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Abstract

Deep learning has achieved great success in the field of computer vision across a wide
range of applications. However, learning-based methods still have several limitations,
particularly in terms of interpretability and guarantees. In contrast, traditional model-
based computer vision techniques, built on explicit models that are derived from our un-
derstanding of the specific problem domain, offer a different and interpretable approach
on addressing these challenges.

In this work, we analyze and further develop hybrid approaches that combine model-
based and learning-based methods in computer vision, introducing four different approa-
ches. We analyze the capabilities of both model-based and learning-based methods, dis-
cuss the value of deep learning for underdetermined problems, present an extended ap-
proach to incorporate learning directly into the optimization process, and address problems
where the challenge lies in the intrinsic formulation of the problem itself. Thereby we deal
with different application areas in the field of computer vision. We start with studying seg-
mentation problems on a single image, given only user input in the form of drawn scribbles
in the color images, and analyze the performance of learning-based methods to incor-
porate the scribble information, compared to a cleverly designed model-based approach.
Further, we address reconstruction problems, focusing on underdetermined computed to-
mography reconstructions of lung scans. We integrate a learning-based regularizer into
the reconstruction process and explore the space of possible data-consistent reconstruc-
tions corresponding to various degrees of pathological malignancy. Also, to integrate
neural networks into model-based approaches, we build on recent studies, which aim to
learn iterative descent directions for minimizing model-based cost functions. By applying
Moreau-Yosida regularization, we introduce a method that avoids the need for differen-
tiability. This is a significant improvement over previous approaches, that are limited to
continuously differentiable cost functions. For solving matching and assignment prob-
lems, we introduce an approach that approximates large permutation matrices and reduces
computation and memory costs by non-linear low-rank matrix factorization. We experi-
mentally demonstrate its performance across various model- and learning-based methods.
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Zusammenfassung

Deep Learning hat im Bereich der “Computer Vision” für eine Vielzahl von Anwendun-
gen große Erfolge erzielt. Allerdings weisen lernbasierte Methoden noch einige Ein-
schränkungen auf, insbesondere in Bezug auf Interpretierbarkeit und Garantien. Im Gegen-
satz dazu bieten traditionelle, modellbasierte Techniken der “Computer Vision”, die auf
expliziten Modellen basieren und aus unserem Verständnis des spezifischen Problembere-
ichs abgeleitet sind, einen anderen und interpretierbaren Ansatz, um diese Herausforderun-
gen anzugehen.

In dieser Arbeit analysieren und entwickeln wir hybride Ansätze weiter, die modell-
basierte und lernbasierte Computer-Vision-Methoden kombinieren und stellen hierzu vier
verschiedene Ansätze vor. Wir analysieren die Fähigkeiten sowohl modellbasierter als
auch lernbasierter Methoden, diskutieren den Nutzen von Deep Learning bei unterbes-
timmten Problemen, präsentieren einen erweiterten Ansatz zur direkten Integration des
Lernens in den Optimierungsprozess und befassen uns mit Problemen, in denen die Her-
ausforderung in der intrinsischen Formulierung des Problems selber liegt. Dabei beschäfti-
gen wir uns mit verschiedenen Anwendungsbereichen im Bereich der “Computer Vision”.
Wir beginnen mit der Untersuchung von Segmentierungsproblemen auf einzelnen Bildern,
die ausschließlich Benutzereingaben in Form von auf den Farbbildern gezeichneten Mar-
kierungen erhalten, und vergleichen die Leistung von lernbasierten Methoden zur Ein-
beziehung der Markierungen mit einem durchdachten modellbasierten Ansatz. Außer-
dem befassen wir uns mit Rekonstruktionsproblemen, insbesondere mit unterbestimmten
Computertomographie-Rekonstruktionen von Lungenscans. Wir integrieren einen lern-
basierten Regularisierer in den Rekonstruktionsprozess und erkunden den Raum mög-
licher, datenkonsistenter Rekonstruktionen, die verschiedenen Graden von pathologischer
Bösartigkeit entsprechen. Um neuronale Netze in modellbasierte Ansätze zu integrieren,
stützen wir uns auf aktuelle Studien, die die iterativen Abstiegsrichtungen zum Minimieren
modellbasierter Kostenfunktionen erlernen. Durch die Anwendung der Moreau-Yosida-
Regularisierung führen wir eine Methode ein, die die Notwendigkeit der Differenzier-
barkeit umgeht. Dies ist ein bedeutender Fortschritt gegenüber früheren Ansätzen, die auf
stetig differenzierbare Kostenfunktionen beschränkt sind. Zur Lösung von Matching- und
Zuordnungsproblemen stellen wir einen Ansatz vor, der große Permutationsmatrizen ap-
proximiert und die Rechen- und Speicherkosten durch nichtlineare Matrixfaktorisierung
mit niedrigem Rang reduziert. Wir demonstrieren experimentell die Leistungsfähigkeit
dieses Ansatzes in verschiedenen modell- und lernbasierten Methoden.
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CHAPTER 1

Introduction

1.1 Motivation

The field of computer vision deals with the interpretation and processing of visual data
by machines and has become an important component of many applications that influence
our daily lives. From facial recognition in securing devices, over augmented reality ap-
plications, to autonomous vehicles that promise safer and more efficient transportation,
the practical impact is obvious and demonstrates the importance of computer vision. The
huge increase in available visual data over the past decade has led to the rise of deep learn-
ing in computer vision and has redefined the boundaries of what machines can perceive,
understand, and recreate from visual data. This covers especially challenges that require a
semantic understanding, where before the deep learning era, computer vision faced signif-
icant difficulties in tasks like object recognition, semantic image segmentation, and scene
understanding.

Many breakthroughs in deep learning made these possible, where the introduction of
the convolutional neural network (CNN) was a fundamental step towards highly accurate
image interpretation and classification, enabling the recognition and categorization of a
variety of objects. For example, in autonomous driving semantic interpretability enables
a machine to interpret traffic signs, recognize obstacles, and therefore avoid accidents by
making quick decisions. It can be useful in public security by detecting suspicious ac-
tivities or face recognition. Also the medical field benefits from deep learning, for early
disease detection or the support of diagnostic procedures. Especially in medical imag-
ing, transfer learning techniques have improved the development of diagnostic models,
possibly even with limited labeled medical data. In addition, many other domains benefit
from deep learning. In the artistic domain, Generative Adversarial Networks (GANs) and
diffusion models have shown the ability to create lifelike artworks, while machine trans-
lation and interpretation of visual content into natural language have been improved by
Recurrent Neural Networks (RNNs), Long Short-Term Memory (LSTM) networks and by
transformers.

While deep learning has many advantages, it comes with its limitations and drawbacks.
Deep learning models need in general a huge amount of data to train effectively. The lack
of sufficient data can lead to poor generalization in real-world scenarios. Especially in the
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CHAPTER 1. INTRODUCTION

Figure 1.1: Computer vision applications that benefit from deep learning and its combi-
nation with model-based methods. (Left) Segmentation of an image using semantic in-
formation, highlighting distinct objects and regions, from [88]. (Middle) Shape matching
using deep learning techniques, from [87]. (Right) Computed Tomography scan image
with cancer classification in the highlighted area, from [86].

medical area there often does not exist enough labeled medical data, while the prevention
of poor or wrong outcomes is of crucial importance. Further, large deep learning mod-
els, combined with memory-intensive data, result in computationally demanding training
and application processes. Training these models is not only expensive due to the need for
high-end hardware but also raises environmental concerns due to the high power consump-
tion associated with long, computationally intensive training. The composition of training
datasets plays a huge role in the ability of deep learning, as there is the risk of maintaining
biases in the training data, which can lead to incorrect or discriminatory predictions [299].
For example, if traffic cameras with deep learning capabilities work with a model that is
only trained on data of good weather conditions, it might fail if it is raining. Besides, deep
learning models often exhibit a lack of interpretability, making it challenging to under-
stand or trust their predictions, which is especially important in critical applications like
healthcare, finance, or autonomous driving. Additionally, deep learning models are sen-
sitive to adversarial attacks, where slight perturbations in the input can lead to drastical
different outputs. In scenarios where self-driving cars use deep learning for object detec-
tion, slight disturbances in road signs by attackers could lead to a misinterpretation of the
sign, where a “Stop” sign could be misclassified as a “Yield” sign, leading to a high risk
of accidents.

So, despite its great success, deep learning has its limitations, which are also reflected
in current events in the field of autonomous driving. According to [312], focusing on
more traditional methods rather than artificial intelligence recently caused a German au-
tomobile manufacturer to be the first to get authorization for a level 3 autonomous driving
system in California and Nevada – ahead of its competitors. This highlights the value
of traditional computer vision techniques, that formulate explicit models, derived from
our understanding of the specific problem domain, and provide a different, interpretable
approach to solving these types of problems. While many good deep learning methods
for most problems exist, the integration of the underlying structure and constraints of the
specific problem can be used to improve the interpretability of deep learning systems.

I have studied different computer vision problems as e.g. shown in Figure 1.1, and the
confluence of their model-based formulations and deep learning methods. We have shown
that for segmentation scenarios with limited data, classical methods can provide fair seg-
mentation, but the integration of learned semantic information, provides the best results.
Further, for reconstructions problems, we were able to successfully combine a learning-
based prior with classical model-based reconstruction to offer a solution for dealing with
ambiguities in the reconstruction process and extended another hybrid method that incor-
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CHAPTER 1. INTRODUCTION

porates deep learning into the optimization of classical methods to a wider range of explicit
models. The evaluation of each of these methods has shown the benefits of combining deep
learning with explicit models, such as improving results and offering semantic interpre-
tations. In addition, we made progress in addressing memory-intensive assignment and
matching problems, which affect both model-based and training-based methods.

I will introduce and discuss the aforementioned topics and methodologies on the con-
fluence of learning- and model-based methods throughout this thesis.

1.2 Outline and Contribution

1.2.1 Thesis Outline

This dissertation has the following organizational structure. The remaining sections of
this chapter give an overview of the key contributions to this thesis and are followed by an
overview of publications on which I have worked, but that do not fit within the scope of
this thesis. Chapter 2 focuses on the mathematical background, that covers the necessary
foundation for optimization problems that are discussed through this dissertation. This
includes a discussion of inverse problems, energy minimization, the nature of convex and
smooth energy functions, an introduction to first-order optimization schemes, and a more
detailed introduction to proximal methods and the Moreau-Yosida regularization, which
becomes important throughout this essay. Chapter 3 addresses deep learning in imaging
by introducing the concept of supervised learning, fundamental models for computer vi-
sion and discussing model robustness. In the context of the core topic of this thesis, the
interplay between model-based and learning-based methods, Section 3.3 provides a cate-
gorization of different types of hybrid model-based and learning-based methods and dis-
cusses the underlying idea and related work of each one of them. Section 3.4 deals with the
topic of neural networks that provide more than a single output, covering the exploration
of the space of possible outcomes for reconstruction tasks. Chapter 4 addresses applica-
tions that become important throughout the thesis, namely computed tomography (CT),
image segmentation, and assignment problems, including relevant work on model- and
learning-based approaches, and introducing their general idea. The main contributions
of this thesis are presented from Chapter 5 to Chapter 8, with each chapter containing
a different approach on the confluence of learning-based and model-based approaches.
Chapter 5 begins with a comparison of model-based and learning-based methods given
different levels of information about a segmentation problem. It has been shown that the
combination of model-based and learning-based methods works best, leading us to intro-
duce pre-trained information into a model-based CT reconstruction problem in Chapter 6.
Chapter 7 also deals with the combination of model- and learning-based methods, but
this time, learning is used to guide the problem to the optimal solution while preserving
the guarantees given by the models for non-smooth energies. In Chapter 8, we address
memory-intensive assignment and matching problems and introduce a new representation
of permutation matrices that can be useful for both learning- and model-based approaches.
This dissertation concludes with a summary and a discussion on future work in Chapter 9.

1.2.2 Main Contribution

The publications listed below are the four main contributions to this dissertation, focus-
ing on the interplay between model-based and learning-based methods in computer vi-
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CHAPTER 1. INTRODUCTION

sion as the main topic. The first three works propose ways to integrate learning elements
into model-based approaches for different computer vision applications. The last work
addresses a method of memory reduction for both model-based and learning-based ap-
proaches.

All authors of the publications listed below have contributed significantly to their real-
ization. Where necessary, I will highlight the contributions of individual authors, focusing
exclusively on their role in the practical realization of the described methods.

• [88] Dröge, H., and Möller, M. (2021, September). Learning or Modelling? An
Analysis of Single Image Segmentation Based on Scribble Information. In 2021
IEEE International Conference on Image Processing (ICIP) (pp. 2274-2278). IEEE.

• [86] Dröge, H., Bahat, Y., Heide, F., and Möller, M. (2022). Explorable Data
Consistent CT Reconstruction. In 33rd British Machine Vision Conference 2022,
BMVC 2022, London, UK, November 21-24, 2022. BMVA Press.

• [89] Dröge, H., Möllenhoff, T., and Möller, M. (2022, October). Non-Smooth En-
ergy Dissipating Networks. In 2022 IEEE International Conference on Image Pro-
cessing (ICIP) (pp. 3281-3285). IEEE.

• [87] Dröge, H., Lähner, Z., Bahat, Y., Martorell, O., Heide, F., and Möller, M.
(2023). Kissing to Find a Match: Efficient Low-Rank Permutation Representation.
arXiv preprint arXiv:2308.13252. (Accepted at NeurIPS 2023)

Learning and Modelling for Single Image Segmentation [88]

In Chapter 5, we address the challenge of single-image segmentation. As has hardly been
done by any deep learning-related work in this direction, we compare the performance
of neural networks with a cleverly designed model-based method. Each image in our
study comes with prior information in the form of user-drawn scribbles. In particular,
we analyze the effects of the information inherent in the scribbles on the segmentation
and consider scenarios in which we only use the underlying color information from these
scribbles on the one hand and further spatial and semantic information on the other. We
discuss how to integrate this information in a weighted manner into the network training
process and demonstrate that model-based methods work best when combining color data
with semantic features, which are obtained from a pre-trained neural network. Overall,
we show that for single image segmentation using user-drawn scribbles, a combination of
model- and learning-based approaches benefits from the clever design of the model and
access to semantic information from a neural network.

Guided Computed Tomography Reconstruction by a Learned Prior [86]

In Chapter 6, we regularize a model-based reconstruction method for sparse-view CT with
a learned prior. Especially problematic for medical data is that in sparse-view CT, the lim-
ited data and the resulting underdetermined nature of the problem can lead to reconstruc-
tion ambiguities so that the correct interpretation of the reconstruction results cannot be
guaranteed. On medical lung scans, we regularize the reconstruction process with a pre-
trained classifier network and thus present several reconstructions of the same CT image
but with different semantic meanings. In addition, we analyze to what extent the seman-
tic meaning can be modified while maintaining data consistency with the CT scans. To
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CHAPTER 1. INTRODUCTION

avoid artifacts in the reconstructions and ensure that their modifications are perceptible,
we further discuss technical requirements for the training of the classification network and
its input.

Non-Smooth Energy Dissipating Networks [89]

Similar to the approach for guiding CT reconstructions in Chapter 6, we combine model-
based and learning-based techniques in Chapter 7. Unlike the previous method, where a
learned prior is an explicit regularizer in the model-based minimization, we integrate the
neural network into the optimization process itself. In our approach, a neural network pre-
dicts suitable descent directions for semi-convex and non-smooth cost functions, ensuring
convergence to a minimizer of the cost function, while this is typically not possible in clas-
sical deep learning based approaches. In Chapter 7 we shortly introduce a prior work that
works on differentiable cost functions and further propose an extension for semi-convex
and non-smooth cost functions. To this end, we employ the Moreau-Yosida regularization
and demonstrate convergence and applicability on denoising and deblurring tasks.

To the practical realization of this project, Michael Möller contributed significantly
through a convergence analysis that ensures the reliability of the method, while my main
contribution was adapting our theoretical framework into a practical model for empirical
testing, ensuring its applicability.

Efficient Low-Rank Permutation Representation [87]

Challenging tasks are those where the problem lies in their representation itself. Chap-
ter 8 addresses this challenge for permutation matrices, whose representation size scales
quadratically with the size of the problem, implying significant computational and mem-
ory requirements in larger matching and assignment tasks. We introduce a representation
of permutation matrices through low-rank matrix factorization, coupled with a nonlinear-
ity, enabling a stochastic learning approach that enables large permutation matrices and
reduces memory requirements. As this representation still allows an accurate prediction
of permutation matrices, we demonstrate its applicability and accuracy for model-based
linear and quadratic assignment problems, as well as for learning-based shape matching
problems, and show a reduction in memory consumption for both scenarios.

Please note the specific contributions to the experiments in this project. Zorah Lähner
primarily focused on the experiments involving point cloud alignment on spectral point
representation, as well as on quadratic and dense linear assignment problems. My own
contributions focused on the experiments related to point cloud alignment, sparse linear
assignment problems, and shape matching. In addition, Onofre Martorell supported our
work by providing code to load and integrate a memory-intensive dataset for shape match-
ing.

1.2.3 Additional Publications

Throughout my doctoral studies, I participated in publishing additional papers that explore
different research areas, distinct from the focus of this thesis. As a result, these publications
are not included herein.

• Geiping, J., Bauermeister, H., Dröge, H., and Möller, M. (2020). Inverting gradients-
how easy is it to break privacy in federated learning? Advances in Neural Informa-
tion Processing Systems, 33, 16937-16947.

6



CHAPTER 1. INTRODUCTION

• Dröge, H., Yuan, B., Llerena, R., Yen, J. T., Möller, M., and Bertozzi, A. L. (2021).
Mitral valve segmentation using robust nonnegative matrix factorization. Journal of
imaging, 7(10), 213.

• Gandikota, K. V., Chandramouli, P., Dröge, H., and Möller, M. (2023, April). Eval-
uating Adversarial Robustness of Low dose CT Recovery. In Medical Imaging with
Deep Learning.

Inverting gradients-how easy is it to break privacy in federated learning? [107]

In [107], Geiping et al. explored the numerical reconstruction of input images from a deep
neural network based on their gradient to the network weights. This is relevant for feder-
ated learning, where a network is trained on a server, offering potential privacy since only
parameter gradients are shared, not the actual data. However, our research raises concerns
about the security implications of sharing these gradients. We investigated the extent to
which a single image can be reconstructed from the network parameter updates across var-
ious network structures and scenarios. Furthermore, we demonstrated the privacy risks,
even when the gradient is averaged over a batch of images. In this work, I primarily con-
tributed to the experiments on single image reconstruction from a single gradient.

Mitral valve segmentation using robust nonnegative matrix factorization [90]

In our work in [90], which is based on the results of my Master’s thesis, we introduced
a method for segmenting non-rigid moving structures within medical videos with a fo-
cus on the mitral valve in two-dimensional echocardiographic videos. Unlike previous
techniques, our objective was an automatic and unsupervised segmentation method for
the mitral valve in two-dimensional echocardiographic videos that can operate with only
optional prior information regarding the valve’s size. The core idea is to use non-negative
matrix factorization to distinguish between static and rigidly moving muscle structures
and the non-rigidly moving mitral valve in the videos. To improve the accuracy of the
segmentation, we applied additional methods to remove noisy segmentations and adopted
a localization approach to refine the results.

Evaluating Adversarial Robustness of Low dose CT Recovery [105]

In this work [105], Gandikota et al. proposed an analysis of the robustness against ad-
versarial attacks of multiple deep learning and classical methods for CT reconstruction.
Thereby, the reconstruction methods are attacked with different types of approaches, show-
ing the vulnerability of deep learning methods to untargeted attacks and the vulnerability
of learning methods and classical methods to local attacks that seek to modify only local
regions of the reconstruction. In this work, I contributed by providing code on identifying
areas of clinical significance in CT scans and by training a network on CT reconstruction.
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CHAPTER 2

Theoretical Foundations

In the domain of computer vision, many tasks aim to reconstruct or extract information
from corrupted real world obervations. For instance, tasks such as denoising [257, 37] seek
to recover a clear image from a noisy obervation, or deblurring [166, 320] need to retrieve a
sharp image or video from a blurred measurement. Beyond these, image segmentation [47,
49] often involves classification tasks within the image itself. These challenges have a
common goal of extracting the original or underlying information from corrupted or partial
observations and can typically be formulated as inverse problems.

