram of the computational enhancement method (see
intensity images in Fig. 3.6 and Fig. 3.8).

Fig. 3.2 depicts the computational enhancement method, which
comprises three major components: pre-processing, parameter extrac-
tion, and deconvolution. In the pre-processing part, the measured
complex signal is interpolated by zero-padding to obtain more sam-
pling points in z-direction (see Chapter 2 Sec. 2.2). In the parameter
extraction part, a complex model is fitted to the in-phase and quadra-
ture components of the signal in the z-direction for each lateral posi-
tion. From this fitting, the corrected reflectance complex field signal
and depth information is deduced. In the deconvolution part, the
reconstructed 2D image is processed by the deconvolution algorithm
to form a high resolution image in (x, y)-domain.

3.2.1 Preprocessing

As described in the fundamentals (Chapter 2 Sec. 2.2), the measured
complex frequency domain signal is zero-padded and converted to the
complex spatial domain signal by Fourier Transform. With the initial
input data to the computational procedure, a complex THz signal is
acquired in a per-pixel manner with frequency ramping [MV 89]. In
this chapter, ĝ(x, y, t) is denoted as the measured complex signal at
lateral position (x, y) with length Nt.

In order to achieve sub-wavelength geometric correction, more
sampling points on the z-axis are required for robust curve fitting.
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Based on the current acquisition system (see Chapter 2 Sec. 2.5.1), an
intuitive method is to interpolate the signal in the spatial domain, but
the time domain signal provides another option. Instead of spatial
interpolation, the discrete signal is extended by a factor of Np using
zero-padding of the complex electric field signal ĝ(x, y, t) in the time
domain:

ĝNp(x, y, t) =

{
ĝ(x, y, t), if t < Nt

0, otherwise
, (3.1)

where Np is the zero-padding factor, and the length of ĝNp is Nz =

Np · Nt. In this chapter, Np = 9 is adopted empirically.
After zero-padding, the signal is transformed into the spatial

domain by applying a deramp-FFT [MV 89].

g(x, y, z) = F{ĝNp(x, y, t)} (3.2)

The resulting 3D image g can be expressed as a 3D matrix in the spa-
tial xyz-domain, representing per-pixel (x, y) the complex reflectivity
of THz energy in z-direction represented by the complex samples
g(x, y, z0) → g(x, y, zNz−1).

3.2.2 Per-pixel Model Parameter Estimation

In this part, the per-pixel parameter estimation is applied in the z-
direction in order to represent the measured complex signal by a
complex reflection model. As each pixel is treated independently,
notations are simplified by dropping the pixel-location using, e.g.
g(zi) for g(x, y, zi).

As described in Chapter 2, the system is calibrated by amplitude
normalization with respect to an ideal metallic reflector. In this case,
an ideal rectangular frequency amplitude signal response is achieved,
which, after being Fourier transformed, results in an ideal sinc function
A(z) as continuous spatial signal amplitude. In this model shown
in (2.16), the single-path reflection is assumed, and the extension to
multi-path reflection will be discussed in Chapter 6. By the single-path
reflection assumption, the complex signal model A(z) is modeled as a
modulated sinc function:

A(ê, σ, µ, ϕ|z) = ê · sinc (σ(z − µ)) · exp (−i(ωz − ϕ))

where, sinc(t) =


sin(πt)

πt
t ̸= 0

1 t = 0

(3.3)

where ê is the electric field amplitude, µ and σ are the mean (i.e. the
depth) and the width of the sinc function, respectively, ω is the center
frequency of the sinusoidal carrier and ϕ is the depth-related phase
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shift. Thus, the parameter extraction is formulated as a complex curve
fitting process for optimizing and minimizing the energy function L:

L = arg min
ê,σ,µ,ϕ

∑
z∈Z f

[
(gre(z)− Are(ê, σ, µ, ϕ|z))2

+ (gim(z)− Aim(ê, σ, µ, ϕ|z))2
] (3.4)

where the subscripts re and im denote the real and the imaginary part
of a complex number, respectively, and Z f is the fitting window (see
Sec. 3.2.4).

3.2.3 Initialization for Non-convex Optimization

Because of the highly non-linear optimization involved in the curve
fitting process, a direct application of (3.4) to a non-linear solver
potentially results in local minima and does not lead to robust results.
Therefore, the following optimization steps are applied to achieve a
robust initialization of the complex curve fitting:

1. Estimate the signal’s maximum magnitude z-position zm in order
to localize the curve fitting window (see Sec. 3.2.4).

2. Apply a curve fitting to the magnitude signal leading to initial
values for êm, µm, σm (see Sec. 3.2.5).

3. Estimate the initial phase value ϕm using a phase matching with
respect to the angle of complex signal ∠g (see Sec. 3.2.6).

4. Based on the initial values êm, µm, σm, ϕm the optimization is
performed by minimizing the energy L (see (3.4)) using the
Trust Region Algorithm [CL 96].

5. Reconstruct an intensity image IA and an depth image DA based
on the curve fitting result (sec Sec. 3.2.7).

This curve fitting approach significantly reduces the per-pixel
intensity inhomogeneity (see Sec. 3.3.3). The subsequent lateral de-
convolution algorithm discussed in Sec. 3.2.8 involves the numerical
solution of an ill-posed inverse problem of finding the blur kernel and
enhancing the image’s sharpness at the same time, which is very sensi-
tive to noise. Therefore, correcting the intensity yields two advantages,
i.e., it stabilizes the numerical deconvolution process and prevents
wrong interpretations of intensity variation as structural or material
transitions. The comparison of lateral resolution will be provided
in Fig. 3.8 and discuss the lateral resolution enhancement with and
without the per-pixel parameter extraction in Sec. 3.3.4.
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3.2.4 Curve Fitting Window

As this chapter focuses on the primary reflection signal, assuming that
the geometric reflection energy concentrates on the first air-material in-
terface, we locate the z-position that exhibits the maximum magnitude
within a fitting window

Z f ∈ [zmax − τf , zmax + τf ] (3.5)

with center
zmax = arg max

zi
|g[zi]| , (3.6)

i.e., zm is the maximum magnitude z-position in the complex spatial
domain data. τf is the half-width of the fitting window. The choice of
τf is discussed in Sec. 3.3.1.

3.2.5 Magnitude Curve Fitting

Since the complex model A(z) in (3.3) is non-linear and the optimiz-
ation for L in (3.4) is non-convex, the estimation of the initial param-
eters is critical to avoid local minima. A reliable initial estimate of
the complex curve fitting parameters êm, µm, σm is deduced from a
magnitude curve fitting.

The magnitude signal model Am(z) is derived from (3.3) and is
expressed as

Am(êm, µm, σm|z) = êm · |sinc (σm(z − µm))| (3.7)

where êm is the electric field amplitude based on signal magnitude,
µm is the center of sinc function, and σm is the width. The magnitude
curve fitting minimizes the energy function Lm by the Trust-Region
Algorithm [CL 96]

Lm = arg min
êm,µm,σm

∑
z∈Z f

(|g(z)| − Am(êm, µm, σm|z))2 (3.8)

After the magnitude curve fitting, êm, µm, σm are the initial values
for ê, µ, σ with respect to the complex signal model in (3.3). However,
an estimate for the phase angle ϕm is still required.

3.2.6 Estimating the Initial Phase Value ϕm

We assume that within the fitting window Z f , the phase angle ωz − ϕ

in the model (3.3) matches the phase angle ∠g in the spatial domain
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data g(z). The corresponding optimization energy functional mea-
sures the linear deviation between these phase angles as follows

Lϕ = arg min
ϕm

1
2 ∑

z∈Z f

[
(cos(ϕm − ωz)− cos(∠g))2

+ (sin(ϕm − ωz)− sin(∠g))2
] (3.9)

Setting the gradient of Lϕ to zero and applying trigonometric identi-
ties, we obtain

sin ϕm ∑
z∈Z f

cos(ωz +∠g) = cos ϕm ∑
z∈Z f

sin(ωz +∠g) (3.10)

In (3.10), the initial phase angle ϕm is independent from the data
angle ∠g. Therefore, the minimum to (3.9) is found by solving for ϕm

in (3.10), yielding

ϕm = tan−1 ∑z∈Z f
sin(ωz +∠g)

∑z∈Z f
cos(ωz +∠g)

(3.11)

After this phase initialization, êm, µm, σm and ϕm are given as initial
values for ê, µ, σ and ϕ in the model in (3.3), respectively, and the
model is fitted according to the energy function L in (3.4) using the
Trust Region Algorithm [CL 96]. Because of scattering and multi-layer
reflection, error exists if we fit in an ideal sinc-function. Therefore, σ

is extracted as a varying parameter to indicate the error. The depth
parameter µ is evaluated in Sec. 3.3.2. The amplitude parameter ê is
further processed in a 2D approach. The processing method on all
other parameters (µ, σ, ϕ) will be investigated in future research.

3.2.7 THz Image Reconstruction

In order to extract the per-pixel intensities using the THz model, the
reference intensity image Ig is defined based on the input data g as
the intensity of the z-slice with the maximum average magnitude:

Ig(x, y) = g[zmean] · g[zmean]
∗

where, zmean = arg max
zi

∑x,y |g(x, y)[zi]|
Nx Ny

(3.12)

where g∗ is the complex conjugate of g and Nx, Ny are the size of the
matrix in the x-axis and y-axis, respectively. The reconstructed intensity
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is deduced from the curve fitted data model and is defined as the
intensity of the THz signal (3.3) at the center position µ:

IA(x, y) = A(x, y, µ) · A(x, y, µ)∗

= ê2(x, y) · sinc2(0)

= ê2(x, y)

(3.13)

3.2.8 Deconvolution

After the curve fitting, the reconstructed intensity IA is a 2D image
with real and positive values. Now, it is possible to apply a state-of-art
2D deconvolution algorithm to enhance the xy-domain resolution.
In contrast to prior work, a total variation (TV) blind deconvolution
algorithm is applied to improve the spatial resolution [XJ 10; XZJ 13].

In deconvolution, the reconstructed intensity image IA is expressed
as a blurred observation of a sharp image Id

IA = Id ⊛ h + ε (3.14)

where h is the spatially invariant point spread function (PSF, also known
as blur kernel), ε denotes the noise and ⊛ denotes convolution. Blind
deconvolution methods allow for estimating the blur kernel directly
from the data, which is, however, an ill-posed inverse problem that
requires prior knowledge in order to deduce a robust result [Levi+ 11].
In this chapter, the sparse nature of intensity gradients [PF 14] is
utilized and a state-of-art TV blind deconvolution algorithm is chosen
that minimizes

(Id, h) = arg min
Id,h

∥Id ⊛ h − IA∥1 + λr∥∇Id∥1. (3.15)

Here, ∥Id ⊛ h − IA∥1 is commonly referred as a data term, λr is a
regularization parameter and ∥∇Id∥1 is the TV-regularization (or prior)
that enforces the gradient of the resulting deblurred image Id to be
sparse. As a by-product, the blind deconvolution yields the estimated
PSF h. The final results are obtained by the implementation from
Xu et al. [XJ 10; XZJ 13].

3.3 experimental result

In this section, the experimental results of the computational image
enhancement method are discussed in detail, where the window size
(Sec. 3.3.1), the depth accuracy (Sec. 3.3.2), the intensity reconstruc-
tion (Sec. 3.3.3), the lateral resolution (Sec. 3.3.4) and the embedded
structures (Sec. 3.3.5) are evaluated.

To evaluate the computational image enhancement method, the
MetalPCB and StepChart datasets are used (see Chatper 2 Sec. 2.5.2).
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The following images, reconstruction and image enhancement
methods are applied and compared, using the naming template as
{image}_{method}–{kernel}, where image is the intensity image applying
deconvolution methods, method is the method applied to the intensity
image, and kernel is the deblur kernel adopted in the deconvolution
method.

1. Refer: The reference intensity image Ig (3.12); no reconstruction
using curve fitting and no image enhancement applied.

2. Reconst: The reconstructed intensity image IA using curve fit-
ting; no image enhancement applied.

3. Refer_Xu: image enhancement using Xu et al. [XJ 10; XZJ 13]
applied to reference intensity Refer.

4. Reconst_Xu: image enhancement using Xu et al. [XJ 10; XZJ 13]
applied to reconstructed intensity Reconst. This is the method
described in Sec. 3.2.

5. Refer_LR-G: using Lucy-Richardson [Lucy 74; Rich 72] with
gaussian kernel applied to reference intensity Refer.

6. Reconst_LR-G: using Lucy-Richardson [Lucy 74; Rich 72] with
gaussian kernel applied to reconstructed intensity Reconst.

7. Refer_LR-Xu: using Lucy-Richardson [Lucy 74; Rich 72] with
sparse kernel extracted from Xu et al. [XJ 10; XZJ 13] applied to
reference intensity Refer.

8. Reconst_LR-Xu: using Lucy-Richardson [Lucy 74; Rich 72] with
sparse kernel extracted from Xu et al. [XJ 10; XZJ 13] applied to
reconstructed intensity Reconst.

In the following, the optimal window size will be firstly deduced
for the quality control of the fitting using the MetalPCB dataset
(Sec. 3.3.1). In Sec. 3.3.2, the depth accuracy will be discussed using the
StepChart dataset. In Sec. 3.3.4, the lateral resolution will be evaluated
on the MetalPCB dataset. All intensity images are normalized to a
perfect metal reflection and displayed using MATLAB® ’s perceptional
uniform colormap parula [Math 16].

3.3.1 Window Size Optimization

In Fig. 3.3, the average intensity of g by the z-axis in the PCB region
of the MetalPCB dataset is shown. By comparison to the symmetric
model in (3.3), the z-axis signal has a lower main lobe to side lobe
ratio in the PCB region. This might be due to the superposition of
signal reflection from the front and back PCB surfaces (see Chapter 2

Fig. 2.20). This indicates that a too-large fitting window size τf in (3.5)
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Figure 3.3: Average reflected intensity of g in PCB region.
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Figure 3.4: Mean RMSE and maximum RMSE by fitting window width τf .

would corrupt any quantitative evaluation and should be avoided. On
the other hand, a too-small fitting window size is also not feasible,
as a sufficient number of sampling points is needed to get a robust
fitting result and to avoid over-fitting.

To obtain a reliable numeric measurement, the fitting error is
evaluated for varying fitting window half-widths τf using the Root-
Mean-Square-Error (RMSE) between the fitted model A (3.3) and the
measured data g in z-direction:

RMSE(x, y) =

√√√√ ∑z∈Z f
|g(x, y)[z]− v(x, y, z)|2

2τf + 1
(3.16)
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Figure 3.5: Cross section depth of StepChart datasets by the curve-fitting
method and the step edges.

As a measure for the full THz image, the mean and the maximum
RMSE over all pixels are calculated by:

Mean RMSE =
∑x,y RMSE(x, y)

Nx Ny

Max RMSE = max
x,y

(RMSE(x, y))
(3.17)

In Fig 3.4, the mean and the maximum RMSE of the curve fitting
with a different fitting window τf are shown. It can be seen that the
mean RMSE and maximum RMSE are both increasing when τf ≤ 13,
which is expected due to over-fitting. When the fitting window is
increased to a larger value, it can be observed that the mean RMSE
is decreased steadily until τf = 45. The maximum RMSE, however,
has no clear tendency and strongly varies beyond τf = 28. After
considering that the mean and maximum RMSE are both considerably
low when the window size is 45, τf = 45 is chosen as the reference
and optimal window size, which is used throughout the rest of this
chapter.

3.3.2 Depth Accuracy

In this part, the depth accuracy is evaluated using the StepChart dataset.
In comparison to the depth of the curve-fitting method depthµ, the
depth depthmax is obtained using the maximum magnitude position
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Depth Difference Relative Error
depthgt depthmax depthµ Errormax Errorµ

Mean SD Mean SD
(µm) (µm) (µm) (µm) (µm) (%) (%)

4009.0 3898.5 7.2 3831.3 12.4 2.76 4.43

2987.0 2797.2 54.0 2810.8 13.0 6.35 5.90

2006.0 1908.7 53.6 1926.8 19.4 4.85 3.95

1004.0 941.1 0.0 958.6 23.4 6.26 4.53

903.0 806.7 0.0 815.3 17.5 10.67 9.71

803.0 792.8 40.9 742.0 14.0 1.27 7.60

703.0 633.8 77.3 665.5 20.5 9.84 5.33

600.0 590.0 65.6 561.9 19.5 1.66 6.35

472.0 403.3 0.0 468.8 13.9 14.55 0.68

410.0 403.3 0.0 391.0 13.7 1.63 4.64

298.0 268.9 0.0 287.6 14.7 9.77 3.48

208.0 268.9 0.0 192.2 15.1 -29.27 7.60

91.0 17.7 45.5 89.3 17.4 80.58 1.88

42.0 102.2 61.8 34.9 21.9 -143.28 16.84

Table 3.1: Depth difference, depth difference standard deviation (SD) and er-
ror comparison between maximum magnitude and the curve-fitting method.

zmax in (3.6) of g. The z-positions are both calibrated to µ by the
reference zero z-position z0:

depthµ =
µ − z0

Np
· ∆d

depthmax =
zmax − z0

Np
· ∆d

(3.18)

where Np is the zero-padding factor in (3.1), ∆d = 1210µm is the
physical depth per sample, i.e. the system depth resolution in (2.35).

In Fig. 3.5, the cross-section depth of StepChart dataset is plotted
with an expected position of the edges. It can be observed an interfer-
ence effect due to signal superposition at several edges, most notably
at x = 50mm and x = 81mm. Even though blind deconvolution can
hardly resolve strong interference effects, a spatially varying point-
spread-function would be required in order to cope with this kind of
effect in the deconvolution stage; see also Hunsche et al. [Huns+ 98].

To circumvent interference effects, depth values are extracted and
averaged from the center 350 xy-samples for each step. Then, the depth
differences between adjacent steps are calculated and compared to the
ground truth values, which are obtained by mechanical measurement.
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Figure 3.6: Comparison between (a) Reference intensity Ig (Refer) (b) Re-
constructed intensity IA (Reconst). The homogeneous metal regions for
Sec. 3.3.3 and the PCB region for Sec. 3.3.5 are indicated.

