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Abstract 

I 

Abstract 
Microorganisms not only contribute to the spoilage of food but can also cause 

illnesses through consumption. Consumer concerns and doubts about the shelf life 

of the products and the resulting enormous amounts of food waste have led to a 

demand for a rapid, robust, and non-destructive method for the detection of 

microorganisms, especially in the food sector. Therefore, a rapid and simple 

sampling method for the Raman- and infrared (IR)-microspectroscopic study of 

microorganisms associated with spoilage processes was developed. For 

subsequent evaluation pre-processing routines, as well as chemometric models for 

classification of spoilage microorganisms were developed. 

The microbiological samples are taken using a disinfectable sampling stamp and 

measured by microspectroscopy without the usual pre-treatments such as 

purification separation, washing, and centrifugation. The resulting complex 

multivariate data sets were pre-processed, reduced by principal component 

analysis, and classified by discriminant analysis. Classification of independent 

unlabeled test data showed that microorganisms could be classified at genus, 

species, and strain levels with an accuracy of 96.5 % (Raman) and 94.5 % (IR), 

respectively, despite large biological differences and novel sampling strategies. 

As bacteria are exposed to constantly changing conditions and their adaptation 

mechanisms may make them inaccessible to conventional measurement methods, 

the methods and models developed were investigated for their suitability for 

microorganisms exposed to stress. 

Compared to normal growth conditions, spectral changes in lipids, polysaccharides, 

nucleic acids, and proteins were observed in microorganisms exposed to stress. 

Models were developed to discriminate microorganisms, independent of  

the involvement of various stress factors and storage times. Classification of the 

investigated bacteria yielded accuracies of 97.6 % (Raman) and 96.6 % (IR), 

respectively, and a robust and meaningful model was developed to discriminate 

different microorganisms at the genus, species, and strain levels. 

The obtained results are very promising and show that the methods and models 

developed for the discrimination of microorganisms as well as the investigation of 

stress factors on microorganisms by means of Raman- and IR-microspectroscopy 

have the potential to be used, for example, in the food sector for the rapid 

determination of surface contamination. 
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Zusammenfassung 
Mikroorganismen tragen nicht nur zum Verderb von Lebensmitteln bei sondern 

können durch deren Verzehr auch Krankheiten auslösen. Die Verunsicherung der 

Konsumenten sowie die Skepsis am Mindesthaltbarkeitsdatum der Produkte und 

die daraus resultierenden enormen Mengen an Lebensmittelabfällen sorgen für den 

Wunsch nach einer schnellen, robusten und zerstörungsfreien Methode zum 

Nachweis von Bakterien, insbesondere im Lebensmittelsektor. Daher wurde eine 

schnelle und einfache Probenahmemethode für die Raman- und Infrarot (IR)-

Mikrospektroskopische Untersuchung von Mikroorganismen, die mit 

Verderbsprozessen in Verbindung stehen, konzipiert. Zur anschließenden 

Auswertung wurden pre-processing Routinen sowie chemometrische Modelle zur 

Klassifizierung der Verderbserreger entwickelt. 

Mit einem desinfizierbaren Probenahmestempel werden die zu untersuchenden 

mikrobiologischen Proben, ohne die üblichen Vorbehandlungen wie Separation, 

Reinigung und Zentrifugation, entnommen und mikrospektroskopisch vermessen. 

Die resultierenden komplexen multivariaten Datensätze wurden durch eine 

Hauptkomponentenanalyse reduziert und mittels Diskriminanzanalyse klassifiziert. 

Die Klassifizierung unabhängiger ungelabelter Testdaten zeigt, dass 

Mikroorganismen trotz großer biologischer Unterschiede und neuartiger 

Probenahmestrategien mit einer Genauigkeit von 96,5 % (Raman) bzw. 94,5 % (IR) 

auf Gattungs-, Arten- und Stammebene klassifiziert werden können. 

Da Bakterien sich ständig wechselnden Bedingungen ausgesetzt sind und durch 

ihre Anpassungen so für herkömmliche Messmethoden möglicherweise nicht mehr 

zugänglich sind, wurden die entwickelten Methoden und Modelle auf ihre Eignung 

für Stress ausgesetzten Mikroorganismen untersucht. 

Im Vergleich zu normalen Wachstumsbedingungen wurden bei unter Stress 

stehenden Mikroorganismen spektrale Veränderungen in Lipiden, Polysacchariden, 

Nukleinsäuren und Proteinen beobachtet. Es wurden Modelle entwickelt, um die 

untersuchten Mikroorganismen unabhängig von der Beteiligung verschiedener 

Stressfaktoren und Lagerzeiten zu unterscheiden. Die Klassifizierung ergab 

Genauigkeiten von 97,6 % (Raman) bzw. 96,6 % (Infrarot) und es wurde ein 

robustes und aussagekräftiges Modell zur Unterscheidung verschiedener 

Mikroorganismen auf Gattungs-, Arten- und Stammebene entwickelt. 
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Die erzielten Ergebnisse sind sehr vielversprechend und zeigen, dass die 

entwickelten Methoden und Modelle zur Unterscheidung von Mikroorganismen 

sowie zur Untersuchung von Stressfaktoren auf Mikroorganismen mittels Raman- 

und IR-Mikrospektroskopie das Potenzial haben, beispielsweise im 

Lebensmittelbereich zur schnellen Bestimmung von Oberflächenkontaminationen 

eingesetzt zu werden. 
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1.1 Introduction 

The fact that the world population and the global demand for meat will continuously 

grow, the increasing importance of resource conservation and environmental 

protection in our world has become very clear in recent decades [1–8]. One 

particularly important aspect of this field is food safety, which consists not only of 

producing and consuming safe food, but also of wasting less food. This may be 

achieved by a more accurate determination of shelf life, thus reducing not only 

organic waste, but also environmental stress and the pollution of the planet by 

plastics [1,8–10]. The importance of global resource conservation is particularly 

evident in the staggering amounts of approximately 931 million tons of food waste 

generated each year [11]. 

Currently, the shelf life of a product is estimated very conservatively, because the 

manufacturer is liable for the edibility of the product until this date if certain aspects, 

such as storage conditions, are respected [12–16]. This conservative estimation of 

the shelf life is based on a very labor-, cost-, and time-intensive determination of the 

initial bacterial load of the product, which is typically executed by standard colony-

counting methods [17–20]. Other methods such as sensory-mechanical studies, 

immunological, or genetic techniques did not prevail due to disadvantages in speed, 

complexity, and invasiveness on the way to an optimized determination of the initial 

bacterial load [17,18,21]. 

Considering 600 million annual cases of illness as well as 420,000 deaths world-

wide caused by the consumption of contaminated food, the fear of the consumer of 

foodborne illnesses, the conservative estimation of the shelf life date and 

consumers' misunderstanding of the shelf life date of products contribute to the 

unnecessary disposal of products that would still be edible [9,22–24]. The immense 

importance of the expiry dates printed on products and their interpretation by 

consumers is demonstrated by the fact that half of the economic losses along the 

supply chain occur in households with meat products being a large proportion of 

these losses [2,11]. 

Based on these figures and the rapidly increasing number of scientific articles on 

food safety and on the determination of bacteria by Raman- or infrared (IR)-

spectroscopy, the need for a fast and robust method for the determination of 

contaminations becomes obvious [4,10,25]. Attention must also be paid to the 

development of methods capable of determining bacterial contaminations in real 
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world samples, as bacteria are subject to constant variations in their growth 

conditions, both in nature and in the supply chain [26–29]. They have developed the 

ability to constantly adapt to conditions or even change to a viable but non-culturable 

state, making them inaccessible to conventional determination methods [18,26,30]. 

1.2 Scope of the Thesis 

This thesis is dedicated to the development of a rapid and reliable spectroscopic 

detection and classification method for microorganisms that are significantly 

involved in the spoilage process of food, especially meat products. Besides the 

development of a basic methodology for sampling, analysis, and evaluation 

(Chapter 4 and Chapter 5), special emphasis is put on exceeding the limits of the 

development of a classical laboratory model by specifically considering extrinsic 

factors (Chapter 6 and Chapter 7) on the sample. 

The objectives of Chapter 4 and Chapter 5 are to find a time-saving, cost-effective, 

and suitable sample preparation of microbiological samples and a suitable 

measurement method using Raman- and IR-microspectroscopy with subsequent 

data preparation, evaluation, and classification. For this purpose, a rapid and simple 

sampling procedure was developed using a disinfectable stainless steel stamp, with 

which samples of a surface, so-called surface blots, can be produced, e.g. from the 

surface of the culture medium. Furthermore, the investigations aimed at optimizing 

the required analysis time so that no loss of relevant spectral information occurs. 

For the complex multivariate data set, a manageable data set now had to be created 

by reasonable chemometric data processing using spectral data preprocessing and 

a PCA (principal component analysis) for data reduction. By means of a CDA 

(canonical discriminant analysis), a robust and reliable model for differentiation of 

food safety and especially meat spoilage relevant bacteria from genera to species 

level was created.  

In summary, these two chapters present the development of a complete, rapid, and 

nondestructive analytical method for spoilage microorganisms that allows 

classification down to the species level using Raman and IR microspectroscopy. 

However, as the methods and models developed may not adequately capture real-

world samples that are not subject to ideal laboratory conditions, the aim is to 

expand the data set to ensure that the resulting models are not only based on 
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spectra generated under ideal conditions, but also include microorganisms under 

high stress. 

For this purpose, in addition to the standard reference treatment, the 

microorganisms were subjected to controlled lifetime stress conditions (incubation 

under acidic and alkaline conditions, incubation at different temperatures and 

incubation under 2-propanol influence) and sampling stress conditions (cold 

sampling, heat sampling, and desiccation). Subsequently, the microbiological 

samples were measured by Raman- (Chapter 6) and IR- (Chapter 7) 

microspectroscopy. Moreover, one objective is to establish a careful preprocessing 

routine, and not only split the datasets into independent training and testing 

datasets, but also generate them from independent samples. The models presented 

are therefore based on balanced data sets and take into account different growth 

states as well as a variety of stress factors that have affected the microorganisms.  

Finally, in Chapter 8, a summarizing conclusion is given with regard to the results of 

the thesis as well as future perspectives. 
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2.1 Infrared- & Raman-spectroscopy 

Vibrational spectroscopy analyzes changes in molecular vibrations and rotations 

induced by interaction with electromagnetic radiation, allowing conclusions to be 

drawn about the change in state of the molecule and hence the identification and 

quantification, as well as the structural elucidation, of unknown chemical 

compounds [61,62]. 

IR-spectroscopy covers the infrared region of the electromagnetic spectrum, which 

is usually divided into three regions. Near-IR (14,000–4,000 cm−1) can excite 

overtone or combination bands. Mid-infrared, about 4,000–400 cm−1, can be used 

to study fundamental vibrations, and far-infrared (400–10 cm−1) which is used for 

rotational spectroscopy [61,62]. IR spectroscopy is based on the absorption of 

energy of the electromagnetic radiation by a molecule in the IR range, which 

corresponds to the frequency of the vibrating bond or functional group [61,62]. To 

transfer the energy of the IR photon to the molecule, the molecular vibration must 

cause a change in the dipole moment of the molecule [61,62]. 

Raman-spectroscopy, unlike IR-spectroscopy, is not based on the absorption  

of energy of the electromagnetic radiation, but on scattering processes of 

monochromatic laser light by molecules [61,62]. A prerequisite for the Raman effect 

is a change in the polarizability of a molecule during vibration [61,62]. In contrast to 

Rayleigh scattering, Raman signals result from inelastic collisions between photons 

and molecules in the sample, where some energy is transferred either from the 

photon to the molecule (Stokes scattering) or from the molecule to the photon (Anti-

Stokes scattering) [61,62]. In the first case, the molecule is excited from the ground 

state to a higher, virtual vibrational, state [61,62]. The transition from the virtual 

vibrational to the first excited state decreases the energy of the photon by the energy 

difference between the two vibrational states [61,62].  

Although Raman scattering spectra and IR absorption spectra of a chemical 

compound often resemble each other, they provide complementary information due 

to different selection rules [63]. This fact is useful in the analysis of complex chemical 

matrices, as overlapping absorption bands from one method can often be resolved 

by the other. The combination of spectroscopy and microscopy allows both classical, 

robust, and nondestructive material identification and local assignment of a 

spectrum on a microscopic image [64,65]. Thus, in addition to the analysis of traces 
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and surface contamination at the macroscopic and microscopic level, respectively, 

qualitative and quantitative information can also be derived [65,66].  

2.2 Bacteria 

Bacteria are surrounded by a stable cell wall that protects them from external 

influences [31,32]. Other intracellular as well as extracellular structures include 

bacterial DNA, plasmids and ribosome embedded in the cytoplasm, flagella involved 

in motility, and fimbriae that help the bacterium adhere to surfaces [31,32]. 

The basis for classifying bacterial species is the composition of their cell wall, which 

divides them into Gram-positive and Gram-negative species [31]. Gram-positive 

bacteria have a thick cell wall composed of peptidoglycans, teichoic acid, 

lipoteichoic acid, and lipoglycans covering the cytoplasmic membrane. Gram-

negative bacteria have only a thin layer of peptidoglycans surrounded by an inner 

and outer membrane composed of phospholipids, lipopolysaccharides, and 

proteins [31]. However, regardless of genus, species, or strain level, the general 

structure of bacteria is very similar, which is outlined in Table 2.1. 

Table 2.1: General composition of bacteria in mass percentage [33]. 

Cell component Amount [%] 
RNA 5–15 
DNA 2–4 

Proteins 40–60 
Lipids 10–15 

Carbohydrates 10–20 
 

Bacterial species responsible for food spoilage include Gram-negative non-spore-

formers (e.g., Pseudomonas spp.), Gram-positive spore-formers (Bacillus spp.), 

Gram-positive rods (e.g., Brochothrix spp.), Gram-positive cocci (Micrococcus spp.), 

and Enterobacteriaceae (e.g., Escherichia spp.) [34–39]. 

2.3 Examination of Bacteria 

Bacterial contaminations are usually investigated by traditional colony counting 

methods or biological techniques such as bioluminescence or various staining 

techniques [40–46]. However, as these methods are very time-consuming, rapid 

alternatives have been sought for many years, especially for test environments 

where rapid identification is required. Particular attention has been paid to 
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vibrational spectroscopy [47–51]. Research in this field started with the first 

characterizations of microorganisms by IR spectroscopy [52–54] and developed for 

example to single cell characterizations by Raman spectroscopy [55–57]. 

Nevertheless, most methods require classical cultivation and some washing and 

separation steps [58,59]. 

As different bacterial strains have different but very similar biochemical 

compositions, which are reflected in the spectra, it is possible to differentiate them 

with the help of the spectra. These differences in composition can mostly be found 

for proteins and nucleic acids in the range of 540 cm−1 to 1800 cm−1 and for  

C-H stretching vibrations of alkyl groups in the range of 3060 cm−1 to 2870 cm−1 and 

should be present in the spectrum of any bacterium, as these functional groups  

are abundant in most biological molecules [33,60]. The differences in the spectra 

are often so small that they can only be detected by chemometric data analysis. The 

cell composition of bacteria can be concluded from the assignment of the functional 

groups to the respective bands of the vibrational spectra. 

