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Abstract

Deep generative models are powerful machine learning models used to model high-dimensional
complex data distributions. The rich and semantically expressive latent representations
learned by these models are used for various downstream applications in computer vision and
natural language processing. It is evident that the effectiveness of the generative techniques
highly depends on the quality of the learned representations. Hence in this dissertation,
we focus on improving the desirable properties of the learned latent space of two popular
deep generative models, Generative Adversarial Networks (GANs) and Variational Autoen-
coders (VAEs). Specifically, we focus on properties such as generalizability, controllability,
smoothness, and adversarial robustness.

In the first technical contribution we present in this work, we focus on improving the
controllability of latent representations in GANs to generate high-quality images. To be
precise, we propose a method to control the content of the generated images solely based
on the defined number of objects from multiple classes and introduce a state-of-the-art
conditioned adversarial network. We also introduce a real-world count-based dataset called
CityCount to validate our results in challenging scenarios.

Next, we explore the learned representations of VAEs and some of the practical limitations
associated with them. To this end, we propose a simple, novel, and end-to-end trainable
deterministic autoencoding method that efficiently structures the latent space of the model
during training and leverages the capacity of expressive multimodal latent distributions.
We demonstrate the potential of the proposed method for modeling both continuous and
discrete data structures. Finally, we investigate the adversarial robustness of the learned
representations in VAEs. One of the major limitations in existing robust VAE models is the
trade-off between the quality of image generation and the robustness achieved. We show that
the learned representations in the proposed regularized deterministic autoencoders with a
comparatively cheap adversarial learning scheme exhibit superior robustness to adversarial
attacks without compromising the quality of image generation.
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Zusammenfassung

Tiefe generative Modelle sind leistungsstarke maschinelle Lernmodelle, die zur Modellierung
hochdimensionaler komplexer Datenverteilungen verwendet werden. Die reichhaltigen und
semantisch aussagekräftigen latenten Repräsentationen, die von diesen Modellen erlernt wer-
den, werden für verschiedene Anwendungen in der Computer Vision und der Verarbeitung
natürlicher Sprache verwendet. Es ist offensichtlich, dass die Effektivität der generativen
Techniken in hohem Maße von der Qualität der erlernten Repräsentationen abhängt. Daher
konzentrieren wir uns in dieser Dissertation auf die Verbesserung der Eigenschaften des
erlernten latenten Raums von zwei weit verbreiteten tiefen generativen Modellen, Generative
Adversarial Networks (GANs) und Variational Autoencoders (VAEs). Insbesondere konzen-
trieren wir uns auf Eigenschaften wie Generalisierungsfähigkeit, Kontrollierbarkeit, Glattheit
und Widerstandsfähigkeit gegenüber widrigen Umständen.

Im ersten technischen Beitrag, den wir in dieser Arbeit vorstellen, konzentrieren wir uns
auf die Verbesserung der Kontrollierbarkeit latenter Darstellungen in GANs, um qualitativ
hochwertige Bilder zu erzeugen. Um genau zu sein, schlagen wir eine Methode vor, um den
Inhalt der generierten Bilder allein auf der Grundlage der definierten Anzahl von Objekten aus
mehreren Klassen zu kontrollieren, und führen ein modernes konditioniertes adversarisches
Netzwerk ein. Außerdem stellen wir einen realen zählbasierten Datensatz namens CityCount
vor, um unsere Ergebnisse in anspruchsvollen Szenarien zu validieren.

Als nächstes untersuchen wir die erlernten Darstellungen von VAEs und einige der damit
verbundenen praktischen Einschränkungen. Zu diesem Zweck schlagen wir eine einfache,
neuartige und durchgängig trainierbare deterministische Autocodierungsmethode vor, die
den latenten Raum des Modells während des Trainings effizient strukturiert und die Kapazität
ausdrucksstarker multimodaler latenter Verteilungen nutzt. Wir demonstrieren das Potenzial
der vorgeschlagenen Methode für die Modellierung sowohl kontinuierlicher als auch diskreter
Datenstrukturen. Schließlich untersuchen wir die Robustheit der erlernten Repräsentationen
in VAEs gegenüber nachteiligen Einflüssen. Eine der größten Einschränkungen bei bestehen-
den robusten VAE-Modellen ist der Kompromiss zwischen der Qualität der Bilderzeugung
und der erreichten Robustheit. Wir zeigen, dass die gelernten Repräsentationen in den
vorgeschlagenen regularisierten deterministischen Autoencodern mit einem vergleichsweise
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billigen adversarischen Lernschema eine überlegene Robustheit gegenüber adversarischen
Angriffen aufweisen, ohne die Qualität der Bilderzeugung zu beeinträchtigen.
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Chapter 1

Introduction

The ultimate goal of artificial intelligence (AI) is to understand the world around us and
to enable machines to imitate human thought processes such as learning, reasoning, pre-
dicting, etc. This can only be achieved by identifying and understanding the underlying
explanatory factors hidden in the available data. Deep generative models have revolutionized
the field of AI by enabling computers to gain a deeper understanding of real-world data.
These models have shown great potential in generating new data patterns that are almost
indistinguishable by humans. Generative models have demonstrated exemplary performance
in diverse applications, including computer vision [149, 82, 102, 151, 100, 99, 157], audio
processing [109, 159, 186, 190], reinforcement learning [177, 117, 90], natural language
processing [147, 148, 19, 138] and life science [123, 201, 60].

The process of creating new data has always been of particular interest in research, both
because of the possibility of seemingly endless streams of new data and the implications
of the knowledge that the model gains about the data manifold. The quality of the samples
generated by deep generative models has improved tremendously in recent years. However,
it is still not completely clear how exactly these models learn from the data, i.e., how well
it encodes its features, biases, and properties that are meaningful to humans in the learned
latent space [194]. Therefore analyzing and improving the latent representations of deep
generative models still remains an active area of research [194, 99, 23, 22, 60].

1.1 Optimizing the Latent Representations

Latent representations are used to transform complex forms of the raw data surrounding
us into simpler and more compact representations that are more convenient to process and
analyze. The ability to learn good representations is a fundamental problem in machine
learning to facilitate data-efficient learning. These representations, when properly learned,
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can be used for a variety of downstream applications. It is also imperative that the learned
representations should contain priors about the world around us, i.e., priors that are not
task-specific but are likely to be useful for solving AI tasks. This is also the core concept of
representation learning, where the goal is to discover interpretable latent representations [13].
The importance of representation learning in various domains has led to a growing research
interest in learning latent representations with desirable features [23, 22]. Among the various
ways of learning representations, we focus on latent representations of deep generative
models in this thesis.

The effectiveness of generative techniques is highly dependent on the learned latent space
or representations of the model. Desirable properties of the latent space include general-
izability, controllability, smoothness, compactness, robustness, and disentanglement. For
deep generative models, learning generalized, controllable, and disentangled representations
of complex data distributions, such as images, helps in generating diverse, high-quality
samples. Recently, it has also been found that a well-structured and smooth latent space of
generative models enables efficient optimization of expensive black-box problems such as
drug discovery, material design, and topology optimization [60, 140]. Optimizing the latent
space of such models is therefore crucial to improve the quality and diversity of the generated
samples and to further enhance the usability of the learned features for potential downstream
applications.

This thesis aims to optimize the learned latent representations of deep generative models.
We particularly focus on two popular classes of deep generative models, (i) Generative
Adversarial Networks (GANs) [67] and (ii) Variational Autoencoders (VAEs) [107].

1.2 Contributions

A high-level overview of the research challenges addressed in this thesis and our contributions
are given in Figure 1.1. The major contributions are listed below,

• We introduce a state-of-the-art adversarial network to enhance the controllability of
GANs and generate high-quality images based on the numerosity of multiple objects
present in the images [163].

• We propose a novel multi-modal regularization scheme to train simple and end-to-end
trainable deterministic autoencoders as a potential alternative to VAEs to efficiently
model complex data distribution [161].
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1.2 Contributions

• We introduce an effective and less expensive adversarial training scheme to the pro-
posed deterministic autoencoders to enhance the accuracy and robustness of the learned
latent space [162].

Each of these contributions is discussed in detail in the following section. This is organized
into two sections; the first section deals with improving the controllability of GANs for
content-based image generation applications, and the second section talks about optimizing
the learned representations in VAEs.
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Part I Part II Part III

Controllability
of GANs

Content based
image generation

Optimizing the latent space of VAEs

Structuring the
latent space

Generate images
solely based on

multiple object class
count

A new and challenging
count based dataset -

CityCount

Simple, efficient, end-to-
end trainable regularized
deterministic autoencoder

A novel regularization loss
flexible to chosen prior

Efficient adversarial
training scheme

Superior performance in
generation and robustness

Enhancing adversarial
robustness

Fig. 1.1 A high-level overview of the research challenges addressed in this thesis, along
with our contributions. In part I, we focus on improving the controllability of Generative
Adversarial Networks (GANs) [163]. In parts II and III, we focus on optimizing the learned
representations of Variational Autoencoders (VAEs). Part II introduces a novel regularized
deterministic autoencoder as a promising alternative to VAEs [161]. In part III, we introduce
methods to enhance the adversarial robustness of the proposed model [162].

1.2.1 Enhancing the Controllability of Generative Adversarial Net-
works

Since their introduction, Generative Adversarial Networks (GANs) have achieved remarkable
feats in generating realistic images. With recent advances in the field, it is now possible to
generate high-resolution, realistic images that are indistinguishable from real images [101,
102, 99, 18]. Considerable effort has also been made to control the content of the generated
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CityCount Examples

Generated Images

3 cars 2 persons 2 cars + 1 person

Fig. 1.2 (Row 1) Real samples from our newly introduced real-world count-based CityCount
dataset. (Row 2) Generated CityCount images by our model based on the multiple-class
count input of cars and persons.

images. In the first part of the thesis, we take one step towards improving the controllability
of the learned representations of GANs. We attempt to control the image generation process
solely by conditioning the number of objects of predefined classes in the images, while a
reasonable spatial layout is to be inferred from the training data distribution. Instead of
addressing single object class counting as seen in [167, 184], where convolutional networks
or recurrent neural networks are used to count, our approach focuses on counting object
instances from multiple classes during generation as shown in Figure1.2. We introduce an
extension to the StyleGAN2 architecture by incorporating an additional regression network
into the discriminator to facilitate image generation based on the number of objects per class.
Based on the findings in [30], our network uses dense blocks in the generator architecture to
facilitate the propagation of the count constraint as well as the regression loss of the count
network. By performing extensive experimental analysis on various datasets, including the
proposed CityCount dataset, we show that our model can generate images with high fidelity
based on the count constraint of multiple object classes without requiring expensive bounding
box annotations of the objects. This work is in accordance with the ICCV, 2021 [163]
publication entitled "Multi-Class Multi-Instance Count Conditioned Adversarial Image
Generation" and is jointly supervised by Margret Keuper (University of Siegen) and Kathrin
Skubch (Bosch Center for Artificial Intelligence).
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1.2.2 Optimizing the Latent Space of Variational Autoencoders

In the second part, we examine the learned latent representations of Variational Autoencoders
(VAEs). Although VAEs provide a strong theoretically backed framework for generative
modeling, the practical constraints associated with its training and formulation limit the
usability of these models. In part II and part III, we address the limitations of VAEs and
introduce a deterministic autoencoder as a promising alternative to VAEs.

GMM regularized deterministic autoencoder Improved adversarial robustness in
the latent space 

Fig. 1.3 Optimizing the latent space of Variational Autoencoders - (left) The proposed
multi-modal regularization scheme efficiently structures the latent space of the deterministic
autoencoder. (right) For ease of visualization, we consider two components of GMM prior
and focus on the green shaded region. In order to improve the robustness of the learned
latent space, we introduce an effective and inexpensive adversarial training scheme. During
training, we enhance strong coupling between the adversarial samples (blue crosses) and
their corresponding original samples (blue dots). During training, the adversarial samples
move closer to the clean samples (orange crosses).

Structuring the latent space via regularized deterministic autonecoders Motivated by
recent advances in deterministic autoencoders[60], our approach elegantly combines the
idea of new training objectives with the extension to multimodal priors without increasing
training complexity or compromising sampling quality, see Figure 1.3, left. We derive a
strong training signal that can be derived in closed form for multimodal priors. In particular,
we derive a novel deterministic regularization scheme from a strong metric for probability
distributions. This ensures stable training and reliable regularization of the latent space and
improves the quality of the samples. Through extensive empirical analysis, the proposed
method could potentially learn better representations for applications such as image genera-
tion, drug molecule generation, and unsupervised clustering. This work corresponds to the
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NeurIPS 2021 publication [161] titled "Shape your Space: A Gaussian Mixture Regulariza-
tion Approach to Deterministic Autoencoders" and is jointly supervised by Margret Keuper
(University of Siegen) and Kathrin Skubch (Bosch Center for Artificial Intelligence).

Enhancing the adversarial robustness of latent space Motivated by the promising
potential of the proposed deterministic autoencoders in modeling both continuous and
discrete data structures, we further investigate the robustness of the latent space of these
models. To generate adversarial samples, we adapt the fast FGSM [196] method from the
classifier literature to the latent space of the model. We introduce an adversarial training
procedure (see Figure 1.3, right) to efficiently couple adversarial and original samples.
The proposed learning scheme is comparatively less expensive and easier to implement
than existing adversarially trained robust VAE models. We show that the deterministic
formulation improves the robustness of VAEs against adversarial attacks when the latent
codes are properly regularized. Unlike the existing robust VAE models, the proposed method
ensures the robustness and fidelity of the learned representations. This work is in accordance
with the NeurIPS 2022 publication [162] titled "Trading off Image Quality for Robustness
is not Necessary with Regularized Deterministic Autoencoders" and is jointly supervised
by Margret Keuper (University of Siegen) and Kathrin Skubch (Bosch Center for Artificial
Intelligence).

1.3 Thesis Outline

This thesis is divided into six chapters. In the second chapter, we provide the preliminary
information necessary for the following chapters. We begin this chapter with detailed insights
into deep generative models, focusing on GANs and VAEs. This chapter also discuss the
standard datasets and evaluation metrics that is utilized in the empirical evaluation of the
proposed methods in the following chapters. The rest of the thesis is divided into two main
sections and three parts, as shown in Figure 1.1. The first section corresponds to Chapter
3, and the second section to Chapters 4 and 5. In Chapter 3 (Part I), we focus on GANs;
to be specific, we take a step towards improving the controllability of GANs for content-
based image generation applications. Chapters 4 and 5 are devoted to improving the learned
representations of VAEs. In Chapter 4 (Part II), we introduce regularized deterministic
autoencoders as a possible alternative to stochastic VAEs. Motivated by the success of the
model proposed in Chapter 4 in efficiently modeling complex data structures, we study
the adversarial robustness of the learned latent space of the proposed model in Chapter 5
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(Part III). Finally, we conclude the thesis in Chapter 6 by discussing the main findings and
contributions of the proposed methods and potential future work.
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1.4 Publications

The content of this thesis is based on the following publications.

Peer-reviewed conference papers.

A. Saseendran, K. Skubch, and M. Keuper. Multi-class multi-instance count conditioned
adversarial image generation. In IEEE/CVF International Conference on Computer
Vision (ICCV), pages 6742–6751, 2021.

A. Saseendran, K. Skubch, S. Falkner, and M. Keuper. Shape your space: A gaussian
mixture regularization approach to deterministic autoencoders. In Advances in Neural
Information Processing Systems, 2021, volume 34, pages 7319–7332, 2021.

A. Saseendran, K. Skubch, S. Falkner, and M. Keuper. Trading off image quality for
robustness is not necessary with regularized deterministic autoencoders. In Advances
in Neural Information Processing Systems, 2022.

Patents.

A. Saseendran, K. Skubch, and M. Keuper. Generator networks for generating images with
predetermined counts of objects, US Patent App. 17/445,440. (Applied)

A. Saseendran, K. Skubch, S. Falkner, and M. Keuper. Shape your Space: A Gaussian
Mixture Regularization Approach to Deterministic Autoencoders, US Patent App.
17/943890. (Applied)

A. Saseendran, K. Skubch and M. Keuper. A method for training deterministic autoencoders,
EU Patent App. 22192386.5. (Applied)

1.5 Software

We provide an open-source implementation of the proposed methods in this thesis to promote
open research and ensure reproducibility.

Count based image generation (Chapter 3 [163])
https://github.com/boschresearch/MCCGAN

GMM regularization based deterministic autoencoder (Chapter 4 [161])
https://github.com/boschresearch/GMM_DAE
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1.5 Software

Robust deterministic autoencoder (Chapter 5 [162])
https://github.com/boschresearch/Robust_GMM_DAE
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Chapter 2

Preliminaries

2.1 Deep Generative Models

Generative modeling involves learning the probability distribution of a data manifold based
on a representative sample set. A deep generative model captures the hidden patterns and
structures in the data distribution to learn compact representations and use this knowledge to
create new data. The compact, low-dimensional space that the model learns to represent the
training data distribution is called the latent space. The latent variables in this space are often
called the "hidden code" or "latent representation" of the data. The learned representations
can then be used for various downstream applications such as image or video synthesis, text
generation, music composition, data augmentation, anomaly detection, and medical imaging,
to name a few. The existing pool of generative techniques includes Auto-Regressive [187, 29],
Flow-based [154, 195, 82], Energy-based [47, 83], and Latent-Variable models [67, 107].
Among them, we are particularly interested in two popular Latent-Variable based models,
Generative Adversarial Networks (GANs) [67] and Variational Autoencoders (VAEs [107]).

In Latent-Variable based models, the actual data distribution p(x) is expressed through
the marginalization over a vector z of latent variables as follows,

p(x) =
∫

z
p(x|z)p(z)dz = Ep(z)[p(x|z)] (2.1)

where z is the latent representation of a data point x distributed with a known distribution,
also called prior distribution p(z). The distribution, p(x|z), is parametrized by a deep neural
network. After training, the learned model is used to generate new samples via ancestral
sampling, i.e., we first sample from the prior distribution, z ∼ p(z), and then generate new
samples, x ∼ p(x|z).
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This dissertation focuses on optimizing the latent representations of two popular deep
generative models, Generative Adversarial Networks (GANs) and Variational Autoencoders
(VAEs). The following section summarizes the concepts of these two models and some
recent advances in generative modeling.

2.1.1 Generative Adversarial Network (GANs)

Generative Adversarial Networks, or GANs, are among the most popular generative models.
The concept of GANs was introduced by Ian Goodfellow et al. in 2014 [67]. GANs consist
of two network components, a generator and a discriminator. The goal of the model is to
generate realistic samples that resemble the distribution of input data by training these two
networks to compete against each other in a game-like manner.

Discriminator The discriminator is basically a supervised classifier that attempts to classify
its input as either ’real’ (1) or ’fake’ (0). As shown in Figure 2.1, the inputs to the discriminator
are real samples from the dataset or fake samples from the generator. The discriminator
outputs a probability value for each sample input, indicating how likely it is to be a real
sample.

Generator The generator is a deep neural network that receives a random noise vector
as input, as shown in Figure 2.1 and is trained with the goal of generating samples that
resemble the real data distribution. During the training process, the generator takes feedback
from the discriminator and updates its weights accordingly during backpropagation. The
generator gradually generates samples that are indistinguishable from the real samples to
fool the discriminator.

The generator and the discriminator form the whole structure of GAN, as shown in
Figure 2.1. In the training process, the generator is trained to generate samples that can fool
the discriminator into thinking they are real, while the discriminator is trained to correctly
classify its input samples as real or generated. Thus, the training of GANs can be viewed as
a two-player game between the generator and the discriminator. After training, the Generator
network is used to generate new data samples

Working Principle of GANs The training algorithm of GANs is summarized in Algo-
rithm 1. At each step of the training process, we take a batch of m training samples and a
batch of m latent vectors drawn randomly from a Gaussian/Uniform prior. The generator
function is denoted by G with parameters θG, and the discriminator function is denoted by
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D with parameters θD. Then the objective function of the GAN V (G,D) is defined as follows,

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z)))] (2.2)

where E is the Expectation or expected value, and the distribution of data in the dataset (also
called real distribution) is denoted by x.