Table 3.1 depicts the depth differences and the corresponding standard
deviation (SD) of the ground truth depthgt, the maximum magnitude
method depthmax and the proposed curve fitting depthµ (3.18). In
order to compare the depth accuracy, the relative error is calculated
as:

errorµ =
depthµ − depthgt

depthgt

errormax =
depthmax − depthgt

depthgt

(3.19)

In this chapter, a depth difference is considered resolvable when the
relative error is below 10% with a reasonably low deviation. Thus,
the method can still resolve the 91µm depth difference, while the
maximum magnitude method can only resolve the depth difference
up to 298µm. As a result, the curve fitting method enhances the system
depth accuracy to 91µm.

3.3.3 Intensity Reconstruction

In this part, the reconstructed intensity image that is directly deduced
from the enhanced depth accuracy according to (3.13) is evaluated
by the large homogeneous copper regions in the MetalPCB dataset.
However, the MetalPCB target is not perfectly flat and/or not perfectly
aligned orthogonally.

Fig. 3.6 depicts the intensity images for the reference intensity Ig

(Fig. 3.6a) based on (3.12) and the reconstructed intensity IA (Fig. 3.6b)
based on (3.13). It can be observed that the copper regions do not



3.3 experimental result 48

112 113 114 115
y (mm)

0

1

2

3

4

5

Va
ria

nc
e 

of
 re

fle
ct

ed
 in

te
ns

ity

10-3

Refer variance
Reconst variance

Figure 3.7: Evaluation of the variance of the reflected intensities along the
homogeneous metal regions in Fig. 3.6a and Fig. 3.6b in y-direction: For
each pixel-line (parameterized over the y-position in mm) we compute the
variance of the reference intensity Ig (Refer) and the reconstructed intensity
IA (Reconst) is given, showing the improvement resulting from the curve
fitting in Sec. 3.2.2.

appear to be fully homogeneous in the reference intensity image Ig.
After applying the high accuracy depth reconstruction, this intensity
inhomogeneity is significantly reduced in the reconstructed image IA.

Fig. 3.7 further analyzes the intensity homogeneity using a hori-
zontal metal region (see Fig. 3.6, lower image part). The horizontal
metal region consists of 18 pixel rows, while the intensity variance of
each y-position is computed in the reference intensity image Ig and
the reconstructed intensity image IA. Apparently, the reconstructed
intensity Ig has a significantly reduced intensity variance within all
rows of copper, as the reconstructed intensity is focused on an accurate
depth position for each lateral position.

Both, the visual and the numerical results in Fig. 3.6 and Fig. 3.7,
respectively, demonstrate that the intensity reconstruction method
achieves significantly improved homogeneous intensities on homoge-
neous material regions without introducing additional distortions or
noise.

3.3.4 Lateral Resolution and Analysis

In this section, the lateral domain enhancement by the enhancement
method is analyzed using the MetalPCB dataset. In Sec. 3.3.4, the
enhancement method is compared to Lucy-Richardson (LR) deconv-
olution method [Lucy 74; Rich 72] on behalf of the lateral resolution
and in Sec. 3.3.5 the silk structure embedded in the PCB region is
visually analyzed.
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(b) Reconst_LR-G
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(c) Refer_LR-Xu

20 40 60 80 100
x (mm)

10

20

30

40

50

60

70

80

90

100

110

y 
(m

m
)

0

0.2

0.4

0.6

0.8

1

1.2

intensity

(d) Reconst_LR-Xu
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(e) Refer_Xu
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(f) Reconst_Xu (the enhancement method)

Figure 3.8: Comparison between the three deconvolution methods ((a)(b)
Lucy-Richardson (LR) [Lucy 74; Rich 72] with gaussian kernel, top row ; (c)(d)
Lucy-Richardson with Xu’s kernel, middle row ; (e)(f) Xu et al. (Xu) [XJ 10;
XZJ 13], bottom row) applied to the reference intensity image Ig (left column)
and the reconstructed intensity image IA (right column). (f) depicts the Xu
deconvolution method on the reconstructed intensity image using sparse
kernel (the enhancement method).
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Figure 3.9: Comparison between (a) gaussian kernel (b) Xu’s sparse kernel
(c) cross-section of Gaussian and Xu’s sparse kernel

In Fig. 3.8, different output intensity images are shown with re-
spect to the input intensity image, the deconvolution method, and the
blur kernel. The left column shows the deconvolution results based on
the reference intensity image Ig, whereas the right column depicts the
results using the reconstructed intensity image IA. For deconvolution,
different deconvolution methods are applied: Xu et al.’s method [XJ 10;
XZJ 13] (Refer_Xu, Reconst_Xu, top row) and Lucy-Richardson (LR)
deconvolution method [Lucy 74; Rich 72] using a gaussian kernel
based on the theoretical numeric aperture (Fig. 3.9a) (Refer_LR-G,
Reconst_LR-G, center row). The LR deconvolution method with a
Gaussian kernel based on the system numerical aperture is a com-
monly applied THz deblurring method [XFL 14] [Li+ 08] [Ding+ 10].
Furthermore, the sparse kernels estimated by Xu et al.’s method
(Fig. 3.9b) are extracted and are plugged into the LR deconvolution
method (Refer_LR-Xu, Reconst_LR-Xu, bottom row). Note that Re-
const_Xu (Fig. 3.8f), is equal to Id, is the intensity image by the
enhancement method described in this chapter.
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Figure 3.10: Cross section intensity comparison at Group 0 Element 4 (see
Fig. 2.20) for different deconvolution methods. This element represents a
353.6µm line distance in (a) vertical direction (b) horizontal direction

In Fig. 3.9a and Fig. 3.9b, the Gaussian kernel and Xu’s sparse
kernel computed by blind deconvolution are shown respectively. Ob-
viously, the kernel estimated by Xu’s method models further effects
related to the imaging system and/or the observed target that are
not covered by the Gaussian kernel. By observation of the kernel
cross-section in Fig. 3.9c, Xu’s sparse kernel is not centered in the
y-axis since the blind deconvolution does not assume any symmet-
ric and centralized property during kernel optimization, but instead,
the kernel weights are optimized as fully independent parameters
throughout the process.

By visual comparison, it is clear that Refer_LR-G, Reconst_LR-
G (Lucy-Richardson with the Gaussian kernel), which has previously
been used for THz resolution enhancement, yields inferior results in
terms of sharpness and local contrast. Xu’s method that estimates
the blur kernel from the given intensity image yields much sharper
images with improved local contrast (Refer_Xu, Reconst_Xu). Using
Xu’s kernel instead of the standard Gaussian kernel clearly improves
the results obtained by the LR method (Refer_LR-Xu, Reconst_LR-
Xu). On the downside, Xu’s method and the LR method with Xu’s
kernel increase noise and overshooting effects. Xu’s method result is,
however, less affected by these artifacts. Apparently, all three methods
benefit from the enhanced intensity image using the curve-fitting
reconstruction method.

Moreover, Fig. 3.10 depicts the resolution enhancement using a
cross-section of group 0 element 4 of the USAF test target (see Fig. 2.20),
representing a line distance of 353.6µm. The cross section intensities
before deconvolution (Reconst) and after deconvolution (Reconst_LR-
G, Reconst_Xu, Reconst_LR-Xu) are shown respectively (refer to
Fig. 3.6b, 3.8b, 3.8f and 3.8d). Only the enhancement method Re-
const_Xu can resolve this resolution according to the 3 dB criterion.
Note that there are different definitions for resolution as discussed
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Figure 3.11: Comparison of intensity difference and modulation transfer
function (MTF) by methods to dimensions (a) horizontal intensity difference
(b) horizontal MTF (c) vertical intensity difference (d) vertical MTF

in [Fors+ 83]. However, the center position of Reconst_LR-Xu, Re-
const_Xu are both shifted, because the sparse kernel Fig. 3.9b is not
centered in the middle. Although blind deconvolution does not retain
the absolute intensity position, the relative intensity positions are
constant because a spatial invariant blur kernel is assumed in this
chapter.

In order to quantify the lateral resolution, the intensity contrasts
are evaluated at each of the horizontal and vertical resolution patterns
of the MetalPCB dataset (USAF target). In the case of vertical stripes,
the minimal and maximal intensity values are determined for each row
crossing the pattern’s edges given its known geometric structure. After
removing 10% of the cross sections in the boundary area, the mean
value is computed as the intensity difference (in dB). Analogously, the
intensity differences are computed for the horizontal stripes. Fig. 3.11

shows the intensity difference by the number of lines per mm and the
modulation transfer function (MTF) [Bore 01; Smit 66] for all methods
for vertical and horizontal resolutions. Commonly, to avoid simple
enhancement by linear multiplication, a logarithmic measurement
over 3 dB intensity difference is considered as a resolution boundary.
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Method Figure
Horizontal
resolution

(µm)

Horizontal
improve-

ment

Vertical
resolution

(µm)

Vertical
improve-

ment
Reconst (IA) Fig. 3.6b 794.3 – 762.0 –
Reconst_LR-G Fig. 3.8b 419.4 1.89 393.3 1.94

Reconst_LR-Xu Fig. 3.8d 402.3 1.97 368.6 2.07

Reconst_Xu (Id)1 Fig. 3.8f 346.2 2.29 359.6 2.12
1 Reconst_Xu is the intensity image Id by the enhancement method

Table 3.2: Lateral resolution enhancement based on the 3 db criterion using
the USAF test target. The best results are highlighted.
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Figure 3.12: Comparison between (a) PCB region of reference intensity Ig (in
decibel) (b) PCB region of the deconvoluted intensity Id (in decibel).

Table 3.2 depicts the highest resolution at which each method
delivers ≥ 3 dB. Notice, that there is a resolution improvement from
the non-deconvoluted image IA (Reconst), via the original LR method
(Reconst_LR-G) and the one using Xu’s kernel (Reconst_LR-Xu), fi-
nally, to the enhancement method (Reconst_Xu). Taking the 3 dB limit
as the boundary, horizontal improvement factors (in terms of resolu-
tion) of 2.29 is found for the curve-fitting method Reconst_Xu and of
1.89 and 1.97 for the LR method Reconst_LR-G and the improved LR
method Reconst_LR-Xu, respectively.

For the vertical resolution, the enhancement method has a vertical
improvement factor of 2.12, while the LR method and the improved LR
method have a vertical improvement factor of 2.07, respectively. For
the MTF, Fig. 3.11b and Fig. 3.11d show a significantly higher contrast
for the enhancement method (Reconst_Xu) compared to both, the LR
method (Reconst_LR-G) and improved LR method (Reconst_LR-Xu).
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Figure 3.13: Comparison of cross-section intensity in PCB region.

3.3.5 Embedded Structures

In this part, the PCB region on MetalPCB dataset is analyzed more
closely to investigate the effect of the enhanced lateral resolution on
the embedded silk structures.

In Fig. 3.12, the PCB region of the reference intensity Ig Refer (see
Fig. 3.6a) and the deconvoluted intensity Id Reconst_Xu (see Fig. 3.8f)
are shown. It can be observed that a periodic intensity pattern is
visible by the enhanced lateral resolution that is caused by woven silk
material embedded in the PCB region. The silk fibers introduce a
second energy reflection to the imaging system.

In Fig. 3.13, the cross-section intensity of the PCB regions in the
decibel scale is shown. Extracting the maximum contrast within the
PCB region we find an enhancement from 1.91dB to 7.98dB. Even
though the enhancement method nicely emphasizes the periodic silk
structure underneath the polymer surface material, the depth of this
embedded structure cannot be extracted by this approach, as the
handling of multi-reflection effects is beyond the scope of this chapter.

3.4 summary

In this chapter, a THz computational image enhancement method is
described to enhance the lateral resolution and depth accuracy beyond
the diffraction limit. This enhancement method comprises a parameter
extraction by the complex signal fitting model in the z-direction for
each pixel which allows for the acquisition of non-planar targets. This
parameter extraction incorporates an accurate estimation of the per-
pixel distance to the object surface, and a proper reconstruction of the
reflection intensity as a measure of the object’s material properties.
Based on the accurately reconstructed reflection intensity, this ap-
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proach allows applying state-of-art 2D blind deconvolution techniques
to improve the spatial xy-resolution beyond what is achievable with
traditional (e.g. gaussian kernel) deconvolution procedures.

The experiment results show that the curve-fitting method en-
hances the depth accuracy to 91µm. Because of this enhanced depth
accuracy, the experiment also shows that the curve-fitting reconstruc-
tion method achieves improved intensities on homogeneous, non-
planar material regions without introducing additional distortions or
noise.

Based on the reconstructed intensities, several lateral blind de-
convolution methods are applied. Evidently, all three examined THz
deconvolution methods benefit from the enhanced intensity image
using the curve-fitting method. In comparison to the classical Lucy-
Richardson deconvolution algorithm, the experiments show that this
enhancement method achieves the best horizontal resolution enhance-
ment from 794.3µm to 346.2µm, yielding an improvement factor of
2.29. In terms of intensity contrast, this enhancement method clearly
outperforms other approaches. Moreover, the experiments show that
this enhancement method can emphasize fine silk texture embedded
within a polymer material.



4
M O D E L - B A S E D AU T O E N C O D E R

4.1 motivation

In the THz imaging system, the physically interpretable quantities
relevant to the physical structure (i.e. the imaged object) cannot always
be measured directly. Instead, as shown in Chapter 2 and 3, each
pixel contains implicit information about such quantities, making the
inverse problem of inferring these physical quantities a challenging
problem with high practical relevance and interest in a wide variety
of applications.

By reformulating the model equation in Chapter 3 (3.3), in this
chapter x⃗ denotes the lateral x, y position. At each pixel location x⃗, the
relation between the desired (i.e. unknown) model parameters u, i.e.
the electric field amplitude ê, the position of the surface µ, the width
of the reflected pulse σ, and the phase ϕ, and the actual measurements
g(x⃗) ∈ Cnz is modelled via the equation:

g(x⃗, z) = (Au(zi))i∈{1,...,nz} + ε(x⃗)

Au(z) = ê · sinc (σ(z − µ)) · exp (−i(ωz − ϕ))

where, sinc(t) =


sin(πt)

πt
t ̸= 0

1 t = 0
,

and, u(x⃗) = (ê(x⃗), σ(x⃗), µ(x⃗), ϕ(x⃗)) ∈ R4

(4.1)

and ε denotes the noise and zgrid = (zi)i∈{1,...,nz} is the device-dependent
sampling grid in range direction. Thus, the crucial step in THz imag-
ing is to find the solution to the optimization problem in Chapter 3 (3.4)
of the form:

min
u

L(Au(zgrid), g(x⃗)) (4.2)

at each pixel x⃗, where L denotes the loss function, possibly along with
additional regularizers on the unknown parameters.

To solve these inverse problems, the microwave and THz commu-
nities have studied for the past two decades, with the widespread use
of classical, mainly gradient-based optimization approaches for the
material parameters estimation [DBM 01; BFD 05; Requ+ 06]. Other
recent works [Bose+ 19; Burg+ 19; BZR 18; Clar+ 18] have proposed to
use second-order gradient-based optimization methods. However, as
the classical optimization methods are discussed in Sec. 3.2, even with
simple choices of the loss function L such as an ℓ2-squared loss, the
resulting fitting problem is highly non-convex and global solutions

56
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become rather expensive. Considering that the number (Nx · Ny) of
pixels, i.e. of optimization problem (4.2) to be solved, typically is in
the order of hundred thousand to millions, even local first order or
quasi-Newton methods become quite costly: For example, running the
build-in Trust Region optimizer [CL 96] of MATLAB® to reconstruct a
446 × 446 THz image takes over 170 minutes.

Due to the revolutionary success (convolutional) neural networks
have had on computer vision problems over the last decade, re-
searchers have extended the fields of applications of neural networks
significantly. A particularly interesting concept is to learn the solution
to complex, possibly non-convex, optimization problems. Different
lines of approaches have been considered: directly learning the opti-
mizer itself [Andr+ 16; Kobl+ 17], including optimization problems
in the network architecture [AK 17], combining optimizers with net-
works [Chan+ 17; Mein+ 17]. Möller et al. [MMC 19] have trained a
network to predict descent directions to a given energy function to
give provable convergence results on the learned optimizer. Objectives
that are similar to the one arising in the training of the model-based
autoencoders are considered, for instance, for solving inverse prob-
lems with deep image priors [UVL 18a] or deep decoders [HH 19].
However, these works use the fixed random noise as the input to the
networks and solve an optimization problem for the network’s weights
for each inverse problem, such that these methods are regularization-
by-parametrization approaches rather than learned optimizers.

Another related work is the 3D face reconstruction network from
Tewari et al. [Tewa+ 17], which aimed at finding a semantic code
vector from a given facial image such that feeding this code vector
into a rending engine yields an image similar to the input image itself.
While this problem had been addressed using optimization algorithms
a long time ago [BV 99] (also known under the name of analysis-
by-synthesis approaches), the approach by Tewari et al. [Tewa+ 17]
replaced the optimizer with a neural network and kept the original
cost function to train the network in an unsupervised way. The
resulting structure resembles an autoencoder, where the decoder is
fixed to the forward model and was therefore coined model-based AE.
Hence, the idea of model-based autoencoders generalizes far beyond
3D face reconstruction and can be used to boost the THz parameter
identification problem significantly.

In this chapter, an approach to train a neural network as an op-
timizer to solve the per-pixel optimization problem (4.2) directly is
discussed. The training of the neural network is formulated as a
model-based autoencoder (AE), which allows the training of the cor-
responding network with realistic data in an unsupervised way, i.e.
without ground truth.

As depicted in Fig. 4.1, this approach closely relates to the network-
based optimizer itself, including the quality, the robustness, and the



4.2 methodology 58

System
Measurement Optimizer

THz 
High 

Quality 
ImageMaterial and 

Geometric 
Parameters

THz 
Data

Physical 
Model

Optimization-based Enhancement

Figure 4.1: The model-based autoencoder approach focuses on the network-
based optimizer itself, including the quality, the robustness, and the speed
regarding its ability to find the global minima.
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Figure 4.2: Classical supervised learning strategy with simulated data: the
forward model A (e.g. from (4.1)) is used to simulate synthetic data G, which
can subsequently be fed into a network N to be trained to reproduce the
simulation parameters in a supervised way.

speed regarding its ability to find the global minima within the overall
context of the optimization-based enhancement concept (Fig. 1.1b).
Sec. 4.2 describes the model-based autoencoder in contrast to classical
supervised learning approaches in detail, before Sec. 4.3 summa-
rizes the implementation details. Sec. 4.4 compares the model-based
autoencoder approach to classical optimization-based reconstruction
techniques in terms of speed and accuracy.

