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Kurzbeschreibung 
 

Heizungs-, Lüftungs- und Klimasysteme (HLK) sind große, verteilte Systeme mit elektronischen 
Komponenten, einschließlich Steuerungen, Sensoren und Aktoren, die koordiniert werden müssen, um das 
beabsichtigte Verhalten zu erreichen. Daher sind HLK-Systeme anfällig für Einzel- und Mehrfachfehler, 
die sich auf die Elektronik auswirken und einen hohen Energieverbrauch, Unbehagen bei den Bewohnern, 
eine verschlechterte Raumluftqualität, schlechte thermische Bedingungen und Risiken für kritische 
Infrastrukturen verursachen können. Darüber hinaus spielen HLK-Systeme in großen kritischen 
Infrastrukturen in Notfällen eine wesentliche Rolle. Notfallreaktionen erfordern Echtzeitreaktionen, 
Konsistenz und Fehlertoleranz. Fehlertoleranz ist sowohl bei Betriebs- als auch bei Konstruktionsfehlern 
unerlässlich. In der Entwicklungsphase fehlertoleranter Systeme ist die Simulation eine gängige Technik, 
um Einblicke in die Systemfunktionalität, Leistung und Zuverlässigkeit zu erhalten. Sie spart Zeit, senkt 
die Kosten und vermeidet Risiken, die mit der Durchführung von Tests bei Vorliegen von Fehlern in realen 
Systemen verbunden sind. Infolgedessen ist die Fehlerinjektion in Simulationsumgebungen eine effektive 
experimentelle Methode zur Validierung und Bewertung der Zuverlässigkeit von HLK-Systemen.  

Die Fehlerinjektion in einer Simulation bietet eine hohe Kontrollierbarkeit und Beobachtbarkeit. Sie 
ist daher ideal für eine frühzeitige Zuverlässigkeitsanalyse und Fehlertoleranzbewertung. HLK-Systeme in 
kritischen Infrastrukturen sind sicherheitsrelevante Systeme, die eine angemessene Belüftung und 
Klimatisierung für die Bewohner gewährleisten sollen. Dementsprechend wird in dieser Arbeit ein 
simulationsbasiertes Framework zur Fehlerinjektion mit einer Kombination aus zwei Techniken (d.h. 
Simulatorbefehle und Modifikation des Simulationscodes) mit realistischen Fehlermustern, vorgeschlagen 
und als generisches und erweiterbares Framework eingeführt. Das Framework zur Fehlerinjektion ist mit 
Simulationsmodellen anderer elektronischer Komponenten über Ports verbunden. Das Framework zur 
Fehlerinjektion wurde in einer komponentenbasierten Struktur entwickelt und in MATLAB/Simulink unter 
Verwendung von Stateflow-Diagrammen mit fehlerfreien und fehlerhaften Systemzuständen simuliert. Zur 
Bestimmung der Fehlerattribute und des Fehlerortes wird ein automatischer Fehlerinjektionsalgorithmus 
vorgeschlagen und mit einem Algorithmus zur Generierung von Systemmodellen integriert. Die 
Systemstruktur ist anpassungsfähig und die Parameter wie die Anzahl der Stockwerke und die Anzahl der 
Räume auf jedem Stockwerk werden auf der Grundlage der Systemanforderungen definiert. Ein 
automatisierter Algorithmus zur Injektion von Einzel- und Mehrfachfehlern unterstützt ein umfassendes 
Spektrum von Fehlern mit den entsprechenden Fehlerattributen, einschließlich Fehlertyp, Zeitpunkt, Ort, 
Dauer, Intervallzeit und Häufigkeit des Auftretens. Zur Validierung der Fehlerinjektion wird ein 
szenariobasierter Ansatz verwendet, um die Auswirkungen auf das System und die Qualität der Dienste zu 
untersuchen. Jedes Szenario besteht aus mehreren Ereignissen und Unterereignissen, die zu mehreren 
Fehlerinjektionen führen. Der Rahmen für die Fehlerinjektion berücksichtigt ein realistisches Fehlermodell, 
das weißes Rauschen mit Gaußscher Verteilung als Signalunsicherheiten hinzufügt, und die 
Reproduzierbarkeit für eine Reihe von spezifischen Fehlerszenarien und für zufällige 
Fehlerinjektionsszenarien unterstützt. Das Framework umfasst ein mehrdimensionales Fehlermodell und 
bietet Kompatibilität zu einer Vielzahl anderer Simulationskomponenten. Die experimentellen Ergebnisse 
der Komponenten mit einfacher und mehrfacher Fehlerinjektion zeigen die Korrektheit, das 
Systemverhalten, die Genauigkeit und andere Systemparameter wie den Energieverbrauch des Heizgeräts 
und die Einschaltdauer des Heizgeräts bei Vorliegen verschiedener Fehlerfälle. Die experimentellen 
Ergebnisse dienen zur quantitativen Bewertung der wichtigsten Leistungsindikatoren wie Energieeffizienz, 
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Luftqualität und thermischer Komfort. So wirkt sich beispielsweise die Kombination eines Fehlers des CO2-
Sensors mit einem Fehler des Heizungsaktuators um mehr als 70 % auf den Energieverbrauch aus.  

Darüber hinaus wird in dieser Arbeit ein neuartiges und allgemeines Fehlerdiagnoseverfahren, das auf 
der Konstruktion eines Fuzzy Bayesian Belief Network basiert, in ein simuliertes Systemmodell als 
Überwachungsansatz integriert, um die Ursachen für fehlerhafte Vorgänge auf der Grundlage von 
Systembeobachtungen und Messungen zu ermitteln. Es wird auch ein datengesteuerter 
Klassifizierungsalgorithmus vorgeschlagen, der mit wissensgesteuerten Methoden einschließlich der 
Fuzzy-Theorie und Bayesian Belief Networks kombiniert werden kann und eine genaue Fehlerdiagnose in 
HLK-Systemen ermöglicht. In dieser Arbeit reduziert der datengesteuerte Ansatz den Zeitaufwand durch 
Automatisierung und Klassifizierung auf der Grundlage automatischer Ranking-Methoden. Die Fuzzy-
Theorie stützt sich auf Überlegungen zu den Unsicherheiten und unterteilt die Systemattribute in mehrere 
Teilbereiche, um die Wahrscheinlichkeitsberechnungen für kontinuierliche Systemattribute über geeignete 
Zugehörigkeitsfunktionen auf der Grundlage der Systemspezifikationen zu erleichtern. Die 
Wahrscheinlichkeiten werden verwendet, um das Bayesian Belief Network auf der Grundlage der 
Korrelationen der fuzzifizierten Systemattribute unter Verwendung der Theorie der gegenseitigen 
Information zu konstruieren. Die gegenseitige Information für alle Paare von fuzzifizierten Subdomänen 
muss berechnet werden, und ein positiver Wert der gegenseitigen Information ist ein Indikator für eine 
starke Abhängigkeit zwischen zwei Subdomänen. Schließlich unterstützt die Fehlerinjektion die 
Fehlerdiagnose-Technik, um verschiedene Fehlerfälle zu definieren und die fehlerhaften Ausgangsdaten 
als Zeitreihe zu erzeugen, die alle gesunden und fehlerhaften Systemmessungen enthält. Der Fuzzy 
Bayesian Belief Network Algorithmus spezifiziert die strengen Beziehungen, die Richtung und die 
Wahrscheinlichkeitsmerkmale aller fuzzifizierten Teilbereiche unter Verwendung der erzeugten Zeitreihen 
durch Injektion der verschiedenen Fehlerfälle.  

Die hybride Fehlerdiagnosetechnik verwendet einen datengesteuerten Klassifikator in Kombination 
mit der Inferenz von Fuzzy-Logik und einem Bayesian Belief Network im Offline- und Online-Modus. Im 
Offline-Modus wird eine Offline-Bibliothek auf der Grundlage von gerichteten 
Wahrscheinlichkeitsbeziehungen von Teilbereichen trainiert. Im Online-Modus werden die ähnlichsten 
Fehler in der Offline-Bibliothek mit den tatsächlichen Fehlerfällen auf der Grundlage der Korrelation von 
Systemattributen und der Ranking-Methode ermittelt. Die Ergebnisse zeigen eine hohe Genauigkeit bei der 
Diagnose von permanenten Fehlern in verschiedenen Komponenten von HLK-Systemen.  
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Abstract  
 

Heating, Ventilation, and Air-Conditioning (HVAC) systems are large-scale distributed systems 
comprising distributed components, including controllers, sensors, and actuators that must be coordinated 
to establish the intended behavior. Therefore, HVAC systems are subject to single and multiple faults 
affecting the electronics, potentially causing high energy consumption, occupant discomfort, degraded 
indoor air quality, thermal conditions, and risk to critical infrastructures. In addition, in large-scale critical 
infrastructures, HVAC systems serve an essential role in emergencies. Emergency reactions demand real-
time response, consistency, and fault tolerance. Fault tolerance is essential for both operational faults and 
design faults. In the development phase of fault-tolerant systems, simulation is a common technique to 
obtain insights into system functionality, performance, and dependability. It saves time, reduces cost and 
avoids risks of carrying out tests in the presence of faults in real-world systems. As a result, fault injection 
in simulation environments is an effective experimental method to validate and evaluate the dependability 
of HVAC systems. Fault injection in a simulation offers high controllability and observability. It is thus 
ideal for an early dependability analysis and fault-tolerance evaluation. HVAC systems in critical 
infrastructures are safety-relevant systems that should guarantee adequate ventilation and air conditions for 
occupants.  

Accordingly, in this thesis, a simulation-based fault injection framework with a combination of two 
techniques, simulator command and simulation code modification with realistic fault patterns is proposed 
and introduced as a generic and extendable framework. The fault-injection framework is integrated and 
connected to simulation models of other electronic components via the connection of ports. The fault 
injection framework is developed in a component-based structure, implemented and simulated in 
MATLAB/Simulink using Stateflow diagrams with healthy and faulty system states. To determine the fault 
attributes and the fault location, an automated fault injection algorithm is proposed and integrated with a 
system-model generation algorithm. The system structure is adaptable and its parameters such as the 
number of floors and the number of rooms on each floor are defined based on the system requirements. An 
automated single/multiple fault injection algorithm triggers faults and supports a comprehensive range of 
faults with corresponding fault attributes including the fault type, time, location, persistence, duration, 
interarrival time and occurrence incidence. To validate the fault injection framework, a scenario-based 
approach is used to study the system impact and quality of the services. Each scenario consists of multiple 
events and subevents that result in multiple fault injections. The fault injection framework considers a 
realistic fault model adding white noise with Gaussian distribution as signal uncertainties and it supports 
reproducibility for a set of specific fault scenarios and for random fault injection scenarios. The framework 
incorporates a multi-dimensional fault model and provides compatibility to a wide range of other simulation 
components. The experimental results of single and multiple fault injection components show the 
correctness, the system behavior, accuracy, and other system parameters, such as the heater energy 
consumption and heater duty cycle in the presence of different fault cases. The experimental results serve 
as a quantitative evaluation of key performance indicators (KPI) such as energy efficiency, air quality, and 
thermal comfort. For example, combining a CO2 sensor fault with a heater actuator fault impacts energy 
consumption significantly by more than 70%.  

Furthermore, in this thesis a novel and generic fault diagnostic technique based on the Fuzzy Bayesian 
Belief Network (FBBN) construction is integrated with a simulated system model as a monitoring approach 
to determine the causes of faulty operations based on system observations and measurements. A data-driven 
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classifier algorithm is also proposed to be combined with knowledge-driven methods, including fuzzy 
theory and Bayesian belief networks, enabling accurate fault diagnosis in HVAC systems. In this thesis, the 
data-driven approach reduces time consumption through automation and classification based on automated 
ranking methods. The fuzzy theory relies on reasoning about the uncertainties and divides the system 
attributes into several subdomains to facilitate the probability calculations for continuous system attributes 
via proper likelihood membership functions based on the system specifications. The probabilities are used 
to construct the Bayesian belief network based on the correlations of the fuzzified system attributes using 
mutual information theory. Mutual information for all pairs of fuzzified subdomains must be calculated and 
a positive value of the mutual information is an indicator of a strong dependency between two subdomains. 
Eventually, fault injection supports the fault diagnosis technique to define different fault cases and produce 
the faulty output data as a time series, including all healthy and faulty system measurements. The FBBN 
algorithm specifies the stringent relations, direction, and probability features of all fuzzified subdomains 
using the produced time-series by injecting the different fault cases. The hybrid fault diagnostic technique 
uses a data-driven classifier in combination with fuzzy logic theory and a Bayesian Belief Network in 
offline and online modes. Offline mode trains an offline library based on relation-direction-probability 
relationships of subdomains. Online mode determined the most similar faults in the offline library with 
actual fault cases based on the correlation of system attributes and the ranking method. The results show 
high accuracy of diagnosing permanent stuck-at fault in different HVAC system components.   
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1 Introduction  
 

Buildings are responsible for 40% of global energy usage and contribute 30% of the total Carbon 
Dioxide (CO2) emissions [1]. Typically, 20–30% of energy savings in buildings are achievable by 
recommissioning the Heating, Ventilation, and Air-Conditioning (HVAC) systems to rectify faulty 
operations [2–4]. HVAC systems are the main reason for global energy dissipation, and CO2 emissions [5]. 
For example, the construction and maintenance of building stock are responsible for 36% of the CO2 
emission in the European Union (EU) [6]. In 2018, the building, construction, and processes represented 
36% of energy consumption, 39% of energy-related CO2 emissions, and 50% of global electricity 
consumption [5, 7]. HVAC systems include the air-handling unit for heating, cooling, and ventilation, 
aiming for more indoor air quality, comfort, and optimized energy consumption. Demand Controlled 
Ventilation (DCV) helps HVAC systems as a control strategy to modify and balance the amount of indoor 
air by controlling and adjusting the damper actuator statuses according to the sensor measurements and 
nominal values, e.g., CO2 sensor concentration and temperature sensor measurements. HVAC systems need 
such specific measurements to keep and ensure proper functionalities. The measurement system requires 
testing, adjusting, and balancing processes; e.g., the temperature and environmental control systems should 
be evaluated regularly [8]. This process comprises required tests and monitoring of the temperature, airflow, 
and other specifications of the HVAC systems. These processes can be applied in both new and existing 
HVAC systems. It includes factors such as airflow quantities, pressure levels, proper operation and 
sequencing of the automatic control systems, fan speed, and temperature control system operation [8, 9]. 
These primary measurement activities are defined as: testing that establishes the quantitative aspects, e.g., 
the volume of the airflow or heat transfer rate, adjusting that establishes alternations to the system 
components to achieve proper design requirements, such as changing the temperature settings and balancing 
that ensures system specifications are equalized among all terminals, and sub-systems, e.g., balancing heat 
transfer in an indoor environment [8]. In critical infrastructures such as airports and hospitals, HVAC 
systems play a prominent role in emergency scenarios (e.g., fires and biological hazards). These 
infrastructures require fault-tolerance strategies for a more reliable and safe HVAC system. In addition, 
faults in HVAC systems can cause temperature fluctuations, occupancy discomfort, excess ventilation, and 
overheating. Fault management is a significant component of a Building Management System (BMS) for 
mitigating faults and their high-level symptoms [10, 11]. For example, Teraoka et al. [10] proposed a fault 
management framework, BDSher-lock, based on two lists. One list comprises standard checks, and the 
other contains rules based on anomalies. They use data-driven analysis techniques to investigate the energy 
impact of the detected faults on the HVAC system.  

Simulation is a common technique in early development phases to develop fault-tolerant systems. 
Simulation is a convenient method to investigate faulty behavior and environments for getting insights into 
system functionality and fault-tolerant operations, e.g., fault diagnosis [12]. The simulation saves 
development time and decreases the risks of the system’s testing in the real-world under faulty conditions. 
Simulation models should be validated to increase the system's confidence and accuracy [13]. Therefore, 
Verification and Validation (V&V) tasks are required elements of each simulation study [14]. Model V&V 
decreases the cost and associated risks of real-world systems and products [15]. Precision, accuracy, and 
reproducibility are some example aspects of model validation. Since faults are rare events, faults can be 
deliberately inserted in simulations. Fault Injection (FI) in a simulation environment offers high 
controllability and observability. Thus, FI is an ideal experimental method for an early dependability 
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analysis and fault-tolerance evaluation in complex systems such as HVAC [16]. Dependability analysis is 
an essential aspect of fault-tolerant systems to improve system efficiency, response time, real-world 
implementation accuracy, fault handling, and critical conditions avoidance. In addition, the effects of fault 
scenarios and their impacts can be investigated using FI, e.g., heating cost and CO2 concentration rates. 
Considering the fault occurrence probability and probability distributions for signal generation makes the 
FI more realistic [11, 16]. The complexity of HVAC systems increases by enlarging the system scales and 
the number of components that causes more susceptibility to faults and a significant increase in energy 
waste by up to 50%. An example is the steady operation of the heating actuator in the case of a stuck-at-
fault in the damper actuator [17, 18]. ASHRAE projects have introduced faults commonly associated with 
HVAC systems, such as common faults of the Air Handling Unit (AHU) [4, 19, 20]. The number of faults 
and their diversity increases in distributed buildings. Therefore, it is necessary to provide composable 
simulation models with FI to investigate fault impacts on a large scale and the ensuing dependability [21]. 
To ensure the dependability of processes in complex systems, faults should be detected, diagnosed, and 
removed, which is known as process monitoring [22]. The main aim of process monitoring is achieving the 
proper functionality in the presence of faults by recognizing anomalies that lead to downtime minimization, 
plant safety improvement, and cost reduction. Process monitoring comprises four main steps: fault 
detection, identification, diagnosis, and recovery [22]. Fault detection refers to whether a fault has occurred 
or not. Fault identification concentrates on plant and subsystem observations to identify the fault effects. 
Fault diagnosis determines which faults have occurred, their localizations, and the causes of the observed 
statuses [12, 22].  

Furthermore, Fault Detection and Diagnosis (FDD) techniques are essential in safety-critical 
applications. Advanced designs of complex and critical infrastructures require FDD methods with short 
latencies to avoid threatening situations [23–25]. For instance, the faults in HVAC systems can be the 
reason for excess pollutant emissions, e.g., Carbon Monoxide (CO) or CO2 emissions that cause occupant 
discomfort and danger to human life [26, 27]. FDD methods for HVAC systems have been introduced since 
the 1970s [12]. Many authors have provided concepts of FDD techniques. Lan et al. [12] have defined FDD 
as an investigation of the cause of the conditions or problems, including two stages fault detection and fault 
diagnosis. They have categorized FDD techniques into two categories, model-based and model-free. A 
model is a mathematical description of a system, and its details, such as component data, system theory, 
and processes, require deep expert knowledge [12]. Efficient and accurate FDD techniques in HVAC 
systems can detect faults before being noticed by occupants, thus significantly decreasing the maintenance 
cost, repair time, and energy consumption [28]. Automated Fault Detection and Diagnosis (AFDD) methods 
automatically activate the FDD techniques in online mode upon faulty conditions, increase accuracy, and 
decrease maintenance costs significantly [18, 25, 29]. There are various types of FDD classifications and 
methods. Abid et al. [24] gave a general overview of FDD techniques. Most of the FDD methods in the 
literature are model-based and require explicit mathematical models. The model's accuracy is essential in 
these methods, which is suitable for small-scale systems with few input and output variables and processes. 
Unmodeled approaches are known as data-driven approaches. These methods extract features from system 
measurements (i.e., signals) to diagnose the faults and, finally, the features for fault classification. Signal-
based approaches are categorized into two categories: statistics and non-statistics [24, 30, 31]. Abid has 
mentioned statistical approaches as effective and quick methods [24]. With the growing scale and 
complexity of the systems, designing the system model with mutual interaction between subsystems and 
developing the automatic hybrid FDD techniques is a significant challenge. Techniques should be included 
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in a unified, generic, and qualified framework with suitability for different application domains and target 
systems [24]. 

 

1.1  Thesis Motivation and Objectives 
 
HVAC systems are constructed from heterogeneous and numerous components, including sensors, 

actuators, communication links, and processes. The occurrence of faults is probable in these complex 
systems, leading to different consequences. Based on the literature review, we identified major research 
areas such as developing control strategies using FI for dependability evaluation, experimental evaluation 
and impact analysis of faults, and hybrid AFDD methods in HVAC systems to deal with fault conditions. 
These areas significantly affect the repair and maintenance cost and time, indoor thermometric efficiency, 
poisonous gas emissions, occupancy comfort and safety, system efficiency, system performance, and 
energy-related attributes such as heating cost and energy consumption. Furthermore, business requirements 
must be considered, such as inexpensive real-time embedded devices for homes and offices as well as 
safety-critical infrastructures. To achieve these goals, the thesis addresses the following objectives: 
  
Objective 1: Accurate system modeling with low effort for FDD techniques  
The definition of system models and diagnostic models should involve low effort and minimize the need 
for expert knowledge. For example, using the combination of Bayesian belief networks and fuzzy logic 
facilitates this goal. 
 
 Objective 2: Simulation-based reliability evaluation at early development phases and FI without 
damage to physical systems 
Assured validation results for safety arguments are required. This is important because the proposed models 
and algorithms need to support critical infrastructures such as hospitals and airports. Real-time support, 
fault tolerance, and consistency must be ensured as well. 
 
Objective 3: Diagnosis with high accuracy  
High accuracy of the FDD method is essential in critical infrastructures such as hospitals and airports to 
ensure the safety, availability, and reliability of the HVAC systems. The system must be able to detect faults 
precisely with a minimum rate of false positives and false negatives. 
 
Objective 4: Universality and scalability 
The goal is to have a generic framework to be integrated with different target systems easily. The proposed 
system model, algorithms, and FDD techniques should be generic, compatible, transferable, and scalable 
to other critical and complex infrastructures.  
 

1.2  Thesis Problem Statement 
 

According to the literature review and research gap analysis, the following problems have not been 
solved in DCV and heating systems.   
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Problem 1: A realistic simulation-based fault injection framework for DCV and heating systems with a 
comprehensive fault model that comprehensively covers fault attributes such as type, persistence, injection 
time, duration, interarrival time, fault occurrence probability, and the number of repetitions in case of 
intermittent faults for sensors and actuators. A FI framework must activate both single and multiple faults. 
The FI blocks should be compatible with different target systems and support integration with different 
applications with low effort.  
 

Problem 2: A composable system model that enables multiple-fault injections in simulated DCV and 
heating systems to validate fault-tolerance requirements by activating realistic fault scenarios for different 
system configurations, e.g., multiple floors, rooms, and components. 
 

Problem 3: Experimental evaluation of simulated DCV and heating systems for realistic fault scenarios 
to investigate the system model's accuracy and correctness. Moreover, realistic experimental data of 
simulated DCV and heating systems serve for the validation of fault management techniques. The data 
output (i.e., time series) should be collected from data-collector simulation blocks and include 
comprehensive information about fault conditions under different fault management approaches, e.g., 
FDDs such as signal-based methods. 
 

Problem 4: A quick, accurate, and automated hybrid FDD technique for DCV and heating systems that 
combines the advantages of both knowledge-based and data-driven methods. 
 

1.3  Thesis Contribution 
 

This thesis contains four primary contributions: (1) reliability evaluation using fault injection in 
simulation, (2) experimental evaluation for realistic scenarios with fault injection, (3) integration of 
composable models with multiple-fault injection frameworks, and (4) diagnostic services to identify faults 
in HVAC systems. The contributions and their detailed sub-contributions are described as follows. 
 

1.3.1 Reliability Evaluation Using Fault Injection in Simulation  
 

In this thesis, realistic Automated Single-Fault Injection Framework (ASFIF) and Automated Multiple-
Fault Injection Framework (AMFIF) are developed to evaluate the reliability of DCV, and heating systems 
based on different fault scenarios. Associated thesis contributions are explained in 1.3.1.1 and 1.3.1.2 in 
detail.   
 

1.3.1.1 Single-Fault Injection Framework  

 
A realistic single fault injection framework has been developed with a comprehensive fault model 

containing the following contributions:  
 
Developing a realistic fault injection framework in DCV and heating system model: A novel 
simulation-based Fault Injection Framework (FIF) combining simulator command techniques and 



9 
 

 

simulation code modifications is developed for a realistic and automatic FI in which faults are triggered 
with an automated fault injection algorithm [11]. 
 
Comprehensive fault patterns for single-fault injection in simulated DCV and heating systems: A 
comprehensive coverage of various fault attributes, such as fault type, time, duration, persistence, 
interarrival time, and location, has been established in the FI framework [11]. 
 
Probability distributions for a more realistic fault injection framework: White noise and uncertainty 
using Gaussian probability distributions with uniform distributions upon healthy signals, as well as 
parameter variations upon faulty conditions, have been considered in the model [11]. 
 
Automatic scenario generation for reliability evaluation: Reproducibility is supported for a set of 
specific fault scenarios and random fault injection scenarios [11]. 

 

1.3.1.2 Multiple-Fault Injection Framework  

 
The Single fault injection framework has been extended to inject multiple faults as an automated fault 

injection framework with a multiple fault pattern containing the following contributions:  
 
Modeling patterns of multiple faults in DCV and heating systems based on data from field failure 
rates and maintenance records: This thesis maps insights from maintenance records to FI patterns with 
multiple faults. The fault occurrence probability is an important parameter in designing a realistic FI 
framework because this parameter is affected by environmental conditions, e.g., dust and dirt, seasons and 
respective temperatures, working conditions, application areas, and the locality of faults in various 
components of a system. Therefore, the fault model is created using statistical parameters such as fault 
occurrence probability. Fault occurrence probabilities enable the definition of scenarios and the 
performance of FI based on different environmental conditions and fault type rates [16]. 
 
Injecting multiple faults into a simulated DCV and heating system according to multiple-fault 
patterns: This thesis introduces an FI framework where faults are activated by a Fault Injection Vector 
(FIV) that precisely controls the attributes of multiple faults by multi-dimensional matrices, such as timing, 
locality, type, persistence, and values. The designed FI framework injects multiple faults into multiple zones 
and multiple components with corresponding fault attributes. An automatic FI algorithm initiates the fault 
attributes. Fault repetitions and multi-dimensional fault attributes are assigned in a randomized manner. 
The framework is generic, and the matrices can be customized and extended for different structures and 
buildings. The thesis shows how fault patterns for multiple faults can be established for a particular structure 
and environmental conditions based on maintenance records [16]. 

 

1.3.2 Experimental Evaluation for Realistic Scenarios with Fault Injection   
 

An experimental evaluation for the simulation-based automated single fault injection and automated 
multiple fault injection in DCV and heating systems have been carried out in this thesis, considering a 
comprehensive fault model where faults are activated with realistic fault patterns and combinations for 
different environmental conditions. Corresponding contributions are explained as follows: 
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Experimentally evaluating the effects of multiple faults on the behavior of the DCV and heating 
systems: The thesis provides comprehensive experimental results and insights into the system behavior 
upon single faults [11] and multiple faults using fault patterns [16]. Due to the use of real-world data and 
maintenance records in multiple fault injections, the results are realistic. This is a significant result of 
research on fault management techniques coping with multiple faults, for which no experimental data is 
available today [16]. 
 

1.3.3 Integration of Composable Models with Multiple-Fault Injection Framework 
 
Composable multiple-fault injection framework for DCV and heating systems to ensure scalability 
and universality: The integration of the multiple-fault injection framework with an automated fault 
injection algorithm [16] and composable modeling [21] provides more flexibility and scalability for the 
system modeling, configuration, and faulty scenario generation. The composable model is module-based 
and builds the system structure and configuration based on the user's demands [21]. The multiple-fault 
injection framework has been integrated with composable modules, and an automated fault injection 
algorithm has been integrated with a composable system model generator. This enables multiple-fault 
injections into multiple floors, rooms, and components and monitoring system behavior and fault impacts 
in critical infrastructures with numerous components. 
 

1.3.4  Diagnosis Services to Identify Faults in HVAC Systems 
 
In this thesis, the fuzzy theory and Bayesian Belief Network (FBBN) have cooperated to develop an 

accurate fault diagnosis technique in DCV and heating systems. The main contributions of FBBN have 

been described as follows. I have contributed to its main idea and implemented the algorithm [18, 
25].  
 
Combination of data-driven and knowledge-driven approaches to develop a hybrid FDD technique 
(FBBN): To develop the FDD technique, a data-driven classifier has been integrated with fuzzy logic and 
a Bayesian belief network to combine the advantages of both methods. The diagnosis technique has been 
developed in two modes: offline mode and online mode. The Bayesian network in this approach has been 
constructed by three main elements: node relations, node directions, and node probabilities. In offline mode, 
all relations, directions, and probabilities of different nodes have been computed for a specific fault 
condition and stored in a table called Relation-Direction-Probability (RDP) table. All RDP tables associated 
with different fault conditions are stored in a library. In online mode, a fault scenario is generated randomly. 
All signals' relations, directions, and probabilities are calculated, and the RDP table is generated. An 
automatic classifier compares the RDP table of the actual fault scenario with the RDP tables of the pre-
generated library of the offline mode to determine its correlations (similarities) with the library elements.  
Mutual Information (MI) theory is utilized to find the signals’ dependencies or correlations. Fuzzy logic 
theory and BBN have been combined for node creation and dependency analysis [18]. 
 
Extensibility of the fault library for additional fault attributes: The offline fault library has been 
constructed for stuck-at faults in different time intervals and locations. The fault type, time, and location 
can be accurately diagnosed for each diagnosis process. This method can be extended to additional faults, 
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such as multiple faults, more fault types, or other fault attributes. New RDPs for new fault cases should be 
generated and added to the offline library for this aim. This method uses fuzzy logic, so it provides more 
understandability. Compared to other knowledge-driven methods, it needs less effort from experts because 
experts only need to define the fuzzy sets and use the automatic classifier to diagnose the fault cases. The 
evaluation results show fault diagnosis accuracy when mapping the online fault case to offline fault library 
elements [18]. 
 
Determination of hidden and intrinsic dependencies for signal-based system models: This method has 
been developed by determining dependencies between different signals or system attributes, such as trends 
or system statuses in different defined subdomains, by fuzzy logic over time. System attributes are 
categorized into continuous attributes (e.g., sensor measurements) and discrete attributes (e.g., actuator 
statuses). Therefore, this method is applicable in system models with different types of attributes when 
experts cannot quickly determine the hidden dependencies. This introduced FDD technique finds the 
dependencies automatically among signals’ subdomains that change concurrently over time [18]. 
 
Scalability and universality of FBBN technique for complex infrastructures: HVAC systems often 
include numerous types of components, and their complexity increases when increasing their scales. System 
experts in knowledge-based strategies should analyze many signals, including the sensor's and actuators' 
measurements. This method automatically finds signals’ dependencies and faults in complex structures 
without experts’ inference [18]. 
 
Integration of the hybrid FDD technique with DCV and heating system models: The presented 
diagnostic FDD technique has been integrated with the DCV and heating system models to evaluate the 
FBBN method with a compatible fault model [18]. 
 
Independence of FBBN from prior historical data: Other existing BBN-based methods construct the 
network and calculate prior conditional probabilities with historical data. In the introduced FBBN method, 
fuzzy theory categorizes the signal types and their values to different subdomains as fuzzy sets to create the 
Bayesian network nodes. Node probabilities are computed by calculating the fuzzy sets’ conditional 
probabilities [18]. 
 

1.4 Thesis Structure 
 

This thesis is written in eight chapters based on the thesis objectives. The content of each chapter is 
detailed and summarized as follows.  

Chapter 1 is an introductory chapter to clarify the current problems in the field of HVAC systems in 
buildings that must be solved to achieve good system performance and satisfy quality constraints. Then, 
the contributions of the thesis and the provided solutions are addressed comprehensively. The proposed 
techniques are generic and are validated by applying them to a simulated DCV and heating system [32] for 
accuracy and consistency. Chapter 2 expresses required basic concepts to understand the developed 
techniques and the system model description. Chapter 3 discusses and specifies the requirements according 
to the thesis objectives. Then, the applied techniques for each requirement are described. Afterwards, the 
required state-of-the-art to develop the introduced techniques is investigated and summarized. This chapter 
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is concluded with a discussion of research gaps based on the literature review to clarify the thesis 
contributions. Chapter 4 explains the system model of the simulation environment, the physical model of a 
multi-zone building, a component-based system model equipped with a DCV and heating system, and other 
embedded subsystems. The component-based system model consists of several repository modules, 
including different room components, controller components, a fault injection component, and their 
interrelations. Chapter 4 also explains the development of an automated and generic single/multiple fault 
injection framework, including a realistic fault model and multiple fault patterns. The interrelations of the 
automated FI framework and component-based system model components are also illustrated in detail. 
Then, three algorithms are described using pseudo-code for the automated single fault injection, multiple 
fault injection, and component-based system model generation. Chapter 5 describes a novel and generic 
fault diagnostic algorithm, including two main parts: fuzzy Bayesian belief network construction and a 
classifier diagnostic algorithm based on the constructed FBBN.  

A high-level specification is detailed in Chapters 4 and 5. Chapter 6 expresses the implementation 
details of all proposed techniques, including the component-based system model, the complete fault 
injection component description, and the extendable multi-dimensional strategy to define fault attributes. 
An automatic multiple fault injection algorithm is described comprehensively. Indexing is used for mapping 
the system model components to the multi-dimensional matrixes. An example shows that the matrixes are 
extendable and mutable with different system structure layouts. Afterwards, the implementation details of 
the FBBN diagnostic algorithm are explained with an example. Chapter 7 illustrates scenario-based 
experimental evaluations for the single and multiple fault injection framework by providing different fault 
cases to investigate the system behavior and their impact on reliability. Then the evaluation results are 
discussed. The results of all implemented techniques are concluded in Chapter 8. Chapter 9 is the appendix 
that contains the references, the list of abbreviations, figures, tables, research references, and evaluation 
results.  
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2 Basic Concepts  
 

This chapter discusses the main required basic concepts. HVAC systems are designed and developed 
based on the cyber-physical concept that numerous susceptible components are embedded and cojoined to 
serve fault tolerance services and dependable functionality. Some basic concepts are described to 
understand better this thesis's contents, such as cyber-physical systems, embedded systems, real-time 
embedded systems, dependability analysis, fault injection, fault detection and diagnosis techniques, and 
probability theory.  
 

2.1 Cyber-Physical Systems and Human-Cyber-Physical Systems 
 

Cyber-physical systems describe the cojoining of physical processes, computations, communications, 
and integration of internet connectivity among the processes. Cybernetics, which was pioneered in 1948 to 
develop control systems, is the background of cyberspace and Cyber-Physical Systems (CPS). CPS is an 
intersection of computation with physical processes, and its behavior is defined by both cyber and physical 
parts of the system [33].  

Cyber-Physical System Environemts 

Social System

Smart Cities

Physical System

Other Cyber-Physical systems

Analysis for decision-
making 

 (e.g., Maintanence 
Measuremnts)

Operators Users

System Design
and 

Upgrading the System 
Configuration

Designers

Cyber System

Communication Network 

Sensors

Actuators

Internet of Things 
(IoT)

Smart Industrial 
Environments

AI-Based Learning and 
compuations

Internt of 
Services

Robotics

 
Figure 1. Human-cyber-physical system structure illustration including three primary sub-systems [34, 35]. 
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Figure 1 illustrates a CPS structure comprising its elements and internal and external interactions. CPS 
has gained attention for its great potential to design intelligent systems that integrate cyber technologies 
into the physical world and contain collaborative communication objects to control and monitor real-world 
physical processes. A CPS interacts with physical systems  (sensors, actuators, human-machine interfaces, 
working spaces such as IoT-based manufactures, devices, and smart cities), social systems (humans 
including designers, operators, and users) and other CPS environments via cyber systems (communication 
networks and internet connectivity   ) . Such systems are also known as Human-Cyber-Physical Systems 
(HCPS) [34, 35]. An HCPS is an intelligent system with significant applications in digital-networked 
manufacturing [34]. Social systems design, analyze the output, make decisions, learn based on human-
based cognitive characteristics, and interact with other systems, such as physical and cyber systems. Cypher 
systems control, analyze, compute, and make decisions based on expert knowledge. Expert knowledge in 
the cyber system can be fused and  ameliorated by Machine Learning (ML) and Artificial Intelligence (AI) 
through interaction with the physical world [34]. The physical system executes physical device tasks and 
generates data for the other systems, e.g., sensing and actuating. A CPS can interact with cloud platforms 
to reduce the amount of required local resources. Embedded systems are typically a part of CPS where 
control is based on continuous dynamic feedback. Therefore, error detection and time constraints must be 
satisfied for stability of control and recovery tasks. At the same time, CPSs solve the consistency in large-
scale, complex, and multi-dimensional environments [36].  CPSs have a wide range of applications, such 
as Autonomous Automobile Systems (AAS), smart greenhouses, water distribution, healthcare systems, 
and smart buildings.  

 

2.2 Embedded Systems 
 

An embedded system is a computer system that includes an embedded device programmed and 
optimized to perform a specific application. This embedded device is usually hidden inside a device and 
interacts with the environment, e.g., sensors rather than users, to provide the services [33].  
 

2.3 Real-Time Systems 
 

A real-time computer system is a computer system facilitated by real-time computing. Real-time 
computing is the ability of the system to react at constrained points in time, known as deadlines. Embedded 
devices implement real-time computing. Real-time systems control the actuators and get information from 
sensors simultaneously. The system should react to the system events and inputs and provide outputs 
considering the timing requirements. Timing constraints include the finish time or both the start and finish 
time [37]. The control system structure of real-time systems and their communication can be designed in 
different ways using periodic, aperiodic, or hybrid timing models [37]. 
 

2.4 Real-Time Embedded Systems 
 

A combination of embedded systems and real-time computing results in real-time embedded systems. 
Not all embedded systems include real-time features. The embedded systems included in the real-time 
operations are real-time embedded systems. Embedded real-time systems are extensively used in many 
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applications, including automotive systems, industrial automation, aerospace, and home security systems 
[37–39]. 
 

2.5 Finite-State Machines 
 
State Machines (SMs) are an appropriate and common solution to model the behavior of embedded 

real-time systems. When the system states are finite, we denote the SM as a Finite State Machine (FSM). 
Compositions of FSMs include Concurrent State Machines (CSMs) and Hierarchical State Machines 
(HSMs). Figure 2 illustrates the notation of the state machine for the concurrent and hierarchical 
composition, in which patterns, inputs, outputs, and variables are combined to build a complex system [40]. 
The states of the system and its transitions can be represented in a diagram. In a system model with discrete 
dynamics, each reaction maps valuations of the inputs to valuations of the outputs. The number of states in 
a finite sate machine is finite [40]. Below is the Equation 1 shows the set of states for the FSM diagram 
with i states.  
 

0 1 = {  ,  } ,  ...,  iStates State State State  Equation 1 

State1 is the initial state at the beginning of the sequence of states, and the FSM can change from 
one state to another in response to the inputs. The change from one state to another one is called a transition 
[40]. 
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Figure 2. Concurrent and hierarchical composition notations of state machines [40] 
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2.6 Dependability Analysis   
 
Real-time computing systems are characterized by functionality, performance, cost, and dependability 

[41]. Dependability analysis can be applied to software and hardware and ensures that the system operates 
appropriately [42]. In literature, there are various definitions for dependability [42–44]. Parhami [44] 
provided different definitions for dependability in 1988. For example, dependability is the probability of 
the system’s correct services or justifiable confidence that a computer system performs specified actions or 
delivers expected results in a trustworthy and timely manner [44]. Trivendi et al. [43] have defined the 
dependability of a system as justifiable confidence for a specified action that the results are correct and 
prompt and used for the fault tolerance measurements. Sometimes the term dependability is used 
interchangeably with the term reliability [42, 44, 45]. Dependability integrates attributes such as 
availability, reliability, safety, confidentiality, integrity, maintainability, security [41], correctness, and 
robustness [43]. 
 

2.7 HVAC systems 
 

HVAC systems are large-scale distributed embedded systems with different components such as 
sensors, actuators, and controllers interconnected with different wire-bound and wireless communication 
networks. In addition, HVAC refers to systems that perform designed processes to regulate the interior air 
conditions to maintain desirable and acceptable temperature, humidity, ventilation, and the safety of 
occupants for diverse application domains such as commercial buildings, industrial environments, and 
office buildings [46–49]. Furthermore, HVAC systems in buildings aim to maintain the thermal conditions 
in a comfort zone and qualify the air conditions. Various control strategies should be considered based on 
geographical locations and conditions to ensure interior comfort levels [50]. Indoor Air Quality (IAQ) and 
proper ventilation are challenging concerns due to energy conservation issues [51]. Therefore, DCV, 
besides heating systems, is a type of HVAC system with a control strategy that modifies the amount of 
fresh air from the environment delivered to a room by automatically adjusting damper actuators and ensures 
thermal comfort for the occupants. Furthermore, in critical infrastructures such as airports and hospitals, 
HVAC systems serve an essential role in emergencies. For example, in case of a fire, HVAC systems need 
to remove toxic gases while slowing down the expansion of the fire. Such an emergency reaction is 
associated with stringent requirements for real-time response, consistency, and fault tolerance: 
 
Real-time: Emergency situations and state changes of the emergency must be detected within bounded 
delays. After that, suitable control strategies must be implemented that depend on real-time requirements 
for control stability.   
 