During training, there are two simultaneous gradient steps, one to update the discriminator
parameters θd to reduce the discriminator cost function JD, and the other to update the gener-
ator parameters θg to reduce the generator cost function JG. The goal of the discriminator
is to maximize the probability assigned to real and fake samples. Thus, in mathematical
terms, the discriminator cost function JD is to maximize the average of the log-likelihood
for the real samples and the log value of the inverted likelihoods for the fake samples, as
given in Equation 2.2. The generator aims to learn a distribution Pg over data x. There are
two different ways to formulate the generator’s objective function. One corresponds to the
minimax loss function, and the other to the non-saturating loss function. In the minimax
objective, minimization corresponds to minimizing the generator loss, and maximization
corresponds to maximizing the discriminator loss, as given in Equation 2.2. In this case, the
generator seeks to minimize the logarithm of the inverse probability of the discriminator for
fake samples, i.e., JG = minimize log(1−D(G(z))). Intuitively, this means that the generator
is encouraged to produce samples with a low probability of being fake. However, in the
early stages of training, when the generated samples are not yet accurate or close to the real
data distribution, the discriminator can distinguish between real and fake samples with high
confidence. The discriminator wins easily, and the game ends. The model cannot be trained
effectively in such a scenario. A non-saturating GAN loss was proposed to avoid saturation
of the generator loss function. By slightly modifying the goal of the generator, i.e., instead of
training G to minimize log(1−D(G(z))) we train G to maximize log(D(G(z)). In contrast
to the previous formulation, the generator now tries to maximize the probability that the
generated samples are predicted to be real. This is computationally less expensive and also
yields better gradients during learning. The number of steps k to train the discriminator is a
hyper-parameter, and in the original work, it is suggested to use the least expensive option,
k = 1 [67]. The choice of loss function for GANs is an active area of research. The most
popular loss functions used in many implementations are least squares loss and Wasserstein
loss[178].

The solution of the two-player game is a Nash equilibrium, which is the optimal point
for the mini-max function of GANs [67]. The Nash equilibrium in game theory literature is
the state in which no player can improve its individual gain by choosing a different strategy.
When the discriminator receives a fake output from the generator G(z), it tries to make
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0/1
fake/real
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Fig. 2.1 GAN architecture comprising of the generator and discriminator. The generator
takes in a noise vector randomly drawn from a chosen prior. The output from the generator
and real samples from the dataset are given to the discriminator to classify as real or fake.

D(G(z)) equal to 0, while the generator tries to make it equal to 1. The Nash equilibrium
would then be G(z) drawn from the same distribution as the training data set, and D(x) = 1

2
for all x. GANs are notoriously difficult to train because it is difficult to find an equilibrium
and requires an exhaustive hyperparameter and architecture search. In the following section,
we discuss some major constraints in training GANs.

One of the most common problems when training GANs is the so-called mode collapse,
or sometimes Helvetica scenario, in which the generator collapses and produces only a
limited variety of samples. When the generator finds that a particular mode or data type
could easily fool the discriminator, it may start generating the same data type. There is no
specific function in the generator’s objective function that explicitly forces diversification of
the generated patterns. If the generator repeatedly generates the same data type, it is best for
the discriminator to learn to reject that particular output. However, suppose that in the next
iteration, the discriminator gets stuck in a local minimum and does not find the best strategy.
In this case, it is too easy for the next generator iteration to find the most plausible output
for the current discriminator. Each generator iteration is over-optimized for a particular
discriminator, and the discriminator never manages to learn from the trap. As a result, the
generators rotate through a small set of output types. In practice, however, a complete
mode breakdown is not expected. In contrast, partial mode collapse, where the generator
outputs fewer different samples or fails to produce certain modes of data distribution, is a
common phenomenon. Several techniques have been proposed to avoid mode collapse, such
as using other objective functions like Wasserstein GAN or adding regularization terms to
the generator or discriminator loss [71, 7].

The hyperparameters of the GANs must be chosen appropriately because there is a high
probability that one of the networks will diverge or stop learning during training. Since
training involves both networks, it is often observed that one of the networks is stronger than
the other, which means that the gradient of the loss function can easily be zero. This is called

14



2.1 Deep Generative Models

the vanishing gradient problem. Since the network depends on the hyperparameters, failure
to determine the optimal values for these parameters can lead to an imbalance between the
generator and the discriminator and, thus, overfitting. Several methods and architectural
changes have been proposed to stabilize the training of GANs, some of which are discussed
in the next section. Among the many potential applications that use GANs, we mainly focus
on image generation applications, which are discussed in detail in the next section.

Algorithm 1 GAN algorithm
for number of training iterations do

for k steps do
Sample batch of m noise samples from noise prior pg(z).
Generate m samples from the noise prior.
Sample batch of m samples from the training dataset.
Update discriminator parameters.

end for
Sample batch of m noise samples from noise prior pg(z).
Generate m samples from the noise prior.
Update generator parameters.

end for

Image generation using GANs Since their introduction, GANs have rapidly evolved
to become the most promising trend for generating diverse photo-realistic images. Deep
convolutional GAN (DCGAN) [146] demonstrated the potential of convolutional neural
networks in this context for the first time. Conditional GANs(cGANs) [133] extend the
Vanilla GAN architecture by conditioning the generator and discriminator on additional
information, such as class labels or other attributes. This allows the model to generate
samples that belong to specific classes or have certain attributes. Arjovsky et al. [71]
introduced the Wasserstein GAN (WGAN), which uses the Wasserstein distance to measure
the difference between the generated and real data distributions. WGANs have been shown
to be more stable and easier to train than traditional GANs, as they avoid the problem of
mode collapse and vanishing gradients. CycleGANs [209] are used for image-to-image
translation applications, where the goal is to translate an image from one domain to another
(e.g., turning a summer landscape into a winter landscape). CycleGANs consist of two
GANs, each with a generator and a discriminator, that are trained to translate images in both
directions and are trained with an additional cycle consistency loss function to ensure that
the translated images are consistent with the original images. A considerable amount of
research was also devoted to improving the training stability of GANs [71, 99, 134] and to
develop more evolved architectures [18, 101, 102, 146]. Progressive GANs(PGANs) [99]
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use a progressive training procedure that starts with a low-resolution generator and gradually
increases the resolution as training progresses. This allows the model to generate high-quality
images with fine details. In 2018, researchers at Google introduced BigGAN, a variant of
GAN designed to generate high-quality images with a resolution of 256x256 or 512x512
pixels. BigGAN [18] uses a hierarchical generator and a novel truncation trick to improve
the quality and diversity of generated images. StyleGAN [101] extends the progressive
growing architecture [99] for both the generator and discriminator to generate high-resolution
images such as of 1024×1024 resolution. These advancements in GAN research have led to
significant improvements in the quality and diversity of generated outputs, training stability,
and increased control over the generated outputs.

2.1.2 Variational Autoencoders (VAEs)

Autoencoders Autoencoders [164, 9] are a class of neural networks trained to reconstruct
the input data while learning a compact, low-dimensional representation of the input. The
model consists of two components, the encoder and the decoder. The goal of the encoder
is to learn a latent representation of the input data such that the variational factors in the
data are captured so that the decoder can reconstruct them. When learning the latent space
in an autoencoder, there are no specific constraints as long as the model can reconstruct
the input when the decoder function is applied. Autoencoders are commonly used in
applications such as data compression, dimensionality reduction, anomaly detection, and
image denoising [31, 3, 64, 55]. Although autoencoders can learn powerful representations of
the input data, they are not suitable for generating new data samples due to the non-regularized
latent space.

Variational Autoencoders (VAEs) Variational Autoencoders (VAEs) have a structure
similar to that of classical Autoencoders. However, VAEs impart generative capabilities to
the latent space by learning the underlying training data distribution. The key idea behind
VAEs is to learn a probabilistic mapping of the data space to a latent space and then use this
mapping to generate new samples that resemble the original data.

The VAE framework consists of two network components: the encoder and the decoder,
as shown in Figure 2.2. The encoder maps the input data sample to a probability distribution
in latent space. The output of the encoder is the parameters of the latent space distribution,
the mean, and the variance. The decoder samples from the latent space distribution and
provides an output similar to the input data. After training, the decoder is used to generate
new samples. Encoder and decoder models are parameterized by deep neural networks.
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Fig. 2.2 VAE architecture comprising of the encoder and decoder.

VAE Formulation Given a set of training data X = {x1,x2, ..xN}, the task of the generative
model is to generate new data samples x ∈ Rd. The main purpose of VAEs is to learn a
low-dimensional representation of the input data points, often referred to as latent variables,
denoted by z ∈ Rk,k < d. We then consider a latent-based model (stochastic decoder) pθ (x|z)
with prior pθ (z), where θ corresponds to the parameters of the decoder model. The prior
distribution is assumed to be the standard normal distribution. The objective is to maximize
the probability of each data in the training dataset X , which is defined as follows,

pθ (x) =
∫

pθ (x,z)dz =
∫

pθ (x|z)pθ (z)dz (2.3)

However, the integration in Equation 2.3 is performed overall dimensions of z and is in-
tractable. Therefore, for VAEs, the distribution pz is derived using the posterior p(z|x), which
is inferred using a variational inference approach [16]. We first model p(z|x) with another,
simpler and easy to find distribution q(z|x). This is achieved by minimizing the divergence
between these distributions,

qφ (z|x) = argmin
q

DKL(qφ (z|x) ∥ pθ (z|x)) (2.4)

where qφ (z|x) is defined as the stochastic encoder or inference model with parameters φ

that approximates pθ (z|x), and DKL corresponds to the Kullback-Leibler (KL) divergence
measure. From the definition of KL divergence and by rearranging the terms in Equation 2.4,
the final objective of VAEs is derived as follows,

ln pθ (x) =−DKL(qφ (z|x) ∥ pθ (z))+Eqφ (z|x)[ln pθ (x|z)] (2.5)

Equation 2.5 defines an alternative definition for pθ (x) that does not require knowledge
of pθ (z|x). The first term in Equation 2.5 corresponds to the regularization loss in the
latent space. The second term corresponds to the data reconstruction loss, which measures
the difference between the input and reconstructed data of the decoder. With a Gaussian
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prior assumption, the reconstruction loss corresponds to the maximization of the Gaussian
likelihood, which corresponds to the squared distance between the input and output data
samples. The regularization loss is defined as the KL divergence between the encoder output
and the prior distribution, which is non-negative and is zero when the encoder distribution
matches the prior distribution.

The right-hand term in Equation 2.5 is called the evidence lower bound (ELBO) [107].
To optimize this bound with respect to the parameters θ and φ , gradients must be back-
propagated through the stochastic sampling process of the latent variable z. This is made
possible by introducing a reparametrization technique [107] in which the latent variable z is
reparametrized so that the stochasticity is independent of the parameters of the distribution.
This is achieved by introducing an auxiliary noise variable ε ∼N (0,1) and redefining z as
z = µ(x,φ)+σ(x,φ)ε .

Despite the strong theoretical formulation, VAEs tend to produce unrealistic images and
blurry reconstructions when applied to complex image datasets [17, 46]. This is attributed to
the maximum likelihood objective function and Mean Squared Error (MSE) reconstruction
loss in the optimization strategy. There is also evidence that the limited approximation
to the true posterior is the cause of this problem [208, 185] with the MSE term strongly
favoring non-Gaussian posteriors. Some other limitations associated with VAEs include
over-regularization due to the KL divergence term in the objective function and simplified
prior assumptions during training [60, 17].

VAE variants Since the introduction of VAEs, many follow-up works have tried to over-
come the practical and theoretical limitations of the framework, e.g. [14, 178, 179], and make
them applicable to specific applications such as image generation [26, 193, 141, 151, 60, 155,
172, 207, 124], clustering [39, 144] or anomaly detection [211]. Higgins et.al [79] improved
the learned representation in VAEs by encouraging disentanglement in the latent space and
introducing β -VAE for disentangled factor learning. β -VAE modifies VAEs by introducing a
hyperparameter to balance the latent regularization term with the reconstruction performance.
Chen et.al [26] further decompose the ELBO term in VAEs to introduce total correlation
(TC) regularization and propose β -TCVAE as a promising alternative to β -VAEs. Willets et
al. [193] show that adding the TC term to the VAE objective also improves the robustness of
the learned representations in VAEs.

In the standard VAE framework, the prior distribution is commonly assumed to be a
Gaussian normal distribution. This might lead to simplified representations learned by
the model, which cannot represent the rich semantics in the data distribution. Several
methods were also proposed to include complex and flexible priors to the training pipeline of
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VAEs to enhance the semantics of the learned latent representations [28, 211, 179]. Miao
et al. [131] introduce an approach to incorporate the inductive bias into VAEs without
explicitly changing the prior by utilizing an intermediary set of latent variables. Hierarchical
VAEs [155, 172, 207, 124] extend the standard VAE framework by introducing a hierarchy
of latent variables and offering superior modeling capabilities. Casale et al. [21] employs
Gaussian process priors to account for correlations between the data samples. In [70],
a Bayesian non-parametric prior is used with a hierarchical non-parametric variational
autoencoder for video representation learning. Chen et al. [28] use an auto-regressive prior
to achieving improved generative performance on image datasets. Berger et al. [14] propose
to replace the standard spherical Gaussian prior with a more general version with an arbitrary
covariance matrix and learn the correlations by optimizing the evidence lower bound of the
model.

In another line of work, multi-modal priors were utilized in VAE models. Zong et
al. [211] propose to use a GMM prior in autoencoders for unsupervised anomaly detection
by training an additional network estimating the parameters of the GMM. Lee et al. [116]
address unsupervised meta-learning using a GMM prior in VAEs to shape the latent space
by employing an extension of the evidence lower bound to complex variational inference
schemes. Tomczak et al. [179] propose to replace the GMM prior by coupling the posterior
and prior of the model. Adversarial autoencoders [127] improve the generative performance
of VAEs by incorporating adversarial learning into the VAE framework and offer competitive
performance in image generation at an increased computational complexity and decreased
training stability. To account for the over-regularization effect of the KL divergence term
in the standard VAE framework, [178] minimize the Wasserstein distance between the
representations learned by the model and the target prior. The state-of-the-art VAE model
for high-fidelity image generation, VQ-VAE [141, 151], involves two stages of training
relying on complex discrete autoregressive density estimators. Gosh et al. [60] question the
variational formulation of VAEs and introduce a simple and effective deterministic model
without any prior assumptions, followed by a post-hoc density estimation to approximate the
learned posterior. The authors use the negative log-likelihood for regularization but require a
post-hoc step to derive a strong sampling procedure from the model. More details on these
models are provided in the next section.

Regularized Autoencoders (RAEs) Regularized autoencoders [60](RAEs) question the
variational framework adopted by the VAEs and propose a deterministic approach to achieve
comparable or better image generation performance than VAE-based models. Although
VAE presents a theoretically sound framework for modeling the input data, some of the
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approximations associated with the variational framework pose practical challenges during
training. One of the significant drawbacks observed is the unsatisfying compromise between
the quality of the generated and reconstructed samples. Prior posterior mismatch and one-
sample approximation are two major limitations associated with the low sampling quality in
VAEs.

• Prior-Posterior mismatch - In VAEs, the prior distribution over the latent variables
is often chosen to be a simple distribution such as a standard normal distribution.
However, given the data, the true posterior distribution over the latent variables may be
much more complex. This mismatch between the prior and the true posterior is known
as the prior-posterior mismatch problem. This mismatch can lead to poor sampling
performance of the VAE.

• One sample approximation - While training VAEs, since the actual posterior distribu-
tion over the latent variables is intractable, an approximate posterior distribution is
used instead. In theory, many samples must be drawn from the posterior to approx-
imate the distribution. However, in practice, a one-sample approximation is carried
out, which involves sampling one point from the approximate posterior distribution
and then decoding that sample to generate a sample from the data distribution. This
approximation leads to slow learning and sampling quality issues in VAEs.

Various techniques have been proposed to address these issues, such as using more flexible
prior distributions or adjusting the architecture of the VAE. RAEs take a different approach
to these methods and redefine a deterministic autoencoder as a generative model. VAEs
can be considered deterministic autoencoders with noise injected into the decoder. Hence
a deterministic encoder-decoder pair is trained with a regularization scheme instead of this
noise injection to obtain a smooth latent space. The training objective of RAEs is to minimize
the following loss function,

LRAE = LREC +β
1
2
∥z∥2

2 +λLREG (2.6)

where β and λ are the hyperparameters. The LREC term corresponds to the reconstruction
loss between the decoder and encoder, and LREG is explicit decoder regularization such
as L2-regularization or spectral normalization [134] used in GAN models. The second
term in the loss function is used to constrain the size of the learned latent space to prevent
unbounded optimization. Finally, to enable the generative mechanism of the model, an
ex-post density estimation is performed on the learned latent representations after the training.
A full covariance multivariate Gaussian with a 10-component Gaussian mixture model is
used as the density estimator.
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2.1.3 Recent Advancements

Research in generative modeling has grown exponentially in recent years. In this section, we
briefly review some recent advances in the field of generative modeling. In particular, we
focus on some of the most promising approaches that have attracted considerable attention in
the computer vision community, such as flow-based models, transformer-based models, and
diffusion models.

Flow-based models [154, 106] are generative models that use a sequence of invertible
transformations to map a simple known base distribution (such as the normal distribution) to
a more complex target distribution. Since their introduction, these models have been widely
used in various application areas such as Computer Vision [106, 112, 104, 1], Natural Lan-
guage Processing [183, 210, 94], and Reinforcement Learning [166, 129, 180]. Flow-based
models allow exact likelihood computation using normalizing flows. The general idea is to
map the unknown distribution in the input space to a known distribution in the latent space
using an invertible function. The invertibility of the transformations allows for efficient
inference and sampling, and the flexibility of the transformations allows for the modeling
of complex distributions. The latent space of these models is not low-dimensional due to
the constraints imposed by the invertible function and therefore requires high computational
power and slow training time, especially for high-dimensional data. Despite recent devel-
opments in this area for image generation applications [41, 42, 106, 82, 195], the quality of
sampling still suffers compared to the powerful GAN/VAE variants or the recently developed
diffusion models.

Transformers are extremely effective in solving a variety of machine learning tasks and
have been successfully applied to text sequences [188, 37, 147, 148, 19], images/videos [45,
51, 93, 75, 49, 168], speech [191], protein sequences [156], graphs [189], and time se-
ries [197]. Their greatest successes have been in building language models [147, 148, 19]
and, more recently, in replacing convolutional networks in computer vision [49, 75]. Trans-
former models use self-attention mechanisms to capture dependencies between input features.
Although previous work has used attention methods, transformer models are distinguished
by the multi-head attention mechanism optimized for parallelization. Unlike convolutional
neural networks (CNN), transformers have no inductive bias, which allows these models to
learn long-range dependencies in the training distribution. Although transformer models
were originally proposed for natural language processing (NLP) applications [188], the
breakthrough of these models in the NLP domain has generated much interest in the com-
puter vision community, especially in the area of generative modeling [49, 142, 25, 15, 93].
Motivated by the success of the GPT model in the NLP domain [147, 148, 19], iGPT [25] was
proposed to extend the same architecture for image generation and achieved impressive per-
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formance over the unsupervised CNN models. In [49], Esser et al. proposed to integrate the
inductive bias of CNN and the expressive power of transformers to generate high-resolution
images. Hybrid models such as TransGAN [93] with a transformer architecture for both
the generator and discriminator of GAN have also been proposed to achieve comparable or
better performance than CNN-based GAN counterparts. Recently, it has also been shown
that transformer architectures are capable of generating high quality images for a given
text description [150, 149]. Although transformer-based models have achieved impressive
performance in various application domains, the major bottlenecks include the requirement
for large amounts of training data and associated high computational costs [103].