4.2 methodology

By considering the real and imaginary parts of THz data g ∈ CNx×Ny×Nz

in (4.1) as two separate channels, the THz data is denoted by a 4D real
data tensor G ∈ RNx×Ny×Nz×2. It indicates that the four unknown pa-
rameters u = (ê, σ, µ, ϕ) are RNx×Ny matrices, allowing each parameter
to change at each pixel.

Under slight abuse of notation, all operations in (4.1) can be inter-
preted to be pointwise and again identify complex values with two
real values in order to have Au(zgrid) ∈ RNx×Ny×Nz×2. Concatenat-
ing all four matrix valued parameters into a single parameter tensor
U ∈ RNx×Ny×4, the objective can be formalized as finding U such that
AU(zgrid) ≈ G.

In Fig. 4.2, a classical supervised machine learning approach to
problems with known forward operator is illustrated for the example
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Figure 4.3: A model-based autoencoder (AE) for THz image reconstruction:
the input data G is fed into a neural network N whose parameters θ are
trained in such a way that feeding the neural network’s prediction N (G; θ)
into a model function A again reproduces the input data G. Such an architec-
ture resembles an AE with a learnable encoder and a model-based decoder
and allows unsupervised training on measurement data.

of THz image reconstruction: the explicit forward model A is used to
simulate a large set of images G from known parameters U, which can
subsequently be used as training data for predicting U via a neural
network N (G; θ) depending on weights θ.

Such supervised approaches with simulated training data are
frequently used in other image reconstruction areas, e.g. super resolu-
tion [Dong+ 14; KKM 16], or image deblurring [NHM 17; Schu+ 16].
The accuracy of networks trained on simulated data, however, cru-
cially relies on precise knowledge of the forward model and the
simulated noise. Slight deviations thereof can significantly degrade a
network performance as demonstrated in [PR 17], where deep denois-
ing networks trained on Gaussian noise were outperformed by the
image denoising algorithm of block-matching and 3D filtering such as
BM3D [Dabo+ 07] when applied to realistic sensor noise.

Instead of pursuing the supervised learning approach described
above, the desired model parameters u = (ê, σ, µ, ϕ) are replaced in
the optimization approach (4.2) by a suitable network N (G; θ) that
depends on the input data G and learnable parameters θ, such that
the neural network N can be trained in an unsupervised way on realistic
measurement data.

Therefore, assuming multiple examples Gb of THz data are given
based as training batch b, and choosing the loss function in (4.2) as an
ℓ2-squared loss, gives rise to the unsupervised training problem

min
θ

∑
b
∥A
(
N (Gb; θ)|zgrid

)
− Gb∥2

2. (4.3)

As illustrated in Fig. 4.3, this training resembles an autoencoder archi-
tecture: the input to the neural network is data Gk which gets mapped
to model parameters U that – when fed into the model function A –
ought to reproduce Gk again.
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Figure 4.4: Magnitude of a sample point of measured THz signal. The main
lobe and major side lobes are included in the grid window, which is colored
gray.

Opposed to the straightforward supervised learning approach, the
model-based AE approach (4.3) has two significant advantages:

• It allows to train the neural network in an unsupervised way, i.e.
on realistic measurement data, and therefore learn to deal with
measurement-specific distortions.

• The cost function in (4.3) implicitly handles the scaling of dif-
ferent parameters, and therefore circumvents the problem of
defining meaningful cost functions on the parameter space: sim-
ple parameter discrepancies such as ∥U1 −U2∥2

2 for two different
parameters sets U1 and U2 largely depend on the scaling of the
individual parameters and might even be meaningless, i.e. for
cyclic parameters such as the phase offset ϕ.

4.3 implementation

In this section, the implementation of the model-based autoencoder
is described in detail. Sec. 4.3.1 includes the data processing for re-
arranging the THz data into a 4D real tensor. Sec. 4.3.2 describes the
encoder neural network architecture and the training procedure.

4.3.1 Data Preprocessing

As illustrated in the plot of the magnitude of an exemplary measured
THz signal shown in Fig. 4.4, the THz energy is mainly focused in the
main lobe and first side-lobes of the sinc function. Because the physical
model remains valid in close proximity to the main lobe only, the THz
data is pre-processed to reduce the large range of 12600 samples (due
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Figure 4.5: Architecture of encoder CNN network N (G; θ) that predicts
the parameters: At each pixel, the real and imaginary part is extracted,
convolved, concatenated and processed via three convolutional layers (blue
box, conv.) and one fully connected layer (orange box, FC). To obtain
physically meaningful (non-negative) amplitudes, an absolute value function
is applied to the first component.

to zero-padding) per pixel (see Chapter 2 Sec. 2.5.2). Therefore, 91
samples (covering 4 side-lobes) per-pixel centered around the main
lobe are cropped out, where the position is related to the object
distance and the parameter µ (see Chapter 3 Sec. 3.3.1 for details of
the cropping window). Hence, the THz data is represented by a 4D
real tensor G ∈ RNx×Ny×Nz×2, where Nx = Ny = 446, and Nz is the
size of the cropping window, i.e. Nz = 91 in this case.

4.3.2 Encoder Architecture and Training

For the encoder network N (G; θ), a spatially decoupled Convolutional
Neural Network (CNN) architecture is selected using 1 × 1 convolu-
tions on G only, leading to a signal-by-signal reconstruction mecha-
nism that allows a high level of parallelism and therefore maximizes
the reconstruction speed on a GPU. The specific CNN architecture
(illustrated in Fig. 4.5) applies a first set of convolutional filters on
the real and imaginary parts separately, before concatenating the
activations and applying three further convolutional filters on the con-
catenated structure. Batch Normalization (BN) [IS 15] is applied after
each convolution and Leaky Rectified Linear Units (LeReLU) [GBB 11]
are used as activation functions. Finally, a fully connected (FC) layer
reduces the dimension to the desired size of four output parameters
per pixel. To ensure that the amplitude is physically meaningful,
i.e. non-negative, an absolute value function is applied on the first
parameter i.e. ê. Interestingly, this choice compared favorably to a
plain rectified linear unit when the neural network is trained.

The network optimizing (4.3) is trained by the Adam optimizer
(Adaptive Moment estimation, [KB 14]) on 80% of the 446× 446 pixels
from a measured THz image for 1200 epochs. The remaining 20%
of the pixels serve as a validation set. The batch size is set to 4096.
The initial learning rate is set to 0.005, and is reduced by a factor of
0.99 every 20 epochs. Fig. 4.6 illustrates the decay of the training and
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Figure 4.6: The average losses of the training and validation sets over 1200
epochs on a decibel scale illustrate that there is almost no generalization gap
between training and validation.

validation losses over 1200 epochs. The result shows that the validation
loss resembles the training loss with almost no generalization gap.

4.4 experimental result

In this section, the experimental results are discussed in detail. The
optimal loss and timing (Sec. 4.4.1), the intensity image quality, and
cross-section (Sec. 4.4.2) achieved by the mode-based AE are compared
to classical optimizers.

The model-based AE is trained on the MetalPCB datasets only,
while the parameter inference is made for both the MetalPCB and
StepChart datasets. This cross-referencing between two datasets can
verify whether the model-based AE method is modeling the physical
behavior of the system without overfitting to a specific dataset or
recorded material.

To compare with the classical optimization methods discussed
in Chapter 3 Sec. 3.2, similarly, the model parameters are also es-
timated using the Trust-Region Algorithm (TRA) [CL 96], which is
implemented in MATLAB® . The TRA optimization requires a proper
definition of the parameter ranges. Furthermore, it is very sensitive to
the initial parameter set. Therefore, it is required to carefully select
the initial parameters by sequentially estimating them from the source
data (see Chapter 3 Sec. 3.2.3 for more details). Still, the optimiz-
ation may result in a parameter set with significant loss values (see
Sec. 4.4.2).

Regarding the parameter initialization of the network as an opti-
mizer, the trained encoder network is independent of any initialization
scheme as it tries to directly predict optimal parameters from the input
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Dataset (Region) Measurement TRA AE AE+TRA
MetalPCB (All) Average Loss 693.9 886.3 442.2
MetalPCB (PCB) Average Loss 589.0 872.6 589.0
MetalPCB (Metal) Average Loss 519.6 446.1 115.7
StepChart (All) Average Loss 3815.1 5148.3 3675.3
StepChart (Edges) Average Loss 4860.4 6309.1 2015.7
StepChart (Steps) Average Loss 1152.5 2015.7 1150.3
MetalPCB Training time (sec.) none 9312.8 9312.8
MetalPCB Runtime (sec.) 10391.2 †73.5 ∗

4854.7
StepChart Runtime (sec.) 3463.9 †22.8 ∗

1712.4
† Inference time
∗ Runtime is the sum of AE inference and TRA optimization time

Table 4.1: Loss and timing enhancement based on the model-based auto-
encoder

data. While the network alone gives remarkably good results with
significantly lower runtimes than the optimization method, there is no
guarantee that the network predictions are critical points of the energy
to be minimized. This motivates the use of the encoder network as an
initialization scheme to TRA, specifically because the TRA guarantees
the monotonic decrease of objective function such that using TRA on
top of the network can only improve the results. This approach is
abbreviated to AE+TRA for the rest of this chapter.

To fairly compare all three approaches, the optimization time of
TRA and the inference time of AE are both recorded by an Intel®

i7-8700K CPU computation, while AE is trained on a NVIDIA® GTX
1080 GPU. The PyTorch source code is available at https://github.
com/tak-wong/THz-AutoEncoder.

4.4.1 Loss and Timing

In order to evaluate the optimization quality on different materials and
structures, the MetalPCB dataset is evaluated in three regions: The
PCB region is a local region that contains PCB material only, the Metal
region is a local region that contains copper material only, and the
All region is the entire image area. Similarly, the StepChart dataset is
evaluated in three regions: The Edge region is the region that contains
physical edges, the Steps region is the center planar region of each step,
and the All region is the entire image area. This segmentation is done,
because the THz measurements of the highly specular aluminum
target result in strong multi-path interference artifacts at the edges
that should be investigated separately.

In Table 4.1, the average loss regarding (4.3) and the timing are
shown for the Trust-Region Algorithm (TRA), the model-based Auto-
encoder (AE) and the combined AE+TRA approaches, respectively.

https://github.com/tak-wong/THz-AutoEncoder
https://github.com/tak-wong/THz-AutoEncoder
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The result shows that the model-based AE achieves a lower average
loss than the TRA method in the metal region of the MetalPCB datasets,
but it yields higher average losses than the TRA on both datasets. It
is encouraging to see that although the AE was trained on the Met-
alPCB datasets, the relative performance in comparison to the TRA
does not decay too significantly when changing to an entirely unseen
data set with different material and different range characteristics,
with the AE loss being 21.7% and 25.9% higher than the TRA loss on
the MetalPCB and StepChart datasets, respectively.

If such a sacrifice in accuracy is acceptable, the speed-up in runtime
is very significant with the AE being over 140 times faster than the
TRA (for both methods being evaluated on a CPU). Note that even
the sum of training and inference time is smaller for the AE than the
runtime of the TRA on the MetalPCB datasets.

Interestingly, the combined AE+TRA approach of initializing the
TRA with the encoder network’s prediction leads to better losses than
the TRA alone in all regions. Additionally, the AE-initialized TRA
converged more than 2 times faster due to the stopping criterion being
reached earlier.

However, the result also shows that the average losses of all ap-
proaches are significantly higher for the StepChart datasets than they
are for the MetalPCB datasets. This can be because the aluminum
StepChart object (Fig. 2.21) has a more complex physical structure
than the MetalPCB object (Fig. 2.20), which can result in a mixture
of scattered THz pulses involving multi-path interference effects in
all object regions. Incorporating such effects in the reflection model
of (4.1) could therefore be an interesting aspect of future research for
improving the explainability of the measured data with the physical
model.

4.4.2 Quality Assessment

As stated in Chapter 3 Sec. 3.2.7, in THz imaging the intensity image
I, which is equal to the squared amplitude i.e. I = ê2, is one of the
most important physical quantity for quality assessment. Note that
the intensity could be inferred directly from the data by considering
that (4.1) yields

Au(µ) · A∗
u(µ) = ê2 · sinc2(0) = ê2 = I (4.4)

where A∗ is the complex conjugate of A, and the intensity level should
be calibrated to around 1 at the metal region.

As illustrated in Fig. 4.7, the model-based AE approach is not
only capable of extracting all relevant parameters (i.e. ê, µ, σ and
ϕ) but compared to values directly extracted from the source data,
the resulting intensity I is more consistent in homogeneous material
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Figure 4.7: Comparison of the THz intensity for the MetalPCB datasets: (a)
intensity image extracted from the source data without any model-based
processing (in red: the pixel line for plots (c) and (d)); (b) image extracted by
the AE+TRA approach (in red: the pixel line for plots (c) and (d)); (c) plot
of the intensity extracted along the horizontal line in the copper region; (d)
plot of the per-pixel loss by TRA, AE, and AE+TRA approaches along the
horizontal line in the copper region.

regions. The homogeneity of the directly extracted intensity results
from the very low depth of field of THz imaging systems in general,
combined with the slight non-planarity of the MetalPCB target. As
depicted in Figure 4.7c, the intensity variations along the selected
line in the homogeneous copper region are reduced using the three
model-based methods, i.e. TRA, AE, and AE+TRA.

However, due to the crucial selection of the initial parameters (see
discussion at the beginning of Sec. 4.4), the TRA optimization results
exhibit significant amplitude fluctuations and loss values (Fig. 4.7d) in
the two horizontal sub-regions x ∈ [150, 200] and x > 430. In contrast,
the AE and AE+TRA methods deliver superior results with respect to
the main quality measure applied in THz imaging, i.e. to the intensity
homogeneity and the loss in model fitting. Still, the AE approach
shows very few extreme loss values, while the AE+TRA method’s loss
values are consistently low along the selected line in the homogeneous
copper region.
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4.5 summary

In this chapter, a model-based autoencoder approach is introduced
for THz image reconstruction. The training of the neural network is
formulated as a model-based autoencoder (AE), which allows the train-
ing of the corresponding network with real data in an unsupervised
way, i.e. without ground truth. The experiment demonstrates that the
resulting optimization networks yield model parameters (ê, σ, µ, ϕ)

that result in only slightly higher losses than actually running an
optimization algorithm, despite the advantage of being more than
140 times faster (if only the inference time is considered). The neural
network can serve as an excellent initialization scheme for classical
optimizers, by using the prediction of the neural network as a start-
ing point for a gradient-based optimizer. Lower losses are obtained
and converge more than 2 times faster than classical optimization
approaches while benefiting from all theoretical guarantees of the
respective minimization algorithm.



5
D E E P O P T I M I Z AT I O N P R I O R

5.1 motivation

From a modern THz imaging perspective, deriving physically inter-
pretable material quantities from THz data is generally considered
to be reliable only acquired by highly specialized THz spectroscopic
instrumentation operating in well-controlled experimental laboratory
environments. As shown in the foregoing chapters, the estimation of
material-related information using 3D THz data attained with widely
used THz imaging components is achievable. However, the estima-
tion of the associated physical quantities according to the known
FMCW THz data formation model comprises a sophisticated, non-
linear optimization process, even if only part of all model parameters
(e.g. the electric field intensity) are being estimated (see Chapters 3

and 4). Due to the low signal strength of the widely used THz sources,
it takes up to hours to acquire high Signal-to-Noise Ratio (SNR) THz
image data for robust parameter estimations, and the parameter esti-
mation for high SNR data already requires significant optimization
efforts and fine-tuned parameter initialization. Therefore, there is a
high practical interest not only to estimate all model parameters from
the acquired 3D THz data but also to improve the robustness of the
parameter estimation process for lower SNR THz data.

Often image analysis and reconstruction problems, such as the THz
problem stated above, are modeled such that a quantity of interest ux,y

is extracted from measurements gx,y at every pixel (x, y) to match a
given non-linear data formation process A, i.e. gx,y = A(ux,y), yielding
optimization problems of the form

min
u ∑

x,y
L(A(ux,y), gx,y) + R(u), (5.1)

where L and R are a suitable discrepancy measure (e.g. loss) and
an optional regularization respectively. Since the regularization term
can include a dependency of the neighboring pixels, optimization
problems in (5.1) go beyond the pixel-wise optimization problem as
mentioned in the foregoing chapters. As A is commonly non-linear
and the problem (5.1) is highly non-convex, (5.1) is often solved locally
with first-order descent methods.

In this chapter, the concept of deep optimization prior is introduced,
which is a novel unsupervised method to solve highly non-linear
optimization problems. This name comes from the pioneering work
deep image prior [UVL 18b], which is applied to problems similar

67
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Figure 5.1: The deep optimization prior approach focuses on network-based
optimization, the quality of THz images, and the accuracy of model parame-
ters.

to (5.1), but for linear inverse imaging tasks yielding convex optimiz-
ation problems with unique global minimizers, by reparameteriz-
ing the original (image) variable u as the output of a CNN network
N (g; θ):

min
θ

∑
xy

L(A(N (g; θ)xy), gxy) + R(N (g; θ)). (5.2)

Subsequently, by omitting the regularizer R and stopping the iteration
early [UVL 18b], the reconstruction obtained is of higher quality. The
deep optimization prior concept extends deep image prior to non-convex
optimization problems and shows that not only the quality of the
solution increases, but also the ability to find lower energy minima: by
reparameterizing the originally spatially uncoupled variables u as the
output of a U-net [RFB 15] acting on the data, a gradient descent
method can avoid undesirable local minima by taking the neighbor-
ing pixels into account. Most strikingly, the quality of a classical
approach (5.1) has a severe dependency on a good and robust initial-
ization based on extensive physical knowledge, while the common
random initialization of network weights seems to be sufficient for
consistently finding good local minima for (5.2) [UVL 18b].