Fault-tolerance: Numerous faults can occur in emergency scenarios, such as communication faults, faulty 
sensors, and actuators (e.g., heat-induced damage, and obstructions). Besides, design faults that are not 
observable may be triggered under normal fault-free conditions. Therefore, fault tolerance is required for 
operational and design hardware faults. 
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Consistency: The distributed control of the actuators must be coordinated to establish the intended behavior 
(e.g., channels for the airflow, and fire mitigation). Therefore, system-wide consistency of state information 
and control decisions must be ensured despite adverse conditions (e.g., faults, stuck statuses of actuators). 
 
 

2.8 Fault, Failure, and Failure Propagation 
 
Research on dependability resulted in fault-tolerant computing in the 1960s [44]. In fault-tolerant 

systems, faults from unknown origins and events should be tolerated to achieve more system reliability if 
a defective hardware or software component results in a “fault”. The provided “service” may be 
contaminated by a defective component, leading to an “error”. An erroneous system state causes sub-
system “malfunction” and system performance degradation. Then, it causes a system-level “failure” or a 
failed computer system [44]. Faults propagate from the component level into the system level or the other 
systems. Faulty components are commonly denoted as system fault containment regions (FCRs). Figure 3 
shows that a root fault in a component (i.e., component-level) leads to the failure of that component, causing 
a fault for the other components, and then the fault of the entire system has the potential for a system-level 
failure [11]. A fault-tolerant system may contain “symptoms”. A Symptom is an external manifestation of 
system failures, e.g., the management system’s alarm, log file, or notification [52].  
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Figure 3. Fault and failure propagation [11].  

 

2.9 Fault Injection, Fault Detection, and Diagnosis  
 

Fault injection in fault tolerant systems is defined as the dependability validation technique where the 
system’s behaviors and observations in the presence of faults are induced by the introduction of faults [53, 
54]. Different objectives of the FI can be mentioned, such as understanding the fault impacts and workloads, 
assessing the efficiency of fault-tolerant systems, forecasting faulty behavior, estimating failure coverage, 
identifying faulty links, and studying the system behavior under different fault conditions [53].  

FDD can be integrated with simulated system models as a monitoring process to detect and predict the 
presence of defects based on system observations to determine the causes of faulty operations. FDD 
techniques are able to diagnose the fault types, locations, and other specifications. Furthermore, FDD 
techniques provide corrective instructions for each diagnosed fault case [28, 55]. 
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2.10 Correlation and Mutual Information in Probability Theory  
 
In probability theory [56, 57], correlation is a statistical relation or association between two random 

variables. Correlation or dependency is applicable to find the similarities of signals [58]. Mutual 
information (MI) is a concept rooted in information and probability theory introduced by Shannon in 1948 
[59–61]. Typically, MI of two random variables is a statistical measure of the mutual dependence 
(correlation) of two random variables [62]. MI measures information about one random variable by 
observing the other random variables [18, 25, 63], although in reality the number of sources that transmit 
the information is not specified. In this situation, the system should consider a multivariate or multi-
dimensional model to calculate a contingency table of more than two variables [64]. Multivariate 
information is suitable for error analysis [64]. For example, Srinivasa [64] and Batina et al. [65] described 
the MI for the multivariate sources and multi-dimensional variables. In a general form, Multivariate Mutual 
Information (MMI) can be defined as [64]: 

 

1 2 1 2 1 1 2 1( ; ;...; ) ( ; ;...; ) ( ; ;...; | )N N N N N N NI X X X I X X X I X X X X    
Equation 2 

 
1 1

1 1( ) ( ) ( | )N N N N
N N NI X I X I X X 

   , where 1 2( , ,..., )K
kX X X X . 

Equation 3 

 
1

1 2 1 2 1 2( ; ;...; ) (( ( ) ( ) ... ( )) ...( 1) ( ; ;...; )N
N n n nI X X X H X H X H X H X X X         

Equation 4 
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   , where p(x) is the conditional probability distribution.                         Equation 5 

For instance, for three random inputs of  X, Y, and V, the MI can be calculated as [64] :  
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 Where ( ; ) ( ) ( ) ( , )I X Y H X H Y H X Y   .                                                                                         Equation 7  

MI has several applications such as FDD, classification, test permutation [66], feature selection in 
engineering and machine learning [67–71], graph and Bayesian network (BN) optimization [72], test 
selection [73], medical applications [62] and image processing [74]. MI can be calculated upon a pair of 
random variables, signals, or processes. For Example, Intan et al. [62] have used MI upon fuzzy sets to 
track medical records by combining fuzzy logic and BN methods.  

 

2.11 Bayesian Belief Network  
 

As a probabilistic model, the Bayesian Network (BN) models nonlinear dynamics in a discrete manner 
and measures the probability of faults [18, 75]. A Bayesian network expresses a system model graphically 
for reasoning about uncertainties and constructing nodes, arcs, and their conditional dependencies 
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originating from Bayes theory [76, 77]. Each node represents a random variable of the system. Each arc 
represents a directed connection between two nodes and the graph should be acyclic. The BN model 
expresses probabilistic belief about variables and it can be updated automatically when new information 
(evidence) is available [77]. The BN model introduces system states (called belief states). Each belief state  
is the best possible belief given all available evidence [75]. It means that the strength of the relationship 
between nodes is quantified by conditional probability distributions [78]. The network structure is based on 
the qualitative relationships between variables. Nodes are connected once one node affects the other ones. 
The arc between nodes indicates the direction of this effect.  

There are some structural terminologies for BN models. For example, a node can be a child, parent, 
ancestor, or descendant. A node is a parent if there is an arc from the former node to the latter node. A node 
is an ancestor when it is in a directed chain of nodes with the earlier node, and the later node is a descendant. 
The Markov blanket of a node is constructed of related nodes, including parents, children, and children’s 
parents. The first nodes in a chain are root nodes that represent original causes. The last nodes are leaves 
that represent the final effects, and the nodes in between are intermediate nodes. When there is a new 
observation in the system from system variables, a new conditional probability should be calculated. The 
conditioning process is known as probability propagation, inference, or reasoning. There are different types 
of reasoning: (1) diagnostic reasoning is the reasoning from symptoms to cause, (2) predictive reasoning is 
the reasoning from new information about causes to new beliefs about effects, (3) intercausal reasoning is 
the reasoning about the mutual causes of a common effect, and (4) combined reasoning is a combination of 
the other types [76].  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



20 
 

 

3 Related Works  
  
The related work chapter investigates the state of the art and identifies the primary research gaps, 

concentrating on the thesis requirements and utilized techniques. First, all thesis requirements and their 
applied techniques have been listed and introduced in Section 3.1. Then, applied techniques have been 
detailed and summarized as the state of the art in top-down order. A simulation-based system model and 
fault injection techniques to change the system behavior are necessary to evaluate the reliability at an early 
development phase of the system. For this purpose, their state-of-the-art is studied. A complete fault model 
should be defined to develop the fault injection framework. Thus, fault modeling techniques and fault 
classifications in HVAC systems are studied. The state-of-the-art for single and multiple-fault injection 
techniques, experimental evaluation techniques, and FDD techniques in HVAC systems are also studied. 
Finally, all research gaps are concluded in a separate subsection to clarify thesis contributions. 

 

3.1 List of Requirements and Applied Techniques 
 

The requirements have been listed based on the thesis objectives. Techniques have been developed to 
achieve thesis objectives summarized in Table 1 and discussed in this section in detail. 

 
Table 1. An overview of the thesis requirements and developed techniques. 

                                                        
Techniques 

Requirements 
Accurate system 
modeling with 
low effort 

Reliability 
Evaluation  

Diagnosis with 
high accuracy 

Universality 
and scalability 

Single Fault Injection Framework (SFIF)  ˟ ˟ ˟ ˟ 

Multiple Fault Injection Framework (MFIF)  ˟ ˟ No ˟ 
Component-Based System Model enabled for 
Multiple Fault Injection  

˟ ˟ No ˟ 

Hybrid Fault Detection and Diagnosis Using 
Fuzzy logic and Bayesian Belief Network 
(FBBN)  

˟ ˟ ˟ ˟ 

 
Requirement 1: Accurate system modeling with low effort for FDD techniques  
 
Techniques: automation is one crucial factor for modeling the control strategies in HVAC systems in 
modern buildings to reduce efforts for experts and minimize required knowledge. In addition, simulation is 
a convenient way to evaluate various system models [12]. As a result, a generic and simulation-based fault 
injection framework  in this thesis triggers different types of faults (single and multiple) automatically in a 
Matlab/Simulink environment [11, 16]. This thesis also provides automatic scenario generation for 
experimental evaluation and data generation for FDD techniques in DCV and heating systems. Different 
random or customized fault scenarios are reproduced and constructed automatically for automated fault 
injection framework [11, 16]. This thesis also has integrated the automated multiple fault injection 
framework [16] and composable system models [21] to facilitate the system model configuration for 
designers and users based on their requirements. Fault injection based on the system configuration is 
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automated. Finally, the introduced FDD technique, FBBN, diagnoses the faults using an automatic classifier 
algorithm with fewer experts’ efforts by combining the Bayesian belief network and Fuzzy logic [18]. 
 
Requirement 2: Simulation-based reliability evaluation at early development phases and fault 
injection without damage to physical systems 
 
Techniques: dependability analysis at an early development phase significantly improves cost, time, and 
performance and prevents damage to the system-under-test and real-world systems. A composable model 
enables the injection of multiple faults using different system configurations , and the reliability of the 
system model in the FIF can be evaluated for different fault scenarios [11, 16]. A comprehensive fault 
model (fault profile) with a description of fault attributes is required to cover all faults specifications and 
scenarios [11]. In the case of multiple fault injection, the fault pattern should match the system 
characteristics with the fault occurrence probabilities. Therefore, history data of fault occurrence 
probabilities and calculations for different fault events in DCV and heating systems have been studied [16].  
 
Requirement 3: Diagnosis with high accuracy  
 
Techniques: a hybrid FDD technique has been introduced, named the FBBN technique. To develop the 
FBBN, two different techniques, including fuzzy logic and Bayesian belief network, have been combined 
to benefit the advantages of both FDDs [18].Fuzzy logic is a knowledge-driven method that facilitates the 
model description using expert knowledge. BBN is a statistical method that constructs the network with 
arcs and nodes based on probability theory and its associated methods, such as mutual information, 
conditional probability distributions, and joint probability distributions. The state-of-art for different 
diagnosis techniques, their general classifications, and other related topics have been investigated 
comprehensively. The FBBN diagnosis method has been tested and experimented with in DCV and heating 
systems. FBBN accurately diagnoses the time and location of single stuck-at faults [18]. 
 
Requirement 4: Universality and scalability 
 
Techniques: the developed methods in this thesis, such as FBBN [18] and AMFIF [11, 16], are generic 
and scalable. They are capable of being integrated into other simulation-based target systems with low 
effort. For example, the AMFIF has been integrated with a component-based HVAC system model by 
adding multiple fault injector components to the system model blocks. The system model reconstructs the 
wanted configuration, and the AMFIF injects the faults based on the indexing procedure. Furthermore, 
FBBN is integrated with models of an example DCV and heating system to evaluate the method's accuracy 
and scalability [18]. In FBBN, the correlation of the system attributes (continuous and discrete signals) is 
determined automatically. When increasing the number of attributes, FBBN is adapted easily by defining 
the corresponding fuzzy sets [18].  

3.2 State-of-the-art in Simulation Modeling Techniques for HVAC Systems 
 

The building sector consumes around 40% of total energy and produces 36% of Greenhouse Gas 
(GHG) emissions [1, 79]. Therefore, smart buildings are equipped with building automation systems and 
management control systems that enhance the optimization of the HVAC systems [80]. Smart automation 
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systems allow management of indoor environmental efficiency, e.g., heating, ventilation, air conditioning, 
lighting, heating cost, and energy consumption. Model Predictive Control (MPC) and model-based 
optimization are practical solutions where mathematical models are utilized for control processes [81]. For 
dependability evaluation and system performance analysis during the design phase, a model is required to 
simulate different control strategies, e.g., monitoring the system energy consumption and indoor air quality. 
There are two types of control strategies for HVAC systems: local control functions and supervisory control 
functions [1, 80]. Local control functions include basic controls and automation. They can be categorized 
into sequencing control and process control strategies. Examples of control variables are damper position 
or valve positions, their statuses changing in a sequence. Supervisory functions are also known as optimal 
control. They provide so-called total system monitoring and overall control of the local sub-systems, 
including setpoints and schedules [1, 80]. Supervisory control optimizes the operation of HVAC systems 
by providing a system approach. It considers system-level or subsystem-level characteristics and 
interactions in the overall system. Supervisory control approach  requires system models, component 
models, and optimization techniques. Figure 4  illustrates the control strategies in HVAC systems in detail.  

 

Local Control Strategeis Supervisory Control Strategeis

Sequencing Control 
Method

Process Control
Method

Model-Based 
Methods

Hybrid Method
Performance Map-

Based Method
Model-Free Method

Data-Driven 
(Black Box) 

Method

Physic-Based 
(White Box) 

Method 

Grey Box 
Method 

Control Strategeis in HVAC Systems

 
Figure 4. Control strategies in HVAC systems  [80, 82, 83]. 

HVAC systems typically have a complex internal structure and are developed in different 
application domains, such as residential buildings, commercial buildings, office buildings, and storage of 
goods [84]. For an accurate analysis of HVAC systems, all individual components should be modeled based 
on the underlying physical phenomena. HVAC models have mainly been classified as data-driven (black-
box, inverse, or empirical), physics-based (white-box, forward, or mathematical), and grey-box models 
(hybrid) [82, 83].  

Data-driven approaches are inductive models in which the input and output data relationships are 
defined by experimental techniques and Artificial Neural Networks (ANN) using data measured and 
gathered under specified tests. There are various techniques in data-driven modeling, e.g., data mining 
algorithms, fuzzy logic models, statistical and stochastic models, state-space models, and case-based 
reasoning [82]. The data-driven approach results in linear/nonlinear, static/dynamic, explicit/implicit, 
discrete, and stochastic models [82]. 
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The physics-based approach uses a deductive model known as the analytical first principal model. 
Their modeling is based on the physical principles and details of the processes. In these models, usually, 
time-domain differential equations are converted to frequency functions [85]. The main physics-based 
applications in HVAC systems are the zone models, cooling and heating models, duct, damper, valve, fan, 
pump, and storage tank models. The physics-based approach results in linear/nonlinear, static/dynamic, 
explicit/implicit,  and continuous models [82].  

Grey-box is a hybrid model-based approach and benefits both data-driven and physic-based 
approaches qualities. The basis of this approach is the physics-based approach for the system structure, and 
the parameters of this model are calculated by estimation algorithms using the details of the processes [82].  

Gershenfeld et al. [86] have classified the mathematical models, including explicit/implicit, 
linear/non-linear, static/dynamic, deterministic/probabilistic, and discrete/continuous categories. In linear 
models, system observations are linear. In non-linear models, system observations are represented by non-
linear equations and are the standard output of the white-box and grey-box methods. Static models are time-
independent, and dynamic models are defined by differential equations and are time-dependent. Inputs of 
explicit models are known, and a finite set of computations must compute the outputs. In implicit models, 
inputs and outputs are known, but iterative methods determine the input and output relations. Discrete 
models have a discrete sample space, and continuous models have a continuous sample space (e.g., values 
of sensor measurements). In deterministic models, system states are determined by previous states (i.e., 
previous values of system variables). However, in probabilistic models, system states are defined by 
probability distributions.  

Each model has its specific purpose. For example, dynamic models are commonly used for 
modeling the slow moving dynamics of temperature and humidity, and static models for fast-moving 
dynamics (e.g., CO2 concentration) [82]. In zone modeling of the physics-based approach, the zone 
temperature maintains steady by balancing the room's heat and energy. Heat transfer usually occurs in the 
system through the supply of air conditioning, walls and windows, and internal or external gains, e.g., 
humans or solar energy.  Heat transfer models commonly use the heat conduction equation model, heat 
balance method, and weighting factors [25, 82, 87–90]. In damper modeling of the physics-based approach,  
the airflow rate of the damper depends on the control signals that control the damper status [25, 82, 91, 92].  

Many model-based techniques in HVAC systems have been discussed in the literature. Ciprian et 
al. [81] have simulated a  virtual prototype for energy management in HVAC systems using 
Matlab/Simulink. A system model can be modeled and evaluated with simulation tools [11, 16, 25]. 
Simulation is used to imitate, describe, and analyze a system's real-world behaviors and operations over 
time. It helps to design a real-world system and its control and automation applications [93, 94]. Its 
environmental  parameters and conditions are set, and simulation results can be compared  with real-world 
scenarios. There are many tools and environments for simulation-based techniques. MATLAB/Simulink as 
a user-friendly tool, and SimScape as a powerful tool to model the physical models, components, and 
connections in the Simulink environment are practical tools for modeling HVAC systems [95].  

Multi-zone buildings have been modeled based on heat, heat flow, and moisture. Their mathematical 
equations are described using white-box modeling in [63, 65–67]. Mathematical models are very popular 
for HVAC systems in representing processing signals [83]. Signals are constructed according to the physical 
principles in sub-systems, components, and links between inputs and outputs.  Behravan et al. [32] modeled 
a grey-box and scalable multi-zone office building simulated in Matlab/Simulink. The model contains 
thermal dependencies among rooms, the outside environment, and indoor spaces. Heat transfer in the 
building has been modeled using equations. The number of occupants and their changing patterns are 
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modeled by a counting sensor. Their model also includes the demand-controlled ventilation sub-system in 
which the CO2 concentration signal was based on the calculation of CO2 concentration according to 
equations [25, 32]. Karmacharya et al. [96] have modeled a simplified building-HVAC system using 
MATLAB/Simulink. Their model predicts temperature variation, energy consumption, and comfort levels. 
Different physical properties should be used for the estimations, such as environmental conditions, and 
heating system. There are different approaches for modeling the heat flow, such as lumped capacitance 
models, distributed parameters, finite element or finite difference method, and impulse response factor 
method [25, 32, 83, 96]. Gouda et al. [97] have modeled the HVAC system's robustness and control 
feedback. Their room model is based on lumped capacitance modeling. Kassas et al. [98] have implemented 
the HVAC system for residential buildings using Matlab/Simulink to predict energy consumption. Their 
model predicts the temperature variation and energy required for occupants’ comfort. Asad et al. [99] have 
developed an adaptive model of HVAC systems for reliability analysis. For energy efficiency and decision-
making, they have provided a Model-Based Real-Time Optimization (MRTO) in which the set points for 
local-loop operation should be optimized regularly. Usually, real-time optimization techniques aim for 
optimal operation settings to improve the system's Quality of Service (QoS) [99]. 
  

The Department of Defense (DoD) has addressed the application-oriented simulation for easier 
construction and analysis of the systems using composable models [100]. In composability, the system 
modules are reusable and can be composed at different levels of perspectives and scales. Modules can be 
selected, combined, or recombined based on user requirements [101].  In composability, a library of system 
blocks (i.e., modules) is required that can be extended for desired levels. Modules should be interconnected 
and achieve accurate interoperability. Advantages of composable models are higher quality, 
comprehensiveness, consistency, validity, time-saving, lower complexity, and lower cost [21, 100, 101]. 
Figure 5 represents the composability concept in which a repository of different modules with different 
specifications is required to build the simulation structures and their interconnections.  
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Figure 5. Example of a composable model and simulations including a repository with N modules and two different simulations of 

A and B with different component combinations  [21, 101]. 

Behravan et al. [21] have presented a composable model for DCV and heating systems to decrease the 
complexity of the system construction in the case of reusable components and interrelations based on user 
demands. In their model, different system configurations at different levels can be constructed. The system 
model is constructed based on the number of rooms, their indexes, and the number of floors. Siegele et al. 
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[102] have presented an object-oriented system model using Matlab programming. This model has a library 
of Simulink blocks and a basic HVAC library. The structure of the model and the variables should be 
defined beforehand. Then the thermal zones and building models can be created according to the defined 
variables. However, this model supports only single faults with a limited fault model.  

In this thesis, a component-based system model has been developed to support multiple fault injection 
in multiple floors, rooms, and components. This model has been implemented in Matlab /Simulink and 
validated for different fault scenarios and system model configurations. The system model is constructed 
based on the system components integration e.g., room, corridor and fault injection components according 
to user demands for different floors and rooms. In this model, each fault scenario comprises other sub-
scenarios. The impact of faults for each sub-scenario has been analyzed and illustrated precisely for the 
entire scenario, such as CO2 concentration changes, temperature changes, heating cost, damper, and heater 
actuators statuses.  
 

3.3 State-of-the-Art of Fault Modeling in HVAC Systems 
 

A fault model is an engineering model that represents all possible ways that a system or device can be 
faulty [103]. Using a fault model, the consequences of a specific fault can be predicted [104]. Fault model 
attributes and manifestations should be extracted based on the application requirements and the system’s 
environment [105]. Faults are classified based on the six main criteria of the phases of creation 
(development, and operational), system boundaries (internal, and external), domain (hardware, and 
software), phenomenological causes (natural, and human-made), intents (accidental, and deliberate), and 
persistence (permanent, transient, and intermittent) [41]. A fault model can consist of one or all these criteria 
based on the system requirements. Fault model accuracy and quality increase the accuracy of control 
strategies [106]. Complex infrastructures such as distributed HVAC systems are integrated with numerous 
components. Due to their complexity, many kinds of faults and errors emerge. Therefore, a comprehensive 
fault model is a required assumption to investigate component faults and their consequences on the system's 
behavior. The fault model should fit to the system model and introduce each fault's attributes, e.g., fault 
location and persistence [11, 16]. Faults degrade system performance, therefore modeling of fault sources 
and fault propagation among components allows scalable compositional safety analysis in hazard 
identification, and fault impact and probabilistic fault model analysis [107, 108].  

Many authors have studied fault modeling in HVAC systems and other related applications. For 
example, in the area of digital circuits Polian et al. [109] have presented several logical fault models with 
Missing Gate Faults (MGF), e.g., single, multiple, partial, and repeated MGFs. They have considered 
different types of faults. Multiple MGFs occur in one or more consecutive gates, and repeated MGFs occur 
in several cycles for the stuck-at-fault type. To investigate their fault models, they have used an Automatic 
Test Pattern Generation (ATPG) method in which several test vectors have been used for fault detection. 
Joshi et al. [110] have discussed behavioral fault modeling in aircraft wheel brake systems. Their fault 
model explanation includes internal and external fault activation. Internal faults are limited to the 
component boundaries. Internal faults are dormant and independent from other component faults. External 
faults originate from out-of-component boundaries due to the propagation of other component faults. Fault 
propagation increases the system's complexity. They have also considered fault persistence (transient and 
permanent) and the duration for their defined fault model and rules for fault propagation. However, they 
have only modeled the stuck-at, burst, and leak faults in the valve and pipe. Gosh et al. [106] have also 
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presented behavioral fault modeling for testing in digital designs. They established several test vectors, 
applied them to the digital structures, and compared output responses to the nominal values. They have 
defined a fault model as a required assumption for test generation to model system failures. However, they 
have only modeled stuck-at faults for pin faults. Da silva et al. [111] used knowledge-based fault modeling 
for sensors in aerospace. They have used a combination of object-oriented modeling and rules for sensor 
faults, including bias, drift, and loss of signal faults. However, they have not considered the duration, 
interarrival time, and persistence in their presented fault model. Najeh et al. [112] defined a new fault model 
for symptom generation in the building. They have defined a symptom as a measurable change in normal 
system behaviors. They have considered a rule-based behavioral test for symptom generation. There are 
several factors for applying the test, such as door, damper, and weather conditions. They have used the tests 
for more reliable fault diagnosis, e.g., without occupancy verification, the test may be erroneous or 
unreliable.  

Fault modeling and fault coverage in other FI techniques and FI in DCV and heating systems are 
significantly studied. For example, Maleki et al. [113] have simulated FI for an Advanced Driver Assistance 
System (ADAS). They have used a fault model for their FI method, considering different types of faults, 
such as stuck-at-value and single/double bit-flip, and fault persistence, such as transient and semi-
permanent faults.  Song et al. [114] have developed a simulation-based interface for fault injection, 
including the list of components, potential failures, and different faults such as open-pole, open/short 
circuits, and drift in the verification procedure of circuits of a radar. However, they have not considered 
persistence, duration, and other fault types. Gil-Tomás et al. [115] have modeled intermittent faults for 
dependability evaluation for a microcomputer system using the Markov model. Faults are also injected into 
one or multiple locations. However, fault types are limited to stuck-at, burst, and delay faults. Behravan et 
al. [18, 21, 32, 116–118] have introduced a fault model for FI in DCV and heating systems comprising 
different fault types such as gain fault, off-set fault, stuck-at value, stuck-at open/close, stuck-at off/on and 
single-location and injection time. However, their fault model is limited to permanent faults.  

In this thesis, Kiamanesh [11, 16] has introduced a fault model for DCV and heating systems with 
different fault attributes such as fault type, including gain fault, offset fault, stuck-at value, stuck-at 
open/close, stuck-at off/on, out-of-bound fault, and data-loss fault. In addition, fault persistence including 
transient, intermittent, and permanent faults, single/multiple locations, fault injection time, fault duration, 
fault interarrival time, and fault occurrence probability are supported.   

 

3.3.1 State-of-the-art of Fault Classifications in HVAC Systems   
 

Inaccurate measurements due to hardware faults are inevitable in HVAC systems and lead to more 
energy consumption and low air quality. Bondavalli et al. [119] classified physical faults into two categories 
(1) permanent and (2) temporary faults. Permanent faults lead to abnormal behavior and wrong signals 
which continue constantly. The respective component should be removed or repaired to handle a permanent 
fault. Temporary physical faults are classified into internal (usually intermittent) and external (transient). 
An intermittent fault occurs regularly and continuously at the exact location, while a transient fault arises 
at random locations [119]. Many reasons exist for intermittent faults in different systems. Wakil et al. [120] 
discussed various intermittent fault causes in embedded electronic modules. They explained that most of 
them are caused by interconnections and marginal design, e.g., corroded wires, cracked solder joints, 
corroded or loose connectors, and broken wires [120, 121]. Layali et al. [122] mentioned that the primary 
cause of intermittent faults is device wear out or the tendency of solid-state to degrade with time, stress, 
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and time-dependent dielectric breakdown (TDDB), supposing the stress conditions persist in the long term. 
Such faults may eventually lead to permanent defects. Different transient and intermittent faults include 
short transients, long transients, and short intermittent faults. Intermittent faults may disappear or become 
permanent [123]. 

In this thesis, HVAC hardware faults are classified by their duration into permanent, transient, 
short, and long intermittent faults [11, 16]. Permanent faults are caused by a defect in a component that 
requires the repair or replacement of the component. Examples of permanent faults in HVAC systems are 
a damper stuck-at a closed position or a depleted battery in a sensor. Transient faults occur far more often 
than permanent faults, and they are harder to detect [53]. They are usually caused by environmental 
conditions such as powerline fluctuations, high-energy particles, and electromagnetic interference. 
Intermittent faults are temporary malfunctions of a device that are repetitive and occur mostly at irregular 
time intervals [124]. Intermittent faults have different root causes, such as unstable hardware, varying 
hardware states, design faults, and wear-out. Intermittent faults can be repaired by replacement or redesign. 
Most systems incorporate many embedded electronic modules and components to increase the performance 
of the monitored system. For such complex systems, especially in the vehicle industry-trains, ships and 
aircraft-intermittent faults become challenging because they increase due to thermal stress, vibration, 
moisture, and other stresses. In these systems, there are many reasons for intermittent faults, such as loose 
or corroded wires, cracked solder joints, corroded connectors, loose crimp connections, hairline cracks in a 
printed circuit, broken wires, and unsoldered joints. For example, Wakil et al. discussed intermittent faults 
and electrical continuity in electrical interconnections [120]. They mentioned some common causes of 
intermittent faults that can be classified into manufacturing imperfection, connection degradation, 
interface/coupling, poor design, and intermittent connectivity [120, 125]. Examples of intermittent faults in 
HVAC systems are sensors that are not well-calibrated, software faults, and loose power or communication 
line contacts. In our proposed FI framework, one intermittent fault with two or three repetitions can be 
modeled in the case of short intermittent faults. The number of repetitions for long intermittent faults can 
be defined flexibly according to the system requirements.  

Faults in HVAC systems can also be distinguished based on the design, developmental and 
operational phases. The phase of a fault denotes when a fault occurs, e.g., during the design, development, 
or operational time of a system’s life cycle. A developmental fault occurs before the equipment installation. 
Developmental faults can be physical faults in production (e.g., inaccurate mask alignment) or design faults 
(e.g., incorrect positioning of sensors, improper scheduling of operations). An operational fault occurs after 
the equipment installation phase. An example is wear-out of electronic components. Torabi et al. [126] 
reviewed common human-made errors in different stages of creation in HVAC systems with multiple zones: 
preconstruction, construction, and operation phases. Frank et al. [127] discussed common faults and their 
relevance in the design and operation stages for HVAC systems, rooftop units (RTU), lighting, and 
refrigeration faults. Faults may propagate through components, phases, and other systems. For example, 
developmental faults in a component (i.e., FCR) can result in multiple failures in that component and may 
cause faults in other components. Faults may also propagate through different systems. It means that a root 
fault in a component leads to the failure of that component which is a fault for other components or the 
entire system, which can lead to a system failure [11, 16]. Table 2  describes how a component fault leads 
to a system failure by illustrating examples of fault propagations in HVAC systems. Faults in FCRs (system 
components), such as inappropriate programming and improper setpoints, lead to component faults and 
potentially propagate to system-level failures. Each row of Table 2 represents the fault propagation example 
in HVAC systems from the component-level faults to system-level failures and the failures’ impacts, such 
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as energy waste, poor indoor thermal conditions, and occupant discomfort [16]. Fault detection and 
diagnosis in air-handling systems are complex because of fault propagation across components. Yan et al. 
[128] captured fault propagation impacts in an efficient manner using dynamic hidden Markov models to 
identify failure modes since they contain state transition matrices depending on other components and do 
not generate joint states.  
 
Table 2. Fault propagation examples in HVAC systems [11, 16, 47, 129–131] 

Nr. Component Faults Phases 
Component Failure 
(System Fault) 

System Failure Impacts 

1 

Wrong scheduling of the 
processing unit, e.g., an 
incorrect sequence of 
operations 

Developmental 
fault: design 
fault 

Stuck-at fault 
Gain fault 
Offset fault 
Out-of-bounds fault 

Delay 
High/low/wrong sensor 
measurements 

Equipment life 
Energy 
consumption 
Thermal comfort 
Indoor air quality 

2 Programming mistakes 
Developmental 
fault: design 
fault 

Stuck-at fault 
Gain fault 
Offset fault  
Out-of-bounds fault 

Delay 
High/low/wrong sensor 
measurements 

Equipment life 
Energy 
consumption 
Thermal comfort 
Indoor air quality 

3 Wrong setpoints too high/low  
Developmental 
fault: design 
fault 

Stuck-at fault 
Gain fault 
Offset fault 
Out-of-bounds fault 

High/low/wrong temperature. 
High/low/wrong CO2 
concentration  

Equipment life. 
Occupant thermal 
comfort. 
Energy 
consumption 

4 

Oversized equipment at the 
design phase, e.g., incorrect 
perimeter heating system 
sizing 

Developmental 
fault: design 
fault 

Stuck-at fault 
Gain fault 
Offset fault  
Out-of-bounds fault 

High/low/wrong temperature. 
High/low/wrong CO2 
concentration 

Equipment life 
Occupant thermal 
comfort. 
Energy 
consumption 

5 Improper design 
Developmental 
fault: design 
fault 

Stuck-at fault 
Gain fault 
Offset fault 
Out of bounds  
Data loss 

Delay 
High/low/wrong sensor 
measurements 

Equipment life 
Occupant thermal 
comfort. 
Energy 
consumption 

6 

Inaccurate location of sensors 
and valves, e.g., wrong 
thermostat location, 
Occupancy-sensor 
misplacement 

Developmental 
fault: design 
fault 

Stuck-at fault 
Gain fault 
Offset fault 
Out of bounds  
Data loss 

Delay 
High/low/wrong sensor 
measurements 

Equipment life. 
Occupant thermal 
comfort. 
Energy 
consumption 

7 
Missing insulation for 
ductwork or pipes 

Developmental 
fault 

Stuck-at fault 
Gain fault 
Offset fault 

Delay 
High/low/wrong sensor 
measurements 

Occupant thermal 
comfort.  
Indoor air quality  

8 
Poor coordination of the 
processing unit  

Developmental 
fault 

Stuck-at fault 
Gain fault 
Offset fault 
Out of bounds  
Data loss                 

Delay  
Missing information 

Occupant thermal 
comfort. 
Indoor air quality 
Delay 

9 Air-duct leakages  
Operational 
faults 

Stuck-at fault 
Gain fault  
Offset fault 

Wrong actuator signals 

Equipment life  
Thermal 
discomfort 
Indoor air quality  
Energy 
consumption 
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10 Inappropriate voltage 
Operational 
faults 

Stuck-at fault 
Gain fault 
Offset fault 
Out of bounds   
Data loss                            

Wrong actuator signals 
High/low/wrong sensor 
measurements  
Missing information 

Equipment life  
Thermal 
discomfort 
Energy 
Consumption 
Life risk  
Fire risk  

11 Poor preventive maintenance 
Operational 
faults 

Stuck-at fault 
Gain fault 
Offset fault 
Out of bounds   
Data loss                 

Delay  
Missing information 

Equipment life 
Energy 
consumption 
Life risk  
Fire risk 

 

3.4 State-of-the-art of Fault Injection and Experimental Evaluation in HVAC 
Systems  

 
Modern smart buildings play an important role in the economy, ecology, and human well-being. They 

are equipped with various electronic components, including different actuators, sensors, and automatic 
control systems called Building Management Systems (BMS) [132, 133]. The user’s comfort is important 
and affected by the operation of heating, ventilation, and air conditioning system, which is a significant 
source of energy consumption. The efficient operation of an HVAC system affects the efficiency of the 
overall system, which is the BMS [133]. In addition, many sensors and actuators are integrated with an 
HVAC system, and the interactions of these components are fault prone. Without fault-tolerance 
techniques, the system may face unpredictable conditions. Therefore, a dependability analysis of critical 
infrastructure is essential. A system is deemed critical when the normal functionality of the provided 
services by the system is vital for the end users or the environment [134]. For the assessment of quality 
constraints such as resource usage, resource availability [135], thermal conditions, occupant comfort, and 
dependability of a system under faults, different approaches, including analytical modeling [136] and 
experimental methods such as FI [116, 117, 137] are discussed in the literature. FI brings high 
controllability and observability in a simulation environment. Arlat et al. [138] have introduced an FI 
methodology for two main goals: validation and design aid. They have also described different modeling 
abstraction levels, including axiomatic, empirical, and physical models. Axiomatic models emphasize 
analytic models such as Markov graphs and fault trees. Empirical models relate to more complex and 
detailed behavior and structural descriptions, such as simulation and physical models implemented as 
hardware and software features. Fault injection was recognized as a powerful and effective experimental 
method and extensively used for the validation and dependability evaluation of a target system under faults 
[139].  
 

3.4.1 Fault Injection Techniques in HVAC Systems 
 

FI was introduced in the early 1970s to study fault impacts and verify fault-tolerant capabilities by 
deliberately injecting faults into a modeled system [134]. Several surveys studied FI methodologies [53, 
134, 140–142]. Briefly, FI techniques can be categorized into four methodologies: (1) physical fault 
injections, including hardware-based fault injection (HaFI) and soft-ware-based fault injection (SoFI) 
methods; (2) simulation-based fault injection (SiFI) methods; (3) emulation-based fault injection (EmFI) 
methods; and (4) hybrid fault injection (HyFI) methods [53, 137, 141, 143]. The advantages and 
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disadvantages of each method were systematically discussed in [140]. An overview of FI techniques and 
their positive and negative points are comprehensively described in [53, 140–142].  

SiFI is most popular for early experimental evaluations among all FI techniques. A SiFI analyzes a 
target system by simulating fault effects. It is well-known for its wide range of advantages, such as 
flexibility, adaptability, visibility, and controllability [139]. However, one disadvantage of the simulation 
techniques is computation time [1]. SiFI supports the adaptation of tests to various traffic scenarios and 
avoids costly or dangerous physical FI in the real world [113]. SiFI has a low cost, high controllability, high 
safety, and high fault coverage [142]. SiFI is categorized into three different subcategories in the literature: 
the simulation command technique, simulation code modification technique, and simulation modification 
technique with different levels of abstraction [139]. In the simulation command technique, the simulation 
model does not change and uses commands to inject faults into the target system model. Built-in simulator 
commands are used to modify the values of signals and variables [134]. Simulation code modification 
modifies the system description by adding FI components called saboteurs or mutants to existing 
component descriptions [53]. Simulation-based fault injectors, such as saboteurs and mutants, are 
responsible for the deliberate insertion of faults. Fault injectors provide this opportunity to change one or 
more signal values or timing characteristics. The simulator modification technique changes the simulation 
kernel and not the target simulation model. Each technique has corresponding advantages and 
disadvantages.  

Many researchers have focused on SiFI, which can be discussed from the point of view of different 
applications, some specifically for HVAC systems. Maleki et al. [113] proposed a simulation-based injector 
called SUFI to activate faults in Advanced Driver Assistance Systems (ADAS). The fault model in this 
framework covers transient and permanent faults such as stuck-at values. Chao et al. [123] proposed a SiFI 
framework called FSiFI to study the propagation of faults and symptoms. They analyzed the transient faults 
affecting different SPARC processor components, such as ALU, decoders, and register files. Song et al. 
[114] proposed a method for verifying radar systems using PSPICE for the simulation environment. The 
simulation represents the circuit model of the radar in the simulation software. The software provides the 
behavioral model, and the user can extend the model or use models built by the software. Gil-Tomás et al. 
[115] designed an SFI to inject intermittent faults to evaluate the dependability of submicron 
complementary metal-oxide-semiconductor (CMOS) technologies. A wide set of intermittent faults was 
injected, and coverages and latencies were measured from the simulation traces. In addition, a Markov 
model was generated for a reliability evaluation. Evangeline et al. [144] designed an SFI for digital circuits 
using the software from Xilinx. They modeled transient and permanent faults for stuck-at values, stuck-at 
bits, and faulty input data words. Salih et al. [145] proposed a fault injection model for highly automated 
vehicles. They developed a model of fault injection for the steering system to study the impact of steering 
system sensor failures. Their model was implemented in the MATLAB/Simulink environment. However, 
there are few scientific studies specifically on SiFI in HVAC systems. Hyvarinen et al. [146] categorized 
faults as design, installation, abrupt, and degradation. Examples in HVAC systems are sensor faults, such 
as invalid and incorrect sensor readings or noise, and actuator faults, such as stuck-at faults that account for 
20% of energy waste, along with thermal discomfort and CO2 emissions in HVAC systems [26, 27, 32, 
116, 146]. Simulation-based fault injection models are beneficial for learning about system behavior by 
evaluating concrete fault scenarios. Some researchers developed simulation-based fault injection system 
models. Behravan et al. [25, 116, 117] implemented simulation-based fault injection models for DCV, and 
heating systems in multi-zone office buildings. In [116], Behravan et al. extended the simulated HVAC 
system models, providing them with FI capabilities of permanent stuck-at faults for the sensors, stuck-at 
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opened/closed damper actuators, and stuck-at heater actuators. Simulated temperature sensors and CO2 
sensors were also equipped with FI blocks. The supported fault types include gain faults, offset faults, and 
stuck-at values (e.g., stuck-at open/close in damper actuator, stuck-at off/on in heater actuator) [117]. 
Behravan et al. [147] also introduced a command-based fault injection framework with a compositional 
model in Matlab, where the Matlab code is mapped to the simulation blocks in Simulink. Further, Behravan 
et al. [18] proposed an automated FI tool to systematically inject different faults with different fault injection 
times.  

 

3.4.2 Multiple-Fault Injection in HVAC Systems and Other Domains 
 

FI provides insights into the system’s behavior by deliberately introducing faults in different scenarios 
and conditions. Single-fault injection, single-fault detection and diagnosis have been investigated vastly. 
However, many HVAC systems (e.g., hospitals, airports, multi-story office buildings) are large-scale 
distributed systems with thousands of components, including sensors, actuators, computational nodes, and 
communication links which are vulnerable and prone to multiple faults. Today’s FI frameworks for HVAC 
systems are based on this single-fault hypothesis. However, systems face multiple faults in reality [135]. 
Therefore, FI must investigate the effects of multiple faults simultaneously. This is in significant contrast 
to smaller scale systems (e.g., automotive electronics, medical equipment) where a single fault hypothesis 
is predominant [148] and considering a single fault at a given point in time is sufficient. Gil-Tomás et al 
[115] also express the importance of multiple faults due to technology scaling. FI experiments consist of 
simulation executions of the target system where any number of faults can be injected in one or multiple 
components at one or several points in time and with random fault time durations. In a simulation 
framework, faults can be injected using a set of input patterns via an automated FI code or FI dashboard in 
hardware or software.  

Multiple faults have been investigated in domains other than HVAC systems. Yalcin et al. [149] 
have injected different hardware faults, such as transient, intermittent, permanent, and multi-bit faults, in 
simulations of processors. Multi-bit faults occur when a fault affects multiple bits simultaneously, such as 
spatial multi-bit upsets. Stroud et al. [150] have described single and multiple stuck-at-fault simulations for 
gate-level faults. Multiple faults are injected randomly or clustered for testing multiple fault detection 
capabilities. A list of fault groups has been considered for injecting multiple faults. Each fault group 
contains a number of gate-level stuck-at faults with a number of potential fault sites and possible 
combinations of single and multiple stuck signals at the gate level. Faults are injected randomly or in a 
cluster-based manner. The selection can be changed from a random sample to a deterministic function in 
the clustered FI. It modifies for clustered defects that tend to form a list of faults that are tightly coupled 
based on the degree of the cluster.  