Diffusion models are powerful probabilistic generative models that have displayed their
exquisite potential in the field of computer vision [12, 61, 84, 83, 149, 150, 33], sequence
modeling [118, 175], audio processing [109], and life science applications [123, 201]. These
models define a nonlinear mapping from latent variables to the observed data where both
quantities have the same dimension. Similar to VAEs, diffusion models approximate the
data likelihood using a lower bound based on an encoder that maps the input to the latent
variables. However, the encoder is predetermined, and the objective of these models is to
learn a decoder which is the inverse of the process. The encoder or the forward diffusion
process uses a sequence of diffusion steps to map the input through a series of intermediate
latent variables. In this process, the data is gradually mixed with noise and repeated until only
noise remains. The decoder or the reverse diffusion process learns the reverse process to map
the data back through the latent variables, removing noise at each stage. New samples are
generated by sampling noise vectors and passing them through the decoder. One of the main
advantages of diffusion models is their ability to produce high-quality images with realistic
textures and details [138, 38, 149]. Diffusion models have also been used in combination
with other techniques, such as attention mechanisms [150, 149] and progressive training [57],
to further improve their performance. Since the diffusion model operates in pixel space, they
are limited by the computational cost of training and inference. Recently introduced latent
diffusion models [157] aim to overcome the computational limitations of diffusion models
by applying them in the latent space of powerful pre-trained latent spaces of autoencoders.
Despite these advances, these models still require a large number of diffusion steps to produce
high-quality samples, which can be computationally intensive for high-dimensional input
spaces[33].
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2.2 Commonly Used Dataset

This section summarizes the commonly used dataset and the evaluation metric used for the
empirical analysis of the proposed methods.

2.2.1 MNIST

The MNIST (Modified National Institute of Standards and Technology database) [36] is a
widely used dataset for computer vision and deep learning research, including generative
models. The dataset consists of a training set of 60,000 28x28 grayscale images of handwrit-
ten digits (0-9) and a test set of 10,000 images along with corresponding digit labels; please
refer to random samples of the dataset in Figure 2.3. The dataset includes 28× 28 pixel
grayscale images with 60000 training images and 10000 testing images. The MNIST dataset
is considered a benchmark dataset in the field of machine learning, particularly in the area
of image recognition. Many researchers use the MNIST dataset as a testbed for developing
and evaluating new machine-learning models. It is small enough to be easily trained on
most computers but complex enough to provide a challenging problem for machine learning
algorithms.

The dataset was generated from another NIST database comprising binary images of
handwritten digits collected from Census Bureau employees and high-school students. The
black and white images from the NIST database were normalized and anti-aliased to generate
a 28× 28 grayscale image. Since the dataset contains label information, MNIST images
are used in supervised learning tasks such as digit recognition or classification. Since the
dataset is most commonly used for image-based tasks, it is a natural choice for evaluating
the performance of generative models on image-generation tasks. Hence in this dissertation,
we utilized MNIST images as an effective baseline to analyze the potential of the generative
models and to conduct ablation studies to analyze the proposed methods.

2.2.2 FASHIONMNIST

The Fashion-MNIST [199] dataset, introduced by Zalando, is a dataset of images of clothing
items, such as shirts, trousers, and bags. Each image is 28x28 pixels and is associated with a
label indicating the type of clothing item it represents. The dataset is intended to replace the
commonly used MNIST dataset, which consists of images of handwritten digits, and is often
used as a benchmark for image classification tasks. The goal of using the Fashion-MNIST
dataset instead of the MNIST is to provide a more challenging problem for machine learning
models and a dataset more representative of real-world use cases. The dataset contains
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60,000 training images and 10,000 test images and is split into 10 classes, each representing
a different type of clothing item. The classes are T-shirt/top, Trouser, Pullover, Dress, Coat,
Sandal, Shirt, Sneaker, Bag, and Ankle boot. Figure 2.3 shows random samples of the dataset.
The images in this dataset are well-labeled and straightforward to process and hence widely
employed in applications like image classification/detection and generative modeling.

Although the MNIST dataset is considered a good benchmark for machine learning or
deep learning applications, there are some limitations associated with the same. Since the
dataset is too simple, deep learning models could quickly achieve 99% accuracy on these
images. Hence, the Fashion-MNIST dataset allows researchers to train and evaluate machine
learning models for more challenging use cases.

2.2.3 SVHN

The Street House View Numbers (SVHN) [137] is a real-world dataset of house numbers
represented by individual digits from 0 to 9. The dataset was created by collecting images
from Google street view images and Amazon Mechanical Turk (AMT) framework to identify
single digits in the images. The images are taken from various angles and under varying
lighting conditions, which makes the dataset useful for training models for real-world
computer vision tasks. It contains over 600,000 digit images, annotated with bounding boxes
around the individual digits. The dataset is divided into three sets: a training set of over
500,000 images, a testing set of over 10,000 images, and a smaller set of additional images
that can be used for additional training or validation. The dataset comes in two formats, (1)
Original full house number images with varying resolution and (2) cropped images as in
MNIST, centered around a single character with 32×32 pixels. The images might include
overlapping digits and noisy or distracting features. Figure 2.3 shows random samples from
the dataset. As seen in the figure, the images are similar to MNIST images with cropped
digits; however, with more complexity and depict a much more complicated problem of
recognizing digits or numbers from complex real-world images. SVHN also provides a large
amount of labeled data, providing a reliable real-world benchmark dataset for deep learning
applications. In this dissertation, we used the cropped version of SVHN images without the
additional samples for evaluation.

2.2.4 CELEBA

The Large Celeb Faces Attributes (CelebA) [120] dataset is a large-scale collection of
celebrity face images collected from the internet. The dataset includes more than 200,000,
178×218 pixel size images of 10177 celebrities. Each image is annotated with 40 binary
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MNIST FASHION-MNIST

SVHN CELEBA

Fig. 2.3 Random samples of images from each of the datasets considered for empirical
evaluations in this thesis.

attributes such as "wearing glasses" or "has long hair" and five landmark points for the eyes,
nose, and mouth. Figure 2.3 shows random samples from the dataset. Due to the large variety
with different backgrounds, poses, and rich annotations, CELEBA images are widely used
for various deep learning applications such as face detection/localization and generative
modeling. In this dissertation, we center-cropped the original images and then resized them
to 64×64 pixels for the image generation experiments.

2.2.5 Evaluation metric

Developing an appropriate metric to analyze and compare the performance of deep generative
models is a challenging problem [17]. Qualitative analysis of generated samples is a widely
used method in most related work, however, it is time-consuming and subjective to compare
many works. Two of the most commonly used metrics for the quantitative evaluation of
generative models are Inception Score (IS) [160] and Fréchet Inception Distance (FID) [78].

FID measures the distance between the feature vectors of the real and generated images to
quantify their similarity. To be precise, the activations of the last fully connected layer, also
called the global spatial pooling layer of an Inception V3 model, are extracted to compare
real and generated images. The obtained activations are modeled as multivariate Gaussian
distributions by computing the mean and covariance of the images. These activations or
feature vectors are then computed for a collection of real and generated images, and the
distance between them is called the Fréchet distance or Wasserstein-2 distance. Since the
inception model computes this distance, the metric is called Fréchet Inception Distance.
Lower values of FID indicate better quality, as they correspond to a small distance between
the generated and real images. Conversely, a higher FID value indicates a lower quality or
lower similarity between the generated images and the real images.
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FID was originally proposed as a potential alternative to another evaluation metric called
Inception Score (IS), which is used to determine the quality and diversity of the generated
images. IS also uses the Inception V3 model to calculate the corresponding score. The IS
score is calculated based on the classification performance of the Inception model for the
synthetic images to assign the images to one of the 1000 known object classes. However,
unlike FID, IS does not provide information about how similar the generated images are to
the real data. Other alternative metrics, such as Perceptual Path Length, Kernel Inception
distance, and Precision vs. Recall, are also proposed to evaluate the performance of deep
generative models. FID, however, is one of the most widely accepted metrics in the literature
to standardize the performance of generative models. Therefore, in this dissertation, we
compute the FID score to quantitatively assess the quality of the generated images in our
empirical evaluation.

FID Calculation A pre-trained Inception v3 extracts the feature vectors for both the real
and generated images. The activations of the last fully connected layer of this model have
a size of 2048, so the extracted feature vectors for real and generated images have the
same dimension. The FID is then calculated by measuring the distance between these 2048
feature vectors. The feature vectors are modeled as multivariate Gaussian with mean, µ , and
covariance, C. Let µr, Cr, and µ f , C f be the feature-wise mean and covariance matrix of the
real and generated images; FID is then defined as follows,

d2(µr,Cr)(µ f ,C f ) = ∥µr −µ f ∥2+Tr(Cr +C f −2
√

CrC f ) (2.7)

where Tr refers to the trace linear algebra operation (sum of the elements along the main
diagonal) of the covariance matrix.
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Chapter 3

Multi-Class Multi-Instance Count
Conditioned Adversarial Image
Generation

Image generation has rapidly evolved in recent years. Modern architectures for adversarial
training allow the generation of even high-resolution images with remarkable quality. At the
same time, more and more effort is dedicated to controlling the content of generated images.
In this chapter, we take one further step in this direction and propose a conditional generative
adversarial network (GAN) that generates images with a defined number of objects from
given classes. This entails two fundamental abilities (1) being able to generate high-quality
images given a complex constraint and (2) being able to count object instances per class in a
given image. Our proposed model modularly extends the successful StyleGAN2 architecture
with count-based conditioning and a regression sub-network to count the number of generated
objects per class during training. In experiments on three different datasets, we show that
the proposed model learns to generate images according to the given multiple-class count
condition, even in complex backgrounds. In particular, we propose a new dataset, CityCount,
derived from the Cityscapes street scenes dataset, to evaluate our approach in a challenging
and practically relevant scenario. This work is published in the International Conference on
Computer Vision (ICCV), 2021 [163].

3.1 Introduction

Developmental studies show that the human brain is endowed with a natural mechanism
for understanding numerical quantities [35, 198]. Even young children have an abstract
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understanding of numeracy and can generalize the concept of counting from one category
to another (e.g. from objects to sounds) [198]. While counting object instances are rela-
tively easy for humans; it is challenging for deep learning and computer vision algorithms,
especially when objects from multiple classes, e.g., persons and cars, are considered. In
this chapter, we take a step towards such elementary visual reasoning by addressing the
generation of images conditioned on the number of object instances per object class. We are
particularly interested in the complex case where objects from multiple classes are present
in the same image. This is a fundamental vision task, which can even be solved by small
children [35], but remains an unsolved problem in computer vision. Apart from that, many
practical applications can benefit from the capability to generate images respecting numerical
constraints. It especially aids the generation of additional diverse training data for visual
question-answering and counting approaches. Further, the generation of technical designs
based on the number of different components is of particular interest in the field of topology
design, where data-based approaches have recently been explored successfully in applications
ranging from molecular design [5] for chemical applications to product design [140] for
aesthetics or engineering performance.

We propose to solve multiple-class count (MC2) conditioned image generation (i.e. the
generation of images conditioned on the number of objects of different classes that are visible
in the image) as a modular extension to the state-of-the-art network for adversarial image
generation, StyleGAN2 [102]. We further argue that object counting should be considered
a multi-class regression problem. While this approach is simple, it allows the similarity
between neighboring numbers to be naturally encoded in the network and to transfer the
ability to count from one class to another. This will ideally make our network learn to
generalize the concept of counting from one object class to another, meaning that it can see
images of "two cars and one person" at training time and deduce the appearance of "two
persons" at inference time. To the best of our knowledge, this is the first attempt to evaluate
the potential of GANs to generate images based on the multiple object class count.

We validate the proposed approach in two lines of experiments. First, we evaluate
the generative performance of our model on synthetic data generated according to the
CLEVR [96] dataset as well as on real data from the MNIST [36] and SVHN [137] dataset.
We propose a new, challenging real-world dataset, CityCount, derived from the well-known
street scenes dataset Cityscapes [32]. The CityCount dataset comprises various crops from
Cityscapes images containing specific objects from the important classes, car and person.
The dataset includes various challenging scenarios such as diverse and complex backgrounds,
object occlusions, varying object scales, and scene geometry. Samples from the CityCount
dataset and generated samples from our model are shown in Figure 1.2. In the second line of
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experiments, we show that the images generated by MC2-StyleGAN2 can enhance the size
and quality of training data for count prediction networks trained on images from CLEVR
and CityCount.

3.2 Related Work

In this section, we start by discussing conditional GANs and some of the seminal works
in this field. Since we focus on count-based image generation, we also review counting
approaches developed for various computer vision applications.

3.2.1 Conditional GANs

Conditioning GANs (CGAN) on explicit information was first introduced by Mirza et al. [133].
Since then, various approaches have been proposed to improve the controllability of GANs.
Many of these require extensive additional information such as class labels and/or natu-
ral language descriptions, e.g., image captions for text-to-image or text-to-video genera-
tion [8, 81, 133, 152]. Other variants of conditioning GANs include an information-theoretic
extension to GANs (InfoGAN) [27], auxiliary classifier GAN (ACGAN) [139], twin aux-
iliary classifier GAN (TACGAN) [66] and projection based conditioning methods [135].
ACGAN extends the loss function of GAN with an auxiliary classifier to generate images.
TACGAN further improves the divergence between real and generated data distribution of
ACGAN by an additional network that interacts with the generator and discriminator. In
projection-based methods [134], the condition is projected to the output of the discriminator
by considering the inner product of the conditional variable and the feature vector of images.
ContraGANs [97] introduces a conditional contrastive loss to learn the relation between
input images. SpatialGAN [81] proposes a method for multiple conditioning with bounding
box annotations and class labels of objects, and image captions to control the image layout
in terms of object identity, size, position, and number. In their method, object bounding
boxes are provided at test time, so the idea of count does not need to be learned. In [50],
the authors propose a variational U-Net architecture to condition the image generation on
shape or appearance. Various approaches have also been suggested to control the image
generation process of GANs in applications such as image-to-image-translation [89, 209] or
attribute transfer [76, 119]. Our work is related to ACGAN, with focus on the problem of
multiple-class counting using regression.

Based on the high-resolution architecture introduced in [99], StyleGAN [101] employs
adaptive instance normalization [86] based feature map re-weighting to facilitate the ma-
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nipulation of images over multiple latent spaces, encoding different style properties. Style-
GAN2 [102] improves over StyleGAN and avoids some characteristic generation artifacts.
Recently, a new technique was proposed [100] to achieve state-of-the-art results with Style-
GAN2 even when the training data is limited. While these approaches allow implicit
conditioning of image contents, for example, on given styles, they do not enable to steer
explicit properties of a generated image, such as the number of generated object instances
per object class. Our proposed model introduces an extension to StyleGAN2 that facilitates
such explicit conditioning.

3.2.2 Counting approaches

One way to count objects in an image is to localize and classify them using an object detection
network and then count all found instances. While this approach is effective, it also requires
additional class labeled bounding box or object prototype information [24, 170]. Adapting
these approaches for conditional image generation will require additional information, such
as pre-defined locations of the objects of interest during training. Other methods rely on
recurrent neural network architectures and attention mechanisms [153, 158, 204]. Thus,
they can not easily be applied in our problem setting. Density estimation-based counting
methods [53] show that learning to count can be achieved without prior detection and
are more reliable in severe occlusion scenarios. Multiple approaches have been proposed
to counting object instances in images, for example, in the context of visual question
answering [6, 111, 192]. In [2], Agarwal et al. suggests generating training data for this task
by modifying the number of objects using cropping and inpainting. ARIGAN [62] utilizes a
conditioned DCGAN to generate images of plants given the number of leaves.

3.2.3 StyleGAN - A Style-Based Generator Architecture for Generative
Adversarial Networks

The StyleGAN [101] proposes a novel approach to modify the generator of GANs to enhance
the controllability during image generation. The model yields state-of-the-art performance in
unconditional image generation. The architecture of the model is based on the Progressive
GAN (ProGAN) [99], which employs progressive training of the generator and discriminator
starting with a low resolution (4×4) at the first layer and gradually increasing the resolution
(e.g., 1024×1024) for high-resolution image synthesis. The intuition behind this architecture
is to learn base or low-level features at the initial stages and gradually focus on complex-level
features at higher resolution. These models are highly effective in learning superior-quality
high-resolution images but are limited in performance when controlling the specific features
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(a)Skip generator. (b)Resnet discriminator.

Fig. 3.1 StyleGAN2 Generator and Discriminator. tRGB and fRGB convert between RGB and
high dimensional per pixel data. Up and Down corresponds to upsampling and downsampling
operations. The diagram is taken from [102]

of the generated images. StyleGAN architecture was proposed to overcome this limitation
of ProGAN models and to facilitate unsupervised separation of high-level attributes and
stochastic variation in the generated images.

The StyleGAN generator is inspired by the style transfer literature, where neural rep-
resentations are utilized to separate and recombine the style and content of the generated
images. The input to the network is a learned non-linear mapping from the latent codes. The
generator includes two different components, a mapping network to learn an intermediate
latent space from the latent codes and a synthesis network where the learned style components
are injected to multiple convolution layers via Adaptive Instance Normalization(AdaIN) [87].
In AdaIN, each feature map, x f , is initially normalized by its mean and variance. The
normalized feature maps are then scaled and biased by the corresponding scale and bias
components of the style vector s at level i. Gaussian noise is added to each convolution layer
to generate stochastic details in the images. Each convolution component in the synthesis
network includes two AdaIN operations with two style injections and external noise additions
resulting in multichannel images with resolution doubling at each block. The discriminator
of StyleGAN also consists of a progressive growing architecture similar to that of ProGAN.

StyleGAN2 StyleGAN2 [102] is an upgraded version of StyleGAN with significant im-
provement in the quality of the generated images. StyleGAN2 revisits the generator nor-
malization and progressive training to eliminate some artifacts observed in the StyleGAN-
generated images. They also introduce a new regularization called path length to enhance
the smoothness in the latent space. The intuition behind this regularizer is to ensure that a
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fixed-size step in the latent space would result in a non-zero fixed magnitude change in the
image.

The characteristic artifact observed in the StyleGAN-generated images known as water
droplet effect is attributed to the AdaIN in the generator. AdaIN is hence replaced with
the weight demodulation method in the StyleGAN2 architecture. The weight demodulation
method takes the scale and shift parameters in the AdaIN operation out of the sequential
computation and introduces the scaling into the weights of the convolutional layers. Another
artifact widely observed in the StyleGAN images is the strong location preference for
details due to the progressive growing generator and discriminator architecture. As a result,
features like teeth or eyes do not move smoothly to the movement in images; instead, they
remain stuck in their original position. To overcome these artifacts, StyleGAN2 utilizes an
architecture that retains the benefits of progressive growth without its drawback. Inspired by
the recent literature in developing better network architectures [98], StyleGAN2 employs an
architecture to utilize multiple scales of images via a resnet-style skip connection between
low-resolution feature maps to the generated images. The figure 3.1 shows the StyleGAN2
skip generator and residual discriminator. In the generator, the RGB outputs at a different
resolution from each stage are up-sampled and then added together to generate the final image.
In the discriminator, the down-sampled image and residual connections are provided to each
block. An adaptive discriminator augmentation (ADA) technique [100] was later proposed
to stabilize the training of styleGAN2 in a limited dataset setting to generate high-quality
images. For the CityCount dataset, we consider StyleGAN2-ADA as the base model in our
empirical evaluation.

3.3 Multiple Class Count Conditioned Image Generation

This section introduces the proposed model for multiple-class count-based image generation.
We introduce two different models, (1) MC2-SimpleGAN, a simple network-based archi-
tecture of our proposed method for fair and easy comparison study with other conditional
GAN variants, and (2) MC2-StyleGAN2 for state-of-the-art image generation based on the
multiple class count.

3.3.1 MC2SimpleGAN

The generator of the MC2-SimpleGAN is shown in Figure 3.2b. The architecture comprises a
count-conditioned generator and a discriminator with an additional count prediction network.
Our basic generator network is inspired by the DenseNet [85] architecture. DenseNet
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Fig. 3.2 MC2-SimpleGAN Generator.

introduces dense blocks consisting of several convolutional layers where the output from
each layer is connected in a feed-forward fashion to its succeeding layers (see Figure 3.2a
for a visualization). The additional skip connections in the dense blocks strengthen the count
conditioning in the generator since the input feature maps are connected to the output layers
of the dense block [30]. We use two dense blocks of three layers with a growth rate of 64.
The generator (Figure 3.2b) gets a combination of randomly sampled noise and multiple class
count vectors as input. The concatenated vectors are passed through a fully connected layer
(FC) with ReLU activation, followed by dense blocks. The two dense blocks are coupled
with a 1× 1 convolution to decrease the number of output feature maps and to improve
computational efficiency [85] and an upsampling layer to increase the spatial resolution. The
output feature maps from the dense block layers are forwarded to two 3×3 convolutional
layers (Conv) to generate images. For the discriminator and counting network, we use four
convolutional layers with shared weights followed by a fully connected layer to discriminate
between real and fake images (discriminator) or to regress the multiple class count vector
(count network).