2.1 Inverse Problems

The general formulation of inverse problems involves a measurement or data vector 𝑓 , and
an unknown 𝑢, which has to be recovered. In the context of computer vision, 𝑓 and 𝑢 could
be images, e.g. 𝑓 corresponding to a blurred image for deblurring tasks. The relationship
between 𝑓 and 𝑢 is described by a forward operator 𝐴 ∶ 𝔸 → 𝔹, where 𝔸 and 𝔹 are
appropriate function spaces. The forward operator maps the unknown 𝑢 to the space of
measurements,

𝑓 = 𝐴(𝑢) + 𝑒, (2.1)
where 𝑒 ∈ 𝔹 represents the presence of noise or measurement errors. The objective in
solving an inverse problem is to recover 𝑢 given 𝑓 by inverting the effect of the forward
operator and unknown 𝑒.

In general, it can be difficult or impossible to solve such problems. To gain a better
understanding of solvability, there exists the concept of ill-posed/well-posed problems:

Well-Posed Problems Inverse Problems are called well-posed if they meet the three
Hadamard criteria, namely,

(a) that there needs to exist a solution to the problem,
(b) the solution needs to be unique,
(c) and the solution is continuously dependent on the input data,

8
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which indicates that the solution is robust against small perturbations in the input data. If
one of the criteria is violated, the problem is ill-posed [10]. Establishing well-posedness
is essential to ensure that the inverse problem can be reliably solved and that the solution
is meaningful and accurate.

In particular, the third criterion of continuous dependence is of great importance when
discussing inverse problems, as in the presence of noisy data, the process of solving the
inverse problem can significantly amplify this noise. To address this, one needs to find an
approximation of the results that considers additional constraints.

2.2 Energy Minimization

A classical way to approach these problems are maximum a-priori (MAP) estimates, which
motivate the reconstruction of 𝑢 as the argument that minimizes a suitable cost function

𝑢̂ ∈ argmin
𝑢

− log 𝑝(𝑓 |𝑢) − log 𝑝(𝑢), (2.2)

where 𝑝(𝑓 |𝑢) refers to the conditional probability of observing the measurement 𝑓 given
the true image 𝑢 and 𝑝(𝑢) is the (data-independent) prior probability of 𝑢. Such energy min-
imization methods therefore consist of a data fidelity term, − log(𝑝(𝑓 |𝑢)) that depends on
the distribution of the noise, and a regularizer − log(𝑝(𝑢)). A Gaussian noise distribution
affected measurement would give the following conditional probability

𝑝(𝑓 |𝑢) = 1
√

2𝜋𝜆
exp(− 1

2𝜆2
‖𝐴(𝑢) − 𝑓‖2), (2.3)

whereby 𝜆 is the standard deviation of the distribution, and a Gaussian distributed prior
probability of 𝑢, with 𝑝(𝑢) = 1

√

2𝜋𝜎
exp(− 1

2𝜎2
‖𝑢‖2) leads to the very popular example of

Tikhonov Regularization
𝑢̂ ∈ argmin

𝑢
‖𝐴(𝑢) − 𝑦‖2 + 𝛼‖𝑢‖2, (2.4)

where 𝛼 is the ratio of 𝜆 and 𝜎. Furthermore, there is a large body of literature for solv-
ing ill-posed inverse problems with a known data formation process (see (2.1)) via en-
ergy minimization methods (see (2.2)) with different regularization terms, including the
popular total variation (TV) regularization [257]. The TV regularization term is partic-
ularly useful for segmentation and denoising tasks, especially in the context of images,
as it effectively preserves edges. It assumes a Laplacian distribution of the gradient of 𝑢,
𝑝(𝑢) = 1

2𝛽
exp(− 1

𝛽
‖𝐷𝑢‖1), where 𝐷 represents a finite difference matrix. Consequently

after applying log, we obtain the following expression for the TV functional, except for a
scaling:

TV(𝑢) ∶= ‖𝐷𝑢‖1 (2.5)
Further existing regularization terms are, for instance, extensions of TV regularization [33],
wavelets [199], shearlets [94], or dictionary learning approaches [3].

There are many well-established optimization techniques for finding the minimizer of
an energy minimization method, where the selection of an optimization method depends
on the properties of the function under consideration. In the following sections, we will
discuss conditions and useful function properties concerning the optimization of an energy
function, followed by a short introduction to iterative first order descent methods.

9
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2.3 Optimality Condition

In the following, let us denote the cost function by 𝐸(𝑢), s.t. we aim to find the minimizer
𝑢̂ ∈ argmin𝐸(𝑢). The necessary optimality condition to find the minimizer states that the
gradient of the energy at the optimum has to be zero, ∇𝐸(𝑢̂) = 0, applying for energies,
differentiable in 𝑢̂. But considering a function 𝐸 ∶ ℝ𝑛 → ℝ with points where 𝐸 is not
differentiable, then rather than having a unique gradient, there might exist a set of vectors
that satisfy the subgradient property.
Definition 1. A vector 𝑔 ∈ ℝ𝑛 is subgradient of 𝐸 at point 𝑢 if, for all 𝑥 ∈ dom(𝐸), the
following holds:

𝐸(𝑥) ≥ 𝐸(𝑢) + 𝑔𝑇 (𝑥 − 𝑢) (2.6)
Here dom(𝐸) ∶= {𝑢 ∈ ℝ𝑛

|𝐸(𝑢) < ∞} ist the domain of 𝐸. The inequality in (2.6)
ensures that the linear function defined by the subgradient 𝑔 at 𝑢 always lies below (or on)
the graph of 𝐸. 𝜕𝐸 is the set of all subgradients, and leads to the nessecary optimality
condition of

0 ∈ 𝜕𝐸(𝑢̂). (2.7)
A desired property for optimization problems is the convexity of the given cost function
𝐸, simplifying the search process for the optimum of the cost function. Assuming that a
minimizer exists, a local minimum of a convex functions is also a global one, while for
strictly convex functions the minimum is unique [29].
Definition 2. A set 𝐶 is convex if the line segment between any two points in 𝐶 lies entirely
within the set,

𝜆𝑢 + (1 − 𝜆)𝑣 ∈ 𝐶, (2.8)
for all 𝑢, 𝑣 ∈ 𝐶 and all 𝜆 ∈ [0, 1].

Definition 3. A function 𝐸 ∶ 𝐶 → ℝ is convex if for all 𝜆 ∈ [0, 1]:

𝐸(𝜆𝑢 + (1 − 𝜆)𝑣) ≤ 𝜆𝐸(𝑢) + (1 − 𝜆)𝐸(𝑣), (2.9)
for all 𝑢, 𝑣 in its domain, whereby the domain 𝐶 is a convex set. A function is called strictly
convex if the strict inequality holds for all 𝜆 ∈]0, 1[ and 𝑣 ≠ 𝑢.

For an energy function to converge towards an optimum, it is essential that the mini-
mizer 𝑢̂ exists at all. For a continuous and convex energy function, coercivity implies the
existence of a minimizer.
Definition 4. A function 𝐸 ∶ ℝ𝑛 → ℝ ∪ {∞} is coercive, if

lim
‖𝑢‖→∞

𝐸(𝑢) → ∞. (2.10)

So, the coercivity of a function ensures that it does not decrease indefinitely as its input
grows and guarantees the existence of a minimizer for continuous, convex and coercive
functions 𝐸.

10
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2.4 First-Order Optimization

In the following we will first define two function properties (𝐿-smoothness and lower semi-
continuity), that play an important role for the opimization of convex energy functions,
followed by the introduction of iterative descent methods with the objective to find the
minimizer of an energy formulation. It follows a section about proximal methods and the
Moreau-Yosida regularization, which become an important component in Chapter 7.

2.4.1 Function Properties: Smoothness and Semi-Continuity

Lipschitz continuity is an important function property, which intuitively prevents a function
from having steep parts. Essentially, it is a measure of the behavior of a function in an
interval between two points, where the distance of its function values in the two function
points is bounded.
Definition 5. A function 𝐸 ∶ 𝐶 ⊂ ℝ𝑛 → ℝ𝑚 is Lipschitz continuous with a Lipschitz
constant 𝐿 if the following holds true,

‖𝐸(𝑢) − 𝐸(𝑣)‖2 ≤ 𝐿‖𝑢 − 𝑣‖2, (2.11)
for all 𝑢, 𝑣 ∈ 𝐶 .

Moreover, if the gradient of a differentiable function ∇𝐸 is Lipschitz continuous, the
function is called 𝐿-smooth. The property of 𝐿-smoothness states that gradients of an
energy function 𝐸 do not change too fast and is useful for optimization methods, e.g. it is
an important factor for the convergence of the gradient descent.
Definition 6. A function 𝐸 ∶ 𝐶 ⊂ ℝ𝑛 → ℝ𝑚 is 𝐿-smooth with a Lipschitz constant 𝐿 if
the following holds true,

‖∇𝐸(𝑢) − ∇𝐸(𝑣)‖2 ≤ 𝐿‖𝑢 − 𝑣‖2, (2.12)
for all 𝑢, 𝑣 ∈ 𝐶 .

The property of lower semi-continuity in a function is a weaker property than con-
tinuity. Continuous functions are always lower semi-continuous, but for discontinuous
functions, lower semi-continuity ensures that the point at which the jump happens takes
the smallest possible value. Formally, this can be formulated as follows, using the limit
inferior [206].
Definition 7. A function 𝐸 ∶ ℝ𝑛 → ℝ ∪ {∞} is lower semi-continuous, if for all 𝑣

lim inf
𝑢→𝑣

𝐸(𝑢) ≥ 𝐸(𝑣), (2.13)

2.4.2 Iterative Descent Methods

Iterative descent methods are often used to solve energy minimization methods, as given
in (2.2). The objective is to find a minimizer of an energy function 𝐸, with update steps
of the form

𝑢𝑘+1 = 𝑢𝑘 − 𝜏𝑑𝑘, (2.14)
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where 𝜏 ∈ ℝ is the step size, and 𝑑𝑘 ∈ ℝ𝑛 the update step. Widely used to solve com-
puter vision-related optimization problems are the optimization method gradient descent
and its variants. Gradient descent offers an iterative approach where the update steps are
computed using the gradient of the objective function at the current point 𝑢𝑘, resulting in
the update step 𝑑𝑘 = ∇𝐸(𝑢𝑘). It converges to a minimizer under the condition that 𝐸 has
a minimizer, is convex and 𝐿-smooth for a step size 𝜏 ∈]0, 2

𝐿
[, depending on the Lipschitz

constant of ∇𝐸.

Backtracking Line-Search

If the Lipschitz constant𝐿 is unknown, methods like backtracking line-search [29] provide
a possibility to approximatly calculate the step size 𝜏 each iteration. The basic idea is to
decrease 𝜏 when a certain condition is not fulfilled in each iteration. For gradient descent
𝜏 will be decreased by a predefined factor 0 < 𝛽 < 1 as long as the inequality

𝐸(𝑢𝑘 − 𝜏∇𝐸(𝑢𝑘)) ≤ 𝐸(𝑢𝑘) − 𝛼𝜏‖∇𝐸(𝑢𝑘)‖2 (2.15)
for 0 < 𝛼 < 1 does not hold. For a more general formulation refer to [29].

Related Variants

Besides gradient descent, there are many related variants, such as Nesterov’s accelerated
gradient descent [305], originally published in [220], the gradient projection method [282,
258], which is suitable for set-constrained problems for convex, closed sets 𝐶 ∈ ℝ𝑛, pro-
jecting after each iteration onto the given set 𝑢𝑘+1 = Π𝐶(𝑢𝑘− 𝜏∇𝐸(𝑢𝑘)), or the conditional
gradient descent [102], also for minimizing the objective function over a set 𝐶 [32]. Fur-
ther iteratives techniques are stochastic methods, e.g. stochastic gradient descent, and are
often used in learning based approaches (see Chapter 3). While gradient descent con-
verges for convex, 𝐿-smooth functions, the property of smoothness is not always given.
The proximal gradient descent [40], which will be discussed in the next section, is conver-
gent for functions that can be divided into two subproblems: a convex, smooth problem
and a possibly non-differentiable problem. An accelerated variant is given in [21].

2.4.3 Proximal Methods

Let us consider problems that are not differentiable, but can be split into two functions of
the form 𝐺 = 𝐹 + 𝐸, for convex and 𝐿-smooth functions 𝐹 , and convex, possibly non-
differentiable functions 𝐸. The proximal gradient descent [40] is appropriate for such
problem scenarios. This form of problems is particularly interesting for energy minimiza-
tion problems with an 𝐿-smooth data term and a non-smooth and convex regularization
term, as e.g. TV. The update step of proximal gradient descent, calculates the gradient
descent step, surrounded by the proximal operator prox𝐸 ,

𝑢𝑘+1 = prox𝜏𝐸(𝑢𝑘 − 𝜏∇𝐹 (𝑢𝑘)). (2.16)
The proximal operator can be been as a tradeoff between minimizing the energy 𝐸, and
predicting 𝑣 to be close to 𝑢, and is defined by

prox𝜇𝐸(𝑢) = argmin
𝑣

𝐸(𝑣) + 1
2𝜇

‖𝑢 − 𝑣‖2, (2.17)
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for a fixed parameter 𝜇, and besides the (accelerated) proximal gradient method [21], is
at the heart of several techniques such as the primal-dual algorithm [48] or the alternating
direction method of multipliers (ADMM) [103].

In the special case of 𝐹 = 0, the proximal gradient descent algorithm is called the
proximal point algorithm:

𝑢𝑘+1 = prox𝜏𝐸(𝑢𝑘), (2.18)

2.4.4 Moreau-Yosida Regularization

Closely related to the proximal operator (2.17) is the Moreau-Yosida regularization (or
Moreau envelope), also defined in [162, 250].
Definition 8. Let 𝐸 ∶ ℝ𝑛 → ℝ∪{+∞} be a lower semi-continuous, proper function, then
𝐸𝜇(𝑢) is the Moreau-Yosida regularization of 𝐸 with respect to a regularization parameter
𝜇 > 0, with

𝐸𝜇(𝑢) = inf
𝑣

𝐸(𝑣) + 1
2𝜇

‖𝑢 − 𝑣‖2. (2.19)
In a convex setting, 𝐸𝜇 can be seen as a convex and smooth approximation of a possi-

bly non-differentiable function 𝐸 [250]. The parameter 𝜇 > 0 influences the degree of its
smoothness. While a small 𝜇 yields a smooth approximation of the original function𝐸, for
decreasing𝜇, the approximation𝐸𝜇 becomes a closer representation of𝐸. This smooth be-
havior plays a role in specifying the Moreau-Yosida regularization’s 𝐿-smoothness, where
the Lipschitz constant of 𝐸𝜇 depends on the choice of 𝜇, i.e. 𝐿 = 𝜇−1.

Example on the Huber Function

The Moreau-Yosida regularization of 𝐸(𝑢) = |𝑢|, is the popular Huber function [137],

𝐸𝜇(𝑢) = inf
𝑣

{

|𝑣| + 1
2𝜇

(𝑢 − 𝑣)2
}

=

{

1
2𝜇
𝑢2, |𝑢| ≤ 𝜇,

|𝑢| − 𝜇
2
, |𝑢| > 𝜇

(2.20)

and is a prominent example for the Moreau-Yosida regularization. Figure 2.1 visually
demonstrates this example and shows the behavior of 𝐸(𝑢) and the Huber function in
(2.20), showing the transition between a linear to a quadratic function and maintaining
differentiability at 𝑢 = 0. This example highlights the key property of the Moreau-Yosida
regularization𝐸𝜇, having the same optimum as the corresponding energy function𝐸 given
that 𝐸 is proper, convex, and lower semi-continuous.

Relation to the Proximal Point Algorithm

The replacement of non-smooth energies by their Moreau-Yosida regularization will be of
central importance over the course of this work to make the prediction of iterative update
steps on non-smooth energies possible. As the proximal point algorithm can be inter-
preted as a gradient descent method on the Moreau-Yosida regularization, their relation is
a key component of the methology in Chapter 7. To demonstrate this relationship in the
following section, we first need the concept of the conjugate function.
Definition 9. Given a proper function 𝐸 ∶ ℝ𝑛 → ℝ ∪ {∞}, then the conjugate function
𝐸∗ ∶ ℝ𝑛 → ℝ ∪ {−∞,+∞} of 𝐸 is

𝐸∗(𝑢) = sup
𝑣∈dom(𝐸)

(

𝑢𝑇𝑣 − 𝐸(𝑣)
)

. (2.21)
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Figure 2.1: Example for Moreau-Yosida regularization, showning 𝐸 = | ⋅ | and its
Moreau-Yosida regularization 𝐸𝜇 for 𝜇 = 1, also known as the Huber function (2.20).

Following this definition, the Fenchel inequality as stated in [29], can be directly de-
rived,

𝐸∗(𝑢) + 𝐸(𝑣) ≥ 𝑢𝑇𝑣, (2.22)
which holds for all 𝑢 and 𝑣. An important relation linking the gradient of a function to
the gradient of its conjugate function is given in [248] (Theorem 23.5), which states that
the gradient of the conjugate function 𝐸∗, at a point 𝑢, is the argument 𝑣 that maximizes
𝑢𝑇𝑣 − 𝐸(𝑣).

To demonstrate the relationship between the Moreau-Yosida regularisation and the
Proximal Point algorithm, let us consider the definition of the Moreau-Yosida regularisa-
tion in Definition 8.

𝐸𝜇(𝑢) ∶= min
𝑣∈𝑉

𝐸(𝑣) + 1
2𝜇

‖𝑣 − 𝑢‖2 (2.23)

=
‖𝑢‖2

2𝜇
+ min

𝑣∈𝑉

{

𝐸(𝑣) +
‖𝑣‖2

2𝜇
−

⟨𝑣, 𝑢⟩
𝜇

}

(2.24)

=
‖𝑢‖2

2𝜇
− sup

𝑣∈𝑉

{

⟨𝑣, 𝑢⟩
𝜇

−
(

𝐸(𝑣) +
‖𝑣‖2

2𝜇

)}

(2.25)

=
‖𝑢‖2

2𝜇
− 1

𝜇
sup
𝑣∈𝑉

{

⟨𝑣, 𝑢⟩ −
(

𝜇𝐸(𝑣) +
‖𝑣‖2

2

)}

(2.26)

=
‖𝑢‖2

2𝜇
− 1

𝜇

(

𝜇𝐸 +
‖ ⋅ ‖2

2

)∗

(𝑢). (2.27)
The term inside the supremum from the rearranged expression can be identified as a shifted
and scaled version of the conjugate function. Let now ℎ ∶= 𝜇𝐸 + ‖⋅‖22. As ℎ is strongly
convex, we know that ℎ∗ is differentiable and the gradient is

argmax𝑣∈𝑉

{

⟨𝑣, 𝑢⟩ −
(

𝜇𝐸(𝑣) +
‖𝑣‖2

2

)}

= prox𝜇𝐸(𝑢). (2.28)
Therefore the gradient of 𝐸𝜇 can be calculated as

∇𝐸𝜇 = 𝑢
𝜇
−

prox𝜇𝐸(𝑢)
𝜇

(2.29)

=
𝑢 − prox𝜇𝐸(𝑢)

𝜇
, (2.30)
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where the proximal operator is derived from its definition. Rearranging the equation to
have the proximal operator on the left hand side,

prox𝜇𝐸(𝑢) = 𝑢 − 𝜇∇𝐸𝜇(𝑢), (2.31)
shows that the proximal point algorithm (2.18) can be written in terms of gradient descent
on 𝐸𝜇 with step size 𝜇, i.e.

𝑢𝑘+1 = prox𝜇𝐸(𝑢𝑘) = 𝑢𝑘 − 𝜇∇𝐸𝜇(𝑢𝑘). (2.32)
So the proximal point algorithm (2.18) can be interpreted as a conventional gradient de-
scent method on the Moreau-Yosida regularization of the original costs (see, e.g., [234]).

We will use this insight in Chapter 7 to extend a hybrid model- and learning-based
methodology from a setting that requires differentiability to a non-differentiable setting.
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CHAPTER 3

Deep Learning in Imaging

While solving inverse problems by classical model-based techniques requires a fundamen-
tal understanding of the forward process, in recent decades, many (inverse) problems have
been solved by data-driven neural networks, as image denoising [331, 318, 333, 292], clas-
sification [156, 169], super-resolution [81, 151, 273], magnetic resonance imaging [325]
or image segmentation [193]. Feedforward networks can be seen as nonlinear functions
𝜃, that are composed of multiple layers and aim to map given (corrupted) input data 𝑓 to
an appropriate output 𝑢,

𝜃(𝑓 ) = 𝑢, (3.1)
imitating the inversion of a forward model of an imaging problem, where 𝜃 is the parame-
trization of the neural network. Please note the difference between machine learning and
classical energy minimization methods, that the latter ones optimize the variable 𝑢, which
in the end also reflects the solution, while the goal of deep learning techniques is to learn
a parametrization 𝜃 of an unknown function 𝜃.