Tarrilo et al. [151] introduced a multiple-bit-flip FI platform. They triggered multiple faults in 
SRAM-based FPGAs, which are sensitive to soft errors, unexpected bit-flips, and critical errors. They 
injected single-event upsets (SEUs) and multiple-bit upsets (MBUs) for functional errors. The location of 
each malfunction is chosen from a list of locations. Kundu et al. [152] injected multiple faults to diagnose 
chips at the logic level. Arlat et al. [153] compared physical and software-based FI for the MARS fault-
tolerant distributed real-time system. They addressed the respective impacts of FI techniques using a testbed 
and test scenarios. Zhong et al. [154] investigated operational single and multiple-fault impacts for HVAC 
systems under different climates. The effect of faults in HVAC systems may depend on climate changes. 
They also evaluated the system’s impacts on thermal comfort, performance, and energy usage. They ranked 
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single and multiple faults for each climate condition. However, they did not carry out simulation-based 
multiple FI. Sangchoolie et al. [155] evaluated the impacts of single and multiple bit-flip errors. They used 
the open-source fault injector tool LLFI, which injects faults into the low-level virtual machine (LLVM). 
To realize the injection of multiple faults, they extended LLFI to facilitate the injection of multiple bit-flips. 
LLFI defines single bit-flip errors as time location pairs. To model multiple bit-flip errors, they developed 
the time location parameters that enable clustering the error space into different classes of errors. 
Tadeusiewicz et al. [156] introduced a method for simulating multiple faults in AC circuits. They used a 
systematic approach to perform the combination of multiple faults. The FI procedure uses admittance and 
impedance matrices for the faulty circuit nodes and fault combinations.  

Lisboa et al. [157] described soft errors that may appear at the same time. Robust operators are 
introduced, and the operator’s behavior is analyzed by simulating single and multiple faults. Papadimitriou 
et al. [158] introduced a multiple-fault injection methodology for digital circuits. Fault modeling at the 
register transfer level (RTL) can occur early in the design phase and facilitates the analysis of the gate-level 
models. They injected multiple faults by partitioning the RTL description of the circuits. Then, faults are 
injected in two groups. Firstly, faults are injected into one or more flip-flops, and the second group includes 
faults occurring in the combinational part of the circuits. Wang et al. [159] discussed hierarchical model-
based diagnosis (MBD) for multiphase faults and hitting calculation sets (MHS), which serve for stability 
and reliability in power distribution networks. They calculated the system performance when the distributed 
network has multiple multiphase faults. The hierarchical MBD comprises different parts, including an 
offline model library, fault observations, and online identification of faulty elements. Takahashi et al. [160] 
introduced and simulated the diagnosis of single and multiple faults in combinational circuits. Kim et al. 
[161] introduced the modeling and simulation of multiple faults. The multiple-fault model consists of a set 
of lines. For example, the stuck-at fault consists of two lines, stuck-at-1, and stuck-at-0. Any fault 
combination can be modeled by activating these lines. 

 

3.4.3 Experimental Evaluation in HVAC Systems 
 

The experimental evaluation of HVAC systems in the design phase is an important subject [162] to 
enhance the system’s efficiency, resource usage [163], economic effectiveness [164], thermal comfort [20], 
and reduce CO2 emissions [7, 164–167]. Extensive research has presented experimental evaluations of 
energy consumption for HVAC systems. Antonopoulos et al. [168] proposed an experimental assessment 
of the energy savings of Air Conditioning (AC). Al-Deen et al. [169] evaluated the energy consumption of 
HVAC systems under different climate conditions. Vishwanath et al. [5]  investigated the HVAC cooling 
energy consumption and cost associated with experiments conducted in large buildings. Andrés et al. [165] 
performed a real-scale experimental evaluation for regulating thermal control in lightweight constructions. 
Krajcik et al. [170] performed an experimental evaluation of residential rooms for sustainable 
heating/cooling and efficient energy consumption. Arteconi et al. [171] introduced an experimental 
assessment of a ground-coupled heat pump (GCH), an alternative to traditional systems for heating and 
cooling. 

In this thesis, a realistic, Automated, and Simulation-based Fault Injection Framework (ASFIF) is 
introduced by combination of two simulation-based FI techniques, simulator command and simulation code 
modification for reliability evaluation in DCV and heating system. The FI framework incorporates 
saboteurs as fault injector blocks. In addition, an automated fault injector algorithm automatically activates 
fault cases with certain fault attributes according to the fault model. The proposed fault injection framework 
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supports a comprehensive range of faults and various fault attributes, including fault persistence, fault type, 
fault location, fault duration, and fault interarrival time. This framework considers noise in a DCV and 
heating system as a type of HVAC system since it has been demonstrated that any fault injection scenario 
is accompanied by impacts on energy consumption, occupancy comfort, and a fire risk. It also supports the 
reproducibility for a set of specific fault scenarios and random fault injection scenarios. The system model 
was implemented and simulated in Matlab/Simulink, and fault injector blocks were developed as Stateflow 
diagrams. An experimental evaluation serves as the assessment of the presented fault injection framework 
with a defined example of fault scenarios [11].  

In this thesis, the FI framework is extended to support the injection of multiple faults with exact 
control of the timing, locality, and values in fault injection vectors [16]. Furthermore, the multiple fault 
injection framework requires an adaptable fault model for multiple-fault introduction. Therefore, modeling 
patterns of numerous faults in HVAC systems based on data from field failure rates and maintenance 
records are defined. A multi-dimensional fault model is defined, including the probability of the occurrence 
of different sensor and actuator faults. The automated multiple fault injection framework has been evaluated 
experimentally to analyze the system behavior under different faulty conditions [16]. The experimental 
results serve as a quantitative evaluation of key performance indicators (KPI) such as energy efficiency, air 
quality, and thermal comfort. Comprehensive experimental results provide insights into the system’s 
behavior for concrete example scenarios using patterns of multiple faults. An overview of the SiFI 
techniques is provided and summarized in Table 3. 

 
Table 3. Overview of simulation-based on fault injection techniques. 
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[113] 
Stuck-at value. 
Single bit-flip 
Double bit flip 

Transient 
Semi-
permanent 

No No No No Yes No No SUMO 
Not 
specified 

[123] No Transient No No No No Yes No No SAM 
Not 
specified 

[114] Circuit faults No No No No No Yes No No PSPICE and ADS 
Not 
specified 

[115] 
Circuit faults 
Single or 
multiple 

Intermittent No No No No Yes No No 
VHDL-based fault 
injection tool (VFIT) 

Not 
specified 

[144] 
Stuck-at bit 
Stuck-at value 
Input data word 

Transient 
Permanent 
6-bit LFSR 

No Yes No No Yes No No 

Xilinx software and 
4-bit adder and 
C17 benchmark circuit 

Not 
specified 

[18] 
Stuck-at 
open/close 
Stuck-at off/on 

Permanent Yes No No No Yes No No 
MATLAB/Simulink and 
MATLAB Programming 

Automatic 
Injection by 
Script 

[117] 

Stuck-at value 
Stuck-at 
open/close 
Stuck-at off/on 

Permanent No No No No Yes No No MATLAB/Simulink 

Manual 
Injection by 
a visual and 
graphical 
dashboard 
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[116] 

Gain fault 
Off-set fault 
Stuck-at value 
Stuck-at 
open/close 
Stuck-at off/on 

Permanent No No No No Yes No No MATLAB/Simulink 

Manual 
Injection by 
a visual and 
graphical 
dashboard 

[11] 

Gain fault 
Offset fault 
stuck-at value 
Stuck-at 
open/close 
Stuck-at off/on 
Out-of-bound 
fault 
Data-loss fault 

Permanent 
Transient 
Static 
Intermittent 
with 2 or 3 
Repetitions 

Yes Yes No 

Gaussian 
and Normal 
Distributions 

Yes No No 

MATLAB/Simulink and 
and 
MATLAB Programming 
Static Stateflow diagram 
implementation with 3 
faulty states and 1 
healthy sate 

Automatic 
Injection by 
Script 

[16] 

Gain fault 
Offset fault 
stuck-at value 
Stuck-at 
open/close 
Stuck-at off/on 
Out-of-bound 
fault 
Data-loss fault 

Permanent 
Dynamic 
Intermittent 
with n 
Repetitions  

Yes Yes Yes 

Gaussian 
and Normal 
Distributions 

Yes Yes Yes 

MATLAB/Simulink and 
and 
MATLAB/Programming 
Dynamic Stateflow 
diagram implementation 
with 1 faulty state and 1 
healthy sate 

Automatic 
Injection by 
Script 
 
Using multi-
dimensional 
attributes  

 

3.5 State-of-the-art of Fault Detection and Diagnosis Techniques in HVAC 
Systems  

 
In HVAC systems, a fault occurrence may decrease energy efficiency, system performance, and 

occupant discomfort and lead to dangerous conditions in complex and critical infrastructures (e.g., 
inadequate ventilation upon a fire in a hospital or an airport). Therefore, optimization and control strategies 
such as FDD techniques and testing play a key role in these systems to improve maintenance and cost of 
energy. Ahamed et al. [1] reviewed the application of Computational Intelligence (CI) for prediction, 
optimization, control, and diagnosis in HVAC systems. They have classified the CI techniques into (1) 
prediction, including artificial neural network and support vector machines, (2) optimization, including 
stochastic approaches and Intelligent Agents (IG), and (3) control and diagnosis, including expert systems, 
fuzzy logic, and pattern recognition-based methods. Pattern recognition-based methods consist of different 
categories such as principal component analysis, Bayesian networks, clustering, and pattern matching. CI 
is an advanced research field using computation technologies and was initiated by the Institute of Electrical 
and Electronics Engineers (IEEE) Neural Networks Council in 1990 [1]. One of the most common CI 
techniques in HVAC systems are fuzzy logic-based controllers and detectors to overcome system 
uncertainties [1].  

Achieving optimized operations in HVAC system is challenging due to the non-linearities of 
system indicators such as energy consumption. Indoor air quality, CO2 concentration, energy management, 
and thermal comfort are major optimization objectives in buildings [1]. Many authors have studied these 
optimization objectives in HVAC systems. For example, Yu et al. [172] reformulated the energy cost 
minimization problem as a Markov game. An HVAC control algorithm has been proposed to solve the 
Markov game based on multi-agent deep Reinforcement Learning (RL). In this article, the authors 
formulated a long-term HVAC energy cost minimization problem related to multi-zone commercial 
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buildings. The solution does not require model building with thermal dynamics and has been formulated as 
a Markov game. It used an HVAC control algorithm to solve the Markov game. Yu et al. [173] have 
proposed another algorithm based on reinforcement learning for smart home energy management. They 
formulated the problem as a Markov Decision Process (MDP). They presented an energy management 
algorithm based on RL policy gradients. Temporally coupled operational constraints are associated with 
energy storage systems and HVAC systems. The authors have proposed an energy management algorithm 
based on deep deterministic policy gradients (DDPGs) to address the challenge that actions affect future 
decisions. Based on the current observations, the algorithm makes decisions about Energy Storage System 
(ESS) charging/discharging power and HVAC input power. Huang et al. [174] proposed a machine learning 
approach called Non-Intrusive Load Monitoring (NILM) to disaggregate heating usage. High-frequency 
measurements are mapped to knowledge that can improve energy efficiency in the residential sector. The 
main goal of the work is to use smart measurement data to identify heating and cooling usage levels for a 
smart home. This method uses a Markov model to capture the dependence of heating usage on the outdoor 
temperature. This proposed method provides details on heating usage patterns and is more flexible in 
incorporating other system-specific information. Wu et al. [175] have formulated a multi-room HVAC 
control problem as an event-based optimization, where decisions are made when certain events occur. They 
developed an approximate solution to simplify the calculation process, focusing on local event-based 
policies. The size of the state and space increases exponentially with the number of rooms. It could become 
extremely large for practical problems. It is challenging to solve the problem directly with MDPs, and 
event-based optimization provides an alternative. Shanin et al. [176] have developed software solutions for 
a housing and utility condition monitoring system. Their system processes sensor readings using statistical 
and probabilistic models such as linear regression and the Hidden Markov model to classify equipment's 
regular and faulty operating modes. An AHU for HVAC systems conditions and circulates air in rooms. 
The cooling coil and the supply air fan are essential components of an AHU.  
 Fault detection and diagnosis is a process that localizes faults and determines the fault type [177]. 
FDD methods are developed with several objectives including cost-effective maintenance policy, 
improving productivity standards and ensuring safety-critical aspects [178]. Many techniques for fault 
diagnosis have been pioneered since the 1960s [177], and methods have been reviewed and classified 
widely in many studies. Steinder et al. [52] have concentrated on fault localization techniques in complex 
communication systems to find the exact source of a failure from. They have classified the fault localization 
techniques into three categories containing Artificial Intelligence (AI) techniques, model traversing 
techniques, and fault propagation models including Bayesian Networks (BNs). Park et al. [179] reviewed 
FDD methods in industrial processes. They have provided a general implementation procedure for the FDD 
methods consisting of four steps: industrial processes or systems, data collection and analysis, feature 
extraction and selection, and model training and validation. They have classified FDD methods based on 
the system characteristics into data-driven methods further categorized into dynamic, nonlinear, non-
gaussian, time-varying/multimode, and non-stationary systems, model-based methods further categorized 
into quantitative model-based methods, qualitative model-based methods, and process history-based 
methods, knowledge-based methods and hybrid methods. Isermann [180] has also classified the analytical 
fault-detection methods into detection with single signals, and detection with multiple signals and process 
model-based and multi-variant data analysis. Isermann has also classified the fault diagnosis methods into 
classification methods, which include pattern recognition, statistical classification, approximation methods, 
density-based methods, AI methods, and inference methods which are binary reasoning and approximate 
reasoning. The statistical classification method includes the Bayes classifier and decision tree. Miljković 
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[181] classified the fault detection methods into data methods and signal models, process model-based 
methods, and knowledge-based methods. FDD techniques in the building energy system field can also be 
categorized into knowledge-driven and data-driven methods [182]. Knowledge-driven methods resemble 
the diagnostic thinking of domain experts with a high capacity for reasoning uncertainties; they can work 
with different fault severities. In contrast, methods in the data-driven category mainly rely on similarities 
and patterns [182]. Each category has its strengths and shortcomings. Yang et al. [177] investigated network 
fault diagnosis methods and discussed their advantages and disadvantages. They have classified the fault 
diagnosis techniques into model-based methods,  processing-based methods, and knowledge-based 
methods. Ahamed et al. [1] and Du et al. [183] have also classified FDD techniques into  a rule-based 
method that does not need any model and highly relies on expert knowledge to extract the rules, a model-
based method, and data-driven methods. Zhao et al. [182] have also classified FDD techniques into  data-
driven, and  knowledge-driven approaches and have mentioned the strengths  and shortcomings  of each 
category specifically. For example, data-driven methods demand a high amount of training data and 
knowledge-driven based methods highly depend on expert knowledge and have no automatic capabilities 
to improve diagnostic efficiency. Knowledge-driven methods diagnose different faults based on their 
severities and are more understandable whereas data-driven methods are black-box methods with low 
understandability regarding the approach and results. Zhao mentioned that hybrid methods combine two or 
more approaches and are thus able to obtain the advantages of both types of methods [182].  All available 
FDD categorizations have been summarized in Table 4 , including their techniques and associated 
advantages and disadvantages. 
 
Table 4. FDD method categorization with advantages and disadvantages 

FDD methods categorizations Adopted FDD techniques Advantages Disadvantages  

Signal-processing based 
method [177, 179, 181] 

Symptom extraction 
Achieved easily 
 
Avoids human mistakes 

Misreporting of the 
false alarms 

Data-driven methods [1, 25, 
179, 182, 184] 

Unsupervised-learning based  
 
Classification-based  
 
Neural Network  

High accuracy 

Massive data is required 
for training 
 
Automation  
 
Low understandability 
 

Model-based method [1, 177, 
179, 181] 

State estimation by 
mathematical statistics  
 
Analytic functions 
 
Qualitative model-based 
(based on rules)[185–187] 
 
Quantitative model-based 
(based on physics)[185–187] 
 

Close to the truth 

Application limitation 
 
Expert knowledge 
dependency 
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Knowledge-based method [25, 
177, 179, 181, 182, 184] 

Diagnostic rule-based [1] 
 
Expert system, e.g., symptom 
extraction by an expert [118] 
 
Fault tree [188] 
 
Inference-based  
 
Bayesian-inference Network 
(BN) [189–191] 
 
Fuzzy-inference theory  
 
Grey theory  
 
Petri networks 
 

High accuracy  
 
Intelligent  

Supported-theory 
limitation 
 
Expert knowledge 
dependency 
 More time Consuming 
 
Lack of automation 
 
Simpler implementation 
 
Cost effective design 

Hybrid Methods [179] 

BN and machine learning  
 
BN and fuzzy logic [62, 192–
195] 
 
BN and signed directed 
graphs [196] 
 
BN, fuzzy logic, and 
classifiers 
 
Fuzzy logic and petri nets 
[197] 
 

High Accuracy 
 
Intelligent 
 
 

Automation 
 
High understandability 
 
Time efficiency 

 
Due to the complexity and characteristics of the HVAC processes, sometimes it is challenging to 

perform FDD techniques without knowledge of the processes. Therefore, it is required to consider the rules 
and system’s process data, e.g., signals or sensor measurements, when using FDD techniques. Examples of 
these techniques are the cause-effect analysis approach, Neural Network (NN) approach by specifying of 
the faults and process variables relationship, and the combination of NN and fuzzy logic [18, 179]. 
Therefore, in this thesis, a hybrid diagnosis technique has been developed to combine the advantages of 
different techniques and to obtain more accurate and efficient diagnostic results. For this aim, the applied 
techniques and their state-of-the-art including knowledge-based and hybrid diagnosis techniques have been 
investigated in detail.  
 

3.5.1 Knowledge-Based Fault Detection and Diagnosis Techniques  
 

Different knowledge-based approaches in HVAC systems were designed based on the models of the 
thermal dynamics of the environment. For example, Behravan et al. [118] established a Diagnostic-Directed 
Acyclic Graph (DDAG) based on explicit knowledge of HVAC systems. This technique was tested based 
on DCV and heating models designed using MATLAB/Simulink. The model consists of components, 
including CO2 sensors, damper actuators, temperature sensors, and heater actuators. A fault injection 
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framework was also designed to inject faults into the system artificially. The system behavior in different 
faulty conditions and non-faulty conditions can be monitored. This fault diagnosis technique uses explicit 
knowledge with expert rules. According to the knowledge based DDAG, once a symptom is detected, a 
series of diagnostic tasks, such as a combination of plausibility checks and component health evaluations 
based on the input signals and measurements, finds the failure cause. Shiazoki et al. [198] have also 
developed a FDD method using a Signed Directed Graph (SDG) with low efforts to detect the symptoms 
of the faults and root causes. The accuracy of the diagnosis depends on setting right thresholds, which is 
demanding and time-consuming.  

Fuzzy logic is a common knowledge-based solution to overcome uncertainties inspired by human 
behavior for reasoning about imprecise problems [1, 199] and was introduced by Lotfi Zadeh in 1965 [200, 
201]. A fuzzy logic system formalizes approximate reasoning. It means that fuzzy models represent 
vagueness information with a degree number between 0 and 1 (i.e., probability) using a reasoning 
mechanism [202]. This value is calculated by a Membership Function (MF) known as the Membership 
Degree (MD). Fuzzy models are usually constructed by fuzzification, an inference engine, and 
defuzzification phases [1]. There are different types of membership functions, such as triangular, 
trapezoidal, piecewise linear, gaussian, and singleton. MF calculates the probability and MFs can be defined 
based on the system requirements and characteristics. Figure 6  illustrates the fuzzy logic system and its 
procedure in detail. 

Gathering System Variables and 
Features Including Input, and 

Output Variables 

Definition of Membership 
Functions

Fuzzification

Converting To Fuzzy Sets and 
Values

Generating Membership 
Degrees

Inference Defuzzification

Using Fuzzy Rules

Breaking Down the 
Control Problem into 

a Series
of IF X, THEN Y Rules 

Based on Expert 
Knowledge

Combining the 
Results of Each Rule

 Converting the Output Fuzzy 
Data to Non-Fuzzy Values

Input 
Fuzzy Values

Output 
Fuzzy Values

Generation of Crisp Results

Fuzzy Logic Theory Desciption

 
Figure 6. Fuzzy logic system with three phases of fuzzification, inference, and defuzzification [203] 

Fuzzy logic has a wide application in FDD techniques due to low design cost and easier 
implementation [204]. Fuzzy systems are rule-based, and the output of the system is not a simple binary 
decision of “Fault” or “No-Fault”; rather, the severity of the fault will be provided as a fuzzy output value 
[181, 204]. Kolokotsa [203] provides a complete overview of fuzzy logic applications for building 
technology in the case of (1) indoor comfort such as modeling the thermal sensation, control of the thermal 
environment, indoor air quality, and (2) energy management such as energy planning, energy load 
prediction, optimization, and fault detection.  

Some authors deploy a pure fuzzy approach in HVAC systems. For example, Dexter et al. [205] 
have utilized fuzzy logic to model the errors and ambiguities and reduce false alarms. Eftekhari et al. [206] 
have presented a fuzzy control strategy for natural ventilation in a test room. Sulaiman et al. [204] have 
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introduced a fault detection method based on fuzzy logic in air supply dampers of air handling units in 
MATLAB/Simulink. They have used three indicators for fuzzy logic labels: “No Fault” which represents 
the expected behavior or near-to-normal behavior of the system, ”Almost Fault” which represents 30% to 
50%  difference from normal behavior, and “Fault” that represents a problem in the system behavior. Allen 
et al. [207] demonstrated a health monitor strategy for the cooling mode of an actual variable air volume 
(VAV) unit in a commercial building to improve the HVAC and Build Automation System (BAS) load. 
Their method uses a fuzzy neural network for fault classifications. They first defined the system's inputs 
and labeled them based on their characteristics. For example, the damper position is labeled with “Closed”, 
“Open” with 0% and 100% range that specifies the damper situation, and air flow is labeled with “Min” 
and ”Max”. 

The Bayesian Belief Network (BBN) is one of the important knowledge-based approaches in fault 
diagnosis methods based on probability theory for modeling uncertain knowledge and reasoning based on 
conditions of uncertainty, probabilities, and graph theory [193]. BBN was introduced by J. Pearl in the 
1980s [208]. A Dynamic Bayesian Network (DBN) is a graphical model based on the probabilistic where 
nodes represent random variables and directed arcs/edges represent conditional dependencies. DBNs are an 
adequate formalism for representing and reasoning under uncertain conditions. However, they do not scale 
well for complex systems. For example, Vlachopoulou et al. [191] developed a dynamic Bayesian model 
for HVAC systems. They derived and trained a DBN to model aggregated loads of HVAC systems. DBNs 
are able to change the behavior of the model over time which is an essential feature for loading the model. 
Because load varies highly over time. Hector [190] proposed an algorithm for sensor validation by 
representing the relationships between the variables using a DBN. The validation process is based on 
probabilistic propagation. However, this work does not consider the model complexity and the distributed 
nature of components. To overcome these limitations, Garcia et al. [189] proposed a distributed 
probabilistic model for fault diagnosis, which is an extension of the DBNs for representing large domains 
and complex systems using Multiple Sectioned Bayesian Networks (MSBN). DBNs can be created locally 
and globally for communication with adjacent sections.  The final step in the construction of the model is 
the inference in the MSBN, which consist of two fundamental steps: the inference at the global level using 
the junction tree technique and the inference to guarantee the global consistency from the construction of 
linked cluster trees between adjacent components for the passage of messages.  
 BN is utilized for many FDD methods. For example, Shi et al. [195] introduced a distributed fault 
diagnosis method to represent the probabilistic dependencies between faults and symptoms in a VAV AHU. 
Their model comprises a detection agent, a diagnostic agent, and an evaluation agent. Fault detection 
produces symptoms by gathering more information from sensor measurements. The fault diagnosis agent 
gathers the fault’s related symptoms and uses a DBN for the diagnosis process. DBN are applied due to 
their extensibility and ease of use in distributed systems. A DBN can diagnose persistent and transient 
faults. Evaluation agents determine the faults and symptoms impacts. However, the probability calculation 
is manual and computed with expert knowledge, which is inappropriate for a large-scale system. Zhao et 
al. [209] explain a generic diagnostic BN framework for chiller fault diagnosis. They have merged all 
system information in a diagnostic BN to simulate expert knowledge in practice. Diagnostic tasks determine 
faults based on one or multiple symptom observations. Faults, symptoms, and factors are included in the 
DBN in three different layers. Prior probabilities of faults are computed based on frequencies of faults, and 
conditional probabilities represent the node relations. Faults are diagnosed in the fault layer by calculating 
the posterior probabilities and two rules that determine fault differences by applying thresholds. However, 
they calculated the conditional probabilities using historical information, fault frequencies, and 
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maintenance records. Xiao et al. [210] introduced a diagnostic BN strategy in VAV. The entire structure of 
the BN depends on expert knowledge and the rules for defining the system states. Zhao et al. [211, 212]  
developed four DBNs to diagnose faults in air handling units (AHUs) in buildings. In this FDD method, 
establishing the BBNs and their nodes highly depends on expert rules. Therefore, it is desirable to decrease 
dependency on experts by applying automation. 

 

3.5.2 State-of-the-art in Hybrid Single-Fault Detection and Diagnosis Techniques 
  
Large-scaled HVAC systems comprise numerous components and units that need accurate and effective 

FDD methods to manage probable faults that degrade the system functionality over time, e.g., permanent 
stuck-at faults that lead to energy dissipation [213]. The most effective FDD solutions are developed in a 
hybrid manner [182]. Due to the characteristics of the HVAC system processes, expert knowledge may 
assist in developing the FDD methods, e.g., fuzzy logic as a knowledge-based method can facilitate this 
requirement (extracting the system information, e.g., labels and rules by experts). BBN allow modeling 
nonlinear dynamics and discrete systems appropriately and they are an effective solution for HVAC systems 
with nonlinear processes. However, defining a suitable conditional likelihood density function is critical in 
systems with discrete and continuous variables [18, 75]. BBN is also an effective method for modeling 
probabilistic relationships between symptoms and failures [214]. However, probabilistic modeling in case 
of multiple or independent symptoms is also challenging [214]. Combined diagnostic methods can use the 
advantages of each method to improve efficiency and accuracy [182], e.g., several examples admit the 
effectiveness of Fuzzy Bayesian Belief Networks (FBBNs) in solving uncertain problems by applying fuzzy 
sets to calculate BBN parameters (such as conditional table and nodes probabilities) [199].  

There are several hybrid FDD methods with a combination of knowledge-driven and data-driven 
approaches, such as fuzzy theory and colony system [215], BN and ML [216], BN and Signed Directed 
Graph (SDG) [196], BN and hidden Markov [217], BN, fault tree, and fuzzy theory [218], BN and Genetic 
Algorithm (GA) [219], BN and fuzzy theory [178, 192, 193, 199, 214, 220]. For instance, Kuo et al. [221] 
explain a hybrid diagnostic method by integrating the fuzzy theory and Ant System-based Clustering 
Algorithm (ASCA). Their method is case-based, and cases are fuzzified. The same cases are grouped into 
different clusters. New cases should find the closest group. The fuzzy theory has been applied to find the 
similarities among new cases and other groups. Antnet is applicable for finding the routes in the 
communication network. During the seeking food procedure, ants use a specific fragrance to save the route, 
which is named pheromone. Therefore, other ants follow the paths with a higher density of pheromones, 
leading to finding the shorter path. They also used the Antnet method to choose the most similar groups 
and classify them. Hence the time for finding a similar case decreases.  

Chiu et al. have also introduced a fuzzy-Bayesian classifier with Case-Based Reasoning (CBR) to 
solve diagnosis problems [192]. They have used fuzzy theory to define conditional density functions of 
BBNs to overcome the problem of continuous attributes. Fuzzy theory enables defining the desired 
conditional functions based on the system specifications. Many research studies have proven the accuracy 
and efficiency of integrating the fuzzy logic theory and Bayesian networks for decision-making 
applications, uncertain knowledge representation, and reasoning [200, 215, 222].  

Hu et al. [216] have introduced an intelligent fault diagnosis Bayesian network for refrigerant flow 
air conditioning systems. The diagnosis network is constructed by BN, including two main elements of 
structure and parameters. The structure is obtained by ML and expert knowledge to map the relations, and 
the relations are obtained by parameters which are prior probabilities and conditional tables. However, this 
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method of capturing sufficient training data for data-driven methods is not cost-effective for any faulty 
condition [154].  

SDGs are not entirely suitable for modeling complex logical relations. Therefore, Di Peng et al. 
[168] have proposed a Multilogic Probabilistic SDG (MPSDG) by integrating SDG and BN. The 
probabilities and conditional tables are calculated by historical malfunction and failure frequencies. They 
consider offline modeling and online diagnosis phases. In the offline mode, they utilize the historical failure 
frequencies to evaluate the prior probabilities of each reason node and directed edges. All system variables 
are monitored consistently. Once the measured value is out-of-thresholds, an alarm signal (i.e., symptom) 
starts the diagnosis process in the SDG to find the fault reason node. An MPSDG includes more accurate 
information about the system. The diagnosis process in MPSDG is divided into two parts: finding the 
candidate's fault reasons and probability computation. Afterward, faults with high probabilities are ranked 
to determine the most probable fault. However, constructing the MPSDG without historical data is 
impossible. 

A dynamic FDD method is introduced by Don et al. [217] by integrating the BN and Hidden 
Markov Model (HMM). The HMM serves for anomaly detection and the BN diagnoses the root cause of 
faults. HMM should be trained by historical operations and process. BN also uses a log-likelihoods (LL) 
probability distribution to calculate the conditional probability table using historical data. When the HMM 
detect anomaly and BN probabilities are updated at the same time can be evidence for diagnosis. However, 
probability computation and graphs construction and training demand historical data.  

Qiu et al. [214] demonstrate a diagnostic method for remote print defects (symptoms) by integrating 
fuzzy theory and BN methods. They have mentioned a common problem for diagnostic systems: mapping 
the exact failures to exact symptoms is challenging because a failure is usually the reason for several 
symptoms. They have suggested probabilistic methods to link symptoms and failures. BN is an effective 
method for modeling probability relations. However, probabilistic modeling is demanding in the case of 
multiple or independent symptoms. The BN’s prior probabilities can be calculated from operating data, 
repairing data over sufficient time, or consulting expert knowledge. When prior probabilities are not 
possible, the fuzzy theory is an appropriate solution to find the probabilities of fuzzy variables. However, 
they have only used a single BBN for the FDD process without using any data-driven method.   

D’Angelo et al. [178] explain a fuzzy-Bayesian method for fault detection in the machine stator 
winding. They have used fuzzy theory for processing input uncertainties of the BN. However, they have 
not applied any data-driven method. Bi et al. [218] have combined fuzzy theory, fault trees, and BN for 
fault diagnosis of a rotor in a pumping station. Their proposed T-S fuzzy gate fault tree has solved the 
problem of the logical relationship between events and probabilities but not in complex reasoning. They 
have used BN and fuzzy theory combinations to solve the calculation of the conditional probability table. 
However, they have not used any data-driven method.  

Zhao et al. [220] have presented a fault diagnosis method by combining fuzzy theory and BN 
methods in train control systems. The logical relationship of events in the fault tree is related to the 
conditional probability table of the BN. Fuzzy theory is used to convert the expert knowledge to the 
probability rates for each failure divided into seven categories including “impossibility”, “less likely”, 
“small possibility”, “medium possibility”, “more likely”, “most likely”, “must happened”. They have used 
sample data to calculate node probabilities collected by the expert experience.  

Tang et al. [193] have the same strategy for constructing the BN with a fault tree and combining 
the method with fuzzy logic for machinery fault diagnosis. They have used expert knowledge to define 
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fuzzy rules. They have fuzzified the system variables with the labels “large”, “small” and “medium”. 
However, their approach is limited to expert knowledge and uses a single BN for the FDD process.  

Yao et al. [199] have proposed a fault diagnosis method and reliability prediction. Their method 
models relationships among the system components with high complexity. They have used a Fuzzy 
Dynamic Bayesian Network (FDBN) method for combining various test information for modeling the 
system reliability assessment. The BN is constructed with system failures and their corresponding failure 
rates. The conditional table describes the relationship among components, and the BN handles the fuzzy 
information. A DBN is applied to capture dynamic variables over time and model dynamic systems. In 
addition, the fuzzy theory has been applied to evaluate the system’s reliability with different language 
variables, expert knowledge, and scoring fuzzy values for root nodes. The quantitative analysis of an FDBN 
can proceed with forwarding (or predictive) analysis and backward (or diagnostic) analysis. Then, one finds 
the order of failures based on their rates according to the expert assessment. However, in this method, the 
BN is not constructed by system variable correlations and fault statistics and historical data are used for 
calculating the prior probabilities. 

In this thesis, a fuzzy Bayesian belief network has been developed based on the method proposed 
by Intan et al. [62]. Intan has used a Fuzzy-Bayesian method to track and analyze the medical records to 
find the relations between different diseases and other patient factors, e.g., education and the related 
diseases. Intan extends the MI concept by applying fuzzy theory for BBN construction [194]. They have 
used patients’ data records for probability calculation of the BN and have fuzzified patient information. The 
FBBN is constructed by measuring the dependency and casual relations between pairs of nodes for data 
analysis. However, they have not used the FBBN for diagnosis.  

In this thesis, the FBBN is developed by integrating the fuzzy theory and BBN, where a classification 
algorithm helps the FBBN for fault detection and diagnosis. System attributes such as sensory 
measurements serve as continuous attributes and actuator measurements as discrete attributes. These 
attributes are fuzzified to facilitate the FBBN probabilities. Expert knowledge should help appropriately for 
the fuzzy sets’ introduction. The BBN construction is based on the system attribute correlations when the 
MI indicator has a positive value. MI determines the dependency degree and is calculated for finding the 
similarities of measured system signals or signal variations to detect real-world anomalies. The diagnostic 
method comprises two modes: offline training mode and online diagnosis mode. In each online diagnosis 
process, all relations, directions, and probabilities of fuzzified system attributes should be computed and 
saved in a table. Then, in the online mode, the classification algorithm must compare the online table with 
the corresponding tables in the offline library. The offline library includes all possible fault conditions. To 
validate its accuracy, the introduced and generic FBBN method has been applied to DCV and heating 
systems. The results show higher accuracy than related work [18]. 

 

3.6 Description of Research Gaps  
 

The related work section explains various research fields and the state-of-the-art. The contributions 
are discussed in the following with respect to the research gaps. 

 
Research Gap 1: Component-Based System model with Multiple-Fault Injection Framework for 
DCV and Heating Systems to Ensure Scalability and Universality: In prior research [21], a component-
based simulation model has been introduced to develop the HVAC system of multi-floor buildings. 
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However, the fault injection process was static, manual and activated for few types of faults trough a 
dashboard without automation for FI and scenario generation. This thesis provides contributions beyond 
the state-of-the-art by developing a simulation-based composable model to activate multiple faults in a 
multi-floor building through a comprehensive fault model with extensive attributes such as type, time, 
duration, interarrival time, persistence, and fault occurrence rate in realistic scenarios. For each fault the 
address is defined (fault target including floor number, room number and component number) using 
indexing and fault injection matrices. When generating the component-based model, each floor, room and 
component gets a specific index that is an appropriate factor for the multiple-fault injection procedure. 
Multiple fault injection has been developed based on the multi-dimensional matrices for initializing the 
system attributes, e.g., intermittent fault injection times. Indexes are used to access each element of the fault 
injection matrices. An automatic fault injection algorithm cooperates with the component-based model to 
activate different fault scenarios. Fault scenarios can be designed or initialized randomly. Injected fault data 
is saved as objects containing all fault attributes in a library. The Fault library can be used for the FDD 
techniques. The component-based system model can interact with social systems (e.g., system designers, 
users) through a command panel to get the system configuration values to generate the system structure 
based on system requirements, e.g., with different floor and room numbers or nominal values.  
 
Research Gap 2: Modeling Patterns of Multiple Faults in DCV and Heating Systems Based on Data 
from Field Failure Rates and Maintenance Records:  In prior research [223–227], FDD techniques were 
introduced with fault attributes derived from maintenance records of HVAC systems. However, only 
individual faults were addressed, whereas the consideration of combinations of faults is essential for large-
scale electronic systems. This thesis provides contributions beyond the state-of-the-art by introducing fault 
models and patterns for combinations of multiple faults, which consider fault attributes (e.g., occurrence 
rates, locality, persistence) from maintenance records and serve for FI and FDD in HVAC systems. Each 
fault combination has a specific occurrence rate based on the fault attributes, such as fault types. The fault 
model and occurrence rate are compatible with different environmental conditions by mapping the fault 
occurrence to real-world maintenance records [16]. 

 
Research Gap 3: Injecting Multiple Faults into a DCV and Heating System: In previous works, 
individual faults were injected into HVAC systems [11, 89, 90, 96, 117]. The injection of multiple faults 
was considered in other domains, such as semiconductor technology [135, 149, 152, 153, 156, 159, 161]. 
Hence, injecting multiple faults with corresponding attributes is a research gap for DCV and heating 
systems. This thesis goes beyond state-of-the-art by introducing a framework for injecting multiple faults 
with corresponding fault attributes while observing the propagation of the faults from the component level 
to the system level and the manifestation of system-level properties (e.g., energy efficiency and occupant 
comfort). The introduced framework is generic and scalable and can be instantiated for different building 
structures and fault combinations. The fault attributes are expressed using matrices, which are extended in 
size and dimensions to support more complex structures with additional components, zones, and buildings. 
The FI occurs using an HVAC simulation framework with realistic physical models of thermodynamics, 
heat/air flow transfer, and environmental conditions [16]. 

 
Research Gap 4: Experimentally Evaluating the Effects of Multiple Faults on the Behavior of DCV 
and Heating Systems: Experimental evaluations of HVAC systems were carried out in [164, 165, 168, 
169] to monitor the system behavior in the presence of faults. However, in the field of DCV and heating 
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systems, the experimental evaluations of multiple faults in combination with different environmental 
conditions have not been published, and no such experimental data is available. This research gap is a 
barrier to developing fault-tolerance techniques and the dependability evaluation of HVAC systems. The 
FI framework introduced in this thesis monitors the system behavior for different fault patterns and multiple 
fault combinations defined by the user. The FI framework is generic and enables the evaluation of quality 
attributes such as heating cost, energy consumption, occupant comfort, indoor temperature, and air quality 
[16]. 

 
Research Gap 5: Single-Fault Detection and Diagnosis Service: Single-Fault Detection and Diagnosis 
(SFDD) methods have been accomplished in  [118, 178, 189, 191, 193, 195, 198, 199, 203–207, 209–212, 
214, 215, 217, 218, 220, 221] to diagnose the faulty conditions in different application domains. However, 
some methods are purely knowledge-based. Expert knowledge and experience have a significant role in 
developing the methods (e.g., BN construction and probability table calculation), which should be improved 
by applying suitable data-driven approaches or automation strategies. BN is an effective method for 
modeling uncertainties of HVAC systems that can be extended for complex structures. However, the BN 
construction should be cost-effective regarding operation time and independence on historical data and 
expert knowledge. Therefore, this thesis goes beyond state-of-the-art by introducing a fuzzy Bayesian belief 
network that performs the network construction based on fuzzified system attributes (knowledge-driven 
approach) and finding correlations between them using MI indicators with less expert effort. Finally, an 
automatic classifier algorithm (data-driven approach) enables fault diagnosis by classifying faults based on 
their similarities with online, actual system execution, and offline libraries of various faults.  
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4 System Model of Simulation Environment of HVAC 
System  

 
This chapter presents the DCV and heating system model representing contemporary HVAC systems 

with manifold components as a foundation for the FI framework and the FDD techniques. In this model, 
embedded processing units coordinate the sensor and actuator nodes to control the air quality and thermal 
conditions of a multi-zone office building. This chapter describes the physical model of a multi-zone 
building, including the DCV and heating systems as composable system models generated in a flexible 
manner for different numbers of zones. Behravan [32][25] has introduced the physical model for the multi-
zone building and composable structure that is applied to evaluate the proposed techniques in this thesis. 

4.1 Physical Model of Multi-Zone Target System 

   
HVAC systems are macroscale-distributed embedded systems and are among the largest energy 

consumers in buildings since they must maintain comfortable thermal conditions. HVAC systems consist 
of different kinds of sensors, actuators, and controllers, which are interconnected with various wire-bound 
and wireless networks. This section elucidates the system model of a DCV and heating system [25] and its 
embedded subsystems.  
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Figure 7. The overall scheme of the multi-zone target system model used to validate this thesis techniques [25]. 
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The utilized system model of the HVAC system comprises a typical building with several rooms 
on different floors, e.g., an office building with six rooms and a corridor as part of a floor. Each room is 
typically equipped with multiple electronic components, such as sensors and actuators.  Figure 7 illustrates 
an overall scheme for a multi-zone target system model used to validate the techniques in this thesis.  The 
system model is based on the thermal dependencies among distinct zones. The arrows in Figure 7 
demonstrate the thermal dependencies among rooms, outdoor and indoor environments, and how the system 
and building assumptions are applied to achieve measured outputs. Figure 8 shows the interrelation and 
external interactions of the system components in a room. Each room consists of different subsystems, such 
as the heating (thermal) subsystem and demand-controlled ventilation subsystem, including airflow 
subsystem, sensors, and actuators. The model’s assumptions are based on natural environmental heating 
and ventilation. For each zone, the heat transfer differential balance formulas have been modeled.  
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Figure 8. The system model of the simulation environment description illustrates system components and their interrelations with 
the room’s environment. 