3.3.2 MC2StyleGAN2

We borrow the architectural specifications of the generator and discriminator from StyleGAN2
and extend the model for our application. The input to the generator is a multiple-class

33



Multi-Class Multi-Instance Count Conditioned Adversarial Image Generation

Real/Fake

FC

FC

FC

FC

FC

W

Latent Z

M
ap

pi
ng

 N
et

w
or

k

Generator/
Synthesis
Network

Fake Image

Real Image

[2 1] 
yfake

Real/
Fake

Weight
 Sharing

Count 
Network

StyleGAN2-
Discriminator

[2 1]
yreal / yfake 

Normalize

Fig. 3.3 MC2-StyleGAN2 architecture: The input to the generator is a multiple-class count
vector where each vector index corresponds to each object class, and the value at each index
represents the multiplicity of the corresponding object class. In the CityCount example, the
count vector [2,1] corresponds to 2 cars and 1 person, respectively.

count vector, where each vector index corresponds to a different object class, and the value
at each index represents the number of objects from the corresponding object class. The
generative part of our model includes a mapping network to map the latent vector and the
count constraint to an intermediate latent vector w and a generator/synthesis network to
generate images, as shown in Figure 3.3. To the first layer of the mapping network, we
provide a combination of randomly sampled noise and our multiple-class count vector,
specifying which objects and how many of them are required in the output image. The count
vector is also concatenated to every layer in the mapping network, as shown in Figure 3.3.
In the generator network, we introduce dense skip connections where the output from each
block is connected to its succeeding blocks. As shown in Figure 3.3, the real/generated
images are passed through two pathways, (1) an adversarial pathway to classify the input
images as real/fake and (2) a count regression pathway to predict the object class and their
multiplicity in the input image. The weight sharing between the two sub-networks regularizes
the discriminator and reduces memory consumption during training.
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3.3.3 Adversarial Training with Count Loss

The generator G, uses both the latent noise distribution z ∼ N (0,1) and a multiple-class
count vector c = [c1,c2, . . . ,cn] that represents n different object classes and their respective
multiplicity ci, i =, . . . ,n, to generate fake images xfake = G(z,c). The discriminator D aims
to distinguish between these fake and real images xreal. We denote the data distribution as
x ∼ pdata(x). The additional count sub-network C is trained to predict the per-class object
count, yfake for fake images, and yreal for real images. The adversarial objective of the network
is expressed as

LGAN(G,D) = Ex∼pdata(x)[logD(x)] +Ez∼pz(z)[log(1−D(G(z|c)))]. (3.1)

The multiple-class count loss LMC2 is defined as the Euclidean distance between the predicted
count yreal = C(xreal) and true count c of the real images, and the distance between the
predicted count yfake = C(xfake) and the value of the count condition for the generated
images.

LMC2(C) = ||C(x)− c||2. (3.2)

The count loss thus enforces the generator to generate images with the desired number of
object instances.

Hence, the total loss of the network is a combination of adversarial loss to match the
distribution of real images with fake images and a count loss to enforce the network to
generate images based on the specified input count. The overall objective function of our
method is,

LMC2−GAN(G,D) = LGAN(G,D)+λLMC2(C), (3.3)

where λ steers the importance of the count objective.

3.4 Experiments and Results

3.4.1 Dataset Used

In this section, we introduce the dataset used for empirical evaluation. We consider the
synthetic dataset CLEVR [96], the real dataset MNIST [36] and SVHN [137], and the
proposed CityCount dataset. Since multiple class count conditioning of objects is not
available for CLEVR, MNIST, and SVHN, we generated a count-conditioned version of
these datasets based on the count of objects of interest in both.
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Multi-MNIST. MNIST [36] dataset consists of images of handwritten digits. We consider
two variants of the MNIST dataset for our experiments, where the images are conditioned
based on the number of instances of each digit in the image.

• MNIST-2 with ten digits ranging from 0 to 9 and at most two instances of each digit
per image.

• MNIST-3 with ten digits ranging from 0 to 9 and, at most, three instances of each digit
per image.

The images were generated by uniformly sampling digits from the MNIST dataset and
placing them in non-overlapping positions on black backgrounds. We used 1000 images for
each digit combination during training. The count information is provided to the model as a
vector with ten entries comprising the desired number of instances of each digit in the image.

Multi-CLEVR. The well-known CLEVR dataset comprises images of different 3D shapes,
cylinders, cubes, and spheres of varying colors. For our experiments, we generate a total
of 2000 images for each count combination based on the implementation of the CLEVR
dataset [96]. We consider two variants of CLEVR images,

• CLEVR-2 with two shapes, cylinder and sphere, and at most six instances of each
shape per image. The count label is a vector of 2 entries corresponding to the number
of cylinders and spheres in the input image.

• CLEVR-3 with three shapes, cylinder, sphere, and cube, and at most three instances
of each shape per image. The count label is a vector of 3 entries corresponding to the
number of cylinders, spheres, and cubes in the input image.

For our first line of experiments, we consider a simple setting (CLEVR-Simple), where we
restrict shapes of the same class to be of the same color (red cylinders, green spheres, and
blue cubes). We extend the experimental setting for further evaluation and consider CLEVR
shapes with varying colors.

SVHN-2. We consider real-world images from noisy training data on the street view house
numbers (SVHN) dataset [137]. The dataset includes house numbers cropped from street-
view images. For our experiments, we considered the original images resized to 64× 64
pixels and a total of 1500 samples for each count combination. We restrict ourselves to
SVHN images with at most two instances of each digit class (SVHN-2), because images
with three or more digits are too scarce for training. The count label is a vector of 10 entries
prescribing the multiplicity of each digit in the image.
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CityCount To evaluate our method on complex real-world scenarios, we introduce a count-
based dataset derived from Cityscapes images, CityCount. Cityscapes [32] dataset was
introduced to enhance the semantic understanding of urban scenes. The dataset includes
5000 high quality pixel-level annotated images and 20000 coarsely annotated images of size
1024×2048. The dataset includes 30 different classes and features such as dense semantic
segmentation and instance segmentation for vehicle and people classes.

The images in CityCount are collected by cropping 256×256 size patches with a defined
number of cars and persons from Cityscapes. The dataset contains images with at most
five instances from each of these classes and roughly 1000 images per object class count
combination. To equip our dataset with additional count information, we determine the
number of objects per class in each image from the 2D bounding box information of cars
and persons from the Cityscapes-3D [56] and the CityPerson dataset [206]. To allow for
more diverse appearances of persons in the training set, classes including pedestrian, sitting
person, and rider in the Cityscapes images are considered as positive samples when counting
the number of persons in the images. This further increases the complexity of the CityCount
dataset in terms of spatial arrangement since the network has to infer a reasonable placement
of persons, like pedestrians on the sidewalk and riders on the road. Since such additional
spatial constraints are not explicitly specified, our dataset is more interesting and challenging
for evaluating the proposed approach. Most importantly, the bounding boxes used to generate
the training data were not provided to the model during training. The count label is a vector
of 2 entries corresponding to the number of cars and persons in the image.

3.4.2 Implementation Details

MC2-SimpleGAN. The models are trained with images of size 64×64 for Multi-MNIST
and SVHN and 128× 128 for CLEVR images. All images were scaled at the input with
pixel values ranging from −1 to 1. Adam optimizer [105] is used with momentum weights,
β1 = 0.9 and β2 = 0.999 respectively. For the generator and discriminator learning rate is
fixed at 1e−4. The network is trained for 200 epochs with batch size 128 and count loss
co-efficient λ as 0.7.

MC2-StyleGAN2. We extended the official StyleGAN2 TensorFlow implementation [102]
corresponding to configuration-e for our count-based image generation for CLEVR and
SVHN images. Since the number of training images for CityCount is limited, adaptive
discriminator augmentation [100] was applied while training the networks for CityCount
images. The mapping network is concatenated with the multiple-class count vector at each
layer. We also introduce dense-like connections in place of residual connections in the
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combinations. For the count value, 0 for all digits (also unseen during training), the model
can generate images without any digits.

For evaluating the MC2-StyleGAN2 model, we consider Multi-CLEVR, SVHN-2, and
CityCount dataset. For Multi-CLEVR images, we start by visually analyzing the generated
images for CLEVR-2(simple) and CLEVR-3(simple) as shown in Figure 3.5a. Further, we
extend the analysis to complex CLEVR images with varying colors for CLEVR shapes as
shown in Figure 3.5b and 3.5c. It can be seen that the model captures the correlation of the
count information even in a more complex setting, where the shape colors do not provide
additional information. We also observe that the model learned to place objects spatially in
reasonable locations, although no object bounding box annotations are provided.

The real and generated SVHN-2 images are shown in Figure 3.5d. The input count vector
is of length 10, where each index corresponds to the number of digits from 0 to 9. Although
the dataset is noisy and more complex when compared to the CLEVR images, the generated
images exhibit higher quality and diversity.

Samples of real and generated CityCount images with their respective count vector are
shown in Figure 3.6. Each count vector of size two represents the number of cars and persons.
For ease of visualization, boxes are drawn around objects of interest. The model generates
images with diverse backgrounds and well-defined person and car classes placed spatially at
reasonable locations. As shown in the generated sample of 1 car and 2 people combination
in Figure 3.6, the person placed on the road can be seen along with a bike while the second
person is standing on the sidewalk. The model learns to distinguish between the pedestrian
and the rider class without explicitly defining them in the training set.

3.4.4 Quantitative Analysis

We consider two different metrics to evaluate the performance of the model quantitatively.

• Average count accuracy (Acc) - Evaluates the ability of the model to predict the
multiple-class count.

• Fréchet Inception Distance (FID) - Evaluates the quality of the images generated based
on the learned count. For more details, please refer to Section 2.2.5.

For count prediction analysis, we consider the performance of the count sub-network in
the model. This is defined as the accuracy of the predicted number of objects calculated
by rounding the predictions. The quantitative results of our method (MC2-StyleGAN2)
compared to the state-of-the-art conditional GANs such as SNGAN [134], ContraGAN [97]
and Conditonal StyleGAN2 [102] are given in Table 3.1. We consistently observed superior
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Method CLEVR-2 CLEVR-3 SVHN-2 CityCount ∗

Acc(↑) FID(↓) Acc(↑) FID(↓) Acc(↑) FID(↓) Acc(↑) FID(↓)

SNGAN 0.65 40.14 0.61 43.68 0.72 47.34 0.55 55.85
ContraGAN 0.71 25.68 0.68 27.44 0.78 21.12 0.59 49.62

CStyleGAN2 0.70 29.30 0.65 31.95 0.80 19.42 0.61 13.89
Ours 0.96 7.52 0.92 8.94 0.93 10.90 0.78 8.33

Table 3.1 Quantitative analysis across datasets. ∗For CityCount we used StyleGAN2 with
adaptive discriminator augmentation. [100]

performance in terms of both metrics for our proposed model compared to the baselines
across all datasets.

Detailed count prediction analysis. In this section, we analyze the count prediction
distribution of individual object classes in CLEVR, SVHN, and CityCount images. The
multiple count prediction distribution of the cylinder and sphere class of CLEVR-2 and that
of the cylinder, sphere, and cube class of CLEVR-3 are shown in Figure 3.7a and 3.7b
respectively. For CLEVR-3, the observed count prediction accuracy is comparatively lower
than for CLEVR-2, potentially for two reasons, (1) the image distribution is highly complex
due to the high number of objects in the image (maximum of nine objects per image) and (2)
objects in the images are often overlapping significantly.

Similarly, the multiple count distribution for the ten-digit classes in SVHN-2 is visualized
in Figure 3.7c. We observed an average count prediction accuracy of 93% for SVHN-2
images, with an individual accuracy of 91% for count one and 90% for count two, respectively.
We frequently noticed incorrect labels in the original SVHN dataset, which might affect the
count label and prediction accuracy.

For CityCount images, the predictive performance of the count sub-network for the car
and person classes is shown in Figure 3.7d. Here, we compare the predicted count values
on the generated samples with the true count provided to the generator network during test
time. Since in many samples of the training set, persons are only partially visible and often
out of focus or low resolution, we observed a comparatively poor count performance for the
person class. For higher counts, 4 or 5, the relatively low performance is presumably due to
the lower number of training samples and severe occlusions for the corresponding count.

Interpolation and Extrapolation. We further examine the ability of the model to interpo-
late between count combinations and to extrapolate to unseen count combinations from one
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Method
Dataset

CLEVR-2 CLEVR-3 CityCount

Acc(↑) FID(↓) Acc(↑) FID(↓) Acc(↑) FID(↓)

w/o Count loss 0.78 18.67 0.80 30.34 0.51 20.24
w/o Discriminator weight sharing 0.91 33.42 0.84 31.03 0.69 15.78

w/o Label mapping 0.90 11.01 0.85 11.32 0.59 8.84
Residual generator 0.94 8.28 0.93 11.94 0.65 11.72

Output skip generator 0.94 8.62 0.92 8.98 0.72 10.71
MC2-StyleGAN2(ours) 0.95 7.98 0.92 8.94 0.78 8.33

Table 3.2 Ablation study across datasets based on the Average count accuracy (Acc) and
Fréchet Inception Distance (FID). The table shows the validity of the proposed architecture
choices in our method.

3.4.5 Ablation Study

We perform an ablation study on the synthetic dataset CLEVR and the real dataset CityCount
to verify the importance of the additional count loss, generator design, and weight sharing in
the discriminator and conditioning methods.

Count loss. We train our model without the count regression network and condition the gen-
erator and discriminator with the count label. The rest of our architecture is unchanged. The
observed values (w/o count loss in Table 3.2) show that removing the count loss substantially
degrades the performance both in terms of count prediction and image quality.

Generator architecture. We consider two different generator configurations introduced
in StyleGAN2. One that uses output skip connections and a second one that uses residual
connections. As shown in Table 3.2 (residual and output skip generator), our proposed
dense-like connections achieve overall good performance in terms of both count prediction
and image quality.

Weight sharing in the Discriminator. We compute the evaluation metrics for our model
without weight sharing between the count sub-network and the discriminator. The observed
values in Table 3 (w/o discriminator weight sharing) show that the model failed to generate
the object count correctly. This confirms the positive impact of weight sharing to regularize
the count information and inform the discriminator.

Count conditioning in Generator. Lastly, we consider the setting where the count vector
is not concatenated to every layer in the mapping network in the generator. Table 3 (w/o label
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Method
Dataset

CLEVR-2 CLEVR-3 SVHN-2

Acc(↑) FID(↓) Acc(↑) FID(↓) Acc(↑) FID(↓)

CGAN 0.31 119.23 0.39 186.13 0.39 170.80
InfoGAN 0.37 101.45 0.40 135.36 0.43 151.98
ACGAN 0.38 99.88 0.40 132.23 0.41 150.56

TACGAN 0.40 92.04 0.42 120.11 0.45 138.29
CGAN(ourG) 0.38 88.79 0.45 152.56 0.55 90.34

InfoGAN (ourG) 0.40 75.23 0.44 112.34 0.55 82.13
ACGAN(ourG) 0.41 55.24 0.42 91.02 0.58 70.28

TACGAN(ourG) 0.44 49.01 0.47 87.64 0.61 65.77
MC2-SimpleGAN(ours) 0.90 47.95 0.89 85.48 0.92 57.52

MC2-StyleGAN2(ours) 0.95 7.98 0.92 8.94 0.93 10.90

Table 3.3 Comparison with other methods across datasets based on the Average count
accuracy (Acc) and Fréchet Inception Distance (FID). Underlined values denotes the pro-
posed method performance on simple (MC2-SimpleGAN) and bold values with complex
architecture (MC2-StyleGAN2).

mapping) shows that the predictive performance is degraded in this setting. This confirms
the benefit of using a count vector-based mapping network to propagate the multiple-class
count effectively during training.

3.4.6 Comparison with other Methods

We compare the quantitative performance of other conditional GAN variants, CGAN [133],
InfoGAN [27], ACGAN [139] and TACGAN [66], for multiple-class counting on CLEVR
and SVHN images. To have a fair comparison of our method with these conditional GAN
variants, we use a less evolved network architecture in our proposed model introduced in
section MC2SimpleGAN.

The initial results (rows 1 to 3 in Table 3.3) indicate that the considered conditional GAN
models did not perform well both in terms of image quality and FID. We even observed
mode collapse for CGAN. Hence, we replaced the generator architecture of these models
with a Densenet-based generator to improve the performance (rows 4 to 6 in Table 3.3).
Although we could greatly improve the initial performance of these models (which shows
the positive impact of the proposed Densenet-based generator), MC2-SimpleGAN clearly
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Training data
Acc(↑)

CLEVR CityCount CityCar

Real only 0.81 0.68 0.77
Real + Aug 0.81 0.71 0.78

Real + Syn(ours) 0.86 0.71 0.80

Table 3.4 Average count accuracy across datasets for different training data setting.
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Fig. 3.9 Count prediction network for CLEVR images. The network predicts the number of
cylinders, spheres, and cubes in the input RGB images as a count vector

outperforms other methods in the envisioned setting. Further, the quality of the generated
images is improved with the proposed MC2-StyleGAN2.

3.4.7 Training Count Prediction Network using Synthetic Images

We further demonstrate the usability of the images generated by MC2-StyleGAN2 for training
a count prediction network. In particular, we use a multiple-class extension of regression-
based architecture similar to the discriminator of MC2-SimpleGAN. A convolution-based
network architecture shown in Figure 3.9 is used for the prediction of multiple-class count
prediction of images. The count regression network is similar to the one used in the count
sub-network of the MC2-SimpleGAN. The network includes four convolution layers followed
by LeakyRelu activation and dropout layers, with the final block as a fully connected layer
that outputs the multiple-class count vector of the corresponding input image.

We design two experiments in this setting using CLEVR and CityCount images. Since
the quality of person instances in CityCount images is comparatively low, we also consider
a subset of CityCount called CityCar, comprising solely of car class. The average count
accuracy of the model is considered the evaluation metric.
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Training data
Acc(↑)

CLEVR CityCount CityCar

Real only 0.81 0.68 0.75
Syn(ours) only 0.40 0.30 0.39
25% Real only 0.65 0.41 0.59

25% Real + 75% Syn(ours) 0.67 0.45 0.62
50% Real only 0.76 0.56 0.69

50% Real + 50% Syn(ours) 0.81 0.60 0.75
75% Real only 0.77 0.65 0.74

75% Real + 25% Syn(ours) 0.83 0.68 0.76

Table 3.5 Average count accuracy across datasets when count prediction network trained
with real and generated images (Syn) at various proportions.

In the first experiment, we evaluate whether the generated images can improve the count
performance when combined with real images during training. For a baseline comparison,
the count prediction network is initially trained with real images alone (first row in Table 3.4).
The network is then trained with a combination of real and augmented real images (second
row in Table 3.4). The observed count accuracy is then compared with the performance
of the network when trained with real and generated images (third row in Table 3.4). For
a fair comparison, we consider an equal number of augmented and synthetic images. As
shown in Table 3.4 for CLEVR and CityCar images, the combination of real and synthetic
images (Real+Syn) improved the baseline setting (Real only) and the combination of real
and augmented images (Real+Aug). For CityCount, similar count performance is observed
for both Real+Aug and Real+Syn.

In the second experiment, we investigate the potential of the generated images to replace
the real images during training without compromising the count accuracy performance. We
consider the setting where the network is trained with a combination of real and synthetic
images at various ratios. Initially, the network is trained with only real images and then with
only synthetic images. We gradually replace the real images with synthetic images at various
proportions and evaluate the count performance for each setting as shown in Table 3.5. For
the baseline comparison of each setting, we consider the count accuracy of the network when
trained with the corresponding ratio of the real images only (x% Real only in Table 3.5). As
seen in Table 3.5, 50% of real images could be replaced by the generated images without
compromising the overall count performance for both CLEVR and CityCar images. The
synthetic images could also improve the overall count performance of the network while
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replacing 25% of real images for both CLEVR and CityCar images. For CityCount images,
25% of real images could be replaced by the generated images without compromising the
overall count performance.