2.4 Chemometric Methods 

Chemometrics is the process of using mathematical and statistical methods to 

analyze and interpret chemical data [67]. In spectroscopy, the chemometric process 

often begins with the preprocessing of spectra, as the spectrum is often affected by 

interfering effects such as fluorescence, noise, or impurities, for example, masking 

biologically induced spectral changes in the sample [68,69].  

To subsequently find patterns in data and associate them with specific objects, 

projection methods such as principal component analysis are often used [67,70]. 

These methods are often used solely to reduce dimensions, as high-dimensional 

datasets are problematic to handle and analyze due to their size [71]. The low-

dimensional dataset is then further processed in such a way that the mathematical 

combination of different variables into new variables ideally allows the separation of 

object classes and the prediction of object properties [67,70]. 

2.4.1 Pre-processing 

Preprocessing is one of the most important steps in chemometric model 

development. During preprocessing, interfering signal components are removed 

from the spectrum in order to increase the analyzability of the data. However, this 
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can also result in the data being altered in such a way that this alteration has a 

negative influence on the result [72,73]. 

Baseline correction reduces deviations from the baseline that do not contain spectral 

information but are due to impurities and fluorescence [74,75]. However, important 

signals can be distorted by changing the baseline of the spectrum, so information 

can be lost [74,75].  

Smoothing is often required for Raman spectra of biological material because the 

signal-to-noise ratio is usually low due to low scattering intensity [74,75]. Removing 

the noise generated by the spectrometer can reveal bands present that would 

otherwise be detected as noise [74,75]. However, it should be noted that smoothing 

can remove signals in an undesirable manner [74,76]. 

Normalization is performed to address the problem of varying sample thickness and 

differences in successive measurements due to changing conditions [49,77]. Two 

spectra that have the same signal components but different maximum intensity 

values look the same after normalization [78]. 

2.4.2 Principal Component Analysis  

Principal component analysis is a so-called unsupervised method, which means 

that, in contrast to supervised methods, the membership of objects to certain 

classes is unknown in advance [67,70]. The purpose of PCA is to reduce dimensions 

by computing linear latent variables from the original data matrix without losing 

essential information [67,70]. These latent variables are used to create a new 

coordinate system that uses only the dimensions with the highest information 

content [67,70]. 

The principal components (PC) are determined based on the maximum variance 

criterion, which means that each subsequent PC describes a maximum of the 

variance that is not modeled by the previous components [67]. This means that  

the latent variable that has the highest variance and best preserves the relative 

distance between objects, and thus the information about their similarity, is defined 

as the first principal component (PC1) [67]. 
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2.4.3 Canonical Discriminant Analysis  

Unlike PCA, which examines data without considering information about group 

membership (unsupervised), discriminant analysis is a method for estimating how 

accurately a sample can be assigned to a group (supervised) [70]. In general, 

discriminant analysis increases variance between groups while decreasing variance 

within groups and can be divided into two types, linear and quadratic [67,70].  

In linear discriminant analysis (LDA), two classes are separated by a linear 

boundary, whereas in quadratic discriminant analysis (QDA), the shape of the 

separating boundary is nonlinear [67,70]. In QDA, the distance is calculated using 

the variance-covariance matrix of the sample rather than the pooled matrix as in 

LDA [67,78]. Therefore, for large data sets where the variances of the different 

classes are very different, it may be more appropriate to use QDA instead of the 

linear method [67,78].  
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3.1 Bacterial Cultures and Sample Preparation 

In this chapter, a brief overview of the microorganisms used and the sample 

preparation is given. More detailed information is given in the relevant chapter in the 

Materials and Methods section. 

For this study, the following food spoilage-relevant bacteria were cultivated on a 

nutrient agar (10 g/L meat peptone, 10 g/L meat extract, 5 g/L sodium chloride, and 

18 g/L agar-agar (Merck KGaA, Darmstadt, Germany)): Escherichia coli (E. coli) 

K12 DSM 498 (German Collection of Microorganisms), TOP10, and HB101; 

Micrococcus luteus DSM 20030 Brochothrix thermosphacta DSM 20171 (B. therm); 

Pseudomonas fluorescens (Ps. fluor) DSM 4358 and DSM 50090; Bacillus subtilis 

DSM 10 (B. sub); Bacillus coagulans DSM 1 (B. coag); and Bacillus thuringiensis 

israelensis DSM 5724 (B. tii) (Leibniz Institut DSMZ – German Collection of 

Microorganisms and Cell Cultures, Braunschweig, Germany). 

The samples were taken by a blotting technique with the sample carrier (Figure 3.1) 

directly from the agar plate without any sampling pre-treatments.  

 

Figure 3.1: Sampling device and sample carrier for blotting technique [79]. 

Spectra of samples that were cultivated under lifetime stress conditions were 

recorded immediately after sampling. Otherwise, the samples were subjected to 

sampling stress and examined spectroscopically without further incubation time 

after the stress impact. 
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3.2 Sample Treatment 

In this chapter, a brief summary of the sample treatments used is given. More 

detailed information is given in the corresponding chapter in the respective Materials 

and Methods section. 

3.2.1 Reference Samples (Regular Treatment) 

All microorganisms were grown (Binder BD 240, BINDER GmbH, Tuttlingen, 

Germany) in compliance with DSMZ criteria (Leibniz Institut DSMZ - German 

Collection of Microorganisms and Cell Cultures, Germany). In this investigation, 

these samples served as reference samples. 

3.2.2 Lifetime Stress Conditions 

Samples were grown at 25 °C or 45 °C or were subjected to pH stress. A pH 1 

hydrochloric acid (HCl) (36 %, Alfa Aesar, USA; confirmed using pH indicator paper, 

Th. Geyer GmbH & Co. KG, Renningen, Germany) solution or a pH 13 sodium 

hydroxide solution (sodium hydroxide pellets, Merck, Darmstadt, Germany, 

confirmed using pH indicator paper, Th. Geyer GmbH & Co. KG, Renningen, 

Germany) was prepared for this. The agar plates were filled with 2 mL solution of 

hydrochloric acid or sodium hydroxide before inoculation. The bacteria were 

stressed with 2-propanol (99.9 %, Höfer Chemie GmbH, Kleinblittersdorf, Germany) 

in the same way that they were stressed with acidic and alkaline stress. 

3.2.3 Sampling Stress Conditions 

Microorganisms that were exposed to sampling stress conditions were sampled 

from regular treated samples. They were dipped in liquid nitrogen for 60 seconds 

before being measured. Heat-dried samples were dried for 60 minutes at 50 °C and 

measured instantly, whereas desiccated samples were dried for 60 minutes on silica 

gel. 
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3.3 Microspectroscopic Setup 

3.3.1 Raman-microscope 

The dispersive Raman-microscope employed is a Bruker Senterra R200L (Bruker 

Optics GmbH, Ettlingen, Germany) with a motorized XYZ-sample stage 

(Märzhäuser Wetzlar GmbH & Co. KG, Wetzlar, Germany). It is attached to an 

Olympus BX51 (Olympus K.K, Shinjuku, Tokyo, Japan) microscope. A schematic 

diagram of the setup is depicted in Figure 3.2.The detector is a 2014 x 256 pixel 

thermoelectrically cooled CCD (charge-coupled device) of the type Andor Du420-

OE. A 50x OLYMPUS LM Plan FL N (Olympus K.K, Shinjuku, Tokyo, Japan) with a 

numerical aperture of 0.5 and a working distance of 10.6 mm was used to focus the 

samples. A 785 nm diode laser (AlGaAs) was used as excitation wavelength.  

 

Figure 3.2: Schematic diagram of the setup of a Raman-microscope. 
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3.3.2 IR-microspcope 

The Hyperion 3000 (Bruker Optics GmbH, Ettlingen, Germany) infrared microscope 

used does not have its own IR source, so it is coupled to a Vertex 70 (Bruker Optics 

GmbH, Ettlingen, Germany) Fourier-transform (FT)-IR spectrometer. A schematic 

diagram of the setup is depicted in Figure 3.3. It is equipped with a nitrogen cooled 

MCT (mercury cadmium telluride) detector and a 20x Cassegrain objective (Bruker 

Ser.910/1022346, working distance: 6 mm) with a numerical aperture of 0.6.  

 

Figure 3.3: Schematic diagram of the setup of an IR-microscope. 

3.4 Software 

Data analytical methods were performed using OPUS 7.5 (Bruker Optics GmbH, 

Ettlingen, Germany), LabVIEW 2016 (National Instrument, Austin, Texas, USA) and 

OriginPro 2019b (OriginLab Corporation, Northampton, MA, USA). Preprocessing 

and data reduction was performed using OPUS, LabVIEW, and Origin. Classification 

using quadratic discriminant analysis was performed using OriginPro 2019b. 
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4.1 Introduction 

Unsafe food can cause more than 200 different diseases which lead to 420,000 

deaths due to food borne illnesses every year [24]. Although foodstuffs are subject 

to strict controls, food safety and the consumer’s health protection are still of great 

importance. In Germany alone, more than one thousand cases of food borne 

illnesses lead to hospitalization every year in the last years and the EHEC O104:H4 

outbreak in 2011 showed that dangerous epidemic food borne illnesses are not only 

a problem of the developing countries [80–82]. 

As a result of this fact and the large quantity of up to 115 kg wasted food per person 

every year due to the fear of food borne illnesses from spoiled or contaminated food 

the topic food waste reduction is of ecologic and economic importance [83]. 

Currently, the expiration date of fresh meat products is estimated very 

conservatively and because of this large amounts of food are disposed of, although 

the product would have been still suitable for consumption [16,40]. Today the initial 

bacterial load, which is essential to determine the shelf-life time of meat products, is 

subjected only in cost-, time- and labor-intensive sporadic tests, like the standard 

colony-counting methods and other sophisticated biological techniques such as 

bioluminescence or different staining techniques [35,40–46]. 

Consequentially there is a great demand on fast, non-destructive and cost-effective 

analysis methods to determine the initial bacterial load. This deficiency can be 

corrected by the fast, robust and non-destructive detection of bacteria by Raman-

microspectroscopy. 

The microbial flora of fresh and chilled meat during the spoilage process is mostly 

dominated by Pseudomonas spp., especially Pseudomonas fluorescens (Ps. fluor.), 

Brochothrix thermosphacta (B. therm.) and Enterobacteriaceae, like  

Escherichia coli [35–39]. Additionally, Micrococcus luteus and Bacillus thuringiensis 

israelensis (B. tii) are often detected on spoiled meat or other foodstuffs  

for example [84–86]. 

Therefore, the objective of this study was to find a timesaving and suitable sample 

preparation of microbiological samples, rapid measurement parameters and a 

reasonable chemometric data processing for a rapid and non-destructive analysis 

of food safety and especially meat spoilage relevant bacteria. For this an adequate 

preprocessing method and chemometric evaluation to classify and distinguish 

between the measured bacteria was developed. 
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The differentiation of genera and strains is very important in application because for 

example Pseudomonas spp. is a genus of great diversity including for example food 

safety relevant pathogenic species [87]. 

4.2 Materials and Methods 
4.2.1 Bacterial Cultures and Sample Preparation 

Seven important spoilage related bacteria, namely Brochothrix thermosphacta 

DSM 20171, Escherichia coli HB101, Escherichia coli TOP10, Micrococcus luteus 

(M. luteus), Pseudomonas fluorescens DSM 4358, Pseudomonas fluorescens 

DSM 50090 and Bacillus thuringiensis israelensis DSM 5724 (Leibniz Institut DSMZ 

– German Collection of Microorganisms and Cell Cultures, Braunschweig, 

Germany) were cultivated and separately grown according to the DSMZ  

guidelines [88]. The nutrient agar consisted of 10 g/L meat peptone, 10 g/L meat 

extract, 5 g/L sodium chloride and 18 g/L agar-agar (Merck KGaA, Darmstadt, 

Germany).  

The colonies were then harvested by a rapid blotting technique. To this end, a 

disinfected round stainless steel cylinder with a diameter of eight millimeter on the 

front face was pressed directly on the agar plates. Raman measurements were 

performed directly after the blotting from the agar plate. All training data points  

were generated on at least two independent blots per strain and at a different spot 

for each spectrum. The test data were generated on at least three different blots of 

two independent biological replicates of the samples. 

4.2.2 Instrumentation 

In this study a SENTERRA Raman-Microscope (Bruker Optics GmbH, Ettlingen, 

Germany) with a charge-coupled device (CCD) detector was used. The 

microbiological samples were placed on a motorized XYZ-sample stage and 

focused with a LMPlanFL N 50x objective lens (Olympus K.K, Shinjuku, Tokyo, 

Japan). The measurements were performed with a 785 nm diode laser. Controlling 

and data acquisition is carried out by the OPUS 7.5 Raman environment software.  

All measurements were collected with an initial laser power of 100 mW and an 

integration time of nine seconds. The influence of the spectral quality with respect 

to the number of coadditions was tested between 4 and 150 coadditions. To further 

reduce the measurement time and to cover the most relevant bacterial Raman 
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features, the parameters were set to nine seconds integration time, four coadditions 

and a spectral range of 410–1790 cm−1 with a spectral resolution of 3 ~ 5 cm−1 was 

chosen. 

4.2.3 Data Processing 

During preprocessing all Raman spectra were cut to the range 600–1200 cm−1, as 

this range shows the highest information content and the most distinct spectral 

information. In addition, all spectra were concave rubber band baseline corrected 

with eleven iterations and 64 baseline points, 13-point Savitzky-Golay smoothed 

and minimum-maximum-normalized.  

For the subsequent chemometric analysis and to simplify the complex multivariate 

Raman data principal component analysis (PCA) and discriminant analysis were 

used. PCA is an unsupervised chemometric technique which does not need any 

previous information about the data set and transforms the given n-dimensional data 

in a projected space where the given variance of the data set is maximized in less 

than n-dimensions. The subsequent analysis was performed using Origin Pro 

2017G (OriginLab Corporation, Northampton, Massachusetts, USA).  

After data reduction by PCA, the complex spectral information of very similar 

microbiological spectra is made manageable for classification by  

canonical discriminant analysis (CDA). CDA is used to determine a linear 

combination of the variables which maximizes the relation of inter-group and intra-

group variations [89,90].  

4.3 Results and Discussion 

At the beginning, the sampling and data acquisition was designed in such a way 

that it is as fast and uncomplicated as possible. For this purpose, a sample of E. coli 

was produced according to the described sampling technique without any 

pretreatments like matrix separation or washing and measured with different 

cumulative measuring times. For this the cumulative measuring time was varied by 

the amount of coadditions of each measurement and the integration time of nine 

seconds is kept constant (Figure 4.1).  



 Detection of Bacteria using Raman-microspectroscopy 

21 

 
Figure 4.1: Raw Raman spectra of E. coli recorded with six different cumulative measurement times, 

each with nine seconds integration time but different amount of coadditions. Below the spectra the 

loadings for PC1 and PC2 from a PCA of a data set of 36s measuring time are displayed. 

It can be seen that the signal to noise ratio improves considerably with increasing 

cumulative measuring time and that spectral characteristics display better visibility 

than in the rapidly recorded spectra, in which only a few characteristics are 

distinguishable from the noise.  

In order to compare the information content of the different measurements with the 

information given in the spectra for 1350s the sums of least squares of the given 

spectra were calculated. The sums of least squares of the measurements with 630s 

to 72s are in a range between 1.7 and 3.0. This indicates no significant changes in 

information content. 