System configurations and heat transfer computations in different subsystems are based on the thermal 
and building assumptions e.g., daily temperature . In addition, sensor nodes send their measured values to 
the controller via a coordinator. Afterward, the controller processes the received measurements, specifies 
the commands, and exerts them on the actuators, e.g., heater and damper actuator, to perform appropriate 
response actions [25]. For example, in case of a high indoor CO2 concentration for high occupancy numbers 
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in a zone, the damper actuator should become open to bring  fresh air into the zone.  The heater control 
ensures thermal comfort for the occupants. Furthermore, in critical infrastructures, such as airports and 
hospitals, HVAC systems serve an essential role in emergencies. For example, in the case of a fire, HVAC 
systems need to remove toxic gases while slowing down the expansion of the fire. The heating subsystem 
supplies heat and thermal energy for the entire indoor space of the multi-zone building to balance the 
internal thermal and air conditions and keep it at a comfort level for residents. Designing the thermal model 
depends on several factors, including physical and thermodynamic characteristics of the building (e.g., 
walls, ceilings, floors, indoor air, and internal heat transfer), environmental conditions (e.g., temperature, 
pressure, and wind speed), heating system type, control strategies, user requirements (e.g., desired 
temperature, and indoor air quality) and occupant’s behavior (e.g., the number of occupants over time) [25]. 
“Heat transfer” refers to the transmitted thermal energy due to the spatial temperature difference that can 
be stored in thermal heat capacities and transmitted through these elements [25]. Parameters to be calculated 
for internal heat transfer are conduction, convection, radiation, and ventilation [25].  
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Figure 9. Lumped elements in the RC approach in two different orders [25]. 
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The thermal system is modeled based on the lumped capacitance method introduced by Hudson and 
Underwood [228] based on a topology between thermal systems and the RC electric circuit model [25, 229, 
230]. It means that the physical descriptions of the system model are simplified to discrete numbers of 
temperature elements named “lumps” that construct an energy balance equation to show the overall thermal 
behavior of building zones. The model is constructed with resistors and capacitors as heat storage included 
in an electrical network. Each resistor includes lumped thermal resistances (Ri), and each capacitor includes 
thermal capacitances (Ci), as illustrated in Figure 9. Figure 9 presents the order of the lumped elements as 
electrical networks. This network will be extended into higher orders by increasing the number of elements 
to build the required electrical structure [25]. Thermal nodes in the thermal model of the DCV and heating 
system are constructed from thermal lumped elements and are connected to each other. A central node in 
each zone is connected to other central nodes in other zones via thermal paths across the walls and windows 
shown in Figure 10.  

 

Thermal Network  in a Multi-Zone Building 

 
Figure 10. Thermal network (thermal paths across the walls and windows) in a multi-zone building with six zones and one corridor 

[25]. 

DCV involves a control strategy for ventilation to moderate the amount of fresh air. It also optimizes 
air quality in terms of CO2 concentration and temperature. It balances energy consumption by automatically 
adjusting the volume of the air exchange. It uses damper actuators according to the captured sensor 
measurements and values from air quality sensors and the environment. This strategy enhances the quality 
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of the indoor air. It obtains energy saving by the automatic adjustment of damper actuators based on the 
sensor values that are obtained from the environment. The ventilation is represented by the internal and 
external linked airflows. The ventilation design should determine the amount of ventilated air to reach the 
best indoor air quality, e.g., an amount of 15 cubic feet per minute (cfm) of ventilation in winter and summer 
[25] as required for each person based on the ASHRAE standards [231, 232]. Pollutants (e.g., CO and CO2 

produced by humans and fuel gas burning) are emitted from occupants and building equipment and trapped 
inside the zones resulting in health consequences and discomfort of occupants [25]. Therefore, a control 
strategy for natural ventilation is essential, e.g., exchanging the air with the outside environment by opening 
the window using sensor technologies. For example, CO2 sensors measure the amount of carbon dioxide 
based on the CO2 concentration computation. A typical CO2 sensor ranges from 0 to 9999 ppm with an 
accuracy of 50 ppm ∓ 5% [25]. A DCV subsystem includes several components, such as the airflow 
subsystem, CO2 concentration sensor, temperature sensor, damper actuator, and occupancy sensor modeled 
by an occupancy pattern. 

 

4.2 Component-based Development   
 

Component-based development reduces effort and improves scalability by generating DCV and 
heating system models. Different component models are defined previously, stored in a repository, and 
integrated to build a system model based on the system requirements.   
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Figure 11. System model of component-based environment description. 
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Figure 11 describes the component-based system model, including the required specifications, 
interactions, and system elements such as system model generation script, user command panel, required 
system variables and assumptions, components of the repository, e.g., room, corridor, and thermal blocks, 
and how they interact to attain system goals. A generation script is responsible for module replacement, 
system configuration, and linking different components via their connection ports. System designers can 
introduce different system configurations through a high-level specification or a graphical dashboard, e.g., 
specifying the number of floors and rooms. Afterward, according to the number of rooms and floors, the 
generation script creates the building layout based on the room types. In the generated system model, there 
are three types of rooms consisting of “Room Type A” or “Room 1”, “Room Type B” or “Room 2”, and 
“Room Type C” or “Room 3”. Rooms are differed based on their locality and heat transfer issues. Room 
type A is placed in front of the stairs and is affected by the stair's temperature and other thermal and 
ventilation conditions. Room type B is located between room type A and room type C, affected by their 
thermal conditions. Moreover, Room type C is located beside room type B and is affected by its 
corresponding thermal conditions. In addition, all types of rooms are affected by the outside environment 
(refer to  Figure 7 and Figure 11) [25].  

 

4.3 Fault Injection   
 

 Fault injection deliberately introduces various failure modes in the target system for testing the 
software or hardware in the design phase to validate the system's robustness and harden the system’s 
resilience, stability, and performance over time. Errors and failures are inevitable in critical and modern 
infrastructures constructed with numerous and intelligent components [233]. In modern applications, a 
remarkable dependency on system infrastructure such as components, networks, and software increases the 
fault occurrence rate and propagation, leading to more product and system output disruptions, energy 
consumption, and reduced equipment life [233, 234]. To detect and diagnose faults, it is necessary to define 
the fault classifications of the HVAC system. FI is a method to introduce the various failure modes to the 
target systems to study the systems under different fault conditions. Naughton et al. [235] have mentioned 
four important criteria for FI systems, including (1) simplicity meaning the FI and experimental evaluation 
activities should be easy to setup,  (2) versatility, (3) reproducibility meaning the FI should be able to 
activate reproducible tests, and (4) distributed environments meaning the FI should be applicable to 
distributed environments.   

In this thesis, fault injection testing contains seven primary steps, including (1) defining the steady 
(healthy) states of the system parameters by modeling the DCV and heating system, (2) defining the faults 
hypothesis according to the system requirements (fault modeling), (3) defining the realistic faulty events to 
the system (fault-scenarios), (4) measuring the system parameters under fault-events by activating them via 
automated fault injection algorithm, (5) documenting the system observations under fault-events, (6) 
analyzing the system observations, and impacts by comparing them with steady states of the system, and 
(7) interpreting the fault scenarios results. This section contains the introduction of the automated fault 
injection framework in the case of single-fault injection, multiple-fault injection, and fault injection 
framework integrated with the composable model.  
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4.3.1 Automated Fault Injection in Simulation of HVAC Systems 
 

In HVAC systems, due to high complexity, several types of faults can arise, including hardware faults, 
design faults, communication faults, and interaction faults, affecting the system's function. These faults in 
HVAC systems not only cause a waste of energy and occupant discomfort under normal conditions but also 
lead to hazards that impact safety in emergency scenarios. Therefore, considering the dependability 
evaluation abilities of the HVAC system in early implementation phases is necessary for high system 
performance and reliability in the systems under test.   
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Figure 12. System model of simulation environment including fault injection framework and fault injection blocks and their 
interrelations. 

Figure 12 gives an overview of the system model of a simulated HVAC system, including the embedded 
fault injection consisting of fault injection blocks with interrelations to other system subsystems and 
components. Faults are introduced in the system model by fault injection saboteurs. Each fault injection 
saboteur has been placed before the main system components or subsystems, such as temperature sensor, 
CO2 concentration sensor, damper actuator, and heater actuator, to introduce the different failure modes 
deliberately and to analyze the system behavior and the fault impacts. The fault injector changes the steady 
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signal behavior as defined in fault scenarios by the system designer. When one fault occurs in one 
component, that fault may affect the behavior of other components. For example, in a DCV and heating 
system, a permanent stuck-at-value fault in a temperature sensor may cause a heater actuator to be 
permanently in the “off” position, resulting in rising CO2 concentrations and a damper actuator “open” 
position. Due to the system parameter values, the system model reacts to balance the system thermal 
condition and to maintain the indoor air quality for more occupant comfort. Therefore, a single or multiple 
fault occurrence may cause fault propagation into other components and interrelated subsystems.  

In addition, Figure 12 show how the automated fault injection enables fault injection scenarios by 
providing the fault model attributes to the corresponding fault injection saboteur, e.g., fault location, type, 
injection time, persistence, and duration. The faulty measured signal and system outputs are documented 
as faulty objects in a library. The library of faults can be initialized as system model variables for other 
objectives such as experimental evaluation activities and FDD technique development. In single-fault 
injection, one fault scenario is activated at one fault injection saboteur in one room. This fault may be 
intermittent causing a repeated fault injection with the fault attributes of the component for the defined 
repetition times. In contrast, in multiple-fault injection, multiple fault scenarios are activated at different 
fault injection saboteurs in different components, rooms, and floors. Therefore, each fault scenario should 
include the fault address to show the fault’s target location by determining the faulty floor (floor number), 
faulty room (room number), and faulty component (component number). 

 

4.3.2 Automated Fault Injection in HVAC Composable Model  
 

In the modern world, during the construction of hospitals, airports, and office buildings, numerous 
HVAC systems are used as large-scale distributed systems with thousands of components, including sensors 
and actuators, which are vulnerable and susceptible to various and multiple failure modes. Compared to 
smaller-scale systems where the single fault hypothesis is common, in critical infrastructures and large-
scale systems, multiple faults are more probable. As a result, multiple-fault injection is a requirement for 
large-scale DCV and heating systems. Modeling and simulation are cost-effective, time-efficient, and risk-
free alternatives to experimental setups for system design, monitoring, and testing [21]. In system design, 
composition describes how components can be selected and combined in various configurations and levels 
to meet user requirements with significant savings in development expenses and runtime. The component-
based development is challenging in the modeling and simulation discipline [236, 237]. It is convenient to 
express high-level models with the system requirements and to generate the simulation model in an 
automated manner with support for injecting various faults to test and evaluate the outputs and behavior of 
the system.  

In this thesis, the generated simulation models support multiple-fault injections in DCV and heating 
systems with the required system structure. The unique system configuration and structure, e.g., the number 
of floors and rooms, can be defined by users via configuration information and a command panel. Figure 
13 illustrates the components of the simulation model with an embedded automated multiple fault injection 
framework and it also shows how the components interact. The primary components are an automated fault 
injection script, a simulation model generation script that supports the Simulink environment, a repository 
of components, e.g., room and corridor blocks equipped with automated multiple-fault injection capabilities 
and model assumptions as system variables (e.g., environmental conditions, building assumptions, 
thresholds, nominal values).  
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Figure 13. The generated simulation model with multiple-fault injection support and the component interrelations. 

 

4.3.3 Automated Single-Fault Injection   
 

Each fault injection system contains essential and primary elements such as an injector, analyzer, 
controller, data-collector, monitor, and target system [143, 235]. In this thesis, an automated and simulation-
based method of fault injection is proposed (named ASFIF) by the combination of simulator command and 
simulation code modification techniques that are constructed of two main parts, including (1) the command 
environment and (2) the simulation environment. Simulation-based techniques simulate the system in a 
simulation environment with a predetermined distribution of failures via a set of inputs. The simulation 
code modification technique modifies the system description by adding extra components dedicated to the 
FI procedure called saboteurs or mutants. Saboteurs are disabled during normal system operations and 
enabled in case of faults activations. They can be added and enabled manually and automatically. Simulator 
command techniques, procedural interfaces, and command languages extend the model to speed up the 
simulation [53].  
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Figure 14. Automated fault injection framework and its main elements and their interrelations. 

Figure 14 demonstrates the main components of the automated single fault injection framework in 
which the command and simulation environments interact to activate a fault case example. The 
environmental attributes and input patterns examine the system and provide data for the fault injection 
framework and the simulation model. Then, the fault injector blocks as saboteurs must be added to the 
simulation model (Figure 12) and initiate the corresponding attributes for each faulty mode. The fault 
injector blocks have been developed by Stateflow diagrams that initialize the fault attributes via an 
automated fault injection algorithm for each input pattern and fault scenario. After the termination of the 
simulation’s execution time, the monitoring blocks collect the measured data. Tests are inserted by the fault 
injector when the test load has succeeded in the system. The simulation output is gathered and returned to 
the fault injection algorithm to be analyzed for data analysis activities, including the FDD methods, 
experimental evaluation, and impact analysis. The modules of the FI framework are the fault model 
description, the fault scenario generation script, the automated fault injection script, the target system model 
equipped by fault injection blocks, input patterns including the system assumptions and fault assumptions, 
data observer blocks, and data collector blocks which are described in the following.  
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4.3.3.1  Command Environment 

 
The FI framework consists of two main parts, the command environment, which provides the command 

language space and user interface, and the simulation environment, which serves the target system 
simulation using Simulink blocks and tools using the MATLAB programming language.  The command 
environment also models the fault patterns and assumption for the single and multiple fault injections. In 
each fault injection case, a scenario is required to activate the fault pattern. Therefore, a scenario generation 
script also cooperates with the fault injection process, which can be defined based on the user requirements 
or assign the fault attributes randomly. Different parts of the command environment are described in the 
following. 
 

4.3.3.1.1  Fault Model Description  
 

The fault model specifies the target failure modes and determines the analysis possibilities for the user. 
The parameters of the fault model describe the real-world environment and system characteristics. The fault 
model can be defined under two assumptions: single fault assumption when only one failure mode occurs 
in the system, and multiple fault assumption when multiple faults occur at different points in time or at the 
same time in the system. Each fault can be categorized using six main criteria: phase of creation 
(development or operational), system boundaries, domain, phenomenological causes, intents, and 
persistence. According to the system requirements, one or several criteria can be chosen and considered 
during fault modeling. 
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Figure 15. Fault model criteria. 

 Figure 15 demonstrates the applied fault criteria for FCR-level and system-level faults in our 
introduced fault model. In this thesis, fault criteria have been considered and modeled for FCRs, including 
the sensors and actuators. Their associated criteria, such as location, type, and persistence, have been 
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considered. These faults occur internally in each FCR as natural or human-made faults. For the criterion of 
the domain, only hardware faults have been considered. Hardware faults occur in communication or in 
devices due to various defects and malfunctions in harsh environmental conditions. In case of a permanent 
hardware fault, the component should be removed and replaced. An example of a hardware fault is a short 
circuit due to the presence of water. The other fault criteria such as developmental, operational and external 
faults are not considered because they are not relevant to fault containment regions in our model. 

In this thesis, the fault injection framework focuses on hardware and data-centric faults of the 
components, including sensors and actuators with the respective persistence and fault locations.   

 

4.3.3.1.2  Data-Centric Faults in Components  
 

In this thesis, data-centric faults are modeled and related to the generated  data from the components, 
including the CO2 concentration sensor, temperature sensor, damper actuator, and heater actuator. Table 5  
presents the fault attributes with their corresponding detailed information, including the fault  type, 
persistence, duration, interarrival time, repetition, location,  and value, along with their details and 
measurement functions. Sensor measurements are time-dependent, and they vary over time. Therefore, a 
time-dependent measurement  function calculates the faulty values for different fault types in each faulty 
state of the system and each time slot for sensory components.  The following equation describes the 
generated data for a component that can be modeled as a measurement function ( )x t as shown in Equation 

8.  Equation 8 defines the  faulty values to achieve the results of the FI for different fault types: 
 

x x         Equation 8 

 

x   represents healthy data, x is the calculated faulty data,   is the coefficient for gain faults,  is the 

coefficient for offset faults, and   is the coefficient for white-noise uncertainties, which is a combination 

of the Gaussian distribution for measurements and uniform distribution of the measurement uncertainties. 
 
Table 5. Fault attribute analysis and description of the introduced fault profile. 

Nr. Attribute in Fault Profile Fault Details 
Measurement Functions for Fault 
Types based on Equation 7 

1 Fault type 

Stuck-at-fault-value (Sensors) 
 
Stuck-at-fault (Actuators) 

x′ = α+ η (Sensors) and  

x′ = 0 or 1 (Actuators) 

Gain fault x′ = βx + η 

Offset fault x′ = α + x + η 

Out-of-bound fault x′ > θ1 or x′ < θ2 

Data-loss fault x′ = Last measurement of actual value 

White-noise Fault Gaussian Probability Distribution  

2 Fault persistence type 
Permanent fault  
Transient fault 
Intermittent fault 
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3 Fault duration time Uniform distribution of intermittent faults  

4 Fault interarrival time Uniform distribution of intermittent faults  

5 Fault repetition 

 
0 Repetition time for permanent faults 
1 Repetition time for transient faults 
2, 3, …, n  Repetition times for intermittent faults 
 

6 Fault location (FCR) 

 
CO2 sensor 
Damper actuator 
Temperature sensor 
Heater actuator 
 

  
Table 5 shows the fault model attributes, including fault type, persistence type, duration time, 

interarrival time, repetitions, and location (i.e., FCR). Each fault attribute is described as follows.  
 

4.3.3.1.3 Fault Types in HVAC Systems 
 

Different fault types have been considered in our FI framework. There are six fault types: the stuck-
at fault for the actuators and stuck-at-value, gain, offset, out-of-bound, data-loss, and white-noise faults for 
sensor components. Each fault type is defined as follows. 
 
Stuck-at-Fault: A stuck-at-fault is a hardware fault in which the behavior of a component is stuck at a 
particular point in time, the variation of the signal is zero and it does not change over time [11, 238–240]. 
Stuck-at faults may happen in both actuators and sensors as stuck-at sensed values  in sensor components 
and stuck-at statuses of actuator components, e.g., stuck-at-open and stuck-at-closed statuses in a damper 
actuator, and stuck-at-off and stuck-at-on statuses in a heater actuator. A stuck-at-fault occurs in actuators 
when x′ = 0 or 1, where 0 and 1 specify the actuator statuses. For example, in the heater actuator, one shows 
that the heater is “on”, and zero shows that the heater is “off”. A stuck-at-value fault can be modeled using 
Equation 9 where α is a constant sensed data, ƞ is white noise for each measured data, and ( )x f t  . 

 
x                                                                                                                                                                                      Equation 9 

Gain Fault: A gain fault occurs once the change rate of sensed data is different from the expected rate of 
data over a period of time due to the sensing unit’s bias, drift, or calibration error [11, 238–240]. This fault 
has only been considered for the sensors. It can be injected by multiplying a constant coefficient with the 
actual sensed data. Equation 10 has modeled a gain fault where β is a gain coefficient with respect to the 
healthy measurements, and ƞ is white noise for each measured data ( )x f t  .   

 
x x                                                                                                                                                                                        Equation 10  

Offset Fault: An offset fault occurs when a shift value is added to the actual sensed data due to the sensing 
unit’s bias, drift, or calibration error and shows a deviation from the expected actual data [11, 238–240]. 
This fault has only been considered for the sensors. Equation 11 has modeled an offset fault where α is a 
constant value added to the healthy measurement, ƞ is white noise for each measured data, and ( )x f t  . 
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x x                                                                                                                                                                                                 Equation 11  

Out-of-bounds Fault: There are minimum (x′ > θ1)  and maximum (x′ < θ2) bounds for each sensor, and 
sensor measurements should be in these ranges [11, 238–240]. An out-of-bound fault occurs when the 
observed values or measurement data are out of the expected ranges (bounds) where ( )x f t  . θ1 and θ2 

are required application thresholds. 
 
Data-loss Fault: A data-loss fault occurs when a component is missing data during a specific time interval. 

( )f t   , t  ; where   is the null value and   is the maximum required time for receiving the 

measured data. In case of a data loss fault, the last measurement of the sensed data indicates that the actual 
measurement is missing [11, 236–238]. In this thesis, the last measurement has been considered for the 
received data in case of the data-loss fault occurrence (i.e., x′ = Last measurement of actual value). 
 
White-noise Fault: To develop a realistic system model, white-noise as a random uncertainty has been 
added to the actual sensed values considered as white-noise faults [11]. A Gaussian probability distribution 
or a uniform probability distribution determines these random values which are added to the actual values. 
The Gaussian distribution is also known as normal distribution because a random variable with a gaussian 
distribution is distributed normally, and it is a continuous probability distribution as defined in Equation 

12, where   is the mean of the distribution and   is the standard deviation [241].  
21
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Equation 12 

4.3.3.1.4 Fault Persistence in HVAC Systems 
 
Our proposed FI framework considers different fault persistence types, including transient, 

permanent, and intermittent faults. In this section, the fault persistence attributes are explained. 
 
Single Permanent Fault: a permanent fault remains in the system for the rest of the FI system execution 
time. Permanent faults have been considered during the FI process for sensors and actuators. Figure 16  
illustrates the generic timing diagram for the permanent fault injection.  
 

  Permanent Fault Instance

Start of Fault 
Injection Time

End of Fault 
Injection Time

Permanent Fault Injection Timeline

 Fault Duration (FID) (S)  

First Fault Injection time 

 
Figure 16. Generic timing diagram for a single permanent fault injection at a hardware location [11]  

 
Single Intermittent Faults: intermittent faults are bursts of failures and emerge at the same hardware 
location in irregular intervals. There are different types of intermittent faults, including short intermittent 
faults with few failure repetitions, long intermittent faults with a greater number of repetitions that 
disappear, and long intermittent faults that do not disappear in the FI system execution time and become 
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permanent faults gradually [115]. Figure 17 shows a generic timing diagram for the intermittent faults, e.g., 
with three failure repetitions. This example can be considered a short intermittent fault with three 
repetitions. If the number of repetitions increases, the fault can be considered as a long intermittent fault. 
The fault injection process starts from the first fault injection time, and faulty behavior starts based on the 
fault type. Then, the fault injector operates according to the Fault Duration (FD) time, and the subsequent 
repetition starts after a Fault Interarrival Time (FIT). FIT determines the time between two repetitions. The 
following fault injection time can be computed by adding the fault injection time, duration, and interarrival 
parameters. Different fault types and faulty values (using Equation 8) can be selected for each repetition at 
the same hardware location.  

  First Fault Interarrival Time (FIT) Second Fault Interarrival Time

Second Fault Instance 

FIT (S)
 Fault Duration 2 (S)   Fault Duration 3 (S)  

Start of Fault 
Injection Time

End of Fault 
Injection Time

Third Fault Instance

Intermittent  Fault Injection Timeline

 Fault Duration (FID) 1 (S)  

First Fault Instance 

FIT (S)

 
Figure 17. Generic timing diagram for a single intermittent fault injection at a hardware location [11] 

 

Knowing the frequency of intermittent faults in different components is essential to realize the 
system functionalities for proper recovery actions [122]. There are no comprehensive intermittent fault 
studies in HVAC systems, including modeling of intermittent faults, their frequencies, and repetitions. Few 
fault models describe intermittent faults with their occurrence frequencies [47, 119–123]. Therefore, there 
is no reliable timing model for intermittent faults for the sensors in HVAC systems. Intermittent faults are 
more common in actuators. The timing parameters in the literature have been applied to our fault model 
[11, 130, 242]. In this thesis, intermittent faults have been considered only for the actuators due to the lack 
of proper timing models for the sensors in HVAC systems. 

In this thesis, in the case of the multiple fault injection, an approximate fault occurrence probability 
approach based on the maintenance records and prior studies has been proposed to model the intermittent 
faults based on the failure probabilities with  different repetitions. Both types of intermittent faults have 
been investigated and modeled, such as short (e.g., with two repetitions) and long intermittent faults (e.g., 
with N number of repetitions). Modeling of the permanent and transient faults differs from intermittent 
faults. In the case of long intermittent faults, repetitions can be increased based on the designer’s necessities, 
but faults also disappear eventually. In Figure 17, a fault set with the intermittent persistence type is 
activated in a sequence of failures with different durations and interarrival times. Each failure can have 
different types and values can be measured based on the selected types. As an example, losing switch 
contact in measurement devices causes an intermittent fault occurrence with a sequence of multiple failures. 
For example, the failure cases can be a sequence of stuck-at, data-loss, or gain faults with three repetitions. 
 
Single Transient Faults: a transient fault occurs once and then disappears till the next failure based on the 
Mean Time to Failure (MMTF) parameter and the system execution time. Transient faults usually occur 
due to environmental conditions, e.g., high-energy particles [115]. Figure 18 provides a generic timing 
diagram for the transient fault at a hardware location with no repetition. It occurs once during the FI system 
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execution time. A transient fault starts at the fault injection time and ends after its defined Fault Duration 
(FD). During the fault duration time, different fault types may happen. There are two types of transient 
faults: short intermittent fault with short fault duration and long transient faults with longer fault duration, 
which differ based on the system specifications [115]. 
 

  Transient Fault Interarrival Time (FIT)
Start of Fault 

Injection Time
End of Fault 

Injection Time

Transient Fault Injection Timeline

Transient Fault Instance 

First Fault Injection time 

 
Figure 18. Generic timing diagram for single transient fault injection at a hardware location [11] 

 

4.3.3.1.5 Multiple Fault Injection Timeline  
 

Figure 19 shows the system timeline in case of multiple fault occurrences in which different components 
(FCRs) have different fault assumptions, e.g., different types of fault persistence where each repetition takes 
different fault types and timing parameters. In Figure 19, FCRs x, y, and z are different fault locations, e.g., 
different floors, rooms, and components with different fault persistence, demonstrating component-level 
timelines. A permanent fault has been assigned to the FCR x, an intermittent fault with two repetitions has 
been assigned to the FCR y, and another intermittent fault with two repetitions has been assigned to the 
FCR z with different timing parameters (e.g., different fault injection, duration and interarrival times). The 
system-level timeline specifies how fault injections at multiple locations with different fault assumptions 
are integrated into a unique timeline.  
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Figure 19. System timeline in case of multiple-fault occurrences. 
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4.3.3.1.6 Fault Occurrence Probabilities for Multiple-Fault Pattern in HVAC Systems 
 

Two principal metrics describe the fault occurrence rate, including fault prevalence and incidence. 
Fault prevalence defines the fault occurrence rate of the units for a given fault at a single point in time. The 
fault incidence is the fault frequency in a specific period [242]. This thesis calculates the fault occurrence 
rates using maintenance records and field reports based on the fault type and environmental conditions, 
such as the season or month the system is investigated. Components in HVAC systems fail with different 
probabilities and rates due to various conditions, e.g., the number of components, environmental conditions, 
and unit failure rates. We have used available maintenance records to find the occurrence rates of HVAC 
system faults. For instance, Li et al. [224] used maintenance records to calculate the frequency and 
occurrence of incidents of various HVAC faults for one year. They calculated the average probability of 
occurrence around 0.0102 for each associated fault. Ebrahimifakhar [226] proposed the fault occurrence 
rates of several types of faults with different metric definitions calculated according to other FDD 
techniques. They also calculated average fault presence percentages for the various units, faults, and 
months. For instance, the average fault presence percentage of a stuck discharge air damper is estimated at 
approximately 8%, heating failure at 9%, and air temperature abnormality at 18% for HVAC and AHU in 
February. Faults are also listed based on their monthly presence. Hosseini Gourabpasi et al. [227] ranked 
HVAC-related faults and their frequencies with data-driven techniques. For example, the limit issue faults 
had the first rank with a rate of 15.18%. The stuck-at/partially closed faults had the second rank with a rate 
of 14.95%, and bias/drift/calibration faults had a probability of 10.94% and were listed in the fourth rank. 
Applicable unit faults in our proposed FI framework and their fault rates are listed and described in Table 
6. The average probabilities for the associated fault types were calculated over one month and one day. In 
this thesis, the fault occurrence rate during each FI is the disjoint probability of both component failure 
rates based on Table 6 nd the application of system fault type rates. Fault type occurrence probabilities for 
the stuck-at fault, gain fault, offset fault, out-of-bounds, and data-loss fault can be defined as 14.95%, 
10.94%, 10.94%, 10.94%, 4.46%, 4.46%, respectively [226]. 

 
Table 6. The faults and their fault occurrence incidents for the associated fault types 

Nr. Component System Faults 

Average 
Presence of 
Faults in 
February 

Average Monthly 
Presence of Faults 
Among the Total of 28 
Faults 

Total Monthly 
Probability 

Total Daily 
Probability 

1 
Temperature 
Faults 

Temperature sensor fault  

18% 

8% 

0.2538 0.0091 

Temperature frozen 35% 
The mismatch between supply air 
temperature and its setpoint  

26% 

Supply air temperature abnormal 12% 
Mix air temperature sensor fault  4% 
Mix air temperature abnormal  22% 

Return air temperature abnormal  2% 
Setpoint fault         4%  
Missed control optimization  28% 

2 Heater Faults 

Heater abnormality  

9% 

2% 

0.0324 0.001157 
Heating coil valve leakage  2% 
Setpoint fault  4% 

Missed control optimization  28% 

3 CO2 Faults 
Airflow sensors abnormalities (CO2

sensor) 
13% 10% 0.05785 0.00206 
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Return airflow abnormal  1.5% 
Return air CO2 sensor  1% 

Missed control optimization  28% 
Setpoint fault  4% 

4 Damper Faults 
Damper stuck 

8% 
11% 

0.0312 0.0028 
Missed control optimization  28% 

 

4.3.3.1.7 Component Faults in HVAC Systems  
 
Component faults include a fault location (i.e., FCR) such as a CO2 concentration sensor, 

temperature sensor, damper actuator or heater actuator. Each FCR can take different fault characteristics, 
such as fault type and persistence. In this section, each fault location is described. 

 
CO2 Sensor Fault: The CO2 sensor fault resembles an incorrect sensor reading. Five kinds of faults are 
considered for the CO2 sensor components: the gain fault, offset fault, stuck-at-value fault, out-of-bound 
fault, and data-loss fault. The proposed fault injection framework is generic and compatible with different 
target systems. Therefore, different types of fault persistence for sensors and actuators can be activated 
based on the system timing parameters. There are no appropriate timing parameters for the intermittent fault 
types in sensors in HVAC systems. Hence, for the persistence attribute, only permanent faults have been 
considered for the CO2 sensor.  
 
Temperature Sensor Fault: The temperature sensor fault resembles an invalid sensor reading. Five kinds 
of faults are considered for the temperature sensor components: the gain fault, offset fault, stuck-at-value 
fault, out-of-bound fault, and data-loss fault. For the persistence attribute, only permanent faults have been 
considered for the temperature sensor.  
 
Damper Actuator Fault: The damper actuator fault resembles a stuck-at fault when a damper is stuck at a 
specific position, including “Closed" equal to the binary value of 0, and “Opened” which is equal to the 
binary value of 1. For example, once the damper actuator is stuck to the open state, the open state of the 
damper actuator causes fresh air to enter the indoor environment, decreasing the temperature. Therefore, 
the heater actuator should constantly compensate the heat loss. 
 
Heater Actuator (Thermostat) Fault: This fault describes a stuck-at fault when the heater sticks to a 
specific position, including “Off” and “On”. Suppose the heater is stuck at its “On” position. In that case, 
it acquires the binary value of 1, which means that the indoor temperature rises. Suppose the heater has a 
stuck-at fault in the ”Off” position, which equals the binary value of 0. In that case, the temperature tends 
to decrease. 

 

4.3.3.2 Input Patterns of Fault Sets 

 
The input patterns of the automated fault injection algorithm are shown in Table 7 . Each sample can be 

set by a specific combination of the fault inputs and variables to create fault sets for the system at operation 
time. A fault location (faulty component) will be selected each time for the fault-initializer algorithm which 
is introduced in the next section. Other aspects of faults (e.g., timing and persistence) that the system may 
face during the system operation time are defined in a fault model. In a random fault model, a fault set 
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initiates and affects a particular component in one room. The persistence, types, durations, and interarrival 
times are initiated in each fault set.  
 
Table 7. Fault attributes analysis and descriptions in the introduced fault profile model. 

Nr. Properties Realistic Example for a Fault Set in an Automated Fault Injection 

1 Number of samples 
The number of samples can be randomly defined or manually assigned. Each sample or system 
execution time equals one day or 86,400 s; 30 samples are equal to 30 days (one month), or 60 samples 
are equal to 60 days (two months). 

2 Model of fault 
Random fault happens in one component with different random fault attributes and times. 
A systematic fault happens in multiple components simultaneously and of the same type. 

3 Fault type vector 
Fault types are defined as a vector with different IDs: (1: stuck-at, 2: gain, 3: offset, 4: out-of-bound, 
5: data loss) 

4 
Fault injection time 
vector 

This vector includes the injection times for each FCR failure based on the fault type and its repetitions 
in one day. In the same way, the first injection time is randomly selected, and others are initialized 
based on the number of repetitions, fault duration, and fault interarrival times. 

5 
Fault injection 
persistence vector 

{Permanent, transient, intermittent} 

6 Repetition vector {0, 1, 2}, where 0 is for permanent faults, 1 for transient faults, and 2 for intermittent faults. 

7 Fault interarrival vector 
A vector of minimum fault interarrival time (e.g., 400 s) and maximum fault interarrival time (e.g., 
4000 s) that can be selected by the uniform distribution in case of intermittent faults 

8 Fault duration vector 
A vector of minimum fault duration (e.g., 300 s) and maximum fault duration (e.g., 3000 s) that can 
be selected by a uniform distribution in case of transient and intermittent faults 

9 
Faulty component 
(FCR) vector 

{1: CO2 sensor, 2: damper actuator, 3: temperature sensor, 4: heater actuator} 

 

4.3.3.3 Automated Fault Injection Algorithm 

 
The automated fault injection algorithm loads required variables for the system model and FI process 

from files as input patterns and environmental scenarios. Two types of faults can be activated in the system: 
systematic and random faults. In the systematic FI, some components face the same types of faults due to 
systematic or design problems, e.g., uncalibrated measurement devices from factories, such as sensors, 
which result in systematic sensor faults. In the random FI, fault attributes can be randomly selected for each 
fault set. Then, the location of the faults should be clarified to activate a fault set for the target fault-injector 
blocks (i.e., saboteurs). The room and component numbers will show the fault location in the FI process as 
selected by the algorithm. The persistence type of each fault set should also be determined before running 
the simulation file. Meanwhile, persistence presents the number of repetitions of the fault injections in each 
fault set. Then, the simulation runs are performed for each sample time. For example, the execution time 
can be one day (86,400 s). In our FI framework, a Stateflow diagram is used to model the persistence feature 
of the FI framework with different fault duration times and fault interarrival times. In each faulty situation, 
the system's state changes between a healthy state and a faulty state for each element of the fault injection 
vector (e.g., for an intermittent fault with two repetitions, there are two injection times in the fault injection 
vector). Afterward, in this process, if the fault injection time is equal to the system time, then the system's 
state changes. After the corresponding fault duration time, the system's state returns from the faulty state to 
the healthy state. Regarding the fault interarrival time, the state of the system and the signal value is healthy. 
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The system's fault types, and fault values are chosen in each transition of the states, according to the 
Stateflow model. Function 1  provides pseudo-code for the automated single-fault injection algorithm with 
the respective steps. 
 
Function 1. Pseudo-code description for the automated single-fault injection algorithm. 

Automated Fault Injection Algorithm 
Begin  
1. All system variables and inputs initialization 
2. Initialization of the fault injection vector as FIV=0. 
3. Selecting the number of days as Num_Days. 
4. For i=1:1: Num_Days 
5. Selecting the number of repetitions in each intermittent fault as Num_Repetitions. 
6. Selecting the “Systematic” fault or “Random” fault. 
7. If (“Systematic”), all fault attributes should be assigned based on a predefined scenario. 
8. If (“Random”), all fault attributes should be assigned randomly. 
9. Selecting the fault location which shows the faulty target component in each fault injection. 
10. Selecting the persistence type. 
11. If (Persistence is Intermittent), the following vectors should be prepared based on Num_Repetitions. 

a. Preparation of the fault injection time vector. 
b. Preparation of fault duration time vector.  
c. Preparation of the fault interarrival time vector.  

12. If (Persistence is Transient), only fault injection time and fault duration should be assigned once. 
13. If (Persistence is Permanent), fault injection time should be assigned once, and fault duration should take till 

the end of system model execution.  
14. The system model execution file will be opened. This file is a simulated system model file. 
15. The system model execution file will be run. 
16. Fault types and faulty values should be assigned during the system simulation using a Stateflow diagram with 

a transition between faulty and healthy states for each repetition.  
17. The system model should be closed after 86400 seconds.  
18. An Object for each faulty sample is created Fault_Objecti, i= {1, n}. 
19. All attributes for each faulty sample should be saved in this Object. 
20. Output data from simulation execution should be saved in this Object. 
21. Fault_Objecti, i= {1, n} should be stored in FIV. 
End 
End  

 
Function 2 shows the pseudo-code for the automated multiple-fault injection algorithm. It extends the 

single-fault injection (Function 1) to multiple fault injection by injecting the faults at multiple locations. It 
means in each fault injection procedure, multiple faults in different locations are activated by their defining 
indexes. Indexes can distinguish each location. Each index introduces the floor number, room number, and 
component number. In multiple fault injections, the number of faulty samples shows the number of fault 
sets. Each fault set comprises the combinations of all fault attributes accordingly. With indexing, we can 
access the faulty component in each fault injection. Each index includes two factors including the room 
number, and component number. In addition, the fault attributes should be defined as matrices instead of 
vectors.   
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Function 2. Pseudo-code description for the automated multiple-fault injection algorithm. 

Automated Fault Injection Algorithm 
Begin  
1. All system variables and inputs initialization. 
2. Initialization of the fault injection vector as FIV=0. 
3. Selecting the number of days as Num_Days. 
4. For i=1:1: Num_Days 
5. Selecting the number of faulty samples which introduces the number of faulty samples in each day as 

Num_FaultySamples 
6. Selecting the number of repetitions in each intermittent faulty sample as Num_Repetitions 
7. Selecting the “Systematic” fault or “Random” fault 
8. If (“Systematic”), all fault attributes should be assigned based on a predefined scenario. 
9. If (“Random”), all fault attributes should be assigned randomly. 
10. For j=1:1: Num_FaultySamples 
11. Selecting the fault location and indexing.. This index activates the target faulty component with Index 

(#Num_Room, #Num_Component) 
12. Selecting the persistence type 
13. If (Persistence is Intermittent), the following Matrices should be prepared based on the Num_Repetitions. 

a. Preparation of the fault injection time Matrix. 
b. Preparation of fault duration time Matrix. 
c. Preparation of the fault interarrival time Matrix. 

14. If (Persistence is Transient), Only fault injection time and fault duration should be assigned once. 
15. If (Persistence is Permanent), Fault injection time should be assigned once, and fault duration should take till 

the end of system model execution.  
16. The system model execution file will be opened. This file is a simulated system model file. 
17. The system model execution file will be run. 

a. Fault types and faulty values should be assigned during the system simulation using a Stateflow 
diagram with a transition between faulty and healthy states for each repetition.  

18. The system model should be closed after 86400 seconds.  
19. An Object for each faulty sample is created Fault_Objecti, i= {1, n}. 
20. All attributes for each faulty sample should be saved in this Object. 
21. Output data from simulation execution should be saved in this Object.  
End  
22. Fault_Objecti, i= {1, n} should be stored in FIV. 
End 
End  

 
Function 3 describes the fault injection system model generated from the simulation components. It 

extends Function 2 by generating the component-based system model based on the user requirements 
(customized building structure). As a result, the multiple fault injection algorithm should be merged with 
the system model generation script. Each component of the system, including the room, corridor, 
monitoring, and fault injection components, should be integrated to create the system model. Different 
components should be linked with connections through the script that require a configuration strategy to 
map the faults’ attributes to each fault injection component. Indexing is an appropriate solution to model 
the fault injection components in each room block. Each room and system components, such as sensors and 
actuators, have an index during the system model generation. These indices are used to access the faulty 
components in multiple fault injection algorithm. This function should assign the number of rooms and 
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floors based on the user's requirements through the command panel. Then, the generated model is created 
based on the individual  number of floors and rooms. Each component in the generated model should get 
an index to be accessible during the fault injection procedure. Each index in the generated model includes 
three main factors: the floor number, room number, and component number. 

 
Function 3. Pseudo-code description for the generated system model. 