The training of neural networks can be categorized into supervised and unsupervised
learning strategies. In supervised learning strategies, the network is trained on a labeled
dataset where each network input is paired with the corresponding known output/label.
Unsupervised deep learning techniques train neural networks without the use of labeled
data, allowing networks to find patterns or clusters in input data on their own. We, how-
ever, will not discuss unsupervised learning since it is outside the scope of the learning
methods in this thesis. Please see [58] for additional information on this subject.

3.1 Supervised Learning and Core Models

In the context of supervised learning, neural networks are designed to learn from a dataset
or set of observations 𝑡 = {(𝑥𝑖, 𝑦𝑖)}𝑚𝑖=1, where 𝑡 is the training dataset, consisting of 𝑚
data elements. The elements 𝑦𝑖 are annotations that correspond to specific input data 𝑥𝑖.The primary objective of the training is to optimize the neural network’s weights 𝜃, so that
it correctly maps the data points 𝑥𝑖 to their corresponding outputs 𝑦𝑖,

𝜃(𝑥𝑖) = 𝑦𝑖, (3.2)
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by minimizing the expected error of the neural network with respect to the parameters 𝜃,
min
𝜃

𝐸(𝜃), with 𝐸(𝜃) = 𝔼(𝑥𝑖,𝑦𝑖)∼𝑡
(𝜃(𝑥𝑖), 𝑦𝑖), (3.3)

where the data samples are drawn from the training dataset. The loss function  depends
on the task and measures the error between the network’s prediction 𝜃(𝑥𝑖) and the true
annotation 𝑦𝑖. Common choices of loss functions for regression tasks such as image de-
blurring [224] and image denoising [331, 142] include the squared 𝓁2 norm, measuring
the average squared difference between the network outputs and the true annotations, and
the 𝓁1 norm, known for its robustness to outliers. If a balance between the 𝓁1 and 𝓁2 norm
is desired, the Huber loss [137] offers a good alternative.

Most widely used for classification tasks, including image segmentation, is the cross-
entropy loss, which has been used in [14] for the SegNet segmentation network. The cross-
entropy loss measures the dissimilarity between the true distribution 𝑝 and the predicted
distribution 𝑞 over all classes 𝑘 of the classification or segmentation task and is given by
(𝑝, 𝑞) = −

∑

𝑘 𝑝(𝑘) log 𝑞(𝑘). Ronneberger et al. [255] and Cicek et al. [66] leverage
a weighted variance of the cross entropy loss for U-Net and 3D U-Net, while a balanced
cross-entropy loss, is discussed in [319]. Other works use the dice loss [212, 265], which
is, among further loss functions, discussed in [293]. For more detail on loss functions for
deep neural networks, refer to [22]. There also exist several optimization algorithms for
minimizing loss functions, including the widely used stochastic gradient descent and the
adaptive moment estimation (Adam) optimizer [152], which we extensively used in our
work. Please see [285] for a discussion on further optimization methods.

Widely used for image-related applications, is the convolutional neural network (CNN)
architecture, which consists of convolutional layers to learn spatial features via learnable
filters. One of the pioneering CNN, introduced by LeCun et al. [163], was designed for
handwritten digit recognition. As research progressed, there was an interest to further im-
prove the architecture’s structure for better prediction accuracy and reduction of computa-
tional costs. In the following, we will highlight those CNN architectures that will become
important in the course of this work and refer for a more complete overview to [117, 173].
An important work, proposed by He et al. [129], addresses the observation that deep neu-
ral networks often show a decrease in accuracy with increasing depth. He et al. discussed
the Residual Network ResNet as a solution and introduced the idea of skip connections,
that allow direct connections between layers, skipping some intermediate layers. Another
widely known CNN architecture is the U-Net [255], which was originally designed for
biomedical image segmentation and consists of a downsampling and an upsampling path,
the latter containing connections with the corresponding feature map from the downsam-
pling path. With a focus on more computational efficiency and less memory requirement,
Paszke et al. [236] proposed the E-Net, designed for more lightweight applications, such
as mobile applications. For a more extensive receptive field of the model, without the
need for increasing the number of parameters, the DeepLabv3 network [55] consists of
atrous/dilated convolutions, where the kernel has gaps between its elements. In recent
developments within the field of computer vision, new architectures are based on trans-
former networks that were originally developed for natural language processing [301] and
have adapted their attention mechanisms for images [85]. In addition, the combination
of vision transformers with CNNs has been the focus of various research studies [76, 93,
322]. While one strand of research has focused on improving the network architecture,
other research focused on the robustness of neural networks against adversarial attacks,
which will be discussed in the following section.
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Figure 3.1: This figure is taken from Goodfellow et al. [112]. It shows an example of an
adversarial attack using fast gradient sign method (FGSM), which leads to the misclassi-
fication of the adversarially perturbed image. While the image on the left is (correctly)
identified as a panda, the corresponding adversarial example on the right, displaying a
perturbed version of the panda from the left image, is classified as a gibbon with high
confidence.

3.2 Model Robustness

Nowadays, although neural networks are being widely used with great success, they can
be vulnerable to adversarial attacks, where small changes in the input image are shown
to completely alter the prediction by the neural network. This becomes an important as-
pect as learning-based approaches are used for safety-critical applications, such as human
tracking [277], robotics [118], autonomous driving tasks [27], and in connection to that,
sign recognition [67].

In Chapter 6, we apply adversarial training on a classification network to mitigate the
effects of minor, imperceptible changes in the input on the neural network’s classification
results. This step is crucial for the success of our proposed method.

3.2.1 Adversarial Attacks

The goal of adversarial attacks is to find adversarial examples 𝑥adv, within a proper distance
from the original input sample, that lead to incorrect predictions by a neural network. The
most popular distance metric to regulate the distance of the adversarial examples from the
original sample is the 𝓁∞ norm [246].

It was first discovered by Szegedy et al. [290] that adding a perturbation to an im-
age can lead to its misclassification by a classification network, thereby highlighting the
vulnerability of these networks to adversarial examples. They demonstrated that the box-
constrained L-BFGS method can identify such adversarial examples, where the pertur-
bation may not even be visible for a human. Subsequently, Goodfellow et al. [112] con-
ducted experiments on adversarial training and proposed the fast gradient sign method
(FGSM) for improving robustness against adversarial attacks by creating adversarial ex-
amples 𝑥adv = 𝑥 + 𝜂, within a 𝓁∞ distance, by

𝜂 = 𝜖 sign(∇𝑥(𝜃(𝑥), 𝑦)) (3.4)
for small values of 𝜖. Here, 𝑥 represents the network input, 𝑦 the corresponding annotation,
and 𝜃 the network weights. A popular example of an image misclassified by FGSM is
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illustrated in Figure 3.1. To not only aim for misclassification by a neural network but also
to increase the probability that a neural network predicts a specific target 𝑦target, there exist
targeted attacks [159] such as targeted FGSM,

𝑥adv = 𝑥 − 𝜖 sign(∇𝑥(𝜃(𝑥), 𝑦target)), (3.5)
predicting a gradient step towards the prediction of target label 𝑦target.

While one-step methods, like FGSM, generate adversarial examples in a single step,
multi-step methods aim to predict adversarial examples iteratively. A popular iterative
attack, derived from FGSM, is the basic iterative method (BIM) introduced by Kurakin et
al. [160] ,

𝑥adv
𝑘+1 = clip𝑥,𝜖(𝑥adv

𝑘 + 𝛼sign(∇𝑥(𝜃, 𝑥adv
𝑘 , 𝑦))), (3.6)

where a clipping operation in each iteration ensures that the result remains elementwise
in the 𝓁∞ ball neighborhood, e.g. (clip𝑥,𝜖(𝑥adv))𝑖 ∈ [𝑥 + 𝜖, 𝑥 − 𝜖]. Similar to (3.6), but
with different initialization strategy, is the projected gradient descent (PGD) attack of
Madry et al. [198]. Further attack models are variations of FGSM, like the Momentum-
based Iterative Fast Gradient Sign Method (MI-FGSM) [83], distributionally adversarial
attack [341], Carlini and Wagner (C&W) attacks [46], the Jacobian based saliency map
attack (JSMA) [233], and the DeepFool [215]. All of these attacks imply that the attacker
is familiar with the targeted neural network and its weights, which is the exact description
of White-Box attacks – a categorization based on the attacker’s knowledge. Further cate-
gories are Gray-Box attacks, where the attacker only partially knows the target model, and
Black-Box attacks, where the attacker is unaware of the network. The ability to transfer
adversarial examples between models has been investigated in [232, 190], making them
adaptable for both Gray-Box and Black-Box scenarios. Since adversarial examples were
introduced by Szegedy et al. [290], intensive research was devoted to methods that per-
form adversarial attacks, e.g. by learning [20]. For a summary of various attack strategies,
please refer to [246, 19].

3.2.2 Adversarial Defence

A common strategy to make neural networks robust against adversarial attacks is to train
them with adversarial examples, which we also do in Chapter 6. This can be formulated
as a min-max problem as proposed by Madry et al. [198],

min
𝜃

𝐸(𝜃), where 𝐸(𝜃) = 𝔼(𝑥,𝑦)∼

[

max
𝜂∈𝑆

(𝜃(𝑥 + 𝜂), 𝑦)
]

(3.7)

where the inner problem focuses on maximizing the loss  by adding perturbations 𝜂
from a set of allowed perturbations 𝑆 to the data sample 𝑥, drawn from a distribution
. The inner problem can be addressed using adversarial methods, as discussed in Sec-
tion 3.2.1, such as the FGSM. The outer problem refers to the training of a neural network
by minimizing𝐸(𝜃)with respect to the network weights 𝜃. A robust training strategy using
FGSM, proposed by Goodfellow et al. [112], forms a weighted composition of the training
loss with sample 𝑥, and the corresponding adversarial sample 𝑥adv. More robustness has
been shown for adversarial training using PGD [198]. Several other defence mechanisms
against adversarial attacks build on approaches like denoising, which aim to reduce the im-
pact of noise on the network features [323, 175], provable defense strategies, which seek
to maintain a given accuracy level [242], and the sparsification of network models [121].
A summary of various defence approaches is given in [246].
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3.2.3 Model Robustness in Computer Vision

In addition to the original idea of attacking classification networks [112], adversarial at-
tacks and robustness were explored in various computer vision-related topics. This in-
cludes the field of object tracking [140, 174, 316], where Xie et al. [316] combined an
adversarial attack on object tracking, with one on semantic segmentation, leading to incor-
rect image segmentations. Further research in segmentation also demonstrated the possi-
bility of removing a target class from the result while keeping the rest of the segmentation
correct [132]. Studies in super-resolution induced perturbations into low-resolution im-
ages to degrade the quality of high-resolution images [64]. Moreover, there are adversarial
attacks on graph matching, e.g. Zhang et al. [338] induced perturbations into the graph
structure to push matching nodes towards dense regions, making them indistinguishable
from their neighbors and reducing the quality of matching. A lot of work has been done
in the direction of face recognition, which is important for surveillance or access control,
where Dong et al. [84] discussed black-box adversarial attacks on decision-based face
recognition, and Zhong et al. [342] investigated and improved the transferability of ad-
versarial examples for face recognition. An interesting approach is proposed by Sharif et
al. [270], discussing an adversarial attack on face recognition systems that allows a per-
son to impersonate another person by wearing printed eyeglasses. Adversarial attacks have
also been studied for medical-related imaging, mostly for classification and segmentation
tasks [82, 101, 235].

3.3 Deep Learning for Model-Based Methods

While deep learning models have shown strong performance in computer vision tasks,
they are limited by a lack of theoretical understanding and an absence of guarantee and
control over network’s predictions. To simultaneously take advantage of the mathematical
understanding of the behavior of classical model-based methods and data-based learned
networks, efforts in the direction of integrating data-based learned networks into iterative
optimization algorithms have been made in the past few years. An effective way for many
applications to combine model-based and learning-based methods is by incorporating a
learning-based denoiser into the model-based approach, as has been done for Plug-and-
play Priors [302], and for Regularization by Denoising [253]. Besides the inclusion of
learning-based denoisers, in the following sections we will cover further approaches that
exploit learned regularizers based on training-data in model-based methods, and deep im-
age prior (DIP) [296], where the structural design of a neural network serves as an implicit
prior. The structural design of a neural network also plays a key role in unrolling tech-
niques, where model-based iteration steps are encoded by neural networks. Since conver-
gence is only partially achieved by the aforementioned methods, further discussion will
be extended to hybrid methods that come with convergence guarantees.

3.3.1 Plug-and-Play Prior

The Plug-and-play prior framework was first introduced by Venkatakrishnan et al. [302]
in 2013, aiming to integrate prior denoising methods, including learned networks, into
optimization problems. The framework is based on the concept of decoupling the forward
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model from the prior  in an energy minimization formulation,
𝑢̂ = argmin

𝑢
𝐸(𝑢) + 𝛼(𝑢), (3.8)

which is then reformulated as
(𝑢̂, 𝑣̂) = argmin

𝑢,𝑣
𝐸(𝑢) + 𝛼(𝑣), s.t. 𝑢 = 𝑣. (3.9)

This formulation can be optimized using ADMM [28, 103]. In this method, the forward
model and the prior are optimized separately, with the key modification of replacing the
proximal operator in ADMM with a denoising algorithm. Such, the Plug-and-play frame-
work combines proximal algorithms with denoising priors.

For this purpose several denoising algorithms were proposed, especially denoising by
data-driven neural networks [207, 247], such as Zhang et al. [330], introducing a deep
denoiser prior specifically for Plug-and-play image restoration. The concept of Plug-and-
play has been used in many algorithms. This includes the primal-dual algorithm [48, 229],
used in [131] for demosaicking, and FISTA [21, 144]. This approach has also been used
for several applications, such as super-resolution [35, 332], Poisson denoising [254], color
denoising and deblurring [330].

Other studies have focused on the convergence analysis of Plug-and-play methods. Un-
der assumption of a nonexpansive denoiser, Sun et al. [287] analyzed the convergence of a
variant of Plug-and-play based on the proximal gradient method. Followed by this, Ryu et
al. [259] analyzed the convergence properties of two other Plug-and-play variants (Plug-
and-play forward-backward splitting and Plug-and-play-ADMM), demonstrating conver-
gence under the condition that the learned denoiser satisfies a Lipschitz condition. In their
paper they provided guidance on enforcing this condition during the training of the de-
noiser. More recently, Al-Shabili et al. [6] discussed the convergence of Plug-and-play
on the Bregman proximal gradient method, assuming a strongly convex data-fidelity term
and a Lipschitz continuous network.

3.3.2 Regularization by Denoising

Another approach for the explicit integration of (possibly pre-trained) denoiser priors into
iterative algorithms has been introduced by Romano et al. [253]. They proposed a method
called Regularization by Denoising (RED) to generate regularizers (𝑢) from denois-
ers 𝐷(𝑢),

(𝑢) = 1
2
𝑢𝑇 (𝑢 −𝐷(𝑢)), (3.10)

penalizing the residual difference and cross-correlation between 𝑢 and the residual. This
work has inspired several subsequent studies using neural network architectures for noise
reduction (or similar) in the same framework. For example, Metzler et al. [210] used the
framework of RED on phase retrieval problems, while instead of denoising, Liu et al. [181]
proposed regularization by artifact-removal and showed their results on 3D magnetic res-
onance imaging (MRI). Further research [313, 286] discussed the application of RED on
large images, while including a study on the convergence. A condition on the convergence
of RED has been given in [245], showing that denoisers as DnCNN [331] do not guarantee
convergence, as they need a symmetric Jacobian. While many denoisers do not meet the
necessary criteria [245], Cohen et al. [69] proposed a class of denoisers that fulfill this
condition.
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3.3.3 Learned Regularizer

Besides the inclusion of learning-based denoisers, the integration of learning into model-
based methods can also be realized by using neural networks as regularization functions.
This approach is discussed by Lunz et al. [195] on a network that is trained to distinguish
between training images and unregularized reconstructions. The objective of this approach
can be expressed as:

argmin
𝑢

𝐸(𝑢) + 𝜆𝜃(𝑢), (3.11)

for a pre-trained neural network 𝜃 with fixed weights 𝜃. Li et al. [168] proposed the Net-
work Tikhonov (NETT) method, which defines the regularizer through a learned neural
network. They also conducted a convergence analysis, demonstrating both convergence
and convergence rate under mild assumptions. Following from this, Obmann et al. intro-
duced a deep synthesis version of NETT and augmented NETT to overcome restrictions
by using an augmented form of the regularizer [227, 226]. Alberti et al. [7] investigated
unsupervised and supervised learning frameworks to learn the optimal Tikhonov regu-
larizer. Other type of learned regularizers are discussed by Kobler et al. [154] who de-
veloped a learnable generic multi-scale regularizer, while Mukherjee et al. [217] studied
data-driven convex regularizers. Duff et al. [91] has explored the integration of generative
regularizers, incorporating a generative adversarial network (GAN) into the regularization
framework.

Efforts to use a data-driven, learned regularizer have also been proposed in [86] for
computed tomography (CT) reconstruction. For additional details, please refer to Chap-
ter 6, where we discuss the regularization of an optimization problem with a learned prior.

3.3.4 Deep Image Prior

Moreover, certain methods use the structural design of neural networks to act as a form of
regularization. An important publication on this topic is the work of Ulyanov et al. [296],
introducing DIP networks, where the network structure, even without training, favors the
generation of images with realistic high-level features. To reconstruct an image 𝑢̂ from its
corrupted version 𝑓 one uses an untrained network 𝜃 which takes random noise 𝑧 as input
and typically optimizes a cost function 𝐸 (without an explicitly defined regularization
term) over the network:

𝜃̂ = min
𝜃

𝐸(𝜃(𝑧); 𝑓 ) (3.12)
Here the goal is to recover the image by 𝑢̂ = 𝜃̂(𝑧). Efforts to improve DIP have led to the
integration of additional regularizations. Mataev et al. [205] included an explicit prior
based on the RED regularizer (see (3.10)), while Liu et al. [182] explicitly added TV
regularization to DIP for image restoration. Similarly, Van et al. [298] included a learned
regularizer to DIP for compressed sensing. To improve the potential of DIP for image
denoising, Asim et al. [11] propose to apply DIP on noisy image patches, exploiting self-
similarities in images. Besides the work on additional priors to DIP, Chen et al. [60]
worked on network architectures based on U-Net that capture stronger deep image priors.

DIP has been applied in various applications, as for image decomposition tasks such
as dehazing and binary segmentation [104], for adversarial defense methods [147, 75], for
hyperspectral unmixing [244] and for improving image quality of undersampled photoa-
coustic microscopy (PAM) images [304].
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𝑥𝑖𝑛 𝑊𝑓

Π𝛼 𝑊𝑢 + Π𝛼 𝑊𝑢 + ... 𝑥𝑜𝑢𝑡

...

Figure 3.2: This illustration shows the conceptual mapping of each ISTA iteration onto a
distinct neural network layer, where the learnable parameters 𝑊𝑓 and 𝑊𝑢 are integrated
within the layers.

3.3.5 Algorithm Unrolling

Algorithm unrolling or unfolding refers to the connection of learning approaches and it-
erative optimization algorithms by encoding each step of an iterative algorithm as a layer
within a neural network. Originally Gregor and LeCun [113] developed the unrolling tech-
nique for the Iterative Shrinkage Algorithms (ISTA) [21], called Learned ISTA (LISTA),
to improve the efficiency of sparse coding. Their basic idea lies in optimizing

min
𝑢

‖𝐴𝑢 − 𝑓‖2𝐹 + 𝜆‖𝑢‖1 (3.13)

by unrolling the update steps of the corresponding descent algorithm, calculating descent
steps on the data term and applying soft thresholding on these by

𝑢𝑘+1 = Π𝛼(𝑢𝑘 − 𝜏∇(‖𝐴𝑢 − 𝑓‖2𝐹 )) (3.14)
= Π𝛼(𝑢𝑘 − 𝜏𝐴𝑇 (𝐴𝑢𝑘 − 𝑓 )) (3.15)
= Π𝛼((𝐼 − 𝜏𝐴𝑇𝐴)𝑢𝑘 − (𝜏𝐴𝑇 )𝑓 ) (3.16)
= Π𝛼(𝑊𝑢𝑢

𝑘 −𝑊𝑓𝑓 ) (3.17)
where (Π𝛼(𝑣))𝑖 = sign(𝑣𝑖) max(|𝑣𝑖|− 𝛼𝑖, 0) denotes soft thresholding with the threshold 𝛼𝑖depending on 𝜆, and 𝑊𝑢,𝑊𝑓 are substitutions of (𝐼 − 𝜏𝐴𝑇𝐴) and (𝜏𝐴𝑇 ) respectivly. The
general idea of LISTA is illustrated in Figure 3.2, showing the structure of the correspond-
ing unrolling. Here the parameters 𝛼,𝑊𝑢 and 𝑊𝑓 are learned by a given dataset. Unlike
shown in Figure 3.2, it is also possible that each iteration (layer) can be parameterized
differently.