As illustrated in Fig. 5.1, this approach focuses on network-based
optimization, the quality of THz images, and the accuracy of model
parameters within the overall context of the optimization-based en-
hancement concept (Fig. 1.1b). Sec. 5.2 describes the methodology,
Sec. 5.3 gives a theoretical aspect of reparameterizations, and Sec. 5.4
discusses all details regarding the implementation. In Sec. 5.5, the
experiment results provide an evaluation of the quantitative and qual-
itative aspects.

5.2 methodology

THz model parameter estimation aims to extract the parameters tensor
u(x⃗) = (ê(x⃗), σ(x⃗), µ(x⃗), ϕ(x⃗)) ∈ R4 of the THz model (2.16) (see
Chapter 2 Sec. 2.2):

A(u) = ê · sinc (σ(z − µ)) · exp (−i(ωz − ϕ)) (5.3)
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where u = (ê, σ, µ, ϕ) denotes the model parameters, and z denotes the
device-dependent sampling grid (for simplicity, this variable is omitted
in this chapter), at each pixel location (x⃗) such that it corresponds
to the given THz data tensor G(x⃗) ∈ RNz×2, i.e. minu L(A(u), G(x⃗)).
Even with simple choices of the loss function L such as an ℓ2-squared
loss, the resulting fitting problem is highly nonconvex. Approaches in
Chapters 3 and 4 use a simple ℓ2-squared loss

min
u ∑

x,y
∥A(ux,y)− Gx,y∥2

2, (5.4)

to not further exacerbate the goal of a robust THz parameter estimation.
Moreover, applying local first-order or quasi-Newton methods to
105 − 106 pixel optimizations (5.4) is already quite costly. To the best
of the author’s knowledge, no regularization approaches have been
applied to this kind of THz model parameter estimation so far.

1d per-pixel model-based autoencoder As the deep optimiz-
ation prior approach extends the 1D per-pixel approach of the model-
based autoencoder (AE, see Chapter 4), the major difference between
the per-pixel model-based AE approach and the deep optimizer
prior approach is discussed here in more detail. The model based
AE directly estimates U = (ê, σ, µ, ϕ) from the given data tensor
Gx,y ∈ RNz×2 in the spatial domain utilizing an one-dimensinoal CNN
network N 1D(·; θ) and the loss function:

min
θ

∑
training batch b

∥A(N 1D(Gb
x,y; θ))− Gb

x,y∥2
2. (5.5)

This 1D per-pixel model-based AE is trained by the classical training-
then-prediction approach: using 80% of the pixels for training in (5.5),
and tests if the resulting network can directly predict the desired
parameters on the remaining 20% of the THz image pixels.

5.2.1 Deep Optimization Prior

Recalling the overall approach depicted in Sec. 5.1, the main idea is to
reparameterize the unknown (i.e. image) variable ux,y in nonconvex
optimization problems of the form (5.1) by the prediction of a neural
network N via ux,y = N (Gx,y; θ) for network parameters, yielding a
reformulated optimization problem of the form (5.2).

Fig. 5.2 illustrates the overall deep optimization prior network archi-
tecture comprising the combination of the reparameterization network
and the model-based autoencoder. The deep optimization prior ap-
proach is minimizing the loss function L as an optimizer during the
unsupervised training procedure, which is different from the unsuper-
vised training-then-prediction approach mentioned in Chapter 4. The
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Figure 5.2: The deep optimization prior approach: reparametrizating ux,y by
a network N in combination with the model-based autoencoder.

network-based reparameterization for THz model parameter estima-
tion by combining (5.2) and (5.4) is formulated as:

min
θ

∑
x,y

∥A(N (Gx,y; θ)x,y)− Gx,y∥2
2. (5.6)

Besides the data term loss function (5.6), a regularization term for
THz model parameter estimation can be applied. As the result will
be shown in Sec. 5.5, the regularization improves the THz parameter
estimation in the case of individual pixel failure, i.e. shot noise. The
regularizing term is added to (5.6) as follows:

min
θ

∑
x,y

∥A(N (Gx,y; θ)x,y)− Gx,y∥2
2 + λ∥∇N (G; θ)x,y∥1, (5.7)

where ∇ is the gradient operator on neighborhood pixels applied
to the model parameter predicted by network N , weighted by the
regularization coefficients λ.

5.2.2 3D Model-based Autoencoder

As shown in Chapter 4, the 1D per-pixel model-based autoencoder
allows unsupervised learning of measurement data by resembling
an autoencoder with a learnable network-based encoder and a phys-
ical model-based decoder, and therefore able to deal with measure-
ment specific distortions. However, during the learning phase in
the per-pixel learning (i.e. z-dimension) approach, the lateral neigh-
borhood information is not considered. Note that in contrast to the
1D per-pixel model-based autoencoder, this network-based repara-
meterization (Sec. 5.2.1) allows spatial coupling even though the THz
model (5.3) is independent in the lateral (x, y) spatial domain.



5.2 methodology 71

182x446x446

50x223x223

20x112x112

100x56x56

210x28x28

180x446x446

260x223x223

370x112x112

370x56x56

160x446x446

160x223x223

160x112x112

160x56x56

210x56x56

100x112x112

20x223x223

50x446x446

5x446x446

conv+concat

downsample

upsample

conv

Figure 5.3: The modified U-net architecture of network N (example for 182
channels with 446 × 446 pixels) start from the data tensor Gx,y (green box) to
the desired parameter ux,y = N (Gx,y; θ) (yellow box). Blue boxes represent
feature maps.

neural network architecture As the THz measurement data
is high-dimension data in the form of a 4-D tensor, using typical CNN
architectures similar to Chapter 4 is no longer possible because of the
high memory and computational requirement of the fully connected
layers. Hence, a U-net-type network similar to [RFB 15] is utilized
as illustrated in Fig. 5.3. The U-net structure is fully convolutional
networks (FCN) [LSD 15], i.e. it only consists of convolutional layers,
and is, therefore, computational extremely efficient, while it couples
pixels in large lateral spatial regions, which is an important feature in
the given application.

The exact structure of the U-net architecture is optimized based
on an ablation study on the THz imaging dataset MetalPCB. Two
modifications to the original U-net architecture [RFB 15] are made
that significantly improve the results for optimization purposes: First,
the number of channels is not doubled in the encoder part, but an
intermediate bottleneck (i.e. the third layer of the encoder, blue box
20 × 112 × 112 in Fig. 5.3) is inserted instead. Second, the number of
channels that are skipping from the encoder to the decoder features at
the same scale via a concatenation is increased from the commonly
used 4 channels to 160 channels (see Fig. 5.3). The effects of these
changes are shown in the ablation study Sec. 5.5.1.

In the 1D per-pixel model-based autoencoder, the network directly
estimates the phase angle ϕ ∈ [0, 2π] linearly, raising the problem
of the gradient computation across the 0 − 2π phase wrap. In the
3D model-based autoencoder, this problem is solved by predicting
two real-valued phase components ϕc = cos ϕ and ϕs = sin ϕ, which
restricts to ϕc, ϕs ∈ [−1, 1], and reconstructing the phase afterward
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ϕ = atan2(ϕs, ϕc). This phase wrapping operation implies that the
modified U-net architecture predicts 5 parameters {ê, σ, µ, ϕc, ϕs} (see
Fig. 5.3) instead of 4 desired parameters. In order to have a fair
comparison, the 1D per-pixel model-based autoencoder is adopted
by incorporating the phase unwrapping part for the evaluation in
Sec. 5.5.

5.3 theoretical aspects of reparametrizations

This section provides a theoretical analysis of the parameterization
using neural networks and shows that it implicitly corresponds to
a variable metric optimization strategy applicable to optimization
problems such as (5.1).

Neglecting the regularizer, the optimization problem (5.1) is in
itself not coupled on a pixel level. For the sake of simplicity, consider
for now the general uncoupled problem

min
u∈Ω

∑
i

hi(ui), (5.8)

where Ω = Ω1 × · · · × Ωn is the product space of the pixel-wise
domains and hi are (non-convex) cost functions at pixel i. Clearly,
minimizing (5.8) reduces to minimizing problem hi for each pixel i as
the sum of the cost functions decouples on a pixel level. Therefore,
gradient descent on problem (5.8) corresponds to gradient descent
on each of the sub-problems hi. Considering a reparameterization of
the problem by a continuous function N : Θ → Ω that maps from the
function space Θ to the product space Ω, yields

min
θ∈Θ

(H ◦ N )(θ) (5.9)

for H(u) := ∑i hi(ui), and thus generalizes (5.6). Although the prob-
lems at the pixel level can share a common structure, reformula-
tion (5.9) alone without knowledge of this structure is not advanta-
geous in general due to the preservation of local geometries, as stated
in the following remark of preservation of local minima: Let û be a local
minimizer of H in the range of N , then each θ̂ ∈ N−1(û) is also a local
minimizer of H ◦ N . This remark means that the reparametrizations
are not preventing or moving out from critical points, and the local
minima of problem (5.9) are still obtained similar to problem (5.8).

Furthermore, assuming differentiability of N , consider a contin-
uous interpretation of gradient descent, the gradient flow with re-
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spect to H, i.e. a θ(t) such that θ′(t) = −∇(H ◦ N )(θ(t)). Then, for
u(t) := N (θ(t)), it holds

u′(t) = ∇N (θ(t))Tθ′(t)

= −∇N (θ(t))T∇(H ◦ N )(θ(t))

= −∇N (θ(t))T∇N (θ(t))∇H(u(t))

(5.10)

For Ω ⊂ Rd the matrix M(t) := ∇N (θ(t))T∇N (θ(t)) ∈ Rd×d is
positive semi-definite and hence −M(t)∇H(u(t)) is a descent direc-
tion. Hence, it is hypothesized that for certain problem classes hi as
studied in the numerical experiments, the temporally changing im-
plicit gradient preconditioning with M(t) is advantageous in terms of
training dynamics. In particular, networks with a large receptive field
such as a U-net typically yield dense matrices ∇N (θ(t))T∇N (θ(t))
and thus induce changes in predictions ux,y even if ∂H

∂uxy
= 0.

Therefore, this theoretical analysis shows that the reparametriza-
tions are not eliminating critical points of the original cost function,
but they only yield a different gradient descent path even if part of
the pixels’ gradients with respect to H is zero.

5.4 implementation

In this chapter, all computation times are recorded by NVIDIA® GTX
1080Ti GPU, using PyTorch 1.9.0 version. The source code is available
at https://github.com/tak-wong/Deep-Optimization-Prior.

The optimization performance of classical approaches and the
deep optimization prior approach is evaluated based on synthetically
simulated datasets SynthUSAF and SynthObj (in addition to AWGN
and shot-noise respectively) and measured datasets MetalPCB. More
details of datasets can be found in Chapter 2 Sec. 2.5.2.

5.4.1 Training Procedure

In contrast to the classical training-then-prediction approach by 1D
per-pixel model-based autoencoder, deep optimization prior utilize a
training approach which trains a neural network as an optimizer for
a single dataset. The pseudo-code of the unsupervised deep prior
training procedure of the proposed method is shown in Algorithm 5.1,
where the inputs are the measurement data tensor G, the physical
forward model A, depth z-direction sampling vector z, the number of
iterations (i.e. epochs) M. Note that, unlike the random sampled per-
pixel approach in Chapter 4, the network N is trained, i.e. optimized,
to predict parameters u at all lateral pixel (x, y) based on the entire
4D tensor G.

https://github.com/tak-wong/Deep-Optimization-Prior
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Algorithm 5.1 Training procedure of deep optimization prior

Input: Data tensor G, forward model A, z-direction sampling grid z,
iteration Nit

1: function AUTOENCODER(G, A, z, Nit)
2: N , θ = NN(); ▷ initialize a neural network model
3: for i = 1 to Nit do
4: u = N (G; θ); ▷ network prediction
5: Model = A(u|z); ▷ physical model
6: Loss = L(Model, G); ▷ loss function
7: θ = N .train(Loss); ▷ backpropagation
8: end for
9: return θ, u

10: end function

5.4.2 Choice of Optimizer

Commonly used optimization methods for the THz inverse problem
can be categorized as: Hessian based methods (second order gradient),
which include Levenberg Marquardt [Marq 63], Trust Region Algo-
rithm [CL 96], and LBFGS [LN 89]; Gradient descent methods (first
order gradient), which include gradient descent, and steepest gradient
descent.

The deep optimization prior loss functions (5.6) and (5.7) is op-
timized by the AdamW [LH 18] optimizer as implemented in Py-
Torch with GPU acceleration. To ensure a fair comparison, the classical
optimization (5.1) is phrased as the minimization of a "network" that
does not receive any input vector (i.e. without any input layer), but in-
stead only outputs the learnable parameters u to avoid any differences
in implementation. As a second baseline, the LBFGS [LN 89] optimizer
is additionally evaluated as one of the classical approaches to exclude
a systematic advantage of the specific AdamW method for optimiz-
ation problems with a deeply nested structure. All formulations and
optimizers are run for 1200 iterations (i.e. full-batch epochs in machine
learning terminology). Moreover, these optimizers are compared to
the 1D per-pixel model-based autoencoder (see Chapter 4). Again,
for a fair comparison, the optimization algorithm of the 1D per-pixel
model-based autoencoder is changed from Adam to AdamW.

5.4.3 Projection

To project parameters onto the non-negative orthant, the network
predicted parameters N (G; θ) are projected to [umin, umax] using the
sigmoid function. Similarly, for LBFGS and AdamW optimizers, pa-
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rameters u are projected to the non-negative orthant, except that the
linear bounded function is adopted instead of the sigmoid function:

u = min (max(umin, uo), umax) (5.11)

where uo denotes the ordinary parameters from classical optimizers.
Based on the empirical comparison, the linear bounded projection
function (5.11) performs better than the sigmoid function in terms of
the minimized loss value. However, because of the non-differentiable
zero-point, the projection of LBFGS and AdamW optimizers is imple-
mented after the gradient descent update for each iteration.

5.4.4 Initialization

Descent-based non-convex optimization methods depend on the se-
lected parameter initialization. In the numerical experiments, two
types of initialization schemes are evaluated for the classical approach
of minimizing loss function L directly: random and physics-based init-
ialization.

The random initialization is to choose every parameter u at every
pixel from a uniform random distribution over [umin, umax] where umin

and umax are estimates of the reasonable minimum and maximum
values these parameters should attain. As we will see in Sec. 5.5.2, such
initialization is too crude for classical optimization to yield reasonable
results.

Second, the physics-based initialization tries to exploit physical
knowledge about each application in order to provide reasonably
accurate initial guesses for the parameters at each pixel. In this
chapter, the initialization method discussed in Chapter 3 Sec. 3.2.3 is
adopted as physics-based initialization, and a random initialization is
tested for comparison. As random initialization yields very bad results
for classical optimization methods (see Sec. 5.5.2), the physics-based
initialization is also applied to AdamW and LBFGS.

Since classical approaches greatly benefit from a good initialization,
it is worth a try to benefit from good initial guesses for the network-
based reparameterizations: by adding the initial parameters to the
network prediction. However, this approach did not improve the
numerical results in comparison to the usual random initialization of
network parameters which is why this approach was discarded in this
chapter.

For the random network initialization, the method from [He+ 15]
is adopted for the 1D per-pixel model-based autoencoder and the deep
optimization prior. To verify the robustness of random parameters
and network initialization, each setting that is related to the random
initialization of the model parameters or random initialization of the
network parameters is run 5 times. Note that this sanity check is



5.5 experimental result 76

also run for a 1D per-pixel model-based autoencoder to verify its
robustness.

5.4.5 Hyperparameter Optimization

In order to respect the physical meaning of the THz model parame-
ters, the original data scale is retained for training and optimization.
However, the large variance of numeric ranges of these parameters
leads to a diverging optimal hyperparameter for network training and
optimizer. Therefore, all hyperparameters are optimized by a grid
search for 4 learning rates from 10−3 to 100 for all approaches individ-
ually using the MetalPCB dataset, synthetic datasets (SynthUSAF and
SynthObj) at 0dB PSNR noise level respectively as the corresponding
optimal learning rate (see Table 5.2, column LR).

For the regularization coefficients λ, the coefficients are maximized
empirically but do not blur the parameter images based on visual
inspection for all optimizers (LBFGS, AdamW, and the deep optimiz-
ation prior) using the shot noise model.

5.5 experimental result

In this section, the deep optimization prior approach (abbreviated to
DOP) is evaluated in comparison to 1D Per-Pixel Model-based Auto-
encoder (PPAE, see Chapter 4), LBFGS [LN 89] and AdamW [LH 18].
The evaluation is based on the ablation study on the neural network
architecture (Section 5.5.1), the loss (Sec. 5.5.2), the parameter accuracy
(Sec. 5.5.3) and the computational requirement (Sec. 5.5.4) respectively,
in the numerical and qualitative perspectives.