Automated Fault Injection Algorithm 
Begin  
1. All system variables and inputs initialization. 
2. Initialization of the fault injection vector as FIV=0. 
3. Selecting the Number of days as Num_Days = n. 
4. Getting the number of floors as Num_Floors from user 
5. Getting the number of rooms in each floor as Num_Rooms from user 
6. For i=1:1: Num_Days 
7. Selecting the number of faulty samples which introduces the number of faulty samples in each day as 

Num_FaultySamples 
8. Selecting the number of repetitions in each intermittent faulty sample as Num_Repetitions 
9. Selecting the “Systematic” fault or “Random” fault 
10. If (“Systematic”), all fault attributes should be assigned based on a predefined scenario. 
11. If (“Random”), all fault attributes should be assigned randomly. 
12. For j=1:1: Num_FaultySamples 
13. Selecting the fault location and indexing. This index activates the target faulty component with Index 

(#Num_Floor, #Num_Room, #Num_Component) 
14. Selecting the persistence type 
15. If (Persistence is Intermittent), the following Matrices should be prepared based on the Num_Repetitions. 

a. Preparation of the fault injection time Matrix. 
b. Preparation of fault duration time Matrix. 
c. Preparation of the fault interarrival time Matrix. 

16. If (Persistence is Transient), Only fault injection time and fault duration should be assigned once. 
17. If (Persistence is Permanent), Fault injection time should be assigned once, and fault duration should take till 

the end of system model execution.  
18. Invoking the Composable system model generation file.  
19. Generation of the composable system model based on the Num_Floors and Num_Rooms.   
20. Indexing all components based on the Index (#Floor, #Room, #Component). 
21. The system model execution file will be run. 

a. Fault types and faulty values should be assigned during the system simulation using a Stateflow 
diagram with a transition between faulty and healthy states for each repetition.  

22. The system model should be closed after 86400 seconds.  
23. An Object for each faulty sample is created  Fault_Objecti, i= {1, n}.  
24. All attributes for each faulty sample should be saved in this Object. 
25. Output data from simulation execution should be saved in this Object.  
End  
23. Fault_Objecti, i= {1, n} should be stored in FIV. 
End 
End  
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4.3.4 Simulation Environment 

 
Simulation tools allow the establishment and execution of a simulation model. Its parameters can be set, 

and its simulation results can be compared with real-world scenarios. To implement the simulation model, 
Matlab/Simulink, as a user-friendly tool, is beneficial and is utilized to implement our FI framework. 
Matlab/Simulink takes advantage of the SimScape blocks to represent a schematic physical system and 
mathematical equations [243]. In this thesis, the simulation model has been simulated in the 
Matlab/Simulink environment and a Stateflow diagram has been used to realize the fault injection. The next 
section introduces the model flow for the fault injection using finite-state machines. 

 

4.3.4.1  Simulation Tools and Model Flow 

 
To model the system's behavior, a finite hierarchical state machine (HSM) is used [40].  Figure 20 

presents the timeline for the sequence of actions in the FI process. Each set of actions is a sequence of states 
from the correct mode to the failure mode at a related FI time. At the end of each action, the failure mode 
returns to the correct mode and then transitions to the second set of actions. This process continues until 
the last failure mode, and the FI process terminates. For example, three-set actions contain three different 
failure modes for an intermittent fault with three repetitions.  

 

State 1 
= 

Correct Mode State 3

State 4
=

Failure State 1
State 3

State 5
=

Failure State 2

State i
=

Failure State i

State 1 
= 

Correct Mode

…

Initial Time Initial Time First Fault Injection Time  Second Fault Injection Time  ith  Fault Injection Time  

First Set Actions Second  Set Actions ith  Set Actions 

Timeline for Set of Actions in Hierarchical State Machines 

 
Figure 20. Timeline for actions in hierarchical state machines showing the sequence of failure modes. 

Figure 21 shows a reactive finite-state machine between healthy and faulty states for the FI process. The 
faulty state consists of the persistence and failure states based on the number of faults (i.e., repetitions). The 
persistence state determines how many failures occur during the system execution time and the FI process. 
The model also specifies the transitions to the respective failure state based on the initial inputs, including 
the FI time and fault duration times that are initialized by the automated fault injection algorithm. For 
example, in Figure 21, the transitions with different colors define the set actions for the first failure mode, 
which occurs at the first FI time and the first fault duration time. A Stateflow diagram is applied to the fault 
injector blocks to implement this finite-state machine to produce the faulty values. Each variable of the 
Stateflow diagram has a fault attribute, a parameter of the FI process, or a variable of the system model, 
which can be defined with different types of input, output, local or global parameters.  
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Figure 21. Finite-state machine implemented as a Stateflow diagram. 

Furthermore, states change occur in the state machine during the FI process. Table 8 shows the state 
changes using the initial input patterns. For example, when the system meets the first fault injection and 
fault duration time, the state of the system changes to the faulty state, and subsequently, it changes to the 
healthy and faulty states in the presence of the other fault injection parameters. 
 
Table 8. State transition table showing a Stateflow diagram for an intermittent fault with three repetitions. 

              Current State 

Inputs 
Healthy State 

Faulty State 

First Failure 
Mode 

Second Failure 
Mode 

Third Failure 
Mode 

First injection time and duration time  ×   

First interarrival time ×    

Second injection time and duration time   ×  

Second interarrival time ×    

Third injection time and duration time    × 
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5 Fault Detection and Diagnosis Technique  
 

This chapter introduces a generic and new hybrid Fault Detection and Diagnosis (FDD) technique for 
single fault occurrences in DCV and heating systems. The diagnostic algorithm combines two knowledge-
driven and data-driven approaches. The knowledge-driven approach profoundly depends on expert 
knowledge. Expert knowledge is used for extracting the system attributes and their features. However, 
expert knowledge is not required for extracting the fuzzy rules and dependencies of system attributes. In 
this hybrid technique, a Bayesian Belief Network (BBN) uses statistical theories to discover hidden system 
correlations. For example, Mutual Information (MI) theory determines how random events or variables 
change when other events happen. In large-scale system structures with highly dependent system attributes, 
we require skillful and experienced experts that must spend significant time and energy to define the fuzzy 
rules to find the system attributes and their dependencies. This problem is solved with system attribute 
fuzzification and applying the BNN and MI theory to find the intrinsic casual relationships. The proposed 
hybrid FDD technique is generic and easily applicable to the different signal-based system models with 
numerous discrete and continuous signals and events. The fuzzy theory also provides appropriate likelihood 
distribution functions for calculating system attribute probabilities as membership functions to create 
Bayesian networks. Calculating the initial prior probabilities for the nodes of the network is challenging. 
This problem is solved by applying the fuzzy theory and membership functions for sample data tuples. 
Knowledge-driven approaches require long-term data acquisition for training the system. There is no 
experimental data for different types of HVAC systems with different system configurations. This problem 
is solved by training an extensible, offline library. This library is generated by evaluating the behavior upon 
various fault cases through a fault injection framework. Fault case definitions depend on the system 
requirements that must be precisely defined to obtain accurate fault diagnosis. Once attribute dependencies 
are discovered, the classifier diagnostic algorithm intervenes to map an actual fault case to the most relevant 
fault cases in the offline library. The hybrid FDD algorithm is explained in two specific phases including 
(1) the fuzzy and BBN construction and (2) the diagnostic method based on Fuzzy Bayesian Belief Network 
(FBBN). All steps of this FDD algorithm are modeled and explained in the following. 
 

5.1  Fault Detection and Diagnosis Technique based on FBBN Phases  
 
This section describes the overall steps of the FBBN fault detection and diagnosis technique that 

performs the network construction based on the fuzzified system attributes (knowledge-driven approach) 
and finds correlations between them using MI indicators with low expert effort. An automatic classifier 
algorithm (data-driven approach) enables fault diagnosis by classifying faults based on their similarities 
with online system execution and an offline library of various faults. This introduced fault detection and 
diagnostic technique enables an accurate diagnosis of actual permanent stuck-at faults for all system 
components. The FBBN diagnostic algorithm has been introduced in two specified modes: offline and 
online modes. Figure 22 gives a complete overview of the FBBN technique, including offline and online 
modes with their interrelationships and the diagnosis process. 

 
 
 



70 
 

 

 

System Nominal Values 
defined as System Variables  

e.g., Inddor Nominal CO2 
Concentration

Environmental Conditions 
defined as System Variables 

e.g., Wall Height, or Daily 
Temperature

Residents‘ Pattern Description 
for each Room

CO2 Concentration 
Controller

Damper Subsystem and  
CO2 Sensor Measurement

Thermal Subsystem
and Temperature 

Sensor Measurement

Heater Subsystem

Offline Mode: System Model Environment

Room Environment

Input Signals from other Rooms

Output Signals and Control Measurements for other 
Rooms and Data Collector Blocks

Heater  Controller

Temperature 
Nominal Value

Indoor CO2 
Nominal Value

Residents signal

Measuring Room 
Temperature

Measuring CO2 
Concentration

E.g., Outdoor Temperature

Heater 
Status

CO2 Control Signal

Ventilation 
Measurements

Faulty Signal

Fault Injection Block

Activating Fault Scenarios and 
Fault Injection Parameters 

Initializations Automated Fault Injection 
Algorithm (Script)

Saving Fault Objects
 into the Library

Online Mode:  Real-world System Environment

System Environment

Automated Online Scenario 
Generation (Script) Multi-Floor 

Building Structure 

(Online System 
Model) 

Finding the Fault’s 
Location (Associated Room 

and component) and 
Injecting the actual Fault

Fault Diagnosis 
Classification Algorithm

Each  RDP Table from a 
Saved  Faulty Object Should 

be Compared with Online RDP Table 

Generating a List of 
Diagnosed Faults Based on 
the Similarity of Their RDPs

Selecting the Top-
Ten Similar Faults 

Cases

Genrating an Online Relation-
Direction Probabilities 

(RDP) Table

Designing an Offline Scenario 
including all Possible Faults 

FBBN Fault Detection and Diagnosis Technique

Offile Library

Diagnosed Fault 

 
Figure 22. Overview of FBBN technique including offline and online modes and diagnosis process. 
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Offline mode is responsible for constructing an offline library using an automated fault injection 
algorithm. This offline library in the FBBN has been trained with various permanent stuck-at faults in 
different time domains for all system components (temperature sensor, heater actuator, CO2 sensor, and 
damper actuator). The automated fault injection algorithm has injected each fault case through a predefined 
scenario. Each fault in the offline library is specified by an object with different properties such as time, 
type, location, and Relation Direction Probabilities (RDP) table. A table with the fuzzified system attributes 
and their causal relationships has been constructed and saved for each fault case. The causal relationships 
are stored in a table named RDP. RDP table can be visualized as a Bayesian Belief network with nodes 
(indices), edges (arcs), and values (probabilities). Each node is a fuzzified system attribute. Their 
probabilities have been calculated by fuzzy weights based on the associated system fuzzy rules. Fuzzy 
weights are assumed as the confidence factor of fuzzy system rules. Each pair node's dependency 
(correlations) is extracted from conditional probabilities. The higher conditional probability determines the 
direction from a parent to a child node. Directions (arcs) show the dependency of each pair of nodes.  

Online mode includes a fault diagnosis classifier algorithm and actual fault injection. In online mode, 
the system should be run in a real-world environment in the presence of a random fault case. The FBBN 
algorithm diagnoses the fault features such as time, location, and type. The RDP table should be constructed 
based on the causal relations of the system attributes for the random injected fault. The fault diagnosis 
classifier classifies the fault cases based on the similarities of the RDP tables based on their mutual 
information. Therefore, the actual RDP table must be compared with the RDP tables of all fault cases in the 
offline library. A list based on the similarities (as percentages) of the RDP tables is created by comparing 
each offline RDP table with the online RDP. Higher percentages denote the most similar faults for actual 
fault cases.  

 

5.1.1 Construction of Fuzzy and Bayesian Belief Network (FBBN)  
 
This section introduces the steps of the FBBN construction. We require the casual relationships of the 

system attributes to build the BBN. To find the casual relationships, mutual information theory has been 
applied to find the correlation between the fuzzified system attributes. Figure 23 demonstrates the overall 
scheme of the FBBN construction with its respective steps. Each step is described in detail.  
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Figure 23.Fuzzy and Bayesian Belief Network (FBBN) construction steps and finding the casual relations using RDP tables.[18] 

 

5.1.1.1 Data Generation and Data Preparation 

 
Data Generation: The first step of the FBBN construction is data generation and data preparation. In this 
thesis, the automated single/multiple fault injection framework produces different types of faults to analyze 
the system behavior. The fault injection framework also supports fault diagnostic techniques by providing 
the required data for the diagnosis process. The fault injection framework studies the system behavior under 
faulty conditions and provides data for evaluating the fault diagnostic techniques to achieve an acceptable 
level of services. Therefore, the fault injection process generates the required recorded data for the FBBN. 

 
Data Preparation: In the FBBN, a Relational Data Table (RDT) indicates all system measurements 
(values) at each sample time of each system execution. All values at one sample time are called a record of 
the system, including the measurements of all system attributes. The system can be described by random 
variables (attributes or domains) that obtain their values during the system runtime. The RDT table is 
created based on the generated data of the fault injection system, and the data samples include information 
on all system attributes as tuples [62].  An RDT table, RDT = {S1, S2, S3, …, Sn}, includes a number of data 
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samples, Si = {Valuei1, Valuei2, …, Valueim}, as a tuple of values for the i-th time instance. Table 9 shows 
the RDT table and the relation of samples, attributes, and their values over time.  
 

Table 9. Relational Data Table (RDT) [18] 

Samples Attribute1 Attribute2 Attribute3 … Attributem 

S1 Value11 Value12 Value13 … Value1m 

S2 Value 21 Value 22 Value23 … Value2m 

S3 … … … … … 

… … … … … … 

Sn Valuen1 Valuen2 Valuen3 … Valuenm 

 

5.1.1.2 Definition of System Attributes and Subdomains   

 
System Attributes: A system attribute is a random system variable that changes its value (e.g., as perceived 
by sensor measurements) over system runtime. In an FBBN, an attribute can be described by a value 
domain.  The system has two kinds of attributes: (1) continuous attributes with continuous changes over 
time, e.g., temperature and CO2 concentration sensor measurements, and (2) discrete attributes with discrete 
changes over time, e.g., damper and heater actuator setpoints.  
 
Subdomains of Attributes: A domain is a set of values that ranges between thresholds. Each domain is 
divided into smaller ranges named subdomains. The domains of system attributes can be classified into 
subsets (called subdomains) of continuous or discrete values. For example, Attributei = {Subdomain1, 
Subdomain2, …, Subdomainp} is the system's i-th attribute divided into a number of P subdomains. We 
require the calculation of system attribute probabilities to determine the correlations of system attributes. 
The fuzzy theory is a proper solution for calculating the probabilities of continuous attributes. Therefore, 
the continuous domains are classified into smaller subdomains using fuzzy functions. The probabilities of 
the discrete domains are calculated based on their discrete changes over time. Table 10 is Subdomain Label 
Table (SLT) describing all the system attributes and their associated subdomains generated and labeled 
newly in this step.  
 
Table 10. Subdomain Label Table (SLT) [18] 

No. Attributes Subdomains Subdomains Subdomains … Subdomains 

1 1Attribute 11Subdomain 12Subdomain 13Subdomain … 1nSubdomain 

2 2Attribute 21Subdomain 22Subdomain Subdomain23  Subdomain2e 

… … … … … … 
 
… 

n nAttribute n1Subdomain n2Subdomain …  nfSubdomain 
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5.1.1.3 Fuzzy-weighted Data Generation for Newly Defined Subdomains 

 

In this step, we require the fuzzified system subdomains. The probability of each fuzzified subdomain 
is computed as a total fuzzy Weight (W) that differs in continuous and discrete system attributes: 

Fuzzy-weighted data generation for continuous system attributes: The fuzzy theory provides an 
appropriate likelihood density function for calculating the probability of the continuous system attributes 
[192]. Therefore, a fuzzy weight must be computed in each subdomain as the fuzzy Membership Degree 
(MD) using the fuzzy Membership Function (MF) for each sample time and its corresponding value. MFs 
use the system measurements and produce the Membership Degrees (MDs) in the range of [0,1]. Each 
subdomain has its specified MF based on the system attribute features and ranges of changes. MD can be 
considered as the fuzzy weight or the probability of the system subdomain at the corresponding sample 
time. For example, the W11 is the MD or fuzzy weight of the Subdomain11 of  Attribute1 at the first sample 
time. Table 11 is the Weighted Fuzzy Relational Data Table (WFRDT), which details each subdomain's 
total weight calculation. All weights (MD values) are extracted from the MF according to Equation 13 and 
summed up to compute the total fuzzy weight in each column.  

 

Table 11. Weighted Fuzzy Relational Data Table (WFRDT) [18] 

 Attribute1 Attribute2 

No. of Records  Subdomain11 Subdomain12 … Subdomain1m Subdomain21 Subdomain22 … Subdomain2e 

1 W11 W12 … W1m W11 W12 … W1e 

2 W21 W22 … W2m W21 W22 … W2e 

… … … … … … … … … 

N Wn1 Wn2 … Wnm Wn1 Wn2 … Wne 

Total Weight  
1

1
11

n

W W 
 2

2
12

n

W W 
 

… 
1

nm

m
m

W W 
 1

1
11

n

W W 
 2

2
12

n

W W 
 

… 
1

ne

e
e

W W 
 

 
Various types of fuzzy membership functions can be chosen based on the system requirements, such as 

triangular, trapezoidal, Gaussian, and bell-shaped. In this thesis, the trapezoidal MF has been used to 
calculate the fuzzy weights. Equation 13  is the trapezoidal MF that should be initialized for each continuous 
fuzzified system subdomain to measure the MD of the value x. X is an actual or faulty system measurement 
(cf. values in Table 9).  
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75 
 

 

Fuzzy-weighted data generation for a discrete system attribute: In each subdomain, the fuzzy weights 
are equal to measured values of the system over time which is 0 or 1 based on the discrete variable statuses. 
These values show the status values considered as probability values. For example, the damper actuator 
status is equal to 0 when it is in the close status and 1 when it is in the open status. Therefore, the total 
weight for each discrete system attribute will be calculated based on Equation 14. 
 

1 1

_ .
n n

i i
i i

Total Weight Value W
 

    Equation 14 

 

5.1.1.4 Subdomain Probability Calculation using Total Fuzzy-Weights 

 
This thesis considers each new fuzzified subdomain (i.e., fuzzy set) as a random variable. Accordingly, 

the probability of subdomains can be calculated based on Equation 15. For example, the probability of the 
subdomains A and B is shown in Equation 16. 
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Equation 16 

 
In Equation 15 to calculate the probability, all membership degrees for a subdomain in Table 11 

are summed up (total weight) and divided by the number of samples (records).  also describes the probability 
of the i-th subdomain in which n is the number of records. shows the Subdomain Probability Vector Table 
(SPV), where the probabilities of all system subdomains are calculated based on the total fuzzy weights.                     
 

Table 12. Subdomain Probability Vector Table (SPV) [18] 

 1Attribute 2Attribute 

Subdomains  11Subdomain 12Subdomain … 1mSubdomain 21Subdomain 22Subdomain … 2eSubdomain 

Probability of 
Subdomain  

1
1

W
P

n
  2

2

W
P

n
  … 

m
m

W
P

n
 1

1

W
P

n
 2

2

W
P

n
 … 

e
e

W
P

n
 

 

5.1.1.5  Joint Probability Calculation for Subdomains 

 
A joint probability of two events can be defined as their intersection when they coincide. In this thesis, 

we calculate the joint probabilities for dependent events when the probability of one subdomain changes 
the probabilities of the other ones. When one subdomain changes the probability of the other subdomains, 
they are dependent, and their intersection is not zero. Otherwise, the intersection of independent subdomains 
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is zero. Joint probabilities of dependent subdomains are used to calculate conditional probabilities and 
mutual information.  

In this thesis, when the two fuzzy weights in a pair of subdomains are compared at a sample time, the 
minimum fuzzy weight is considered as their intersection. This action repeats for all sample times to 
calculate the joint probability of the subdomain pairs based on Equation 17. 

 

   
1 1

min ( ), ( ) min ( ), ( )
( , ) ( ) .

| |

R n

kj ki i j
k
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R n
   

 
 

Equation 17 

 
A triangular top/down matrix is an appropriate way to show the relationships of each pair of system 

subdomains. The joint probability of P(A, B) equals P(B, A). Therefore, the intersection (joint) probabilities 
of subdomains are generated in an Intersection Triangular Top Matrix (ITTM) as shown in Table 13 using 
Equation 17 in which A(WSubdomaini) and B(WSubdomainj) are the corresponding fuzzy weights of 
subdomains A and B at the i-th sample time.  

For example, P(Subdomain3, Subdomain5) = P(Subdomain5, Subdomain3) shows the joint probability of 
the Subdomain3 and Subdomain5, and its value can be located in Table 13based on the table indices. 
 

Table 13. Intersection Triangular Top Matrix (ITTM) [18] 

Subdomains 
 
 
Subdomains 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 … i-1 i 

1                   
2                   

3     P(3,5)              
4                   
5                   

6                   
7                   
8                   

9                   
10                   
11                   

12                   
13                   

14                   
15                   
…                   

i-1                   
i                   

 

5.1.1.6 Mutual Information Calculation and Relation Finding of Subdomains 

MI is the information of one random variable when other random variables are observed. Ensembles 
can be considered random variables [71]. Therefore, in this thesis, each new fuzzified subdomain is 
considered a random variable. The mutual information of each subdomain is calculated when another 
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subdomain is observed. Multivariate mutual information is introduced in the basic concept. MI can also be 
calculated for only two random variables. For example, Intan et al. [62] have introduced the mutual 
information of two fuzzy sets of A and B in Equation 18.  
 

2

( , )
( , ) ( , ) ( , ) log , ( ) 0, ( ) 0.

( ) ( )

P A B
MI A B MI B A P A B P A P B

P A P B

 
     

 Equation 18 

 
In Equation 18, (A) and P(B) are the fuzzy-set probabilities. P(A, B) is the joint probability or 

intersection between the two fuzzy sets of A and B. Mutual information of MI(A, B) is an indicator for 
determining the correlation between two random variables of A and B.  

One can distinguish three conditions of MI: If (MI(A, B) = 0) or (MI(A, B) < 0), there is no 
correlation (negative dependency) between two random variables of A and B. However, if (MI(A, B) > 0), 
there is a positive correlation (positive dependency) between two random variables of A and B. The MI for 
all pairs of new fuzzified subdomains should be calculated. The positive MI values indicate the dependent 
subdomains, and negative MI values indicate the independent subdomains. In FBBN, only the positive MI 
values are considered as “1” binary values and are located in their respective places in the Subdomain 
Relation Table (SRT). Otherwise, the “0“ binary value is placed for the independent subdomains. Table 14 
contains an SRT table showing the dependent fuzzified subdomains in the FBBN. For example, the 
MI(Subdomain6, Subdomain9) = MI(Subdomain9, Subdomain6) = 1 demonstrates a strong correlation or 
dependency between the two subdomains of Subdomain6 and Subdomain9 as shown in Table 14. 

 
Table 14.  Subdomains Relation Table (SRT) [18] 

Subdomains 
 
 
Subdomains 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 … i 

1                   
2                   
3                   

4                   
5                   
6         1          

7                   
8                   
9                   

10                   
11                   
12                   

13                   
14                   
15                   

16                   
…                   

i                   
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5.1.1.7 Calculation of Conditional Probabilities  

 
In an FBBN, conditional probabilities comprise directions and probabilities. In a fuzzy Bayesian belief 

network, two types of nodes, parent and child, are connected via arcs. The direction between two nodes 
(the direction of the arc) can be determined by the conditional probability calculation of two events. The 
conditional probability is the likelihood of one conditional event according to the occurrence of the previous 
event/s. The conditional probability of the two events of A and B can be denoted as P(A|B) and P(B|A). 
P(A|B) shows that A is the preceding event and B is the succeeding event. Although, in P(B|A), B is the 
preceding event, and A is the succeeding event. In an FBBN, the precedence shows a parent node and a 
succeeding a child node. Equation 19 calculates the conditional probability of two fuzzy sets of A and B 
based on the computed fuzzy weights. In Equation 19, P(A, B) is the intersection between two fuzzy sets, 
A and B. In an FBBN, conditional events are fuzzified subdomains. Then, P(A, B) can be described as 
P(subdomaini  | subdomainj) as shown in Equation 20. 
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Equation 20 

 

  Conditional probabilities must be computed for events with positive correlations in SRT generated 
based on the MI theory. A top/down matrix is required to store the conditional probabilities because P(A|B) 
and P(B|A) have different values. Therefore, the results from the above equations for all new fuzzified 
subdomains should be calculated and stored in a matrix called Conditional Probabilities Table (CPT) as 
shown in Table 15 Finally, based on the two following rules, only one conditional probability should be 
retained in the CPT: 
 
Rule 1: If P(A|B) > P(B|A), it indicates that the direction of a dependency between two conditional events 
of A and B is from B (Parent) to A (Child). Then, P(B|A) must be eliminated, and P(A|B) must be saved in 
the CPT table. 

 
Rule 2: If P(B|A) > P(A|B), it indicates that the direction of a dependency between two conditional events 
A and B is from A (Parent) to B (Child). Then, P(A|B) must be eliminated, and P(B|A) must be saved in 
the CPT table. 

 
 For example, we know that P(Subdomain4| Subdomain5)  ≠ P(Subdomain5| Subdomain4); hence, 
their values should be compared to determine the bigger value. If P(Subdomain4| Subdomain5) 
>P(Subdomain5| Subdomain4), then the P(Subdomain4| Subdomain5) should be saved in the CPT and 
P(Subdomain5| Subdomain4), should be eliminated.  
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Table 15. Conditional Probabilities Table (CPT) [18] 

 

5.1.1.8 Relation-Direction Probability (RDP) Table 

 
In this thesis, a FBBN is constructed based on relations, directions and probabilities of system attributes. 

All this required information is computed and stored in a table called CPT. Eventually, a table called the 
Relation-Direction-Probability (RDP) is extracted from the CPT table and includes all system subdomain 
relations such as parent’s nodes, children’s nodes, and their corresponding conditional probabilities as 
demonstrated in Table 16. This table only includes the subdomains that have positive correlations and 
denotes how they are connected to each other based on the Bayesian network features such as nodes and 
their associated probabilities. For example, one record of the RDP shows that there is a positive correlation 
between Subdomaini and Subdomainj. Then, there is a connection from Subdomaini (parent node) to 
Subdomainj and Subdomainj (child node) with conditional probability of  P(Subdomainj | Subdomaini). 
 

Table 16. Relation Direction Probability (RDP) [18] 

Number of relations Parents Children Conditional Probabilities 

1 Subdomaini Subdomainj P(Subdomainj | Subdomaini) 

2 Subdomaink Subdomainw P(Subdomainw | Subdomaink) 

3 … … … 

…. … … … 

n Subdomainn Subdomainm P(Subdomainm | Subdomainn) 

 

Subdomains 
 
 
Subdomains 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

1                   
2                   

3                   
4     P(4|5)              
5    P(5|4)               

6                   
7                   
8                   

9                   
10                   

11                   
12                   
13                   

14                   
15                   
16                   

17                   
18                   
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5.1.1.9 FBBN Causal Relations  

 
In this thesis, a FBBN is a network comprised of a few essential elements, such as the parent node, child 

node, and edge (arc). All causal relationships of the system attributes are classified as fuzzified subdomains. 
They can be figured out as a FBBN graph shown in Figure 24.  

 

Node A (Index A) Node B (Index B)

Edge (Arc)

Value (Probability)

Elements of Casual Relationship Graph 

P(Subdomain i | Subdomain j) = Probability

Preceding Node
(Parent)

Subdomain i

Succeeding Node 
(Child)

Subdomain j

 
Figure 24.The causal relationship between two system attributes has been indicated as a graph. 

 

When the RDP table is generated, the FBBN network is constructed using the relations, directions, and 
conditional probabilities of the subdomains. This network includes parent nodes, children nodes, and arcs 
which show the probability and direction of the connections between nodes. Each fault case injected by the 
proposed automated single/multiple fault injection algorithm includes fault features such as type, time, and 
output data. In addition, the generated RDP table is added as a fault feature into each fault object.  
 

5.1.2 Classifier-based Diagnostic Algorithm using Fuzzy Bayesian Belief Network 
 

The introduced fault detection and diagnosis method comprises two main modes: offline and online. 
Offline mode introduces the FBBN construction for each trained offline library fault case. Online mode 
uses the classifier-based diagnostic algorithm that diagnoses a real fault case. Each mode is described as in 
the following: 

 

5.1.2.1 Offline Training Mode 
 
The main procedure of the offline mode consists of offline library creation. This procedure 

generates and injects several stuck-at-fault types for all system components with various stuck-at values at 
different time instances. For each fault case, the output data and RDP tables are generated. Each fault case 
consists of four fault properties: fault type, time of fault injection, output data and the RDP table that must 
be stored in a fault object. Finally, all fault objects from different fault cases are stored in an offline library 
indicated in Table 17. 
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Table 17. Fault injection vector as offline library including the information of all fault cases [18] 

No. of Faults 1 2 3  n-1 n 
Objects for Different Fault 
Cases 

Fault_Object1 Fault_Object2 Fault_Object3 … Fault_Objectn-1 Fault_Objectn 

 
Each subdomain has a representative offline library in different time intervals and fault types. The 

offline training mode of the FBBN diagnostic algorithm with its respective steps is introduced in Function 
4.  

 
Function 4. Pseudo-code description for offline mode of fuzzy Bayesian belief network fault diagnosis technique  

Offline mode that constructs the fuzzy Bayesian belief network to discover causal relationships  
Offline Mode 
Begin  
1. Initialization of the fault injection vector FIV=0 as Offline_Library.  
2. Preparation of a Scenario ={ Scenario1, …, ScenarioR } for fault injections. R is the number of scenarios. 
3. For j=1:1:R 
4. Generating the Output_Dataj  for each Scenarioj , where Output_Dataj = {S1, S2, S3, …, Sn} , n={1,  Nr. Of 

Samples in One Execution } and Si is the i-th sample. 
5. Data preparation as RDT table.   
6. Defining the system Attributes. 
7. Defining new fuzzified subdomains from system attributes, where Attribute-i = {Subdomain1, Subdomain2, 

…, Subdomainp} as SLTj table. 
8. Fuzzification of subdomains and generation of fuzzy weights for each subdomain as WFRDTj table.  

9. Calculation of total fuzzy weight for each subdomain as  𝑾𝒊 = ∑ 𝒘𝒏𝒊
𝟏𝟏  in the WFRDTj table. 

10. Calculation of subdomain probabilities using the total weight,  𝑷𝒊 =
𝑾𝒊

𝒏
 as SPVj table. 

11. Calculation of joint probabilities of subdomains using fuzzy weights for all pairs of subdomains as ITTMj 
table. 

12. Calculation of Mutual Information (MI) between each pair of subdomains as SRTj table 
13. Finding the relations of subdomains using MI. 

a. If (MI > 0), there is a correlation between the two subdomains. 

b. If (MI <=0), there is no correlation between the two subdomains. 
14. Calculation of conditional probabilities for pairs of subdomains with positive correlation as CPTj table. 
15. Creating a Relation-Direction-Probability table as RDPj , j = {1, R}. 
16. An Object for each Scenarioj is created as a Fault_Objectj, j = {1, R}.  
17. Saving all fault features for Scenarioj and its calculated RDPj in the Fault_Objectj. 

18. Saving the Fault_Objectj as Offline_Library [j] = Fault_Objectj. 
End  
19. Saving Offline_Library 
End  

 

5.1.2.2 Online Diagnostic Mode 
 
Online mode includes a classifier-based algorithm to diagnose single stuck-at faults based on the FBBN 
technique using the ranking method.  In online mode, a real fault case can be injected for validation purposes 
using the automated fault injection with a selection  of random fault features. The fault object of the real 
fault-case scenario includes six properties, including the Type, Time, Output_Data, RDP table, 
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Precentage_List, and Evaluation_List. Precentage_List is a list containing all percentages of mutuality 
between the injected real fault case with all fault cases in the offline library. Precentage_List= {Percentage 
of Mutuality1, …, Percentage of Mutualityi }, i={1,…, R} serves for calculating the percentage of mutuality. 
The real fault case RDP table must be pairwise compared with the RDP tables of all faults in the offline 
library. Table 18 indicates the percentage list of the fault object for the real fault-case. Each fault object in 
the offline library includes n rows of parent-child pairs and their respective conditional probability. Each 
parent-child pair in the actual RDP table is compared with each parent-child pair of all offline library fault 
cases to find the percentage of similarities. The percentage of similarity is considered as the mutuality 
indicator.  
 

Table 18. Percentage list of a fault object for a real fault-case [18] 

No. of Fault Objects in the Offline Library  1 2 … i 

Percentage of Mutuality  
Between the Fault Object for the Real Fault-Case   and 
Offline Library Fault Cases 

Percentage of 
Mutuality1 

Percentage of 
Mutuality2 

… 
Percentage of  
Mutualityi 

 

In this thesis, for diagnosing the occurred fault, the ranking method has been used for classifying 
the most probable similar faults. The Precentage_List is sorted and the highest percentages show the most 
similar faults (or the faults with the highest correlation) in the offline library. An Evaluation_List is 
extracted from the Precentage_List and the offline library. In a way, the fault properties of the ranked faults 
are extracted from the offline library, such as the time, type, and the values of percentages coming from the 
Precentage_List. Therefore, all elements of the Precentage_List are ranked from the higher percentages of 
mutuality to the lower percentages of mutuality with their details in the Evaluation_List. The highest ranks 
are compared with the fault object of the real fault-case to diagnose the accuracy of the diagnostic algorithm. 
Table 19 demonstrates the evaluation list in the online diagnostic mode of the classifier-based diagnostic 
algorithm using the FBBN construction.  
 
Table 19. Evaluation list of a fault object for a real fault-case [18] 

No. Type Time Percentage  

1 Offline_FaultType1 Offline_FaultTime1 Highest_Precentage1 

2 Offline_FaultType2 Offline_FaultTime2 Highest _Precentage2 

3 Offline_FaultType3 Offline_FaultTime3 Highest _Precentage3 

… … … … 

j Offline_FaultTypej Offline_FaultTimej Highest _Precentagej 

 
 

Function 5 describes the pseudo-code for the online mode using the FBBN fault diagnosis 
technique with all respective steps. In this function, the procedure of the RDP table construction is repeated 
for the actual online fault case. Then, the Precentage_List and Evaluation_List are created based on the 
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similarities to rank all fault cases. The fault cases with higher ranks are considered as the diagnosed fault 
cases determining the type and time of the closest fault cases compared to the online fault case. The users 
of the system including the operators and the engineers can use the diagnosed fault cases for system 
maintenance or redesign strategies.  

 
Function 5. Pseudo-code description for online mode of FBBN fault diagnosis technique. 

Online mode and the classifier-based diagnostic algorithm  
Online Mode 
Begin 
1. Initialization of the Offline_Library made in Offline Mode 
2. Preparation of a FI random Scenario for FBBN   
3. Generating the Output_Data   
4. Data preparation as RDT table.   
5. Defining the system Attributes. 
6. Defining new fuzzified subdomains from system attributes, where Attribute-i = {Subdomain1, Subdomain2, 

…, Subdomainp} as SLT table. 
7. Fuzzification of subdomains and generation of the fuzzy weights for each subdomain as WFRDTj table.  

8. Calculation of total fuzzy weight for each subdomain as  𝑾𝒊 = ∑ 𝒘𝒏𝒊
𝟏𝟏  in WFRDT table. 

9. Calculation of subdomain probabilities using the total weight,  𝑷𝒊 =
𝑾𝒊

𝒏
 as a SPV table. 

10. Calculation of joint probabilities of subdomains using fuzzy weights for all pairs of subdomains as ITTM 
table. 

11. Calculation of Mutual Information (MI) between each pair of subdomains as SRT table 
12. Finding the relations of subdomains using MI. 

a. If (MI> 0), there is a correlation between the two subdomains. 

b. If (MI <=0), there is no correlation between the two subdomains. 
13. Calculation of conditional probabilities for pairs of subdomains with positive correlation as CPT table. 
14. Creating a Relation-Direction-Probability table as RDPj , j= {1, R}. 
15. An Object for each Scenarioj is created as a Fault_Objectj, j= {1, R}.  
16. Initializing a new vector for saving the most similar faults in Offline_Library, as Similar_Faults[Num]=0 

and Num=10 as the number of similar faults. 

 
//Classifier Algorithm Using the Fault Ranks 

 
17. Similar_Faults = Function Compare (Offline_Library, Current_RDP) // Compare function returns the 

most similar faults with online injected faults by comparing the RDP tables in Offline_Library and 
Current_RDP table 

18. Generating a list of similar faults with percentages for Current_RDP, Precentage_List= {Percentage of 
Mutuality1, …, Percentage of Mutualityi }, i={1,…,R} 

19. Generating an evaluation list for Current_RDP, Evaluation_List 
20. Choosing the most similar fault in the Similar_Faults array as the diagnosed fault and diagnosing the Time, 

Type, and Location of the fault. 
End 
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6 Implementation    
 
This chapter presents the implementation of the introduced techniques. In this thesis, all techniques are 
implemented and simulated in the MATLAB/Simulink environment using MATLAB/Programming. 
Simulation imitates the real-world system behavior over time to get insights into quality attributes (e.g., 
quality of control), validate the system behavior in the design phase, and reduce the implementation costs. 
MTALB is an interactive multi-paradigm programming environment for scientific and technical 
approaches, e.g., data analysis, computations, matrix manipulations, and user interface creation. MATLAB 
provides various toolboxes constructed from libraries of functions. For example, the Simulink package in 
MATLAB provides graphical modeling for dynamic and embedded systems [95, 244, 245]. This chapter 
contains three main sections. The chapter starts by providing an example scenario of a DCV and heating 
system using a large-scale multi-zone building system model. A simulation model implements the fault 
injection framework in MATLAB/Simulink, and implementing the classifier fault diagnostic algorithm 
using the fuzzy Bayesian belief network. All system elements are implemented as  generic simulation 
components, e.g., room, corridor, monitors, controllers, and fault injectors. Our system model has a 
component-based structure. All components must be integrated and automatically embedded in a large-
scale building. The components are connected via links through an automatic script. Since the connectivity 
of the system components through links in a complex structure with numerous components can result in 
implementation errors, automation by generating generic system components that are merged with less 
effort is valuable. The fault injection components are completely generic and can be integrated with other 
component-based and non-component-based systems. Large-scale building structures are more error-prone 
due to their complexity and high numbers of system components. DCV and heating systems, which control 
and balance the air quality and thermal conditions, play a significant role in residents’ comfort and 
emergencies, e.g., fire and toxic gas emissions. As a result, considering fault control and maintenance 
strategies, including detection, diagnosis, and recovery, is essential. This thesis proposes a hybrid fault 
diagnostic technique combining the fuzzy and Bayesian belief networks to cover permanent stuck-at faults 
diagnosis. This technique combines a data-driven strategy for automation and classification with a 
knowledge-driven strategy for adding expert knowledge for extracting the system information and 
characteristics to enhance the accuracy of the diagnostic algorithm. The knowledge-driven technique 
combines the fuzzy theory strategy to decrease the expert effort for defining the fuzzified attributes and 
increases the compatibility and universality of the technique for large-scale system structures with 
numerous component types. Bayesian belief network theory allows to find the fuzzified attribute 
correlations in the fault diagnostic process. Figure 25 shows how the modeling parts (including the system 
model of the simulation environment of HVAC systems in chapter 4 and fault detection and diagnosis 
service from chapter 5 are linked to different parts of the implementation in chapter 6. The implementation 
chapter consists of four main parts: (1) the implementation of the fault injection components, (2) the 
implementation of the fault injection algorithm, (3) the implementation of the large-scale component-based 
system model, and (4) the implementation of the diagnostic classifier algorithm based on the FBBN 
construction. 
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Figure 25. Implementation of simulation model, fault injection and diagnosis 

 

6.1 Implementation of the Fault Injection Component in MATLAB/Simulink 
 

An example scenario of a multi-zone building for DCV, and heating systems is considered for the 
simulated system model to implement the fault injection components. Behravan [32][25] has introduced a 
multi-zone and component-based building structure that is applied to evaluate and validate the proposed 
techniques in this thesis. This example scenario is implemented in MATLAB/Simulink for a realistic office 
building at the University of Siegen in Germany with six rooms and one corridor. The model and the system 
assumptions are explained to understand the developed techniques. For example, it is explained how the 
generic fault injection components must be integrated with other electronic components. In addition, the 
healthy system conditions are described to enable understanding the experimental evaluations results. 