3.5 Conclusion

In this chapter, we investigated the potential of GANs to guide the image generation process
based on the number of objects of different classes in the images. While the task of counting
is in general very challenging for deep learning approaches, our proposed method can
generate images based on the multiple-class count vector in the synthetic and real-world
datasets. Our empirical evaluation shows that the model is able to interpolate and extrapolate
to unseen counts for specific classes. Even without providing additional information, such
as the locations of objects in the image, the network infers a reasonable spatial layout
and realization of the objects from the training data distribution solely using the count
information.
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Chapter 4

Regularized Deterministic Autoencoders

Variational Autoencoders (VAEs) are powerful probabilistic models to learn representations
of complex data distributions. One important limitation of VAEs is the strong prior assump-
tion that latent representations learned by the model follow a simple uni-modal Gaussian
distribution. Further, the variational training procedure poses considerable practical chal-
lenges. Recently proposed regularized autoencoders offer a deterministic autoencoding
framework that simplifies the original VAE objective and is significantly easier to train. Since
these models only provide weak control over the learned latent distribution, they require an
ex-post density estimation step to generate samples comparable to VAEs. In this chapter,
we propose a simple and end-to-end trainable deterministic autoencoding framework that
efficiently shapes the latent space of the model during training and utilizes the capacity of
expressive multi-modal latent distributions. The proposed training procedure provides direct
evidence if the latent distribution adequately captures complex aspects of the encoded data.
We show in experiments the expressiveness and sample quality of our model in various
challenging continuous and discrete domains. This work is published in the Conference on
Neural Information Processing Systems (NeurIPS), 2021 [161].

4.1 Introduction

Variational autoencoders (VAEs) constitute one of the popular generative learning frameworks
widely used for applications such as image understanding and generation, sentence modeling,
and optimizing discrete data and graph-based structures [40, 95, 132, 145, 205]. The VAE
framework elegantly combines autoencoders with variational inference [107]. The encoder
of the model maps the input data into a lower-dimensional latent space according to a given
inference model. The decoder maps the latent space back to the original input space. Both
are jointly optimized by maximizing a lower bound on the model evidence, regularizing the

51



Regularized Deterministic Autoencoders

latent space towards a fixed prior distribution, usually a uni-modal Gaussian. By sampling
from the latent space prior, we can efficiently utilize the decoder network to generate new
samples from the training distribution. Due to the variational formulation, optimizing the
VAE training objective poses significant practical challenges. Further, the over-simplistic
prior assumption often leads to an unsatisfying trade-off between the quality of reconstructed
samples and the prior regularization [14]. Recent work has shown that choosing more flexible
priors helps to improve the generative performance of VAEs [179].

Since the initial introduction of VAEs, various novel training objectives have been
proposed. One line of work focuses on different regularization techniques derived from
alternative probabilistic metrics to shape the latent space of the model during training, e.g.,
using the Wasserstein distance [178]. In contrast to the KL divergence, the Wasserstein
distance measure induces a metric on probability distributions. Practically, this facilitates
smoother convergence even for initially non-overlapping distributions. Further, it overcomes
the over-regularization effect in VAEs. To be precise, it prevents the undesired behavior of
multiple data points from being mapped to the same latent representation by the encoder.
Since closed-form solutions for metrics like the Wasserstein distance can only be derived
for very few prior distributions, these approaches rely on numerical approximations during
training.

Recent work by Ghosh et al. [60] reinterprets deterministic autoencoders as variational
models, even when trained with a deterministic loss. During training, this approach maxi-
mizes the negative log-marginal likelihood of the latent samples under a Gaussian normal
distribution and minimizes the reconstruction loss. Experimental results show that this regu-
larization alone does not suffice to generate high-quality samples using the Gaussian prior.
To overcome this, Gosh et al. propose to use a multi-modal Gaussian mixture model (GMM)
to fit arbitrary, learned latent spaces. While this approach leads to good sampling efficiency
and generalization if the post-hoc fit is reasonable, sampling quality can suffer significantly
if the learned latent space can not be modeled well by a GMM.

In this chapter, we propose a deterministic training scheme for autoencoders that applies
to expressive priors and overcomes the necessity of a post-hoc density estimation step for
deterministic training. To be precise, we derive a deterministic regularization loss from
the distance metric used in the non-parametric Kolmogorov-Smirnov (KS) test for equality
of probability distributions. The resulting training objective can be derived in closed form
for a class of expressive multi-modal prior distributions and provides a strong signal to
efficiently shape the model’s latent space during training. We chose our experiments to
evaluate the proposed approach regarding sampling quality and expressiveness. In the first
line of experiments, we compare the quality of newly generated and reconstructed samples
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from our model with those from various VAE variants. In the second line, we investigate
our method’s capability to model discrete and complex structured inputs such as arithmetic
expressions and molecules. VAEs have recently been proposed in these domains as a tool for
dimensionality reduction in optimization. Applying our regularization scheme effectively
utilizes multi-modal prior distributions in this context and significantly improves optimization
performance.

4.2 Related Work

Since our proposed regularization objective structures the latent space to a Gaussian mixture
model, we also compare it to prior work on deep clustering. Next, we discuss VAEs in the
context of black-box optimization approaches such as Bayesian Optimization (BO).

Deep Clustering Deep Clustering approaches benefit from well-structured latent spaces.
Thus, several methods employ Gaussian mixture VAEs for data encoding [39, 144] or
establish a GMM-like latent space structure through k-means models in the latent space. For
example, Xie et al. [200] train an autoencoder and apply a KL-divergence loss for better
k-means clustering, while Ghasedi et al. [43] combine the autoencoder reconstruction loss
with the relative cluster entropy. Similar approaches have been proposed in the literature
[43, 72, 77, 92, 176, 202]. Caron et al. [130] iteratively group points using k-means during
optimization.

Structural Variational Autoencoders and Optimization High-dimensional optimization
problems in structured discrete input domains are ubiquitous. VAEs have been used in this
context to learn low-dimensional, continuous representations of high-dimensional, structured
data like molecules or arithmetic expressions. Recent work proposes to use such representa-
tions to perform efficient optimization by running BO in the latent space of VAEs [114, 122].
In this setting, prior knowledge of the structure of the latent space is crucial to allow for
an efficient exploration and generation of valid samples. Yet, as discussed above, VAEs
can suffer from simplistic prior assumptions. Thus, sampling from the latent space of such
models can result in invalid samples, reducing the sampling efficiency of BO [73]. Kusner et
al. [114] overcome this issue if data follows a specific grammar. Lu et al. [122] propose a
VAE that directly works on parse trees from context-free grammars to represent discrete data.
Yet, those only work with unimodal priors, limiting generalization capabilities. Our approach
can be readily used to extend these models to encode structural data better and improve BO
performance.
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4.3 Regularization in Deterministic Autoencoders

We introduce a novel loss function to regularize the latent representation learned by determin-
istic autoencoders towards a given prior distribution. The definition of our loss builds on the
non-parametric statistical Kolmogorov-Smirnov (KS) test for equality of one-dimensional
probability distributions. We propose a multivariate variant of the distance measure used in
the KS test that allows for gradient-based optimization and can easily be applied to expressive
multi-modal prior distributions. For ease of exposition, we introduce our regularization loss
for unimodal Gaussian priors in section 4.3.1 and extend the formulation to expressive
multi-modal Gaussian mixture models in Section 4.3.2. Finally, in Section 4.3.3, we provide
an explicit way to estimate the weighting parameters of our loss.

4.3.1 Uni-Modal Latent Regularization

The KS test can be used to determine whether a collection of N, one-dimensional samples
follow a given reference distribution. It compares the cumulative distribution function
(CDF) of the reference distribution with the empirical CDF F̄(N) of the samples. It is often
applied to one-dimensional Gaussian distributions, which have important analytical properties.
For spherical Gaussians, the one-dimensional KS test quantifies the distance between the
empirical distribution function of the data and the cumulative distribution function

Φ(z) =
1

σ
√

2π

∫ x

−∞

exp
−(t −µ)2

2σ2 dt (4.1)

of the univariate Gaussian Z ∼N (µ,σ) as supz∈R |F̄(N)(z)−Φ(z)|. Extending this KS dis-
tance to a higher dimension is particularly challenging since it requires matching joint CDFs
[52, 69, 143]. Especially in higher dimensions, this becomes infeasible [121]. The contin-
uously ranked probability score [63] shares the same theoretical basis as the KS distance.
However, it tests whether two sets of samples are consistent with each other, i.e., they could
originate from the same distribution and is thus not suitable to regularize a collection of latent
samples towards a given prior distribution. Alternative multi-variate normality tests, like the
Mardia test [128] and the BEHP test [10] suffer from slow convergence rates.

To derive a regularization loss from the KS distance, we propose to overcome this issue
by separately considering the marginal CDFs and correlations in the prior distribution. Given
d-dimensional latent samples z1, . . . ,zN , the empirical marginal CDF in dimension j is given
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by

F̄(N)
j (z) =

1
n

N

∑
n=1

1[zn] j≤z. (4.2)

We aim to regularize the latent space of our models by comparing the empirical marginal
CDFs with the one-dimensional CDFs of the marginal distributions of the prior. To strengthen
the training signal of our regularization scheme and make it suitable for gradient-based
optimization, we replace the supremum in the original KS distance with a smoother MSE
loss that compares the distances between those functions at the latent representations. For a
uni-modal Gaussian prior with mean µ and covariance matrix Σ, this results in

LKS(z1,...,N) =
1
d

d

∑
j=1

MSE
(

F̄(N)
j (z j),Φ(z̄ j)

)
, z̄ j =

z j −µ j

[Σ] j, j
. (4.3)

Here, F̄(N)
j (z j) denotes the vector with entries F̄(N)

j ([zi] j) and Φ(z̄ j) is defined accordingly.
This loss is minimized if the empirical marginal CDFs of the latent samples match those of
the uni-modal Gaussian prior. Using the above loss alone will not account for correlations
between different latent dimensions. In the case of a spherical Gaussian prior with an identity
covariance matrix, for example, samples with perfectly correlated Gaussian components
[zi] j = [zi′ ] j, will also minimize this objective, see Figure 4.1. To overcome this problem,
we equip our loss with an additional term that matches covariances between different latent
distributions explicitly. Following a similar reasoning to the MSE above, we define an
additional loss term,

LCV(z1,...,N) =
1
d2

d

∑
l, j=1

(
[Σ̄]l, j − [Σ]l, j

)2
, (4.4)

where Σ̄ is the empirical covariance matrix of the latent representations and Σ stands for the
prior covariance. Compared to the negative log marginal regularization proposed in [60],
our loss will enforce the latent representations to be spread across the entire support of the
Gaussian prior instead of being minimal when all latent collapse to the origin.

4.3.2 Multi-Modal Latent Regularization

One advantage of our approach is the applicability to more expressive, multi-modal prior
distributions. While the Gaussian distribution has important analytical properties, it suffers
from significant limitations when modeling real data sets. In contrast, a linear combination of
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Extending our proposed regularization scheme to multimodal GMMs is straightforward.
Our first loss term is defined as

LKS,K(z1,...,N) =
1
d

d

∑
j=1

MSE
(

F̄(N)
j (z j),FGMM, j(z j)

)
. (4.7)

Similarly, the second loss term is defined to be

LCV,K(z1,...,N) =
1
d2

d

∑
l, j=1

(
[Σ̄]l, j − [ΣGMM]l, j

)2
. (4.8)

The total loss of the model is a combination of the reconstruction loss and a regularization
loss that enforces the latent representations of the encoded data to match a predefined multi-
modal prior distribution. The reconstruction loss LREC(x′1,...,N) equals the mean squared
error between inputs xi and their reconstructions x′i. Given positive weights λKS and λCV,
our final loss is given by

L(x1,...,N) = λRECLREC(x′1,...,N)+λKSLKS,K(z1,...,N)+λCVLCV,K(z1,...,N). (4.9)

Formally, the weights λKS,λCV and λREC are hyperparameters of the model. Nevertheless,
we propose an explicit way to set λKS and λCV and a simple heuristic to estimate λREC to
avoid an extensive optimization of these weights.

4.3.3 Loss weight estimation

Balancing the two regularization losses appropriately poses a key challenge, as they vary
on different scales. For example, if modes of the GMM prior are far spread, the covariance
LCV,K loss will dominate the marginal CDF LKS,K loss by far. Nevertheless, given a target
GMM prior, the dimension of the latent space, and the batch size n used during training, there
is a concise way to fix those hyperparameters beforehand. To be precise, for m = 1, . . . ,M
samples z(m)

1 , . . . ,z(m)
N from the prior GMM, we propose to set

λ
−1
KS =

1
M
LKS

(
z(m)

1,...,N

)
, λ

−1
CV =

1
M
LCV

(
z(m)

1,...,N

)
. (4.10)

Formally, we can not overcome the necessity of tuning the weight of the reconstruction
loss, which significantly impacts the model’s performance. Nevertheless, a reasonable
approximation to it can be obtained by training an autoencoder model and using the inverse

57



Regularized Deterministic Autoencoders

of the best obtained loss for λREC. Using this scaling, all loss terms in our regularization loss
will ultimately converge to one of the targets prior is matched successfully.

4.4 Experiments and Results

With our experiments, we strive to investigate the potential of the proposed model compared
to other VAE variants in generating new samples, analyze the effect of the chosen prior in
clustering the latent space, and shape the latent space efficiently in highly structured domains
such as discrete spaces.

4.4.1 Analysis of the Proposed Latent Regularization

This section analyzes the unimodal and multimodal versions of the proposed regularization
loss across different distributions.

Unimodal Regularization loss. For a fixed target prior, we investigate the behavior of our
loss on samples from varying distributions. Throughout the unimodal analysis, we choose a
standard normal distribution as the target prior. In our experiments, we evaluate our loss on
the following settings,

• Samples from a Unimodal Gaussian distribution with standard deviation equal to the
prior, but different mean.

• Samples from a Unimodal Gaussian distribution with mean equal to the prior, but
varying standard deviation.

The observed values for the proposed weighted regularization loss are plotted in Figure 4.2
for dimensions 1 and 2. It can be observed that the loss function increases with increasing
distance between the means and standard deviations of the sampling distribution and the
target prior.

Multimodal Regularization loss. Throughout the multimodal analysis, we fix a Gaussian
mixture model as the target prior with two equally weighted spherical components centered
at one hot encoding vector of the respective dimensions. Similar to the above, we consider
two sets of experiments for the evaluation:

• Samples from a GMM with two spherical components centered at different means.
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4.4.2 Image Generation

We consider four dataset, MNIST [36], FASHIONMNIST [199], SVHN [137] and CELEBA [120]
to evaluate the proposed method in image generation experiments. The qualitative analysis
of the generated samples for MNIST, FASHIONMNIST, SVHN, and CELEBA images
are shown in Figure 4.5 and Figure 4.6. along with the reconstructed and interpolated
samples in the latent space of the trained model. To assess the quality of the generated
images, we evaluate the Fréchet Inception Distance (FID) [78] for each dataset, see Table 4.1.
For a baseline comparison, we evaluate the following models: vanilla variational autoen-
coder (VAE [107]), Gaussian mixture variational autoencoder (GMVAE) [39], Wasserstein
autoencoder (WAE) [178] with MMD loss, 2stage VAEs (2s-VAE) [34], constant variance-
VAE (CV-VAE) [60] and regularized autoencoders (RAEs) [60]. We consider the following
evaluation metrics: 1. Sampling FID (Samp.) - FID score of the generated random samples
(evaluated by generating random samples from the prior distribution of the respective models
and by fitting a Gaussian distribution to models trained without any prior assumptions),
2. reconstruction FID (Rec.) - measured by computing the FID between the test samples and
their corresponding reconstructions by the model and 3. interpolation FID (Inter.) - measured
by computing the FID between the interpolated samples in the latent space and test samples.
As pointed out by [60], fitting an ex-post density estimator on the learned embedding after
training VAEs further improves the generation quality. Hence, we also report the FID values
by fitting a GMM in the learned latent space of the trained model (GMM column in Table 4.1,
not evaluated for 2s-VAE as they perform ex-post density estimation using another VAE).

As shown in Table 4.1, our method achieves better FIDs (Samp.) on all datasets compared
to all baselines sampled by fitting a single Gaussian in the latent space. As argued above, we
also improved the generation quality by fitting a mixture of Gaussians in the latent space and
achieving better FIDs in MNIST, FASHION MNIST, and CELEBA images. In contrast, for
SVHN, WAEs achieved the best score. It is also important to note that the proposed method
performs comparably or even better without employing the ex-post density estimation. The
proposed method achieves better reconstruction quality than the other VAEs, except for
SVHN images, where RAEs perform better. The interpolation FID indicates the overall
structure of the learned latent space. The obtained FID values show that the proposed method
shapes the latent space better than the other approaches, except for the CELEBA images,
where RAEs perform slightly better than ours. We use the same architecture and experimental
settings in all the considered baseline evaluations for a fair comparison. Please refer to the
Appendix for more details on the experimental settings.
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Random samples Reconstructed Samples Interpolated Samples

(a) SVHN

(b) CELEBA

Fig. 4.6 Qualitative analysis on image generation across SVHN and CELEBA images.
Column 1 shows the randomly generated samples; column 2 shows the reconstructed samples
by the decoder on the test dataset after training (the first row in each section corresponds to
the ground truth and the second one its corresponding reconstruction), and column 3 shows
randomly interpolated samples in the learned latent space of our model.

64



4.4 Experiments and Results

Dataset MNIST FASHION MNIST

Samp. GMM Rec. Inter. Samp. GMM Rec. Inter.

VAE 27.27 20.52 21.59 21.05 50.50 36.22 33.33 44.12
GMVAE 21.35 − 20.64 20.21 40.23 − 38.79 38.54
WAE 20.20 12.90 14.07 16.19 39.66 28.01 24.84 35.01
CV-VAE 32.12 28.62 29.61 30.76 57.57 38.28 35.10 47.73
2sVAE 26.99 − 23.77 22.13 46.47 − 31.93 41.06
RAE 17.72 14.15 14.69 15.57 47.26 29.59 24.54 34.77

Ours 13.11 12.82 8.99 12.82 33.70 26.62 19.56 29.17

Dataset SVHN CELEBA

Samp. GMM Rec. Inter. Samp. GMM Rec. Inter.

VAE 61.01 58.23 59.13 50.29 68.01 61.63 52.55 58.39
GMVAE 49.74 − 48.65 47.15 65.35 − 64.22 64.92
WAE 58.08 34.87 29.62 27.16 58.91 49.17 41.14 47.08
CV-VAE 51.01 54.19 48.53 47.65 57.61 52.72 45.32 50.87
2sVAE 45.84 − 44.27 40.23 53.12 − 44.78 47.64
RAE 42.35 35.12 31.04 27.30 52.33 48.23 41.61 46.58

Ours 37.42 36.46 31.27 24.87 49.79 44.79 39.48 47.13

Table 4.1 Quantitative evaluation results across datasets. Samp. refers to the FID of the
generated samples from the prior distribution or by fitting a Gaussian to the learned models
trained without prior. GMM refers to the FID computed by fitting GMM on the learned model,
Rec. refers to the reconstruction FID on test samples, and Inter. refers to the Interpolation
FID.
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4.4.3 Unsupervised Image Clustering

We evaluate the potential of our method to naturally cluster the data points in the learned
latent space in two datasets, MNIST and FASHIONMNIST. The Gaussian mixture model
prior with k components in our method could be considered as k different classes/clusters to
which the encoder maps the data points. We train the model with latent space dimension 10
for both datasets and visualize the random samples generated from each Gaussian component
of our prior as shown in Figure 4.7. The figure shows that visually similar images fall into
the same cluster. For a quantitative analysis of the clustering performance, we evaluated the
unsupervised classification accuracy (similar to [91]) and compared the performance with
JointVAE [48] and CascadeVAE [91]. The observed values are reported in Table 4.2. We
observed a comparable performance to both baselines. We also observed that the distance
between the modes in the GMM prior is a deciding factor in better clustering performance.
Figure 4.8 shows the performance comparison of both image generation and clustering
performance with increasing distance between different modes in the GMM prior. The result
shows that with increasing distance, the clustering performance is improved, whereas the
quality of the generated images gets reduced. we also report the unsupervised clustering
performance in terms of two other metrics, 1. Normalized Mutual Information (NMI) and 2.
mean Average Precision (mAP). NMI measures the mutual information between the cluster
assignments and the ground truth labels and is normalized by the average of the entropy of
both target and observed labels. The calculated NMI and mAP values for the MNIST are
0.72 and 0.75, and for the FASHION MNIST, 0.60 and 0.61, respectively. Our experimental
analysis indicates that natural clustering happens with the multi-modal GMM prior.