Following [113], several studies have explored the unrolling concept, as Hershey et
al. [133] propose the idea of unrolling iterations as layers within a deep neural network,
while untying model parameters across these layers, where each iteration can have its
own set of learnable parameters. Classical optimization algorithms have been adopted
as network frameworks in a variety of image processing and reconstruction applications.
These include blind image deblurring [172], super-resolution of images [311], and im-
age restauration [266, 61]. Moreover, these algorithms have been used for reconstruction
tasks that are especially interesting in the medical field such as CT [2] and MRI image
reconstruction [284, 324, 135]. Over the years, several classical optimization algorithms
have been reformulated as network frameworks, as Hammernik et al. [124] proposed
unrolled gradient descent scheme for MRI reconstruction, Chen et al. [61] proposed a
trainable diffusion model by unrolling gradient descent steps for image restauration, and
further analysis on the learned step size for unrolled gradient descent has been done by
Takabe and Wadayama [291]. In addition to gradient descent, unrolling techniques have
also been applied to other optimization algorithms, such as PDHG (Primal-Dual Hybrid
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Gradient) [2]. Further work [284, 324] discussed architectures, which are derived from the
iterative procedures in ADMM, Lohit et al. [191] unrolled the projected gradient descent
(PGD) algorithm, and Mardani et al. [201] discussed unrolled proximal gradient descent,
Hosseini et al. [135] with skip connections.

Few works also deal with the convergence analysis of unrolling schemes. In 2018,
Chen et al. [57] performed a convergence analysis for the unrolling strategy LISTA by
inducing constraints on its structure and thereby proving linear convergence, while Liu
et al. [185] proposed a converging unrolling framework. To increase the number of un-
rolling iterations that can be covered by unrolling methods which are often limited by com-
putational resources, Gilton [109] proposed to use deep equilibrium architectures [18] for
unrolling with provable convergence guarantees.

3.3.6 Further Hybrid Methods with Convergence Guarantees

In addition to approaches on learning-based priors and unrolling schemes, there are meth-
ods in which the iterative update step of a minimization approach is predicted by a data-
driven neural network, that still ensure convergence to a minimizer of an energy function.
In this context, Heaton et al. [130] demonstrated convergence in a learning-to-optimize
scheme. This is achieved by examining their data-driven update steps and, when required,
substituting them with conventional update steps to guarantee convergence. Moreover,
studies by Liu et al. [184, 187, 186] proposed the usage of network-based update steps and
controlled and corrected convergence behavior through a feedback mechanism. Specif-
ically, in [187] they focused on the application of compressive sensing in MRI, while
in [186] they targeted image enhancements. In contrast to these methods, the work of
Möller et al. [214] does not rely on fallback mechanisms, but instead each update is ex-
clusively predicted by a neural network. Möller et al. proposed training a neural network
to predict the update directions of a energy function and guarantee convergence, under
certain conditions on the energy function. This approach is combined with Plug-and-play
networks in the subsequent work of Sommerhoff et al. work [280]. Yet, both approaches
fundamentally rely on the ability to differentiate the energy and obtain reasonable step
sizes (e.g. via Lipschitz continuous gradients with reasonably small Lipschitz constants).

In our work on energy dissipating networks for non-smooth energies [89], we tackle the
aforementioned drawbacks by harnessing the properties of the Moreau-Yosida regulariza-
tion, e.g. for applications using regularizers and robust losses, involving non-smooth func-
tions. We address this topic in Chapter 7.

3.4 Diverse and Explorable Reconstruction

In learning-based approaches to image restoration or reconstruction, a neural network typ-
ically maps each input to one single result. But instead of a single result, there could be
multiple feasible reconstructions for image restoration problems. For instance for super-
resolution tasks, multiple high-resolution images could feasibly correspond to the same
low-resolution input, as shown in Figure 3.3. Recently, there has been some research fo-
cused on expressing and exploring the diverse space of valid solutions to computer vision
tasks, including super-resolution, imagine decompression, inpainting, and deblurring.

Super-resolution refer to the problem of reconstructing a high-resolution image 𝑢̂ from
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Figure 3.3: This figure is taken from Bahat et al. [16] and shows on the left a low-resultion
image, and multiple corresponding high-resultion images, resulting from the exporable
super-resolution approach in [16], where all high-resultion images are consistent with the
low-resultion image.

a given low-resolution image 𝑓 , s.t.
𝑓 = 𝐻𝑢̂ (3.18)

with 𝐻 being the matrix corresponding to a blur and a subsequent downsampling operator.
The possibility of multiple high-resolution images {𝑢̂1, 𝑢̂2,…} corresponding to the same
low-resolution image 𝑓 , has led to research focused on sampling from the space of poten-
tial high-resolution images. In this context, Lugmayr et al. [194] proposed an approach for
sampling high-resolution images from a learned conditional distribution 𝑝(𝑢|𝑓, 𝜃), given
a low-resolution image 𝑓 . Menon et al. [209] discussed a slightly different method to
obtaining samples of high-resolution images. This method includes sampling from the
latent space of a generative model and identifying images that match the corresponding
low-resolution image when downsampled. Other methods go beyond randomly sampling
the solution space and develop tools to enable users to explore it. Bahat et al. [16] pro-
posed a method that allows a user to explore the solution space in GAN-based image super-
resolution. They proposed to control the manipulation of the output of a super-resolution
model with a control signal, while still guaranteeing data consistency by introducing the
consistency enforcing module (CEM). This means that after applying a blurring and down-
sampling operation to the higher-resolution image, the CEM ensures that the downsampled
image matches the corresponding low-resolution image. Additionally, Bühler et al. [39]
proposed to make an exploration in the context of super-resolution semantically control-
lable using a GAN.

In the field of image decompression, Bahat et al. [17] proposed using a pre-trained digit
classifier to automatically explore the potential decodings corresponding to a compressed
picture of a numerical digit. Furthermore, Guo et al. [120] presented the “one-to-many”
network for image decompression for JPEG-compressed pictures, capable of providing
several reconstruction outcomes for a single compressed input image.

Besides super-resolution and image decompression, methods for diverse reconstruc-
tion have been proposed for several other tasks. Dey et al. [78] have been working on
inpainting problems, dealing with images of faces, where regions of the faces, e.g. mouth
or the eye, are obscured. They aimed to produce multiple 3D reconstructions of the faces
by exploring the latent space representations of obscured areas and pushing towards di-
verse results for those regions yet remaining consistent with the visible area. Cai et al. [43]
proposed work on image deblurring, addressing multiple levels of image degradation. To
do so, they use a GAN, controlled by a condition vector, allowing modifications to the
restored image. In other work on diverse denoising, Prakash et al. [239] proposed to use
a variational autoencoder for sampling denoising solution from a predicted a distribution
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in latent space.
In Chapter 6, which is based on [86], we discuss an explorable reconstruction ap-

proach, focusing on the reconstruction of CT scans. We explore a variety of underdeter-
mined reconstructions that maintain high data consistency, all referring to different levels
of medically concerning reconstructions.

26



CHAPTER 4

Imaging Basics and Applications

In the following sections, we will introduce all applications that will be important to this
thesis. We will address the forward problem of computed tomography (CT), discuss
filtered backprojection (FBP) and classical iterative reconstruction methods, as well as
learning-based methods. A section about segmentation will cover model- and learning-
based image segmentation approaches and dive deeper into a relevant iterative reconstruc-
tion method on spatially varying color distributions. Section 4.3 addresses assignment
problems, including approaches to permutation learning, the linear assignment problem
(LAP), and the quadratic assignment problem (QAP). The last section introduces 3D shape
matching and functional maps.

4.1 Computed Tomography

CT scanning is an imaging technique in which multiple X-ray beams pass through an ob-
ject’s body from various angles and offsets, capturing the internal composition by measur-
ing the attenuated radiation on the opposite side. The reconstruction of CT scans, based
on the measured attenuations, can be written as a linear inverse problem, where the Radon
transform serves as the forward operator.

4.1.1 Radon Transform

The Radon transform of a two-dimensional function, e.g. an image 𝑢 ∶ ℝ2 → ℝ, is com-
puted by integrating along the lines that intersect 𝑢. These lines, corresponding to the
X-rays in CT, are defined by their angles 𝜌 and offsets 𝑠, such that a line 𝑙 can be parame-
terized by the tupel (𝜌, 𝑠):

𝑙(𝜌, 𝑠) = {𝑧 ∈ ℝ2
|⟨𝑧, 𝜔(𝜌)⟩ = 𝑠}, (4.1)

where 𝜔(𝜌) = (cos(𝜌), sin(𝜌)) is a unit vector, whose direction depends on the angle 𝜌.
Consequently, any point 𝑧 on 𝑙 satisfies the condition where the inner product with the
unit vector 𝜔(𝜌) is equal to the line offset 𝑠.
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𝑠

𝜌
𝜔(𝜌)

𝑙(𝜌, 𝑠)

Image 𝑢

𝜌

𝑠

Sinogram 𝑓

Figure 4.1: Illustration of the idea of the Radon transform (left) and an example of an image
(Shepp-Logan Phantom [272]) 𝑢 (middle) and its corresponding sinogram 𝑓 (right).

Moreover, 𝑙 can be defined by considering the unit vector that is perpendicular to 𝜔(𝜌),
which is expressed as 𝜔̂(𝜌) = (− sin(𝜌), cos(𝜌)):

𝑙(𝜌, 𝑠) = {𝑠𝜔(𝜌) + 𝑡𝜔̂(𝜌) ∶ 𝑡 ∈ ℝ} (4.2)
The underlying intuition is that by varying the parameter 𝑡, it is possible to move along
the line and thus to reach different points on it. For a visualization, please refer to the
illustration in Figure 4.1 on the left, which shows multiple lines 𝑙(𝜌, 𝑠) at a given angle 𝜌
and multiple offsets 𝑠. By integrating along these lines, the Radon transform accumulates
the values of the function 𝑢 along 𝑙(𝜌, 𝑠):

(𝑢)(𝜌, 𝑠) = ∫

∞

−∞
𝑢(𝑠 cos(𝜌) − 𝑡 sin(𝜌), 𝑠 sin(𝜌) + 𝑡 cos(𝜌)) 𝑑𝑡 (4.3)

In a discrete setting, these lines are sampled at multiple points. To capture various
angles and offsets, the Radon transform is expressed as a matrix-vector multiplication of
the matrix version of the Radon operator 𝑅 and the vectorized image 𝑢,

𝑅𝑢 + 𝑒 = 𝑓, (4.4)
where 𝑒 represents additive noise, and the resulting measurement 𝑓 , known as sinogram,
records the attenuated radiation of the X-ray beams. An example of an image and its
corresponding sinogram is shown in Figure 4.1 in the middle and on the right.

4.1.2 Filtered Backprojection

For an infinite number of projection angles 𝜌, the image 𝑢 can be recovered from a noise-
free sinogram 𝑓 (under some mild assumptions) using the inverse Radon transform [241].
In practical settings, however, where the target is projected from a discrete set of 𝑝 angles
and the measurements are noisy, 𝑢 cannot be perfectly reconstructed. One commonly used
approach for approximating 𝑢 is the filtered backprojection (FBP) [99] method, which is
a discretized approximation of the inverse Radon transform and yields a single output 𝑢̂
solving the inverse problem (4.4).

Let 𝑔(𝜌, 𝑠) be a function representing projection data, where 𝑠 is the distance from
the origin to the line of projection, and 𝜌 the angle of the projection. The backprojection
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operation 𝐵, when applied to 𝑔, reconstructs the image at point 𝑧 and can be defined as:

𝐵(𝑔)(𝑧) = 1
𝜋 ∫

𝜋

0
𝑔(𝜌, ⟨𝑧, 𝜔(𝜌)⟩) 𝑑𝜌 (4.5)

Here the integral accumulates the contributions from all projection lines that intersect at
point 𝑧, aiming to reconstruct the image from its projections. The FBP operation applied
to 𝑔 is the backprojection of the filtered projection data and can be expressed as

 (𝑔)(𝑧) = 1
𝜋 ∫

𝜋

0
𝐹 (𝜌, ⟨𝑧, 𝜔(𝜌)⟩) 𝑑𝜌, (4.6)

where 𝐹 (𝜌, ⋅) represents the filtered projection at angle 𝜌. This data is obtained by first
applying the Fourier transform  to the projection,

( 𝑔)(𝜌, 𝑡) = ∫

∞

−∞
𝑔(𝜌, 𝑠)𝑒−𝑖𝑡𝑠 𝑑𝑠, (4.7)

and applying a filter function in the frequency domain. The ramp filter, for example, is a
widely used filter in CT imaging and is expressed in the frequency domain as ℎ(𝑡) = |𝑡|.
The application of the inverse Fourier transform to the product of the ramp filter and the
Fourier-transformed projection yields the filtered projection:

𝐹 (𝜌, ⟨𝑧, 𝜔(𝜌)⟩) = 1
2𝜋 ∫

∞

−∞
|𝑡|( 𝑔)(𝜌, 𝑡)𝑒𝑖𝑡⟨𝑧,𝜔(𝜌)⟩𝑑𝑡 (4.8)

4.1.3 Iterative Reconstruction

Given the health risk that is associated with long exposure to X-rays, there is a high interest
in reducing the exposure for CT scans [34]. Physically, this can be realized by sending a
reduced number of X-ray beams through the measured object/body e.g. by descreasing the
number of projection angles, although reconstructions using methods like FBP and fewer
projection angles 𝜌 typically contain artifacts. To address this problem, many regularized
iterative methods have been developed for CT reconstruction to suppress artifacts and
noisy results. Especially, regularization through TV [136] and its variations [294, 189,
275, 276, 63, 24, 52] are popular for reducing artifacts. Commonly the data term states that
the difference between the Radon transform of 𝑢 and the given data 𝑓 should be minimal
in a least-squares sense while searching for a result that minimizes the TV penalty:

𝑢̃ ∈ argmin
𝑢

TV(𝑢) s.t. ‖𝑅𝑢 − 𝑓‖22 small (4.9)

We also worked on an energy formulation based on this concept in Chapter 6. As TV
itself is not able to distinguish between noise and small structures, and as such possibly
removes structures in a noisy recording, there has been work on integrating dictionary
learning [321, 59] to the iterative reconstruction process, or employing nonlocal regular-
ization [65].

4.1.4 Learning Based Reconstruction

Since the turn of the millennium, researchers have already been applying neural networks
for (sparse-view) CT reconstruction [197, 314, 317], and several approaches have been de-
veloped to incorporate learning methods into the reconstruction. On the one hand, there
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are data-to-image approaches, consisting of end-to-end neural networks, directly predict-
ing a reconstruction based on a sinogram. In this context He et al. [126] proposed a CT
reconstruction network which is pre-trained on the ImageNet dataset [77] and finetuned
on medical data. Other types of methods are image-to-image approaches [337, 157, 143,
53], that apply neural networks as postprocessors to noisy CT reconstructions e.g. from
FBP,

𝑓 = 𝜃( (𝑢)), (4.10)
using different type of networks, like U-Net [143], DenseNet [337] or encoder-decoder
architectures [53]. Instead of reconstructing CT images by deep learning, Han et al. [125]
proposed to learn the residual in the reconstruction, introducing a fast and successful way
of removing artifacts in CT. Xia et al. [315] discussed a framework for both approaches,
data-to-image and image-to-image, that tackles multiple geometries and radiation dose
levels in CT. In another line of work, neural networks are designed to support the iterative
reconstruction schemes via a learned prior as shown in [150] or by using a neural network
to support an iterative reconstruction algorithm using (relaxed) projected gradient descent,
by replacing the projection step with a neural network [122]. Adler et al. proposed CT
reconstruction by an unrolled primal-dual approach [2], and He et al. [127] focused on
developing a learned prior for CT reconstruction using Plug-and-play ADMM.

4.2 Image Segmentation

Image segmentation refers to the problem of dividing an image into meaningful non-
overlapping regions and is a crucial component in many image processing applications. It
plays an important role in the area of computer vision for various tasks like autonomous
driving [167, 295, 274, 100], satellite image segmentation [149, 13], agriculture segmen-
tation [196, 211], gesture recognition [62, 51], and in medical applications [334, 271, 243,
90, 255]. The segmentation process can be categorized into semantic segmentation, where
each pixel is assigned to a specific object class from a predefined set of categories, or in-
stance segmentation, also differentiating between separate objects of the same class [213].

4.2.1 Model-Based Approaches

Well known classical techniques have formulated image segmentation in terms of an en-
ergy minimization problem, e.g., in the form of graph cuts [114, 30], where an image is
expressed as a weighted graph where nodes represent pixels, and edges represent neigh-
borhood relationships between pixels, and segmentation is performed by cutting the graph.
Further, the edge-based segmentation with Snakes [146] iteratively deforms a given con-
tour to fit along an object boundary. Particularly influential in that respect is the model of
Mumford and Shah [218], which forms the basis of the successful variational two-region
segmentation method of Chan and Vese [49] and has been extended to multiple regions in
various works, see e.g. [47, 15]. A common formulation of such approaches involves to
determine a one-hot representation 𝑢̂ ∈ ℝ𝑛𝑦×𝑛𝑥×𝐼 of an 𝐼-region segmentation for an image
𝑓 ∈ ℝ𝑛𝑦×𝑛𝑥×𝑛𝑐 via

𝑢̂ ∈ argmin
𝑢𝑖,𝑗,𝑙∈{0,1},

∑

𝑙 𝑢𝑖,𝑗,𝑙=1
⟨𝑢, 𝑐(𝑓 )⟩ + 𝛼(𝑢), (4.11)

where  denotes a suitable regularization that penalizes irregularities, e.g. the (weighted)
TV [257], and 𝑐(𝑓 ) ∈ ℝ𝑛𝑦×𝑛𝑥×𝐼 are the unary costs with the entry (𝑐(𝑓 ))𝑖,𝑗,𝑙 having some
sort of inverse relation to the estimated likelihood of pixel (𝑖, 𝑗) belonging to class 𝑙.
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The unaries (or data terms) of variational methods have been modeled in various forms
including optimizing for suitable thresholds [49], and estimating it via spectral meth-
ods [221, 71]. Due to the difficulty of generating meaningful unaries 𝑐(𝑓 ) without ad-
ditional information, several works have considered interactive segmentation methods, in
which the user provides clues about the object to be segmented, e.g., in form of bound-
ing boxes [256], or scribbles [80, 222]. For video segmentation, there are works that use
motion cues [145].

Notably, the work by Nieuwenhuis and Cremers [222] (later extended to textural [223]
information and depth segmentation [80]) demonstrated that a faithful segmentation is
possible based on a few user scribbles by constructing spatially varying color histograms
for each label, and estimating the likelihood of a pixel having a certain label by computing
probabilities of the pixels’ RGB values being a part of the corresponding histogram. In
the next section, we will discuss this approach in more detail, as it plays a key role in our
experiments in Chapter 5.

4.2.2 Spatially Varying Color Distributions

Nieuwenhuis and Cremers [222] introduced an interactive, multi-label segmentation ap-
proach using user-induced scribble data in images. Instead of performing segmentation
solely based on the color in each image, they take a spatial color distribution into account.

Given a color image 𝑓 ∶ Ω ⊂ ℝ2 → ℝ3, that is supposed to be segmented into 𝐼
regions Ω = {Ω1,… ,Ω𝐼}, and a labeling 𝑣 ∶ Ω → {1,… , 𝐼} assigning each pixel to
a class. Then, for every class 𝑖 ∈ {1,… , 𝐼}, a user can mark/scribble some pixels, as
shown in the left image in Figure 4.2. These scribbeled pixels are represented by the tupel
(𝑥𝑖𝑗 , 𝑓𝑖𝑗), where 𝑥𝑖𝑗 indicates the locations of the 𝑚𝑖 scribbeled pixels, for 𝑗 ∈ {1,… , 𝑚𝑖}.
Meanwhile 𝑓𝑖𝑗 stands for the corresponding color values of those pixels.