5.5.1 Ablation Study on the Network Architecture

The introduction of concatenating skip connections in U-net that often
exceed the number of channels as well as the additional intermedi-
ate bottleneck in the encoder appear unintuitive from a supervised
learning perspective. Thus, their effect is studied by considering
the standard U-net (Unet), a U-net with large skip-connections by a
standard encoder (Unet+Skip), a U-net with standard skip-connection
but the modified encoder (Unet+Bottleneck), and the modified U-net
(modified Unet) architecture illustrated in Fig. 5.3. Table 5.1 shows their
optimal performance on the measurement datasets MetalPCB and
on the synthetic datasets SynthUSAF and SynthObj at various noise
levels respectively. All network architectures are trained for 4 learning
rates using the real measurement MetalPCB datasets respectively. This
optimal learning rate is then applied to all datasets.
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Noise Level
(PSNR)

Normalized Loss (×10−6)

Network Unet Unet+Skip Unet+Bottleneck
Modified

Unet
(Fig. 5.3)

MetalPCB

measured Optimal LR 0.1 0.1 0.01 0.01

measured
Min. 58.87 56.55 60.16 56.78

Mean 62.95 57.63 63.81 57.56
Max. 69.33 61.20 67.04 58.25

MetalPCB+AWGN

-20dB
Min. 32365.39 30851.79 32064.11 30797.56
Mean 47598.25 35825.00 32121.31 30871.59
Max. 58154.44 54943.34 32196.63 30918.26

-10dB
Min. 3303.06 3264.36 3311.45 3267.41

Mean 3362.96 8401.39 3369.38 3271.89
Max. 3465.76 28943.87 3431.25 3278.23

0dB
Min. 422.88 395.64 415.69 397.34

Mean 5552.23 5523.62 423.50 400.09
Max. 26033.73 26032.38 428.74 403.63

10dB
Min. 117.14 109.12 118.03 109.69

Mean 5241.37 109.93 121.15 111.22

Max. 25729.74 110.91 124.82 113.76

SynthUSAF+AWGN

-20dB
Min. 31145.93 29799.38 30948.27 29746.34
Mean 37539.14 44513.64 31022.22 29802.03
Max. 62445.44 66699.85 31080.66 29819.02

-10dB
Min. 3216.02 3020.85 3196.11 3042.54

Mean 10928.21 3031.51 10624.38 3058.49

Max. 41705.13 3050.10 40263.39 3080.95

0dB
Min. 343.63 313.34 342.51 315.10

Mean 345.74 517.48 347.60 317.82
Max. 349.03 1324.67 354.28 320.96

10dB
Min. 43.01 35.99 54.54 38.18

Mean 46.56 38.94 60.47 40.82

Max. 48.75 41.94 73.15 45.26

SynthObj+AWGN

-20dB
Min. 32059.66 29860.43 31813.17 29668.97
Mean 38232.22 30048.30 31947.22 29729.65
Max. 60389.10 30240.42 32187.62 29823.52

-10dB
Min. 3422.17 3095.52 3535.84 3088.49
Mean 9481.55 10106.76 3633.48 3276.31
Max. 33048.26 30638.85 3696.07 3343.63

0dB
Min. 406.96 323.21 387.25 323.11
Mean 612.38 381.05 460.56 387.28

Max. 885.45 571.84 673.18 588.90

10dB
Min. 75.92 40.02 90.64 48.85

Mean 98.85 101.67 100.37 106.93

Max. 112.52 317.85 121.63 289.59

Table 5.1: Comparison of normalized ℓ2-squared loss by standard U-net
architecture (Unet), standard encoder with large skip-connection (Unet+Skip),
the modified encoder with standard skip-connection (Unet+Bottleneck) to the
modified U-net architecture illustrated in Fig. 5.3. The best optimizers (lower
is better) are highlighted.



5.5 experimental result 78

Noise
Level

(PSNR)

Normalized Loss (×10−6)
Optimizer PPAE LBFGS AdamW DOP

Initialization Random Physics Random Physics Random Random

MetalPCB

measured Optimal LR 0.001 0.01 0.1 0.001 0.01 0.01

measured
Min. 56.89 218.02 15008.87 61.32 12665.03 56.78
Mean 3372.63 218.02 15465.89 61.32 12677.52 57.56
Max. 16615.59 218.02 15904.82 61.32 12688.49 58.25

MetalPCB+AWGN

-20dB
Min. 30800.43 39766.81 73667.70 36100.08 49546.92 30797.56
Mean 34927.94 39766.81 105352.48 36100.08 49608.79 30871.59
Max. 51007.51 39766.81 126876.18 36100.08 49643.10 30918.26

-10dB
Min. 3217.44 10488.53 59122.06 7380.64 21559.17 3267.41

Mean 3232.18 10488.53 85814.26 7380.64 21591.09 3271.89

Max. 3252.32 10488.53 107167.15 7380.64 21636.72 3278.23

0dB
Min. 395.70 1967.64 60312.11 965.00 18182.68 397.34

Mean 408.61 1967.64 63289.90 965.00 18226.71 400.09
Max. 436.22 1967.64 66334.08 965.00 18247.48 403.63

10dB
Min. 108.96 240.86 22642.91 135.92 17422.87 109.69

Mean 112.16 240.86 27453.51 135.92 17439.26 111.22
Max. 114.37 240.86 32264.10 135.92 17464.49 113.76

Table 5.2: Comparison of ℓ2-squared loss in (5.6) using MetalPCB and
MetalPCB+AWGN datasets by optimizers PPAE, LBFGS and AdamW to the
DOP approach. All optimizers are tested for 4 learning rate individually
using MetalPCB dataset, and the corresponding optimal learning rates are
shown in the first row. Then, this optimal learning rate is applied for different
noise level. Note that the ℓ2-squared loss is normalized by the signal power.
The best optimizers (lower is better) are highlighted.

Based on the loss value, the large skip connection U-net (Unet+Skip)
and the modified U-net architectures achieve the lowest loss for almost
all datasets. This improvement by the large skips connection can be
because the number of channels of the data tensor (i.e. 182 channels
in this chapter) is much larger than the channels of typical 2D image
tensors (i.e. 3 or 32 channels used in [UVL 18b]), while there is highly
correlated information between the first 91 channels (i.e. real parts)
and the second half of channels (i.e. imaginary parts). However,
the variance of loss by Unet+Skip is significantly higher than the
modified U-net for some datasets (e.g. MetalPCB, SynthUSAF at 0dB,
SynthObj at −10dB). It indicates that the modified U-net architecture
is the most robust architecture among these 4 network structures.

5.5.2 Loss

measurement datasets Table 5.2 shows the average ℓ2-squared
loss in (5.6) for the MetalPCB and MetalPCB+AWGN datasets for the
optimizers PPAE, LBFGS and AdamW to DOP approach.
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The DOP approach obtains the lowest loss for the measurement
MetalPCB dataset. For the additional AWGN noise levels, the DOP
approach is overall the best optimizer, except for a marginal gap
to PPAE at −10dB PSNR noise level. Moreover, the minimum and
maximum of multiple runs are relatively stable for the DOP approach,
while PPAE obtains a huge variation in the measurement dataset and
at −20dB noise level.

For the initialization, the classical optimizers LBFGS and AdamW
obtain very high loss by using random initialization, while the pro-
posed method achieves very good results, i.e., the proposed method is
robust to the initialization.

As the physics-based initialization for LBFGS and AdamW is a
better optimizer than random-based initialization, we use physics-
based initialization for LBFGS and AdamW from here on for the
remaining evaluation section.

synthetic datasets with awgn Table 5.3 shows that the deep
optimization prior (DOP) approach achieves the lowest average loss
for both synthetic datasets and at all noise levels significantly.

datasets with shot noise model Table 5.4 shows the average
loss with regularization in (5.7) using MetalPCB, SynthUSAF and
SynthObj datasets at 0dB AWGN and 10% shot noise respectively. To
make a fair comparison, all optimizers use the same set of regular-
ization coefficients λ. Note that only LBFGS, AdamW, and the DOP
approach are included in this table as PPAE cannot optimize the loss
function with total variation regularization.

Apparently, the DOP approach obtains the lowest loss among all
optimizers. AdamW also achieves a marginally worse, second-best
optimizer for synthetic datasets, while the DOP approach still achieves
a significantly lower loss for measurement datasets MetalPCB.

discussion Given the fact that all these optimizers are using the
same loss function (5.6) and (5.7) respectively, the result shows that,
compared to the prior methods, the deep optimization prior approach
finds lower energy minima by avoiding undesirable local minima.

5.5.3 Parameter Accuracy

In addition, classical optimizers LBFG and AdamW, the 1D Per-Pixel
Model-based Autoencoder (PPAE), and the deep optimization prior
(DOP) approach are evaluated according to the parameter accuracy
during optimization in (5.6) and (5.7). To estimate the model para-
meter accuracy, the Root Mean Square Error (RMSE) of the estimated
parameters is calculated regarding the ground truth parameters for
the synthetic datasets SynthUSAF and SynthObj. Due to the varia-
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Noise Level
(PSNR)

Normalized Loss (×10−6)
Optimizer PPAE LBFGS AdamW DOP

Initialization Random Physics Physics Random

SynthUSAF+AWGN

0dB Optimal LR 0.001 0.01 0.01 0.01

-20dB
Min. 29498.45 38624.05 35838.50 29746.34

Mean 38843.38 38624.05 35838.50 29802.03
Max. 65652.00 38624.05 35838.50 29819.02

-10dB
Min. 3020.54 15620.10 9243.03 3042.54

Mean 19326.69 15620.10 9243.03 3058.49
Max. 35783.14 15620.10 9243.03 3080.95

0dB
Min. 312.73 3730.37 3698.46 315.10

Mean 8107.89 3730.37 3698.46 317.82
Max. 39273.80 3730.37 3698.46 320.96

10dB
Min. 45.22 1220.81 1190.69 38.18
Mean 7750.62 1220.81 1190.69 40.82
Max. 38507.01 1220.81 1190.69 45.26

SynthObj+AWGN

0dB Optimal LR 0.001 0.001 0.01 0.01

-20dB
Min. 30073.29 49725.60 36259.96 29668.97

Mean 30163.70 49725.60 36259.96 29729.65
Max. 30254.10 49725.60 36259.96 29823.52

-10dB
Min. 3091.60 13370.01 10202.86 3088.49

Mean 13342.05 13370.01 10202.86 3276.31
Max. 28511.46 13370.01 10202.86 3343.63

0dB
Min. 340.81 7027.83 4032.16 323.11

Mean 5170.08 7027.83 4032.16 387.28
Max. 19096.94 7027.83 4032.16 588.90

10dB
Min. 44.90 16733.44 1711.49 48.85
Mean 2741.44 16733.44 1711.49 106.93
Max. 8798.07 16733.44 1711.49 289.59

Table 5.3: Comparison of ℓ2-squared loss in (5.6) using Synth-
USAF+AWGN and SynthObj+AWGN datasets by optimizers PPAE, LBFGS
and AdamW to the DOP approach. The optimal learning rate is selected by
optimizing the loss by 0dB noise level.

tion in signal power of different noise levels, the RMSE of the model
parameter ê is normalized by the signal power given by the individual
dataset.

5.5.3.1 Synthetic Dataset with AWGN

numerical comparison In Fig. 5.4 and Fig. 5.5, the RMSE of
model parameters (ê, µ, σ, ϕ) estimated by PPAE, LBFGS, AdamW,
and the DOP approach are plotted using SynthUSAF+AWGN and
SynthObj+AWGN datasets respectively.
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Noise
Level

(PSNR)

Normalized Loss ×10−6

Optimizer LBFGS AdamW DOP
Initialization Physics Physics Random

MetalPCB+ShotNoise

0dB

Optimal LR 1 0.1 0.01

Min. 2034.9 1670.4 941.6
Mean 2034.9 1670.4 967.3
Max. 2034.9 1670.4 980.8

SynthUSAF+ShotNoise

0dB

LR 1 0.1 0.01

Min. 10953.1 5036.5 4819.6
Mean 10953.1 5036.5 4831.2
Max. 10953.1 5036.5 4842.9

SynthObj+ShotNoise

0dB

LR 1 0.1 0.01

Min. 7771.8 4329.7 4253.8
Mean 7771.8 4329.7 4271.7
Max 7771.8 4329.7 4289.1

Table 5.4: Comparison of loss with regularization in (5.7) us-
ing MetalPCB+ShotNoise, SynthUSAF+ShotNoise and Synth-
Obj+ShotNoise datasets by optimizers LBFGS and AdamW to the
DOP approach. The learning rate is selected based on optimal learning rate
of MetalPCB+ShotNoise using 0dB PSNR noise level.

In general, the DOP approach has the most accurate (i.e. low-
est RMSE) estimation for all model parameters. PPAE occasionally
achieves more accurate parameters at low noise levels (0dB and 10dB),
but the error bars show its instability. Given all optimizers are using
the same loss function, the parameter accuracy gap between all three
per-pixel optimizers (PPAE, LBFGS, AdamW) and the DOP approach
shows that the deep optimization prior approach significantly im-
proves the accuracy of model parameter estimation by overcoming the
undesired local minima.

qualitative comparison To check the quality of the estimated
model parameters, the following figures depict the corresponding
model parameter images ê (top row), µ, σ and ϕ (bottom row) of
ground truth (first column) and estimation by PPAE, AdamW and the
DOP approach (last column): Fig. 5.6 and Fig. 5.7 show the model
parameter images using the SynthUSAF and SynthObj datasets re-
spectively, with AWGN noise model at 0dB noise level. The images
from the SynthUSAF+AWGN (Fig. 5.6) datasets visualize the median
RMSE (median quality run) among 5 runs. The images from Synth-
Obj+AWGN (Fig. 5.7) are depicting the maximum RMSE (worst quality
run) among 5 runs.
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Figure 5.4: Comparison of RMSE of THz model parameters by optimizers
PPAE, LBFGS and AdamW to the DOP approach using dataset Synth-
USAF+AWGN at noise level from −20 to 10dB AWGN. Bars and whiskers
indicate minimum, median, and maximum RMSE among 5 runs for each
optimizer respectively.

From the µ images for the SynthUSAF+AWGN dataset, the PPAE,
and the DOP approach both estimate generally accurate parameters,
while the DOP approach has slightly more accurate µ values than
PPAE in the middle of the structure. However, when comparing the
µ images of SynthObj+AWGN obtained by the worst quality run, the
DOP approach performs significantly better than PPAE and AdamW.
This performance difference shows that PPAE is sensitive to network
initialization, while the DOP approach can overcome undesired lo-
cal minima given the fact that both autoencoders utilize the same
initialization scheme [He+ 15].

5.5.3.2 Synthetic Datasets with Shot Noise

numerical comparison Table 5.5 depicts the RMSE to the
ground truth of each model parameter using SynthUSAF and Synth-
Obj datasets with a shot noise model. In general, the DOP ap-
proach obtains the most accurate parameters with a slight margin
to AdamW for the SynthUSAF+ShotNoise datasets, while AdamW
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Figure 5.5: Comparison of RMSE of THz model parameters by optimizers
PPAE, LBFGS, and AdamW to the DOP approach using datasets Synth-
Obj+AWGN at noise level from −20 to 10dB PSNR AWGN. Bars and
whiskers indicate minimum, median, and maximum RMSE among 5 runs
for each optimizer respectively.

achieves better accuracy for the model parameter µ of the Synth-
Obj+ShotNoise dataset.

qualitative comparison The following figures depict the cor-
responding model parameter images ê (top row), µ, σ and ϕ (bottom
row) of ground truth (first column) and estimation by LBFGS, AdamW,
and the DOP approach (last column): Fig. 5.8 and Fig. 5.9 show the
model parameter images using SynthUSAF and SynthObj datasets
respectively with shot noise model at 0dB noise level. The images
display the median RMSE (median quality run) among 5 runs.

By visual comparison of the SynthUSAF µ images, it can be seen
that the DOP approach removes shot noise significantly, while the
AdamW optimizer still retains more shot noise. The visual comparison
of the SynthObj µ images also shows that the DOP obtains less shot
noise than the AdamW optimizer.

discussion The evaluation of the quality of the parameter images
shows that the quality of the optimization solution is significantly
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Ground truth PPAE AdamW DOP

Figure 5.6: Comparison of model parameters ê (first row), µ (second row), σ
(third row), cos(ϕ) (fourth row) and , sin(ϕ) (last row) by ground truth, PPAE,
AdamW and the DOP approach using the SynthUSAF+AWGN dataset at
0dB PSNR. All images shows the median RMSE (median quality run) among 5

runs.

improved by the deep optimization prior approach However, notice
that in rare cases the deep optimization prior approach generates
artifacts in the corner of the single parameter image, such as in the
top-left corner of the ê image for the SynthUSAF+AWGN datasets
(Fig. 5.6).

5.5.4 Timing and Memory

Table 5.6 compares the optimization time for PPAE, LBFGS, AdamW,
and the DOP approach. As PPAE is trained by the classical training-
then-prediction approach, the training and prediction times are stated
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Ground truth PPAE AdamW DOP

Figure 5.7: Comparison of model parameters ê (first row), µ (second row),
σ (third row), cos(ϕ) (fourth row) and , sin(ϕ) (last row) by ground truth,
PPAE, AdamW and the DOP approach using SynthObj+AWGN datasets
at 0dB PSNR. All images show the maximum RMSE among 5 runs (worst
quality run).

individually. Note that datasets with the shot noise model are opti-
mized by an additional regularization term using (5.7), which includes
spatial dependence.

The DOP approach has a drastically improved training time com-
pared to PPAE, from 1.4 hours to 3.7 minutes, i.e. a factor of 22.2.
However, when compared to AdamW, AdamW is still the fastest op-
timizer in general. It is quicker than the DOP approach by a factor
of 3.1, when the optimization problem is pixel-wise operation without
regularization, while it is out-performing the DOP approach only by a
factor of 1.6 for the optimization problem with regularization.

To compare the memory requirement for PPAE and the DOP
approach, the graphics memory requirement of the neural network is
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RMSE (Median of 5 runs)
Optimizer LBFGS AdamW DOP

SynthUSAF+ShotNoise at 0dB PSNR

LR 1 0.1 0.01

ê 0.2125 0.1346 0.1274
µ 0.3606 0.1642 0.1393
σ 0.00877 0.00584 0.00372
ϕ 0.7067 0.4872 0.4572

SynthObj+ShotNoise at 0dB PSNR

LR 1 0.1 0.01

ê 0.2233 0.1098 0.1079
µ 0.3083 0.2344 0.3129

σ 0.00495 0.00508 0.00435
ϕ 0.602 0.4029 0.387

Table 5.5: Comparison of model parameters RMSE using SynthUSAF and
SynthObj datasets with shot noise model.

Average time in seconds

Optimizer PPAE LBFGS AdamW DOP

Optimizer without regularization

MetalPCB †
5012.0+3.0 1650.3 71.9 225.2

MetalPCB+AWGN †
4339.2+3.1 1835.8 71.6 223.8

Optimizer with regularization

MetalPCB+ShotNoise *N/A 5503.5 223.2 367.4
SynthUSAF+ShotNoise *N/A 5829.8 225.0 371.3
SynthObj+ShotNoise *N/A 4853.8 225.1 371.4

† This is average training time and prediction time for PPAE
∗ Not available: PPAE is not available for regularization.