 
6.1.1 Example Scenario of a Multi-Zone Building System Model  

 
All introduced techniques, including the single and multiple fault injection and the classifier-based fault 

diagnostic algorithm, are applied in an instantiated DCV and heating system model. This grey-box system 
model integrates physical and mathematical descriptions of the system objects to describe a real-world 
HVAC system. The physical model of the DCV and heating system (introduced in chapter 4) is simulated 
in MATLAB/Simulink, and its subsystems and the system outputs are verified to show the correctness of 
the system behaviors and responses [25, 32]. The system model is implemented based on the thermal 
dependencies among distinct zones using the SimScape library. In addition, SimScape is a practical library 
in MATLAB/Simulink to model the power transmission in thermal subsystems by demonstrating the 
physical connection lines among real-world system components modeled as Simulink blocks [25, 95]. 
Figure 26 shows the overall scheme of the simulated multi-zone office building with six rooms and one 
corridor. Room interconnections and their input and output ports are represented. Each room is considered 
as a system component comprising other electronics and subsystems such as thermal, damper, and heater 
subsystems shown in Figure 27.  
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Figure 26. Overall scheme of the simulated multi-zone office building with six rooms, one corridor, and a data collector [25] 

Figure 27 illustrates the interior view of one simulated room component containing the heating and 
DCV subsystems without fault injection components. The input parameters of the thermal subsystem (e.g., 
for the first room component) are outdoor temperature, the next-door room block temperature (e.g., a second 
room), corridor temperature, second-floor temperature (20°C), stair temperature (13.5°C) and ventilation 
rate from the DCV subsystem. The output of the thermal subsystem is the current room temperature. In 
addition, the thermal subsystem includes temperature sensors.  In this example scenario, the measured 
temperature from each room changes between an upper threshold (22.5 ºC) and a lower threshold (17.5 ºC) 
and is compared with the daily temperature and the nominal value (20 ºC). Any changes over the thresholds 
and the healthy behavior of the thermal conditions can be considered as faulty [25]. The outdoor air 
temperature (daily temperature) is modeled as a sinusoidal wave. The initial daily temperature is 7°C, 
fluctuating between 2°C and 12°C during the day. The initial time of system execution has been considered 
at 6:00 a.m. with a 7°C outdoor temperature that continues for 86400 seconds (one day) [25].  
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Figure 27. Interior view of a room component of the example scenario of the DCV and heating system, including the heater, 
thermal, and  damper subsystems [25] 

The damper subsystem (DCV subsystem) includes airflow, damper subsystem, and CO2 
concentration sensor.  

 

 
Figure 28. Healthy measured outputs in DCV subsystem including CO2 concentration, occupancy pattern, and damper status [25] 

The computed CO2 concentration is based on the number of occupants and the outdoor CO2 value 
(400 ppm). The values are provided to an embedded CO2 controller to compare them with the desired indoor 
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CO2 value (600 ppm with upper and lower thresholds of 50 ppm). Set points are provided to the DCV 
subsystem again as CO2 control signals to control the damper status [25]. In addition, DCV demands 
knowledge about the ventilation rate and the indoor room temperature for measuring the CO2 concentration. 
Figure 28 demonstrates the healthy signals of the DCV subsystem and their patterns. A higher number of 
occupants results in more CO2 concentration and more frequent activation of the damper actuator. The 
occupancy pattern in Figure 28 represents the changes in the number of occupants in each time slot during 
the execution of the simulation. The figure also shows the effects on the indoor CO2 concentration rate. A 
human CO2 generation rate of 0.0052 per person has been considered [25].  

 
 

6.1.2 Implementation of the Fault Injection in MATLAB/Simulink 
 
In this section, the fault injection framework implementation is detailed for realistic single and multiple 

fault injection. This thesis implements the system model with a component-based strategy to integrate the 
system components with support for scalability of the building structure. A large-scale multi-floor and 
multi-room building structure is equipped with a multiple-fault injection system to validate the multiple 
fault injection framework extendibility and universality. The fault injection components are generic and 
compatible with different scenarios of any target system including the DCV and heating system model. 
Each fault injection component can be connected to the system components with low effort, e.g., electrical 
devices such as sensors and actuators. In this thesis, fault injection is a simulation-based technique, and 
MATLAB/Simulink and MATLAB programming are used for the composition of the simulation code 
modification and the simulator command techniques. Generic fault injection components are connected to 
other system components through input and output ports. In addition, the fault injection components include 
Stateflow diagram subsystems. An automatic script initializes the fault characteristics and activates the 
destination fault injector blocks. In this thesis, Stateflow is used to implement finite-state machines for the 
alterations between faulty and healthy states of the system. Stateflow is suitability because of its support 
for modelling hierarchical systems and parallelism. The states are mutable and can be changed based on 
the new input values of the system. The Stateflow diagram reads the new input values, performs the 
operations (e.g., using MATLAB functions), and emits a flow of new system values.  

 
Figure 29. Interior view of a room component extended with the single/multiple fault injector components (saboteurs) [11, 16]. 
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Figure 29 shows the exterior view of the single/multiple fault injection blocks integrated with the room 
components indicated in orange color. The healthy values from the system components (e.g., heater or 
damper subsystem) enter the fault injector blocks. If the system component is faulty, the output of the fault 
injector block becomes faulty. Various faults with different properties can be activated based on the system 
specifications. This layout is the same in both single and multiple fault injections. The elements of the 
generic fault injector component for the single and multiple fault injections are described in the next section.  
 

6.1.3 Fault Injector Block (Saboteurs) 
 
A complete overview of the DCV and heating system components and their interconnections for 

one room is shown in Figure 29. For each system component, one fault injector block is used to manipulate 
the system's behavior by changing the system measurement values under the specified fault situations. Each 
fault injector block is adaptable to each system component with low effort by specifying the component 
input values and addresses. The component address consists of the floor number, room number, and 
component number and it is determined by indices in Simulink blocks. The fault location can be defined 
once in a single fault injection. However, localization is a challenging issue for multiple fault injection, 
especially in large-scale structures with numerous components with high fault occurrence rates. Once the 
number of faults increases, the fault location should be addressed with the component and room indices in 
the Stateflow diagram for each fault case. The inner structure of the fault injector block consists of two 
levels. The first level activates the component input port, and the second level activates the addresses and 
the Stateflow diagram.  

 

6.1.3.1 First Level of Inner Structure of Fault Injection Block 
 
The fault injector block's first-level inner structure represents the input values of healthy 

components on the left side and the output values of faulty components on the right side. This structure 
differs for each system component based on the component numbers. This distinction can be seen in Figure 
30  and Figure 31. For example, the component number for the CO2 concentration sensor is 1. Therefore, 
the port number “1” in the “System_Monitoring” subsystem is activated when the fault injector component 
is connected to the CO2 concentration sensor component. Figure 30 shows the first-level interior view of 
the fault injection block for the CO2 concentration sensor with input and output blocks. A Gaussian noise 
subsystem is applied for each sensor component to add uncertainties to each healthy signal measurement 
for a more realistic system model implementation. Figure 31 shows the first-level interior view of the 
temperature sensor's fault injection block, including the Gaussian noise subsystem.  
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Figure 30. The first-level interior view of the fault injector component for the CO2 concentration sensor. 

 

 
Figure 31.The first-level interior view of the fault injector component for the temperature sensor. 

The “Goto” block is a data collector block in MATLAB/Simulink which transfers a signal 
measurement to one or more “From” blocks in other parts of the simulation environment. For example, the 
“CCO1” block in Figure 30 transfers room number one’s faulty CO2 concentration value to the output value 
subsystem. The most popular blocks to show the output values are “Scope” Simulink blocks for the 
generated signals and “Display” for numeric values. Input values in these blocks can be merged or 
combined. For example, with a “Mux” block, different input signals with the same data type are combined 
with a mapping in a single output [95]. In Figure 31, the mux block is used to integrate the system 
component outputs to show how their changes affect each other. Figure 32 illustrates the Gaussian white 
noise subsystem. The Gaussian distribution parameters have been calculated based on the historical system 
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measurements in the healthy mode. The measured uncertainties are added to the input signals and produce 
noisy output values.  

 
Figure 32. Gaussian white noise subsystem. 

 

6.1.3.2 Second Level of Inner Structure of Fault Injection Block 
 
The second-level inner structure of the fault injector block activates the fault location using its 

address: room number, component number and fault value as shown in Figure 33. Figure 33 consists of 
four main parts: (1) fault location activation, (2) distribution of the component input value using a multi-
port switch, (3) Stateflow diagram subsystem, and (4) merging of faulty and healthy signals. 

 

Fault Location Activation:
Room Number and

Component Number

Merging the Faulty Signal from 
Stateflow Subsystem

and Component Healthy Signal

Stateflow Subsystem

Multi Port Switch to 
Activate the 

Component Number

 
Figure 33. Second-level interior view of the fault injector component. 
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6.1.3.2.1 Fault Location Activation 
 
The fault address determines the fault location. The address of each fault case is indicated with the 

floor number, room number, and component number. This address can be specified with constants when 
only one fault occurs (single-fault injection). These constant values can be implemented using constant 
Simulink blocks as shown in Figure 34.  

 
Figure 34. Fault location activation in single-fault injection using constants for room number and component number. 

In the case of multiple fault injection, a constant is not applicable due to the dynamic and complex 
structure. Therefore, the fault location can be defined with matrices. Table 20 shows the combination of the 
faulty rooms and components. The Activated_Room_Component_Combination_Matrix ={Room1, Room2, 
…, Roomm}, represents the faulty rooms in a structure with a number of m rooms where Roomi ={ 
Component1, Component1, …, Componentn}. At the initialization of the matrix, all elements are zero 
representing the healthy mode of all system components. RoomiComponentj in Table 20  contains binary 
values {0,1}. The initial values of Room-Component combinations are zero and once a fault occurs it 
becomes one. Each fault case's location (address) can be described with an index as Index_Faulti(Roomi, 
Componentj). 

 
Table 20. Combination of faulty rooms and components as Activated_Room_Component_Combination_Matrix. 

 
The instantiated DCV and heating system model embodies six rooms and four types of components. 

Hence, the Activated_Room_Component_Combination_Matrix is created with six rows and four columns. 
Activated_Room_Component_Combination_Matrix can be initialized randomly or manually in the FI 
algorithm. Other fault properties (attributes) must be activated based on the faulty elements. Table 21 serves 
as an example for two different fault locations: Index_Fault1 (Room1, Component3) and Index_Fault2 

(Room2, Component3). 

Components  
 
Rooms 

Component1 Component2 … Componentj … Componentn 

Room1 Room1Component1 Room1Component2 … Room1Componentj … Room1Componentn 

Room2 Room2Component1 Room2Component2 … Room2Componentj … Room2Componentn 

… … … … … … … 

Roomi RoomiComponent1 RoomiComponent2 … RoomiComponentj … RoomiComponentn 

… … … … … … … 

Roomm RoommComponent1 RoommComponent2 … RoommComponentj … RoommComponentn 
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Table 21. Activated_Room_Component_Combination_Matrix for the example DCV and heating system. 

 
Activated_Room_Component_Combination_Matrix(x,:) returns a vector including all component 

values in room number x. Therefore, we can use this capability to activate the fault location with a matrix 
of the combination of the faulty rooms and components. To activate the faults in room1(zone1), the 
Activated_Room_Component_Combination_Matrix (1,:) returns the Room1 vector; where Room1={ 0, 
0,1,0} as shown in Figure 35. 

 
Figure 35. Fault location activation in multiple fault injection for room and component numbers. 

The “Demux” Simulink block extracts the inputs to separate elements [95]. For example, the 
elements of Room1={ 0, 0,1,0} can be extracted to different values and mapped to each component type as 
shown in Figure 36, which describes the If-Action block for activating a faulty component. The example 
shows that the faulty component is the temperature sensor. Figure 36 shows Room1={ 0, 0,1,0} as an 
example and how the temperature sensor component is activated by a gain value of 3. This value differs in 
other fault injection blocks for other components based on the component number.  

 
Figure 36. Component activation in multiple-fault injection using the combination matrix. 

Components  
 
Rooms 

Component1 

CO2 Sensor 
Component2 

Damper Actuator  
Component3 

Temperature Sensor 
Component4 

Heater Actuator 

Room1 0 0 1 0 
Room2 0 0 1 0 
Room3 0 0 0 0 
Room4 0 0 0 0 
Room5 0 0 0 0 
Room6 0 0 0 0 
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6.1.3.2.2 Distribution of the Component Input Value Using a Multi-Port Switch  
 
The multiport switch is a Simulink block that passes an input value to the output port based on the 

control signal. The first input port of the multiport switch is a control signal that determines which input 
port must be activated. The last input data port is a default port that should certainly be valued to avoid 
implementation errors when the control signal is unavailable. Figure 37 demonstrates that whenever the 
faulty component is activated, the component number switch provides the value on the corresponding input 
port in the multiport switch block. Each input port conveys the generated healthy signal that must be 
redirected to the output port by the multiport switch. The output of the multiple switch block is an input 
value for the Stateflow subsystem.   
 

 
Figure 37. Multiport switch block to distribute the input values based on the component numbers. 

 

6.1.3.2.3 Stateflow Diagram Subsystem  
 

The operational modes in reactive systems can be represented by states describing the sequential 
operations and activities. In this thesis, finite-state machines are used to implement the fault injection 
process when the states of the system change in the presence of faults. In computation theory, there are two 
types of machines: Mealy and Moore state machines. A “Computing state” updates the local parameters, 
makes decisions based on the conditional operations, and performs the transition to change the active state 
to the next state. Mealy and Moore machines can be applied as embedded charts in Simulink. The output 
of the Moore charts is only the function of the current state, whereas the Mealy charts depend on the inputs 
and active states. It means that the Mealy state machine at each clock edge (time step) wakes up and 
computes the output and a new system configurations [95, 246, 247]. The Mealy state machines react faster 
and they are more suitable for machines with fewer states [246]. Therefore, the Mealy state machines are 
used in this thesis, and they are defined with a 5-tuple using Equation 21. 

 

0_ ( , , , , ).State Machine S S Inputs Outputs T  Equation 21 
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Where S describes a finite set of states, S0 describes the initial state of the state machine, Inputs is the finite 
set of input values, Outputs is the finite set of output values, and T: S˟ Input_Set→S is a finite set of 
transitions that computes and maps a pair of states and input values to the next state. The three main 
elements of the Stateflow diagram are introduced as follows. 

 
 State in Stateflow diagram: A state encompasses five main actions: entry, during, exit, condition, and 

transition actions. “Entry” actions are operated at the entering time. Then the action operations continue 
in “During” when we remain in the active state. Finally, “Exit” actions should be operated at the exiting 
time of the state. An initial state starts the Stateflow chart activities characterized by an initial transition.  

 
 Transition in Stateflow Diagram: Each state communicates with other states through transitions. Each 

transition will be activated upon the satisfaction of a condition or an event. Accordingly, an action 
occurs based on the state and transition conditions. For example, after (Variable_Name, sec) is a default 
and standard function of MATLAB that activates the next state after a determined time with a second 
time step. Variable_Name is a value that a transition should wait for in order to perform a transition 
from the current active state to the following respective state. In our FI system, the “after 
(Fault_Duration_Time, sec)” function is used for implementing the fault duration property. It means 
we stay in the faulty state (source state) for a specified fault duration time. Afterward, the state changes 
to the healthy state (destination state). The order of the states is based on the transition status and the 
conditional values.  

 
 MATLAB Function in Stateflow Diagram: MATLAB functions in Stateflow provide programming 

methods to link MATLAB/Programming and Stateflow diagrams. Each Stateflow diagram consists of 
three principal means: states, transitions, and functions. 

 
In this thesis, the sequence of the actions and states of the introduced fault injections are 

implemented by Stateflow diagrams using the two states: healthy and faulty. The inner structure of the 
Stateflow diagram consists of the room number (i.e., room index), component number (i.e., component 
index), system time as input ports and fault values as an output port, as shown in Figure 38. For the single 
fault injection, indices are not required. However, in multiple fault injections, the accurate fault addresses 
must be specified as shown in Figure 39. The digital clock Simulink block produces the system time as an 
input variable that returns the system time in one day because the simulation is set to be run for one day. 
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Figure 38. First level of the interior view of the Stateflow subsystem in single fault injection. 

 
Figure 39. First level of the interior view of the Stateflow subsystem in multiple fault injection, including the room and component 
indices. 

 The second-level interior view of the Stateflow subsystem is implemented using two 
different methods based on the system requirements for the single and multiple fault injections. The second-
level view of the Stateflow subsystem for the single fault injection, including the healthy state, faulty state, 
and MATLAB functions. A healthy state produces healthy values by getting the healthy value from the 
input port. In addition, the healthy state initializes the required parameters, such as the fault injection times. 
The Stateflow diagram transmits the input value to the output value by changing the parameter types.  
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Figure 40. Symbol panel for defining the Stateflow diagram parameters, input, and output ports. 

 
In this thesis, the automated fault injection algorithm should initialize the main fault attributes (e.g., 

through 1-dimensional vectors for the single-fault injection and 2 or 3-dimensional matrixes for the 
multiple-fault injection. A Stateflow diagram is applied to control the system’s reactions and their responses 
under injected faults. Then the simulated component-based system model is executed to imitate the example 
scenario under injected fault conditions. The fault injection components are integrated with other system 
components, such as the heater, damper, CO2 sensor, and temperature sensors, as explained in the high-
level description in chapter 4. The designed state machine is mapped to the Stateflow diagram in the 
Simulink environment. In fault management, the Stateflow diagram controls system reactions. Therefore, 
we defined the FI framework as a finite-state machine with healthy and faulty states, as depicted in Figure 
41. In addition, Figure 41 shows the second level of an interior view of the Stateflow subsystem for the 
multiple fault injection, the system state conditions, and interconnected transitions between healthy and 
faulty states using the assigned fault attributes in detail. In the interior view of the Stateflow diagram, each 
FI block is a collection of the functions, state diagrams, and the symbol panel to define the required 
interrelated parameters. Each parameter in the symbol panel attains different types of data: input data, local 
data, output data, constant data, data store memory, parameter data, and temporary data. We must assign 
the proper data type to each parameter required for the Stateflow diagram activities. For example, local 
fault types and faulty values in each transition of the Stateflow diagram are initialized by calling the related 
function. Once the FI process terminates, the data collector blocks gather all information, including faulty 
and healthy output signals, and return them to the automated FI algorithm. All system model variables can 
be saved for each execution. However, only fault attributes and the output data of each simulation are stored 
in a library in a MATLAB file.  
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Figure 41. Second level of interior view of the Stateflow subsystem for the multiple fault injection. 

 

6.1.3.2.4 Merging Faulty and Healthy Signals 
 

Finally, the output signal is a merged value of a healthy signal from the input port and a faulty 
signal from the Stateflow subsystem to ensure an integrated signal. For example, Figure 42 depicts how the 
faulty temperature sensor signal from the Stateflow subsystem and its healthy signal is merged into a single 
output signal. The index of the temperature sensor component is three as specified by the If Simulink block. 
Merging blocks enables us to have a generic fault injection component that only requires addressing of fault 
targets. Otherwise, the healthy signals are received.  
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Figure 42. Merging the faulty signal from the Stateflow diagram and the healthy signal from the input port. 

 

6.1.3.3 Data Collector Blocks and Monitoring Subsystem 
 
The simulation output data should be collected from all subsystems from all system components, 

e.g., CO2 sensor, damper actuator, temperature sensor and heater actuator. Measured data from “Goto” 
blocks is sent to “From” blocks and merged to one signal. The merged signals from each room are logged 
and saved as a single “Data_ML” variable by the “To workspace” Simulink block. The “Data_ML” variable 
is a collection of different measured system variables including constant, discrete, and continuous system 
variables. Constant system variables refer to constant system attributes which are defined during system 
model implementation such as outdoor daily temperature, which is a constant sinusoidal signal [25] and 
constant variables such as nominal indoor temperature, stair temperature, upper temperature threshold and 
lower temperature threshold [25].  Table 22 is part of the Data-ML time-series showing all collected and 
logged data of one room. The logging can be applied for all available rooms and is applicable for signal 
based FDD techniques. 

 
Table 22. Output (Data_ML) time-series saved to workspace environment including the system attributes in separate columns. 

Constant system  
Variables 

Discrete System 
Variables 

Continuous System  
Variables 

Nr. 
Outdoor 
Daily 
Temperature 

Nominal 
Indoor 
Temperature 

Stairs 
Temperature 

Upper 
Temperature 
threshold 

Lower  
Temperature 
threshold 

Damper 
Status 

Heater 
Status 

CO2 

Concentration 
Indoor 
 Temperature 

1 7 20 13.5 22.5 17.5 0 0 400.1 20.2 

2 7 20 13.5 22.5 17.5 0 0 400.7 20.4 

3 7 20 13.5 22.5 17.5 0 0 399.7 20.1 

4 7 20 13.5 22.5 17.5 0 0 400.4 20.3 

 5 7 20 13.5 22.5 17.5 0 0 400.1 20.2 

6 7 20 13.5 22.5 17.5 0 0 399.9 20.2 

7 7 20 13.5 22.5 17.5 0 0 399.7 20.1 

8 7 20 13.5 22.5 17.5 0 0 400.0 20.21 

9 7 20 13.5 22.5 17.5 0 0 400.2 20.3 

10 7 20 13.5 22.5 17.5 0 0 400.0 20.2 
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6.2 Implementation of Automated Single and Multiple Fault Injection Script 
 

In this framework, an automated FI activates the target saboteurs in the system model, which are 
inactive during the normal operation. For each FI, a fault set (sequence of failures) is injected, and for each 
fault set, attributes such as fault persistence (i.e., transient, intermittent, permanent), fault location, fault 
type, fault duration, and fault interarrival time are considered. Moreover, this framework can be evaluated 
for deterministic fault models (pre-defined fault scenarios) and random fault attributes for single and 
multiple (systematic) faults at run time. An automated algorithm was coded to inject the fault attributes 
randomly according to the scenario-based injection type. When our algorithm runs randomly, all variables 
and attributes, e.g., the number of faulty components, faulty zones, and persistence, are initiated randomly.  

Figure 29 illustrates one zone of an HVAC system, including components and their interconnections, 
such as the thermal, damper, and heater subsystem, which are connected to fault injector blocks. The fault 
injection block should be linked to an automated algorithm using MATLAB/Programming. The fault 
injectors (saboteurs) manipulate each subsystem's output. In a single fault injection algorithm, a single fault 
was introduced out of a catalog of different fault types at only one target location, e.g., one intermittent 
fault in one temperature sensor. To implement the single fault injection, fault attributes are assigned with 
random vector variables, including the fault location and fault types, and faulty values are computed in 
Stateflow by real-time MATLAB/function invocations. To activate a single fault, each attribute is initialized 
randomly based on the system requirements. The automated fault injection algorithm can be executed once 
in a single fault injection or for more iterations based on the number of faults in a predefined scenario. Each 
scenario comprises several fault-sets combining different fault attributes, including fault type, time, 
duration, interarrival, persistence, location, and occurrence rate. The fault location is the address of the 
destination, i.e. the faulty component whose behavior should be changed to realize the system impacts and 
how they affect other subsystems in the presence of various faults. At the end of each fault injection, all 
system measurements should be collected from all system components of all zones. Each output data is a 
dataset (time-series) of different components measured at each time step of 1 second. The automatic fault 
injection uses an object-oriented programming approach and uses objects to preserve fault attributes. For 
each fault-set of the scenario, a timeseries must be kept in a fault injection vector. Each element of this 
vector is an object from a defined class named “FaultClass” with type, time, persistence, location, and data 
output properties. The initialized fault attributes and output time-series must be saved in an object. The 
number of objects depends on the number of fault-sets in the scenario.  

The single fault injection framework was designed and extended to inject multiple faults in multiple 
zones modeled with varying faults and more dynamicity regarding the number of faults, their repetitions, 
and structures. The number of faults can be increased easily by changing the address of faulty components. 
Each fault injection process includes multiple injections in multiple locations with more failure repetitions 
in case of intermittent faults despite the single fault injection. Addressing the faulty components in multiple 
fault injection is a significant challenge that needs a dynamic structure for development. As a result, a multi-
dimensional structure is required to access faulty components once a different fault occurs at multiple 
locations with different addresses. The number of dimensions differs based on the system structure Figure 
43. illustrates the multi-dimensional aspect of the FI framework in a large-scale building structure where 
the dimensions increase in the case of system model extension and development. Figure 43 shows system 
specifications in different axes for multiple faults injection. Different axes relate to one aspect, such as 
structure, room, component, and the number of failure repetitions or other fault attributes e.g., the type in 
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each fault injection procedure. The number of dimensions can be extended based on the system 
requirements, e.g., the next-level axis can refer to other system specifications such as cluster, grid, or city. 
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Figure 43. Dynamic multi-dimensional aspects of the FI implementation including the time axis. 

This structure can be developed through a matrix for each fault attribute. In multiple fault injections, 
fault attributes are defined as multi-dimensional matrices. Each system specification is mapped to one 
dimension of a matrix. For example, Figure 44 depicts a 3- Dimensional (3-D) matrix to implement a fault 
injection attribute. In multiple fault injections, fault attributes are defined as multi-dimensional matrices 
such as FI time, fault duration, fault interarrival time, FI persistence, FI type, and fault occurrence 
probability. Each matrix element introduces the attribute values for each component and zone. By 
increasing the number of aspects of each attribute, the number of dimensions increases, providing multiple 
FI capabilities. The multiple fault injection algorithm starts with loading the system variables, such as 
building assumptions, and thermal conditions, such as daily temperature and CO2 concentrations. Then the 
fault injection variables must be defined with multi-dimensional matrixes.   

For example, the “Fault_Injection_Time_Matrix” is a 3-D matrix with three axes, including the 
number of components, number of rooms, and number of failure repetitions for each intermittent fault case. 
The element values of the “Fault_Injection_Time_Matrix” are assigned based on the 
“Activated_Room_Component_Combination_Matrix” elements specifying associated fault locations 
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showing all faulty room-component pairs. This matrix is a 2-dimensional (2-D) matrix introducing the 
combinations of faulty rooms and faulty components. Figure 44 shows an example of the 3-D matrix for 
the “Fault_Injection_Time_Matrix” attribute.  
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n

Components  Dimention
 

Figure 44. 3-Dimensional (3D) matrix for implementing the fault injection attributes, e.g., fault injection time matrix. 

Seven multi-dimensional attributes are explained in Table 23 and Table 24 and their required 
parameters are defined. The behavior of the fault injection components is changed based on the values 
assigned to these matrixes. The first matrix is a 2-D matrix because it only shows which room-component 
combination should be activated. Then other matrixes must be valued randomly for a fault location.   

 
Table 23. Multiple fault injection attributes for one building. 

Multi-dimensional matrixes to define fault attributes   

No. Matrix Name  Explanations  

1.  Activated_Room_Component_Combination_Matrix  A 2-D matrix to display faulty locations, including the room 
and component number.  
 

2.  Fault_Injection_Persistence_Matrix A 2-D matrix to display the persistence type for each faulty 
location.  
 

3.  Fault_Injection_Time_Matrix  A 3-D matrix displays fault injection times distinguished for 
each intermittent repetition.  
 

4.  Fault_Injection_Duration_Matrix  A 3-D matrix to display fault duration times for each 
intermittent fault. 
 

5.  Fault_Injection_Interarrival_Matrix  A 3-D matrix to display fault interarrival times for each 
intermittent fault. 
 

6.  Fault_Injection_Type_Matrix  A 3-D matrix to display fault types for each fault injection 
and each repetition of an intermittent fault. 
 

7.  Fault_Occurrence_Probability_Matrix  A 2-D matrix to display fault occurrence rates for each fault 
injection and each repetition of an intermittent fault. 
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Table 24. Multiple fault injection attributes definition. 

Multi-dimensional matrixes to define fault attributes in multiple fault injection  
1. Activated_Room_Component_Combination_Matrix = randi([0,1],RoomNumbers,ComponentNumbers); 

2. Fault_Injection_Time_Matrix (1:FailureInjectionRepetition,1:RoomNumbers,1:ComponentNumbers) = 0; 

3. Fault_Injection_Persistence_Matrix (1:RoomNumbers,1:ComponentNumbers) = 0. 

4. Fault_Injection_Duration_Matrix (1:FailureInjectionRepetition,1:RoomNumbers,1:ComponentNumbers) = 0; 

5. Fault_Injection_Interarrival_Matrix (1:FailureInjectionRepetition,1:RoomNumbers,1:ComponentNumbers) = 0; 

6. Fault_Injection_Type_Matrix (1:FailureInjectionRepetition,1:RoomNumbers,1:ComponentNumbers) = 0; 

7. Fault_Occurrence_Probability_Matrix (1:RoomNumbers,1:ComponentNumbers) = 0; 

 

When the system structure increases to encompass more buildings, the fault injection algorithm 
and components can be compatible and matched with these kinds of alterations by increasing the 
dimensions to access the fault component location as shown in Equation 22. 

 

 Matrix_Name 1: No. Buildings,  1:  No. Rooms,  1:  No. Components   (1: b, 1: i, 1: j).  Equation 22 

Each fault can be triggered at different locations and at the same component at different points in 
time when an intermittent fault occurs. Figure 45 describes a system-level timeline which is a cumulative 
form of all fault injection samples in different zones and components with varying fault types. In Figure 
45, three fault sets (i.e., events) are triggered in different components. For example, the first injected fault 
is an intermittent fault with two repetitions (sub-events), and each repetition has obtained the same stuck-
at faults. More repetitions with different fault types may also occur in one intermittent fault. In addition, 
the heater actuator in the third room has a permanent stuck-at fault.  
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Figure 45. Example timeline for multiple fault injection framework indicating four components, six rooms, and five types of faults. 

Each fault was considered as a sample event that occurred based on the probabilities of multiple 
faults. Each fault occurs with a specific and independent probability. The fault occurrence probability is 
calculated based on the probabilities of a fault (or event) that happened in one unit (i.e., FCR), saved in the 
“Fault_Occurrence_Probability_Matrix” and calculated according to Equation 23. Each element of this 
matrix is associated with one event. Each event consists of several failures (or subevents) for intermittent 
faults with different fault types. Fault probability occurrence rates differ based on the fault type and unit, 
as explained in Table 6 in Chapter 4. 

 

   

1 1
.FaultEventProbability= P(Failure ,..., Failure )= Unit's Probability  Failure

i Number of Failures

i i


   Equation 23 

  

6.3 Implementation of the Component-Based System Model  
 

In this thesis, a large-scale component-based system model is developed, which expresses 
thermodynamics and heat transfers of DCV and heating systems with different rooms. It supports the  
composition of the system structure and the activation of realistic multiple faults with various specifications. 
The simulation output also provides proper experimental data for FDD methods. The component-based 
system model is explained at three primary levels: (1) a high-level system structure description, (2) generic 
simulation components, and (3) the methods and tools for system configuration of the system model and 
generic components. Eventually, an example to study the multiple fault injection in a large-scale 
component-based system model with four floors and four rooms at each floor is generated and shown for 
two fault events.  
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6.3.1 High-Level Specification Describing the Structure of the System  
 

The high-level description of a realistic fault model and the system model of the DCV and heating 
systems and their specifications are explained comprehensively in chapter four. The DCV and heating 
system comprises four main components such as CO2 concentration sensor, damper actuator, temperature 
sensor, and heater actuator. Behravan et al. introduced a composability structure for the DCV and heating 
systems for integrating the system components through a generation script that determines the system 
structure based on the user requirements [21, 32]. Behravan introduces electronic components, including 
three types of room components and one corridor component integrated with a composability structure. The 
system structure is extended vertically and horizontally based on the number of floors and rooms to have a 
multi-floor building structure. The number of rooms and floors can be obtained by user inputs via a 
dashboard in which the number of rooms is determined for each floor. Therefore, the total number of rooms 
is calculated by multiplying the number of floors and rooms [21].  

The model-based construction of system models is supported for large-scale component-based 
system structures in which system components are integrated through generic and extendable components. 
The lack of standardization in modeling of DCV systems can result in inconsistencies and difficulties. 
Large-scale system structures, including the numerous complex embedded DCV and heating systems, are 
susceptible to various errors, potentially leading to failures. Faults in these systems can result in abnormal 
behaviors such as temperature fluctuations, discomfort for occupants, excessive ventilation, and 
overheating that will result in the waste of energy. Therefore, fault injection is a practical solution. The 
introduced multiple fault injection framework in this thesis can be integrated with different system models 
to provide dependability analysis in the design phase with a flexible and extendable structure to be merged 
with index-based structures [11, 16]. Figure 46 describes a large-scale multi-floor building that is extended 
based on the different room components: room types A, B, and C. Room type A is beside the stairs, Room 
type B is in the middle, and room type C is beside room type B [21]. To construct the system structure, 
room component ports should be linked to make the interconnections.  

An automated fault injectional script triggers different patterns of multiple faults based on 
extendable matrixes [16]. An automatic generation script constructs an on-demand composability structure 
based on the system requirements [21]. These two algorithms should be merged to construct a large 
component-based building structure. The fault attributes, and fault injection components are compatible 
with any structural patterns by changing the dimensions and matrixes for fault injection in multi-building-
floor-room-component structures.    
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Figure 46. N-multi-floor office building describing an example office building on one floor. 

 
6.3.2 Simulation Environment for HVAC/DCV with Generic Simulation Components 
 

The large-scale system model is generated by merging the generic simulation components for 
electronics, e.g., sensors, actuators [21], and generic extendable simulation components for multiple fault 
injection [16]. As a result, a composable and automatic multiple-fault injection component for DCV and 
heating systems in complex and large buildings is introduced and implemented in this chapter. Multiple 
faults with associated fault attributes can be injected automatically into a building with an arbitrary structure 
based on the component-based methods. Therefore, FI components are automatically linked to electronic 
subsystems of the DCV and heating system and extend the building structure model with pre-developed 
components. The system specifications are defined based on the user requirements, such as the number of 
floors and rooms, and extend the FI blocks to the new structure accordingly. The framework presented here 
is generic and scalable, and it can be instantiated for various fault combinations. The fault attributes are 
represented by matrices, which can be expanded in dimensions to support more complex structures with 
extra components, zones, and buildings. The indexing method is based on the room’s number increasing 
on each floor. It means that each room has an index number. The total number of rooms in a multi-floor 
building is calculated using Equation 24. 
 

_ _ .Total Rooms Numbers B K N     Equation 24 

Where B is the number of buildings, K is the floor number, and N specifies the number of rooms on each 

floor.  To integrate the multiple fault injection components with large-scale system components, indexing 
is used to access the electronic components of each room. Figure 47 illustrates how a component is 
accessible through an index including the floor, room, and component numbers. 
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Figure 47. Components and rooms are indexed for the multiple fault injection in a large-scale building structure. 

 
6.3.3 Methods for Configuration of Generic Simulation Components based on High-Level 

Specification 
 

To integrate and configure the system structure, components are connected and linked through an 
indexing technique that facilitates the fault injection process. The algorithm uses indexes to manage the 
room components and to access the faulty components via their addresses. The FI framework injects 
multiple faults with different attributes at different locations and intensities, enabling the identification and 
analysis of different fault combinations. Function 6 describes the large-scale component-based system 
structure generation by integrating the composable system model generation and multiple fault injection.  
Function 6. Large-scale component-based system structure generation for multiple fault injection evaluation. 

Algorithm for Component-Based System Model Generation  
1. System Model Requirements definition including system model specifications, assumptions, variables, fault 

scenarios, and fault attributes. 
2. Defining the fault class and fault injection properties.  
3. Generation of a repository of the room components for the DCV and heating system.  
4. Integrating the different electronic components of different rooms with the multiple fault injection components. 
5. Executing the automated fault injection to get input variables for the number of floors (K) and the number of 

rooms (N).  
6. Generating the extendable and multi-dimensional fault injection matrixes based on the number of rooms and 

components. 
7. Generating the fault scenarios for multiple fault injections. 
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8. Executing the generation script for creating the component-based system model using new room components 
capable of realistic multiple faults injection. 

9. Selecting an appropriate room type based on their types and making correct and errorless connections based 
on the index pattern. 

10. Configuration of the new room components based on the indexing method and mapping the index pattern to 
each room, including the floor and room number. 

11. Configuration of each fault injection component and Stateflow diagram based on the indexes of electronic 
components in each room.  

12. Integrating all system components by connecting the input and output ports in a pattern for each floor.  
13. Connecting the output ports of system components to controller components to monitor the system output. 

 

 
To configure the room components for multiple fault injection, the indexing should be mapped to 

fault injection blocks. The “Activated_Room_component_Combination_Matrix” in multiple fault injection 
systems is used to make a pattern for the system model indexes. Because it shows the number of buildings 

, floors, rooms, and components in a system structure by increasing the number of dimensions, it also 
determines the faulty component for multiple faults in multi-zone and multi-floor structures. During the 
system model generation, the room index and component indexes in the Stateflow diagram should be 
assigned to merge the multiple fault injection components with the room blocks.  Figure 48 depicts an 
example cumulative timeline for the multiple fault injection in a large-scale component-based system 
structure with three main axes denoting the number of floors, number of rooms, and components. This 
timeline shows the localizations of faulty components by their addresses. Each address is an index, 
including the floor indicator, room indicator, and component indicator. Figure 49 depicts two fault injection 
examples: one intermittent temperature sensor fault with three failure repetitions with an index (floor 1, 
room 2) and one CO2 concentration sensor permanent fault for an index (floor 3, room 5).    
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Figure 48. Multiple fault injection timelines in a component-based simulated system model, including the floors, rooms, and 
components axes. 

 

6.4 Example of Multiple Fault Injection in a Component-Based System Model    
 

An example of a component-based system model with three floors and six rooms on each floor is 
implemented. Consequently, the total number of rooms is 18. The minimum number of the rooms in each 
floor is 6 room. Therefore,  Table 25 describes the “Activated_Room_Component_Combination_Matrix” 
for activating the multiple fault injection in an extendable component-based system model. The size of the 

matrix is 18 rooms ˟ 4 components. This example specifies precisely how the multiple fault injection is 
mapped to a large-scale component-based system model by adapting the fault attribute matrixes with the 
system structure. Each element in Table 25 can obtain two binary values: 1 and 0. To address a faulty 
component in a specified room, the value of the associated element turns from 0 to 1. The faulty components 
can be determined randomly or manually for one example or with a scenario for multiple examples. In this 
example, the faulty values are assigned manually. There are two fault locations. The first and second faults 
are activated with index (2,2) and index (11,3), respectively.  The number of buildings is one and the 
building is therefore not considered in the indexing.  

 

 



110 
 

 

Table 25. “Activated_Room_Component_Combination_Matrix“ for multiple fault injection example in the extendable component-
based system model. 

Floors 
  Components 
 
Rooms 

Component 1 
(CO2 Concentration 
Sensor) 

Component 2 
(Damper 
Actuator) 

Component 3 
(Temperature 
Sensor) 

Component 4 
(Heater 
Actuator) 

Floor 1 

Room 1 0 0 0 0 
Room 2 0 1 0 0 
Room 3 0 0 0 0 
Room 4 0 0 0 0 
Room 5 0 0 0 0 
Room 6 0 0 0 0 

 Room 7 0 0 0 0 
 Room 8 0 0 0 0 
Floor 2 Room 9 0 0 0 0 
 Room 10 0 0 0 0 
 Room 11 0 0 1 0 
 Room 12 0 0 0 0 

Floor 3 

Room 13 0 0 0 0 
Room 14 0 0 0 0 
Room 15 0 0 0 0 
Room 16 0 0 0 0 
Room 17 0 0 0 0 
Room 18 0 0 0 0 

 

The persistence values in Table 22 must be initialized based on the fault locations as specified in 
Table 25. The persistence values in multiple fault injections are set as “1” for permanent fault injection and 
“2” for short intermittent faults. Transient faults are omitted in the multiple fault injection framework due 
to the lack of reliable timing parameters described thoroughly in the fault modeling in chapter 4. In addition, 
intermittent faults mainly occur in sensor components. Hence, the persistence value of the first and second 
faulty components are “1” and “2” respectively. Other fault attributes are assigned randomly in the 3-D 
structures for four failure repetitions with intermittent faults. 

 

Table 26. "Fault_Injection_Persistence_Matrix" for multiple fault injection example in an extendable component-based system 
model. 

Floors 
    Components 
 
Rooms 

Component 1 
(CO2 Concentration 
Sensor) 

Component 2 
(Damper 
Actuator) 

Component 3 
(Temperature 
Sensor) 

Component 4 
(Heater 
Actuator) 

Floor 1 

Room 1 0 0 0 0 
Room 2 0 1 0 0 
Room 3 0 0 0 0 
Room 4 0 0 0 0 
Room 5 0 0 0 0 
Room 6 0 0 0 0 

Floor 2 

Room 7 0 0 0 0 
Room 8 0 0 0 0 
Room 9 0 0 0 0 
Room 10 0 0 0 0 
Room 11 0 0 2 0 
Room 12 0 0 0 0 

Floor 3 

Room 13 0 0 0 0 
Room 14 0 0 0 0 
Room 15 0 0 0 0 
Room 16 0 0 0 0 
Room 17 0 0 0 0 
Room 18 0 0 0 0 
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6.5 Implementation of Classifier-based Fault Diagnostic Algorithm using 
Fuzzy Bayesian Belief Networks 

 
The novel and generic FBBN diagnostic algorithm is implemented in a DCV and heating system scenario. 
Based on the presented model from chapter 5, the algorithm is implemented in three different phases: (1) 
fuzzification by a system expert, (2) implementation phase, (3) diagnosis phase, and (4) evaluation phase.  
 
6.5.1 Fuzzification by System Expert 

 
There are several requirements for implementing the FBBN. Experts use their knowledge to extract 

system model information and fuzzy rules. Experts must define the system attributes, subdomains (i.e., 
system attribute fuzzifications), and fuzzy membership functions for each fuzzified subdomain to calculate 
fuzzy weights (probabilities). In addition, the system model output data are raw data, including useless 
information. Therefore, the output data should be prepared by selecting the required system attributes in 
the RDT table. The RDT table is prepared for the example DCV and heating system model with three kinds 
of system attributes: constant, discrete, and continuous ones as shown in Table 27. Table 27 includes the 
system measurement values for each time step. The time sample range is between 1 and 86400 seconds.  
 
Table 27. RDT for the DCV and heating system including constant, discrete and continuous attributes. 