With the given information, Nieuwenhuis and Cremers [222] formulate an energy data
term 𝐹 (𝑥) based on the scribble positions 𝑥 and the underlying color information 𝑓 of the
image, aiming to compute the propability of a pixel having a certain color, assuming that
the pixel is part of a specific class 𝑖:

𝐹𝑖(𝑥) = − log

(

1
𝑚

𝑚𝑖
∑

𝑗=1
𝐺𝜌(𝑥)(𝑥 − 𝑥𝑖𝑗)𝐺𝜎(𝑓 (𝑥) − 𝑓𝑖𝑗)

)

(4.12)

Here, the central concept of segmentation lies in the Gaussian kernels 𝐺𝜌(𝑥) and 𝐺𝜎, with
their respective standard deviations 𝜌(𝑥) and 𝜎. The values of these standard deviations
influence the impact of spatial and color information on the process of assigning each pixel
𝑥 to its correct categorization.

The second part of the equation, 𝐺𝜎(𝑓 (𝑥)−𝑓𝑖𝑗), represents the Gaussian kernel applied
to the distance between a pixel’s color and the color of the scribbled pixel in class 𝑖. Gen-
erally the closer the colors are to each other, the higher the probability that the respective
pixel will belong to class 𝑖. This probability is affected by the Gaussian standard deviation
𝜎. The larger 𝜎, the less important the color distance becomes for the data term. This
probabiliy is also weighted by 𝐺𝜌(𝑥)(𝑥 − 𝑥𝑖𝑗). Here, the key idea is that the closer a pixel
location 𝑥 is to a scribble location 𝑥𝑖𝑗 , the greater the weight given to its color, such that
pixels that are close to a scribble have color information that is more important. Now, with
a larger standard deviation in 𝐺𝜌(𝑥), the pixel distance has less impact on the probability of
a pixel being part of a specific region. 𝜌(𝑥) is computed for each pixel location 𝑥 individ-
ually and depends on its spatial distance to the closest scribbled pixel: Its value is small if
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Figure 4.2: This figure (©2012 IEEE) from Nieuwenhuis and Cremers [222] illustrates the
impact of the distance between a pixel and its closest scribble on the standard deviation
𝜌(𝑥) of the Gaussian kernel 𝐺𝜌(𝑥). Viewed from left to right, the first image is a color
image with scribbles, while the subsequent three images show a Gaussian kernel within
the image, each corresponding to another pixel location.

the distance to the closest scribble pixel is small, and high if the closest scribble pixel is
farther away. This concept is also illustrated in Figure 4.2. The left image shows the RGB
image with scribbles, whereby red scribbles denote the foreground, while green scribbles
indicate the background. In the subsequent images on the right, the standard deviation of
𝐺𝜌(𝑥) is color-coded to show that it decreases as a pixel gets closer to a foreground scribble.
So the underlying idea is that if a pixel is close to a specific scribble location, only nearby
scribbles are given high weight, and the pixel location becomes important. If a pixel is
located between multiple scribbles, but not close to a specific one, the distance between
the pixel and the scribble becomes less important to the probability.

Nieuwenhuis and Cremers [222] solve for a segmentation by optimizing the data term
across all pixels in each region, Ω𝑖 = {𝑥|𝑣(𝑥) = 𝑖} for every class 𝑖, and regularizing the
perimeter of each segmented region per(Ω𝑖) with an emphasis on aligning the edges of the
segmentation with those in the image. The energy function for this segmentation process
is expressed as:

𝐸(Ω1,… ,Ω𝐼 ) =
1
2

𝐼
∑

𝑖=1
per(Ω𝑖) + 𝜆

𝐼
∑

𝑖=1
∫Ω𝑖

𝐹𝑖(𝑥) 𝑑𝑥 (4.13)

Here, per(Ω𝑖) is implemented using a weighted version of TV on the binarized segmenta-
tion mask. This weighting ensures the alignment of segmented object edges with those in
the image, and is determined by the gradient of the color image.

Nieuwenhuis and Cremers further discuss the optimization and the convergence of
their approach in their publication [222].

4.2.3 Learning Based Approaches

With the rise of deep learning methods, researchers have developed image segmentation
networks with great success [14, 54, 193, 56]. Currently, end-to-end image segmenta-
tion systems largely represent the state-of-the-art performance in this field. In 2015, Long
et al. [193] proposed to use a fully convolutional neural network (FCN) architecture for
semantic, supervised image segmentation. This approach started to gain popularity and
was further used and extended [306, 183, 171]. For example, Li et al. [171] proposed to
integrate information on the pixels’ position to object instances in the images by combin-
ing FCNs with instance-sensitive score maps [73]. Liu et al. [188] introduced the idea of
including global context into convolutional layers by averaging the features of network lay-
ers. Further work as DeepLab by Chen et al. [54] and works in [179, 340] improve the abil-
ity of localization in deep neural networks, by integrating conditional random fields [161],

32



CHAPTER 4. IMAGING BASICS AND APPLICATIONS

or using dilated convolution [55, 56]. To improve memory efficiency and reduce com-
putational time, encoder-decoder networks have been developed, such as SegNet [14], or
the popular U-Net [255], originally intended for biomedical image segmentation. Ad-
ditionally, for real-time semantic segmentation, lightweight versions of encoder-decoder
segmentation networks have been proposed in [310, 50, 343]. A popular segmentation
network for instance segmentation is Mask-RCNN [128], predicting segmentation masks
by extending the object detection model in [110] with an additional segmentation branch.
Following from this, Zhang et al. [335] discussed an adaption for improved segmenta-
tion. More recently transformer networks [301] have been used for segmentation [281,
297, 139, 138]. We refer to [170] for an overview of segmentation transformer networks.
An overview of deep learning segmentation methods can be found in [213, 108], and [307]
for medical applications.

Rather than estimating object properties on separate images, these networks are usu-
ally trained on thousands of examples and are therefore able to learn common shapes of
objects from their training data. Yet, such networks require large training datasets, which
are expensive to generate and annotate, and the resulting networks are limited to exactly
those classes they have been trained on. In response to the challenge of extensive anno-
tation, weakly supervised methods were developed. In weakly supervised methods not
every pixel is annotated, but weaker sources of information such as image labels [134],
scribbles [178] or bounding boxes [74], are used. Still, the aforementioned approaches
require large training datasets and do not generalize to previously unseen categories.

Reducing the amount of supervision even further, several researchers have investigated
learning-based clustering methods. Such techniques can also be applied to image segmen-
tation, e.g. in [4], without even knowing the number of classes a-priori. Related to this,
the intention of zero-shot segmentation is to segment non-annotated objects that have not
been seen by a neural network before [38, 119].

While these approaches are not applied to scribbles, we discuss in Chapter 5 the seg-
mentation of a single image that we aim to segment using only drawn scribbles, and com-
pare the performance of learning-based methods with that of the classical segmentation
method in [222].

4.3 Assignment Problems

Assignment problems appear in vision-related tasks in the form of feature matching be-
tween images [336, 141, 327], or shape matching [203, 45], and address the objective of
finding a permutation between two ordered sets given certain assignment costs [41].

A permutation 𝑝, corresponding to the bijection from a set {1,… , 𝑛} onto itself, can
be represented efficiently by merely enumerating the 𝑛 elements

(𝑝(1), 𝑝(2),… , 𝑝(𝑛)) ∈ ℕ𝑛. (4.14)
However, this representation is unsuitable for most computer vision problems that involve
estimating 𝑝 through optimization since this representation

(i) is inherently discrete, yielding combinatorial problems for which no natural relax-
ation exists, and

(ii) induces a solution space with a meaningless distance metric, as element 𝑖 in the set
generally is not ‘closer’ to element 𝑖 + 1 than it is to any other element 𝑗.
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As a result, almost all methods for predicting permutations, including learning-based
methods, favor a permutation matrix representation instead, i.e., formulating a permuta-
tion as an element in the set

𝑛 = {𝑃 ∈ {0, 1}𝑛×𝑛 |
∑

𝑖
𝑃𝑖𝑗 = 1,

∑

𝑗
𝑃𝑖𝑗 = 1 ∀𝑖, 𝑗}, (4.15)

with 𝑝(𝑖) = 𝑗 in representation (4.14) corresponding to 𝑃𝑖𝑗 = 1 in the matrix representation
form (4.15).

Still, the representation of permutation matrices, shown in (4.15) is discrete and not
differentiable, which makes it unsuitable for optimization. For optimization problems, a
common approach is to approximate solutions by relaxing permutation matrices to contin-
uous domains, such as the Birkhoff polytope [25]. The Birkhoff polytope represents a set
of doubly stochastic matrices, where a matrix 𝑃 ∈ ℝ𝑛×𝑛 possesses the similar properties
as a permutation matrix, as defined in (4.15), but with relaxed constraints, allowing matrix
entries to have values 𝑃𝑖𝑗 ∈ [0, 1] [200]:
Definition 10. A 𝑛 × 𝑛 matrix 𝑆 ∈ ℝ𝑛×𝑛 is called doubly stochastic if

𝑆𝑖𝑗 ∈ [0, 1],
𝑛
∑

𝑖=1
𝑆𝑖𝑗 = 1,

𝑛
∑

𝑗=1
𝑆𝑖𝑗 = 1, ∀𝑖, 𝑗 ≤ 𝑛. (4.16)

In the following sections, we will introduce the LAP and the QAP and discuss further
learning-based approaches for learning permutation matrices in general. Section 4.3.3
deals with shape matching as a fundamental application of matching problems with a par-
ticular focus on the widely utilized framework of functional maps [230].

4.3.1 Linear- and Quadratic Assignment Problems

The most common versions of assignment problems are LAPs and QAPs, which are based
on element-wise and pair-wise costs, respectively.

The LAP is the task of assigning a set of agents to an equally sized set of tasks under
minimal cost [41]. These costs are represented in a cost matrix 𝐶 , where specific assign-
ments are indicated by a permutation matrix 𝑃 . The objective is to minimize the cost for
each pairing across a set of permutations 𝑛,

min
𝑃∈𝑛

tr(𝐶⊤𝑃 ), (4.17)

for 𝐶 ∈ ℝ𝑛×𝑛, which can be solved in cubic time using the Hungarian algorithm [158].
Nevertheless, while LAP is restrictive due to its inability to capture higher-order rela-
tionships, QAP offers an approach to modeling complex interactions. The QAP was first
introduced by Koopmans and Beckmann [155] and addresses the challenge of optimally
assigning elements from one set to another by

min
𝑃∈𝑛

tr(𝐴𝑃𝐵𝑃 ⊤), (4.18)

for 𝐴,𝐵 ∈ ℝ𝑛×𝑛, where 𝐴 is the cost between elements of the first set to match, and 𝐵
is the distance function between elements in the second set. The QAP has been proved
to be NP-hard so no polynomial time solution can be expected for general cases. As a
result, many relaxations of the problem exist, for example by relaxing the permutation
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constraint [111, 251], or by lifting the problem to higher dimensions [148, 339]. A survey
on various relaxation approaches can be found in [192]. While the relaxations do ease
some aspects of the problems, they normally do not decrease the dimensionality of the
problem which remains demanding for large 𝑛.

4.3.2 Permutation Learning

Permutation learning aims to develop a model capable of predicting the optimal or best
permutation matrix corresponding to a specific input data or label. While doubly stochastic
matrices exist in a continuous domain and are therefore well suited for optimization, en-
forcing the sum-to-one constraints still poses a challenge, which is commonly addressed by
approximating permutation matrices using Sinkhorn layers [1]. In 2011, Adams et al. [1]
proposed the Sinkhorn propagation method, to iteratively learn doubly-stochastic matrices
that allow the prediction of permutation matrices. This approach is based on the iterative
Sinkhorn normalization [278], which aims the transformation of a non-negative square
matrix 𝑃 to a doubly stochastic matrix by iteratively normalizing its rows and columns,

𝑃 𝑘+1 = 𝑁𝑐
(

𝑁𝑟
(

𝑃 𝑘)) , (4.19)
where 𝑁𝑐 refers to the operation of column-wise, and 𝑁𝑟 to the row-wise normalization.
Conditions on the convergence of iterative Sinkhorn normalization were shown in [279].
So, to learn a doubly stochastic matrix, Adams et al. [1] proposed to backpropagate
through a series of unrolled Sinkhorn normalization steps. Following this algorithm, Cruz
et al. [262] proposed Sinkhorn networks, where they realize the Sinkhorn normalization
inside the last layer of a CNN. Their objective is to predict a permutation matrix by a CNN,
that gets as an input a permuted data sequence 𝑥̃, and is trained to match a ground truth
permutation matrix 𝑃 , that was applied to generate the permuted sequence 𝑥̃:

min
𝜃

(𝑃 ,𝜃(𝑥̃)) (4.20)
Following, Mena et al. [208] proposed Gumble-Sinkhorn networks, where the predicted
matrix is seen as a distribution of doubly stochastic matrices, which are sampled by adding
Gumbel noise to the Sinkhorn layer. They demonstrated their approach on tasks like sort-
ing and jigsaw puzzles. Motivated by the relaxation of permutation matrices to doubly
stochastic matrices, Grover et al. [116] made efforts to relax a sorting operation to a uni-
modal row-stochastic matrix, such that the matrix rows must maintain a total sum of one
while having a distinct argmax. More recent studies suggest circumventing the constraint
of row and column sums being one by learning permutations in Lehmer code, whose ma-
trix form is row-stochastic [79]. The Lehmer code represents a permutation by a vector
(𝑐𝑝(1), 𝑐𝑝(2),… , 𝑐𝑝(𝑛)), where each entry contains the number of elements with a smaller
index, but a higher rank in the permutation.

4.3.3 3D Shape Matching and Functional Maps

3D shape matching refers to the task of finding correspondences between given 3D shapes,
represented as e.g. meshes or point clouds. Those correspondences set different shapes in
relation to each other by assigning their respective points. For example, they might con-
nect specific points of a human figure to the corresponding points of another figure. There
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Figure 4.3: Six human shapes of different poses, generated from point-cloud data of the
FAUST dataset [26].

are two primary types of shape matching, where the first is the matching of shapes with
rigid deformations, where shapes are related to each other through rotation and transla-
tion. The second, more complex type is shape matching of non-rigid deformations, which
also includes shapes that have different forms or poses from each other, as illustrated in
Figure 4.3 [260].

For shape matching of non-rigidly deformed shapes, a suitable distance measure be-
tween points on the shapes is the geodesic distance. The geodesic distance of two points
on a 3D shape describe the length of shortest path between those points along the shape’s
surface [72]. While the exact calculation of the geodesic distance is computationally ex-
pensive, faster approximations approaches exist [289]. Several methods of calculating the
geodesic distance are discussed in [72].

3D Shape Correspondences

The 3D shape correspondence problem can be posed as an assignment problem between
the sets of vertices of a pair of shapes, for example through point descriptors, capturing
the shape properties, matched by a LAP, or a QAP aiming to preserve distances between
all point pairs.

However, 3D shapes are often discretized with thousands of vertices which makes
optimization for a permutation computationally challenging. Hence, the permutation con-
straint is often relaxed [251] and, even though the tightness of relaxation might be known
[23, 92], the optimization variables still scale quadratically with the problem size. In [106]
and [303] the QAP is deconstructed into smaller problems and then each of them is op-
timized with a series of LAPs, while [268] solve for permutations as a series of cycles
that gradually improve the solution. Because permutation constraints for large resolution
become infeasible, and, hence, the restriction to cases with the same number of vertices,
recent methods often do not impose these constraints at all. Lines of work rely on a given
template to constrain the solution [115, 288], impose physical models that regularizes the
deformation between inputs [96, 95, 231], or learn a solution space through training ap-
proaches [45, 180, 203, 97].

In particular functional maps [230] play an important role in order to circumvent the
high dimensions of permutations.

The Functional Maps Framework

The functional maps framework, as proposed by Ovsjanikov et al. [230] in 2012, sim-
plifies the shape matching problem by avoiding the direct computation of point-to-point
correspondences. Instead, it focuses on the relationship between functions defined over
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the shapes, which are correlated by a matrix 𝐶 . Especially for shape matching problems
with a large number of vertices, the functional map framework is of high interest, as it
opens the possibility to transform the problem into one that can be handled by a much
smaller matrix 𝐶 (if a low-dimensional basis set is chosen).

Let us discuss the basic idea behind functional maps. Given the shapes𝑋 and 𝑌 , which
can be represented, for example, by a set of vertices, and assuming a bijective mapping 𝑇
between these 3D shapes capturing their relation,

𝑇 ∶ 𝑋 → 𝑌 . (4.21)
Within the context of functional maps, this mapping induces a new linear mapping 𝑇𝐹 ,

𝑇𝐹 ∶  (𝑋) →  (𝑌 ) (4.22)
in the function spaces of 𝑋 and 𝑌 , where  (𝑋) and  (𝑌 ) represent the spaces of real-
valued functions on 𝑋 and 𝑌 , respectively.

The function spaces  (𝑋) and  (𝑌 ) are each defined by a set of basis functions, {𝜙𝑋
𝑖 }and {𝜙𝑌

𝑗 } respectively, s.t. within this framework, the transformation 𝑇𝐹 can represented
by a matrix 𝐶 . Under the assumption that the basis vectors are orthonormal, the entries of
the functional map matrix 𝐶 are given by the inner products:

𝐶𝑖,𝑗 = ⟨𝑇𝐹 (𝜙𝑋
𝑖 ), 𝜙

𝑌
𝑗 ⟩. (4.23)

𝐶 can be calculated using additional information, including known correspondences be-
tween points or shapes, or specific conditions on the transformation. For instance, in [203]
the mapping has to preserve learned point descriptors. A common approach of calculating
the mapping 𝐶 ∈ ℝ𝑚×𝑚 is by minimizing

argmin
𝐶

‖𝐶(𝜙𝑋)−1𝐾𝑋 − (𝜙𝑌 )−1𝐾𝑌 ‖2 (4.24)
for given bases and 𝑛 pointwise descriptor functions 𝐾𝑋 and 𝐾𝑌 , which are assumed to be
preserved by the unknown mapping. The matrices (𝜙𝑋)−1𝐾𝑋 and (𝜙𝑌 )−1𝐾𝑌 in ℝ𝑚×𝑛 rep-
resent the coefficients of the descriptor functions in the chosen bases and the minimization
in (4.24) aims to find the matrix 𝐶 that aligns the shapes in the corresponding function
spaces. As base functions, originally the authors propose to use the eigenfunctions of the
Laplace-Beltrami operator [238], which has been also used in the majority of follow-up
works, as e.g. in [252, 225, 180].

In the context of this thesis, we aim to calculate the pointwise mappings in the form
of permutation matrices. Assuming 𝑋 and 𝑌 have the same number of vertices, 𝑛, and
the mapping 𝑇 is bijective, we aim to find the underlying 𝑛 × 𝑛 permutation matrix 𝑃 .
For orthogonal {𝜙𝑋

𝑖 } and {𝜙𝑌
𝑗 }, each containing 𝑚 basis functions, the relation between

𝐶 ∈ ℝ𝑚×𝑚 and 𝑃 ∈ {0, 1}𝑛×𝑛 can be formulated by
𝐶 = (𝜙𝑌 )−1𝑃𝜙𝑋 ⟺ 𝑃 𝑇 = 𝜙𝑌𝐶(𝜙𝑋)−1, (4.25)

where 𝐶 can be interpreted as an alignment of the base functions, and the original permu-
tation can be recovered by calculating nearest neighbor of 𝜙𝑋 and 𝜙𝑌𝐶 .