Table 5.6: Runtime comparison of PPAE, LBFGS, AdamW and the DOP
approach.

recorded by PyTorch Profiler during training. For PPAE, the graphics
memory consumption for a 446 × 446 batch size is 10.53GB, while
the DOP approach only requires 2.20GB. This shows that the DOP
approach is more efficient in terms of computation time and memory
than PPAE.

5.6 deblurring

In this section, the resolution enhancement is evaluated when com-
bining the deep optimization prior (DOP) approach and the method
mentioned in Chapter 3. More precisely, the blind deconvolution
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Ground truth LBFGS AdamW DOP

Figure 5.8: Comparison of model parameters ê (first row), µ (second
row), σ (third row), cos(ϕ) (fourth row) and , sin(ϕ) (last row) by
ground truth, LBFGS, AdamW and the DOP approach using Synth-
USAF+ShotNoise datasets at 0dB PSNR. All images show the median RMSE
(median quality run) among 5 runs.

method, such as Xu et al. [XJ 10; XZJ 13], is applied to the resulting
intensity images achieved by the DOP approach.

In order to evaluate the impact of different noise levels, the Met-
alPCB+AWGN datasets are synthetically added with an AWGN at
PSNR noise level from −20dB to 10dB by simulation respectively.

For the comparison of the per-pixel curve fitting optimizer, the
AdamW optimizer is chosen instead of the Trust-Region Algorithm
(TRA) used in Chapter 3, to compare properly and fairly with the
DOP approach in this chapter by taking the same optimizer and
hyperparameters.

In this section, firstly the intensity images are reconstructed for
each optimizer according to the method mentioned in Chapter 3
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Ground truth LBFGS AdamW DOP

Figure 5.9: Comparison of model parameters ê (first row), µ (second row),
σ (third row), cos(ϕ) (fourth row) and , sin(ϕ) (last row) by ground truth,
LBFGS, AdamW and the DOP approach using SynthObj+ShotNoise datasets
at 0dB PSNR. All images shows the median RMSE (median quality run) among
5 runs.

Sec. 3.2.7, while the lateral resolution is defined as the finest dimension
that can resolve a target with 3dB intensity difference. The vertical
and horizontal intensity differences are calculated for each resolution
group of the resolution target (from 4000µm to 280.6µm). The vertical
and horizontal resolutions are then determined respectively as the
first minimum dimension that obtained a 3dB crossing of intensity
difference. By repeating this procedure, the resolutions for each
noise level and the lateral resolution improvement are compared for
each optimization approach using different AWGN noise levels (see
Table 5.7). Note that in practice the intensity difference can decrease
non-homogeneously (see example in Fig. 5.11). Therefore, the range
of uncertainty is also determined (see Table 5.7), by indicating the
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Figure 5.10: Comparison of THz intensity images by original dataset data
(first row), the per-pixel AdamW optimizer (second row) and the DOP
approach (third row) using MetalPCB+AWGN datasets at noise level from
−20dB to 10dB. Images by AdamW and DOP (last two rows) approaches
are deblurred by blind deconvolution method from Xu [XJ 10; XZJ 13]. All
images shows the lowest RMSE (best quality run) among 5 runs.

difference between the first and last noise levels obtaining a 3dB
crossing intensity difference.

result and discussion Fig. 5.10 shows the intensity images
by the original datasets (first row), AdamW (second row), the DOP
approach (third row), and respective deblurring images (last two rows)
using MetalPCB datasets at AWGN noise level from −20dB to 10dB.
In this section, all results show the lowest RMSE (best quality run)
among 5 runs. Note, that the original datasets intensity image is
extracted by the same methodology in Chapter 3 Sec. 3.2.7, which
is the signal intensity of the MetalPCB+AWGN datasets data at the
center of the sampling window.
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Figure 5.11: Comparison of the vertical and horizontal intensity difference
using MetalPCB+AWGN datasets at 0dB PSNR level for each resolution
target group from 4000µm to 280.6µm. All results show the lowest RMSE
(best quality run) among 5 runs.

By visual comparison of the intensity images of AdamW and
DOP approaches, the DOP approach obtains fewer outliers for very
low PSNR levels, i.e. −20dB and −10dB. These outliers are more
significantly observable after the deblurring procedure, which makes
the deblurred DOP intensity image have a better quality than the
deblurred AdamW intensity image because of the robustness of the
DOP estimation.

Fig. 5.11 plots the vertical and horizontal intensity difference for
each resolution target group from 4000µm to 280.6µm, using the Met-
alPCB+AWGN datasets at 0dB PSNR level as an example. As a higher
intensity difference represents a better ability to resolve a resolution
target, both deblurred AdamW and DOP intensity images outperform
the original dataset image, while the deblurred DOP intensity image
obtains a more stable intensity difference than the deblurred AdamW
image. By comparing the location of the 3dB crossing for both de-
blurred images, the DOP approach enhances the performance of the
deblurring method, because of the robustness of model parameter
estimation.

Table 5.7 compares the vertical and horizontal resolution for the
AWGN PSNR level from −20dB to 10dB respectively, and the range
of uncertainty is shown in parentheses. Generally, the DOP approach
is improving the deblurring method with respect to its resolution
enhancement ability. The improvement of the DOP approach over
AdamW is mainly due to the improved robustness of model parame-
ters estimation, which obtains a shorter range of uncertainty except for
the vertical resolution at 10dB and the horizontal resolution at −20dB
PSNR level.
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Vertical Resolution in µm (range of uncertainty)
SNR Datasets image AdamW deblur DOP deblur
-20dB 2282.62 ( -0.0) 2808.23 (-2027.3) 2223.05 (-1454.1)
-10dB 2088.29 ( -0.0) 2318.77 (-1712.9) 585.87 ( -0.0)
0dB 2066.73 ( -0.0) 944.45 ( -344.4) 457.60 ( -0.0)
10dB 2022.34 ( -0.0) 535.28 ( -0.0) 568.10 ( -99.6)

Horizontal Resolution in µm (range of uncertainty)
SNR Datasets image AdamW deblur DOP deblur
-20dB 2208.92 ( -0.0) 2633.74 ( -0.0) 2288.36 (-1539.3)
-10dB 2099.83 ( -0.0) 1808.98 (-1076.7) 1048.52 ( -447.1)
0dB 2054.55 ( -0.0) 575.93 ( -0.0) 460.14 ( -0.0)
10dB 2055.73 ( -0.0) 573.10 ( -80.8) 444.31 ( -0.0)

Table 5.7: Comparison of vertical and horizontal resolution using Met-
alPCB+AWGN datasets at PSNR level from −20dB to 10dB. The range of
uncertainty is shown in parentheses. The best (lower is better) optimizers
are highlighted. All images shows the lowest RMSE (best quality run) among
5 runs.

5.7 summary

In this chapter, the deep optimization prior concept with the appli-
cation to THz model parameters estimation is introduced, i.e. the
reparameterization of a pixel-wise non-convex THz model parameter
estimation problem via a spatially coupled 3D neural network. The-
oretically, surjective reparameterizations can never eliminate critical
points of the original cost function but merely yield a different gradient
descent path. By numerical and visual evaluation, the experimental re-
sults demonstrate that the deep optimization prior approach robustly
reconstructs THz model parameters in low SNR and shot noise situa-
tions. It finds significantly better local minima compared to classical
first-order (AdamW), and second-order (LBFGS) optimizers and the
1D per-pixel model-based autoencoder method, and it is very memory
efficient. The modified U-net encoder network architecture results in
a neural network that is computationally and memory-wise highly
efficient compared to the state-of-art 1D convolutional neural network
structure.

Moreover, by combining with the modern blind deconvolution
method, the deep optimization prior approach improves the lateral
resolution enhancement robustly because of the robust reconstruction
of model parameters under low SNR noise conditions. Experiments
demonstrate that the deep optimization prior approach improves the
lateral resolution enhancement because of the robust reconstruction of
model parameters in low SNR noise levels.



6
J O I N T M AT E R I A L A N D G E O M E T R I C PA R A M E T E R
E S T I M AT I O N F O R T H Z M U LT I - PAT H R E F L E C T I O N
M O D E L

6.1 motivation

According to the single-path reflection model mentioned in previous
chapters, the model parameters (ê, σ, µ, ϕ) represent physical quan-
tities in an implicit way, i.e. they mathematically denote the signal
amplitude, the pulse width, the depth position and the phase angle
respectively. However, each parameter should obtain certain explicit
information regarding its physical property, e.g., it should be possi-
ble to denote the depth position by the time-of-travel in seconds or
the material refractive index. Hence, there is a high interest for re-
searchers in THz imaging to obtain parameters out of THz models in a
more physical perspective, for both the single-path and the multi-path
reflection.

By representing parameters in a more physical-based perspective,
solving the inverse problem of parameter estimation also implies
that joint estimation of material parameters (e.g. the refractive in-
dex, the dielectric coefficient) and geometric parameters (e.g. the
depth position, the material thickness) is possible. While FMCW THz
imaging systems commonly estimate the geometric parameters (e.g.
thickness [Schr+ 19]), THz researchers often utilize time-domain spec-
troscopy systems for material parameters (e.g. the refractive index, the
dielectric coefficient) individually [BFD 05; Requ+ 06; BZR 18] and
both material and geometric parameters simultaneoulsy [DBM 01].
As the practical aspect of THz imaging, it is interesting to study the
possibility of this joint material and geometric parameters estimation
for FMCW THz imaging systems.

Moreover, regarding the direct, single bounce reflection model used
in previous chapters, the discrete received signal a[n] in the frequency
domain is transformed (i.e. deramped) to the discrete-time domain
signal A[k] by the discrete-time Fourier transform. This transformed
time signal is then interpreted as the spatial domain signal A[z],
because each time domain sample represents a certain time-of-travel
in the air and hence the spatial depth position (see Chapter 2 Sec. 2.2).

However, this interpretation can be misleading and incomplete
when the THz radiation is no longer traveling in one medium (i.e.
air). Indeed, given that the FMCW THz system transmits a linear
frequency modulated waveform, i.e. fT(t) = fc +Krt in Chapter 2 (2.2),
the transmitted and received THz signal can be interpreted in both

92
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Figure 6.1: The multi-path reflection model is simplified to two reflection
paths.

the time or the frequency domain signal correctly, in which the latter
one can be deramped to time domain signal.

Hence, in order to have a clearer picture of the THz signal in
the multi-path reflection model, in this chapter the received signal is
interpreted as the frequency domain signal, and this frequency signal
is transformed (i.e. deramped) to the time domain by the discrete time
Inverse Fourier Transform.

According to this interpretation, as illustrated in Fig. 6.1, the
time domain signal contains multiple responses for each transition
position of a dielectric material, and hence the time difference between
adjacently received impulses (i.e. ∆t2) represents the thickness of the
material. In theory, this reflection model can be extended to more
than two paths, but it would drastically increase the complexity of
computation. Hence, in this chapter, only the first two paths are
assumed to be detectable and the full paths are neglected (depicted as
dotted arrows in Fig. 6.1) for simplicity.

Therefore, the joint material and geometric parameter estimation
of the dielectric material is formulated as the estimation of material
parameters (i.e. the refractive index n1 and the dielectric coefficient
κ1, where the complex refractive index η1 = n1 − iκ1) and geometric
parameters (i.e. the depth position of material ∆t1 and the material
thickness ∆t2), from the measured multi-path THz time domain signal.

In this chapter, the joint material and geometric parameter esti-
mation for the THz multi-path reflection model is described. This
approach expresses the inverse problem of parameter estimation as
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Figure 6.3: The start-from-zero discrete frequency signal is not correctly
modeling the THz system, which is operating at the center frequency fc with
the bandwidth B. Instead, a discrete frequency shift ko is introduced to the
measured THz data before the deramping inverse Fourier Transform.

an optimization problem, which is based on the THz multi-path re-
flection model, the objective loss function, and the optimizer. By
solving this optimization problem, both material-based and structural-
related physical quantities are jointly estimated from the measured
THz data, and hence enable per-pixel classical optimizers or modern
neural network-based optimizers mentioned in previous chapters to
be utilized.

As illustrated in Fig. 6.2, this approach provides a first insight
into the THz physical model, the quality of the THz data, and the
material and geometric parameters within the overall context of the
optimization-based enhancement concept (Fig. 1.1b). Sec. 6.2 describes
the approach in terms of the physical model and the mathematical
optimization problem in detail. Sec. 6.3 evaluates the approach by
the verification of the forward THz multi-path reflection model, the
theoretical analysis of loss functions, and the material and geometric
parameter accuracy.
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6.2 methodology

In this section, the THz multi-path reflection model is extensively
studied and formulated by physically interpretable constants and
variables. This model is derived by the Institute of High Frequency
and Quantum Electronics (HQE). First, it is important to revisit the
continuous frequency signal (see Chapter 2 Sec. 2.1.2) operated by
the FMCW THz system Xc( f ) (as illustrated in Fig. 6.3, bottom-left),
which is operating at the center frequency fc with the bandwidth B,
and the corresponding continuous-time signal xc(t) after the Inverse
Fourier Transform yields:

Xc( f ) = rect

(
f − fc

B

)
xc(t) = F -1 {Xc( f )} =

∫ ∞

−∞
Xc( f )ei2π f td f

=
1
B

∫ fc+B/2

fc−B/2
ei2π f td f =

1
B

[
ei2π f t

i2πt

] fc+B/2

fc−B/2

=
1
B
·

ei2π fct

πt

(
eiπBt − e−iπBt

2i

)

=
1
B
· ei2π fct · B ·

sin(πBt)
πBt

= sinc(Bt) · ei2π fct , where sinc(t) =
sin(πt)

πt

(6.1)

According to the basic principle of signal processing, as the mea-
sured THz data (i.e. the discrete frequency signal) represents the
continuous frequency signal, the discrete signal transformation cor-
responding to the DTFT in Chapter 2 (2.12) is also reviewed in this
section. Hence, similar to the DTFT, the Discrete Time Inverse Fourier
Transform (DTIFT) is applied to a square discrete frequency signal.
Note that DTFT and DTIFT only differ in the exponential term e−i2π fct

and ei2π fct, which should not cause a fundamental difference except
the sign of the exponential part.

discrete time inverse fourier transform (dtift) Given
an ideal square discrete frequency domain signal X[k] starting from
zero with the signal length L (Fig. 6.3, top-right):

X[k] =

{
1, 0 ≤ k ≤ L − 1

0, otherwise

for 0 ≤ k ≤ N − 1
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where N = L · Np denotes the length of the signal after zero-padding
by a factor of Np. After DTIFT, the discrete-time domain signal is:

x[n] = F -1 {X[k]} =
1
N

· sin[2πnL/(2N)]

sin[2πn/(2N)]
· exp

(
i2π

n
N

(
L − 1

2

))
(6.2)

However, given that the continuous signal model (Fig. 6.3, bottom-
left) is centered in carrier frequency fc with a bandwidth B, the start-
from-zero discrete signal X[k] (Fig. 6.3, top-right) does not match
the continuous signal model, which makes this discrete signal X[k]
inappropriate to show how the THz system actually captures the
signal.

In fact, in this chapter, the discrete signal from the THz system is
considered as a right shifted discrete signal X̂[k], where the discrete sig-
nal is an ideal square signal starting at the discrete starting frequency
ko (Fig. 6.3, bottom-right), and it yields:

X̂[k] = X[k − ko]

Hence, the discrete time signal x̂[n], which properly models the system,
is expressed as the deramped signal of X̂[k] by Inverse Fast Fourier
Transform (IFFT):

x̂[n] = F -1 {X̂[k]
}
= F -1 {X[k − ko]} = F -1 {X[k]} · exp

(
i2π

n
N

· ko

)
= x[n] · exp

(
i2π

n
N

· ko

)
=

1
N

· sin[2πnL/(2N)]

sin[2πn/(2N)]
· exp

(
i2π

n
N

(
L − 1

2
+ ko

))
(6.3)

Therefore, (6.3) indicates that unlike the data preprocessing in the
previous chapters, the modified deramping is taken instead for the mea-
sured THz signal: given the measured THz discrete frequency signal
G f [k], the measured discrete time signal gt[n] is properly modeled by
an IFFT and a frequency shift term:

gt[n] = F -1 {G f [k − ko]
}
= F -1 {G f [k]

}
· exp

(
i2π

n
N

· ko

)
(6.4)

with a discrete frequency shift ko =
fmin
B/L . In this chapter, gt denotes the

THz discrete time signal after transformation from the measured THz
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discrete frequency data. As sinc(t) ≈ sin(πt)
L sin(πt/L) and L−1

L ≈ 1 when L

is large, and taking the time parameter t =
n

Np
·

1
B

, (6.3) yields:

x̂[n] =
L
N

· sinc(
n

Np
) · exp

(
i2π

n
Np

·
1
L

(
L − 1

2
+ ko

))

x̂[t] =
L
N

· sinc(Bt) · exp

(
i2πt ·

B
L

(
L − 1

2
+ ko

))

=
L
N

· sinc(Bt) · exp

(
i2πt

(
B
2
+ fmin

))

=
L
N

· sinc(Bt) · exp (i2π fct)

(6.5)

Hence, by considering the time-shift property and the linearity prop-
erty of DTIFT as shown in Chapter 2 (2.14), in this chapter the THz
single-path reflection model Asp is expressed as:

Asp(t) = A0 · sinc (B(t − ∆t1)) · exp (iωc(t − ∆t1)) · r01 (6.6)

where A0 = L
N denotes the signal amplitude at the center position,

∆t1 denotes the time-of-travel of the first reflection path, ωc = 2π fc

denotes the angular center frequency and r01 denotes the reflection
coefficient from first material to second material (see Fig. 6.1, black
arrow). By assuming a perpendicular angle of incidence and using
the Fresnel equations, the reflection coefficient rab from material a to
material b is determined by their complex refractive indices η = n− iκ:

rab =
ηb − ηa

ηb + ηa
(6.7)

6.2.1 THz Multi-path Reflection Model

As illustrated in Fig. 6.1, the multi-path reflection model is expressed
as the super-position of first-path reflection (i.e. single-path reflection
model from air to the material) and the second-path reflection which
scatters the THz beams in the dielectric material. By extending the
single-path reflection model in (6.6), the multi-path reflection model
is expressed as:

Amp(t) = A0 · sinc (B(t − ∆t1)) · eiωc(t−∆t1) · r01+

A0 · sinc (B(t − (∆t1 + ∆t2))) · eiωc(t−(∆t1+∆t2))

· t01 · r12 · t10 · e−α1∆z2

(6.8)

where ∆t2 denotes the time-of-travel in the dielectric material, and
the transmission coefficient tab from material a to material b, the
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propagation loss α1, the depth position ∆z1 and the material thickness
∆z2 are expressed as:

tab =
2ηb

ηb + ηa

α1 =
2 · ωc

c0
· κ1

∆z1 =
c0 · ∆t1

2

∆z2 =
c0 · ∆t2

2n1

Note that the coefficient term of the second-path t01 · r12 · t10 depicts
the sequence of reflection-transmission (as illustrated in Fig. 6.1, blue
arrow): the transmission from the air to the material, then the reflection
from material to the air and finally the transmission from material to
air. The energy decay of the THz radiation while traveling within the
dielectric material is modeled by the propagation loss α1 term, given
that the dielectric coefficient κ1 ≥ 0.