Constant System Attributes 
Discrete System 
Attributes 

Continuous System 
Attributes 

Second 
(Sample time) 

Outdoor Daily  
Temperature 

Occupancy 
Number 

Damper Status Heater Status 
CO2 

Concentration 

Indoor 
Room 
Temperature 

1       
…       
86400       

 
Experts use fuzzy rules to define system subdomains. System attributes must be divided into several 

subdomains based on their types. Discrete attributes are divided into two different subdomains based on 
their status. Continuous and constant attributes are divided into three subdomains based on their ranges. 
Table 28 explains the seven system domains and 18 subdomains.  
 
Table 28. SLT table to define the fuzzified subdomains based on system domains in the DCV and heating system example scenario. 

No. 
Attributes 
(Domains) 

Subdomains Subdomains Subdomains 

1 Daily Temperature Low_Daily_Temperature  Middle_Daily_Temperature  High_Daily_Temperature  

2 Number of Occupants  Low_Occupancy  Normal_Occupancy  High_Occupancy 

3 Room Temperature 
Lower_than_Threshold_Roo
mTemperature  

Within_Threshold_RoomTempera
ture  

Upper_than_Threshold_RoomTemp
erature 

4 Heater Status Heater_Status_On Heater_Status_Off --------- 

 5 Damper Status Damper_Status_Open Damper_Status_Close  --------- 

6 Simulation Clock Healthy_Mode  Faulty_Mode --------- 

7  Room CO2 
Concentration 

Lower_than_Threshold_CO
2Value  

Within_Threshold_CO2Value  Upper_than_Threshold_CO2Value 
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 After defining the fuzzification of system attributes, a fuzzy membership function is defined for 
each new subdomain based on their changes. Table 29 details the system domain, new subdomains, ranges 
of the new subdomains, and their units. A specific number is assigned to each new subdomain applicable 
to FBBN implementation tables, such as SLT (Table 10) , WFRDT (Table 11) , SPV (Table 12) , 
ITTM(Table 13) , SRT (Table 14), CPT (Table 15), and RDP (Table 16) tables.  
 
Table 29. Implementation details for fuzzy membership function definitions. 

No. of Fuzzified 
Subdomain 

System Attribute 
(Domain) Fuzzified Subdomain Values and Ranges  Units 

No.1  Daily Temperature Low_Daily_Temperature [0-5] ºC 

No.2 Daily Temperature Middle_Daily_Temperature [5-9] ºC 

No.3  Daily Temperature High_Daily_Temperature  [9-14] ºC 

No.4  Occupants Number Low_Occupancy  Less Than 3 People Person 

No.5  Occupants Number Normal_Occupancy  3 and 4 People Person 

No.6  Occupants Number High_Occupancy 5 and 6 People Person 

No.7  Room Temperature Lower_than_Threshold_RoomTemperature [0-17.5] ºC 

No.8  Room Temperature Within_Threshold_RoomTemperature [17.5-22.5] ºC 

No.9  Room Temperature Upper_than_Threshold_RoomTemperature [22.5-40] ºC 

No.10  Heater Status Heater_Status_On 1 Binary  

No.11  Heater Status Heater_Status_Off 0 Binary  

No.12 Damper Status Damper_Status_Open 1 Binary  

No.13 Damper Status Damper_Status_Close 0 Binary  

No.14  Simulation Clock Healthy_Mode Less Than 1800 Second 

No.15 Simulation Clock Faulty_Mode  More Than 1800 Second 

No.16 Room CO2 Concentration Lower_than_Threshold_CO2Value [0-400] ppm 

No.17 Room CO2 Concentration Within_Threshold_CO2Value  [400-800] ppm 

No.18  Room CO2 Concentration Upper_than_Threshold_CO2Value [800-1200] ppm 

 

Daily temperature is divided into three new subdomains in Table 29, including the 
Low_Daily_Temperature ranges, Middle_Daily_Temperature, and High_Daily_Temperature. To calculate 
the fuzzy membership values (W), three membership function based on the subdomains range values should 
be  extracted as Equation 25, Equation 26, and Equation 27. All fuzzy membership functions are plotted in 
one single figure to understand the membership degree changes for each subdomain depicted in Figure 49. 
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𝐻𝑖𝑔ℎ_𝐷𝑎𝑖𝑙𝑦_𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒_𝐹𝑢𝑧𝑧𝑦_𝑀𝑒𝑚𝑏𝑒𝑟𝑠ℎ𝑖𝑝_𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝑥) =

0   𝑥 < 7.175
(𝑥 − 7.175)

(9 − 7.175)
 7.175 ≤ 𝑥 ≤ 9

1   𝑥 ≥ 9

 Equation 27 

                         

 
Figure 49. Plotted daily temperature fuzzy membership functions. 

Three new subdomains for the occupancy numbers are Low_occupancy, Normal_Occupancy, and 
High_Occupancy shown in Table 29. Membership functions for the new subdomains are defined in 
Equation 28, Equation 29, and Equation. 30. All plotted fuzzy membership functions for the occupancy 
numbers is depicted in Figure 50. 
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Figure 50. Plotted Occupancy fuzzy membership functions. 

Subdomains for the room temperature numbers are Lower_than_Threshold_RoomTemperature, 
Within_Threshold_RoomTemperature, Upper_than_Threshold_RoomTemperature shown in Table 29. 
Fuzzy Membership functions for the room temperature are extracted based on their range values shown in 
Equation 31, Equation 32, and Equation 33. All room temperature’s fuzzy membership functions are plotted 
in  Figure 49to have a better understanding of the membership degree changes. 
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Figure 51. Plotted room temperature fuzzy membership functions. 

Three new subdomains are defined for the CO2 concentration numbers in Table 29 including 
Lower_than_Threshold_CO2Value, Within_Threshold_CO2Value, and Upper_than_Threshold_CO2Value. 
A new membership function is extracted for each new subdomain based on the subdomain range values 
shown in Equation 34, Equation 35, and Equation 36. All fuzzy membership functions are plotted in one 
single figure to understand the membership degree changes for each subdomain depicted in Figure 52. 
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Figure 52. Plotted CO2 concentration fuzzy membership functions. 

 

6.5.2 Implementation Phase (Offline Training Mode) 
 
In the second phase, the fuzzy Bayesian belief network generates a list of fault objects stored in a 

vector named “Offline Library.” The offline library is trained with various fault case injections in this phase. 
Fault objects in the implementation phases include four properties: type, time, data, and RDP. Each property 
of one fault injection must be prepared and assigned. The offline library in the implementation phase is 
generated based on the different injection times (e.g., 17 points of injection times) and types (e.g., 10 points 
of fault types) for each system component, such as damper actuator, heater actuator, CO2 concentration 
sensor, and room temperature sensor. Function 7 describes the algorithm for the implementation phase. The 
result of this phase is the 'ImplementationLibrary.mat' file, including the offline library, which is required 
for the subsequent phases. The fault injection values are selected based on the fault types and assigned in 
each fault injection. To facilitate the implementation, only the permanent stuck-at faults are considered for 
each electronic component to generate the offline library and diagnosis process.  
 
Function 7. Algorithm with example values including the offline generation of the FBBN diagnostic technique. 

Offline library implementation phase algorithm 

//Requirement of implementation to initial variables 
1. Load ('occupants. mat'). 
2. Load ('OfficeModelVaribales.mat'); 
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3. Simulation_Time = 86400; 
 
//Choosing the fault mode, including the type and time of fault  
//Fault time including 17 points of time 
4. Fault_Injection_Time_Vector= 5000:5000:86400. 
 
//Fault type including 10 points of types 
5. Fault_Injection_Type_Vector=["CO2SensorLow","CO2SensorMiddle","CO2SensorHigh","DamperActuatorO

ff","DamperActuatorOn","TemperatureSensorLow","TemperatureSensorMiddle","TemperatureSensorHigh",
"HeaterActuatorOff","HeaterActuatorOn"]; 

 
//Initializing the library table 
6. [x1,y1] = size(Fault_Injection_Time_Vector); 
7. [x2,y2] = size(Fault_Injection_Type_Vector); 
 
//Total number of injected faults to build the library table  
8. FaultCases = y1 ˟ y2; 
 
9. For p =1:1:y1 
10. For q =1:1:y2 
 
11. RDP=0; 
//Setting the type of fault 
12. Fault_Mode= Fault_Injection_Type_Vector(q); 
//Setting the time of fault 
13. Delay_Time = Fault_Injection_Time_Vector(p); 
 
//Activating the Switch cases for ten fault types and selecting the fault injection values based on the fault types in 
each switch case besides FIV variables show the fault injection values. 
14. Switch Fault_Mode 
15. Case "CO2SensorLow" 

CO2_R1_Sensor_FIV = 350;  
16. Case "CO2SensorMiddle" 

CO2_R1_Sensor_FIV = 600;  
17. Case "CO2SensorHigh" 

CO2_R1_Sensor_FIV = 850; 
18. Case "DamperActuatorOff" 

CO2_R1_Actuator_FIV = 0;  
19. Case "DamperActuatorOn" 

CO2_R1_Actuator_FIV = 1;  
20. Case "TemperatureSensorLow" 

Temp_R1_Sensor_FIV = 17;  
21. Case "TemperatureSensorMiddle" 

Temp_R1_Sensor_FIV = 20; 
22. Case "TemperatureSensorHigh" 

Temp_R1_Sensor_FIV = 23; 
23. Case "HeaterActuatorOff" 

Temp_R1_Actuator_FIV=0;  
24. Case "HeaterActuatorOn" 

Temp_R1_Actuator_FIV=1;  
25. Otherwise   
26. End   
 
//Running the simulation for the system specifications and saving the results in a library file  
//Open_System is a built-in function that opens the system model.  
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27. Open_system('Fault_Injection_Data_1.slx'); 
28. FaultCounter = FaultCounter + 1; 
 
//Sim is a built-in function that runs the simulation system model 
29. Sim ('Fault_Injection_Data_1.slx', Simulation_Time); 
 
//Implementation.m MATLAB file computes the required tables for FBBN construction 
30. Run ('Implementation.m'); 
 
//Creating an object from the “Fault” class  
31. FaultObj= Fault; 
 
//Saving the implementation results in fault object 
32. FaultObj.Type=Fault_Mode; 
33. FaultObj.Time=Delay_Time; 
 
//The Data comes from to workspace Simulink block in the system model, which is accessible like other system 
variables via the workspace panel 
34. FaultObj.Data = Data; 
35. FaultObj.RDP=RDP; 
36. Lib(FaultCounter,1)= FaultObj; 
//Close_System is a built-in function that closes the system model for each fault case 
37. Close_system('Fault_Injection_Data_1.slx'). 
//The script continuous for other fault cases with the next iterations 
38. End 
39. End 
//Save function uses to keep all defined fault objects in 'ImplementationLibrary.mat'  
40. Save ('ImplementationLibrary.mat','Lib'). 

 
 
6.5.3 Diagnosis Phase (Online Diagnostic Mode) 
 
The third phase is the diagnosing of the injected fault cases. Type, time, and values are selected randomly 
as described in Function 8. The main differences between the implementation and diagnosis phases are the 
fault injection value definitions which are random in the diagnosis phase despite the training mode where 
the offline library is generated with pre-defined fault injection attributes. Another difference relates to the 
diagnosis operations including the calculation of the Precentage_List referred to in  Table 18.  Function 8 
determines the mutuality (or similarity) of the actual fault case with the entries in the offline library as 
parent-child pairs. The diagnosis algorithm can be iterated for any demanded fault cases, and the results are 
saved in 'DiagnosisLibrary.mat'.  
 
Function 8.  Algorithm for diagnosis phase including the percentage list for the FBBN diagnostic technique. 

 
Diagnosis Phase algorithm 

//Requirement of diagnosis phase  
1. load('occupants.mat'); 
2. load('OfficeModelVaribales.mat'); 
3. load('ImplementationLibrary.mat'); 
4. Simulation_Time = 86400; 
 
//The library which is generated in the implementation phase is initialed as a variable 
5. ImplementationLib= Lib; 
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6. Simulation_Time = 86400; 
 
//Number of repetitions for diagnosing specifying the number of real case faults that should be diagnosed. This 
number is increased for the evaluation phase 
7. Real_Execuation_RepeatitionTime = 1; 
 
//Choosing the fault mode, including the type and time of the fault. 
//Fault time vector  
8. Fault_Injection_Time_Vector= 2000:2000:86400; 
 
//Fault type vector  
9. Fault_Injection_Type_Vector = ["CO2Sensor","DamperActuator","TemperatureSensor","HeaterActuator"]; 
 
//Initializing the library table 
10. [x1,y1]= size(Fault_Injection_Time_Vector); 
11. [x2,y2]= size(Fault_Injection_Type_Vector); 
 
//Running the System in an actual situation means random fault injection time and fault type.  
12. For t=1:1:Real_Execuation_RepeatitionTime 
 
13. RDP=0; 
14. FaultValue=0; 
   
//Setting the time of a fault case randomly 
15. RealTime_Fault = randi(86400); 
16. Delay_Time = RealTime_Fault; 
   
//Setting the type of a fault case randomly 
17. Fault_Mode = Fault _Injection_Type_Vector(randi(4)); 
 
 %Activating the fault injection type and selecting the fault injection values randomly in each switch case 
18. Switch Fault_Mode 
19. Case "CO2Sensor" 

CO2_R1_Sensor_FI =1; 
CO2_R1_Sensor_FIV= randi([300,850],1); 
FaultValue= CO2_R1_Sensor_FIV; 
 

20. Case "DamperActuator" 
CO2_R1_Actuator_FI=1; 
CO2_R1_Actuator_FIV= randi([1,2],1)-1; 
FaultValue = CO2_R1_Actuator_FIV; 

 
21. Case "TemperatureSensor" 

Temp_R1_Sensor_FI =1; 
Temp_R1_Sensor_FIV=  randi([10,40],1); 
FaultValue =Temp_R1_Sensor_FIV; 

 
22. Case "HeaterActuatorS 

Temp_R1_Actuator_FI=1; 
Temp_R1_Actuator_FIV= randi([1,2],1)-1; 
FaultValue=Temp_R1_Actuator_FIV; 

Otherwise   
End   
 
//Open_System is a built-in function that opens the system model, and it runs with the Simulink function 
23. Open_system ('Fault_Injection_Data_1.slx'); 
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24. Sim ('Fault_Injection_Data_1.slx',Simulation_Time); 
 
//Implementation.m MATLAB file computes the required tables for FBBN construction 
25. Run ('Implementation.m'); 

// Fault diagnosis function is not a build-in function and defined in this thesis which returns a list including the 
percentage of similarities 
 

26. Precentage_List = FaultDiagnosis (RDP, ImplementationLib); 
 
// Creating an object from the “RealCase” class to keep the property values of actual injected faults 

27. RealCaseObj= RealCase; 
28. RealCaseObj.Type=Fault_Mode; 
29. RealCaseObj.Time=Delay_Time; 
30. RealCaseObj.Value=FaultValue. 
31. RealCaseObj.Precentage_List= Precentage_List; 
32. DignosisLib(t,1)= RealCaseObj; 
 
33. Close_system ('Fault_Injection_Data_1.slx'); 
 
End 
34. Save ('DiagnosisLibrary.mat', 'DignosisLib'); 

 

The real fault objects (extracted from the 'RealCase' class) in this library are also included in the 
Precentage_List (Table 18) and Evaluation_List (Table 19). The diagnosis accuracy depends on how close 
the random fault value is to the offline library faulty values described in Function 7. For example, the low, 
middle, and high CO2 concentration faulty values in the implementation phase are 350,600 and 850, 
respectively. The CO2 concentration sensor in the diagnosis phases captures a random value in the range of 
[300,850]. Random actual fault value and time specify the closeness degree to each offline fault case. 
Increasing the offline fault cases and their variety will subsequently increase the accuracy of the fault 
diagnosis.  

 
Function 9. Fault diagnosis function to generate the percentage list in the diagnosis phases of the FBBN diagnostic technique. 

FaultDiagnosis Function  

Function Precentage_List = FaultDiagnosis(RDP, lib) 
1. [x1,y1]= size(lib); 
 
//Reading values from Simulink outputs 
2. RealFaultyData = RDP; 
3. PrecentageList(1:x1,1)=0; 
     
//Finding mutuality values and differences of all pairs of subdomains  
4. For r =1:1:x1 
5. MutualPrecentage= Find_Precentage (RealFaultyData , lib(r).RDP); 
6. PrecentageList(r,1) = MutualPrecentage. 
End 
End     

 
The evaluation list is one property of RealCase class in the diagnosis phase that returns the most 

probable diagnosed fault cases based on the percentage list. It maps the offline library fault properties with 
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diagnosed faults by adding the types and times of the offline library to the largest percentages. “Maxk” is 
a built-in MATLAB function that finds the x largest elements of an array. Function 10 describes the 
evaluation list algorithm in which the x-top elements of the Precentage_List are returned to the evaluation 
list, including the time, type, and percentage of the selected fault cases. This list shows the diagnosed faults 
for an actual injected fault.  
 
Function 10. Evaluation list of the diagnosis phase for the FBBN diagnostic technique. 

Evaluation_List Generation Algorithm  

// Initializing the required libraries  
1. load('DiagnosisLibrary.mat'); 
2. load ('ImplementationLibrary.mat'); 
 
3. For p=1:1:size(DignosisLib) 
// Choosing the x-top fault cases. x is a desired number  for realizing the accuracy of the algorithm  
4. x = 20;  
5. [~,B] = maxk (DignosisLib(p).Precentage_List, x); 
6. For q =1:1:size(B) 
7. Typ = Lib(B(q)).Type; 
8. time1 = Lib(B(q)).Time; 
9. pre = num2str(DignosisLib(p).Precentage_List(B(q))); 
10. Evallist(q,1) = Typ; 
11. Evallist(q,2) = time1; 
12. Evallist(q,3) = pre; 
13. End 
14. DignosisLib(p).Evaluation_List = Evallist; 

 

6.5.4 Evaluation Phase  
 

The evaluation phase refers to studying the accuracy of the diagnosed faults. The number of injected 
faults is increased in this phase. The required values for the fault injection are defined in vectors. They can 
be injected randomly or based on a scenario to investigate the diagnosis results. The evaluation phase uses 
the RealCase class to define the fault objects, including the type, time, value, Precentage_List, and 
Evaluation_List properties. The results of all fault objects of the evaluation phase are stored in 
'EvaluationLibrary.mat'. To evaluate the results, the algorithm uses the ranking method to distinguish which 
rank the diagnosed fault belongs to. Then, the results are grouped based on the ranks and components for 
actual injected faults. For more understandability, the results can be shown as diagrams.  
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7 Experimental Evaluation and Results  
 

This chapter introduces the experimental evaluation for the single and multiple fault injection 
framework. Afterward, the fault injection results are discussed comprehensively. The single-fault injection 
has been tested and evaluated under seven fault scenarios and the results are shown in different charts for 
each associated and affected output signal. The impacts of each scenario on the system behavior, such as 
heating cost, CO2 concentration and temperature variations, are analyzed and discussed. Furthermore, the 
multiple-fault injection has been evaluated under five main fault scenarios. Each scenario contains various 
sub-events to model the multiple-fault incidences. Each fault scenario has been evaluated and the system 
observations have been analyzed. After that, the component-based system model was evaluated under 
multiple fault injections for two different system layouts, including different numbers of floors and rooms 
per floor. The energy consumption and other system impacts including temperature fluctuations and CO2 

concentration changes are presented, and the results are discussed precisely. Finally, the results of the 
proposed fault detection and diagnosis technique based on the FBBN construction, and the classifier-based 
algorithm are validated under an actual fault case. The actual fault case is injected using a fault injection 
framework in online diagnostic mode and compared with offline library fault cases to serve as a baseline. 

 

7.1 Single-Fault Injection Framework Validation and Results  
 
The fundamental goal of the proposed fault injection framework is to analyze and monitor system 

behavior and evaluate the accuracy of the FI framework in diverse fault scenarios. Seven random fault 
scenarios were studied for the evaluation as described in Table 30. Hence, relevant faults were chosen and 
injected for each component to observe the system's behavior with its failure impacts, such as occupant 
discomfort and wasted energy. Therefore, scenarios were chosen according to fault attribute variations and 
their impacts on the system were observed to show the FI performance. Each fault case of the scenario is 
comprehensively explained with fault attributes. Fault parameters were initialized based on the coefficients 
shown in Table 5, and the faulty signals were measured according to Equation 8. The heater duty cycle and 
energy consumption were set using the designed system model for each scenario as shown in Table 30. To 
determine the heating cost, energy consumption was first measured by using the total number of working 
hours of the heater in one simulation execution (which was considered as one day). The heating cost was 
considered 0.3 EUR/kWh in the system model based on the prices in Germany at the time of writing this 
thesis. The impacts of the CO2 concentration and temperature were also determined as shown in Table 30, 
and resembled faulty system-level behaviors. The scenarios are explained one by one as follows. System 
features and characteristics are depicted, such as actual and faulty CO2 concentrations and temperature 
signals, damper and heater statuses, and heating costs for healthy and faulty situations for each scenario. 
The occurrence and timing of failures, e.g., failure start times, failure durations and failure interarrival times 
significantly depended on the application domain. 

For example, Correcher et al. [248] and Wakil et al. [124] proposed probabilistic strategies to find 
failure characteristics, such as failure start times, failure durations and failure interarrival times based on 
experimental data. In Table 30, coefficients for each fault scenario are suggested according to the 
application domain of this thesis, which is a DCV and heating system with sensor and actuator components.  
In addition, the ranges of variables and local inputs are determined according to system thresholds. 
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Intermittent faults are common in actuators, e.g., damper actuators and thermostats (heater actuators) with 
relays. The literature suggests certain timing criteria for these intermittent faults [130, 242]. Kuflom et al. 
[242] investigated unstable and intermittent faults for numerical and electromechanical overcurrent relays. 
They examined the effect of resetting times in different fault scenarios. They used a pulse generator to 
generate fault signals and monitor response times. Therefore, in this thesis, the timing patterns for 
intermittent faults of actuators were modeled according to the timing patterns in  [130, 242].  
 
Table 30. Example fault scenarios for the evaluation of the fault injection framework. 
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1 150,00 CO2 sensor Permanent - - - Offset fault 125 ppm 1 62.45 64.44 +26.7% √ √ 

2 15,000 CO2 sensor Permanent - - - Data loss Last value 0 41.4 42.72 −13.3% √ × 

3 15,000 CO2 sensor Transient 3000- - Stuck at 750 ppm 0 49.51 51.1 +6.3% √ × 

4 15,000 Damper actuator Intermittent 2700600 2000 Stuck at 1 (on) 0 49.63 51.22 +6.3% × × 

5 15,000 Damper actuator Permanent - - - Stuck at 1 (on) 0 89.69 92.56 +80% × √ 

6 15,000 Temperature sensor Permanent - - - Stuck at 16 °C 0 89.83 92.71 +80% × √ 

7 15,000 Heater actuator Permanent - - - Stuck at 1 (open) 0 47.25 48.76 +80% × √ 

 

7.1.1 Scenario 1 
 
Scenario 1 describes a permanent offset fault for the CO2 sensor and shows the impact of a high CO2 

concentration on the system behavior, causing a high heater consumption, a clear increase in heating cost, 
and, subsequently, the discomfort of occupants due to lower temperature values. The CO2 sensor has a 
permanent offset fault with a 125-ppm offset coefficient value in this scenario. This fault is injected at 
15,000 s. In the healthy mode of the system model, whenever the CO2 concentration increases, the damper 
actuator is opened due to the high number of occupants inside the room or increased CO2 sensor 
concentration. Figure 53 shows the reaction of the damper subsystem to the offset fault in the CO2 sensor, 
which causes an increase in CO2 concentration values due to the faulty sensor readings and a decrease in 
actual CO2 values due to an opened damper at specific times. The results include thermal discomfort and 
temperature decrease as shown in Figure 54, and energy waste as shown in Figure 55. 
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Figure 53. Permanent offset fault of CO2 concentration sensor and damper actuator status (Scenario 1). 

Figure 54 shows the signal variations of the temperature inside the room, which decreases during the 
fault duration because the open status of the damper actuator brings cold air from the outside to the indoor 
environment. In the case of permanent faults, the faulty state continues for the rest of the execution time. 
Since the fault injection increases the concentration value (above the upper threshold of 650 ppm), the 
damper actuator opens, decreasing CO2 concentration in the room. Figure 54  shows this temperature drop, 
which causes occupant discomfort. 

 

 
Figure 54.Temperature variation in permanent offset fault of the CO2 concentration sensor (Scenario 1). 
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During the whole fault duration, the heater is turned on to compensate for the heating load due to the 
opened damper and to increase the temperature, increasing the heater duty cycle, energy consumption, and 
heating costs, as shown in Figure 55. 

 

 
Figure 55. Heating cost determined for permanent offset fault of the CO2 concentration (Scenario 1). 

 

7.1.2 Scenario 2 
 
In Scenario 2, the CO2 concentration sensor has a permanent data loss fault. This fault is injected at 

15,000 s, illustrated in Figure 56. In this scenario, the data loss fault results in the damper actuator becoming 
stuck at closed, diminishing the load on the heater and reducing the overall energy consumption compared 
to a healthy state operation. 

 
Figure 56. Zoomed view of faulty CO2 concentration sensor reading in case of permanent data loss. 
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Since the CO2 concentration value is within the threshold (650–550 ppm), the damper actuator is 
closed because the indoor CO2 concentration is in the acceptable range. However, the closed damper 
actuator status causes an increase in CO2 concentration, as shown in Figure 57. A high amount of CO2 
concentration causes the loss of concentration for the occupants, degradation of work efficiency, other 
health impacts and may even put lives in danger. 

 

 
Figure 57. Actual and faulty measurements of a permanent data loss fault for the CO2 concentration sensor vs. damper actuator 
status (Scenario 2). 

The temperature inside the room stays in an acceptable range during the fault duration because the 
heater can moderately control the heating load, as shown in Figure 58. 

 

 
Figure 58. Temperature measurements and variations in CO2 concentration (Scenario 2). 
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As the damper actuator is closed, no cold air enters the room from the outside environment. This 
reduces the heating load and causes a lower heater duty cycle and, accordingly, lower heating costs 
compared to the healthy mode, as illustrated in Figure 59. 

 
Figure 59. Heating cost and permanent data loss fault for the CO2 concentration sensor (Scenario 2). 

 

7.1.3 Scenario 3 
 
Scenario 3 represents a transient stuck-at-fault for the CO2 sensor at 750 ppm. This fault is injected at 

15,000 s and lasts for the specified fault duration time, which is 3000 s.  
 

 
Figure 60. Actual and faulty measurements for the transient stuck-at fault for CO2 concentration sensor vs. damper actuator states 
(Scenario 3). 
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Since the CO2 sensor concentration is out of the nominal range of 550–650 ppm with a value greater 
than 650 ppm, the damper actuator should reduce the CO2 concentration inside the room. So, the damper 
actuator status changes and opens at 15,000 s, remaining in this situation for a period of 3000 sec, which is 
clearly shown in Figure 60. The temperature inside the room decreases during the fault duration as the 
damper actuator state causes the entering of cold air from the environment into the system, as shown in 
Figure 61. To compensate for the heating load due to an opened damper during the fault duration, the heater 
should remain turned on for a longer time compared to the healthy mode, increasing the heater duty cycle 
and energy consumption. Hence, compared to the healthy state, there is a slight increase in the heating cost 
of the system under the faults, as shown in Figure 62. 

 

 
Figure 61. Temperature variation due to transient stuck-at fault of CO2 concentration sensor (Scenario 3). 

 
Figure 62. Heating cost due to transient stuck-at-fault of the CO2 concentration sensor (Scenario 3). 



129 
 

 

7.1.4 Scenario 4 
 
In scenario 4, an intermittent stuck-at fault with two repetitions is injected into the damper actuator in 

an open status. The first failure is injected at 15,000 s. This faulty state lasts for 2700 s. After that, the 
damper operation continues in a healthy mode for 2000 sec (interarrival time). Afterward, the second failure 
is injected into the system, it lasts for 600 s, and then the system operates normally again. Since the damper 
is stuck in an open state, the CO2 concentration inside the room is reduced and reaches the minimum value 
of 460 ppm. The damper states and changes in the CO2 concentration values can be seen in Figure 63. 

 

 
Figure 63. Actual and faulty measurements of the CO2 concentration sensor under an intermittent stuck-at fault for the damper 
actuator (Scenario 4). 

The damper status causes the entering of cold air from the outside environment into the room. This 
results in a decrease of the room temperature as depicted in Figure 64. The heater changes to an ON state 
after 15,000 s to increase the room temperature. However, the temperature will not stay in the acceptable 
range due to the damper actuator as illustrated in Figure 64. The temperature inside the room follows the 
trend of the environmental temperature during the fault injection time. Therefore, the heater operates at a 
higher duty cycle and increases the overall energy consumption and heating cost as shown in Figure 65. 
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Figure 64. Temperature variations due to the intermittent stuck-at fault of the damper actuator (Scenario 4). 

 
Figure 65. Heating cost due to the damper actuator's intermittent stuck-at fault (Scenario 4). 

 

7.1.5 Scenario 5 
 
Scenario 5 describes a permanent stuck-at-fault for the damper actuator. This fault is injected at 15,000 

s. The faulty state endures until the end of the simulation. Since the damper is stuck in an open state, the 
CO2 concentration inside the room decreases and reaches a minimum value of 400 ppm, equal to the outside 
environment's CO2 concentration. The damper’s open status and its effect on the CO2 concentration are 
depicted in Figure 66. 
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Figure 66. Actual and faulty measurements for a permanent stuck-at damper actuator fault vs. damper actuator state (Scenario 5). 

However, the damper’s open status also decreases the room temperature, as shown in Figure 67. The 
heater changes to an ON state after 15,000 s to increase the room temperature. However, the temperature 
will not stay in the acceptable range as the damper actuator is open. The indoor temperature follows the 
trend of the temperature of the outside environment. The heater operates in a high-duty cycle, increasing 
the overall energy consumption. Consequently, the heating cost considerably increases compared to the 
healthy state operation, as shown in Figure 68. 
 

 
Figure 67. Temperature variations for an intermittent out-of-bound fault with two repetitions in the CO2 concentration sensor 
(Scenario 5). 
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Figure 68. Heating cost for an intermittent out-of-bound fault with two repetitions for the CO2 concentration sensor (Scenario 5). 

 

7.1.6 Scenario 6 
 
In this scenario, a permanent stuck-at fault is injected into the temperature sensor at 16 °C. This fault is 

injected at 15,000 s. The faulty state continues for the rest of the execution time until the end of the 
simulation. The temperature sensor is stuck below the nominal threshold (17.5–22.5 °C), depicted in Figure 
69. To increase the inside temperature, the heater should be turned on. However, the damper still functions 
as intended while the heater is on. Subsequently, the inside temperature of the room increases, as shown in 
Figure 70. 

 
Figure 69. Actual and faulty measurements for a permanent stuck-at fault at 16 °C for the temperature sensor (Scenario 6). 
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Figure 70. Temperature signal under a permanent stuck-at fault at 16 °C for the temperature sensor (Scenario 6). 

Once the fault is injected, the heater is turned on. Therefore, the heater duty cycle and the overall energy 
consumption increases for the whole fault duration time. Figure 71 shows that the heating cost is 
considerably increased in comparison with the healthy mode of the system. 

 

 
Figure 71. Heating cost for the permanent stuck-at fault at 16 °C for the temperature sensor (Scenario 6). 

 

7.1.7 Scenario 7 
 
Scenario 7 describes a permanent stuck-at fault for the heater actuator. This fault is injected at 15,000 s 

and continues until the end of the simulation. When the heater actuator is stuck in the ON state after 15,000 
s, the temperature inside the room increases. When the damper status opens, the room temperature 
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decreases, as represented in Figure 72. The ON state of the heater results in a higher-duty cycle and 
increases the system's energy consumption. Figure 73 shows that the heating cost substantially increases 
compared to the healthy mode of the system.  

 

 
Figure 72. Permanent stuck-at open-status fault of the heater actuator (Scenario 15). 

 

 
Figure 73. Heating cost due to a permanent stuck-at-open status fault of the heater actuator (Scenario 15). 
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7.2 Multiple Fault Injection Framework Validation and Results 
 
This thesis introduces a set of scenarios to evaluate the multiple fault injection framework. Each fault 

scenario was considered as a sample event consisting of other sub-scenarios (or sub-events). Each sub-
scenario includes multiple faults (failure repetitions) with different attribute descriptions, e.g., occurrence 
probabilities and fault type. To illustrate the results, two scenarios for the multiple FI and one case for more 
than two fault repetitions are shown in the results section. A scenario-based approach is considered to 
evaluate the multiple fault injection framework. To define the evaluation scenario, a Fault Injection Vector 
(FIV) including fault case objects, was introduced and is described in Table 31. Each fault object consists 
of fault case attributes and faulty output data generated by the introduced automated FI algorithm. Each 
fault case in the considered scenario is an object generated from the “Fault_Object_Generator“ class 
described in Function 11. The evaluation scenario is detailed including the properties such as the number 
of FI cases, the total number of injections, the number of faulty rooms and the number of faulty components. 
The faulty rooms denote the destination of the anomalies, and the faulty components define the target 
components in each room as detailed in Table 32. Fault attributes were assigned randomly by an automatic 
FI algorithm. The impact shows the consequences of each fault on the system behavior. The effect is 
depicted and analyzed concerning the change ratio for each subevent and event in Table 32. 
 
Table 31. FIV consisting of fault-case objects. 

Fault_Case Obj1 Fault_Case Obj2 Fault_Case Obj3 .. Fault_Case Obji .. Fault_Case Obj n-1 Fault_Case Objn 

 

Function 11. Fault object generator class. 

Code Description Explanation 
Class Fault Object Generator 
Properties 
Activated_Room_Component_Combination_Matrix.  

 
Fault_Injection_Persistence_Matrix.  

 
Fault_Injection_Time_Matrix.  

 
Fault_Injection_Duration_Matrix.  

 
Fault_Injection_Interarrival_Matrix.  

 
Fault_Injection_Type_Matrix.  

 
Fault_Occurrence_Probability_Matrix.  

 
Faulty_SystemOutput.  

 
Fault_Repetitions.  
 

 
 
Activation of the faulty rooms and components, including subevents. 
 
Assigning the FI persistence for faulty components. 

 
Assigning the FI time types. 

 
Assigning the FI duration times. 

 
Assigning the FI interarrival times. 
 
Assigning the FI types for faulty components. 

 
Calculating the FI types for faulty components. 

 
Storing faulty output for each fault case, including system signals. 

 
Assigning the number of repetitions for each subevent. 
 

 
To evaluate the FI framework, a total number of 14 fault cases, including five scenarios, are defined and 

described in Table 32. Each scenario comprises variations of sub-scenarios that explain the details of the 
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fault attributes and their impacts. Each fault occurrence probability value is bounded by the locality of the 
component, environmental conditions, and occurrence time, resulting in different CO2 concentrations, 
temperatures, and energy consumption over time. Moreover, some fault cases and their impacts are 
described and depicted to show the accuracy and results of the FI procedure. The results show the signal 
changes of the fault-case scenarios compared with the healthy situation of the system model in which the 
up arrowhead shows an increased impact, and the down arrowhead shows a decreased impact. For some 
cases with intermittent faults, it was observed that the signal first increased and then decreased. The column 
of fault occurrence probability in Table 32 shows the calculated values using Equation 23. The intermittent 
fault cases were defined with two repetitions for the scenarios.  
 

Table 32. Scenario descriptions for the FI framework in the HVAC system. 
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1 
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1 1 Damper actuator Intermittent
Stuck-at 
(open) 

Stuck-at 
(closed) 

0.6258 ↑ − ↑ 

2 2 4 CO2 sensor Permanent Gain fault − 0.0225 ↑ ↓ ↑ 

3 
2 

1 2 
Temperature 

sensor 
Permanent 

Out of 
bounds 

− 0.0996 − ↓ ↓ 

4 2 5 Heater actuator IntermittentStuck-at (on) 
Stuck-at 

(off) 
0.2586 − ↑↓ ↑ 

5 

3 

1 4 Damper actuator Intermittent
Stuck-at 
(open) 

Stuck-at 
(closed) 

0.6258 ↓↑ − ↑ 

6 2 5 
Temperature 

sensor 
Permanent 

Out Of 
bounds 

− 0.0996 
− ↑ ↓ 

7 3 5 Heater actuator Intermittent
Stuck-at 

(off) 
Stuck-at (on) 0.2586 

8 

4 

1 4 CO2 sensor Permanent Offset fault − 0.0225 
↑ ↑↓ ↑ 

9 2 4 Heater actuator IntermittentStuck-at (on) 
Stuck-at 

(off) 
0.25856 

10 3 5 CO2 sensor Permanent Offset fault − 0.0225 
↑ ↓ ↑ 

11 4 5 Damper actuator Intermittent
Stuck-at 
(open) 

Stuck-at 
(open) 

0.6258 

12 

5 

1 1 CO2 sensor Permanent Stuck-at − 0.0308 ↓ − ↓ 

13 2 5 
Temperature 

sensor 
Permanent 

Out of 
bounds 

− 0.6258 
↓ ↑ ↓ 

14 3 5 Damper actuator Intermittent
Stuck-at 
(open) 

Stuck-at 
(closed) 

0.0996 

 
Two scenarios show the thermal and energy consumption changes under fault conditions. One scenario 

shows multiple FI with more repetitions. 
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7.2.1 Multiple FI with Multiple Components in One Zone (Two Intermittent Stuck-at 
Faults in Heater Actuator and one Permanent Offset Fault in CO2 Sensor) 

 

This FI case describes two component faults triggered at different points in time in one zone. One 
intermittent fault was activated in the heater actuator, and one permanent offset fault was initiated at the 
CO2 sensor. This scenario is related to items 8 and 9 in Table 32. Figure 74 shows the two stuck-at “on” 
faults and the stuck-at “off” faults in the heater actuator, resulting in changes of the thermal conditions. 
Figure 75  also depicts the CO2 conditions, which had a permanent offset for the rest of the execution time 
as shown in Figure 75. Activating both faults simultaneously in one zone resulted in a reduction of 
temperature and a change to the “open” status of the damper actuator. With increasing CO2 concentration, 
the damper opened to decrease the harmful impact of the CO2. The open status of the damper actuator 
decreased the indoor temperature subsequently. Figure 76 illustrates the damper status, which remained 
open. The open status of the damper could also cause a decrease in the CO2 concentration. 

 

 
Figure 74. Thermal conditions for the heater actuator and CO2 sensor faults. 
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Figure 75. CO2 concentration for the heater actuator and CO2 sensor faults. 

 

 
Figure 76. Damper actuator status for the heater actuator and CO2 sensor faults. 

Figure 77  shows the energy consumption condition for this FI case which represents a substantial 
growth of around 73.34%. Whenever the damper stays in the open status, the heater actuator should remain 
in “on” to mitigate the thermal consequences and balance the internal temperature. 
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Figure 77. Heating cost for the heater actuator and CO2 sensor faults. 

 

7.2.2 Multiple FI with Multiple Components in One Zone (Two Intermittent Stuck-at 
Faults in the Damper Actuator and one Permanent Stuck-at Fault in the Temperature 
Sensor) 

 
This FI case shows two component faults in the damper actuator and temperature sensor. The damper 

actuator had two stuck-at “open “and stuck-at “closed “faults, illustrated in Figure 78. This scenario is 
related to items 13 and 14 in Table 32. 

 

 
Figure 78. Damper actuator status for the damper actuator and temperature sensor faults. 
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The damper actuator with a stuck-at “open” fault resulted in the “on” status of the heater actuator 
and a reduction of the CO2 concentration, as shown in Figure 79 and Figure 80, respectively. 

 

 
Figure 79. CO2 concentration for the damper actuator and temperature sensor faults. 

The temperature is stuck at 35 °C for the rest of the execution time, resulting in the heater actuator’s 
permanent “off” status. These conditions are shown in Figure 80. 

 

 
Figure 80. Thermal conditions and heater statuses for the damper actuator and temperature sensor faults. 

Once the heater actuator was stuck at “off” status, this caused a remarkable reduction in energy 
consumption of about 67%, depicted in Figure 81. However, as the temperature decreased, it caused thermal 
discomfort for the occupants. 
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Figure 81. Heating cost variations for the damper actuator and temperature sensor faults. 

 

7.2.3 Multiple Fault Injection in One Component (Intermittent Fault in Heater Actuator with 10 
Repetitions) 

 

This example scenario shows the effect of multiple faults in a single component. This intermittent 
fault was injected into the heater actuator with ten repetitions. Figure 82 shows the heater statuses and 
temperature sensor behavior. When the heater was stuck at “on” the temperature increased. Whenever the 
heater was stuck at “off” the temperature decreased, thereby closing the damper actuator. The damper and 
heater statuses are presented in Figure 83. The number of repetitions can be dynamic and increase according 
to the system requirements. 
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Figure 82. Heater actuator status vs. temperature sensor variations in case of an intermittent fault with ten repetitions in the HVAC 
system. 

 

Figure 83. Heater status vs. damper status in the case of an intermittent fault with ten repetitions in the HVAC system. 

Figure 84 depicts the costs due to faulty heating during the FI period. The price decreased by around 
13% because the heater was stuck at closed status. It gradually decreased when the heater went to the “off” 
position. 
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Figure 84. Heating cost variations for healthy and faulty states of the HVAC system in the case of an intermittent fault with ten 
repetitions. 