As for 𝑚 ≪ 𝑛, in practice, it is not always possible to recover the optimal correspon-
dence, leading to research containing learning techniques. First, only the optimal features
were learned [180, 123], followed by work on learning basis functions. Instead of using
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the Laplace-Beltrami eigenfunctions as the choice of basis, Marin et al. [203] introduced
to learn the basis from data, demonstrating improved robustness and accuracy for point
cloud-based shapes. They proposed to learn the basis by optimizing

min
𝜃

∑

(𝑋,𝑌 )∈𝑡

‖𝑃 (𝜙𝑋 , 𝜙𝑌 )𝑋 − 𝑃𝑋‖

2
2 (4.26)

from some dataset 𝑡 where 𝜙𝑋 = 𝜃(𝑋), and 𝜙𝑌 = 𝜃(𝑌 ) are predicted by a neural
network, 𝑃 is the ground truth permutation, and 𝑃 (𝜙𝑋 , 𝜙𝑌 ) is calculated from the learned
basis functions. In an 𝓁2 norm loss, a second network is trained to learn the optimal trans-
formation by generating the linear transformation matrix 𝐶 from predicted point descrip-
tors and matching it with a given ground truth matrix. Subsequently to [203], Cao and
Bernard proposed a learning approach for both modalities (point cloud and mesh) [45].
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CHAPTER 5

Learning and Modelling for Single Image Segmentation

This chapter is based on the publication in [88] and focuses on the analysis and the com-
parison of classical model-based techniques for image segmentation and modern learning-
based approaches. Specifically, we focus on the role of user-induced scribbles and seman-
tic information in single-image segmentation. For an overview of previous segmentation
approaches, Section 4.2 provides an overview of classical model-based methods, espe-
cially in terms of energy minimization problems, and successful learning-based segmen-
tation methods.

5.1 Introduction

Image segmentation refers to the problem of dividing an image into meaningful non-
overlapping regions. Unlike the classical model-based methods, learning-based models
are trained on extensive datasets to learn image segmentation. Yet, the limitation to only
predict those semantic labels (and objects) present in the training database limits the ap-
plicability of such models, particularly because the sole definition of image segmentation
as a division into “meaningful” non-overlapping regions makes image segmentation an ill-
posed task by definition: What is a meaningful region? The answer, of course, is highly
subjective and depends on the specific intended application, as illustrated in Figure 5.1.

This is the reason why we believe that image segmentation on only one image based
on scribbles, i.e., the prediction of regions in a single image that have previously been
marked by a few strokes, so-called scribbles, by a user (see Figure 5.2), remains highly
relevant, e.g. for image editing software.

Unfortunately, hardly any works in the area of deep learning focus on single image seg-
mentation from scribbles. This poses the fundamental question if model- or learning-based
approaches represent the state-of-the-art in this field, along with the quest for network ar-
chitectures and regularization schemes that are well-suited for single image segmentation.

We study these questions in two different scenarios: 1) The case where the current
scribbled image represents the sole source of information, and 2) the case in which prior
information from a segmentation benchmark may be utilized in the form of transfer learn-
ing or accessing features of segmentation networks.
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Figure 5.1: Four different ways to place scribbles into an image for segmentation, depend-
ing on the user’s specific intention.

scribble SVCD [222] . . .with semantic
information

CNN . . .with spatial . . .with semantic
information information

Figure 5.2: Single image segmentation based on scribbles that rely on image color and
on optional spatial or semantic information: The upper row shows the segmentation by
SVCD, the second row shows the segmentation by a CNN.

For the first scenario we demonstrate that the additional inclusion of spatial informa-
tion in a neural network improves the segmentation compared to color-only images. We
also present how color and spatial information can be optimally weighted against each
other for segmentation using double backpropagation. Yet, the model-based method re-
mains superior to neural networks. In the second scenario, we propose a hybrid tech-
nique that combine the (model-based) spatially varying color histogram from [222] with
learning-based soft semantic features from [4] and yields results that outperform the seg-
mentation by neural networks and the stand-alone model-based approach. Here we focus
on segmenting one image with scribbles without using any semantic information about
the objects in the scene.

Spatially varying color distributions [222] for 𝑐(𝑓 ) in (4.11), and using an edge-weighted
(or even nonlocal) TV regularization marked the state of the art in 2014. Since then, deep
learning has proven to dominate any segmentation application for which at least a mod-
erate number of training examples is available. Thus, we believe it is high time to ask if
modern network architectures are able to outperform model-based approaches even on a
single image.

We first consider an image segmentation problem for which all methods rely solely on
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the given scribbled image (such that, on a pixel level, we still have have several hundred
training examples). Subsequently, we study how to incorporate prior information in the
form of a different dataset with ground information. As transfer learning appears to fail
(detailed in Section 5.3.1), we propose to instead use soft semantic features of Aksoy et
al. [4], that have been successfully used in soft semantic segmentation without scribble
information.

5.2 Model- and Learning-based Segmentation Methods

In both settings (with and without prior information), we compare the following approaches:
Spatially varying color distributions (SVCD) [222] are used to model smoothly changing
histograms in space to approach the scribble-based segmentation problem via solving a
convex relaxation of (4.11) followed by a thresholding. It does not involve any learning.
To integrate additional semantic information, we concatenate the RGB values with the soft
semantic features prior to applying the method.

To mimic the behavior of color histogram-based approaches, we train pixel-wise net-
works (PWNs) 𝜃(𝑥)with learnable parameters 𝜃 that get the vector 𝑥 ∈ ℝ𝑛𝑐 of RGB values
at a single pixel as an input and are suggesting a class label solely based on color. To ad-
ditionally incorporate the idea of spatially varying color distributions in a learning-based
setup, we also train PWNs with a 5-dimensional input vector consisting of the RGB val-
ues as well as the xy-coordinates of the image (normalized to a range of [0, 1]). Similarly,
semantic features are just concatenated with other inputs. In terms of the network archi-
tecture, an extensive empirical search resulted in surprisingly small and shallow structure,
consisting of two layers with 16 neurons per layer and Leaky-ReLU activations.

As PWNs might have too little spatial context to make faithful predictions, we addi-
tionally consider CNNs with larger receptive fields: Using larger convolution kernels and
increasing the depth of the networks allows us to provide the network with more and more
non-local information. Again, we evaluate networks that use the plain RGB input image
as an input and concatenated it in the channel dimension with its xy-coordinates and/or the
semantic features. In an ablation study detailed in Section 5.3.2 we again found a rather
shallow network of depth 2, width 16, and a kernel size of 3 to be most successful.

In our experiments we found that the inclusion of spatial information often dominates
the results of the CNNs, such that objects close to the scribble are incorrectly segmented.
For this reason, we introduce a regularization term similar to the idea of double backprop-
agation from [164] by computing

min
𝜃

 + 10−7𝛽||∇𝑥𝑠||1,  = 𝐶(𝜃(𝑥𝑐, 𝑥𝑠), 𝑠𝑐). (5.1)
Here the network loss  is computed by the cross-entropy (C) between our scribbles and
the output of the network 𝜃, using the color information 𝑥𝑐 and the spatial information 𝑥𝑠.We regularize the 𝓁1 norm of the gradient of our loss function, a form of TV regularization,
in the spatial direction to attenuate the influence of 𝑥𝑠 on the our final result. Figure 5.3
visualizes the effect of increasing the regularization on the segmentation, whereby without
regularization, structures close to the object are segmented as those, and with a too strong
regularization, the color information predominates. We refer to this regularized approach
as CNN+reg..

As one of the most famous architectures for semantic image segmentation, we finally
consider the U-Net architecture from [255]. It is a convolutional architecture with a re-
ceptive field that spans large portions of the image while still being able to preserve fine
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𝛽 = 0 𝛽 = 0.05 𝛽 = 0.1

Figure 5.3: Segmentation with color and weighted spatial information via double back-
propagation as network input.

Figure 5.4: Study of the impact of the convolutional neural network from left to right:
kernel size, width, and depth on the segmentation accuracy for different types of network
input: color image, spatial pixel position and semantic information. The most right image
shows the regularization of the spatial impact on the segmentation as defined in (5.1)
(orange plot), as well as the corresponding penalty w.r.t. variations of the color channels
(green plot).

details. While this architecture would clearly be superior in a fully supervised setting
with sufficient training data, our investigations aim at an understanding how the strong
overparameterization of such an approach in comparison to the small number of labeled
(=scribbled) pixels in a single image affects its accuracy. We took the U-Net architecture
from [255] as a basis and conducted a study on the number of downscaling steps of the
network architecture. We tested U-Net architectures without any downscaling steps up
to four steps and observed a decrease in segmentation accuracy for U-Net networks with
more downscaling steps.

5.3 Numerical Evaluation

To evaluate the above approaches, we use scribbled images from [178] of the Pascal
VOC2012 dataset [98] for which ground truth segmentation are available. We tune the
hyperparameters of each method on a fixed set of 200 images of this dataset. Table 5.1
shows the best results we were able to attain for each class of methods, with the left part of
the table depicting the single image segmentation results without additional information
(using color (c) and spatial (sp) information only), and the right part additionally allowing
the use of semantic (se) features from [4].

As we can see, the model-based SVCD approach outperformed all learning-based ap-
proaches in terms of pixel accuracy as well as mean intersection over union (IoU). While
other fields, e.g., in image reconstruction with pioneering work on DIPs in [296], indicated
that the architecture of common convolutional networks has a regularizing effect that is
well suited for natural images and thus allows a self-supervised training on a single image,
we cannot confirm that similar effects appear in image segmentation.
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c c & sp c & se c & sp & se
SVCD – 0.775 – 0.845
PWN 0.607 0.721 0.689 0.731
CNN 0.673 0.715 0.772 0.739
CNN + reg. – 0.731 0.774 –
U-Net 0.654 0.642 0.658 0.648

Table 5.1: Summary of the best mean intersection over union each of the pure single
image segmentation methods could attain for different types of network input: color image,
spatial pixel position and semantic information. As we can see, the additional inclusion of
spatial information improves segmentation, which in turn is outperformed by the inclusion
of semantic information in the neural network. SVCD still outperforms the learning based
methods.

Interestingly, the inclusion of the spatial coordinates as inputs to the neural network
helped to improve all learning-based approaches except the U-Net. Moreover, including
our proposed regularization to avoid an overfitting to the spatial information only, gave the
best result among the learning-based approaches. Based on the rather small CNNs that
our ablation study in Section 5.3.2 found to be optimal, and the surprisingly bad perfor-
mance of a U-Net architecture which is not even influenced by the inclusion of semantic
information, we conclude that overfitting remains a significant problem in single image
segmentation with neural networks.

Except for U-Net, the combination of semantic and color information increases the per-
formance of all methods significantly. In particular, the combination of the model-based
creation of spatially varying color histograms with semantic soft features achieves excel-
lent results. Interestingly, the additional inclusion of spatial coordinates on top of semantic
features does not appear to be beneficial for CNNs anymore. The slight improvement of
CNN+reg. over CNN was obtained similar to (5.1), but using the gradient with respect
to the color input instead of the spatial coordinates. As the proposed approach of using
semantic soft features is only possible if a second annotated dataset is available, transfer
learning is a natural baseline for such approaches.

5.3.1 Transfer Learning

A common method in semantic segmentation is the fine-tuning of a neural network pre-
trained on a given fully supervised dataset. Thus, we finetune the architectures E-Net [236]
(pre-trained on the CityScape [70] dataset ) and DeepLabv3 [55] (pre-trained on the City-
Scape dataset [70]) , on single scribbled images. Despite varying the amount of parameters
to freeze and train, the best mean IoUs were found to be 0.52 for E-Net and 0.59 for
Deeplabv3. Surprisingly, these values are not even close to the results seen in Table 5.1
even without semantic features. We conclude that – at least for the significantly different
datasets of CityScape and VOC2012 – it is not straightforward to utilize transfer learning
for single image segmentation with scribbles.

5.3.2 Ablation study for Convolutional Neural Networks

To study the impact of the architecture, we train simple CNNs with alternating convolution
and ReLU layers of varying width and depth along with a cross-entropy loss on the scrib-
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bled pixels only. By expanding the kernel size from 1×1 convolutions (which is equivalent
to our PWNs), the segmentation networks start to include information from neighboring
pixels in the predicted segmentation. Figure 5.4 shows how the mean IoU depends on the
neural networks widths, depths, kernel size, and parameter 𝛽 of our proposed regulariza-
tion for different inputs using color (c), semantic (se), and spatial (sp) information. Here
the non-variable values in the graphs are fixed to width = 16, depth = 2, kernel size = 3,
and 𝛽 = 0. Given the above parameters and all the input variations shown in Figure 5.4
we could measure a variance of the mean IoU of ±0.002 in our experiments. As we can
see, rather shallow networks of only 2 layers are more successful than deep ones, while
the width has little effect as long as the network consists of at least 16 channels. Finally,
the kernel size was found to be optimal for 3× 3 convolutions, and moderate values of the
regularization parameter 𝛽 do allow to increase the mean IoU by over 0.01.

5.4 Conclusion

In this chapter, we have shown that image segmentation based on user-drawn scribbles is
a challenging problem where model-based approaches still perform better than machine
learning. Instead of transfer learning approaches, including soft semantic features as ad-
ditional input channels to an energy minimization approach using spatially-varying his-
tograms showed the most promising performance. While our modifications, which include
incorporating spatial coordinates as inputs and simultaneously applying regularization,
have improved the mean IoU of learning-based approaches, it remains an interesting chal-
lenge for future research to develop architectures, regularizations, and training schemes
that can outperform model-based approaches even on single image segmentation without
prior information.
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CHAPTER 6

Guided Computed Tomography Reconstruction
by a Learned Prior

The previous chapter demonstrated that cleverly designed model-based approaches not
only can outperform learning-based methods but also benefit from semantic informa-
tion obtained from previous training processes. This chapter is based on the publication
in [86] and handles the induction of a pre-trained classifier in a model-based reconstruc-
tion method. Unlike in the previous chapter, we do not compare model- and learning-based
methods for reconstruction, but shift the optimization of an underdetermined problem us-
ing learned semantic information. Specifically, we work on CT reconstruction problems,
which are introduced in Section 4.1.

6.1 Introduction

CT plays an important role in medical imaging with many applications, such as diagnos-
ing various health conditions and devising appropriate treatment plans [326, 177]. For
recording CT data, the target (e.g. a patient) is projected with X-ray radiation from vari-
ous directions comprising half a circle around it, while a detector measures the attenuated
radiation at the other side of the target. Measurements corresponding to all projections
are then organized as an array termed sinogram, from which the CT image can be recon-
structed using different reconstruction methods.

However, the exposure of a patient to the ionizing X-ray radiation is known to present
significant health risks such as cancer. This fuels a substantial research effort for reducing
radiation exposure, for example by using sparse-view CT, where the target is radiated with
fewer projection angles, typically distributed uniformly around it [150]. Unfortunately
however, reconstructing the CT image from the recorded sparse-view data becomes an
underdetermined problem, which often manifests itself as significant ambiguities in the
tomographic reconstruction process.

The reconstruction of a tomographic image 𝑢 from a measured sinogram 𝑓 captured
using 𝑞 projection angles can be formulated as a linear inverse problem of the form

𝑓 = 𝑅𝑢 + 𝑒, (6.1)
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(a) Reconstruction by FBP (b) Data Consistent Reconstructions (our approach)

Figure 6.1: Reconstruction methods such as filtered backprojection (FBP) [99] typically
yield only one data-consistent output (a). However, there are many possible reconstruc-
tions (b) that are consistent with the data term, but differ in their pathological categoriza-
tion, i.e. with respect to their malignancy. This ambiguity, which increases when using
sparse-view CT, is demonstrated here for 𝑞 = 50 projection angles.

where 𝑅 ∈ ℝ𝑞⋅𝑑×𝑁 corresponds to the discrete Radon transform, which computes 𝑞 ⋅𝑑 line
integrals through image 𝑢 (with a total number of𝑁 pixels) along all projection directions1.
Here, 𝑑 is the number of pixels in the one-dimensional X-ray detector and 𝑒 ∈ ℝ𝑞⋅𝑑 is some
additive noise. As the number of projection angles 𝑞 decreases, the problem of recovering
image 𝑢 in (6.1) becomes increasingly underdetermined.

Over the years many methods attempted to tackle this challenge, typically producing
a reconstruction 𝑢̂ which strives to be as close as possible to the ground truth image 𝑢.
However, due to the underdetermined nature of the problem, there are many different valid
image reconstructions 𝑢̂ whose Radon transform 𝑅𝑢̂ matches the measured sinogram 𝑓 .
This is demonstrated in Figure 6.1 for the case of a lung nodule captured using 𝑞 = 50
projection angles. While all four reconstructed images on the right are consistent with the
sinogram 𝑓 (satisfying 1

𝑞𝑑
‖𝑓 −𝑅𝑢̂‖2 < 3 ⋅ 10−5), their appearances, and more importantly

their medical interpretations vary dramatically, with an increasing level of malignancy
from left to right.

In this chapter we point out the ambiguity that is inherent to medical data reconstruc-
tion and argue that enabling exploration of the space of consistent reconstructions, rather
than producing a single arbitrary image, is essential in medical applications. We propose
the first method to allow this, which enables exploring the range of possible image recon-
structions 𝑢̂ that are consistent with the measurement 𝑓 , while potentially corresponding
to different pathological findings. Our method operates by optimizing for different solu-
tions, whose Radon transform matches with the measured sinogram while corresponding
to semantically different interpretations, obtained from a pre-trained CT image classifier.
In particular, we use gradient descend to minimize the data term induced by (6.1), as well
as a term that encourages the resulting image 𝑢̂ to be classified into different malignancy
levels by a classifier that was trained to distinguish between malignant and benign tissues.
We introduce technical novelties such as the use of an adversarially trained classifier and
the sole use of energy minimization for solution exploration, which is easier and typically
more stable for training than, e.g., GAN frameworks. We demonstrate our method on the
case of reconstructing human lung CT images with pulmonary nodules, such that they
correspond to various degrees of pathological malignancy while maintaining consistency
with the measurements 𝑓 . Nonetheless, extending our approach to other use-cases, as well
as to other medical imaging modalities, would be fairly straight forward.

1With a slight abuse of notations, we use 𝑢 and 𝑓 when referring either to the two-dimensional or to the
column-stacked versions of the target image and the recorded sinogram, respectively.
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6.2 Explorable Computed Tomography Reconstruction

+

Radon Trans-
form

Pre-trained Net-
work 𝜃(𝑢) 𝐸2

𝐸1

𝑚



𝑢 
𝑢

Figure 6.2: Overview of the proposed approach. Loss function  is composed of two
energy terms 𝐸1 and 𝐸2, which take as input the Radon transform of the desired recon-
struction 𝑥 and the output of a pre-trained classification network, respectively, as well as
the desired malignancy level 𝑚. The input of the classification network is a crop 𝑢 from
image 𝑢.

Exploring Data Consistent Reconstructions The goal of our work is to provide medi-
cal experts that are interpreting images for diagnostic purposes with a better understanding
of the actual information the recorded data contains about the object of interest. While our
idea extends to any property that can be captured by a classification (or scalar regression)
network, we exemplify our method by exploring the space of possible CT reconstructions
of nodules associated with different degrees of malignancy as predicted by a given classi-
fication method. An overview of our method is depicted in Figure 6.2. As a malignancy
classifier, we use a classification network 𝜃 ∶ ℝℎ×𝑤 → [0, 1] pre-trained for classifying
nodules in chest CT. The network predicts the malignancy of a nodule from the region of
interest 𝑢 , which is manually chosen and cropped from a CT image 𝑢 around the nodule,
as shown by the red box in Figure 6.1 (a).

Because we want to predict physically plausible, i.e., data consistent, solutions only, we
constrain our reconstructions to the solution space𝑆 ∶= {𝑢 | 1

𝑞𝑑
‖𝑅𝑢−𝑓‖2 ≤ 𝛿2} of images

𝑢whose sinogram𝑅𝑢 differs from the measured data 𝑓 by a noise-level dependent constant
𝛿. To allow comparing reconstructions with different number of projection angles 𝑞, we
normalize the squared 𝓁2 norm by 1∕(𝑞𝑑) (approximating the 𝓁2 norm in function space
more realistically). Within𝑆 we explore possible solutions using a target malignancy level
𝑚 for our classification network 𝜃 by finding

min
𝑢∈[0,1]𝑁

𝐻𝜖(𝜃(𝑢) − 𝑚) s.t. 𝑢 ∈ 𝑆, (6.2)
where 𝐻𝜖 is the Huber loss [137] with 𝜖 = 0.01, which we found to work best empirically,
being a trade-off between the 𝓁1 and 𝓁2 norms:
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𝐻𝜖(𝑎) =

{1
2
𝑎2 for |𝑎| ≤ 𝜖,

𝜖 ⋅
(

|𝑎| − 1
2
𝜖
)

, otherwise. (6.3)

While (6.2) could be optimized (at least locally) using a projected gradient descent
approach, the projection is rather computationally intense such that we propose to instead
consider the regularized problem

min
𝑢∈[0,1]𝑁

1
𝑞𝑑

‖𝑅𝑢 − 𝑓‖2 + 𝜆𝐻𝜖(𝜃(𝑢) − 𝑚) (6.4)

with 𝜆 indicating a weighting of the malignancy prediction of interest.