However, the sum of least squares of the measurement with 36s (9s4coad) is 106, 

which indicates a significant deviation in comparison to the spectra shown before. 

This allows the conclusion that the information content of this spectrum is much 

lower or could be obscured by noise. 
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Finally, the shortest measurement time was used for this study in order to test the 

method presented below with the lowest information content, the noisiest spectra 

and thus the most rapid method. 

In order to check whether the highly attenuated information content of the rapidly 

recorded spectra did not falsify the evaluation with regard to a possible separation 

on the basis of statistical noise a deeper look into the loadings of a PCA is needed. 

This comparison of the Raman spectra and the loadings of a PCA show that the 

data for the pending classification are based on spectral information (Figure 4.1). 

To illustrate the variations within the spectra of one strain the mean Raman spectra 

with standard deviations of each wavenumber of 500 spectra for each strain are 

shown (Figure 4.2). In total 3500 spectra are presented with 500 spectra each of 

Pseudomonas fluorescens DSM 50090 and DSM 4358, Micrococcus luteus, 

Escherichia coli TOP10 and HB101, Brochothrix thermosphacta and Bacillus 

thuringiensis subsp. israelensis are shown.  

 
Figure 4.2: Mean Raman spectra and the standard deviations of 500 spectra of each sample of 

Ps. fluorescens DSM 50090 (a), Ps. fluorescens DSM 4358 (b), Micrococcus luteus (c), E. coli 

TOP10 (d), E. coli HB101 (e), Brochothrix thermosphacta (f) and Bacillus thuringiensis subsp. 

israelensis (g) after preprocessing. 



 Detection of Bacteria using Raman-microspectroscopy 

23 

Only very tiny visual differences in the spectral profile of the different 

microorganisms can be noticed. These variations result from the composition 

differences of the microbial cell for example the variation of proteins and lipids in the 

cell. An obvious difference is the ostentatious band of Micrococcus luteus which 

results from the carotenoid sarcinaxanthine at 1158 cm−1, which is responsible for 

the yellowish color of Micrococcus luteus [91]. 

Multivariate statistics such as principal component analysis and discriminant 

analysis were used to analyze and classify the spectral data. For these multivariate 

statistical methods it is essential to operate with same size data sets within the 

classes, because not only PCA is sensitive to imbalanced data sets but also 

discriminant analysis is sorely affected in performance [92,93]. 

To validate the developed sampling, preprocessing and evaluation model with 

independent data, a test dataset was created that not only consists of at least three 

independent blots but also of two independent biological replicates of the chosen 

spoilage bacteria.  

For the subsequent discriminant analysis the first seven principal components of  

the PCA, which represent 92.81 % of the variance of all training data, were used. 

As the equality test of covariance matrices of each bacterium of the training data 

showed that the covariance matrices are not equivalent between the bacteria, a 

quadratic discriminant function was used instead of a linear discriminant function. 

The results of the trained CDA model using the first four canonical variables (CV) 

are depicted in Figure 4.3. This scatter matrix plot shows that all used spoilage 

related bacteria can be separated successfully. 



 Detection of Bacteria using Raman-microspectroscopy 

24 

 
Figure 4.3: Scatter matrix plot of the score diagrams for the first four canonical variables of the first 

seven principal components derived the Raman spectra of the 3500 spectra of the training data set. 

For independent testing of the generated model, the test data must be processed 

independent of the training data set. The spectra of the test data set were 

preprocessed in the same way as the training data and then converted to new 

scores in the space of the training data set (Figure 4.4) using the loadings obtained 

from the trained model. 



 Detection of Bacteria using Raman-microspectroscopy 

25 

 
Figure 4.4: Score diagram based on the first two canonical variables of the first seven principal 

components derived of the training data set including the independent test data set of 2434 spectra. 

The test data could have been classified with just an error rate of 3.5 %, which 

means that only 85 of 2434 spectra are not classified correctly (Table 4.1).  

 

Table 4.1: Confusion matrix for the independent test data set 2434 spectra. The rows show the 

observed groups and the columns show the predicted groups. The values in the diagonal of the table 

reflect the correct classifications of observations into groups. 

 Predicted class 

 B. therm B. tii E. coli 
HB101 

M. 
luteus 

Ps. fluor. 
4358 

Ps. fluor. 
50090 

E. coli 
TOP10 

Not 
classified 

B.therm 557 0 0 0 0 0 0 0 

B. tii 0 294 0 0 0 0 0 0 
E. coli 
HB101 0 0 228 0 48 0 0 0 

M. luteus 0 0 0 199 0 0 0 0 
Ps. fluor. 

4358 2 1 1 0 509 32 0 1 

E. coli 
TOP10 0 0 0 0 0 0 562 0 
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The results show that the presented sampling- and measuring technique with a 

single subsequent chemometric evaluation is able to differentiate between spoilage 

related microorganisms on genera and even on strain level in a fast, efficient, and 

easy way. Although all usual washing, centrifugation and singulation steps were 

omitted, qualitatively good spectra could be generated using the presented fast 

preparation and measurement method and thus a robust method for discriminating 

different bacteria on genera and strain level could be shown.  

4.4 Conclusion 

To summarize, the method of Raman-microspectroscopy with subsequent 

chemometric evaluation could successfully be used to rapidly and non-destructively 

analyze meat spoilage microorganisms out of fast but noisy spectra generated 

directly from rapid surface blots. The presented preprocessing method, the 

successive principle component analysis and canonical discriminant analysis 

showed that seven different spoilage related microorganisms could be separated 

and classified with only an error rate of 3.5 % at genera and strain level from fast 

generated and noisy spectra. The received results are very promising and this 

technology has the potential to be used for the rapid differentiation of microorganism 

and potentially to determine microbial contaminations in food safety issues. 
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4.5 Supplementary Material 

Table 4.2: Confusion matrix for the independent test data set 2434 spectra. The rows show the observed groups and the columns show the predicted 
groups. The values in the diagonal of the table reflect the correct classifications of observations into groups. 

 Predicted class 
 B. therm. B. tii i E. coli HB101 M. luteus Ps. fluor. 4358 Ps. fluor. 50090 E. coli TOP10 Not classified Sum 

B. therm 
557 0 0 0 0 0 0 0 557 

100% 0% 0% 0% 0% 0% 0% 0% 100.00% 

B. tii 
0 294 0 0 0 0 0 0 294 

0% 100% 0% 0% 0% 0% 0% 0% 100.00% 

E. coli HB101 
0 0 228 0 48 0 0 0 276 

0% 0% 82.61% 0% 17.39% 0% 0% 0% 100.00% 

M. luteus 
0 0 0 199 0 0 0 0 199 

0% 0% 0% 100% 0% 0% 0% 0% 100.00% 

Ps. fluor. 4358 
2 1 1 0 509 32 0 1 546 

0.37% 0.18% 0.18% 0% 93.22% 5.86% 0% 0.18% 100.00% 

E. coli TOP10 
0 0 0 0 0 0 562 0 562 

0% 0% 0% 0% 0% 0% 100% 0% 100.00% 
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5.1 Introduction 

Perishable foods and food products are not only nourishing for the consumer but 

may eventually become unsafe for the consumer due to microbial growth [94]. 

Microbial growth in unsafe foods can cause several diseases particularly affecting 

infants, young children, and the elderly. As a result, the World Health Organization 

estimates that 420,000 deaths can be attributed to foodborne diseases [24]. In 

contrast, because of fear of contracting a disease ad food safety guidelines 

approximately 3.5 billion kg per year of meat and poultry are disposed of along the 

supply chain and by the consumer only in the United States [95]. Therefore, food 

waste reduction is of great ecologic and economic importance [83,94] and the 

expiration date of a product is an almost omnipresent topic of discussion. The best-

before date is usually estimated very conservatively and, therefore, many foods are 

disposed of although they would still have been consumable [16,96]. 

To ensure food safety, producers and suppliers have to implement effective 

microbial growth detection methods. Standard culture-based methods to detect 

bacterial contamination require several days to be completed. They are time-

consuming and labor-intensive and, therefore, only provide backdated information, 

which, in turn, leads to problems in industry, especially in the food 

sector [19,94,97,98]. Thus, the food industry needs a rapid microbial testing process 

to reduce potential health hazards for consumer safety, economic risks and 

environmental burden [96,99,100]. Recently, methods such as molecular-based  

and immunological assays, polymerase chain reaction, fluorescence staining or the 

use of metabolic markers have come into focus to optimize the analysis 

time [44,45,97,98]. 

In addition, vibrational spectroscopy of biological samples, especially of 

microorganisms, has been in the focus of research for three decades [47–51]. 

Since then, the potential of infrared (IR)- [53,101,102] and Raman-

spectroscopy [103–105] for the determination, typing and classification of 

microorganisms and especially pathogenic bacteria has been shown. More 

specifically, Davis et al. (2012) [53], Johler et al. (2016) [101] and Martak et al. 

(2019) [102] investigated the possibilities of typing and subtyping of pathogenic 

microorganisms by IR-spectroscopy in comparison to standard microbiological 

methods such as multilocus variable-number tandem repeat analysis (MLVA), 

pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST), 



 Discrimination of Bacteria using IR-microspectroscopy 

31 

where they found that IR-spectroscopy is a possibility for rapid detection of these 

pathogens, with comparable results to classical microbiological methods. 

Additionally, Grewal et al. showed the influence of using different spectral ranges of 

spectra for classification [106]. 

In the field of Raman-spectroscopy, Meisel et al. (2014) [103], Ho et al. (2019) [104] 

and Breuch et al. (2020) [105] focused on the classification of the most common 

pathogenic microorganisms and mostly pathogenic microorganisms related to meat 

spoilage using modern deep learning methods, support vector machines, and 

discrimination analysis. Furthermore, traditional microbiological techniques  

and other sophisticated analytical methods were adapted or coupled to 

spectroscopic methods for a better analysis of biological samples [45,107–113]. The 

development of reliable measurement methods, their standardization and  

the improvement of data evaluation including the data preprocessing appear to be 

important fields of research [68,114–116]. 

The most dominant microorganisms detected on fresh and chilled meat and other 

foodstuffs are Pseudomonas spp., especially Pseudomonas fluorescens (Ps. fluor) 

and Enterobacteriaceae, such as Escherichia coli (E. coli), Micrococcus luteus 

(M. luteus), Bacillus thuringiensis israelensis (B. tii), Bacillus coagulans (B. coag) 

and Bacillus subtilis (B. sub) [37,117–122].  

As the need for rapid and non-destructive analysis of food-related microorganisms 

still exists, the aim of this study was the development of a fast, easy, and 

inexpensive way to sample food-related microorganisms and to build a robust  

and meaningful model to discriminate these microorganisms by IR-

microspectroscopy down to strain level irrespective of their time after incubation. 

5.2 Materials and Methods 
5.2.1 Bacterial Cultures and Sample Preparation 

For the preparation of the bacterial cultures, our previously published method, which 

is in accordance to the DSMZ guidelines, was used [88,123]. Eight important food-

related bacteria (Bacillus subtilis DSM 10, Bacillus coagulans DSM 1, Escherichia 

coli K12 DSM 498, Escherichia coli HB101, Micrococcus luteus DSM 20030, 

Pseudomonas fluorescens DSM 4358, Pseudomonas fluorescens DSM 50090 and 

Bacillus thuringiensis israelensis DSM 5724 (Leibniz Institut DSMZ – German 

Collection of Microorganisms and Cell Cultures, Braunschweig, Germany)) were 
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cultivated on nutrient agar (10 g/L meat peptone, 10 g/L meat extract, 5 g/L sodium 

chloride and 18 g/L agar-agar (Merck KGaA,Darmstadt, Germany)). 

Microorganisms were obtained directly with the sample carrier — a disinfected 

round stainless steel cylinder. For this, the cylinder was slightly pressed on the agar 

plate to blot microorganisms to the front face of the sample carrier. IR spectra were 

taken directly after the blotting from the surface of this cylinder without any drying 

processes [123]. 

After incubation the inoculated agar plates were sealed with Parafilm (Bemis 

Company, Inc., Neenah, United States) and stored at 4 °C. 

To generate fully independent training and test data sets, all microorganisms were 

measured from three independent batches with different time periods after 

incubation to form three independent data sets (Table 5.1).  

The sampling and data acquisition were designed to be as fast as possible. 

Sampling was performed without any pretreatments such as matrix separation, 

washing or singulation.  

5.2.2 Instrumentation 

In this study, a Hyperion 3000 IR-microscope coupled to a Vertex 70 spectrometer 

(Bruker Optics GmbH, Ettlingen, Germany) with a liquid nitrogen cooled 

Mercury/Cadmium/Telluride (MCT) detector was used. The microbiological samples 

were placed on a motorized XYZ-sample stage and focused with a 20x Cassegrain 

objective (Bruker Ser.910/1022346, numerical aperture: 0.6, working distance: 

6 mm). Controlling and data acquisition is carried out by the OPUS 7.5 software.  

All measurements were collected in reflectance mode with 20 scans per spectra. 

The spectral resolution was set to 4 cm−1.  

5.2.3 Data Handling 

During preprocessing, all IR spectra were sum normalized and cut to the range 

2815–3680 cm−1 within Origin Pro2019b and afterwards the first derivative was 

generated and a 13-point Savitzky-Golay filter was used within an own LabVIEW 

2016 script. The three independent data sets of each microorganism (see Chapter 

“Bacterial Cultures and Sample Preparation”) were divided into two independent 

data sets, which form the training data set, and one independent data set, which 

represents the test data set.  

The splitting for training and test data was carried out as described in Table 5.1. 
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Table 5.1: Data splitting scheme for the tested microorganisms. The time period after preparation 

according to the DSMZ guidelines is given in days. 

Organism 
Testdata 

Time period after 
inoculation [days] 

Training 
Time period after 
inoculation [days] 

Micrococcus luteus 7, 24 1 

Bacillus coagulans 6, 8 12 

Bacillus subtilis 8, 12 6 

Bacillus thuringiensis 

israelensis 

6, 12 8 

Escherichia coli K12 6, 7 12 

Escherichia coli HB101 6, 7 12 

Pseudomonas fluorescens 

DSM 50090 

7, 8 6 

Pseudomonas fluorescens 

DSM 4358 

6, 7 1 

 

Complex spectral information of bacteria requires a closer look inside the variances 

of a data set. For this, the unsupervised chemometric technique, principal 

component analysis (PCA), was applied to the training data to focus on the 

variances and reduce the dimensionality of the data [124]. Afterwards, the test data 

set was converted into the same dimensional space by applying the descriptive 

statistics of the training data set and the eigenvectors also called loadings from  

the PCA of the training data set to the test data set (own LabVIEW 2016 script). The 

manageable data set was classified by a supervised classifier, called canonical 

discriminant analysis (CDA), which uses a linear combination of the input  

data variables to maximize the ratio of inter-group and intra-group variations of the 

different classes [89,90].  

An overview of the data handling process is schematically shown in Figure 5.1. 
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Figure 5.1: Schematic overview of the described data handling process. 

The data handling was performed using Origin Pro 2019b (OriginLab Corporation, 

Northampton, Massachusetts, USA) and National Instruments LabVIEW 2016 

(National Instrument, Austin, Texas, USA). 