 

7.3 Results for Fault Detection and Diagnosis Technique with FBBN  
 

The fault detection and diagnosis technique with FBBN is evaluated for 200 random cases to 
evaluate the accuracy of the technique and showing how the detection process proceeds for different fault 
cases which is concluded in “Evaluation results” section.  The results are described via tables, including the 
system properties and the list of diagnosed faults. The top 20 diagnosed fault cases show the offline library's 
most probable or similar fault cases compared to the actual injected fault. The list of diagnosed faults 
consists of time, type, and probabilities. Each fault scenario in the diagnosis phase is extracted from 
RealCase class, including five properties: time, type, value, Precentage_List and Evaluation_List. Each 
Precentage_List is a vector with 170 elements of percentage values because the offline library consists of 
170 fault cases. The Evaluation_List is built based on the Precentage_List to choose the top 20 percentages. 
The final result of the diagnosis phase is a diagnostic library (DiagnosisLib) with four RealCase object 
elements.  Four number of fault cases are described as follow to illustrate the fault diagnosis steps via 
evaluation lists and ranking method.  

 

7.3.1 Scenario 1 
 

The first scenario describes the heater actuator's permanent stuck-at-off position with a “0” value, 
starting at 70393 seconds, described in the first element of “DiagnosisLib” and detailed in Table 33. The 
Evaluation_List of the DiagnosisLib (1,1) is extracted and listed in Table 34.  
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Table 33. The first scenario with the diagnosis library for the FBBN diagnosis phase 

DiagnosisLib (1,1) Description 
Property Value  
Type "HeaterActuator" Injected fault type in RealCase class  
Time 70393 Injected fault time in RealCase class  
Value 0 Injected fault value in RealCase class  

Precentage_List 170 x 1 double 
A list of percentages for the RealCase class comparing the injected fault with 
the offline library 

Evaluation_List 20 x 3 String A list of the largest percentages for 20 top cases mapped to the offline library 

 
To diagnose the fault of the first scenario, three properties of the actual fault case are compared 

with ranks of Evaluation_List and the results show the diagnosis in the first rank. The first rank of 
Evaluation_List in Table 34 is the most probable and closest fault case compared to an injected fault in 
Table 33. During the diagnosis phase, only the faulty component and the value are selected randomly. Based 
on the faulty value, the fault type in the offline library is mapped to the actual injected faults. For example, 
“HeaterActuatorOff” represents a stuck-at-off position specified by a binary value of 0. Yellow color shows 
the diagnosed fault rank and greens are the rest of the ranks. 

 

Table 34. First scenario evaluation list for the FBBN diagnosis phase 

DiagnosisLib (1,1). Evaluation_List 
No. Offline Library Fault Type Offline Library Fault Time Top 20 in Percentage_List Ranking Process 
1 "HeaterActuatorOff" "70000" "51.3889" Diagnosed in Rank 1 
2 "HeaterActuatorOff" "65000" "50" Rank 2 
3 "HeaterActuatorOff" "60000" "49.3056" Rank 3 
4 "HeaterActuatorOff" "75000" "49.3056" Rank 4 
5 "HeaterActuatorOff" "55000" "47.9167" Other Ranks 
6 "HeaterActuatorOff" "50000" "45.8333" Other Ranks 
7 "HeaterActuatorOff" "45000" "45.1389" Other Ranks 
8 "TemperatureSensorLow" "70000" "45.1389" Other Ranks 
9 "HeaterActuatorOff" "80000" "45.1389" Other Ranks 
10 "TemperatureSensorLow" "65000" "43.75" Other Ranks 
11 "TemperatureSensorHigh" "70000" "43.75" Other Ranks 
12 "TemperatureSensorLow" "75000" "43.75" Other Ranks 
13 "TemperatureSensorLow" "60000" "43.0556" Other Ranks 
14 "TemperatureSensorHigh" "65000" "42.3611" Other Ranks 
15 "TemperatureSensorHigh" "75000" "42.3611" Other Ranks 
16 "HeaterActuatorOff" "40000" "41.6667" Other Ranks 
17 "TemperatureSensorLow" "55000" "41.6667" Other Ranks 
18 "TemperatureSensorHigh" "60000" "41.6667" Other Ranks 
19 "TemperatureSensorHigh" "55000" "40.9722" Other Ranks 
20 "TemperatureSensorLow" "80000" "40.9722" Other Ranks 

 

7.3.2 Scenario 2 
 

For the second scenario, a "TemperatureSensor" permanent stuck-at-value is injected in online 
mode starting at 78916 seconds. This actual fault is described in the DiagnosisLib (2,1) and detailed in 
Table 35.  The value of 12 ºC is limited to the lower than the thresholds of the fuzzification. The 
Evaluation_List of the DiagnosisLib (2,1) is extracted and listed in Table 36 showing the first rank 
diagnosis. To show the most probable fault cases, 20 fault cases are selected and listed, the first rank of the 
Evaluation_List in Table 36 is the most probable and closest fault case to an injected fault in Table 35. 
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Table 35. Second scenario with the diagnosis library for the FBBN diagnosis phase 

DiagnosisLib (2,1) Description 
Property Value  
Type "TemperatureSensor" Injected fault type in RealCase class 
Time 78916 Injected fault time in RealCase class 
Value 12 Injected fault value in RealCase class 

Precentage_List 170 x 1 double 
A list of percentages for the RealCase class comparing the injected fault with 
the offline library 

Evaluation_List 20 x 3 String A list of the largest percentages for 20 top cases mapped to the offline library 

 

Table 36. Evaluation list for the FBBN diagnosis phase in the second scenario 

DiagnosisLib (2,1). Evaluation_List 
No. Offline Library Fault Type Offline Library Fault Time Top 20 in Percentage_List Ranking Process 
1 "TemperatureSensorLow" "80000" "50" Diagnosed in Rank 1 
2 "TemperatureSensorLow" "75000" "48.6111" Rank 2 
3 "TemperatureSensorLow" "70000" "47.2222" Rank 3 
4 "TemperatureSensorLow" "85000" "46.5278" Rank 4 
5 "TemperatureSensorLow" "60000" "45.8333" Other Ranks 
6 "TemperatureSensorLow" "65000" "45.8333" Other Ranks 
7 "DamperActuatorOff" "75000" "45.8333" Other Ranks 
8 "TemperatureSensorMiddle" "75000" "45.8333" Other Ranks 
9 "HeaterActuatorOn" "75000" "45.8333" Other Ranks 
10 "DamperActuatorOff" "80000" "45.8333" Other Ranks 
11 "TemperatureSensorMiddle" "80000" "45.8333" Other Ranks 
12 "HeaterActuatorOn" "80000" "45.8333" Other Ranks 
13 "DamperActuatorOff" "50000" "45.1389" Other Ranks 
14 "TemperatureSensorMiddle" "50000" "45.1389" Other Ranks 
15 "HeaterActuatorOn" "50000" "45.1389" Other Ranks 
16 "DamperActuatorOff" "55000" "45.1389" Other Ranks 
17 "TemperatureSensorLow" "55000" "45.1389" Other Ranks 
18 "TemperatureSensorMiddle" "55000" "45.1389" Other Ranks 
19 "HeaterActuatorOn" "55000" "45.1389" Other Ranks 
20 "DamperActuatorOff" "60000" "45.1389" Other Ranks 

 

7.3.3 Scenario 3 
 

The third random actual fault is the permanent stuck-at-value for "TemperatureSensor" which 
occurred in the high ranges of the 30 ºC of fuzzification described in the third element of “DiagnosisLib” 
and detailed in Table 37. This scenario is differed in the different ranges f occurrence form the previous 
scenario. This scenario shows the accurate diagnosis for the same component in different fault ranges. The 
Evaluation_List resulted from the offline library and actual fault (shown in Table 37) is described in Table 
38.  

Table 37. Third scenario diagnosis library for the FBBN diagnosis phase 

DiagnosisLib (3,1) Description 
Property Value  
Type "TemperatureSensor" Injected fault type in RealCase class 
Time 24063 Injected fault time in RealCase class 
Value 30 Injected fault value in RealCase class 
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Precentage_List 170 x 1 double 
A list of percentages for the RealCase class comparing the injected fault with 
the offline library 

Evaluation_List 20 x 3 String A list of the largest percentages for 20 top cases mapped to the offline library 

 

Table 38. Evaluation list for the FBBN diagnosis phase in the third scenario 

DiagnosisLib (3,1). Evaluation_List 
No. Offline Library Fault Type Offline Library Fault Time Top 20 in Percentage_List Ranking Process 
1 "TemperatureSensorHigh" "25000" "46.5278" Diagnosed in Rank 1 
2 "TemperatureSensorHigh" "30000" "44.4444" Rank 2 
3 "TemperatureSensorHigh" "40000" "44.4444" Rank 3 
4 "TemperatureSensorHigh" "20000" "43.75" Rank 4 
5 "TemperatureSensorHigh" "35000" "42.3611" Other Ranks 
6 "TemperatureSensorHigh" "45000" "42.3611" Other Ranks 
7 "TemperatureSensorHigh" "55000" "42.3611" Other Ranks 
8 "TemperatureSensorHigh" "50000" "41.6667" Other Ranks 
9 "TemperatureSensorHigh" "60000" "41.6667" Other Ranks 
10 "TemperatureSensorHigh" "65000" "40.9722" Other Ranks 
11 "TemperatureSensorHigh" "70000" "40.2778" Other Ranks 
12 "TemperatureSensorHigh" "15000" "38.8889" Other Ranks 
13 "TemperatureSensorHigh" "75000" "38.8889" Other Ranks 
14 "TemperatureSensorMiddle" "20000" "38.1944" Other Ranks 
15 "TemperatureSensorHigh" "80000" "38.1944" Other Ranks 
16 "TemperatureSensorHigh" "85000" "36.8056" Other Ranks 
17 "HeaterActuatorOn" "25000" "36.1111" Other Ranks 
18 "TemperatureSensorMiddle" "25000" "35.4167" Other Ranks 
19 "HeaterActuatorOff" "25000" "35.4167" Other Ranks 
20 "HeaterActuatorOn" "30000" "35.4167" Other Ranks 

 

7.3.4 Scenario 4 
 

The fourth scenario describes the "CO2Sensor" permanent stuck-at-value of 834 ppm which is the 
fault occurrence in higher threshold of the CO2 sensor values detailed in Table 39. and Table 40. This 
scenario shows the accuracy of the diagnosis in the other component of the system with different fault 
injection attributes. The Table 40 shows the first diagnosis rank with  highest probability of mutuality. It 
means that the fault case of "CO2SensorHigh" in "85000" time is the most similar fault case with the actual 
injected fault.  

Table 39. Diagnosis library for the FBBN diagnosis phase in the fourth scenario 

DiagnosisLib (4,1) Description 
Property Value  
Type "CO2Sensor" Injected fault type in RealCase class 
Time 83367 Injected fault time in RealCase class 
Value 834 Injected fault value in RealCase class 

Precentage_List 170 x 1 double 
A list of percentages for the RealCase class comparing the injected fault with 
the offline library 

Evaluation_List 20 x 3 String A list of the largest percentages for 20 top cases mapped to the offline library 

 

To diagnose the fault of the fourth scenario, three properties of the actual fault case are compared 
with the ranks of Evaluation_List. The results show the diagnosis in the first rank. The first rank of 
Evaluation_List in Table 40 is the most probable and closest fault case to an injected fault in Table 39. 
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Table 40. Evaluation list for the FBBN diagnosis phase in the fourth scenario 

DiagnosisLib (4,1). Evaluation_List 
No. Offline Library Fault Type Offline Library Fault Time Top 20 in Percentage_List Ranking Process 
1 "CO2SensorHigh" "85000" "49.3056" Diagnosed in Rank 1 
2 "CO2SensorHigh" "80000" "45.8333" Rank 2 
3 "DamperActuatorOn" "85000" "45.1389" Rank 3 
4 "TemperatureSensorLow" "85000" "43.75" Rank 4 
5 "TemperatureSensorLow" "80000" "41.6667" Other Ranks 
6 "TemperatureSensorMiddle" "85000" "41.6667" Other Ranks 
7 "CO2SensorHigh" "75000" "40.9722" Other Ranks 
8 "DamperActuatorOff" "85000" "40.9722" Other Ranks 
9 "HeaterActuatorOn" "85000" "40.9722" Other Ranks 
10 "CO2SensorLow" "85000" "40.2778" Other Ranks 
11 "HeaterActuatorOff" "85000" "40.2778" Other Ranks 
12 "DamperActuatorOff" "75000" "39.5833" Other Ranks 
13 "TemperatureSensorMiddle" "75000" "39.5833" Other Ranks 
14 "HeaterActuatorOn" "75000" "39.5833" Other Ranks 
15 "DamperActuatorOff" "80000" "39.5833" Other Ranks 
16 "DamperActuatorOn" "80000" "39.5833" Other Ranks 
17 "TemperatureSensorMiddle" "80000" "39.5833" Other Ranks 
18 "HeaterActuatorOn" "80000" "39.5833" Other Ranks 
19 "HeaterActuatorOn" "40000" "38.8889" Other Ranks 
20 "HeaterActuatorOn" "45000" "38.8889" Other Ranks 

 

7.3.5 Evaluation Results  
 

To evaluate the diagnosis technique based on FBBN, the diagnosis algorithm is executed for a 
number of 200 random actual fault cases. The fault cases are ranked based on their probabilities (or 
percentages in Evaluation_List). To improve the accuracy, only five groups of ranks are considered for 
diagnosis: rank 1, rank 2, rank 3, rank 4, and no diagnosis. These ranks can be increased if the designer 
wants to know the other probable fault ranges. The evaluation results are grouped based on the component 
type and the ranks of diagnosed faults. All fault cases are injected randomly, and the ranking process shows 
five cases in the second rank, 1 case in the third rank, and the rest are diagnosed in the first rank, which is 
a significant and reliable result for the FBBN diagnostic algorithm. The results are shown in the appendix 
in detail. The results specify the accuracy of the diagnosis for 100% in 200 random actual injections. Based 
on the ranking method, offline library cases are mapped  to the actual fault cases and sorted ascendant to 
find and select the most probable fault case. These scenarios are selected randomly and show how the 
diagnosis algorithm functions in different fault cases. Because of selection of the fuzzy theory ranges, the 
diagnosis algorithm may not be accurate in the ranges between to close fuzzy membership functions 
(common areas of the range values). For instance, if the fault occurs in the common range of value of the 
middle and lower values, then the algorithm may diagnose this in both ranges. Therefore, ranking helps to 
resolve this issue when there is the same probability for two ranges.   

 

 

 



148 
 

 

8 Discussion and Further Research 
 

Evaluating a system under different faults and anomalies is essential to validate fault-tolerance 
mechanisms and gain insights into reliability and safety. Simulation-based fault injection provides high 
observability and controllability of the deliberate insertion of faults and monitoring system behaviors. One 
advantage of our proposed automated fault injection framework is that it is extendable and compatible with 
different system models, which must be monitored and evaluated under fault conditions. HVAC systems 
are an example of such a system consisting of many sensors and actuators, resulting in a complex and error-
prone critical infrastructure. The proposed FI framework was evaluated at the system level based on the 
component failures of the FCRs. The novelty of the proposed FI framework is that the simulator command 
technique and simulation code modification were merged for realistic fault scenarios, which can be 
automatically activated for different fault types with varying attributes. A Gaussian probability of sensor 
accuracy and noise with uniform distribution were modeled to reach realistic uncertainties. To implement 
the fault injectors, a State-flow diagram was used for the simulation-based fault injection. Numerous 
scenarios were considered to evaluate the system model with the fault injection framework. Each scenario 
allowed us to investigate and understand the system's behavior under the respective fault case. The 
evaluation of the framework showed us the consequences of different fault sets, which were activated for 
specific components, such as sensors and actuators. For each case of the scenarios in the evaluation section, 
there is a discussion that explains their fault attributes and parameters. Moreover, the figures represent the 
impact of the fault injection process on the system's behavior and the signal changes. The faults can also be 
randomly injected with random repetitions, which can be helpful in evaluating diagnosis techniques. In the 
example scenarios, we obtained insights into the impact of faults on energy consumption and heating cost. 
For example, there is a remarkable waste of energy of around 80% in the case of a permanent stuck-at fault 
in the temperature sensor, which could be avoided using diagnosis and fault tolerance.  

HVAC systems in buildings are one of the most important factors for energy consumption. Due to their 
vulnerabilities and complexities, they have a high potential for multiple fault occurrences in reality. The 
experimental evaluation of HVAC systems before the operational phase of the system can help designers 
gain insight into them to design more reliable systems. Simulation-based FI allows the system to be 
evaluated under various fault conditions, especially in emergencies. Therefore, a fault model for multiple 
faults in HVAC systems based on field fault occurrence rates from maintenance records was described. 
Fault attributes were designed based on multi-dimensional matrices to be extensible for any system 
structure. A simulation-based multiple FI framework for DCV and heating systems was developed 
according to the defined fault model and implemented in MATLAB/Simulink using Stateflow diagrams. 
An automatic FI algorithm performed each fault scenario using the defined fault attributes. Different 
scenarios were defined to evaluate the system’s reliability and quality indicators, such as thermal comfort, 
CO2 concentration, energy consumption, and heating cost. Each scenario consisted of other sub-scenarios 
to activate multiple faults in multiple components and multiple zones. The results for the scenarios show 
system impacts and changes in different sub-scenarios. For example, one sub-scenario showed a rise in the 
heating cost and energy consumption of around 70%, and another sub-scenario exhibited a decrease in the 
energy consumption of around 67% but a significant increase in thermal discomfort due to the low indoor 
temperature. Eventually, it can be concluded that multiple FI in DCV and heating systems lead to an 
unexpected insight into the consequences of different fault combinations. Besides, the component-based 
system model allows the construction of multi-floor buildings with low effort. In this system model, 
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different components such as rooms, corridors, controllers, and fault injection are composed and integrated. 
The proposed fault injection component is extendable and based on the fault attribute matrixes. Once the 
system structure is extended based on the user definition, the fault injection component can be easily 
adapted to each layout by increasing the matrix dimensions. One example of multiple fault injection is also 
provided and validated to show the correctness and accuracy of the fault injection component in a large-
scale system with numerous components.  

A generic and hybrid fault diagnostic algorithm is proposed based on the combination of data-driven 
and knowledge-driven approaches. Fuzzy theory and Bayesian belief networks are combined to extract the 
system specifications and rules and for the construction of the Bayesian network. The Bayesian network is 
constructed based on the correlation of system attributes. To calculate the system attribute dependencies, 
the algorithm uses mutual information theory to understand the system's casual relationships. The Bayesian 
belief network supports the fuzzy theory to increase the universality and scalability in systems with 
numerous system attributes and signals and to find and extract the hidden correlations between complex 
structures. It avoids high expert effort and expenses such as time, money, and energy. The results are 
explored by ranking methods. Each fault can be classified in a diagnostic rank. Eventually, the FBBN 
diagnosis algorithm results are demonstrated in four synthetic and actual scenarios. In each synthetic 
scenario, a random injected fault is studied for diagnosing the type, time, and value range by ranking the 
mutual percentages. Each injected fault is diagnosed in the first rank, which shows the high accuracy and 
precision of the FBBN fault diagnosis algorithm.  

As a result, there is a complete and comprehensive generic multiple fault injection framework for 
complex and large-scale component-based building structures with on-demand structures providing 
appropriate experimental results. The framework can be used for multiple fault detection and diagnosis 
techniques in DCV and heating systems. This thesis covers only single-fault diagnostic techniques, which 
can be extended easily for multiple-fault diagnostic techniques. Mutual information can be extendable for 
the multivariant system structures, which can be an appropriate and applicable solution for multiple fault 
diagnostic techniques by grouping the components and fault classes. In previous methods, all signals differ 
to make an RDP table for each fault occurrence.  However, in this method, the same components (e.g., all 
CO2 sensors in multiple floors and rooms) are grouped to find the correlations with each existing fault class.   
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9 Appendix  
 

This chapter thesis fully describes references via detailed lists, including abbreviations, figures, tables, 
, functions and references.  

 

List of Abbreviations and Acronyms 
 
No. Full Description  Abbreviations 

   
1  Carbon Dioxide  CO2 
2  Heating, Ventilation, and Air-Conditioning  HVAC 
3  European Union EU 
4  Demand Controlled Ventilation DCV 
5  Building Management System BMS 
6  Verification and Validation V&V 
7  Fault Injections FI 
8  Air Handling Unit AHU 
9  Fault Detection and Diagnosis FDD 
10  Carbon Monoxide CO 
11  Automated Fault Detection and Diagnosis AFDD 
12  Automated Single-Fault Injection Framework ASFIF 
13  Automated Multiple-Fault Injection Framework  AMFIF 
14  Fault Injection Framework  FIF 
15  Fault Injection Vector  FIV 
16  Fuzzy theory and Bayesian Belief Network  FBBN 
17  Relation-Direction-Probability RDP 
18  Mutual Information  MI 
19  Cyber-Physical Systems  CPS 
20  Human-Cyber-Physical Systems HCPS 
21  Machine Learning ML 
22  Artificial Intelligent AI 
23  Autonomous Automobile Systems AAS 
24  State Machines SMs 
25  Finite State Machine FSM 
26  Concurrent State Machines  CSMs 
27  Hierarchical State Machines HSMs 
28  Indoor Air Quality IAQ 
29  Fault Containment Regions FCRs 
30  Multivariate Mutual Information MMI 
31  Bayesian Network BN 
32  Greenhouse Gas GHG 
33  Model Predictive Control MPC 
34  Artificial Neural Networks ANN 
35  Model-Based Real-Time Optimization MRTO 
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36  Quality of Service QoS 
37  Department of Defense DoD 
38  Missing Gate Faults  MGF 
39  Automatic Test Pattern Generation  ATPG 
40  Advanced Driver Assistance System  ADAS 
41  Time-Dependent Dielectric Breakdown  TDDB 
42  Rooftop Units RTU 
43  Building Management Systems BMS 
44  Hardware-Based Fault Injection HaFI 
45  Software-Based Fault Injection SoFI 
46  Simulation-Based Fault Injection SiFI 
47  Emulation-Based Fault Injection EmFI 
48  Hybrid Fault Injection HyFI 
49  Advanced Driver Assistance Systems  ADAS 
50  Complementary Metal-Oxide-Semiconductor  CMOS 
51  Single-Event Upsets  SEUs 
52  Multiple-Bit Upsets  MBUs 
53  Low-Level Virtual Machine  LLVM 
54  Model-Based Diagnosis MBD 
55  Air Conditioning AC 
56  Ground-Coupled Heat Pump GCH 
57  Simulation-Based Fault Injection Framework  ASFIF 
58  Key Performance Indicators  KPI 
59  Computational Intelligence CI 
60  Intelligent Agents IG 
61  Institute of Electrical and Electronics Engineers IEEE 
62  Reinforcement Learning  RL 
63  Markov Decision Process  MDP 
64  Deep Deterministic Policy Gradients  DDPGs 
65  Non-Intrusive Load Monitoring  NILM 
66  Coupled Hidden Markov Models  CHMMs 
67  Statistical Process Control SPC 
68  Bayesian Networks BNs 
69  Neural Network NN 
70  Diagnostic-Directed Acyclic Graph DDAG 
71  Signed Directed Graph SDG 
72  Membership Function MF 
73  Membership Degree MD 
74  variable air volume VAV 
75  Build Automation System BAS 
76  Bayesian Belief Network BBN 
77  Dynamic Bayesian Network  DBN 
78  Multiple-Sectioned Bayesian Networks MSBN 
79  Air Handling Units AHUs 
80  Fuzzy Bayesian Belief Networks FBBNs 
81  Signed Directed Graph SDG 
82  Genetic Algorithm GA 
83  System-based Clustering Algorithm ASCA 
84  Case-Based Reasoning CBR 
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85  Multilogic Probabilistic SDG MPSDG 
86  log-likelihoods LL 
87  Heat transfer HT 
88  Fault Duration FD 
89  Fault Interarrival Time FIT 
90  Mean Time to Failure MMTF 
91  hierarchical state machine HSM 
92  Relational Data Table RDT 
93  Subdomain Label Table SLT 
94  Membership Degrees MDs 
95  Weighted Fuzzy Relational Data Table WFRDT 
96  Subdomain Probability Vector Table  SPV 
97  Intersection Triangular Top Matrix ITTM 
98  Subdomains Relation Table SRT 
99  Relation-Direction-Probability RDP 
100  3-Dimensional  3-D 
101  2-Dimensional 2-D 
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List of Evaluation Results  of the FBBN-Fault Diagnosis 
Method  

 
No. Type Time Value Diagnosed Type Diagnosed Time Diagnosed Ranks 
1 HeaterActuator 70393 0 HeaterActuatorOff 70000 Rank 1 
2 TemperatureSensor 78916 12 TemperatureSensorLow 80000 Rank 1 
3 TemperatureSensor 24063 30 TemperatureSensorHigh 25000 Rank 1 
4 CO2Sensor 83367 834 CO2SensorHigh 85000 Rank 1 
5 DamperActuator 82700 1 DamperActuatorOn 85000 Rank 1 
6 DamperActuator 12259 1 DamperActuatorOn 15000 Rank 1 
7 HeaterActuator 68447 1 HeaterActuatorOn 65000 Rank 1 
8 HeaterActuator 3086 1 HeaterActuatorOn 5000 Rank 1 
9 HeaterActuator 58643 1 HeaterActuatorOn 50000 Rank 1 
10 TemperatureSensor 33889 13 TemperatureSensorLow 35000 Rank 1 
11 CO2Sensor 61003 452 CO2SensorLow 60000 Rank 1 
12 CO2Sensor 3990 753 CO2SensorHigh 5000 Rank 1 
13 DamperActuator 60034 1 DamperActuatorOn 60000 Rank 1 
14 DamperActuator 2977 0 DamperActuatorOff 5000 Rank 1 
15 HeaterActuator 66141 0 HeaterActuatorOff 65000 Rank 1 
16 DamperActuator 42316 1 DamperActuatorOn 40000 Rank 1 
17 HeaterActuator 61290 0 HeaterActuatorOff 60000 Rank 1 
18 TemperatureSensor 58727 13 TemperatureSensorLow 60000 Rank 1 
19 DamperActuator 10282 1 DamperActuatorOn 10000 Rank 1 
20 TemperatureSensor 29410 14 TemperatureSensorLow 30000 Rank 1 
21 DamperActuator 64910 1 DamperActuatorOn 65000 Rank 1 
22 HeaterActuator 60401 1 HeaterActuatorOn 50000 Rank 1 
23 CO2Sensor 47280 382 CO2SensorLow 50000 Rank 1 
24 HeaterActuator 22249 0 HeaterActuatorOff 25000 Rank 1 
25 CO2Sensor 70355 812 CO2SensorHigh 70000 Rank 1 
26 CO2Sensor 30239 438 CO2SensorLow 30000 Rank 1 
27 DamperActuator 53227 0 DamperActuatorOff 50000 Rank 1 
28 TemperatureSensor 71784 21 TemperatureSensorMiddle 70000 Rank 2 
29 DamperActuator 79246 1 DamperActuatorOn 80000 Rank 1 
30 DamperActuator 65123 1 DamperActuatorOn 65000 Rank 1 
31 CO2Sensor 6554 592 CO2SensorMiddle 5000 Rank 1 
32 HeaterActuator 67321 0 HeaterActuatorOff 65000 Rank 1 
33 DamperActuator 49147 0 DamperActuatorOff 50000 Rank 2 
34 CO2Sensor 29128 737 CO2SensorHigh 30000 Rank 1 
35 TemperatureSensor 26889 13 TemperatureSensorLow 40000 Rank 1 
36 DamperActuator 52012 1 DamperActuatorOn 50000 Rank 1 
37 TemperatureSensor 59549 19 TemperatureSensorLow 50000 Rank 1 
38 CO2Sensor 7243 803 CO2SensorHigh 5000 Rank 1 
39 HeaterActuator 13166 1 HeaterActuatorOn 15000 Rank 1 
40 CO2Sensor 86067 543 CO2SensorLow 85000 Rank 1 
41 HeaterActuator 9215 0 HeaterActuatorOff 10000 Rank 1 
42 HeaterActuator 66953 1 DamperActuatorOff 65000 Rank 1 
43 DamperActuator 7296 0 DamperActuatorOff 5000 Rank 1 
44 DamperActuator 69126 1 DamperActuatorOn 70000 Rank 1 
45 DamperActuator 15712 0 DamperActuatorOff 15000 Rank 1 
46 HeaterActuator 11757 1 HeaterActuatorOn 10000 Rank 1 
47 CO2Sensor 47508 770 CO2SensorHigh 50000 Rank 1 
48 DamperActuator 53746 1 DamperActuatorOn 50000 Rank 1 
49 CO2Sensor 34717 432 CO2SensorLow 35000 Rank 1 
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50 CO2Sensor 10655 432 CO2SensorLow 10000 Rank 1 
51 CO2Sensor 36052 797 CO2SensorHigh 35000 Rank 1 
52 DamperActuator 81630 0 DamperActuatorOff 75000 Rank 1 
53 HeaterActuator 29179 0 HeaterActuatorOff 30000 Rank 1 
54 HeaterActuator 9608 0 HeaterActuatorOff 10000 Rank 1 
55 DamperActuator 20883 0 DamperActuatorOff 20000 Rank 1 
56 HeaterActuator 11403 1 HeaterActuatorOn 10000 Rank 1 
57 CO2Sensor 49699 429 CO2SensorLow 50000 Rank 1 
58 HeaterActuator 30513 0 HeaterActuatorOff 30000 Rank 1 
59 CO2Sensor 3718 657 CO2SensorHigh 5000 Rank 1 
60 TemperatureSensor 63221 19 TemperatureSensorMiddle 60000 Rank 1 
61 DamperActuator 47262 1 DamperActuatorOn 45000 Rank 1 
62 TemperatureSensor 16326 13 TemperatureSensorLow 15000 Rank 1 
63 TemperatureSensor 31838 26 TemperatureSensorHigh 30000 Rank 1 
64 HeaterActuator 7010 1 HeaterActuatorOn 5000 Rank 1 
65 DamperActuator 42059 0 DamperActuatorOff 40000 Rank 1 
66 TemperatureSensor 26469 20 TemperatureSensorMiddle 25000 Rank 1 
67 HeaterActuator 70644 1 HeaterActuatorOn 65000 Rank 1 
68 HeaterActuator 32712 1 HeaterActuatorOn 35000 Rank 1 
69 HeaterActuator 30303 1 HeaterActuatorOn 30000 Rank 1 
70 TemperatureSensor 47534 22 HeaterActuatorOn 45000 Rank 1 
71 DamperActuator 17949 0 DamperActuatorOff 20000 Rank 1 
72 HeaterActuator 19915 0 HeaterActuatorOff 20000 Rank 1 
73 CO2Sensor 19520 425 CO2SensorLow 20000 Rank 1 
74 DamperActuator 37645 1 DamperActuatorOn 40000 Rank 1 
75 CO2Sensor 37170 798 CO2SensorHigh 40000 Rank 1 
76 DamperActuator 84651 0 DamperActuatorOff 85000 Rank 1 
77 DamperActuator 22297 1 DamperActuatorOn 20000 Rank 1 
78 TemperatureSensor 22656 24 TemperatureSensorHigh 25000 Rank 1 
79 CO2Sensor 19159 463 CO2SensorLow 20000 Rank 1 
80 DamperActuator 27543 1 DamperActuatorOn 25000 Rank 1 
81 DamperActuator 7389 1 DamperActuatorOn 5000 Rank 1 
82 HeaterActuator 2525 1 HeaterActuatorOn 5000 Rank 1 
83 TemperatureSensor 42216 14 TemperatureSensorLow 40000 Rank 1 
84 HeaterActuator 39645 1 HeaterActuatorOn 40000 Rank 1 
85 CO2Sensor 45027 569 CO2SensorMiddle 45000 Rank 1 
86 TemperatureSensor 53919 18 TemperatureSensorLow 60000 Rank 1 
87 HeaterActuator 31747 0 HeaterActuatorOff 30000 Rank 1 
88 HeaterActuator 76479 1 DamperActuatorOff 75000 Rank 1 
89 DamperActuator 8529 0 DamperActuatorOff 10000 Rank 1 
90 CO2Sensor 58729 697 CO2SensorHigh 55000 Rank 1 
91 TemperatureSensor 9225 20 TemperatureSensorMiddle 5000 Rank 1 
92 TemperatureSensor 67311 28 TemperatureSensorHigh 70000 Rank 1 
93 DamperActuator 76976 1 DamperActuatorOn 75000 Rank 1 
94 CO2Sensor 17091 709 CO2SensorMiddle 15000 Rank 1 
95 DamperActuator 43202 1 DamperActuatorOn 45000 Rank 1 
96 TemperatureSensor 52693 28 TemperatureSensorHigh 55000 Rank 1 
97 TemperatureSensor 69595 13 TemperatureSensorLow 70000 Rank 1 
98 HeaterActuator 20731 0 HeaterActuatorOff 20000 Rank 1 
99 CO2Sensor 42328 839 CO2SensorHigh 40000 Rank 1 
100 TemperatureSensor 61577 19 TemperatureSensorLow 80000 Rank 1 
101 TemperatureSensor 5152 10 TemperatureSensorLow 5000 Rank 1 
102 TemperatureSensor 6173 12 TemperatureSensorLow 5000 Rank 1 
103 HeaterActuator 70689 1 HeaterActuatorOn 65000 Rank 1 
104 TemperatureSensor 12949 20 TemperatureSensorMiddle 10000 Rank 1 
105 TemperatureSensor 84066 26 TemperatureSensorHigh 85000 Rank 1 
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106 DamperActuator 39209 1 DamperActuatorOn 40000 Rank 1 
107 CO2Sensor 7212 395 CO2SensorLow 5000 Rank 1 
108 HeaterActuator 33778 1 HeaterActuatorOn 35000 Rank 1 
109 DamperActuator 5225 1 DamperActuatorOn 5000 Rank 1 
110 TemperatureSensor 36012 23 TemperatureSensorHigh 35000 Rank 1 
111 DamperActuator 25228 0 DamperActuatorOff 25000 Rank 1 
112 CO2Sensor 85024 358 CO2SensorLow 85000 Rank 1 
113 CO2Sensor 32177 569 CO2SensorMiddle 30000 Rank 1 
114 HeaterActuator 29333 1 HeaterActuatorOn 30000 Rank 1 
115 TemperatureSensor 4552 15 TemperatureSensorLow 5000 Rank 1 
116 TemperatureSensor 36533 29 TemperatureSensorHigh 35000 Rank 1 
117 HeaterActuator 36094 0 HeaterActuatorOff 35000 Rank 1 
118 TemperatureSensor 60575 21 TemperatureSensorMiddle 60000 Rank 2 
119 TemperatureSensor 60317 13 TemperatureSensorLow 60000 Rank 1 
120 HeaterActuator 11061 0 HeaterActuatorOff 10000 Rank 1 
121 TemperatureSensor 2817 28 TemperatureSensorHigh 5000 Rank 1 
122 CO2Sensor 57817 503 CO2SensorLow 60000 Rank 1 
123 HeaterActuator 39807 0 HeaterActuatorOff 40000 Rank 1 
124 TemperatureSensor 73918 17 TemperatureSensorLow 70000 Rank 1 
125 DamperActuator 16496 0 DamperActuatorOff 15000 Rank 1 
126 TemperatureSensor 10421 14 TemperatureSensorLow 10000 Rank 1 
127 TemperatureSensor 33232 15 TemperatureSensorLow 35000 Rank 1 
128 TemperatureSensor 25095 15 TemperatureSensorLow 25000 Rank 1 
129 HeaterActuator 71227 1 HeaterActuatorOn 65000 Rank 1 
130 TemperatureSensor 29711 12 TemperatureSensorLow 30000 Rank 1 
131 HeaterActuator 78306 1 DamperActuatorOff 75000 Rank 1 
132 TemperatureSensor 22527 10 TemperatureSensorLow 25000 Rank 1 
133 DamperActuator 36743 0 DamperActuatorOff 35000 Rank 1 
134 DamperActuator 15446 0 DamperActuatorOff 15000 Rank 1 
135 DamperActuator 51713 1 DamperActuatorOn 50000 Rank 1 
136 TemperatureSensor 60471 10 TemperatureSensorLow 60000 Rank 1 
137 DamperActuator 5945 1 DamperActuatorOn 5000 Rank 1 
138 DamperActuator 56545 1 DamperActuatorOn 55000 Rank 1 
139 HeaterActuator 62067 1 HeaterActuatorOn 50000 Rank 1 
140 CO2Sensor 28093 636 HeaterActuatorOn 25000 Rank 1 
141 DamperActuator 67289 0 DamperActuatorOff 65000 Rank 1 
142 CO2Sensor 23024 454 CO2SensorLow 25000 Rank 1 
143 TemperatureSensor 38024 19 TemperatureSensorMiddle 40000 Rank 1 
144 TemperatureSensor 75633 29 TemperatureSensorHigh 75000 Rank 1 
145 HeaterActuator 55099 0 HeaterActuatorOff 55000 Rank 1 
146 DamperActuator 58417 1 DamperActuatorOn 55000 Rank 1 
147 CO2Sensor 60061 440 CO2SensorLow 60000 Rank 1 
148 TemperatureSensor 19358 27 TemperatureSensorHigh 20000 Rank 1 
149 HeaterActuator 29762 1 HeaterActuatorOn 30000 Rank 1 
150 TemperatureSensor 581 18 TemperatureSensorLow 5000 Rank 1 
151 CO2Sensor 79142 554 CO2SensorLow 85000 Rank 1 
152 DamperActuator 36664 1 DamperActuatorOn 35000 Rank 1 
153 HeaterActuator 27862 0 HeaterActuatorOff 30000 Rank 1 
154 CO2Sensor 3090 697 CO2SensorHigh 5000 Rank 1 
155 CO2Sensor 40910 487 CO2SensorLow 40000 Rank 1 
156 CO2Sensor 52479 706 CO2SensorHigh 55000 Rank 1 
157 HeaterActuator 20983 0 HeaterActuatorOff 20000 Rank 1 
158 CO2Sensor 66140 458 CO2SensorLow 65000 Rank 1 
159 TemperatureSensor 7873 24 TemperatureSensorHigh 5000 Rank 1 
160 DamperActuator 47226 1 DamperActuatorOn 45000 Rank 1 
161 TemperatureSensor 55955 23 TemperatureSensorHigh 55000 Rank 1 
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162 CO2Sensor 81664 690 CO2SensorHigh 80000 Rank 1 
163 CO2Sensor 20411 634 CO2SensorMiddle 20000 Rank 1 
164 DamperActuator 38892 1 DamperActuatorOn 40000 Rank 1 
165 DamperActuator 66553 1 DamperActuatorOn 65000 Rank 1 
166 HeaterActuator 35957 1 HeaterActuatorOn 35000 Rank 1 
167 TemperatureSensor 22157 22 TemperatureSensorHigh 50000 Rank 2 
168 HeaterActuator 46720 0 HeaterActuatorOff 45000 Rank 1 
169 CO2Sensor 27482 817 CO2SensorHigh 25000 Rank 1 
170 DamperActuator 55776 1 DamperActuatorOn 55000 Rank 1 
171 TemperatureSensor 47064 21 TemperatureSensorMiddle 50000 Rank 3 
172 TemperatureSensor 62299 30 TemperatureSensorHigh 60000 Rank 1 
173 CO2Sensor 18894 360 CO2SensorLow 20000 Rank 1 
174 DamperActuator 5495 0 DamperActuatorOff 5000 Rank 1 
175 HeaterActuator 31607 1 HeaterActuatorOn 30000 Rank 1 
176 HeaterActuator 66700 1 HeaterActuatorOn 65000 Rank 1 
177 CO2Sensor 16592 683 CO2SensorMiddle 15000 Rank 1 
178 TemperatureSensor 8107 21 TemperatureSensorMiddle 5000 Rank 2 
179 DamperActuator 74403 0 DamperActuatorOff 75000 Rank 1 
180 TemperatureSensor 58012 20 TemperatureSensorMiddle 50000 Rank 1 
181 CO2Sensor 30043 622 CO2SensorMiddle 30000 Rank 1 
182 CO2Sensor 22650 715 CO2SensorHigh 25000 Rank 1 
183 DamperActuator 20977 1 DamperActuatorOn 20000 Rank 1 
184 TemperatureSensor 31038 18 TemperatureSensorLow 30000 Rank 1 
185 TemperatureSensor 59048 19 TemperatureSensorMiddle 80000 Rank 1 
186 DamperActuator 1692 0 DamperActuatorOff 5000 Rank 1 
187 CO2Sensor 23352 752 CO2SensorHigh 25000 Rank 1 
188 HeaterActuator 37146 0 HeaterActuatorOff 40000 Rank 1 
189 DamperActuator 66452 1 DamperActuatorOn 65000 Rank 1 
190 DamperActuator 65239 0 DamperActuatorOff 65000 Rank 1 
191 HeaterActuator 68292 0 HeaterActuatorOff 70000 Rank 1 
192 DamperActuator 57998 1 DamperActuatorOn 55000 Rank 1 
193 CO2Sensor 66430 774 CO2SensorHigh 70000 Rank 1 
194 TemperatureSensor 85525 28 TemperatureSensorHigh 85000 Rank 1 
195 CO2Sensor 50806 410 CO2SensorLow 50000 Rank 1 
196 TemperatureSensor 35161 27 TemperatureSensorHigh 30000 Rank 1 
197 DamperActuator 68253 1 DamperActuatorOn 70000 Rank 1 
198 CO2Sensor 7772 375 CO2SensorLow 10000 Rank 1 
199 DamperActuator 58636 0 DamperActuatorOff 50000 Rank 1 
200 CO2Sensor 42769 330 CO2SensorLow 40000 Rank 1 
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