Transformations Our goal is to produce realistically looking (rather than unnatural) CT
reconstructions corresponding to malignancy levels 𝑚. We therefore utilize transformed
versions 𝑇𝑗(𝑢), where {𝑇𝑗}𝐽𝑗=1 is a set of natural image transformations like different ro-
tations and scalings, which do not affect the semantic interpretation of the image. This
reduces the chance of yielding an unrealistic 𝑢 that manages to “fool” the classifier 𝜃,as we visualize in Figure 6.3, highlighting that using transformations can oppress noisy
results. This leads to the modified objective

𝑢̂(𝑚) = argmin
𝑢∈[0,1]𝑁

1
𝑞𝑑

‖𝑅𝑢 − 𝑓‖2

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟
=𝐸1(𝑢)

+ 𝜆1
1
𝐽
∑

𝑗
𝐻𝜖(𝜃(𝑇𝑗(𝑢)) − 𝑚) + 𝜆2TV(𝑢)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
=𝐸2(𝑢)

, (6.5)

where we use notation 𝑢̂(𝑚) to stress the dependency of the reconstructed 𝑢̂ on our explo-
ration parameter 𝑚. To further encourage smoothness, we add TV regularization [257] to
our energy function.

Soft Cropping We empirically found that hard cropping 𝑢 to obtain 𝑢 often results in
visible artifacts in 𝑢̂ around the cropping boundary.

To encourage a smooth transition of the crop to the remaining part of 𝑢̂, we attenuate
the gradient of 𝐸2 in (6.5) with a Gaussian mask 𝐺, so that modifications to the peripheral
pixels of 𝑢 are attenuated, as we visualize in Figure 6.3, clearly showing a hard border
around the crop, that could be prevented by using soft cropping. Our gradient descent
update can be written as

𝑢𝑖+1 = 𝑢𝑖 − 𝜏(∇𝐸1(𝑢𝑖) + 𝐺 ⊙ ∇𝐸2(𝑢𝑖)), (6.6)
where ⊙ denotes point-wise multiplication.

Training Suitable Classification Networks Modern image classification models can
be susceptible to adversarial examples – small perturbations in the input image that cause
misclassification. To further encourage the reconstruction to be meaningful and realistic,
and to prevent slight imperceptible changes in 𝑢̂ from affecting the classification by 𝜃,we utilize adversarial training for classifier 𝜃 using the Fast Gradient Sign Method [112],
thus making the classifier more robust.
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(a) Full method

(b) Without 𝑇𝑗

(c) Without soft cropping
Figure 6.3: Results for different versions of our method. All reconstructions are obtained
from 100 projection angles. The images in the first row show reconstructions of our full
method. The images in the middle row are obtained without using the transformations 𝑇𝑗 .The images on the right are created without soft cropping (but with an application of the
transformations).

Parallels to Adversarial Techniques Note that although our method involves optimiz-
ing over the reconstructed image 𝑢 to achieve the desired prediction by a pre-trained clas-
sifier (similarly to adversarial attacks), it does not entail any alteration of the recorded
sinogram 𝑓 , and instead operates on the reconstructed image 𝑢 in a data consistent man-
ner. This makes our method different from adversarial attacks, despite the mathematical
similarity manifested in (6.2). Note that set 𝑆 of possible inputs to the classifier is un-
bounded, which is a significant difference on the technical side as well.

6.3 Numerical Evaluation

6.3.1 Preparation

Dataset For our experiments, we use the Lung Image Database Consortium Image Col-
lection (LIDC-IDRI) [9, 68], including over 1000 cases that were annotated by four radiol-
ogists independently. There are 5 levels of grading, depending on how certain radiologists
are that the nodule is malignant (or benign). To create our training annotation, we aver-
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(a) FBP (b) 𝑚 = 0.0 (c) 𝑚 = 0.1 (d) 𝑚 = 0.2 (e) 𝑚 = 0.3 (f) 𝑚 = 0.5 (g) 𝑚 = 1.0

Figure 6.4: Nodule reconstructions using FBP (a), and various degrees of malignancy with
our proposed approach in (b) – (g).

aged the annotated levels for each CT image, and discarded the data whose classification is
the closest to indeterminate (level 3), as it can be considered neither malignant nor benign

From the remaining data, we extract those 2d slices that contain the annotated nodules
and get a training dataset of 244 scans with malignant nodules and 729 scans with benign
nodules. All CT images are normalized to a range of [0, 1]. For optimizing ((6.5)), we
use a validation dataset containing a total of 100 scans with 50 malignant and 50 benign
cases, which was not used for training the classification network.

Classification Network To classify nodules of sparse-view CT reconstructions, we use
BasicResNet, since it has shown superior results for classifying the malignancy of nodules
in [5], by adapting their hyper-parameter settings (with minor changes) and training for 350
epochs using the Adam optimizer and a learning rate of 0.0005. All training input images
were normalized by subtracting their mean and dividing by their standard deviation.

6.3.2 Solution Space Exploration

In all our experiments described below, we optimize (6.5) along with the Gaussian damp-
ing of (6.6) with a variance of 11, using gradient descent with a learning rate of 1.0 and
𝜆1 = 1.0 and 𝜆2 = 0.01 for 50000 iterations, with the stopping criterion triggered when
the energy no longer decays.

To start our method with an 𝑢 that already results in low energy, we beforehand cal-
culated the FBP (𝑢𝐹𝐵𝑃 ) of our input and minimized 𝐸1 for 600 iterations using gradient
descent with a learning rate of 0.0005 and a momentum of 0.9. The choice of parameters
were obtained empirically. In each optimization step, we normalize the input 𝑢 of 𝜃 with
a fixed mean and variance, taken from the FBP reconstruction.

Realistic Solution Space We explore the space of underdetermined CT reconstructions,
with 𝑞 = 50 projection angles, and consider reconstructions of different malignancies,
which we control by setting the variable 𝑚 in (6.5). Figure 6.4 shows an example of recon-
structions of a nodule for multiple levels of malignancy, starting from a benign (𝑚 = 0.0)
to a malignant nodule (𝑚 = 1.0) and several values in between. The prediction of the
nodule reconstructed with FBP (a) is classified as benign with 𝜃(𝑢𝐹𝐵𝑃

 ) = 0.2. It can
be seen that in most extreme cases and especially the cases with strong deviation from
the predicted malignancy towards increasing malignancy, artifacts appear in the nodule,
which here appears as black areas around the nodule. From 𝑚 = 0.5 onward they become
visually unrealistic. Numerically we found that rather small changes of 𝑚 differing by the
prediction on the FBP reconstruction by around ±0.1 yields realistic images while still
causing significant changes in the appearance of the nodule, see Figure 6.4, (c) – (e).
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Sample 1 Sample 2 Sample 3
𝑚 = 0.2 𝑚 = 0.8 𝑚 = 0.2 𝑚 = 0.8 𝑚 = 0.2 𝑚 = 0.8

𝑞 =
50

𝑞 =
10
0

𝑞 =
20
0

𝜃(𝑢𝐹𝐵𝑃
 ) = 0.94 𝜃(𝑢𝐹𝐵𝑃

 ) = 0.2 𝜃(𝑢𝐹𝐵𝑃
 ) = 0.11

Figure 6.5: Examples of data consistent reconstructed nodules for a varying number of
projection angles 𝑞 for 𝑚 = 0.2 and 𝑚 = 0.8, such that the reconstructed nodules are
categorized by the classification network 𝜃 into different classes with respect to their
malignancy.

In the following, we refer to the prediction of the reconstruction by FBP as the original
malignancy.

Investigation on the Residuals An important question is how much the nodules can
change in their appearance and malignancy while still maintaining data consistency. Be-
cause this has to depend on the number of projections recorded in the sinogram, we con-
sider reconstructions with 50, 100, 200, and 360 angles and optimize (6.5) towards malig-
nant and benign reconstructions. Exemplary reconstructions with rather large variations
of the malignancy level 𝑚 are illustrated in Figure 6.5 for varying numbers of projection
angles 𝑞. One can see that fewer projections tend to allow larger variations in the recon-
structions, e.g. allowing the nodule to almost disappear for 𝑞 = 50 projections in Sample
3. For a large number of 𝑞 = 200 projections strong deviations from the original malig-
nancy 𝜃(𝑢) can lead to severe artifacts that do not correspond to a medically realistic
reconstruction anymore.

The severe visual artifacts raise the question to what extent such reconstructions even
remain data consistent. Therefore, we analyze the behaviour of the residual 𝑟 = |𝑅𝑢 −
𝑓 |, that shows the pointwise distance of the sinogram of the reconstruction 𝑅𝑢 and the
measurement 𝑓 . It is visualized in Figure 6.6 for each aforementioned sample for the
malignancy that is opposite to its original classification. Here, the red marking indicates
the area in the residual that has an influence on the nodule in the reconstruction. We can
see that a modification in the nodule (within the red marking) is easier to recognize the
more projection angles were used for the reconstruction. For fewer projection angles, such
as 𝑞 = 50, it is possible to modify the nodule to another malignancy without any sign of
the exploration in the residuum.

To quantify this effect we compute the mean squared error of all points insight the red
track of each nodule as well as outside of it, and denote them by 𝑒𝑖 and 𝑒𝑜, respectively.
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Figure 6.6: Residual and error measurement for three examples of data consistent recon-
structed nodules for a varying number of projection angles 𝑞. Top: difference of the inte-
rior and exterior error when optimized towards different malignancies. Bottom: Pointwise
residual (in sinogram space) for different 𝑞, when optimizing originally benign samples to
become malignant and vice versa. The values of the residual are clipped at 0.1.

The plots on the top of Figure 6.6, show the difference between the interior and the
exterior error (𝑒𝑖 − 𝑒𝑜) as a function of the malignancy we were able to enforce on the
reconstruction. As we can see, small values of 𝑞 allow to not only access the entire range of
malignancies without compromising data fidelity, but also do not lead to any recognizable
difference between the errors of rays that pass through the nodule and those that do not. As
𝑞 increases, the differences of errors for Sample 1 and Sample 2 increases for malignancies
in opposite to their original classification. In contrast, the plot of Sample 3 shows that there
also exist cases, where the difference of errors is not monotone in its classification result.

To go beyond the exemplification on three particular samples, Table 6.1 shows mea-
surements on the growth of the error and the on the malignancy prediction, when optimiz-
ing towards the extrema of malignancy 𝜃(𝑢) = 1 or 𝜃(𝑢) = 0 for the validation dataset
of 100 reconstructions. Here we differentiate between two sets of reconstructions: those
whose corresponding reconstruction by FBP are classified as benign 𝑆 = {𝑢|𝜃(𝑢𝐹𝐵𝑃

 ) <
0.5} and those whose are classified as malignant 𝑆 = {𝑢|𝜃(𝑢𝐹𝐵𝑃

 ) ≥ 0.5}. Figure 6.5
shows results for exploring reconstruction in the direction of the classification opposite to
the classification obtained on the classical FBP reconstruction. We compare their mean
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set 𝑞 1
𝑞𝑑
‖𝑅𝑢 − 𝑓‖2 ⋅ 105 𝜃(𝑢) (𝑒𝑖 − 𝑒𝑜) ⋅ 105

optimizing for
small 𝜃

𝑆

50 2.56∕1.36 0.008∕0.009 −1.86∕1.08
100 3.45∕2.01 0.015∕0.025 0.23∕12.82
200 6.82∕3.93 0.048∕0.047 22.01∕29.92
360 9.59∕5.73 0.067∕0.060 52.47∕58.06

𝑆

50 2.09∕1.24 0.003∕0.002 −1.50∕1.00
100 3.36∕3.48 0.099∕0.296 −1.63∕2.08
200 30.16∕38.51 0.423∕0.375 309.01∕461.44
360 62.15∕66.95 0.526∕0.395 658.71∕801.45

optimizing for
large 𝜃

𝑆

50 5.58∕2.58 0.960∕0.040 −3.73∕2.12
100 3.30∕1.76 0.957∕0.109 −1.26∕1.74
200 5.82∕2.77 0.922∕0.168 9.40∕18.38
360 13.45∕9.68 0.802∕0.286 86.85∕98.89

𝑆

50 4.55∕2.65 0.973∕0.031 −2.97∕2.22
100 3.35∕3.54 0.986∕0.017 −1.83∕1.64
200 2.07∕1.71 0.989∕0.013 −0.04∕3.80
360 6.55∕5.71 0.979∕0.026 5.88∕15.79

set 𝑞 1
𝑞𝑑
‖𝑅𝑢 − 𝑓‖2 𝜃(𝑢) (𝑒𝑖 − 𝑒𝑜)

FBP 𝑆 ∪ 𝑆

50 5.23∕9.86 0.54 −1.00∕5.43
100 2.73∕8.65 0.55 −1.72∕5.34
200 2.52∕8.50 0.55 −1.81∕5.32
360 2.52∕8.49 0.55 −1.82∕5.31

Table 6.1: Mean/standard deviation of the data consistency loss, network prediction, and
distance between the interior and exterior error (𝑒𝑖 − 𝑒𝑜) of the residual 𝑟, for originally
benign nodules 𝑢 ∈ 𝑆 and malignant nodules 𝑢 ∈ 𝑆 optimized towards the most
extreme malignancies. For comparison, the last rows of this table show the results of the
reconstructions obtained by FBP.

data consistency loss, their mean prediction, and their mean distance of the interior and
the exterior error (𝑒𝑖 − 𝑒𝑜) for each number of projection angles 𝑞. As we can see, the data
consistency loss as well as the distance of the interior and the exterior error increase with
increasing 𝑞. This applies especially when optimizing the originally malignant classified
nodules towards a benign classification. Note also, that large values of 𝑞 make it impossible
to reach extreme values of 𝜃(𝑢) in our setting. Finally, the widely used FBP reconstruc-
tions lead to a reconstruction error that is at least four orders of magnitude higher than
all explorable reconstructions. Thus, trusting a FBP reconstruction would mean that an
extreme range of possible alternate solutions would have to be considered as well.

6.4 Conclusion

In this chapter, we have shown the semantic guidance of an iterative CT reconstruction
by a data-driven classification network. By conditioning the reconstruction with a pre-
trained classification network, we explored the solution space of ambiguous sparse-view
CT reconstruction, focusing on the classification of lung nodules. In our experiments,
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we have shown to which extent the perceived malignancy of lung nodules can be altered
and analyzed the range of alterations for different levels of ambiguity in CT images. We
observed that the lower the number of projections, the easier it is to semantically modify
reconstructions without having artifacts.

While many methods aim to predict the most realistic reconstruction (typically derived
from a large set of training data), we argue that an exploration towards the pathologically
most and least concerning reconstruction is significantly more informative to a medical ex-
pert interpreting the images: A healthy-looking result is a stronger indication of a healthy
patient when obtained by optimizing for the most pathologically concerning image, com-
pared to when optimizing for the most realistic one. This holds particularly in a medical
context where great caution needs to be taken of any possible bias arising from the set of
training images.
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CHAPTER 7

Non-Smooth Energy Dissipating Networks

In the previous chapter, we have shown the guidance of an iterative reconstruction by a
data-driven network. Similarly, in this chapter, we will discuss the data-driven guidance
of a model-based method, but unlike before, we will not use a neural network as an ex-
plicit regularizer. Instead, the neural network will predict the update steps of an energy
minimization problem, focusing particularly on non-smooth energies.

After a brief introduction to the problem formulation, we will discuss a previously pub-
lished method for predicting updated steps, which forms the foundation for our approach,
before presenting our own. This chapter is based on a paper published in [89].

7.1 Introduction

Many image processing problems, e.g. in medical imaging or the reconstruction of im-
paired corrupted images such as down-sampled, noisy, or blurred images, can be written
as linear inverse problems, where a desired quantity 𝑢̂ ought to be recovered from mea-
sured data 𝑓 that relates to the true solution via (2.1), and the problem can be approached
by an energy minimization as shown in (2.2). Given for example a differentiable energy
like 𝐸(𝑢) = ‖𝐴𝑢 − 𝑓‖2, a simple reconstruction can be approached by using gradient
descent, optimizing the update step

𝑢𝑘+1 = 𝑢𝑘 − 𝜏𝑘𝑑𝑘, where 𝑑𝑘 ∶= ∇𝐸(𝑢𝑘). (7.1)
Considering the reconstructions from [214] in Figure 7.1, one can see that the reconstruc-
tion by gradient descent shows all important features of the reconstructed object, but still
is accompanied by noise.

Over the past decade, approaches like (2.2) have largely been outperformed and there-
fore replaced by deep learning based techniques that directly predict a suitable estimate
𝑢̂ = 𝜃(𝑓 ) for a (deep convolutional) neural network 𝜃 with learnable parameters 𝜃. De-
spite their performance, it is, however, difficult for such network to guarantee a certain
constraint on its output. For example, the reconstruction in Figure 7.1c, produced by
a trained neural network, exhibits missing details in its upper right region, which could
potentially be important. This can be a severe limitation particularly for safety-critical
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(a) ground truth (b) gradient descent,
PSNR 27.5

(c) learned,
PSNR 40.2

(d) energy dissipating,
PSNR 33.0

Figure 7.1: Illustration from Möller et al. [214], showing reconstructions of a walnut using
gradient descent (b), using a pre-trained neural network (c), and by using their proposed
energy dissipating network (d). While the neural network provides a clean reconstruction
with a high peak signal-to-noise ratio (PSNR), it does not guarantee to capture all details of
the walnut, as the highlight in the walnuts over right part. The energy dissipating network
combines the advantages of the model-based approach and the data-driven neural network.

applications, where one at least needs to ensure that – if the distribution of the noise can
be characterized as 𝑝(𝑢|𝑓 ) ∝ exp(−dist(𝐴𝑢, 𝑓 )) – the prediction 𝑢̂ respects the data up to
the expected noise level 𝛿 = dist(𝐴𝑢̂, 𝑓 ), i.e.

dist(𝐴𝑢̂, 𝑓 ) ≤ 𝛿. (7.2)
Previous works [214, 280] have addressed similar problems by training networks safe-

guarded with a suitable cost function, ensuring bounds like those in (7.2). In the following
section, let us discuss the work of Möller et al. [214] in more detail.

7.2 Energy Dissipating Networks

Möller et al. [214] introduced a method where a neural network iteratively predicts the
descent direction for a given cost function 𝐸. This approach integrates successful deep
learning techniques into model-based minimization, while also guaranteeing convergence
to a minimizer of the continuously differentiable cost function and maintaining data con-
sistency. They predict the descent steps 𝑑𝑘 for minimizing a cost function as shown in
(7.1) using a neural network 𝜃:

𝑑𝑘 = 𝜃(𝑢𝑘,∇𝐸(𝑢𝑘), 𝑓 ) (7.3)
The network prediction depends on the current iterate 𝑢𝑘, the gradient of the cost function
∇𝐸(𝑢𝑘), and the input data 𝑓 .