5.3 Results and Discussion 

First, a spectral library of the tested food-related microorganisms on a stainless steel 

substrate was obtained in IR reflectance mode. With this, characteristic spectral 

features and signal variations among spectra from one microorganism could be 

monitored. In Figure 5.2, mean IR spectra (1000–3680 cm−1, n = 150 acquisitions) 

and their standard deviations are depicted for each microorganism. In total  

1,200 spectra with 150 spectra each of B. subtilis DSM 10, B. coagulans DSM 1, 

E. coli K12 DSM 498, E. coli HB101, M. luteus DSM 20030, Ps. fluor DSM 4358, 

Ps. fluor DSM 50090, and B. thuringiensis israelensis DSM 5724 are presented.  
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Figure 5.2: Stacked mean IR spectra of the normalized data of 150 spectra of each sample of 

Ps. fluor 4 and Ps. fluor 5 (a & c), B. coag (b), E. coli TOP10 and K12 (d & e), B. tii (f), M. luteus (g) 

and B. sub (h). Standard deviations are indicated by color-coded bands around the mean value.  

As the fingerprint area was determined to be highly sensitive to sample age and 

thickness by means of the standard deviation from Figure 5.2, this area was 

excluded from further modelling and only the spectral range of specific  

–CH/–NH/–OH excitations from 2815 cm−1 to 3680 cm−1 was used for further 

evaluation (Figure 5.3). 
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Figure 5.3: Stacked mean CH range of the IR spectra and the standard deviations of the normalized 

data of 150 spectra of each sample of Ps. fluor 4 and Ps. fluor 5 (a&c), B. coag (b), E. coli TOP10 

and K12 (d&e), B. tii (f), M. luteus (g) and B. sub (h). In this graph, spectral ranges are highlighted in 

gray, which were identified by loading plot analysis to be important. Additionally, an inset graph 

exemplarily shows a zoom-in into the peak area highlighted at 3650 cm−1. 

A visual differentiation or even classification of the spectra is not only very time-

consuming, but also nearly impossible due to only small differences. These small 

spectral differences of the different microorganisms result, for example, from the 

different composition of the proteins, nucleic acids, lipopolysaccharides or lipids of 

the cell [49]. To focus on these small differences the first derivative was used in the 

following data processing.  

Here, the use of multivariate statistics is an efficient way to obtain a fast comparison 

among spectra based on their spectral differences. In this study, PCA was used for 

data reduction of the preprocessed spectra and CDA for classification. 

Since PCA and discriminant analysis are affected in performance by unequally large 

(imbalanced) data sets the creation of balanced data sets for a chemometric 

evaluation is essential [92,93]. Therefore, each data set and each class needs the 
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same sample size. This prevents unintentional weighting within the model 

generation. 

To ensure that the underlying model is based on spectral features and is not 

differentiated by noise or sample preparation, an analysis of the PCA loadings is 

useful (Figure 5.4).  

 
Figure 5.4: Loadings (PC1 – PC10) of the PCA of the training data set (consisting of spectra of all 

eight measured bacteria). 

The comparison of the IR spectra with the characteristics of the loadings clearly 

shows that the highest loading values match to spectral features highlighted in gray 

in Figure 5.3.  

The most of the variance can be found on the first three PCs, but it can be seen that 

important spectral information can be extracted even from the PCs, which represent 

just small variances. 

Especially for PC8 and PC9 (Figure 5.4), the spectral feature at about 3650 cm−1 

(free O–H stretching vibrations), which is shown in the inset in Figure 5.3, is striking. 

Additionally, the oscillations of C–H stretching vibrations corresponding to the fatty 
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and amino acids (2850–3000 cm−1) and N–H stretching vibrations corresponding to 

the amide A in proteins (~3300 cm−1) are highlighted [33,125,126]. 

As there was no significant equality of the covariance matrices of the training  

data classes a quadratic instead of a linear discriminant function had to be  

used [127–129]. 

For the subsequent discriminant analysis, the first ten principal components of the 

PCA, which represent 86.11 % of the total variance of the training data set,  

were used. The QDA classification was cross-validated without any 

misclassification. The first four canonical variables (CV) of the quadratic discriminant 

analysis (QDA) are depicted in Figure 5.5.  

 
Figure 5.5: Scatter matrix plot of the training data set with canonical variables 1 to 4 of the QDA. 

The first two canonical variables are sufficient to separate all classes on strain and 

species level except the Pseudomonas fluorescens strains. A visual separation of 

the two Pseudomonas strains seems to be difficult. But in general, a model could 

be created that separates the different genera of Bacillus from Pseudomonas  

and from Micrococcus and E. coli.  
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To validate the developed preprocessing and chemometric model for its robustness, 

data integrity and accuracy with independent data, a test data set of each class was 

subjected to the same preprocessing as the training data set. Then the new scores 

of the test data set were calculated by means of the loadings and descriptive 

statistics of the training data set. These were projected into the existing model of 

discriminant analysis for classification. 

The test data of the corresponding classes have the same color code as the  

training data, only with unfilled squares (Figure 5.6). At a closer look at the 

combination of all four canonical variables, it can be seen that the test data is close 

to the training data. 

 
Figure 5.6: Scatter matrix plot of canonical variable 1 to 4 of the QDA including the independent test 

data set. 

In conclusion of the CDA results, Table 5.2 shows the confusion matrix of the results 

of the independent test data of the CDA. The test data could be classified with an 

error rate of only 5.5 %. In contrast to the results of Rebuffo-Scheer et al. and 

Janbu et al., who pointed out that IR-microspectroscopy leads to higher 
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misclassification rates than classical macroscopic FTIR measurements [130,131], 

our results are by no means inferior to macroscopic classification rates. 

The error rate of 5.5 % is caused by a partial assignment of M. luteus to 

B. thuringiensis israelensis. Furthermore, a part of the E. coli K12 samples is 

assigned to B. subtilis. 

Table 5.2: Confusion matrix for the independent test data set. The rows show the observed groups 

and the columns show the predicted groups. The values in the diagonal of the table reflect the correct 

classifications of observations into groups. 

 Predicted class 

 
B. 
tii 

Ps. fluor 
4358 

B. 
coag 

M. 
luteus 

Ps. fluor 
50090 

B. 
sub 

E. coli 
K12 

E. coli 
TOP10 

B. tii 50 0 0 0 0 0 0 0 

Ps. fluor 

4358 
0 50 0 0 0 0 0 0 

B. coag 0 0 50 0 0 0 0 0 

M. luteus 10 0 0 40 0 0 0 0 

Ps. fluor 

50090 
0 0 0 0 50 0 0 0 

B. sub 0 0 0 0 0 50 0 0 

E. coli K12 0 0 0 0 0 12 38 0 

E. coli 

TOP10 
0 0 0 0 0 0 0 50 

 

In the last decades, many studies have been performed for the identification and/or 

differentiation of microorganisms of all kinds. The most significant differences 

compared to the present study were mostly the typical use of longer measurement 

times (typically between 128 and 256 scans per spectrum [47,52,54,106,131,132]) 

a very labor and time-consuming sample preparation often with different purification, 

dilution, and drying steps [47,52,54,101,106,133], and the use of the fingerprint and 

–CH/–NH/–OH excitations, which includes the deformation vibrations of DNA/RNA, 

amide I-III, lipids, fatty acids, and proteins [47,49,101,106,130]. 

Furthermore, the classification rates of various studies show that the identification 

and classification down to species level of, for example, Salmonella, 

Staphylococcus aureus, Lactic acid bacteria or Listeria is feasible by means of 

partial least squares discriminant analysis or artificial neural networks with an 

accuracy of 77–100 % [130,133–135]. 
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Although all usual purification, dilution and drying steps were omitted, our results 

second these works and show that the analysis of the spectral range of specific  

–CH/–NH/–OH excitations, which include stretching vibrations from amide A, 

proteins, fatty and amino acids [33,125,126], from IR-microspectroscopic data 

coupled with the presented sampling and measuring technique is sufficient to 

differentiate between food-related microorganisms on genera, species and even on 

strain level efficiently, easily and rapidly, compared to traditional methods such as 

polyacrylamide gel electrophoresis and pulsed-field gel electrophoresis [47,101]. 

Thus, a robust method for discriminating different food-related bacteria irrespective 

of sample age on genera, species and strain level could be shown. Additionally, the 

presented chemometric model is resilient with respect to sampling, samples size, 

number of classes and accuracy, due to a balanced data set.  

5.4 Conclusion 

IR-microspectroscopy in combination with chemometric analysis was used 

successfully for the rapid and non-destructive analysis of food-related bacteria 

directly from rapid surface blots. A combination of data preprocessing, principal 

component analysis and canonical discriminant analysis showed that eight different 

microorganisms irrespective of their time after incubation could be separated and 

classified with 94.5 % accuracy at genera, species and strain level. In addition, it 

was observed that the spectral range of specific –CH/–NH/–OH excitations  

(2815–3680 cm−1) of IR spectra forms a useful biochemical signature of the 

biological cell and thus a cross-sectional signal from amide A, proteins, fatty  

and amino acids. The received results are very promising and this technology has 

the potential to be used for the rapid differentiation of microorganism and potentially 

to determine microbial contaminations and even spoilage levels in food safety 

issues. This means that this scope of research has an immense potential to develop 

a reliable, flexible and fast way for microbiological analysis. For this, clearly, the next 

step will be the analysis of more complex sample types such as direct analysis of 

meat products and at different spoilage levels.
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5.5 Supplementary Material 

Table 5.3: Confusion matrix for the independent test data set. The rows show the observed groups and the columns show the predicted groups. The 
values in the diagonal of the table reflect the correct classifications of observations into groups. 

 Predicted class 
 B. tii Ps. fluor 4 B. coag M. luteus Ps. fluor 5 B. sub E. coli K12 E. coli TOP10 

B. tii 
50 0 0 0 0 0 0 0 

100 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 

Ps. fluor 4 
0 50 0 0 0 0 0 0 

0 % 100 % 0 % 0 % 0 % 0 % 0 % 0 % 

B. coag 
0 0 50 0 0 0 0 0 

0 % 0 % 100 % 0 % 0 % 0 % 0 % 0 % 

M. luteus 
10 0 0 40 0 0 0 0 

20 % 0 % 0 % 80 % 0 % 0 % 0 % 0 % 

Ps. fluor 5 
0 0 0 0 50 0 0 0 

0 % 0 % 0 % 0 % 100 % 0 % 0 % 0 % 

B. sub 
0 0 0 0 0 50 0 0 

0 % 0 % 0 % 0 % 0 % 100 % 0 % 0 % 

E. coli K12 
0 0 0 0 0 12 38 0 

0 % 0 % 0 % 0 % 0 % 24 % 76 % 0 % 

E. coli TOP10 
0 0 0 0 0 0 0 50 

0 % 0 % 0 % 0 % 0 % 0 % 0 % 100 % 
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6.1 Introduction 

The increasing demand for food, as well as the ever-increasing population of the 

planet makes the food sector an essential industry [3,4,6,136]. Due to the massive 

amount of 931 million tons of food waste, as well as the 600 million cases of food-

borne illnesses occurring annually and the associated consumer fear, the research 

area of food safety is of particular interest [11,23,24]. In particular, bacterial detection 

is a critical concern in the food sector; for example, for determining shelf life dates 

[137,138]. Therefore, methods that identify the contamination of products at an early 

stage are of major importance [137,138]. 

However, the typical methods for detecting and determining bacteria, such as 

classical microbiological determination and immunological or genetic approaches 

are exceedingly expensive, difficult, and time-consuming due to the need of 

cultivation times, DNA extractions and well trained employees [20,26,94,138–141]. 

Another problem with these approaches is that they are standardized to laboratory 

conditions, resulting in the loss of real-world samples and the possibility of missing 

relevant information [26,27]. Because bacteria are typically exposed to a variety of 

external influences, both in the environment and directly on the samples to be 

examined, detection and determination methods must incorporate these external 

influences in order to account for rapid reactions of the microorganisms caused  

by external stress in their calculations [27–29,142]. This is especially essential 

because bacteria can not only adjust their metabolic activity in response to changing 

environments, but they can also change to a viable but non-culturable state, leaving 

them inaccessible to traditional determination methods [18,26,30,142]. Therefore, it 

is necessary to study the stress response of microorganisms and to consider it in 

the databases and classification models for quality control or shelf-life data 

determination [141,143]. 

These reactions can be studied by rapid and non-destructive vibrational 

spectroscopy on a microscopic level by coupling Raman- or IR-spectrometers with 

a microscopic system, as these couplings are able to study samples in the range  

of a few micrometers [4,33,144,145]. 

While Raman-spectroscopy is based on the scattering of monochromatic light  

and the shift in polarizability, infrared (IR) -spectroscopy is based on the  

absorption of polychromatic infrared light and the resulting change in dipole  

moment [33,49,145–148]. Certainly, IR-active vibrational modes often exhibit weak 
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Raman signals and vice versa and so both methods provide complementary 

information about the molecular composition of microorganisms that thus contribute 

to classification [18,52,61,137]. 

IR-spectroscopy is more susceptible to interference due to the materials used, the 

disturbance by water and the strong influence of sample thickness, as well as 

external influences, but it is still easier to handle [18,49,149]. Raman-spectroscopy 

offers high flexibility of excitation wavelengths and sample properties and a higher 

spatial resolution, often at a higher cost [18,146,147,150]. A more detailed 

explanation of Raman- and IR-spectroscopy and their ability to differentiate 

microorganisms can be found in the literature [18,33,49,54,62,145,151]. 

The suitability of Raman-spectroscopy for the identification of bacteria at the genus, 

species, and strain level has already been demonstrated [103,105,123,152]. Since 

many factors and parameters have an influence on the sample and the resulting 

spectrum, the exact consideration of the influencing factors is an important approach 

[51]. The use of Raman-spectroscopy to study the effect of stress factors on bacteria 

has typically been limited to specific factors or individual microorganisms. Most 

Raman-spectroscopic studies on how bacteria respond to stress stimuli have used 

Escherichia coli (E. coli) as an example. Studies on E. coli include the effect of 

different antibiotics [21,153–155], as well as the effect of storage time and sample 

preparation such as centrifugation [156], the influence of CO2 [157], the effect of 

alcohols [21,158,159], and the effect of temperature and different growth media 

[160]. In addition, investigations on the different stages of the lifecycle of E. coli, 

Vibrio vulnificus, Pseudomonas aeruginosa, and Staphylococcus aureus [140]; the 

metabolic monitoring of Metschnikowia sp. under different temperatures and  

C:N ratios [161]; and the effect of UV radiation on E. coli, Serratia marcescens,  

and Micrococcus luteus (M. luteus) [162] have been conducted. Furthermore, the 

influence of transportation and storage on E. coli, Klebsiella terrigena, 

Listeria innocua, Pseudomonas stutzeri, Staphylococcus cohnii, and 

Staphylococcus warneri [143]; the spore composition of Lysinibacillus 

boronitolerans in different broth media [163]; and the impact of NaCl, MgSO4,  

and acetate on Synechocystis PCC6803 [164] have been investigated. However, to 

the best knowledge of the authors the investigation of different stress factors and 

storage times on diverse food relevant microorganisms has not been reported so 

far in the peer-reviewed literature. 
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As a result, this study’s goal was to extend the standard models for various defined 

stress factors on microorganisms that are significant in the food sector 

(Bacillus subtilis; three E. coli strains; M. luteus; Brochothrix thermosphacta; two 

Pseudomonas fluorescens strains; and Bacillus thuringiensis israelensis) in order to 

validate the impact of the stress variables on the quality and reliability of the 

classification model. In the same context, the spectral variations of different 

microorganisms caused by stress influence can be noticed, as can attempts to 

standardize Raman research on biological material in terms of sample preparation 

and pre-processing. 