After expanding (6.8) in a symbolic way and considering the com-
plex refractive index of air η0 = η2 = 1+ 0i, the overall THz multi-path
reflection model yields:

Amp(t; ∆t1, ∆t2, n1, κ1) = A0 sinc(B(t − ∆t1)) · eiωc(t−∆t1) · n1 − 1 − iκ1

n1 + 1 − iκ1

+ A0 sinc(B(t − (∆t1 + ∆t2))) · eiωc(t−(∆t1+∆t2))

· 4(n1 − iκ1)(1 − n1 + iκ1)

(n1 − iκ1 + 1)3 · exp(−ωcκ1∆t2

n1
)

(6.9)

In this expression, the multi-path reflection model consists of only
four unknown variables, i.e., the material parameters n1, κ1 and the
geometric parameters ∆t1, ∆t2, and the independent variable time
t. Therefore, the parameter estimation is formulated as finding the
parameters (∆t1, ∆t2, n1, κ1) that minimize the discrepancy between
the multi-path model Amp and the measured THz time domain data
gt shown in (6.4).

In order to verify the data processing and the THz reflection
models Asp and Amp, Sec. 6.3.1 will evaluate the discrepancy between
the measured THz data and the multi-path reflection model.

6.2.2 Loss Functions and Hamming Window

The solution of the parameter estimation problem is formulated as the
optimal parameters u∗

c of the optimization problem based on the loss
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function Lc, namely the magnitude of complex difference, which is also
the ℓ2-square loss in previous chapters.

u∗
c = arg min

u
Lc(gt; u)

Lc(gt; u) =
1
N ∑

t
|Amp(t; ∆t1, ∆t2, n1, κ1)− gt|2

(6.10)

where | · | denotes the magnitude of complex number and u =

(∆t1, ∆t2, n1, κ1).
However, even if a simple ℓ2-square loss is chosen, apparently it is

difficult for the optimizer to find the global minima of this highly non-
convex optimization problem. In order to investigate other possible
simplification of the optimization problem, another loss function Lm,
i.e. the difference of magnitude, is also studied for comparison:

u∗
m = arg min

u
Lm(gt; u)

Lm(gt; u) =
1
N ∑

t

(
|Amp(t; ∆t1, ∆t2, n1, κ1)| − |gt|

)2 (6.11)

However, as it will be shown in Sec. 6.3.2, the loss landscapes
of both Lc and Lm show numerous local minima, which are mainly
caused by the side-lobe of the time domain signal. One intuitive
solution is to reduce the signal side-lobe amplitude by an additional
operation of the Hamming window. Therefore, the THz multi-path
model and also the measured THz data are both multiplied with the
Hamming window in the frequency domain, where the Hamming
window H[k] in the discrete frequency domain is:

H[k] = 0.54 − 0.46 cos
(

2π · k
L

)
, where 0 ≤ k ≤ L − 1 (6.12)

Considering the measured discrete frequency signal G f [k] from (6.4),
the discrete frequency signal multiplied with the Hamming window
G̃ f [k] yields:

G̃ f [k] = G f [k − ko] · H[k − ko] (6.13)

After the IFFT, the discrete time signal with Hamming window g̃t[n]
is expressed as:

g̃t[n] =
(
F -1 {G f [k]

}
· ei2π n

N ·ko
)
⊛
(
F -1 {H[k]} · ei2π n

N ·ko
)

(6.14)

= gt[n]⊛ h[n] (6.15)

where ⊛ denotes the convolution operator and the Hamming window
in the discrete-time domain is defined as h[n] = F -1 {H[k − ko]}.
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Algorithm 6.1 Peak-finding procedure of the multi-path initialization
method
Input: time domain data gt, time domain sampling grid t

1: function PEAKFINDING(gt, t)
2: ∇gt = Differentiate |gt|;
3: |gt|p = Find all maxima of |gt| by zero-crossing ∇gt; ▷ peaks
4: t̂1 = time position of largest maxima |gt|p1 ;
5: t̂2 = time position of second largest maxima |gt|p2 ;
6: Compare position of t̂1 and t̂2 and ratio of |gt|p1 and |gt|p2 ;
7: if Two peaks are found then
8: t̂2 = time position of largest maxima after t̂1; ▷ t̂2 > t̂1
9: else

10: Subtract first reflection signal from data gt;
11: t̂2 = largest maxima position of residual signal magnitude

after t̂1;
12: end if
13: t1, P1 = quadratic interpolation near t̂1 on |gt|; ▷ P1 First peak

magnitude
14: t2, P2 = quadratic interpolation near t̂2 on |gt|; ▷ P2 Second

peak magnitude
15: Initialize ∆t1 = t1 and ∆t2 = t2 − t1
16: return peak magnitude P1, P2 and time ∆t1, ∆t2
17: end function

Correspondingly, the multi-path reflection model is also extended
by the Hamming window convolution, which yields the windowed
THz multi-path reflection model Ãmp:

Ãmp(t; ∆t1, ∆t2, n1, κ1) = Amp(t; ∆t1, ∆t2, n1, κ1)⊛ h(t)

where h(t) = F -1 {H[k]} · exp
(

i2π( fc −
B
2
)t
) (6.16)

Note that the Hamming window h(t) is independent to the desired pa-
rameters u = (∆t1, ∆t2, n1, κ1), which only changes the loss functions
of optimization problems in (6.10) and (6.11) to:

L̃c(g̃t; u) =
1
N ∑

t
|Ãmp(t; ∆t1, ∆t2, n1, κ1)− g̃t|2 (6.17)

L̃m(g̃t; u) =
1
N ∑

t

(
|Ãmp(t; ∆t1, ∆t2, n1, κ1)| − |g̃t|

)2
(6.18)

6.2.3 Optimization

In this part, the implementation details of the optimization process
are described.
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initialization In this section, the initialization method for the
THz multi-path reflection model Amp is described, which starts with
a peak-finding algorithm for ∆t1, ∆t2 depicted in Algorithm 6.1. The
peak-finding algorithm returns the magnitude of two peaks P1 and P2,
and the initialized parameters ∆t′1 and ∆t′2.

Next, according to the Amp model from (6.8), n1 can be roughly es-
timated by the magnitude of first peak P1 and the reflection coefficient
r01, given the prior-knowledge that the refractive index n1 is generally
much larger than the dielectric coefficient κ1, i.e. n1 ≫ κ1 and η1 ≈ n1.
The initialized parameter n′

1 yields:

P1 ≈ A0 · r01

r01 =
η1 − 1
η1 + 1

≈ n1 − 1
n1 + 1

⇒ n′
1 ≈ −

P1
A0

+ 1
P1
A0

− 1
= −P1 + A0

P1 − A0

(6.19)

Finally, the estimation of κ1 depends on the ratio of P1 and P2 (also
assuming η1 ≈ n1), by compariing coefficients of the first reflection C1

and the second reflection C2:

C1 =
η1 − 1
η1 + 1

≈ n1 − 1
n1 + 1

C2 =
4η1(η1 − 1)
(η1 + 1)3 ≈ |4n1(n1 − 1)|

|n1 + 1|3

P2

P1
≈ C2

C1
· exp

(
−ωcκ1∆t2

n1

)
⇒ κ′1 ≈

∣∣∣∣ −n1

ωc∆t2
· ln
(

C1

C2
· P2

P1

)∣∣∣∣

(6.20)

Therefore, using the peak-finding procedure shown in Algorithm 6.1,
and equations (6.19) and (6.20), the multi-path initialization method
obtains the coarse estimation of desired parameters u′ = (∆t′1, ∆t′2, n′

1, κ′1)

based on the discrete time signal gt, which this estimation will be
served as an initial point for the optimization.

optimizers To solve the optimization problems, firstly reasonable
boundaries of each parameter, i.e. constraints in mathematical termi-
nology, are determined based on some commonly known physical
properties:

1 ≤ n1 ≤ 30 commonly n1 ≤ 8 for semiconductors and plastics

0 ≤ κ1 ≤ 1 where κ1 = 0.71 for water at 577GHz [LHM 91]

∆t2 > 0 assuming a positive material thickness
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Three optimizers are studied for their ability to estimate the pa-
rameters:

• OptimM: optimization on signal magnitude by minimizing Lm

in (6.11).

• OptimC: optimization on signal complex parts by minimizing
Lc in (6.10).

• OptimJ: joint optimization on both magnitude and complex
parts by:

1. Optimization on the signal magnitude by minimizing Lm

in (6.11).

2. Initialized by optimal values u′ at the first step, optimization
on signal complex parts by minimizing Lc in (6.10), using
the refined boundary u′ ± 20%.

In order to study the effect of Hamming window, all these 3 optimizers
(i.e. OptimM, OptimC, OptimJ) are also tested for L̃m, L̃c and jointly
L̃m + L̃c respectively.

For the optimization algorithm, all optimizers are run by per-pixel
Trust-Region Algorithm (TRA) implemented on MATLAB® , because
TRA has shown superior performance in previous Chapters 4 and 5

for the per-pixel optimization problem. Note that other variants of the
optimization method, namely the AdamW optimizer and Gaussian
distributed weights of loss, are also tested. However, these variants do
not show better performance, so they are not shown in the experimen-
tal result section.

6.3 experimental result

Sec. 6.3.1 compares the measured THz data to the data derived by
the THz reflection models based on the measured reference value of
materials to verify the THz physical models. Sec. 6.3.2 theoretically
analyzes the loss function and the maximum boundary of initial-
ization from a numerical perspective. Sec. 6.3.3 evaluates the material
and geometric parameter estimation approach according to the para-
meter accuracy, with respect to the error statistics and the estimated
parameter value.

6.3.1 Verification of THz Models

In order to verify the correctness of the single-path reflection model
in (6.6) and the multi-path reflection model in (6.9), the models are
compared to the data extracted from an exemplary position for each
material in the measured THz datasets MPTarget.
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Figure 6.4: The measured THz signal (i.e. real, imaginary parts and signal
envelope) at the metal position from MPTarget datasets match to the THz
single-path reflection model in (6.6).

thz single-path reflection model Fig. 6.4 plots one example
measured THz data gt in (6.4) and the THz single-path reflection
model Asp in (6.6) at metal position. The reference complex refractive
index η1 = 333 − 355i is calculated from the copper refractive index
from [HGK 75] by linear extrapolation to 300 GHz. The reference
depth position ∆t1 is taken by empirically minimizing the difference
between the data and the model.

The result shows that the single-path model Asp generally matches
the measured data for the signal envelope (magnitude), the oscillation
frequency, and the phase.

thz multi-path reflection model Fig. 6.5 plots the signal
envelope (i.e. magnitude) of an exemplary measured THz data and
the THz multi-path reflection model Amp in (6.9) for each dielectric
material - FuseSilica (top-left), Silicon (top-right), PVC (bottom-left)
and COC (bottom-right). The reference complex refractive index η1

and the reference material thickness ∆t2 are taken from Table 2.1
in Chapter 2. The reference depth position ∆t1 is determined by
empirically minimizing the difference between the measurement data
and the model.

Fig. 6.6 plots the real and imaginary parts of an exemplary mea-
sured THz data and the THz multi-path reflection model Amp for
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Figure 6.5: The measured signal envelop (i.e. magnitude) from MPTar-
get datasets matches to the THz multi-path reflection model in (6.9) for each
dielectric material - FuseSilica (top-left), Silicon (top-right), PVC (bottom-left)
and COC (bottom-right).

each dielectric material - FuseSilica (top-left), Silicon (top-right), PVC
(bottom-left) and COC (bottom-right).

discussion From the figures of signal envelopes, the measured
data (green dotted line) commonly match the physical model (black
line) for the peak positions and the peak magnitudes for FuseSillica,
Silicon, and COC, except for only a slight mismatch on PVC. The
data magnitude of Silicon (top-right plot) also shows that a third-path
reflection can be detectable after the second reflection path. This is be-
cause the dielectric material Silicon has a very low propagation decay
term (see (6.8) α1), which is exponentially related to the thin thickness
∆t2 and the low dielectric coefficient κ1 (see Table 2.1). Although it
would be very interesting to include all paths from reflections for
consideration, this full-paths reflection is neglected in this section.

Moreover, as the reference values in Table 2.1 shown, the PVC
material is indeed a thick material with a high dielectric coefficient,
in which both the measured data and signal model show only the
first peak signal and the non-detectable second peak. This single peak
signal envelope can disturb simple peak-finding methods to locate
a precise and robust second peak, and hence a more detailed peak-
finding method (as depicted in Algorithm 6.1) is needed to enhance
the robustness of initialization.
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Figure 6.6: The real (left column) and imaginary (right column) parts of
measured signal from MPTarget datasets matches to the THz multi-path
reflection model in (6.9) for each dielectric material - (from top to bottom)
FuseSilica, Silicon, PVC, and COC.
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Besides the magnitude, the real and imaginary parts of measured
data also match the forward model in terms of its oscillation frequency
and the phase, except that a minor phase offset for COC is observed.
One possible reason for this phase offset is that the phase of the
THz multi-path reflection model in (6.8) is largely composite of the
material parameters n1 and κ1, while these two parameters are in
fact frequency dependent (Fig. 2.25) and are simplified (i.e. averaged)
to one single coefficient in the model. This frequency-dependent
discrepancy can introduce the observed modeling discrepancy, and
hence limit the accuracy of the derived physical models. Further
studies on these frequency-dependent parameters can be helpful to
enhance the robustness of the THz physical model.

Nevertheless, in this part, the experiment verifies that the THz
single-path and multi-path reflection models generally match the
measured THz data, and hence the models can serve as the refer-
ence forward model to solve the optimization problem of parameter
estimation.

6.3.2 Theoretical Analysis of Loss Functions

In deep learning terminology, a loss landscape plot can visualize
how the loss value is changed during neural network parameters
training [Li+ 18]. This is commonly used for understanding the
non-convexity and the efficiency of highly non-convex optimization
problems, such as deep neural network training. In order to have a
proper analysis and a comparison of the loss functions mentioned in
Sec. 6.2.2, i.e. Lm, Lc, L̃m and L̃c, in this section the loss landscape of
all these loss functions are studied theoretically. More precisely, the the-
oretical 1-Dimensional loss functions with respect to each parameter
(∆t1, ∆t2, n1, κ1) near the global optimal are plotted, based on the ideal
(i.e. noiseless) synthetic datasets SynthMPT and SynthMPT∗Hamm.

Then, based on these loss function plots, gradient-based optimizers
(i.e. TRA optimizer for all loss functions individually) are applied to
the ideal synthetic datasets based on different parameter initialization.
By comparison of the maximum range of parameter initialization that
can find the global minima, the valid range of parameter initialization
is determined for each optimizer and hence it can indicate the option
of loss function and optimizer combination.