Method Acc(↑)

MNIST FASHIONMNIST

JointVAE 78.33 51.51
CascadeVAE 84.19 57.72
Ours 85.53 56.24

Table 4.2 Unsupervised classification results on MNIST and FASHIONMNIST images.

66







4.4 Experiments and Results

Character VAE (CVAE) [73], Grammar constant variance VAE (GCVVAE) [60] and Gram-
mar based RAE (GRAE) [60] frameworks. The three best scores found by our method for
arithmetic expressions and the molecule experiments are reported in Table 4.3. Our model
performs comparatively better than the considered baselines and achieves the best first score
for both tasks. In addition to the optimization performance, it is also important to consider the
validity of the new samples generated by the models. A well-structured latent space should
yield valid samples following the defined grammar/rules of the used dataset. Our model
achieves better validation and average scores as shown in Table 4.4 except for GCVVAE,
which achieves a better average score in the arithmetic expression task. All reported values
are evaluated by averaging across 5 BO trials.

Method Expressions Molecules

1st(↓) 2nd(↓) 3rd(↓) 1st(↑) 2nd(↑) 3rd(↑)

GVAE 0.10 0.46 0.52 3.13 3.10 2.37
CVAE 0.45 0.48 0.61 2.75 0.82 0.63
GCVVAE 0.39 0.40 0.43 3.22 2.83 2.63
GRAE 0.39 0.39 0.43 3.74 3.52 3.14

Ours 0.03 0.40 0.41 4.15 3.84 3.12

Table 4.3 Best scores found by each method for arithmetic expression and molecule experi-
ments. Baseline values reported from [60].

Method Expressions Molecules

Frac. valid (↑) Avg. score (↓) Frac. valid (↑) Avg. score (↑)

GVAE 0.99 ± 0.01 3.26 ± 0.20 0.28 ± 0.04 -7.89 ± 1.90
CVAE 0.82 ± 0.07 4.74 ± 0.25 0.16 ± 0.04 -25.64 ± 6.35
GCVVAE 0.99 ± 0.01 2.85 ± 0.08 0.76 ± 0.06 -6.40 ± 0.80
GRAE 1.00 ± 0.00 3.22 ± 0.03 0.72 ± 0.09 -5.62 ± 0.71

Ours 1.00 ± 0.00 3.32 ± 0.04 0.72 ± 0.03 -5.08 ± 1.30

Table 4.4 Fraction of valid samples and their corresponding average scores for arithmetic
expression and molecule experiments for each method. Baseline values reported from [60].
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Objective Method Expressions Molecules

LL GVAE −1.320± 0.001 −1.739±0.004
CVAE −1.397±0.003 −1.812±0.004
Ours -1.309 ± 0.001 -1.689 ± 0.003

RMSE GVAE 0.884±0.002 1.404±0.006
CVAE 0.975±0.004 1.504±0.006
Ours 0.877 ± 0.001 1.400 ± 0.002

Table 4.5 Predictive performances of sparse Gaussian processes on different VAEs. Baseline
values are taken from [114].

Predictive Performance of the Latent Representation Similar to [114], we also evaluate
the predictive performance of the latent representations of the proposed model. The sparse
Gaussian process model used in the BO evaluates the predictive performance on a left out
10% of data (test). The input to the sparse GP model is the test data (formed by the latent
representation of the available sequences), and the output is the prediction of each task’s
associated properties/scores. The test log-likelihood and the average RMSE values obtained
for our model are compared to GVAE [114] and CVAE [73] in Table 4.5. Our model yields
better predictive performance on both tasks, showing that the proposed model learned better
latent features for better predictions than the other two baseline models.

4.4.5 Ablation Study

In this section, we perform an ablation study on the two loss terms in the proposed regular-
ization loss.

Quantitative analysis. We consider the MNIST dataset for quantitative evaluation of the
ablation study on the regularization loss terms in the proposed model. When the model is
trained without the KS distance loss for MNIST images, we observed an FID of 49.82, and
when trained without the covariance matching loss, we observed an FID of 38.45. These
values are significantly worse than the FID we achieve when training with the weighted
combination of both regularization losses i.e 13.11. These empirical evaluations show that
combining the two regularization terms facilitates a better prior-posterior match and hence
better image generation.
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GMM Prior Epoch 1 Epoch 30

(a) KS distance loss

(b) MSE covariance loss

(c) Weighted latent regularization loss

Fig. 4.9 Ablation study on loss functions - 2D pair plot visualization of the target prior and
posterior (test images) of the proposed model trained on a subset of MNIST images with
different terms of the loss functions.
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4.4.7 Network Architecture and Implementation Details

Image generation. The architectural details of the encoder and decoder used are shown in
Table 4.6. For a fair comparison, we used the same architecture for all the baseline methods.
Filter size of 4 is used for all layers in the network, with padding size 1 and stride 2. Please
refer to the code appendix for the implementation of the proposed model. For regularized
autoencoders (RAE) and other VAEs in the baseline comparison, we used the official GitHub
repository [60] to evaluate the results.

Dataset Encoder Decoder

Layer Output Layer Output

MNIST/ Input 1×32×32 Input 10×1
FASHION MNIST Conv2D, BN, ReLU 128×16×16 FC, Reshape 1024×2×2

Conv2D, BN, ReLU 256×8×8 Conv2DT, BN, ReLU 512×4×4
Conv2D, BN, ReLU 512×4×4 Conv2DT, BN, ReLU 256×8×8
Conv2D, BN, ReLU 1024×2×2 Conv2DT, BN, ReLU 128×16×16

Flatten, FC 10×1 Conv2DT, BN, ReLU 1×32×32

SVHN Input 3×32×32 Input 100×1
Conv2D, BN, ReLU 128×16×16 FC, Reshape 1024×2×2
Conv2D, BN, ReLU 256×8×8 Conv2DT, BN, ReLU 512×4×4
Conv2D, BN, ReLU 512×4×4 Conv2DT, BN, ReLU 256×8×8
Conv2D, BN, ReLU 1024×2×2 Conv2DT, BN, ReLU 128×16×16

Flatten, FC 100×1 Conv2DT, BN, ReLU 3×32×32

CELEBA Input 3×64×64 Input 64×1
Conv2D, BN, ReLU 128×32×32 FC, Reshape 1024×4×4
Conv2D, BN, ReLU 256×16×16 Conv2DT, BN, ReLU 512×8×8
Conv2D, BN, ReLU 512×8×8 Conv2DT, BN, ReLU 256×16×16
Conv2D, BN, ReLU 1024×4×4 Conv2DT, BN, ReLU 128×32×32

Flatten, FC 64×1 Conv2DT, BN, ReLU 3×64×64

Table 4.6 Encoder and Decoder network architecture - Image generation. Conv2D stands
for the convolution layer, BN corresponds to batch normalization, Conv2DT refers to the
transposed convolution layer, and FC stands for the fully connected layer.

We train our model with ADAM optimizer [105], using a batch size of 100, the number
of epochs 100, momentum (β1,β2) = (0.5, 0.999) with starting learning rate of 0.002 which
exponentially decays when the validation loss plateaus. MNIST and FASHION-MNIST’s
latent space dimensions are 10, 100 for SVHN, and 64 for CELEBA images. The image
reconstruction loss coefficient value of 0.005 is used for all experiments. The other two loss
coefficient values can be calculated as mentioned in section 3 of the main paper. For the prior
definition, we define the means of each Gaussian component as one hot encoding vector
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with a standard deviation of 1. A mixture of 10 components with equally weighted mixing
coefficients was used for MNIST, FASHION MNIST, and SVHN, and 20 for CELEBA
images. For evaluation metrics, Fréchet Inception Distance (FID) [78] is calculated for
10000 images and averaged across five different runs. The FIDs observed by sampling
from the prior along with error bars (for different runs) are as follows, MNIST: 13.11±0.9,
FASHION-MNIST: 33.70±0.8, SVHN: 37.42±1.1 and CELEBA: 49.79±1.2. And the
FIDs that we observe after fitting a GMM to the latent space of our model are as follows (for
different runs), MNIST: 12.82±0.6, FASHION-MNIST: 26.62±0.8, SVHN: 36.46±0.9
and CELEBA: 44.79± 1.0. All our experiments were conducted on a single GTX1080
GPU with 12/16 GB RAM. Since the cluster is part of a carbon-neutral framework, these
experiments did not contribute to climate change.

Modeling discrete data. We extend the official Tensorflow implementation of GRAMMAR-
VAE [114] with our novel regularizer to evaluate the experiments. The image reconstruction
loss coefficient used is 0.005 for both experiments. The other two-loss coefficient values can
be calculated as mentioned in section 4.3.3 of the leading paper. We used the same network
architecture and other hyper-parameters similar to the original implementation.

For the arithmetic expression fitting task, the model is trained with a dataset of 100,000
randomly generated univariate arithmetic expressions (functions of x) following a defined
grammar [114]. The objective of this experiment is to search in the latent space of the trained
model to find an expression that best matches a fixed target dataset. The target dataset is
defined by selecting 1000 input values of x, which is linearly spaced between
minus10 and 10. The corresponding x values are given to the true function 1/3+x+sin(x∗x)
to generate target observations. The target variable/score to optimize is defined as the log(1 +
MSE) between the predictions made by an expression and the true data.

For the molecule discovery task, the model is trained with a dataset of 250,000 SMILES
strings ZINC250K [73] following the context-free grammar as defined in [114]. The latent
space of the trained model is then traversed to find the molecule with the best drug-likeliness
score. The molecule’s design metric water octanol partition coefficient (logP) quantifies the
drug likeliness score.

4.5 Conclusion

Recent studies have illustrated the effectiveness of flexible priors in VAEs to learn more
meaningful latent representations. Following recent work highlighting the potential of
deterministic alternatives to the variational formulation in VAEs, we propose a simple
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deterministic autoencoding framework with more powerful regularizers to accommodate
expressive multi-modal priors. Our experimental evaluations show that the proposed training
objective yields comparable sampling quality to those of variational autoencoders and
achieves better performance in modeling complex discrete data structures.
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Chapter 5

Towards Robust Deterministic
Autoencoders

The susceptibility of Variational Autoencoders (VAEs) to adversarial attacks indicates the
necessity to evaluate the robustness of the learned representations along with the generation
performance. The vulnerability of VAEs has been attributed to the limitations associated
with their variational formulation. Deterministic autoencoders could overcome the practical
limitations associated with VAEs and offer a promising alternative for image generation
applications. In this chapter, we propose an adversarially robust deterministic autoencoder
with superior performance in both generation and robustness of the learned representations.
We introduce a regularization scheme to incorporate adversarially perturbed data points to
the training pipeline without increasing the computational complexity or compromising the
generation fidelity compared to the robust VAEs by leveraging a loss based on the two-point
Kolmogorov–Smirnov test between representations. We conduct extensive experimental
studies on popular image benchmark datasets to quantify the robustness of the proposed
approach based on the adversarial attacks targeted at VAEs. Our empirical findings show that
the proposed method achieves significant performance in both robustness and fidelity when
compared to the robust VAE models. This work is published at the Conference on Neural
Information Processing Systems (NeurIPS), 2022 [162].

5.1 Introduction

One of the significant advantages of Variational autoencoders (VAEs) is that they provide
semantically meaningful latent representations of high-dimensional complex input distribu-
tions, which can be further utilized for various downstream tasks [80, 74, 165, 59]. However,
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as discussed in Chapter 4, VAEs are often limited due to theoretical and practical limitations
such as over-regularization and prior-posterior mismatch resulting in trade-offs between
generation and reconstruction fidelity [179, 34, 60]. The regularized deterministic autoen-
coder introduced in the previous chapter offers promising alternatives to overcome these
limitations.

The semantically meaningful representations learned by VAEs can still be corrupted
by so-called adversarial attacks [174, 110, 115], where even small but specifically crafted
changes to the input can lead to very different reconstructions. This observation reveals a
lack of generalization within such models and is, therefore, a serious concern with respect to
many practical applications. While it is harder to attack VAEs when compared to classifier
networks [65] it is essential to analyze the robustness of VAEs along with their generative
performance, to validate whether the learned latent representations are meaningful. Hence,
there has been increasing research interest in the deep learning field toward training robust
models for classifiers and autoencoders, i.e., for robust representation learning. Borrowed
from the training of robust classification models [125, 196], the concept of adversarial
training has proven to be able to smoothen the VAE encoder and improve the robustness of
the learned representations [23]. Other attempts toward learning robust representation spaces
introduce either complex network architectures or expensive regularization mechanisms to
improve the robustness of VAEs [193, 11]. Further, previous works have pointed out that the
robustness of VAEs can be improved by generating disentangled latent representations or
by encouraging the smoothness or consistency of the encoding-decoding process [193, 22].
However, regularizing the VAE objective to enhance robustness often leads to poor generation
ability compared to its non-robust counterpart. Hence, we seek to focus on improving the
robustness of autoencoders while still maintaining the generation performance.

In this chapter, we introduce a simple and easy to train deterministic autoencoder that
exhibits superior performance in generation and adversarial robustness. We argue that the
deterministic approach enhances the robustness of VAEs when the latent codes are correctly
regularized. Consequently, we extend the training objective of the multi-modal deterministic
autoencoders introduced in the last chapter to incorporate adversarially perturbed input data
points in the latent space. We conduct extensive experimental analysis to evaluate the robust-
ness of the trained model on popular benchmarks such as MNIST, FASHIONMNIST, SVHN,
and CELEBA images. Our empirical evaluations show that the proposed model consistently
exhibits high adversarial robustness and significantly better generation performance than
state-of-the-art robust VAE baseline models. We also show that by improving the robustness
of the learned representations, a classifier trained on the learned latent space of the model
also exhibits better robustness.
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5.2 Related Work

The ability to defend against adversarial attacks is closely related to the sensitivity of the
learned latent representations to slight changes in the input data points. In this section, we
review adversaries for VAEs and the strategies proposed to defend against adversarial attacks.

Adversarial attacks on VAEs. Adversarial attacks targeted towards autoencoders were
first discussed in [65]. Common attacks on VAEs follow procedures similar to attacks against
classifiers, i.e., they aim to maximize the network’s loss. Usually, slight perturbations are
added to the input images to make the reconstructions similar to a specific target image
(targeted/supervised attack) or a completely different image (untargeted/unsupervised) [174,
110] such as to maximize the reconstruction loss. In [193] Willets et al. show that applying the
TC regularization introduced in TC-VAEs to hierarchical VAEs yields robust representations.
Although the resulting model improves adversarial robustness, the training complexity is
high compared to a VAE. Cemgil et al. [23] relate the robustness of VAEs to the smoothness
of the encoding process. Similarly to Madry et al. [125], they introduce a regularization
scheme based on a selection mechanism in the latent space to generate additional data points
to minimize the entropy regularized Wasserstein distance between latent representations.
Following the same direction, Cemgil et al. [22] argue that the lack of consistency between
the encoding-decoding process causes the susceptibility to adversarial attacks in VAES.
In contrast to the previous works, Camuto et al. [20] provide a theoretical insight into
the robustness of VAEs and introduce a novel criterion for robustness in VAEs. Barret et
al. [11] propose constraining the Lipschitz constants for both encoder and decoder to ensure
certifiable adversarial robustness of VAEs. Although these methods improve the adversarial
robustness of VAEs, they are often accompanied by complex network architectures and
expensive training procedures. In contrast, our approach adopts an inexpensive adversarial
training scheme for the latent space of deterministic autoencoders by an elegant extension to
the regularization proposed in the last chapter to ensure robustness and fidelity.

Adversarial training. Adversarial training is one of the most straightforward and intuitive
methods to train robust models. Many research works have been proposed in this direction
for classifier-based networks. The basic idea is to create adversarial examples and incorporate
them into the model’s training process. The robustness achieved by employing adversar-
ial training highly depends on the type and strength of the adversarial examples used in
training [196]. This section summarizes some well-known and widely used techniques for
training adversarially robust classifier models, which also inspired the adversarial training
scheme in the proposed method for VAEs.
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Followed by the discovery of adversarial examples [173], the Fast Gradient Sign Method
(FGSM) was introduced to generate adversarial samples by a single gradient step [68].
FGSM computes the gradient of the loss function with respect to the input sample and then
considers the sign of the gradient to generate an adversarial sample that maximizes the loss.
This method was further improved by a randomization step known as R+FGSM [182]. In
subsequent research, the Basic Iterative Method [113] improved FGSM performance by
applying several smaller FGSM steps, which were later improved by adding multiple random
restarts. In [44], Dong et al. incorporated momentum into the iterative FGSM to stabilize
the gradient update directions. The Projected Gradient Descent (PGD) [126] approach is
similar to the iterative FGSM method, except that the initialization step is set to a random
point in the Lp ball of interest around the sample and random restarts are performed. Since
the introduction of PGD, several adversarial training methods have been proposed to improve
robustness [203, 136, 181]. Despite the advances in this field, PGD-based adversarial training
is still considered an effective and reliable approach for developing robust models [169, 196].
However, running a strong PGD adversary during training is very expensive. In [196], Wong
et al. show that FGSM-based adversarial training combined with random initialization
achieves similar performance to PGD-based training. Wong et al. also identify several
failure modes that could lead to FGSM failure and present several tricks and techniques to
further improve the potential of FGSM-based training. Fast-FGSM allows for much cheaper
adversarial training while being as effective as its expensive PGD counterpart. We adapt
Fast-FGSM to the latent space of the proposed model to generate adversarial samples in
Section 5.3.2.

5.3 Adversarially Robust Deterministic Autoencoder

Deterministic Autoencoders offer a promising alternative to VAEs for learning meaningful
representations of complex input spaces with high fidelity. Motivated by this fact, we aim to
explore further the robustness of the learned representations of the resulting model. We are
particularly interested in the multimodal prior setting since a flexible and expressive Gaussian
mixture model (GMM) prior assumption facilitates encoding similar data points closer to-
gether while distancing dissimilar points far in the latent space - a behavior that has also been
found to be beneficial in learning robust classifier models [59]. Consequently, we propose
to adopt the regularization technique proposed in Chapter 4 to regularize the learned latent
representations of our model towards a predefined GMM prior. For a model to be inherently
robust, slight perturbations in the input space should not result in substantial variations in the
encoding space and the corresponding reconstructions. This could also be attributed to the
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to explore the underrepresented regions in the latent space. In the following, we extend
the losses in (4.7) and (4.4) to overcome this undesired behavior. This approach allows
for cheaper yet very effective adversarial training while preserving the reconstruction and
generation ability of the original model.