6.2 Materials and Methods 

6.2.1 Bacterial Cultures and Sample Preparation 

For this study, the food spoilage-relevant bacteria were cultivated on a nutrient agar 

with the composition of 18 g/L agar-agar, 10 g/L meat extract, 10 g/L meat peptone 

and 5 g/L sodium chloride (Merck KGaA, Darmstadt, Germany). The bacteria were 

as follows: 

Escherichia coli K12 DSM 498, TOP10, and HB101; Micrococcus luteus DSM 20030 

Brochothrix thermosphacta DSM 20171 (B. therm); Pseudomonas fluorescens 

(Ps. fluor) DSM 4358 and DSM 50090; Bacillus subtilis DSM 10 (B. sub); and 

Bacillus thuringiensis israelensis DSM 5724 (B. tii). 

The microbial samples to be examined were taken directly from the medium by 

means of a swab through a stainless steel cylinder without further sample 

preparation [123,165]. Raman spectra of samples that were cultivated under lifetime 

stress conditions were recorded immediately after sampling. Otherwise, the 

samples were subjected to sampling stress and examined spectroscopically without 

further incubation time after the stress impact. 

6.2.2 Sample Treatment 

In addition to the regular reference treatment, the microorganisms were exposed to 

acidic and alkaline incubation, incubation at lower temperature and incubation under 

2-propanol influence, which are summarized as lifetime stress conditions. 

Furthermore, they were subjected to different sampling conditions (heat sampling, 

cold sampling, and desiccation). 



 Discrimination of Stressed Bacteria Using Raman-microspectroscopy 

48 

All microorganisms were incubated in a Binder BD 240 (BINDER GmbH, Tuttlingen, 

Germany) incubator. 

6.2.2.1 Lifetime Stress Conditions 

All samples were cultivated according to DSMZ (Leibniz Institut DSMZ, German 

Collection of Microorganisms and Cell Cultures, Germany) guidelines, except for 

those that were stressed by incubation at 25 °C. No further sample preparation, like 

the drying steps of the sample were performed after sampling. 

In addition to the reference samples and the samples that were cultivated at 25 °C, 

the microorganisms were exposed to pH stress. For this, a hydrochloric acid (HCl) 

solution with pH 1 (36 %, Alfa Aesar, USA; confirmed using pH indicator paper,  

Th. Geyer GmbH & Co. KG, Renningen, Germany) was prepared, as well as a 

sodium hydroxide solution (sodium hydroxide pellets, Merck, Darmstadt, Germany) 

with pH 13. The agar plates were thoroughly covered with a 2 mL solution of 

hydrochloric acid or sodium hydroxide and the inoculation was performed on the 

covered agar plates. 

Analogously to the acidic and alkaline stress incubation, the bacteria were stressed 

with 2-propanol (99.9 %, Höfer Chemie GmbH, Kleinblittersdorf, Germany). 

6.2.2.2 Sampling Stress Conditions 

Microorganisms that were exposed to sampling stress conditions were sampled 

from regular treated samples. For cold sampling they were covered with liquid 

nitrogen for 60 s and instantly measured. The heat-dried samples were dried for 

60 min at 50 °C and instantaneously measured, whereas the desiccated samples 

were dried for 60 min over silica gel and instantly measured. 

6.2.3 Instrumentation 

A SENTERRA Raman-Microscope (Bruker Optics GmbH, Ettlingen, Germany) with 

a 785 nm diode laser and a charge-coupled device (CCD) detector was employed 

in this investigation. The microbiological samples were placed on a motorized XYZ-

sample stage (Märzhäuser Wetzlar GmbH & Co. KG, Wetzlar, Germany) and 

focused with a 50× LMPlanFL N objective lens (Olympus K.K, Shinjuku, Tokyo, 

Japan). The OPUS 7.5 Raman environment software was used for data acquisition 

and control. 
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All measurements were performed with a 100 mW initial laser power, an integration 

time of eight seconds, and ten co-additions. A spectral range of 410–1790 cm−1 with 

a spectral resolution of 3–5 cm−1 was chosen to shorten the measuring time. 

6.2.4 Data Handling and Statistical Analysis 

Raman spectra were truncated to the range of 600–1200 cm−1 to cover the most 

relevant bacterial Raman characteristics and sum normalized (OriginPro 2019b, 

OriginLab Corporation, Northampton, MA, USA). 

Independent training and test data sets were built so that one of three independent 

data sets of each stress condition could be used as a test data set (Figure 6.1). 

Table 6.3 (Chapter 6.5) contains detailed information on the exact splitting pattern 

and the time duration during which bacteria were exposed to lifetime stress 

conditions. 

 

Figure 6.1: The data splitting, reduction and classification are depicted in this diagram. The 

corresponding information about the measured microorganisms, stress conditions, and storage times 

can be found in the training and test data set. 

Using LabVIEW 2016 and OriginPro 2019b, a principal component analysis (PCA), 

an unsupervised chemometric technique was executed to the training data set to 

reduce the data set’s dimensionality [124]. The test data sets were converted to the 
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dimensional space of the training data set by applying the training data set’s 

descriptive statistics and the loadings of the performed PCA to the test data set. 

A canonical discriminant analysis (CDA), which uses a linear combination of the 

data variables to maximize the ratio of between-group and within-group variations 

of the distinct classes was used in OriginPro 2019b for classification [89,90]. 

6.3 Results and Discussion 

Figure 6.2 illustrates the mean Raman spectra of bacteria under regular cultivation 

conditions versus bacteria under different stress conditions, along with their 

standard deviations. 

 

Figure 6.2: Stacked mean Raman spectra of the normalized data of in total 5,450 spectra subdivided 

into seven stress conditions and regular treatment of B. sub (A), B. therm (B), B. tii (C), E. coli 

K12 (D), E. coli HB101 (E), M. luteus (F), Ps. fluor 4358 (G), Ps. fluor 50090 (H) and E. coli 

TOP10 (I). Pale colored bands around the mean value represent the standard deviations. 

A closer look at the spectra reveals a few variations between the microorganisms. 

For example, the region between 650 cm−1 and 900 cm−1 (proteins, 

polysaccharides, nucleic acids) [139,145,160,166] which is distinctive for specific 

bacteria, shows not only differences between Bacilli and E. coli, but also variances 

between Bacilli. For example, the vibration in the cytochrome and DNA [153,160] 

region around 750 cm−1 varies slightly between Bacilli, while the vibration in the 
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region around 890 cm−1 (protein, polysaccharide) [139,153] is more pronounced in 

Bacilli and the vibration in the guanine/DNA region around 665 cm−1 [139,153] is 

less pronounced in the other microorganisms measured. Aside from the obvious 

difference due to the sarcinaxanthine carotenoid peak at 1157 cm−1 [91,167], 

M. luteus, M. luteus and B. therm also have a band at 1047 cm−1 which can be 

assigned to carbohydrates [153,168] that the other species do not have. 

Apart from the differences between the individual microorganisms, there are a few 

differences between the various stressors of the individual microbial species. The 

detection of a peak at 1016 cm−1 for HCl stressed B. tii is by far the most noticeable 

change. This peak is not found in any other stress factor and can be linked to the 

symmetric ring breathing vibration of calcium dipicolinic acid during bacterial spore 

germination [169–172]. M. luteus bacteria cultured at 25 °C possess less exposed 

tyrosine (828 cm−1) [139] than those incubated at other temperatures. Incubation 

with 2-propanol and sodium hydroxide reveals additional impact on DNA/RNA 

occurrence in B. sub as the peaks for the nucleic acids (810 cm−1) [168,173] and 

bases (665 cm−1, 722 cm−1, 783 cm−1, 828 cm−1) [139] are substantially less 

pronounced. Nucleic acids and tyrosine (810 cm−1; 828 cm−1) [139,168,173] are 

also impacted in 25 °C incubated E. coli K12 as instead of two peaks, there is only 

one peak with considerably higher intensity. E. coli TOP10 exhibits spectral changes 

in DNA/RNA and carbohydrates (1100–1130 cm−1) [174,175] after incubation with  

2-propanol, as well as changed peak ratios for nucleic acids and tyrosine 

(810 cm−1/828 cm−1) [139,168,173] ranges after incubation at 25 °C. Such 

alterations are also found for HCl stressed Ps. fluor 50090 and NaOH stressed 

Ps. fluor 4358 in the range of 1100–1130 cm−1 (DNA/RNA and carbohydrates) 

[174,175]. In addition to the increased intensity, there is a shift in favor of 

carbohydrates [175]. This change can also be seen in HCl and 2-propanol stressed 

B. therm. Furthermore, B. therm incubated at 25 °C exhibits more pronounced 

peaks at 667 cm−1 and 810 cm−1 (guanine und nucleic acids) [139,168,173] 

compared to the other parameters. 

As spectral variations between specific bacteria and stress conditions are founded 

on the differences in cell proteins, nucleic acids, lipopolysaccharides, and lipids, 

visual discrimination of the complete 5450 spectra (Figure 6.2) is nearly 

unachievable [26] and chemometric techniques can help with classification. 
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To achieve optimal model development and avoid overfitting (performance plot: 

Figure 6.7 Chapter 6.5), 30 PCs were selected for discriminant analysis model 

building. 

Because there was no substantial equality in the covariance matrices of the training 

data classes, a quadratic discriminant function was chosen rather than a linear 

discriminant function [21,156,176]. 

The classification and cross-validation errors for the training data were 0.78 % and 

1.5 %, respectively. To assess the robustness, accuracy, and reproducibility of  

the constructed classification model, independent test data sets were added to the 

model. 

Figure 6.3 depicts canonical variables (CV) 1 and 2 of the quadratic discriminant 

analysis (QDA) of training (solid squares) and test data (unfilled squares).  

 

Figure 6.3: Scatter plot of canonical variable 1 vs. 2 of the QDA of all training data (solid squares) 

and the independent test data (unfilled squares) of all microorganisms and sampling or lifetime 

conditions. 

The group centroids of the training data for CV1 vs. CV2 are given in Figure 6.4. 
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Figure 6.4: Scatter plots of canonical variable 1 vs. 2 of the QDA of the group centroids of the training 

data. 

The above-mentioned spectral differences are also reflected in the graphical 

depiction of the discriminant analysis. The reported differences clearly differentiate 

the point clouds of M. luteus and B. therm from the other point clouds. However,  

due to the magnitude of the point clouds, further visual distinction is difficult in the 

plot. The plot of the group centroids, on the other hand, indicates that M. luteus is 

well separated from the other groups by its obvious extra features and B. therm  

is separated from the other bacteria, although the Bacilli cluster together overall. 

The separation of E. coli and Ps. fluorescens between or among themselves does 

not appear to be achievable. 

However, in general, the independent test data are found in the space of the training 

data, and so the assignment of these data is achievable. 

Figure 6.5 and Figure 6.6 depict the group centroids in the eight dimensions of the 

discriminant analysis in order to analyze the separation of the two remaining bacilli, 

particularly the separation of E. coli and Ps. fluorescens. 
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Figure 6.5: Scatter matrix plot of canonical variable 1-4 of the QDA of the group centroids of the 

training data of all nine microorganisms and their eight sampling and lifetime conditions. 
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Figure 6.6: Scatter matrix plot of canonical variable 5-8 of the QDA of the group centroids of the 

training data of all nine microorganisms and their eight sampling and lifetime conditions. 

This demonstrates that all Bacilli are separated in the first three dimensions, but 

Pseudomonads and E. coli require more dimensions in order to be completely 

separated. The clear distinction of E. coli germs in particular is only achievable in 

the eighth dimension. 

The classification results of the independent test data are provided in a confusion 

matrix (Table 6.1) which gives the number of spectra categorized to the correct 

(diagonal) or incorrect predicted class. 

  



 Discrimination of Stressed Bacteria Using Raman-microspectroscopy 

56 

Table 6.1: Confusion matrix for the independent test data set: Rows represent the observed groups 

and columns represent the expected groups. The values in the table’s diagonal correspond to the 

correct grouping of observations. 

 
Predicted class 

Class 
B. 

sub 
B. 

therm 
B. 
tii 

E. coli. 
HB101 

E. coli 
K12 

M. 
luteus 

Ps. fluor 
4358 

Ps. fluor 
50090 

E. coli 
TOP10 

B. sub 199 0 1 0 0 0 0 0 0 

B. therm 0 204 1 0 0 0 0 0 0 

B. tii 0 0 199 0 0 0 0 0 1 

E. coli 

HB101 
0 0 0 138 62 0 0 0 5 

E. coli K12 0 0 0 24 139 0 0 0 42 

M. luteus 0 0 0 0 0 210 0 0 0 

Ps. fluor 

4358 
0 0 0 7 0 0 197 6 0 

Ps. fluor 

50090 
0 0 0 0 0 0 29 181 0 

E. coli 

TOP10 
0 0 0 3 51 0 0 0 151 

 

The test data categorization and, as a result, the creation of a robust and applicable 

model was successful. The independent test data classification error rate was 

12.5 % and was distributed throughout all classes except M. luteus. 

Table 6.2 offers a detailed assessment of the classification errors on the sub-class 

level because the overall dataset is made up of a significant number of sub-datasets 

per microorganism. 
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Table 6.2: Examination of the classification mistakes in the independent test data set at the sub-

dataset level. The figures represent the overall number of misclassified spectra in the relevant sub-

dataset. 

Error Distribution B. tii 
E. coli 
HB101 

E. coli 
K12 

Ps. fluor 
4358 

Ps. fluor 
50090 

E. coli 
TOP10 

B. sub—cold sampling 1      

B. therm—25 °C 1      

B. tii—heat dried      1 

E. coli HB101—desiccator   4    

E. coli HB101—cold sampling   1   3 

E. coli HB101—HCl   22   1 

E. coli HB101—heat dried   1    

E. coli HB101—2-propanol   10   1 

E. coli HB101—NaOH   18    

E. coli HB101—regular   6    

E. coli K12—desiccator      5 

E. coli K12—HCl  3    9 

E. coli K12—heat dried  1    20 

E. coli K12—2-propanol  4    1 

E. coli K12—NaOH  16    7 

Ps. fluor 4358—desiccator  7   6  

Ps. fluor 50090—25 °C    3   

Ps. fluor 50090—HCl    22   

Ps. fluor 50090—heat dried    4   

E. coli TOP10—25 °C  2 15    

E. coli TOP10—desiccator   12    

E. coli TOP10—heat dried   1    

E. coli TOP10—2-propanol   1    

E. coli TOP10—regular  1 22    

 

The improper assignment of E. coli K12 to TOP10 and HB101 and vice versa, as 

well as the incorrect classification of Ps. fluorescens 50090 to Ps. fluorescens 4358 

and vice versa, accounted for most of the errors. 