Fig. 6.7 plots 1-D loss landscapes by varying ∆t1, ∆t2, n1, κ1 indi-
vidually, while all other three parameters are fixed to the ground truth
values. Ground truth values are using reference values of FuseSilica as
an example (more results are shown in Table 6.1). Note that the data
is simulated synthetically without any noise or discrepancy, which
indicates that the ground truth value (depicts in red color) serves as
the theoretical global minima, i.e. the zero loss value. Four plots in the
left column show 1-D loss functions Lc and Lm based on Amp model
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Figure 6.7: 1-D Loss landscapes are plotted by varying ∆t1, ∆t2, n1 and κ1
individually using reference value of FuseSilica as ground truth value. Left
column plots show loss functions Lc and Lm; Right column plots show loss
functions with Hamming window L̃c and L̃m. The red cross denotes the
ground truth (GT) loss (i.e. the global minima). The colored regions (purple
for Lc and green for Lm) represents the maximum boundary of initialization
(see Table 6.1).
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Model Amp in Eq. (6.9) Ãmp in Eq. (6.16)

Parameter Loss GT
Lower
bound

Upper
bound

Maximum
boundary

Lower
bound

Upper
bound

Maximum
boundary

Fu
se

Si
lic

a
(F

ig
.6

.7
)

∆t1

L
c

0.6671 0.1384 1.1492 1.0108 0.1229 1.1617 1.0388
∆t2 13.0298 12.2652 13.8018 1.5366 12.4200 13.8323 1.4123

n1 1.9224 1.0002 30.0000 28.9998 1.0002 30.0000 28.9998
κ1 0.0039 0.0000 0.1656 0.1656 0.0000 0.1915 0.1915

∆t1

L
m

0.6671 -3.7457 5.7578 9.5035 -6.5922 7.9780 14.5701
∆t2 13.0298 12.1414 13.7738 1.6323 10.2943 24.0171 13.7228
n1 1.9224 1.0038 30.0000 28.9962 1.0002 30.0000 28.9998
κ1 0.0039 0.0000 0.2696 0.2696 0.0000 0.2904 0.2904

Si
lic

on

∆t1

L
c

0.6671 0.1800 1.0818 0.9017 0.1732 1.0885 0.9153
∆t2 22.7865 21.8962 23.4392 1.5429 22.0076 23.5836 1.5760
n1 3.3986 1.0048 30.0000 28.9952 1.0001 30.0000 28.9999
κ1 0.0014 0.0000 0.2672 0.2672 0.0000 0.2613 0.2613

∆t1

L
m

0.6671 -6.0362 7.3547 13.3909 -9.0985 12.3998 21.4983
∆t2 22.7865 21.8288 23.5499 1.7210 11.3710 34.3046 22.9335
n1 3.3986 1.0064 30.0000 28.9936 1.0066 30.0000 28.9934
κ1 0.0014 0.0000 0.1186 0.1186 0.0000 0.4024 0.4024

PV
C

∆t1

L
c

0.6671 -0.1066 1.1339 1.2405 -0.1159 1.0352 1.1511

∆t2 60.7444 59.7042 61.3568 1.6526 59.7579 61.3738 1.6158

n1 1.8174 1.2117 30.0000 28.7883 1.2192 30.0000 28.7808
κ1 0.0309 0.0000 0.0624 0.0623 0.0000 0.0573 0.0573

∆t1

L
m

0.6671 -0.6308 1.9670 2.5979 -4.4714 7.4538 11.9252
∆t2 60.7444 60.0096 61.6083 1.5986 59.9634 61.6465 1.6831
n1 1.8174 1.4313 10.8181 9.3868 1.3695 14.0963 12.7269
κ1 0.0309 0.0000 0.0621 0.0621 0.0000 0.0603 0.0603

C
O

C

∆t1

L
c

0.6671 0.1444 1.1757 1.0312 0.1356 1.1799 1.0443
∆t2 31.2621 30.6578 31.8683 1.2105 30.6533 31.9865 1.3332
n1 1.5324 1.0001 30.0000 28.9999 1.0001 30.0000 28.9999
κ1 0.0008 0.0000 0.0777 0.0777 0.0000 0.0515 0.0515

∆t1

L
m

0.6671 -10.6904 11.5906 22.2810 -10.5210 11.6037 22.1247

∆t2 31.2621 27.0764 34.9217 7.8454 18.3212 44.1705 25.8492
n1 1.5324 1.0012 4.9711 3.9699 1.0001 30.0000 28.9999
κ1 0.0008 0.0000 0.0164 0.0164 0.0000 0.1227 0.1227

Table 6.1: Comparison of the ground truth (GT) values to the maximum
boundary of initialization by TRA optimizer for Lc and Lm loss functions
using Amp and Ãmp model. The wider (better) boundary of initialization is
highlighted.

using SynthMPT datasets. For comparison to the loss functions with
Hamming window, four plots in the right column show loss functions
L̃c and L̃m based on Ãmp model using SynthMPT∗Hamm datasets.

The maximum boundary of initialization (Fig. 6.7 and Table 6.1)
is calculated by the maximum range of initialization point that can
resolve the ground truth value (i.e. obtain the zero loss) by the TRA
optimizer. A wider valid range implies that the accuracy requirement
of parameter initialization to resolve the ground truth value is lower.

discussion The loss landscape (Fig. 6.7, using FuseSilica as an
example) shows that the model with the Hamming window (right
column) has a significantly smoother landscape than the model with-
out the Hamming window (left column) for the geometric parameters
∆t1 and ∆t2. When the width of the colored region is compared
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(i.e. maximum boundary of initialization) between the model with
or without Hamming window, the result shows a significantly wider
range of initialization that obtains the global minima, indicating that a
much looser initialization accuracy is required by optimization for both
magnitude loss function Lm and complex loss function Lc. For the
other materials, Table 6.1 demonstrates that the model with Hamming
window Ãmp generally obtains a wider boundary of initialization
than the model without Hamming window Amp, except a slightly
narrower boundary for ∆t1 of FuseSilica using complex loss function
Lc, for PVC using complex loss function Lc and for ∆t1 of COC using
magnitude loss function Lm.

Regarding the material parameters, the refractive index n1 shows
that most of the optimizers tested can obtain the global minima in the
tested range (i.e. 1 ≤ n1 ≤ 30), while the model with Hamming win-
dow Ãmp still out-performs to Amp in the other cases. The analysis of
the dielectric coefficient κ1 also demonstrates a superior performance
by the model with Hamming window Ãmp for FuseSilia, Silicon, and
COC, while an approximately equal maximum boundary of initial-
ization by PVC.

On the other perspective of comparison, when the complex loss
function Lc is compared to the magnitude loss function Lm (i.e. com-
paring Table 6.1 vertically for each material), the analytical results
show that the magnitude loss function Lm allows a wider range of
initialization than the complex loss function Lc significantly for geo-
metric parameters ∆t1 and ∆t2. For dielectric coefficient κ1, this gap
is still observable for the model with Hamming window Ãmp, while
Lm is only better on FuseSilica for the model without Hamming win-
dow Amp. For refractive index n1, all loss functions and optimizers
obtain the maximum test range for FuseSilica and Silicon materials.
Even though the magnitude loss function Lm shows a slightly stricter
boundary of initialization than Lc for PVC and COC, the boundaries
are still larger than the commonly known range of refractive index (i.e.
n1 ≤ 8) for semi-conductor and plastic.

Therefore, the analytical results demonstrate that the optimizer
OptimM, which tests on the magnitude loss function Lm and the
signal envelope Amp, is generally better than the optimizer OptimC
because of the less initialization accuracy required. The model with
Hamming window Ãmp can further reduce the initialization accuracy
needed, and hence further enhance the robustness of optimization.

However, note that this theoretical analysis is only limited to
the 1-Dimension loss landscape (i.e. the simplest case) without any
additional noise, which can easily over-simplify the real scenario of the
multi-dimensional loss functions. Hence, it is necessary to verify the
parameter estimation by the initialization point and the optimization
using the measured THz datasets, as it will be shown in the next
section.
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Furthermore, in principle, a sharper and smooth loss landscape
should be better for fast optimization, but the nearly flat loss landscape
Lm of κ1 in Fig. 6.7 shows a wider range of initialization than the
sharper loss landscape Lc. This is probably due to the fact that the
initialization range is solely tested by the TRA optimizer, which as a
second-order gradient-based optimizer considers not only the local
slope but also the nearby curvature, and provides a less intuitive result
than a first-order gradient-based optimizer. Also, the convergence
rate (i.e. the number of steps to find global minima) is not recorded
either, which makes it unclear the level of improvement by different
optimizers. This theoretical analysis can be more conclusive if more
optimization algorithms are included for testing.

6.3.3 Parameter Accuracy

The optimization performance is evaluated by the measurement datasets
MPTarget and the synthetic datasets SynthMPT. Each optimizer is
run for 5 × 5 pixels for each material at the center region. Statistics
numbers are shown for 10% percentiles, 50% percentiles (i.e. median),
and 90% percentiles. The estimated parameters (∆t1, ∆t2, n1, κ1) are
compared to the reference value shown in Chapter 2 Sec. 2.5.2.2. Note
that ∆t1 is removed from figures and table because the reference depth
position (i.e. ∆t1) from the THz datasets are not measured.

parameter errors Fig. 6.8 plots the median error of ∆t2, ∆z2, n1, κ1

by optimizers OptimM, OptimCand OptimJ to the initialization (Init.)
in log scale using the measured THz datasets MPTarget and MPTar-
get∗Hamm. Errors are calculated by the absolute difference between
the estimated value to the measured reference value shown in Ta-
ble 2.1.

Fig. 6.8 plots the error distribution (i.e. 10%, median and 90%
percentiles) of ∆t2, ∆z2, n1, κ1 by optimizers to the initialization using
the measured THz datasets MPTarget and MPTarget∗Hamm. Errors
are calculated by the absolute difference between the estimated value
to the measured reference value shown in Table 2.1.

Table 6.2 depicts the median error percentage of parameters ∆t2,
∆z2, n1, κ1 estimated by optimizers to the initialization (Init.), using
the measured THz datasets MPTarget and MPTarget∗Hamm. Median
error percentages are calculated by dividing the median of absolute
difference error by the ground truth value.

discussion The error distributions from Fig. 6.8 and Fig. 6.9 show
that the optimization on signal magnitude OptimM is out-performing
to the optimization on signal complex parts OptimC and OptimJ for
the parameters ∆t1, ∆z2, κ1. However, the experiment result is not
robust enough to draw a strong conclusion, about whether the opti-
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Figure 6.8: Comparison of the median error of parameters
∆t2, ∆z2 (i.e. material thickness), n1, κ1 to the initialization (Init.) in
log scale using the measured THz datasets MPTarget (left column) and
MPTarget∗Hamm (right column). Errors are calculated by the absolute
difference to the measured reference value shown in Table 2.1. Bars indicate
the median of error (the lower is better).
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Figure 6.9: Comparison of the error distribution of parameters
∆t2, ∆z2 (i.e. material thickness), n1, κ1 to the initialization (Init.) using the
measured THz datasets MPTarget (left column) and MPTarget∗Hamm (right
column). Errors are calculated by the absolute difference to the measured
reference value shown in Table 2.1. Bars and whiskers indicate the median,
10%, and 90% percentiles respectively.
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Datasets
Optimizer

FuseSilica Silicon
∆t2(%) ∆z2(%) n1(%) κ1(%) ∆t2(%) ∆z2(%) n1 κ1

Init. 6.0 10.4 3.9 69.6 1.5 5.1 4.0 64.7

MPTarget
∗Hamm

OptimM 1.3 3.9 3.4 49.7 0.9 3.6 3.2 100.0
OptimC 22.9 19.1 2.7 100.0 1.0 3.8 3.5 100.0
OptimJ 3.0 10.3 8.0 54.8 1.1 5.6 5.1 100.0

MPTarget
OptimM 9.5 7.4 3.3 76.6 0.6 3.4 3.7 100.0
OptimC 22.9 31.1 7.3 742.1 1.0 9.0 7.6 100.0
OptimJ 12.7 30.9 14.7 75.8 0.9 9.3 9.3 100.0

Datasets
Optimizer

PVC COC
∆t2(%) ∆z2(%) n1(%) κ1(%) ∆t2(%) ∆z2(%) n1(%) κ1(%)

Init. 22.6 30.5 10.2 59.6 1.2 3.8 3.8 170.8

MPTarget
∗Hamm

OptimM 23.5 30.3 5.6 69.4 1.8 5.4 3.4 296.5
OptimC 31.7 40.7 8.0 70.2 6.9 5.9 2.8 460.8
OptimJ 23.8 38.8 20.0 73.8 2.1 12.6 12.4 253.7

MPTarget
OptimM 24.5 25.5 4.0 72.5 1.8 6.0 5.1 151.0
OptimC 29.2 36.4 10.3 69.3 3.2 5.9 3.9 340.1
OptimJ 25.2 35.1 15.0 70.5 2.9 5.8 6.3 176.8

Table 6.2: Comparison of the median error percentage of parameters
∆t2, ∆z2, n1, κ1 estimated by optimizers to the initialization (Init.), using
the measurement THz datasets MPTarget and MPTarget∗Hamm. The best
optimization result is highlighted.

mizer OptimM always improves the parameter estimation regardless
of the initialization accuracy. Indeed, it only shows a weak tendency,
that the optimization method can improve the material and geometric
estimation problem given that the initialization is reasonably accurate.

On the other hand, the signal magnitude optimizer OptimM ob-
tains a promising improvement to the complex part optimizer Op-
timC with respect to the parameters ∆t2, ∆z2, κ1. The percentiles in
Fig. 6.9 also show that OptimM is more stable than OptimC in terms
of the divergence of estimated parameter. This is novel to the com-
mon knowledge in the THz imaging community, that the complex
signal should contain more information and hence should be supe-
rior to solve inverse problems like material and geometric parameter
estimation. Therefore, the experimental results demonstrate that the
optimization of the signal envelope (i.e. magnitude) can be more ro-
bust than the optimization of the complex signal for the material and
geometric estimation problem using the THz multi-path reflection
model. These results also support the finding of the theoretical anal-
ysis in Sec. 6.3.2, which analytically shows that the magnitude loss
landscape obtains less local minima and hence the optimization of
signal magnitude is easier to find the global minima.

For the Hamming window comparison, the median error shows
that the model with Hamming window Ãmp (i.e. right column of
Fig. 6.8) can generally improve the initialization result, only except for
n1 of FuseSilica and Silicon. As the error distribution shown in Fig. 6.9,
this improvement is probably because of the enhanced robustness
(i.e. lower variance) of the initialized parameters by the Hamming
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window model. This robust initialization, hence, can improve the
optimizers to reduce the median error and error variance of results
with Hamming window, as shown in the right column of Fig. 6.8 and
Fig. 6.9. However, again this is still a weak tendency, as the optimizer
OptimC does not obtain significant improvement by the model with
Hamming window, which implies that there is still more work needed
to study the effect of the Ãmp model.

Regarding the median error percentage of material and geometric
parameters, Table 6.2 shows that the best optimizers are diverging
between OptimM and OptimC using using the model with or without
Hamming window. In general, indeed, the model with Hamming
window obtains a slightly more accurate value for FuseSilica and
Silicon materials. Besides, by comparing the error percentage of init-
ialization and the best optimizer, the result demonstrates that the
best optimizer (which is mainly the OptimM and OptimC for MP-
Target∗Hamm datasets) generally obtains a more accurate value than
the initialization, especially for low-κ materials such as FuseSilica and
Silicon. However, the results are still not robust enough to show a con-
clusive observation, of whether the optimizer obtains more accurate
values compared to the peak-finding based initialization method.

6.4 summary

In this chapter, the materials and geometric parameter estimation
for the THz multi-path reflection model is expressed as solving the
optimization problem of the physical model by an objective loss func-
tion by an optimizer.

Based on the principle of the THz signal model, this approach
derives the comprehensive formula that transfers the measured data
from the numerical perspective to the physical space and interprets
the THz multi-path reflection as a functional model of the material
and geometric parameters.

The theoretical analysis of loss functions provides a deeper under-
standing of the ℓ2 loss functions used for the optimization problem,
by plotting the magnitude and complex 1-D loss landscape based on
the synthetic ideal datasets and THz reflection models. The maximum
boundary of initialization is tested by the Trust-Region Algorithm
(TRA) optimizer for each optimizer respectively, to indicate the re-
quired accuracy of initialization for the optimization. The numerical
results demonstrate that the optimizer based on the magnitude loss
function and the signal envelope, is generally better than the optimizer
based on the complex parts of the signal, because of the wider range
of initialization.

By solving the optimization problem using a per-pixel optimizer,
the experimental results demonstrate that the optimization of the
signal magnitude can be more robust than the optimization of the
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complex signal for the joint material and geometric estimation problem
using the THz multi-path reflection model. However, the experiment
result is not robust enough to conclude, whether the optimizer al-
ways improves the parameter estimation regardless of the accuracy of
initialization. In fact, it only shows a weak tendency, that the optimiz-
ation method can improve the joint material and geometric estimation
problem given that the initialization is reasonably accurate.

As this task can, so far, not solve with sufficient robustness, further
investigation of the optimization method is needed in the future.



7
C O N C L U S I O N

summary In this dissertation, an optimization-based THz data and
image enhancement conceptual model is introduced. In this context,
inverse problems in THz data and image enhancement, namely para-
meter estimation, image reconstruction, and resolution enhancement,
are expressed as mathematical optimization problems.

This concept includes the THz computational image enhancement
method, which is based on the complex curve fitting method in the
azimuth direction, which is expressed as an optimization problem
solved by state-of-the-art optimizers, and deconvolution methods in
the lateral domain. Experiments demonstrate that this method en-
hances the lateral resolution and depth accuracy beyond the diffraction
limit.

To enhance the optimizer, this concept is incorporated with cutting-
edge machine learning technology, namely the model-based auto-
encoder, for the image reconstruction problem. This model-based
autoencoder approach trains a convolution neural network as a per-
pixel optimizer, which allows training the corresponding network
with realistic measured THz data in an unsupervised way, i.e. without
ground truth. The neural network can serve as an excellent init-
ialization scheme for gradient-based optimizers. Experiments also
demonstrate that this autoencoder approach significantly improves
the time required for the optimization procedure.

To further enhance the optimizer, this concept introduces the
deep optimization prior approach, which expresses the pixel-wise
non-convex THz model parameter estimation problem as the repara-
meterization of the spatially coupled 3D neural network. This ap-
proach largely extends the model-based autoencoder approach from
the 1D optimization problem to 3D THz image space, which makes
it computationally and memory-wise highly efficient. The experi-
ment shows that the deep optimization prior approach enhances the
estimated model parameters numerically and qualitatively. Utiliz-
ing a blind deconvolution method substantially improves the lateral
resolution enhancement.

To represent model parameters in a more physical-based perspec-
tive, this concept gives a first insight into the joint material and geomet-
ric estimation approach for the THz multi-path reflection model. This
approach expresses the parameter estimation as the direct optimal of
the optimization problem, which is strictly based on the physically de-
rived THz multi-path reflection model. It should hence allow per-pixel
classical optimizers or modern neural network-based optimizers to be

116
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utilized. However, the experimental results are not robust enough to
draw a strong conclusion, but only to show a weak tendency that the
tested optimizer can improve the joint parameter estimation problem
given that the initialization is reasonably accurate.

Therefore, despite the limitations found in this dissertation, the
optimization-based THz enhancement method can generally over-
come challenges faced by the modern THz computational imaging
community, and it can demonstrate the advantages brought by the
cross-disciplinary collaboration between the fields of THz imaging
and visual computing.

future work Experiments in the joint material and geometric
parameter estimation have shown significant room to be improved
in terms of the accuracy and the robustness of the estimated parame-
ters. Utilizing some renowned non-convex optimizers, such as neural
network-based optimizers, is a possible solution to enhance the ability
to find the global minima. The regularization of the parameters can
also be included in the optimizers so that 3D optimizers (such as the
deep optimization prior approach) can also be utilized to improve the
robustness by adopting prior knowledge (e.g. the spatial smoothness,
the possible range of material parameters).

Moreover, it is possible to extend the THz physical model from
the two-path reflection model to the full (i.e. three, four, etc.) paths
reflection model, such that the experimental setup allows more than
one dielectric material to be stacked for testing. This generalization
will probably introduce more sophisticated non-convex optimization
problems, but indeed it is an opportunity to demonstrate the advance
of cutting-edge machine learning technology.
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