5.3.2 Adversarial Training Data Augmentation

To generate adversarial inputs, we adapt the fast gradient sign method [196] to the latent
space of the model. For a given ε > 0 and datapoint xn, the objective of the attack is to find
the corresponding adversary xadv

n that would introduce maximum distance in the encoding
space. That is, xadv

n = xn +δxn, where δxn is the solution to the optimization problem

argmax
δ

∥g(xn +δ )−g(xn)∥2 s.t. ∥δ∥∞ ≤ ε, (5.1)

where g is the encoder of the model. To prevent adversarial samples from exploring unex-
plored regions of the latent space, we assume that the joint distribution of latent encodings
(zn,zadv

n ) (here zn = g(xn) and zadv
n = g(xn+δxn)) of data points and their adversarial samples

(xn,xadv
n ) to follow the same multi-modal GMM prior (Figure 5.1). One possible straightfor-

ward extension of the approach would be to consider adversarial examples as a specific data
augmentation and regularize z1,...,N and zadv

1,...,N to the same GMM prior independently and
ignoring cross-covariance between z1,...,N and zadv

1,...,N (here the off-diagonal elements in the
covariance matrix of the GMM prior, that is the last matrix mentioned in equation (4.8), are
zero). The corresponding losses in eqs. (4.7) and (4.8) take the form

Laug
KS,k(z1,...,N ,zadv

1,...,N) =
1
2
LKS,k(z1,...,N)+

1
2
LKS,k(zadv

1,...,N) (5.2)

and

Laug
CV,k(z1,...,N ,zadv

1,...,N) =
1

4D2

2D

∑
ℓ,d=1

[
Σ̄ Σ̄

cross

Σ̄
cross

Σ̄
adv

]
ℓ,d

−

[
Σ

GMM 0
0 Σ

GMM

]
ℓ,d

2

, (5.3)

where Σ̄ and Σ̄
adv are the empirical covariance matrices of the latent representations z1,...,N

and their adversaries zadv
1,...,N respectively, and Σ̄cross is the empirical cross-covariance between

benign and adversarial samples. While such a regularization preserves the overall distribution
even under adversarial attacks, it can not control the distance of a specific adversarial sample
to its benign zn. In the worst case scenario, an adversarial example zadv

n can be mapped to a
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different Gaussian mixture component than zn and therefore cause maximum damage in the
reconstruction as shown in Figure 5.1(left).

To spread out the learned representations evenly, we inject Gaussian noise into the latent
vectors during training. Let xε,n be the output of the decoder at zn + εn, where εn ∼N (0, ID).
The reconstruction loss equals the mean squared error between inputs xn and their noisy
reconstructions xε,n.

5.3.3 A Two-Point KS-distance loss

To ensure that the adversarial examples remain in close proximity to the original mapping
in the learned latent space, we establish a strong coupling between the two distributions,
z1,...,N and zadv

1,...,N . Hence we propose to match the empirical CDFs of z1,...,N and zadv
1,...,N and

introduce a novel regularization based on the two-point KS-test [171]. By analogy to the
one-point KS-test that tests whether a sample is drawn from a given, continuous distribution,
the two-sample KS test determines whether two samples with empirical CDF are drawn
from the same distribution. To this end, the two-sample KS test evaluates the supremum of
the distance between the two CDFs. Here, we propose to minimize this distance computed
from the marginalized two-point KS-test to align the distributions of benign points and their
adversaries. The resulting loss is consistent with the previous regularization and establishes
the desired coupling between the representations efficiently. The first regularization loss of
the adversarially extended model with pairwise coupling takes the following form

Ladv
KS,k(z1,...,N ,zadv

1,...,N) =
2
3
Laug

KS,k(z1,...,N ,zadv
1,...,N)+

1
3D

D

∑
d=1

N
MSE
n=1

(
F̄d([zn]d), F̄adv

d ([zadv
n ]d)

)
(5.4)

where F̄d, F̄adv
d are the empirical CDFs of z and zadv respectively.

The correlations between the latent representations and their adversarial samples must be
considered separately. The degree or strength of the coupling is controlled by a coupling pa-
rameter | α |≤ 1, where α = 1 indicates the border condition where z = zadv. The covariance
loss of the extended model becomes,

Ladv
CV,k(z1,...,N ,zadv

1,...,N) =
1

4D2

2D

∑
ℓ,d=1

[
Σ̄ Σ̄

cross

Σ̄
cross

Σ̄
adv

]
ℓ,d

−

[
Σ

GMM
αΣ

GMM

αΣ
GMM

Σ
GMM

]
ℓ,d

2

.

(5.5)
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The total training objective of the model takes the following form,

L(x1,...,N ,xadv
1,...,N) = λRECLREC(xε

1,...,N)+λKSLadv
KS,k(z1,...,N ,zadv

1,...,N)+

λCVLadv
CV,k(z1,...,N ,zadv

1,...,N). (5.6)

The weights λREC,λKS and λCV can be calculated by taking the statistics of samples from
the GMM prior as described in Section 4.3.3.

Two-Point KS-distance loss for unimodal prior. In this section, we formulate the pro-
posed adversarial scheme for unimodal Gaussian Z ∼N (µ,Σ) with mean µ and covariance
matrix Σ. The first regularization loss of the adversarially extended model with pairwise
coupling takes the following form,

Ladv
KS,k(z1,...,N ,zadv

1,...,N)=
2
3
Laug

KS,k(z1,...,N ,zadv
1,...,N)+

1
3D

D

∑
d=1

N
MSE
n=1

(
F̄d([zn]d), F̄adv

d ([zadv
n ]d)

)
(5.7)

where F̄d, F̄adv
d are the empirical CDFs of z and zadv respectively.

The correlations between the latent representations and their adversarial samples must be
considered separately. The covariance loss of the extended model is defined as follows,

Ladv
CV,k(z1,...,N ,zadv

1,...,N) =
1

2D2

2D

∑
ℓ,d=1

[
Σ̄ Σ̄

cross

Σ̄
cross

Σ̄
adv

]
ℓ,d

−

[
Σ αΣ

αΣ Σ

]
ℓ,d

2

. (5.8)

where Σ̄ is the empirical covariance matrix of the latent representations, Σ stands for the prior
covariance and α ≤ 1 is the coupling parameter. Since we consider a Gaussian prior with
zero mean and identity covariance, Z ∼N (0, I), the covariance loss becomes,

Ladv
CV,k(z1,...,N ,zadv

1,...,N) =
1

2D2

2D

∑
ℓ,d=1

[
Σ̄ Σ̄

cross

Σ̄
cross

Σ̄
adv

]
ℓ,d

−

[
I αI

αI I

]
ℓ,d

2

. (5.9)

The total training objective of the model takes the following form,

L(x1,...,N ,xadv
1,...,N) = λRECLREC(xε

1,...,N)+λKSLadv
KS,k(z1,...,N ,zadv

1,...,N)+

λCVLadv
CV,k(z1,...,N ,zadv

1,...,N). (5.10)
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The weights λKS and λCV can be calculated by taking the statistics of samples from the
Gaussian prior as mentioned in Section 4.3.3.

5.4 Experiments and Results

We conduct an extensive experimental analysis to evaluate the robustness of the proposed
model. We consider the state-of-the-art latent space attacks targeted at VAEs [65, 110, 11] and
evaluate the robustness based on the quantitative metrics as described in Section 5.4.3. Since
the latent spaces of VAEs are often further utilized for various downstream applications, we
also consider the impact of such adversarial attacks on a classifier trained in the latent space
of the model. To evaluate the fidelity of the learned representations, we report the Fréchet
inception distance (FID) [78] of the generated images. Our model is compared with the fol-
lowing baseline models, Variational Autoencoder (VAE) [108], β -VAE [79], β -TCVAE [26],
LipschitzVAE [11], Smooth Encoders (SE) [23] and Autoencoding Variational Autoencoder
(AVAE) [22]. The experimental study is conducted on important image benchmark datasets
such as MNIST, FASHIONMNIST, SVHN, and CELEBA. For simplicity, we consider a fully
connected network architecture for experiments on MNIST and FASHIONMNIST images
and a convolutional architecture for experiments on SVHN and CELEBA images.

5.4.1 Adversarial Attacks on Variational Autoencoders

Adversarial attacks targeted at VAEs attempt to add small noise perturbations to the input
data points that fool the model into reconstructing the input image to a target adversarial
image or a completely different image. Following recent literature [11, 193], we consider
two types of adversarial attacks in our experiments.

Latent space attack. Latent space attacks or supervised attacks are considered the most
effective mode of attack on VAEs. Here, the attacker tries to add a noise perturbation δ to
a data point x, such that the latent representation zx+δ of the perturbed input x+δ is close
to the latent representation zt of a chosen target adversarial image, xt . The attack involves
solving the following optimization problem,

arg min
∥δ∥2≤λ

∥(zx+δ − zt)∥2. (5.11)

Maximum damage attack. Further, we consider maximum damage or output space attack.
In this setting, the adversary perturbs the input data point to cause maximum damage in the
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reconstruction of the decoder f of the model and optimizes the following objective,

arg max
∥δ∥2≤λ

∥ f (zx+δ )− f (zx)∥2. (5.12)

In both scenarios, the noise perturbation is explicitly constrained by some constant λ > 0 to
ensure a consistent comparison with the baseline models.

5.4.2 Qualitative Analysis

For qualitative analysis, we provide visual results for MNIST, FASHIONMNIST, SVHN, and
CELEBA images for both adversarial attacks - latent space and maximum damage attacks. For
latent space attacks, we compare the source image, clean reconstruction, adversarial image,
adversarial reconstruction, and target images across the dataset as shown in Figures 5.2
and 5.3. The adversarial reconstruction would strongly resemble the target image for a
successful attack. As observed from the Figure, it can be seen that the proposed method
remains more robust under latent space attacks when compared to the baseline models.
For maximum damage attacks, we compare the source images, the corresponding clean
reconstructions, adversarial images, and their corresponding reconstructions across the
dataset as shown in Figures 5.4 and 5.5. These attacks are more successful when the
adversarial reconstructions appear less similar to the clean reconstructions. As shown in
the figures, both attacks get more successful with an increase in noise perturbation. However,
for a given noise perturbation, the proposed method is more robust when compared to other
models.
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5.4.3 Quantitative Analysis

We consider three evaluation metrics to quantitatively estimate the robustness of the different
models for the above-mentioned adversarial attacks.

Attack loss. First, we evaluate the attack loss of the adversary. We report the achieved
value of the optimization objectives in (5.11) and (5.12). The observed attack losses for the
two forms of adversarial attacks are shown in Figure 5.6. Higher attack losses correspond
to less successful attacks and hence better robustness. Due to the different regularization
methods used in the baseline models, the inherent scale of the aggregated posterior changes
and hence the value of the attack objective in eqn (5.11). Hence, the values reported in
Figure 5.6 might not be directly comparable for latent space attacks.

Image similarity metric. Another strong indicator of the robustness of the considered
models is the similarity between the images before and after the attack. Similar to [115], we
use the perception-based similarity metric Multi-Scale Structural Similarity Index Measure
(MSSSIM ∈ [0,1] ) to compare the images. MS-SSIM is an advanced and more flexible
version of the Structural Similarity Index Measure (SSIM). The intuition behind the SSIM
metric is to utilize the structural information in the image to evaluate its quality. Since the
human visual system can easily extract structural information from visuals, a measure of the
same is considered an excellent approximation to access visual quality. Spatially adjacent
pixels in the images have solid interdependencies and provide information regarding the
structure of the objects in the images. SSIM is calculated between multiple patches on the
two images to be compared. Consider two image patches, x, and y, at the same spatial
location of the two images to be compared. Let µx, µy be the means, σx, σy be the variance of
the x and y patch and σxy be the covariance between x and y, then the luminance (l), contrast
(c) and structure (s) comparison are defined as follows,

l(x,y) =
2µxµyC1

µ2
x +µ2

y +C1
(5.13)

c(x,y) =
2σxσyC2

σ2
x +σ2

y +C2
(5.14)

s(x,y) =
σxy C3

σxσy +C3
(5.15)
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where C1,C2,C3 are small constants. The SSIM metric is defined as,

SSIM(x,y) = [l(x,y)]. [c(x,y)]. [s(x,y)] (5.16)

MSSSIM, as the name suggests, is computed at multiple scales of images to be compared.
The images to be compared are iteratively passed through multiple stages of a low-pass filter
and downsampling to compute the contrast and structure measure described in equation 5.14
and 5.15. The luminance is calculated only at the highest scale, M. The MSSSIM is then
calculated by combining the values at multiple scales as follows,

MSSSIM(x,y) = [l(x,y)]αM
M

∏
i=1

[c(x,y)]βi.[s(x,y)]γi (5.17)

where αM,β ,γ are parameters used to define the importance of each component.
To evaluate the robustness, we consider the similarity between the reference image xr and

the reconstructions x̃a of the adversarially perturbed variants xa. In the case of latent space
attacks, we consider the target image xr = xt as the reference images and compare with the
reconstruction x̃a = f (zx+δ ) of the perturbed latent representation. For a maximum damage
attack, we consider the original images xr = x as the reference images and compare them to
x̃a. Lower values of MSSSIM(xr, x̃a) indicate less similarity between the reference (target)
image and the adversarial reconstructions and correspond to less successful latent space
attacks. And the higher value of MSSSIM(x̃r, x̃a) corresponds to less successful maximum
damage attacks as they correspond to the high similarity between reference (original) and the
adversarial reconstructions. We report the observed values in Table 5.1. Finally, it is also
essential to evaluate how similar the adversarial images are to the original image. Ideally, a
successful attack implies that both adversarial and original images look similar in appearance
(MSSSIM ≈ 1). Hence we consider the MSSSIM between the original and adversarial
images in Table 5.1.

We also report the l2-distance as an alternative similarity metric to MSSSIM. To be
precise, we compute the l2-distance between the reference image xr and the reconstructions
x̃a of the adversarially perturbed variants xa. Similar to the previous setup, under latent
space attacks, we consider the target image xr = xt as the reference images and report the l2
distance with the reconstruction x̃a = f (zx+δ ) of the perturbed latent representation. For a
maximum damage attack, we consider the original images xr = x as the reference images and
the l2 distance with the reconstructions, x̃a. The observed values are given in Figure 5.7.
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MNIST Latent space attack Maximum damage attack FID(↓)

MSSSIM(xr, x̃a)(↓) MSSSIM(xr,xa)(↓) MSSSIM(x̃r, x̃a)(↑) MSSSIM(xr,xa)(↓)

1 3 5 1 3 5 1 3 5 1 3 5

VAE 0.55 0.78 0.89 0.99 0.94 0.87 0.64 0.27 0.08 0.98 0.93 0.86 43.21
β -VAE 0.52 0.73 0.86 0.99 0.92 0.86 0.65 0.36 0.21 0.98 0.93 0.87 42.72
β -TCVAE 0.53 0.69 0.83 0.98 0.92 0.86 0.73 0.38 0.28 0.98 0.93 0.87 45.61
LipschitzVAE 0.50 0.68 0.79 0.98 0.93 0.89 0.75 0.41 0.33 0.98 0.93 0.86 59.45
SE 0.49 0.62 0.68 0.98 0.92 0.86 0.90 0.60 0.54 0.98 0.93 0.86 47.34
AVAE 0.49 0.59 0.62 0.98 0.91 0.83 0.80 0.65 0.59 0.97 0.89 0.86 48.47

Ours 0.38 0.47 0.60 0.95 0.90 0.80 0.92 0.82 0.69 0.98 0.89 0.78 39.37

FASHIONMNIST Latent space attack Maximum damage attack FID(↓)

MSSSIM(xr, x̃a)(↓) MSSSIM(xr,xa)(↓) MSSSIM(x̃r, x̃a)(↑) MSSSIM(xr,xa)(↓)

1 3 5 1 3 5 1 3 5 1 3 5

VAE 0.61 0.65 0.71 0.98 0.91 0.82 0.58 0.29 0.13 0.99 0.94 0.87 70.22
β -VAE 0.59 0.61 0.68 0.98 0.92 0.82 0.66 0.32 0.15 0.99 0.94 0.85 73.82
β -TCVAE 0.55 0.58 0.64 0.98 0.92 0.82 0.69 0.35 0.27 0.99 0.94 0.87 73.94
LipschitzVAE 0.43 0.59 0.67 0.99 0.94 0.89 0.71 0.34 0.30 0.99 0.94 0.88 79.45
SE 0.24 0.43 0.53 0.98 0.92 0.81 0.90 0.62 0.43 0.99 0.94 0.86 72.29
AVAE 0.32 0.34 0.35 0.98 0.92 0.82 0.79 0.52 0.45 0.99 0.94 0.92 74.45

Ours 0.22 0.26 0.39 0.97 0.91 0.81 0.92 0.77 0.63 0.97 0.92 0.83 64.89

SVHN Latent space attack Maximum damage attack FID(↓)

MSSSIM(xr, x̃a)(↓) MSSSIM(xr,xa)(↓) MSSSIM(x̃r, x̃a)(↑) MSSSIM(xr,xa)(↓)

1 3 5 1 3 5 1 3 5 1 3 5

VAE 0.46 0.76 0.87 0.98 0.87 0.77 0.55 0.46 0.38 0.99 0.93 0.89 58.98
β -VAE 0.44 0.70 0.81 0.99 0.89 0.77 0.52 0.49 0.47 0.99 0.93 0.88 61.65
β -TCVAE 0.39 0.65 0.72 0.99 0.89 0.77 0.63 0.60 0.54 0.99 0.92 0.88 62.59
LipschitzVAE 0.35 0.62 0.71 0.99 0.89 0.76 0.66 0.65 0.55 0.99 0.93 0.88 65.58
SE 0.19 0.33 0.34 0.99 0.92 0.81 0.79 0.69 0.60 0.99 0.96 0.94 61.28

Ours 0.16 0.26 0.28 0.98 0.77 0.76 0.84 0.79 0.75 0.98 0.92 0.86 38.89

CELEBA Latent space attack Maximum damage attack FID(↓)

MSSSIM(xr, x̃a)(↓) MSSSIM(xr,xa)(↓) MSSSIM(x̃r, x̃a)(↑) MSSSIM(xr,xa)(↓)

1 3 5 1 3 5 1 3 5 1 3 5

VAE 0.59 0.60 0.66 0.99 0.99 0.97 0.64 0.58 0.55 0.99 0.98 0.98 69.48
β -VAE 0.55 0.58 0.64 0.99 0.99 0.97 0.68 0.60 0.59 0.99 0.98 0.97 75.65
β -TCVAE 0.54 0.51 0.61 0.99 0.99 0.97 0.76 0.71 0.64 0.98 0.99 0.96 75.11
LipschitzVAE 0.49 0.51 0.55 0.99 0.98 0.97 0.73 0.70 0.64 0.98 0.98 0.96 77.89
SE 0.27 0.31 0.34 0.99 0.98 0.96 0.97 0.91 0.76 0.99 0.98 0.98 72.68

Ours 0.28 0.29 0.32 0.99 0.98 0.96 0.97 0.93 0.80 0.99 0.98 0.96 51.98

Table 5.1 Robustness evaluation across dataset - similarities between images in the event
of latent space and maximum damage attacks in terms of MSSSIM. Here randomly chosen
100 test images are attacked in 10 different trials. xr refers to reference image, xa to
adversarial image and x̃r, x̃a to their corresponding reconstructions. The maximum input
noise perturbation levels λ are limited to 1,3, and 5. Fidelity analysis - based on the FID of
the generated images.
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Decoder quality. We further study the quality of the decoder of the proposed model. Here
we evaluate the MSSSIM between the reference images xr and its reconstructions x̃r and the
adversarial images xa and its corresponding reconstructions x̃a for both attack modes. The
results are reported in Table 5.2 and 5.3. Compared to the non-robust variants (VAE, β -VAE,
β -TCVAE), the quality of the reconstructions of the reference images is compromised in
robust VAE models (LipschitzVAE, SE, AVAE). In contrast, the proposed model exhibits
comparatively better performance. This further aligns with the observation that our model
yields better reconstruction fidelity than all the baselines. Further, we observe a higher
similarity between the adversarial images and their reconstructions for all robust VAE models.
This is because all these models employ adversarial training.