The graphical representation of the classification results already indicated the 

problem of separation for Ps. fluorescens, but especially for E. coli separation. The 

accumulation of 187 misclassifications in the area of E. coli out of a total of  

232 misclassifications shows that the developed model has good separating power 

but has weaknesses for separating E. coli strains. The modification of the model in 
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such a way that the model for the differentiation of genera, species, and strain level 

is retained and the differentiation of E. coli remains at the species level leads to a 

false classification rate of only 2.4 %. 

In comparison to other studies concerning the determination of microorganisms, as 

well as the influence of stress factors on microorganisms by Raman-spectroscopy 

which partly point to a stricter standardization of the methods [115,156,177] and 

mainly employ complex and time-consuming sample preparation 

[154,160,162,178], the presented results show that a reconsideration of the 

common practice would be helpful, particularly with regard to real-world samples. 

Because the relevant literature focuses on the analysis of stress factors on specific 

microorganisms [21,153–156,158–160] or individual stress factors on a few 

microorganisms [140,162], it was possible to confirm the results observed in this 

study, namely that the areas influenced by stress factors in microorganisms are 

primarily found in proteins, lipids, nucleic acids, and polysaccharides 

[21,154,159,160,162,178]. The combination of numerous stress factors with the 

traditional reference samples in a model also demonstrated that the classification of 

unknown samples is not inferior to the classification rates of earlier studies 

[103,159,179]. 

In summary, despite the various spectral changes in the range of proteins, lipids, 

nucleic acids and polysaccharides due to the eight different stress factors applied 

(lifetime and sampling conditions) to nine different microorganisms, a robust and 

reliable classification model for food-relevant microorganisms down to strain level 

could be developed. 

6.4 Conclusions 

Stress causes alterations in the Raman spectral characteristics of food-relevant 

microorganisms. Regardless of cultivation conditions, sampling and storage time, a 

method using simple sample preparation, rapid measurement by Raman-

microspectroscopy, and chemometrics was developed for the rapid and non-

destructive analysis of food-relevant bacteria. A robust and reliable model was 

created using a canonical discriminant analysis to discriminate nine different 

microorganisms at genus down to strain level, despite their storage time and 

sampling of lifetime condition, with about 12 % misclassification for independent test 

data accuracy. The modification of the model for the differentiation on  
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genera, species and strains was retained and the differentiation of E. coli remained 

at the species level, leading to an overall accuracy of 97.6 %. 

Compared to reference microorganisms that were cultivated under specified 

standards, stressed microorganisms showed alterations in the spectral range of 

lipids, nucleic acids, polysaccharides, and proteins. 

The results approve the potential of Raman-microspectroscopy for the 

discrimination of bacteria and interpretation of microbial stress responses. 

Additionally, they indicate that sample preparation and standardization should be 

reconsidered, and existing standardized databases should also contain stress 

conditions. 

 



 Discrimination of Stressed Bacteria Using Raman-microspectroscopy 

60 

6.5 Supplementary Material 

Table 6.3: Scheme for data splitting for trained and tested microorganisms. Each data set's storage time is specified in days. Test data are highlighted in 
green. 

 25 °C Desiccator Cold sampling HCl Heat dried 2-propanol NaOH Regular 
Data set 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 
B. sub 1 2 3 8 9 10 8 12 14 3 9 14 7 9 10 1 9 15 1 6 7 4 6 8 

B. therm 4 9 1 9 15 1 3 7 20 9 10 14 8 14 16 10 11 15 2 7 8 5 7 15 
B. tii 1 9 1 8 9 10 11 12 3 7 8 9 7 9 10 2 8 15 6 7 8 5 6 8 

E. coli K12 4 9 1 9 15 1 3 7 20 6 9 14 8 14 16 2 9 15 2 7 8 21 5 12 
E. coli HB101 11 9 1 9 10 1 3 15 7 6 8 14 8 9 11 2 9 16 3 6 7 21 1 7 

M. luteus 8 2 13 18 10 16 3 11 15 3 9 14 8 9 11 1 9 15 1 6 7 21 18 7 
Ps. fluor 4358 1 8 1 9 15 1 3 16 20 6 8 14 8 14 16 2 9 15 6 6 7 12 5 18 
Ps. fluor 50090 8 4 1 9 15 1 3 11 23 6 9 14 8 14 16 1 8 16 6 6 7 5 21 12 
E. coli TOP10 1 9 1 15 15 1 16 20 7 8 9 14 17 14 16 2 8 15 2 7 8 1 5 12 
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Figure 6.7: Check for overfitting by plotting the error rate of the training data, the cross-validation 
and the test data against the number of PCs used for classification. 

 

 

  



 Discrimination of Stressed Bacteria IR-microspectroscopy 

62 

 

 

Chapter 7 
 

 

 

 

 

 

 

 

 
Investigation and Rapid Discrimination of Food-related 

Bacteria Under Stress Treatments Using IR-
microspectroscopy 

Chapter 7 Discrimination of Stressed Bacteria IR-
microspectroscopy 

 

 

 

 

 
Based on: 

Klein, D.; Breuch, R.; Reinmüller, J.; Engelhard, C.; Kaul, P., Investigation and Rapid Discrimination 

of Food-Related Bacteria under Stress Treatments Using IR Microspectroscopy. Foods 10 (2021), 

1850. https://doi.org/10.3390/foods10081850. 

 

Supplemental Notice: 

Figures 7.2 - 7.5 and 7.7 - 7.9 were optimized for better readability.   



 Discrimination of Stressed Bacteria IR-microspectroscopy 

63 

Authors’ contribution Chapter 7: 

 

Daniel Klein 
Conceptualization, methodology, software, validation, formal analysis, investigation, 

data curation, visualization, writing—original draft, writing—review and editing  

 

Rene Breuch 
Software, Validation, writing—review and editing 

 

Jessica Reinmüller 
Investigation, formal analysis, writing—review and editing 

 

Carsten Engelhard 
Supervision, writing—review and editing  

 

Peter Kaul 
Supervision, writing—review and editing, project administration, funding acquisition 

 

  



 Discrimination of Stressed Bacteria IR-microspectroscopy 

64 

7.1 Introduction 

Because meat and meat products are highly appreciated by consumers for their 

nutritional value and taste, the global supply of meat is expected to continue to 

increase in the coming years [4]. However, meat is highly prone to microbial 

spoilage and, therefore, a rapid and easy identification of contamination is a major 

concern in food safety [4,137]. This will help to ensure measures to minimize health 

hazards and thus prevent foodborne illness and unnecessary food waste along the 

supply chain [137]. 

However, as bacteria are subject to constant fluctuations in their growth conditions 

both in nature and along the supply chain, they have developed capabilities to 

constantly adapt to conditions or even change to a state of viability but non-

cultivable [30,142,180]. This makes sublethally damaged cells difficult to detect with 

classical laboratory culture techniques [137]. Additionally, standard methods such 

as classical microbiology, sensory-mechanical studies and immunological or 

genetic techniques have disadvantages in speed, complexity, and invasiveness 

[4,17,18,21,94]. However, these viable but non-culturable microorganisms can be 

revived within the supply chain and thus not only affect the product's usability, but 

may also be a health hazard [18,49,137,181]. 

Therefore, especially infrared (IR)-spectroscopy has been successfully used to 

detect and identify microorganisms [49,52,105,165]. In the recent years many 

studies dealt with the IR-spectroscopic evaluation of specific effects of stress 

conditions on microorganisms such as the protein misfolding [182], the phase 

behavior of cell membranes of Escherichia coli (E. coli) during desiccation, 

rehydration and growth recovery [183,184] or the sonication injury on Listeria 

monocytogenes [185]. Moreover, IR-spectroscopy was used to study the influence 

of nanoparticles on E. coli [186,187] and the effects of heavy metals on 

Brevundimonas sp., Gordonia sp. and Microbacterium oxydans using the analysis 

of variance, hierarchical cluster analysis, principal component analysis (PCA)  

and soft independent modelling of class analogies (SIMCA) [188,189]. Additionally, 

the influence of heat on Lactococcus lactis, Salmonella enterica and Listeria 

monocytogenes was evaluated by the analysis of the IR-peak area of amide I and 

amide II bands and the extent of injury was predicted by the analysis of the 

wavenumber area of 900–1300 cm−1 by SIMCA and partial least squares regression 

analysis (PLSR) [190,191]. Furthermore, the response of E. coli, 
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Campylobacter jejuni and Pseudomonas aeruginosa exposed to cold-[58,192], 

chemical- [58] and pH-stressors [58,178,193] was studied by DNA microarrays and 

Fourier-transform (FT)-IR analysis coupled to PCA, discriminant function analysis 

and PLSR.  

While interesting findings have been reported, IR-microspectroscopy in combination 

with PCA and canonical discriminant analysis has not been used so far to combine 

different stress conditions on numerous food-related microorganisms at different 

times after incubation in one chemometric model. 

The food industry is particularly interested in the most dominant microorganisms 

detected on fresh and chilled meat and other food products: Pseudomonas spp., 

especially Pseudomonas fluorescens (Ps. fluor) and Enterobacteriaceae, such as 

E. coli, Micrococcus luteus (M. luteus), Bacillus thuringiensis israelensis (B. tii), 

Bacillus coagulans (B. coag), Bacillus subtilis (B. sub) and Brochothrix 

thermosphacta (B. therm) [37,117–122,194]. 

Therefore, the aim of this study was the development of a rapid and non-destructive 

analysis method for food-related microorganisms. The influences of numerous 

stress conditioned microorganisms as well as regularly treated microorganisms over 

various aging stages on agar plates were analyzed with IR-spectroscopy to build up 

an extensive data set. Chemometric models were developed to discriminate the 

influence of stress and also to discriminate the selected microorganisms 

independent of their stress conditions within one model down to the strain level. 

7.2 Materials and Methods 
7.2.1 Bacterial Cultures and Sample Preparation 

The following nine microorganisms were cultivated on nutrient agar (10 g/L meat 

peptone, 10 g/L meat extract, 5 g/L sodium chloride and 18 g/L agar-agar  

(Merck KGaA, Germany)) and prepared according to our previously published 

method [88,123,165]: Bacillus subtilis DSM 10, Bacillus coagulans DSM 1, 

Escherichia coli K12 DSM 498, Escherichia coli TOP10, Micrococcus luteus  

DSM 20030, Brochothrix thermosphacta DSM 20171, Pseudomonas fluorescens 

DSM 4358, Pseudomonas fluorescens DSM 50090 and Bacillus thuringiensis 

israelensis DSM 5724. 

As described in our previously published methods [123,165], the samples were 

taken by a blotting technique with the sample carrier (stainless steel cylinder) 
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directly from the agar plate without any sampling pre-treatments (e.g. centrifugation, 

washing, drying). IR spectra were recorded directly (lifetime conditions) after 

sampling or directly after the stress impact (sampling condition) without any 

incubation period after sampling. Detailed information can be found in Chapter 7.2.2. 

The spectral data set of each microorganism, consisting of four independent data 

sets for each stress condition, were divided into independent training and test data 

sets. Further information can be found in the Chapter “Data Handling and 

Visualization”.  

7.2.2 Sample Treatment 

In order to expose the microorganisms to different influences, they were subjected 

to lifetime conditions (incubation under acidic and alkaline conditions, incubation at 

different temperatures and incubation under 2-propanol influence) and sampling 

conditions (cold sampling, heat sampling and desiccation) in a controlled manner in 

addition to the regular reference treatment. Incubation was performed for all 

microorganisms in a Binder BD 240 (BINDER GmbH, Germany) incubator. 

7.2.2.1 Reference Samples (Regular Treatment) 

All microorganisms were cultivated in accordance to DSMZ (Leibniz Institut DSMZ 

– German Collection of Microorganisms and Cell Cultures, Germany) guidelines. 

These samples served as reference samples in this study. 

7.2.2.2 Incubation Under Acidic Conditions 

To expose microorganisms to acidic pH stress, a hydrochloric acid (HCl) solution 

(36 %, Alfa Aesar, USA) with pH 1 (verified by means of pH indicator paper,  

Th. Geyer GmbH & Co. KG, Germany) was prepared. The agar plates were 

completely covered with the hydrochloric acid solution (2 mL) and the inoculation 

took place onto the hydrochloric-acid covered agar plates. Afterwards the cultivation 

was performed in accordance to DSMZ guidelines. 

7.2.2.3 Incubation Under Alkaline Conditions 

Complementary to the incubation under acidic conditions, a sodium hydroxide 

solution (sodium hydroxide pellets, Merck, Germany) (pH 13 (verified by means of 

pH indicator paper)) was prepared to expose microorganisms to alkaline pH stress. 

Afterwards the cultivation was performed in accordance to DSMZ guidelines. 
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7.2.2.4 Incubation at Lower/Higher Temperatures 

Microorganisms were incubated at a temperature of 25 °C and 45 °C.  

7.2.2.5 Incubation with 2-propanol 

Complementary to the incubation under acidic and alkaline stress, the 

microorganisms were stressed with 2-propanol (99.9 %, Höfer Chemie GmbH, 

Germany). Afterwards the cultivation was performed in accordance to DSMZ 

guidelines. 

7.2.2.6 Cold Sampling 

Microorganisms were sampled from regular treated samples, covered with liquid 

nitrogen for 60 seconds and instantly measured. 

7.2.2.7 Heat-drying 

Microorganisms were sampled from regular treated samples, dried at 50 °C for 

60 minutes and instantly measured. 

7.2.2.8 Desiccation 

Microorganisms were sampled from regular treated samples, dried in a desiccator 

filled with silica gel for 60 minutes and instantly measured. 

7.2.3 Instrumentation 

The samples were examined in reflectance mode, 20 scans per spectrum, 4 cm−1 

resolution and 20x magnification (Cassegrain objective (Bruker Ser.910/1022346, 

numerical aperture: 0.6, working distance: 6 mm) by means of a Hyperion 

3000/Vertex 70 Fourier-transform-IR-microspectrometer (Bruker Optics GmbH, 

Germany) with Mercury/Cadmium/Telluride (MCT) detector. Instrument controlling 

and data acquisition was carried out by the OPUS 7.5 software.  

Due to the microscopic component, the morphological properties of heterogeneous 

samples can be combined with spectral data and samples with a few hundred 

microorganisms can be determined [33,195]. This often results in no further sample 

preparation than a transfer of the sample to a sample carrier [131]. In addition, the 

required analysis time is reduced compared to classical IR-spectroscopy [33]. 
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7.2.4 Data Handling and Visualization 

IR spectra were subsequently sum normalized (OriginPro 2019b, OriginLab 

Corporation, USA), data reduced to the range of 915–1750 cm−1 and  

2825–3680 cm−1 to exclude the characteristic CO2 region and the lower fingerprint 

area, the first derivative was built and smoothed with a 13-point Savitzky-Golay filter 

(LabVIEW 2016; National Instruments, USA).  

The splitting for training and test data was carried out so that one or two independent 

data sets each with 50 spectra for each stress condition and regular treatment was 

used as test data (Figure 7.1).  

 

Figure 7.1: Schematic representation of the data set structure as well as the splitting process with 

subsequent data reduction and classification. The training and test data set contains the 

corresponding information of each measured microorganism and thus of each growth and sampling 

condition. 

The splitting ratios of training and test data is depicted in Table 7.1. Detailed 

information about the exact splitting pattern, the time after incubation of  

the microorganisms at the time of measurement and thus how long the 

microorganisms were exposed to the lifetime stress conditions can be found in  

Table 7.4 (Chapter 7.5).  

Since balanced training data sets are important, not only for data reduction by PCA, 

but also for robust, reliable and unweighted model development [92,93], the data 
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sets were split into training and test data in different ways for the reason that not all 

stress conditions could be measured for all bacteria (see Results and Discussion).  

Table 7.1: Training and test data set sizes and data splitting ratio for the trained and tested 

microorganisms. 

Class Training data  Test data Training data [%] 
B. coag 1050  350 75.0 

B. sub 1050  750 58.3 

B. therm 1050  750 58.3 

B. tii 1050  550 65.6 

E. coli K12 1050  750 58.3 

M. luteus 1050  750 58.3 

Ps. fluor 4358 1050  550 65.6 

Ps. fluor 50090 1050  550 65.6 

E. coli TOP10 1050  750 58.3 

 

For the following data evaluation, principal component analysis (PCA) was applied 

to the training data; the test data were converted into the vector space of the training 

data and the data were classified by a canonical discriminant analysis (CDA) by 

means of LabVIEW 2016 and OriginPro 2019b. 

7.3 Results and Discussion 

First, the microorganisms were exposed to the different bacterial stress conditions 

mentioned above and IR-microspectroscopic data was carefully acquired. Figure 7.2 

shows the mean IR spectra including their standard deviations of bacteria under 

normal culture conditions versus bacteria under stress conditions. It is important to 

note that for B. coag no bacterial growth was detected at 25 °C and when 2-propanol 

was used. Also, B. tii and Ps. fluor did not grow at 45 °C. This suggests that these 

stress conditions lead a non-culturable state. As a result, these conditions are not 

shown in Figure 7.2 and cannot be used for further evaluation. 

Because spectral differences between individual microorganisms and individual 

stress conditions are based on different composition in proteins, nucleic acids, 

lipopolysaccharides or lipids of the cell, visual discrimination of 15,200 spectra in 

total (Figure 7.2) is almost impossible [10]. The fine spectral differences are in  

the range of the P=O vibrations of phospholipids (1085 cm−1 & 1240 cm−1) and the 

C–O–C vibrations in polysaccharides (900–1200 cm−1) [33,49]. In addition, 

differences can be noted in the C=O, C-H and C–O–H vibrations of fatty acids and 
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proteins [33,49]. In the area of proteins, strong bands of amide I and amide II 

vibrations (1550–1675 cm−1) can also be observed [33,49]. Furthermore, various  

C–H and N–H stretching vibrations from fatty acids and proteins can be identified in 

the range of 2850 cm−1 [33,49]. Here, chemometric approaches can aid in the 

classification and were carefully optimized as discussed below.  

 

Figure 7.2: Stacked mean IR spectra of the normalized data of in total 15,200 spectra (200 spectra 

of each stress condition and regular treatment) of B. coag (A), B. sub (B), B. therm (C), B. tii (D), 

E. coli K12 (E), M. luteus (F), Ps. fluor 4358 (G), Ps. fluor 50090 (H) and E. coli TOP10 (I). Standard 

deviations are indicated by color coded bands around the mean value. 

7.3.1 Bacteria Prediction Model 

To ensure optimal model development and to avoid overfitting (performance plot: 

Figure 7.6; Chapter 7.5), the first 20 PCs (Figure 7.7 & Figure 7.8; Chapter 7.5) were 

used for model building using discriminant analysis. 

As the covariance matrices of the training data classes had no significant equality, 

a quadratic instead of a linear discriminant function was chosen [127–129]. 

The error for classification and cross-validation of the training data was 0.01 %; one 

spectrum of E. coli K12 was assigned to E. coli TOP10. In order to test the 

developed model for the classification of food-related microorganisms for 
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robustness, accuracy and reproducibility, independent test data sets of the trained 

classes were added to the model. 

The first two (left) and the first four (right) canonical variables (CV) of the quadratic 

discriminant analysis (QDA) of the training data (solid squares) and test data 

(unfilled squares) are depicted in Figure 7.3. On closer examination, it is noticeable 

that the test data are located exactly in the space of the training data. 

 

Figure 7.3: Scatter plot of canonical variable 1 and 2 of the QDA of the training data (solid squares) 

and the independent test data (unfilled squares) of all nine microorganisms and all nine conditions. 

M. luteus and all Bacillus spp. (B. coag, B. sub, B. therm, B. tii) could be separated 

from each other by the first two canonical variables and Pseudomonas fluorescens 

from E. coli could be separated by the first four canonical variables (Figure 7.4). 
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Figure 7.4: Scatter matrix plot of canonical variable 1 to 4 of the QDA of the training data (solid 

squares) and the independent test data (unfilled squares) of all nine microorganisms and all nine 

conditions. 

In conclusion, the data of the classification of the independent test data are 

presented in a confusion matrix (Table 7.2), which gives the number of spectra 

which were classified to the correct (diagonal) or wrong predicted class. 
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Table 7.2: Confusion matrix for the independent test data set. All nine conditions were pooled as 

one class per microorganism. The rows show the observed groups and the columns the predicted 

groups. The values in the diagonal of the table reflect the correct classifications of observations into 

groups. 

 
Predicted class 

Class 
B. 

coag 
B. 

sub 
B. 

therm 
B. 
tii 

E. coli 
K12 

E. coli 
TOP10 

Ps. fluor 
4358 

Ps. fluor 
50090 

M. 
luteus 

B. coag 349 1 0 0 0 0 0 0 0 

B. sub 0 750 0 0 0 0 0 0 0 

B. therm 0 0 750 0 0 0 0 0 0 

B. tii 0 0 0 550 0 0 0 0 0 

E. coli K12 0 0 0 0 601 99 0 50 0 

E. coli 

TOP10 
0 0 0 0 10 740 0 0 0 

Ps. fluor 

4358 
0 0 0 0 1 11 514 24 0 

Ps. fluor 

50090 
0 0 0 0 0 0 0 550 0 

M. luteus 0 0 0 0 0 0 0 0 750 

 

It can be seen that the classification of the test data and thus the model development 

of a robust and meaningful model was successful. The error rate of the classification 

of the independent test data was only 3.4 % and can be found in the classes of 

B. coag, E. coli K12 and TOP10 and Ps. fluorescens.  

Because the complete dataset consists of a large number of sub-datasets per 

microorganism, a detailed analysis of the classification errors on the sub-datasets 

is given in Table 7.3. 
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Table 7.3: Detailed analysis of the classification errors of the independent test data set on the sub-

dataset level. The numbers are the total numbers of misclassified spectra in the specific sub-dataset. 

Error distribution B. sub 
E. coli 
K12 

E. coli 
TOP10 

Ps. fluor 
50090 

B. coag - HCl 1 -- -- -- 

E. coli K12 - heat dried -- -- 49 -- 

E. coli K12 - 2-propanol -- -- -- 50 

E. coli K12 - regular -- -- 50 -- 

E. coli TOP10 - heat dried -- 1 -- -- 

E. coli TOP10 - regular -- 9 -- -- 

Ps. fluor 4358 - cold sampling -- -- 8 -- 

Ps. fluor 4358 - 2-propanol -- -- 3 24 

Ps. fluor 4358 - NaOH -- 1 -- -- 

 

The detailed analysis of the error rate shows that a major part of the error was due 

to the misclassification of E. coli K12 to TOP10 and vice versa, and the assignment 

of Ps. fluorescens 4358 to Ps. fluorescens 50090. In addition, another part of the 

misclassification was due to the assignment of E. coli K12 to Ps. fluorescens.  

These misclassifications were also indicated by the graphical representations 

(Figure 7.4) of the classification results, where it is at least visually apparent that  

the distinction between the respective E. coli and Ps. fluorescens strains as well as 

the separation between E. coli and Ps. fluorescens appears difficult. However, the 

detailed error analysis shows that the separation between the Ps. fluorescens 

strains was feasible, but the separation between the E. coli strains was more 

difficult.  

In contrast to other approaches, the presented results for the general discrimination 

of food-related bacteria were carried out with 20 scans per sample as comparatively 

short measurement times [106,131,182,186,188–190] and in absence of further 

sample preparation steps [58,106,182,185,188,189,192]. Nonetheless, the results 

demonstrate a non-inferior classification even compared to macroscopic and 

microscopic studies, in which standardized work was performed in other approaches 

[130,131,133,134,165,190,192]. The novel aspect of this model in comparison to 

the literature are the inclusion of numerous stress conditions on microorganisms 

and the consideration of these stress conditions on numerous bacteria in one model 

since often only the influence of a few stress conditions on single or a few selected 

microorganisms were investigated [186,188–190,192]. 
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7.3.2 Stress Condition Prediction Model 

Since clusters within a class (microorganisms) were visible but do not seem to 

significantly influence the model for discrimination of food-related microorganisms, 

it was reasonable to investigate which general influence the stress conditions have 

on the bacteria or on the model. Therefore, we tested whether this type of model 

was also able to separate different stress conditions from each other. 

All data were preprocessed as already described for the discrimination model. The 

model building for the discrimination of different stress conditions per microorganism 

was executed as in the previously described model. For this purpose, the fourth of 

the independent data sets for each stress condition was used as test data and the 

first three independent data sets were used as training data. 

The summary of the quadratic discriminant analyses of each microorganism is 

depicted in Figure 7.5. 

 

Figure 7.5: Scatter plots of canonical variable 1 and 2 of the QDA of the training data (solid squares) 

and the independent test data (unfilled squares) of B. coag (A), B. sub (B), B. therm (C), B. tii (D), 

E. coli K12 (E), M. luteus (F), Ps. fluor 4358 (G), Ps. fluor 50090 (H) and E. coli TOP10 (I) to 

discriminate all nine conditions. 

The first two canonical variables clearly separate almost all stress conditions for 

each microorganism. Furthermore, it was also evident that the test data can again 

be found exactly in the data clouds of the training data.  
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The corresponding confusion matrices (Table 7.5 to Table 7.13; Chapter 7.5) show 

that for each microorganism an error-free classification of the test data of each 

stress condition was possible and all stress conditions were located in mostly 

isolated data clouds. 

It can be observed that stressed microorganisms, in comparison to regularly treated 

microorganisms, show altered signals in the range of nucleic acids, 

polysaccharides, lipids and in the region of –CH2/–CH3 stretching vibrations. 

Additionally, in most cases a shift in the peak position was noticeable in the spectral 

region assigned to proteins (amide I and amide II vibrations) (Figure 7.9;  

Chapter 7.5). Particularly notable were features such as those in Figure 7.5 where 

incubation at 25 °C for B. sub (B) causes this point cloud to be far removed from all 

other influencing conditions. This is because, in this case, the above-mentioned 

peaks have an increased intensity compared to regularly treated bacteria. It was 

also noticeable that in the region of the amide I vibration there is a shift to smaller 

wavenumbers. Observations of this nature were also found during stress reactions 

of the other microorganisms. For example, the data from B. therm (C) stressed with 

2-propanol and HCl cluster together as a result of a negative shift of the amide I 

band in both cases. Furthermore, a reduction of the bands in the fatty acid region 

was generally detected in B. tii and desiccation of E. coli K12 only results in marginal 

changes in the spectrum (Figure 7.9; Chapter 7.5). In addition, the heat drying of 

E. coli TOP10 results in a change in the ratio of nucleic acids, phospholipids  

and polysaccharides. M. luteus shows significant changes in the ratio of lipids, 

nucleic acids and proteins at incorrect incubation temperatures and under  

NaOH and 2-propanol influence. Additionally, the two Pseudomonas species 

behave largely similarly under stress but tend to an opposite shift,  

Ps. fluor 4358 to higher and Ps. fluor 50090 to lower wavenumbers, in the amide I 

band (Figure 7.9; Chapter 7.5). 

For the range of 2800–3000 cm−1, our observations were consistent with the findings 

of Saulou et al. and Loffhagen et al. who presented that spectra of viable 

microorganisms did not shift to lower wavenumbers thus the microorganisms did not 

alter their membrane fluidity, but continued to show the presence of unsaturated 

bonds in lipids [186,196]. Furthermore, our results confirm the findings that stressed 

microorganisms show changes in the region of amide bands as part of their  

stress response mechanisms, indicating the alteration of the proteins secondary 
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structure [186,190]. In addition, with the changes in the range of nucleic acids, 

polysaccharides and lipids resulting from the denaturation of nucleic acids, the 

production of exopolymer and effects on polysaccharides of the cell wall in the range 

of 900–1300 cm−1 could be confirmed [178,188,190,192]. 

In summary the spectral changes of sublethally stressed microorganisms, such as 

the change in the ranges 900–1500 cm−1 and 1500–1700 cm−1, which indicate an 

altered concentration of nucleic acids, lipids, polysaccharides, as well as the shift of 

the amide bands, indicated by a change in the secondary structure of the proteins, 

are reproducible and extensively described in the before mentioned literature for 

living or stressed microorganisms. Thus, it can be stated that a rapid, robust and 

meaningful model for discrimination of food-related microorganisms down to the 

strain level, irrespective of sample age, lifetime stress conditions and sampling 

stress conditions, could be established. 

7.4 Conclusions 

Response of food-related bacteria to stress gives rise to changes in their spectral 

features in FT-IR. Specifically, a method using simple sample preparation, fast 

measurement by IR-microspectroscopy and chemometrics was carefully developed 

for rapid and non-destructive analysis of food-relevant bacteria independent of their 

time after incubation, cultivation conditions and sampling condition. Classification 

using canonical discriminant analysis showed that a robust and meaningful model 

was developed to discriminate nine different microorganisms at the genus, species, 

and strain levels with 96.6 % accuracy. Furthermore, it was demonstrated that 

sublethally stressed microorganisms, irrespective of lifetime or sampling condition, 

showed changes in the spectral range associated with nucleic acids, 

polysaccharides, lipids, –CH2/–CH3 stretching vibrations and especially in the 

range of proteins (amide I and amide II vibrations) compared to reference 

microorganisms grown under well-established guidelines. These spectral changes 

were discussed and could indicate, for example, the changes in the secondary 

structure of proteins and the production of exopolymer. 

The results obtained not only confirm the potential of IR-microspectroscopy for rapid 

differentiation of microorganisms and elucidation of stress response of bacteria, but 

also show that the existing highly standardized databases should be expanded to 

include stress conditions and reconsidered in terms of sample preparation and 
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spectra quality. Continuing this approach, these models should be progressively 

supplemented by for example food samples in order to take into account the 

influence of food matrices to the models. 
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7.5 Supplementary Material 

Table 7.4: Data splitting scheme for the trained and tested microorganisms. The time period after incubation is given in days for each data sets. Each data 
set consists of 50 spectra. Stress conditions are divided into lifetime conditions, in which the influence is already applied at inoculation and thus active over 
a life cycle, and sampling condition, in which the influence is a short major stress during sampling. 