MNIST MSSSIM(xr, x̃r)(↑) Latent space attack Maximum damage attack

MSSSIM(xa, x̃a)(↑) MSSSIM(xa, x̃a)(↑)

1 3 5 1 3 5

VAE 0.94 0.71 0.42 0.24 0.66 0.35 0.31
β -VAE 0.93 0.73 0.48 0.31 0.64 0.38 0.35
β -TCVAE 0.93 0.72 0.47 0.25 0.64 0.40 0.38
LipschitzVAE 0.85 0.70 0.46 0.38 0.66 0.44 0.39
SE 0.91 0.71 0.53 0.48 0.69 0.58 0.50
AVAE 0.92 0.70 0.55 0.50 0.71 0.62 0.59
Ours 0.97 0.89 0.79 0.55 0.82 0.70 0.61

FASHIONMNIST MSSSIM(xr, x̃r)(↑) Latent space attack Maximum damage attack

MSSSIM(xa, x̃a)(↑) MSSSIM(xa, x̃a)(↑)

1 3 5 1 3 5

VAE 0.88 0.61 0.52 0.50 0.45 0.33 0.29
β -VAE 0.87 0.61 0.57 0.51 0.53 0.26 0.29
β -TCVAE 0.88 0.62 0.59 0.53 0.54 0.23 0.31
LipschitzVAE 0.84 0.77 0.58 0.55 0.58 0.29 0.35
SE 0.86 0.78 0.67 0.60 0.67 0.65 0.48
AVAE 0.87 0.80 0.75 0.61 0.85 0.65 0.47
Ours 0.91 0.79 0.76 0.62 0.89 0.71 0.56

Table 5.2 Decoder quality - Similarity between images and their corresponding recon-
structions for MNIST and FASHIONMNIST images. We consider the MSSSIM between
the reference image(xr) and its reconstruction(x̃r) and the adversarial image(xa) and its
reconstruction(x̃a) for both latent space and maximum damage attack. The reference image
is the target image for the latent space attack, and for the maximum damage attack, the
reference image is the input image.
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SVHN MSSSIM(xr, x̃r)(↑) Latent space attack Maximum damage attack

MSSSIM(xa, x̃a)(↑) MSSSIM(xa, x̃a)(↑)

1 3 5 1 3 5

VAE 0.85 0.71 0.62 0.57 0.68 0.58 0.50
β -VAE 0.84 0.72 0.60 0.58 0.68 0.57 0.52
β -TCVAE 0.85 0.71 0.61 0.59 0.69 0.58 0.51
LipschitzVAE 0.80 0.74 0.63 0.58 0.68 0.60 0.54
SE 0.83 0.79 0.69 0.62 0.82 0.78 0.62
Ours 0.90 0.81 0.73 0.66 0.84 0.80 0.65

CELEBA MSSSIM(xr, x̃r)(↑) Latent space attack Maximum damage attack

MSSSIM(xa, x̃a)(↑) MSSSIM(xa, x̃a)(↑)

1 3 5 1 3 5

VAE 0.84 0.79 0.72 0.65 0.76 0.71 0.65
β -VAE 0.83 0.74 0.71 0.67 0.75 0.73 0.69
β -TCVAE 0.83 0.73 0.68 0.64 0.75 0.70 0.68
LipschitzVAE 0.79 0.74 0.70 0.67 0.75 0.72 0.69
SE 0.80 0.79 0.75 0.70 0.78 0.76 0.74
Ours 0.86 0.80 0.77 0.70 0.80 0.79 0.77

Table 5.3 Decoder quality - Similarity between images and their corresponding reconstruc-
tions for SVHN and CELEBA images. We consider the MSSSIM between the reference
image(xr) and its reconstruction(x̃r) and the adversarial image(xa) and its reconstruction(x̃a)
for both latent space and maximum damage attack. The reference image is the target image
for the latent space attack, and for the maximum damage attack, the reference image is the
input image.

Results. To compare the fidelity of the learned representations, we evaluate the FID of
the generated samples as shown in Table 5.1. Overall we see that the proposed model
outperforms all the considered baselines in terms of robustness and offers superior generation
performance. Even for complex datasets like SVHN and CELEBA, we observe the same
trend with FID and robustness measures. These results are especially promising since we did
not employ any extensive hyperparameter search for training. Our results further confirm that
both robust and high fidelity models are possible. Since we employ FGSM-based adversarial
training, the training time required is cheaper when compared to the expensive PGD-based
training used in smooth encoders (SE). The computation time for a single iteration of SEs is
two times more compared to our method.

97



Towards Robust Deterministic Autoencoders

5.4.4 Ablation Study

In this section, we compare three different variants of regularized deterministic autoencoders
to evaluate the importance of joint regularization of the original and adversarial samples. We
begin with the model proposed in Chapter 4, which we denote as GMM-DAE. Second, we
study the augmented model defined by equations (5.2) and (5.3) in Section 5.3.2, but without
the coupling of original and adversarial latent representations (Augmented). We compare
the robustness and fidelity of these models with our proposed model, i.e., where original
and adversarial latent representations are not only regularized towards the same prior but
coupled according to equations (5.4), (5.5) and (5.6) in Section 5.3.3 (Ours). The observed
metrics are reported in Table 5.4. We observe that the proposed method yields comparatively
better performance in terms of robustness while still maintaining the generation fidelity when
compared to the non-robust version, GMM-DAE. It can also be seen that enforcing coupling
between the latent representations of the original and adversarial samples (Ours) leads to
better performance than simply augmenting them (Augmented). It is worth pointing out
that the GMM-DAE maintains better performance than a standard VAE model (Table 5.1,
MNIST VAE results). This is due to the well-structured latent space in GMM-DAE. This
observation further confirms our hypothesis in Section 5.3.1 that robustness can be improved
when similar-looking samples are modeled together in the model’s latent space.

Method Latent space attack Maximum damage attack FID(↓)

MSSSIM(xr, x̃a)(↓) MSSSIM(x̃r, x̃a)(↑)

1 3 5 1 3 5

GMM-DAE [161] 0.54 0.70 0.82 0.75 0.37 0.30 38.89
Augmented 0.47 0.59 0.71 0.79 0.56 0.54 40.16

Ours 0.38 0.47 0.60 0.92 0.82 0.69 39.37

Table 5.4 Ablation study on MNIST images. Augmented refers to the model definition in
eqs (5.2) and (5.3). Here xr refers to reference image, xa to adversarial image and x̃r, x̃a
to their corresponding reconstructions. The maximum input noise perturbation level λ is
limited to 1,3 and 5.

5.4.5 Hyperparameter Sensitivity Analysis

In this section, we conduct a sensitivity study of the model robustness to the number of
components in the chosen GMM prior and that of the coupling strength parameter α in
MNIST images.
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Number of modes Latent space attack Maximum damage attack FID(↓)

MSSSIM(xr, x̃a)(↓) MSSSIM(xr,xa)(↓) MSSSIM(x̃r, x̃a)(↑) MSSSIM(xr,xa)(↓)

1 3 5 1 3 5 1 3 5 1 3 5

1 0.48 0.62 0.70 0.99 0.93 0.86 0.89 0.73 0.62 0.98 0.92 0.86 42.45
5 0.43 0.53 0.66 0.98 0.92 0.83 0.91 0.76 0.65 0.98 0.91 0.82 40.11

10 0.38 0.47 0.60 0.95 0.90 0.80 0.92 0.82 0.69 0.98 0.89 0.78 39.37
15 0.37 0.45 0.58 0.95 0.89 0.80 0.93 0.82 0.70 0.97 0.89 0.77 39.04
20 0.37 0.45 0.57 0.94 0.88 0.79 0.93 0.83 0.71 0.97 0.88 0.78 38.49
25 0.36 0.43 0.58 0.94 0.88 0.78 0.94 0.83 0.71 0.97 0.88 0.77 38.02

Table 5.5 Sensitivity analysis of the number of modes in the GMM prior on MNIST images.

Number of modes in the GMM prior. The number of modes in the chosen prior is a
hyperparameter of the proposed model. Hence we report a sensitivity analysis of the number
of modes of the GMM prior and the observed robustness of the model. We analyze our
model’s robustness and generation performance on MNIST images for different components
in the chosen prior in Table 5.5. We use the same number of modes used in the previous
chapter for all our experiments. As expected from previous analysis, with an increased
number of modes in the GMM prior, the generation performance of our extended model also
improved. Most importantly, we observe a similar trend for robustness as well. The model
exhibits improved robustness with more components in the chosen GMM prior.

Coupling strength. In this section, we study the sensitivity of our model towards the
coupling strength α (see Table 5.6). We observe that a more significant coupling strength α

leads to improved robustness against latent space and maximum damage attacks. However,
as mentioned in the limitations section, a strong coupling strength, i.e., α = 1, compromises
the generation fidelity of the model. In our experiments, we tuned the coupling strength on
each dataset. We observed that a coupling strength in the range of 0.9 ≤ α < 1 yields the
best trade-off between generation and robustness across all datasets. In our experiments, we
chose α = 0.95 for MNIST and FASHIONMNIST images, and α = 0.92 for SVHN and
CELEBA images.

5.4.6 Robustness to Downstream Applications

Since the learned representations of VAEs are often used for various downstream tasks, it is
also vital to verify how adversarial attacks affect the performance of the same. To showcase
the effect of adversarial attacks on downstream classification tasks, we train an MLP classifier
on the latent space of the model and observe the accuracy drop in the presence of the latent
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Coupling parameter Latent space attack Maximum damage attack FID(↓)

α MSSSIM(xr, x̃a)(↓) MSSSIM(xr,xa)(↓) MSSSIM(x̃r, x̃a)(↑) MSSSIM(xr,xa)(↓)

1 3 5 1 3 5 1 3 5 1 3 5

0.1 0.46 0.56 0.68 0.98 0.91 0.84 0.80 0.59 0.50 0.98 0.91 0.80 40.18
0.3 0.44 0.55 0.65 0.97 0.92 0.82 0.81 0.65 0.61 0.97 0.90 0.80 39.84
0.5 0.43 0.53 0.64 0.97 0.90 0.82 0.85 0.75 0.63 0.98 0.89 0.80 40.01
0.7 0.40 0.49 0.63 0.96 0.90 0.81 0.90 0.79 0.67 0.98 0.89 0.79 39.28
0.9 0.39 0.48 0.62 0.95 0.90 0.80 0.91 0.81 0.68 0.98 0.89 0.78 39.61

0.95 0.38 0.47 0.60 0.95 0.90 0.80 0.92 0.82 0.69 0.98 0.89 0.78 39.37
1.0 0.38 0.47 0.59 0.95 0.89 0.80 0.92 0.83 0.69 0.97 0.87 0.78 41.86

Table 5.6 Sensitivity analysis of the hyperparameter alpha on MNIST images.

Method MNIST FASHIONMNIST SVHN

clean acc.(↑) λ = 1(↑) clean acc.(↑) λ = 1(↑) clean acc.(↑) λ = 1(↑)

VAE 92.16 58.85 80.65 59.15 61.70 25.63
β -TCVAE 93.02 61.06 81.25 60.77 62.02 30.12

LipschitzVAE 90.78 62.00 80.50 62.06 60.99 33.99
SE 93.81 68.65 80.10 66.83 62.36 44.40

Ours 96.08 91.78 85.96 78.86 70.96 59.20

Table 5.7 Robustness of downstream classifier trained in the latent space of the model under
adversarial attack - we report the clean accuracy and the accuracy during attack defined in
eqn( 5.11), for λ = 1.

space attacks for a constrained noise norm λ = 1. The observed values and clean accuracy
are shown in Table 5.7. The classifier trained on the latent space of the proposed model
achieves better accuracy when compared to the baseline models under latent space attack.

5.4.7 Network Architecture and Implementation Details

Network architectures. We use a consistent network architecture for the encoder-decoder
pair during training. For MNIST and FASHIONMNIST images, we train a fully connected
network architecture, a 4-layer multi-layer perceptron (MLP) with 200 neurons and ReLU
activation at each layer. For SVHN and CELEB images, we use a convolution network
architecture similar to the last chapter mentioned in Section 4.4.6. The encoder includes
a 4-layer convolution network with the number of output channels (128,256,512,1024),
respectively, with strides equal to 2 and a kernel size of (4,4). And the decoder comprises
a 4-layer de-convolution network with the number of output channels (1024,512,256,128)
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respectively, with strides equal to 2 and a kernel size of (4,4). The latent space dimension of
10 is used for MNIST and FASHIONMNIST images, 100 for SVHN, and 64 for CELEBA
images.

Implementation details. We carried out all the experiments on a single GTX1080 GPU
with 16 GB RAM. All the conducted experiments were part of a carbon-neutral framework-
based GPU cluster and did not contribute to climate change.

For training the encoder-decoder network of our model, we utilize an ADAM [105]
optimizer with a batch size of 100 and an initial learning rate of 0.002 with exponential
decay based on the validation loss. We follow the same setup as in the last chapter for the
multi-modal prior definition. The coupling parameter is 0.95 for MNIST and FASHIONM-
NIST images and 0.92 for SVHN and CELEBA images. For the classification downstream
application, we train a simple two-layer MLP-based classifier. The network is trained for 25
epochs with an ADAM [105] based optimizer with a learning rate of 0.01, batch size of 100.

We use similar architecture for all the baseline models considered for a fair comparison.
We used the Pytorch implementation in the Githib repository [] for training the baseline
models, VAE [108], β−VAE [79] and β−TCVAE [26] . For LipschitzVAE, we used the
official Pytorch implementation [11]. For SE [23], we re-implemented the method in Pytorch,
and for AVAE [22], we reimplemented a Pytorch version of the official JAX-based version.
Since the official GitHub implementation for AVAEs only provides an MLP-based training
pipeline, we only report AVAE results for MNIST and FASHIONMNIST images.

Evaluation setup. To evaluate the model’s robustness, we mainly consider two types
of adversarial attacks, latent space attacks and maximum damage attacks. Under these
attacks, we consider 100 randomly chosen test images from the corresponding dataset for
experimental analysis and run 10 simulations to report the results. The noise perturbation
levels of 1,3 and 5 are chosen. While choosing the target image for latent space attacks,
we explicitly choose an image from a different class than of original image for MNIST,
FASHIONMNIST, and SVHN images. To evaluate the learned representations’ fidelity, we
report Fréchet Inception Distance (FID) [78] of the generated samples. We calculate the
FID between 10000 generated images and validation images for the corresponding dataset
and report the average value obtained after five different runs. The FIDs observed for the
proposed method and error bars (for different runs) are as follows, MNIST: 39.37± 0.9,
FASHION-MNIST: 64.89±0.9, SVHN: 38.89±1.2 and CELEBA: 51.98±1.3.
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5.5 Conclusion

Developing robust VAE models is crucial since the learned representations of VAEs are
frequently used for various applications. Motivated by the recent research towards deter-
ministic alternatives to VAEs, we study the robustness of deterministic autoencoders in
this chapter. We extend recently developed regularization schemes to efficiently couple the
adversarial examples and the learned representations during training. Our experiments show
that adversarially trained multimodal deterministic autoencoders offer significantly improved
adversarial robustness and high fidelity in the learned latent space with proper regularization.
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Chapter 6

Conclusion

In this chapter, we review the main findings and contributions of the methods presented in
this thesis. We then discuss some of the limitations associated with the proposed approaches
and possible future work.

6.1 Discussion

In this thesis, we investigated the learned representations of two popular deep generative
models, Generative Adversarial Networks (GANs) and Variational Autoencoders (VAEs),
and proposed methods to optimize the latent space of these models.

We addressed the controllability of the learned latent space of GANs in Chapter 3.
Regulating the content of the generated images merely based on the numerosity of the
objects is a complex problem. We found that the proposed architectural modifications to
the state-of-the-art StyleGAN2 network generated images of very high quality even under
challenging scenarios, i.e., no specification of the spatial layout and a limited amount of
training data. Our experiments also show that the number of objects in the images provides
vital information regarding their distinguishability during feature learning, allowing us to
control the image generation process. The existing real-world open-source datasets are not
directly usable or derivable for our task, as the number of images with a given number of
objects from consistent classes is minimal. To overcome this, we derived the Citycount
dataset for our evaluation, and we believe that such a dataset will be an asset for further
research in the community.

Variational autoencoders enable learning meaningful representations of complex high-
dimensional data without any supervision. This further enhances the usability of these
learned representations for various downstream tasks and applications where limited data
is available, e.g., due to privacy/security concerns. Therefore, it is critical to investigate
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the robustness of these representations along with their accuracy, especially when used in
real-world applications. In Chapter 4, we first explored some practical limitations associated
with VAEs and discussed deterministic alternatives to the variational formulation. Motivated
by recent developments towards deterministic autoencoders[60] from stochastic VAEs for
data generation, we proposed a novel regularization scheme to enable simple and end-to-end
training of regularized deterministic autoencoders. The recent discovery of the vulnerability
of learned representations in VAEs is concerning, as this calls into question the generalization
of learned latent space in VAEs. In reviewing related work in this area, we found that
there is a tradeoff between robustness and fidelity. Therefore, in Chapter 5, we took a step
towards more robust models and proposed a method to train robust regularized deterministic
autoencoders with high fidelity. The proposed approach can be readily applied to effectively
structure the latent space of existing autoencoding frameworks towards multi-modal Gaussian
priors. Currently, there is limited work in this direction, and our method encourages potential
future work to develop robust VAE models.

6.2 Limitations and Future Work

In Chapter 3, we saw that the proposed GAN places the objects in the images in a reasonable
spatial arrangement without providing additional information, such as the bounding box
information of the objects. Although we have demonstrated the potential of the model in a
challenging scenario such as the CityCount dataset, we have yet to consider a highly complex
environment where several objects are highly occluded and where certain objects are only
partially visible in the images. Although we expect the model to perform well in such a
scenario, a major limitation would be the availability of a dataset with count annotations. A
semi-supervised training approach that incorporates bounding box and count information for
specific images may be required to achieve comparable performance in such a setting. In
the empirical study, we also examined the model’s potential to extrapolate between classes.
The ability to generalize beyond the range of the count value of an object class is highly
interesting and challenging future work in this area [184].

One limitation of the proposed regularized deterministic autoencoders in Chapter 4 is the
necessity to choose the prior distribution in advance. We showed that fixing a suitable number
of modes for the GMM is important to provide better sampling quality. Also, by considering
marginal CDFs, we simplified the original distance metric from the KS test. While reducing
computational complexity during training, this comes at the cost of an additional loss term.
Further, our proposed addition of the KS distance is not suitable for matching higher-order
moments of the latent representations to the target prior, which, at least from a conceptual
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point of view, can lead to a mismatch to the prior. Further, our loss only facilitates matching
empirical marginal CDFs of latent representations to the marginal CDFs of the prior evaluated
latent vectors. Consequently, our regularization loss might be a less stable training signal for
small batch sizes in high dimensions.

The choice of the MSE for covariance matching loss is purely based on its prevalence
in the literature. Additionally, all three loss terms (reconstruction loss, KS distance loss,
and the covariance matching loss) behave similarly, as they are all squares. While we did
not investigate any other metrics for matrix comparison in this scenario, exploring other
options for covariance matching is an interesting area for future studies [58, 54]. Further,
we have not considered the case where there exists a class imbalance in the dataset. We
would expect the model to separate the classes if the imbalance is weak and the classes are
sufficiently different such that the reconstruction loss outweighs the regularization penalty
for the mismatch. Extending our prior to accommodate this by introducing a weighted GMM
prior is also an interesting direction for future work. Another potential solution would be to
design a training scheme to learn the weights of the GMM components during training. Since
the model performs well in unsupervised clustering experiments, the proposed regularizer
could be potentially applied to structure the feature space of the classifier to enhance the
classification performance. Further, it would be worth investigating the potential of the
multi-modal regularization scheme to optimize the learned feature space of recently proposed
models such as Latent diffusion models [157].

The proposed adversarial training scheme to enhance the robustness of the deterministic
autoencoder in Chapter 5; although cheaper compared to the current adversarially trained
robust models, the FGSM-based training scheme is still expensive when compared to the
non-robust counterpart. The coupling parameter α introduced in the proposed method
is an additional hyperparameter to tune, and enforcing strong coupling, i.e., α = 1, might
compromise the generation fidelity of the resulting model. While we need the coupling term to
perform adversarial training, the overly strong coupling will necessarily lead to deteriorated
reconstructions, similar to VAEs. It is worth noting that we did not perform intensive
hyperparameter optimization in this line of experiments. Hyperparameter optimization might
be needed while adapting the method to other datasets. Further, it would be interesting to
explore the impact of the adversarial attacks in other potential downstream applications, such
as high-dimensional black-box optimization in the latent space of VAE models.

We should also consider this research’s possible negative social impact, especially in
safety-critical applications. Although we observe superior robustness in our model against
the existing attacks, similar performance cannot be guaranteed on newly discovered attacks
on VAEs. Hence, when deployed in real-world applications, we highly recommend testing
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the model continuously against newly designed attacks. We also urge the machine learning
community to responsibly pursue this work to enable potential future research without
misuse.
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