  Lifetime condition Sampling condition 

  25 °C 45 °C 2-propanol NaOH HCl Heat dried Regular Desiccator Cold 
sampling 

Data set 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 

B. coag      2
4 1 2 7     3 6 7 8 3 9 1

5 
1
7 8 9 1

5 
1
5 8 1

2 6 8 9 1
0 

1
3 

1
4 8 12 3 9 

B. sub 1 6 8 1
2 

2
0 

2
3 6 2

7 1 9 1
4 

1
6 3 6 6 7 3 9 1

5 
1
7 8 9 1

5 
1
5 8 1

2 6 8 9 1
0 

1
3 

1
4 8 12 2 9 

B. therm 3 6 1 2
0 6 1

2 
3
9 

4
0 

1
1 

1
4 

1
4 

1
6 3 6 6 7 1

0 
1
3 

1
6 

1
7 

1
4 

1
6 9 1

5 1 6 7 8 1
5 

2
1 9 1

4 14 7 9 10 

B. tii 6 9 1 2
1 

    2 6 1
2 

1
4 6 6 7 8 7 1

0 
1
4 

1
5 8 9 1

5 
1
5 8 1

2 6 8 1
0 9 1

0 
1
3 8 12 3 9 

E. coli K12 3 6 8 2
1 

2
0 

2
3 

3
9 

4
0 2 9 1

4 
1
6 3 6 7 8 6 1

3 
1
6 

1
7 

1
4 

1
6 9 1

5 1 6 7 1
2 

1
5 

2
1 9 1

4 14 20 9 14 

M. luteus 8 1
2 

2
0 

2
1 

2
3 6 1

2 
3
9 1 9 1

4 
1
6 3 6 6 7 3 9 1

5 
1
7 9 1

1 9 1
5 

2
4 1 2 7 1

0 1 9 1
4 9 15 9 13 

Ps. fluor 4358 6 8 2
0 

2
1 

    2 9 1
4 

1
6 6 6 7 8 6 1

3 
1
5 

2
0 

1
4 

1
6 9 1

5 1 6 7 8 1
5 

2
1 9 1

4 14 20 9 13 

Ps. fluor 
50090 6 1 2

0 
2
1 

    1 9 1
4 

1
6 3 6 6 7 6 9 1

5 
1
7 

1
4 

1
6 9 1

5 1 6 7 8 1
5 

2
1 9 1

4 14 7 9 13 

E. coli TOP10 1 6 2
0 9 1 6 2

3 
3
9 3 6 6 7 2 8 1

4 
1
6 7 1

0 
1
6 

1
7 

2
7 7 9 1

5 1 6 7 1
2 

1
5 

2
1 9 1

4 14 20 27 9 
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Figure 7.6: Check for overfitting for the general discrimination by plotting the error rate of the training data, the cross-validation and the test data against the 
number of PCs used for classification. 
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Figure 7.7: Loadings (PC1 – PC9) of the PCA of the training data set for the bacteria discrimination model. For a better spectral comparison in the graphs 
for PC1 – PC3 the average spectrum of B. coag is given in gray. 
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Figure 7.8: Loadings (PC10 – PC20) of the PCA of the training data set for the bacteria discrimination model. For a better spectral comparison in the graphs 
for PC10 – PC12 the average spectrum of B. coag is given in gray. 
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Figure 7.9: Raw IR spectra of each stress condition vs. regular treated of B. coag (A), B. sub (B), B. therm (C), B. tii (D), E. coli K12 (E), M. luteus (F), 
Ps. fluor 4358 (G), Ps. fluor 50090 (H) and E. coli TOP10 (I). 
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Table 7.5: Confusion matrix for the independent test data set for the classification of all stress condition for B. coag. The values of the table reflect the correct 
classifications of observations. 

B. coag 
Predicted class 

45 °C Desiccator Cold sampling HCl Heat dried 2-Propanol NaOH Regular 
45 °C 50 0 0 0 0 0 0 0 

Desiccator 0 50 0 0 0 0 0 0 
Cold sampling 0 0 50 0 0 0 0 0 

HCl 0 0 0 50 0 0 0 0 
Heat dried 0 0 0 0 50 0 0 0 
2-propanol 0 0 0 0 0 50 0 0 

NaOH 0 0 0 0 0 0 50 0 
Regular 0 0 0 0 0 0 0 50 

 

Table 7.6: Confusion matrix for the independent test data set for the classification of all stress condition for B. sub. The values of the table reflect the correct 
classifications of observations. 

B. sub 
Predicted class 

25 °C 45 °C Desiccator Cold sampling HCl Heat dried 2-propanol NaOH Regular 
25 °C 50 0 0 0 0 0 0 0 0 
45 °C 0 50 0 0 0 0 0 0 0 

Desiccator 0 0 50 0 0 0 0 0 0 
Cold sampling 0 0 0 50 0 0 0 0 0 

HCl 0 0 0 0 50 0 0 0 0 
Heat dried 0 0 0 0 0 50 0 0 0 
2-propanol 0 0 0 0 0 0 50 0 0 

NaOH 0 0 0 0 0 0 0 50 0 
Regular 0 0 0 0 0 0 0 0 50 
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Table 7.7: Confusion matrix for the independent test data set for the classification of all stress condition for B. therm. The values of the table reflect the 
correct classifications of observations. 

B. therm 
Predicted class 

25 °C 45 °C Desiccator Cold sampling HCl Heat dried 2-propanol NaOH Regular 
25 °C 50 0 0 0 0 0 0 0 0 
45 °C 0 50 0 0 0 0 0 0 0 

Desiccator 0 0 50 0 0 0 0 0 0 
Cold sampling 0 0 0 50 0 0 0 0 0 

HCl 0 0 0 0 50 0 0 0 0 
Heat dried 0 0 0 0 0 50 0 0 0 
2-propanol 0 0 0 0 0 0 50 0 0 

NaOH 0 0 0 0 0 0 0 50 0 
Regular 0 0 0 0 0 0 0 0 50 

 

Table 7.8: Confusion matrix for the independent test data set for the classification of all stress condition for B. tii. The values of the table reflect the correct 
classifications of observations. 

B. tii 
Predicted class 

25 °C Desiccator Cold sampling HCl Heat dried 2-propanol NaOH Regular 
25 °C 50 0 0 0 0 0 0 0 

Desiccator 0 50 0 0 0 0 0 0 
Cold sampling 0 0 50 0 0 0 0 0 

HCl 0 0 0 50 0 0 0 0 
Heat dried 0 0 0 0 50 0 0 0 
2-propanol 0 0 0 0 0 50 0 0 

NaOH 0 0 0 0 0 0 50 0 
Regular 0 0 0 0 0 0 0 50 
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Table 7.9: Confusion matrix for the independent test data set for the classification of all stress condition for E. coli K12. The values of the table reflect the 
correct classifications of observations. 

E. coli K12 
Predicted class 

25 °C 45 °C Desiccator Cold sampling HCl Heat dried 2-propanol NaOH Regular 
25 °C 50 0 0 0 0 0 0 0 0 
45 °C 0 50 0 0 0 0 0 0 0 

Desiccator 0 0 50 0 0 0 0 0 0 
Cold sampling 0 0 0 50 0 0 0 0 0 

HCl 0 0 0 0 50 0 0 0 0 
Heat dried 0 0 0 0 0 50 0 0 0 
2-propanol 0 0 0 0 0 0 50 0 0 

NaOH 0 0 0 0 0 0 0 50 0 
Regular 0 0 0 0 0 0 0 0 50 

 

Table 7.10: Confusion matrix for the independent test data set for the classification of all stress condition for M. luteus. The values of the table reflect the 
correct classifications of observations. 

M. luteus 
Predicted class 

25 °C 45 °C Desiccator Cold sampling HCl Heat dried 2-propanol NaOH Regular 
25 °C 50 0 0 0 0 0 0 0 0 
45 °C 0 50 0 0 0 0 0 0 0 

Desiccator 0 0 50 0 0 0 0 0 0 
Cold sampling 0 0 0 50 0 0 0 0 0 

HCl 0 0 0 0 50 0 0 0 0 
Heat dried 0 0 0 0 0 50 0 0 0 
2-propanol 0 0 0 0 0 0 50 0 0 

NaOH 0 0 0 0 0 0 0 50 0 
Regular 0 0 0 0 0 0 0 0 50 
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Table 7.11: Confusion matrix for the independent test data set for the classification of all stress condition for Ps. fluor 4358. The values of the table reflect 
the correct classifications of observations. 

Ps. fluor 4358 
Predicted class 

25 °C Desiccator Cold sampling HCl Heat dried 2-propanol NaOH Regular 
25 °C 50 0 0 0 0 0 0 0 

Desiccator 0 50 0 0 0 0 0 0 
Cold sampling 0 0 50 0 0 0 0 0 

HCl 0 0 0 50 0 0 0 0 
Heat dried 0 0 0 0 50 0 0 0 
2-propanol 0 0 0 0 0 50 0 0 

NaOH 0 0 0 0 0 0 50 0 
Regular 0 0 0 0 0 0 0 50 

 

Table 7.12: Confusion matrix for the independent test data set for the classification of all stress condition for Ps. fluor 50090. The values of the table reflect 
the correct classifications of observations. 

Ps. fluor  
50090 

Predicted class 
25 °C Desiccator Cold sampling HCl Heat dried 2-propanol NaOH Regular 

25 °C 50 0 0 0 0 0 0 0 
Desiccator 0 50 0 0 0 0 0 0 

Cold sampling 0 0 50 0 0 0 0 0 
HCl 0 0 0 50 0 0 0 0 

Heat dried 0 0 0 0 50 0 0 0 
2-propanol 0 0 0 0 0 50 0 0 

NaOH 0 0 0 0 0 0 50 0 
Regular 0 0 0 0 0 0 0 50 
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Table 7.13: Confusion matrix for the independent test data set for the classification of all stress condition for E. coli TOP10. The values of the table reflect 
the correct classifications of observations. 

E. coli  
TOP10 

Predicted class 
25 °C 45 °C Desiccator Cold sampling HCl Heat dried 2-propanol NaOH Regular 

25 °C 50 0 0 0 0 0 0 0 0 
45 °C 0 50 0 0 0 0 0 0 0 

Desiccator 0 0 50 0 0 0 0 0 0 
Cold sampling 0 0 0 50 0 0 0 0 0 

HCl 0 0 0 0 50 0 0 0 0 
Heat dried 0 0 0 0 0 50 0 0 0 
2-propanol 0 0 0 0 0 0 50 0 0 

NaOH 0 0 0 0 0 0 0 50 0 
Regular 0 0 0 0 0 0 0 0 50 
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8.1 Summary and Conclusion 

In this thesis, a fast and reliable sampling and analysis method by 

microspectroscopy for the determination and subsequent classification of spoilage 

bacteria is developed and optimized. Samples of spoilage microorganisms collected 

by rapid blotting using a disinfectable sampling stamp were analyzed by Raman-

and IR-spectroscopy. Subsequently, the multivariate data were classified by means 

of careful preprocessing and well-considered chemometric model development. In 

order to verify the robustness and reliability of the developed methods and to test 

the models on real world samples and thus to exceed the strict standardization for 

measurements, preprocessing and laboratory conditions, extrinsic factors such as 

various extreme stress conditions to which the microorganisms were exposed were 

finally also taken into account in the classification. 

In Chapter 4 and Chapter 5, a time-saving, cost-effective, and suitable sample 

preparation of microbiological samples with subsequent data evaluation and 

classification was developed. A fast and simple sampling procedure was developed 

using a disinfectable stainless steel cylinder and without the usual purification, 

dilution and drying steps. This method allows rapid surface blots from, for example, 

the surface of the culture medium.  

The complex multivariate data were made manageable using reasonable 

chemometric data preprocessing and a PCA and were subsequently classified  

with a CDA. The results show that the presented techniques and methods with 

subsequent chemometric evaluation and only the use of the proteins, lipids,  

nucleic acids, and polysaccharides regions with Raman- (600–1200 cm−1) and  

IR- (2815–3680 cm−1) microspectroscopy are able to quickly and efficiently 

differentiate between spoilage-relevant microorganisms at genus, species and even 

strain level. Although all usual washing, centrifugation, and separation steps were 

omitted, the presented rapid preparation and measurement method was able to 

produce good quality spectra and delivered a robust method to differentiate between 

different microorganisms down to strain level.  

In conclusion, the methods of Raman- and IR-microspectroscopy from rapid surface 

blots followed by chemometric analysis were successfully used for rapid and non-

destructive analysis of meat spoilage. The presented pre-processing methods, 

successive principal component analysis, and canonical discriminant analysis 

showed that spoilage-related microorganisms could be separated and classified at 
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genus, species, and strain levels with 96.5 % (Raman) and 94.5 % (IR) accuracy, 

respectively. In addition, the chemometric models created are robust in terms of 

sampling, sample size, number of classes, and accuracy due to the balanced data 

sets. 

Response to stress causes changes in the vibrational spectroscopic spectral 

properties of food-relevant microorganisms. Regardless of the cultivation 

conditions, sampling, and storage time, a method was developed for easy sample 

preparation, rapid measurement by Raman- (Chapter 6) and IR-microspectroscopy 

(Chapter 7), and chemometrics for rapid and nondestructive analysis of food-

relevant bacteria.  

Compared to reference microorganisms, sublethally stressed microorganisms 

reveal changes in lipids, nucleic acids, polysaccharides, and proteins regardless of 

lifetime exposure or sampling conditions. The observed changes result from 

changes in the secondary structure of proteins, exopolymer production, and 

denaturation of nucleic acids. Thus, it can be concluded that despite the various 

spectral changes of sublethally stressed microorganisms in the range of proteins, 

lipids, nucleic acids, and polysaccharides due to different stress factors (lifetime and 

sampling conditions) applied to nine different microorganisms, rapid, robust,  

and reliable methods and classification models for food-relevant microorganisms 

could be developed down to the strain level.  

Classification using canonical discriminant analysis showed that a robust and 

informative model was developed to discriminate different microorganisms at the 

genus, species, and strain levels with 97.6 % (Raman) and 96.6 % (IR) accuracy, 

respectively. The results confirm the potential of Raman- and IR-microspectroscopy 

for bacterial discrimination and interpretation of microbial stress responses. In 

addition, they indicate that the strict sample preparation and standardization given 

in the literature should be reconsidered and that existing standardized databases 

should include stress conditions. Combining numerous stress factors with the 

traditional reference samples in one model also showed that the classification of 

unknown samples fits well into the landscape of existing classification models and 

thus represents a significant enrichment. 

As the presented models are limited to a certain number of microorganisms further 

generalization is required. This includes the extension of the classes by additional 
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microorganisms, different species, strains, and the inclusion of non-spoilage and 

pathogenic bacteria.  

For the practice oriented application of the approach, the extension of the models 

by wild type microorganisms as well as by samples directly from food or their contact 

surfaces is reasonable. This will improve the versatility of the models with regard to 

the influence of food matrix and reduce the dependence of long cultivation times. 

Furthermore, the presented results should be compared with models derived from 

measurements with non-microscopic systems and thus larger spot sizes. This would 

enable larger areas to be scanned and evaluated in a shorter time. Additionally, the 

imaging methods could provide substantial benefits for the detection of microbial 

contamination, especially on assembly lines in the food sector, both monomodally 

and especially in the area of multimodal data evaluation and image fusion. It has to 

be examined whether the fusion of the modalities on hardware level seems to be 

reasonable besides the pure data or image data fusion from both modalities. The 

inconvenient registration of a sensitive biological sample that has to be manually 

transferred to the second modality and essentially has no microscopic markers 

could lead to a considerable loss of information or even to misinformation. However, 

hardware fusion would make it possible to acquire data from both modalities 

simultaneously from one measurement point. For the data collected in this way, pre-

processing routines and chemometric models have to be generated again, which 

indicate that they appear to be very informative and robust. 
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