The authors propose training a network 𝜃, to iteratively predict update directions that
lie in a suitable convex set 𝐶(𝜁1, 𝜁2,∇𝐸(𝑢𝑘)) of descent directions of a continuously differ-
entiable cost function 𝐸 at the current estimate 𝑢𝑘 to ensure convergence to a minimizer
of the cost function 𝐸. This set is defined for the fixed parameters 𝜁1 and 𝜁2 as:

𝐶(𝜁1, 𝜁2, 𝑔) = {𝑑|⟨𝑑, 𝑔⟩ ≥ 𝜁1‖𝑔‖
2, ‖𝑑‖ ≤ 𝜁2‖𝑔‖} (7.4)

The intuition behind the projection onto the above set is to control the angular deviation
between the network’s predicted direction and the gradient direction 𝑔 of the energy 𝐸 by
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changing 𝜁1 and 𝜁2. The projection onto the defined set is performed in the last layer of
the neural network as

𝑧 ↦ 𝜂̂𝑔 + Π𝐵(𝑧 − 𝜂𝑔), (7.5)
where 𝜂 = ⟨𝑧,𝑔⟩

‖𝑔‖2
is the magnitude of 𝑧 in the direction of the gradient 𝑔 and 𝜂̂ is the clamped

version of 𝜂 that lies between 𝜁1 and 𝜁2. Moreover, Π𝐵 represents the projection onto

𝐵 =
{

𝑑 ∣ ‖𝑑‖ ≤
√

𝜁 22 − 𝜂̂2 ‖𝑔‖2
}

. (7.6)

To confirm that the projection meets the first condition specified in (7.4), we examine
whether it fulfills the following condition:

⟨(𝜂̂𝑔 + Π𝐵(𝑧 − 𝜂𝑔)), 𝑔⟩ ≥ 𝜁1‖𝑔‖
2 (7.7)

For this purpose, we will split the dot product ⟨𝜂̂𝑔 + Π𝐵(𝑧 − 𝜂𝑔), 𝑔⟩ into two separate
components. The first inequality,

⟨𝜂̂𝑔, 𝑔⟩ = 𝜂̂‖𝑔‖2 ≥ 𝜁1‖𝑔‖
2 (7.8)

holds, as 𝜂̂ is clamped to be larger than or equal to 𝜁1. Additionally,
⟨Π𝐵(𝑧 − 𝜂𝑔), 𝑔⟩ = 0, (7.9)

as 𝑧 − 𝜂𝑔 is the projection of 𝑧 orthogonal to 𝑔. The second condition in (7.4),
‖𝜂̂𝑔 + Π𝐵(𝑧 − 𝜂𝑔)‖ ≤ 𝜁2‖𝑔‖ (7.10)

follows from
‖𝜂̂𝑔 + Π𝐵(𝑧 − 𝜂𝑔)‖2 = 𝜂̂2‖𝑔‖2 + ‖Π𝐵(𝑧 − 𝜂𝑔)‖2 + 2⟨𝜂̂𝑔,Π𝐵(𝑧 − 𝜂𝑔)⟩

≤ 𝜁 22‖𝑔‖
2,

(7.11)

where ⟨𝜂̂𝑔,Π𝐵(𝑧 − 𝜂𝑔)⟩ = 0, as Π𝐵(𝑧 − 𝜂𝑔) is orthogonal to 𝑔. Because 𝜂̂ is clamped
to be less than or equal to 𝜁2, and the norm of the projection Π𝐵(𝑧 − 𝜂𝑔) is bounded,
the inequality holds, and finally shows 𝜂̂𝑔 + Π𝐵(𝑧 − 𝜂𝑔) ∈ 𝐶(𝜁1, 𝜁2, 𝑔). In [214], the
authors show linear convergence under assumption that the given energy 𝐸 is 𝐿-Lipschitz
differentiable, and further mild assumptions (see Assumption 1 in [214]), for the predicted
update step 𝑑𝑘 ∈ 𝐶(𝜁1, 𝜁2, 𝑔) (see Proposition 2 in [214]).

In order to train the network 𝜃, training data 𝑢𝑘 is sampled from the potential in-
puts that 𝜃 might face during inference, while predicting the descent steps. Initially the
training data is sampled by calculating a random, variable number of descent steps using
gradient descent with line search. As the network training progresses, repetitively after a
certain number of epochs, the prediction of the descent steps used for sampling the training
data is replaced by the network trained so far. For training, the loss function minimizes
the error between the networks predicted direction and the direction pointing from 𝑢𝑘 to
the ground truth 𝑢̂:

min
𝜃

(𝜃(𝑢𝑘,∇𝐸(𝑢𝑘), 𝑓 ), 𝑢̂ − 𝑢𝑘) (7.12)
During inference Möller et al. conduct a line-search algorithm to find 𝜏𝑘 for an update of
the form

𝑢𝑘+1 = 𝑢𝑘 − 𝜏𝑘𝜃(𝑢𝑘,∇𝐸(𝑢𝑘), 𝑓 ) (7.13)
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for input data 𝑓 and network parameters 𝜃, to ensure a monotonic decrease of energy and
a convergence to minimizers of the energy 𝐸.

Unfortunately, the approach of Möller et al. [214] is limited to the case where 𝐸(𝑢) is
continuously differentiable in 𝑢, e.g. the investigated classical case of Gaussian noise where
𝐸(𝑢) = ‖𝐴𝑢−𝑓‖2. Yet, some distributions of high practical relevance such as the Laplace
(or even more heavy-tailed) distributions cannot be tackled with their approach. Moreover,
for cost functions that do not possess a Lipschitz-continuous gradient with reasonably
small Lipschitz constant, the stated convergence can become very slow.

In the following, we extend the method from [214] to apply to 𝛼-semi-convex and
non-differentiable costs by descending on their Moreau-Yosida regularization, a smooth
approximation with identical minimizers. We discuss appropriate step size rules of the
resulting descent scheme to ensure convergence, and showcase the importance of using
non-smooth loss functions in two exemplary applications.

7.3 Non-Smooth Energy Dissipating Networks

For the remainder of this chapter, let 𝐸 ∶ ℝ𝑛 → ℝ ∪ {∞} be a proper, lower semi-
continuous cost function that has a minimizer (e.g. by being coercive). The minimization
of such costs is very well studied in the literature, particularly in the case where 𝐸 is
convex, with customized versions of the proximal point method [249, 234]

𝑢𝑘+1 = prox𝜏𝐸(𝑢𝑘), (7.14)
with

prox𝐸(𝑢) = argmin
𝑣

𝐸(𝑣) + 1
2
‖𝑢 − 𝑣‖2. (7.15)

As in the convex setting the proximal point algorithm (7.14) can be interpreted as a
conventional gradient descent method on a smoothed version of the original costs (see Sec-
tion 2.4.4), the explicit gradient descent on the Moreau-Yosida regularization of a convex
non-smooth function 𝐸 is interesting for the framework of energy dissipating networks.
To go beyond the fully convex case, let us assume that 𝐸 is 𝛼-semi-convex, i.e., that there
exists a constant 𝛼 such that 𝐸(𝑢) + 𝛼

2
‖𝑢‖2 is convex.

Proposition 1. Let 𝐸 be proper, lower semi-continuous, and 𝛼-semi-convex. For 1
𝜇
> 𝛼

the gradient of the Moreau-Yosida regularization 𝐸𝜇,

∇𝐸𝜇(𝑢) =
1
𝜇
(𝑢 − prox𝜇𝐸(𝑢)). (7.16)

is 𝐿-Lipschitz continuous with a constant of at most 1
𝜇
(1 + 1

(1+𝜇𝛼)2
).

Proof. Let us denote 𝑣̃ = prox𝜇𝐸(𝑣), 𝑧̃ = prox𝜇𝐸(𝑧), and note that 𝐸̃(𝑢) = 𝐸(𝑢)+ 𝛼
2
‖𝑢‖2 is

convex. Given the definition of the proximal operator in (2.17), the optimality condition
yields:

0 = 𝑝𝑣 − 𝛼𝑣̃ + 1
𝜇
(𝑣̃ − 𝑣), for 𝑝𝑣 ∈ 𝜕𝐸̃(𝑣̃) (7.17)
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Subtracting two equations derived from the optimality conditions, we get

0 = 𝑝𝑣 − 𝛼𝑣̃ + 1
𝜇
(𝑣̃ − 𝑣) − 𝑝𝑧 + 𝛼𝑧̃ − 1

𝜇
(𝑧̃ − 𝑧) (7.18)

= (𝑝𝑣 − 𝑝𝑧) − 𝛼(𝑣̃ − 𝑧̃) + 1
𝜇
(𝑣̃ − 𝑧̃) − 1

𝜇
(𝑣 − 𝑧) (7.19)

⇒ ( 1
𝜇
− 𝛼)(𝑣̃ − 𝑧̃) = 1

𝜇
(𝑣 − 𝑧) − (𝑝𝑣 − 𝑝𝑧), (7.20)

𝑝𝑣 ∈ 𝜕𝐸̃(𝑣̃), 𝑝𝑧 ∈ 𝜕𝐸̃(𝑧̃). (7.21)
Multiplying by 𝜇, taking the inner product with 𝑣̃ − 𝑧̃, and using that ⟨𝑝𝑣 − 𝑝𝑧, 𝑣̃ − 𝑧̃⟩ ≥ 0
yields

(1 − 𝜇𝛼)‖𝑣̃ − 𝑧̃‖2 ≤ ⟨𝑣 − 𝑧, 𝑣̃ − 𝑧̃⟩ (7.22)
and taking young’s inequality for inner product of |⟨𝑢, 𝑣⟩| ≤ 𝜆2

2
‖𝑢‖2 + 1

2𝜆2
‖𝑣‖2, we get

⟨𝑣 − 𝑧, 𝑣̃ − 𝑧̃⟩ ≤ 1
2
(1 − 𝜇𝛼)‖𝑣̃ − 𝑧̃‖2 + 1

2(1 − 𝜇𝛼)
‖𝑣 − 𝑧‖2 (7.23)

such that
‖𝑣̃ − 𝑧̃‖2 ≤ 1

(1 − 𝜇𝛼)2
‖𝑣 − 𝑧‖2. (7.24)

As this shows that prox𝜇𝐸 is 1
(1−𝜇𝛼)2

-Lipschitz continuous, the assertion follows by simple
addition of Lipschitz constants.

Therefore, we propose the following approach: Let 𝐸 be a given semi-convex but
possibly non-smooth cost function with which we’d like to control the behavior of a data
driven (deep learning) approach.

We design an arbitrary (e.g. deep convolutional) neural network 𝜃 of our choice, that
gets as an input the current estimate 𝑢𝑘, the input data 𝑓 and the gradient of the Moreau-
Yosida regularization at the current estimate ∇𝐸𝜇(𝑢𝑘) and predicts a descent direction
𝜃(𝑢𝑘,∇𝐸𝜇(𝑢𝑘), 𝑓 ), s.t.

𝑢𝑘+1 = 𝑢𝑘 − 𝜏𝜃(𝑢𝑘,∇𝐸𝜇(𝑢𝑘), 𝑓 ) (7.25)
converge to a minimizer of a non-smooth energy 𝐸.

To satisfy the descent constraints for a non-smooth energy 𝐸 we use a surjective map-
ping onto 𝐶(𝜁1, 𝜁2,∇𝐸𝜇(𝑢𝑘)) (see (7.4)) as the last layer of 𝜃, which is given by

𝑧 ↦ Π[𝜁1,𝜁2](𝜂)𝑔 + Π𝐵(𝑧 − 𝜂𝑔), (7.26)

with Π𝐵 being a projection onto 𝐵 = {𝑑|‖𝑑‖ ≤
√

𝜁 22 − 𝜂2‖𝑔‖}, with 𝜂 = ⟨𝑧, 𝑔⟩∕‖𝑔‖2

and in this setting 𝑔 = ∇𝐸𝜇, in comparison the mapping 𝑔 = ∇𝐸𝜇 proposed in [214]. This
mapping satisfies the network prediction to lie in 𝐶(𝜁1, 𝜁2,∇𝐸𝜇(𝑢𝑘)), similary as detailed
in Section 7.2.

In order to train the network on data that it could face during descent, prior to each
training step, the data is transformed into a potential sample generated from the space of
possible inputs as shown in Algorithm 1. For this purpose, starting from the input data 𝑢0
(e.g. 𝑢0𝑖 = 1

𝑛

∑𝑛
𝑗 𝑓𝑗 in Section 7.4.1 and 𝑢0 = 𝑓 in Section 7.4.2), an arbitrary number of
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Algorithm 1: Learned descent steps by an energy dissipating network satisfying
the descent constraints for an energy 𝐸𝜇.

Data: starting point 𝑢0, network 𝜃, gradient of the moreau envelope ∇𝐸𝜇, input
data 𝑓 , stepsize 𝜏, maximal number of iterations 𝑁

Result: 𝑢𝑘̃
1 𝑘̃ ∈ {0,… , 𝑁}
2 for 𝑘 ∈ {0,… , 𝑘̃} do
3 𝑢𝑘+1 ← 𝑢𝑘 − 𝜏𝜃(𝑢𝑘,∇𝐸𝜇(𝑢𝑘), 𝑓 )

descent steps (7.25) are performed to generate a sample that is potentially visited during
descent with the current model. This potential sample 𝑢𝑘̃ for 𝑘̃ ∈ {0,… , 𝑁} is used as
input for training the neural network. The network is trained by minimizing the sum of
losses

‖𝜃(𝑢𝑘̃,∇𝐸𝜇(𝑢𝑘̃), 𝑓 ; 𝜃) − (𝑢̂ − 𝑢𝑘̃)‖22 (7.27)
over all training examples for 𝜃, where 𝑢̂ represent the desired (ground truth) predictions.
Please note the increased computational cost by computing new training samples, in com-
parison to other training based networks.
Proposition 2. For a Moreau-Yosida regularization with 𝐿-Lipschitz continuous gradi-
ent, the descent steps in (7.25) converge with constant step size 𝜏𝑘 < 𝜁1

𝜁2𝐿
for a model

𝜃(𝑢𝑘,∇𝐸𝜇(𝑢𝑘), 𝑓 ) that satisfies

𝜃(𝑢𝑘,∇𝐸𝜇(𝑢𝑘), 𝑓 ) ∈ 𝐶(𝜁1, 𝜁2,∇𝐸𝜇(𝑢𝑘)) (7.28)
Proof. According to Taylor’s theorem it holds that

𝐸𝜇(𝑢𝑘+1) =𝐸𝜇(𝑢𝑘) + ⟨∇𝐸𝜇(𝑢𝑘), 𝑢𝑘+1 − 𝑢𝑘⟩
+ ⟨∇𝐸𝜇(𝜉) − ∇𝐸𝜇(𝑢𝑘), 𝑢𝑘+1 − 𝑢𝑘⟩,

(7.29)

for some 𝜉 on the line segment between 𝑢𝑘 and 𝑢𝑘+1. Using that 𝑢𝑘+1 = 𝑢𝑘 − 𝜏𝑘𝑑𝑘, we get
𝐸𝜇(𝑢𝑘+1) − 𝐸𝜇(𝑢𝑘) = −𝜏𝑘⟨∇𝐸𝜇(𝑢𝑘), 𝑑𝑘

⟩ + ⟨∇𝐸𝜇(𝜉) − ∇𝐸𝜇(𝑢𝑘), 𝑢𝑘+1 − 𝑢𝑘⟩. (7.30)
Using the Cauchy-Schwarz inequality, we establish the subsequent inequality:

⟨∇𝐸𝜇(𝜉) − ∇𝐸𝜇(𝑢𝑘), 𝑢𝑘+1 − 𝑢𝑘⟩ ≤ ‖∇𝐸𝜇(𝜉) − ∇𝐸𝜇(𝑢𝑘)‖‖𝑢𝑘+1 − 𝑢𝑘‖ (7.31)
Furthermore, it is given that 𝑑𝑘 ∈ 𝐶(𝜁1, 𝜁2,∇𝐸𝜇(𝑢𝑘)), which guarantees ⟨∇𝐸𝜇(𝑢𝑘), 𝑑𝑘

⟩ ≥
𝜁1‖∇𝐸𝜇(𝑢𝑘)‖. Considering the 𝐿-smoothness of 𝐸𝜇, it holds that ‖∇𝐸𝜇(𝜉) −∇𝐸𝜇(𝑢𝑘)‖ ≤
𝐿‖𝜉 − 𝑢𝑘‖, leading us to the following inequality:

− 𝜏𝑘⟨∇𝐸𝜇(𝑢𝑘), 𝑑𝑘
⟩ + ⟨∇𝐸𝜇(𝜉) − ∇𝐸𝜇(𝑢𝑘), 𝑢𝑘+1 − 𝑢𝑘⟩

≤ −𝜏𝑘⟨∇𝐸𝜇(𝑢𝑘), 𝑑𝑘
⟩ + ‖∇𝐸𝜇(𝜉) − ∇𝐸𝜇(𝑢𝑘)‖‖𝑢𝑘+1 − 𝑢𝑘‖

≤ −𝜏𝑘𝜁1‖∇𝐸𝜇(𝑢𝑘)‖2 + 𝜏𝑘𝐿‖𝜉 − 𝑢𝑘‖‖𝑑𝑘
‖

(7.32)

As 𝜉 lies on the line segment between 𝑢𝑘 and 𝑢𝑢+1, it holds that ‖𝜉 − 𝑢𝑘‖ ≤ ‖𝜏𝑘𝑑𝑘
‖.

In the following steps we also use that 𝑑𝑘 ∈ 𝐶(𝜁1, 𝜁2,∇𝐸𝜇(𝑢𝑘)) and such it holds that
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‖𝑑‖ ≤ 𝜁2‖∇𝐸𝜇(𝑢𝑘)‖:
≤ −𝜏𝑘𝜁1‖∇𝐸𝜇(𝑢𝑘)‖2 + 𝜏𝑘𝐿‖𝜉 − 𝑢𝑘‖‖𝑑𝑘

‖

≤ −𝜏𝑘𝜁1‖∇𝐸𝜇(𝑢𝑘)‖2 + (𝜏𝑘)2𝐿‖𝑑𝑘
‖

2

≤ −𝜏𝑘𝜁1‖∇𝐸𝜇(𝑢𝑘)‖2 + (𝜏𝑘)2𝐿𝜁2‖∇𝐸𝜇(𝑢𝑘)‖2,
= 𝜏𝑘‖∇𝐸𝜇(𝑢𝑘)‖2 ⋅ (−𝜁1 + 𝜏𝑘𝐿𝜁2)

(7.33)

From this, we derive that 𝐸𝜇(𝑢𝑘+1) − 𝐸𝜇(𝑢𝑘) ≤ 𝜏𝑘‖∇𝐸𝜇(𝑢𝑘)‖2 ⋅ (−𝜁1 + 𝜏𝑘𝐿𝜁2). Given
that ‖∇𝐸𝜇(𝑢𝑘)‖2 > 0 and 𝜏𝑘 > 0, we are descending in the energy for 𝜏𝑘 < 𝜁1

𝐿𝜁2
. Second,

coercivity of the energy ensures the existence of a convergent subsequence. Third, since
𝑑𝑘 ∈ 𝐶(𝜁1, 𝜁2,∇𝐸𝜇(𝑢𝑘)), it holds that ‖∇𝐸𝜇(𝑢𝑘)‖ ≤ 1

𝜁1
‖𝑑𝑘

‖ = 1
𝜁1𝜏𝑘

‖𝑢𝑘+1 − 𝑢𝑘‖. The
convergence then follows from standard results in descent-based methods such as Theorem
2.9 (Convergence to a critical point) in [12].

7.4 Numerical Evaluation

For proof of concept we implemented salt and pepper denoising to demonstrate energy
dissipating networks on non-smooth energies and binary deblurring to show energy dissi-
pating networks on non-smooth and semi-convex energies.

7.4.1 Salt and Pepper Denoising

For denoising images with salt and pepper noise using dissipation neural networks, an
appropriate convex data fidelity term is the 𝓁1 norm of the distance to the noisy image 𝑓 :

𝐸(𝑢) = ‖𝑢 − 𝑓‖1. (7.34)
We construct the Moreau-Yosida regularization of (7.34) as

𝐸𝜇(𝑢) =
∑

𝑖
𝑒𝜇(𝑢𝑖) (7.35)

with
𝑒𝜇(𝑢𝑖) =

{

|𝑢𝑖 − 𝑓𝑖| −
𝜇
2

if |𝑢𝑖 − 𝑓𝑖| > 𝜇
1
2𝜇
(𝑢𝑖 − 𝑓𝑖)2, otherwise, (7.36)

and train an energy dissipating network on noisy data with a surjective mapping to the
gradient ∇𝐸𝜇 in its last layer. Based on Proposition 2, the dissipating network minimizes
the data fidelity term (7.34), but takes a path that tries to get as close as possible to the
noise-free image in a data-driven way. Thus, there is a point during the minimization
where the image is denoised best, and afterwards, due to convergence to the minimizer of
(7.34), approaches the noisy image 𝑣.

To stop minimization when denoised best, a popular a posteriori stopping rule is the
discrepancy principle [216]: Similar to (7.2) we stop the algorithm at the minimum dis-
tance of the expected noise level 𝛿 = ‖𝑢̂ − 𝑓‖𝑝 for 𝑝 = 1 to the distance of the calculated
image to the noisy image

argmin
𝑘

|‖𝑢𝑘 − 𝑓‖𝑝 − 𝛿|. (7.37)
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noise ‖𝑢 − 𝑣‖1 ‖𝑢 − 𝑣‖22 median filter TV
1% 𝟑𝟗.𝟖𝟕∕𝟎.𝟗𝟕 39.07∕0.97 30.25∕0.87 34.24∕0.97
5% 𝟑𝟒.𝟗𝟗∕𝟎.𝟗𝟓 32.17∕0.89 29.34∕0.85 30.00∕0.92
10% 𝟐𝟖.𝟔𝟐∕𝟎.𝟖𝟐 16.93∕0.45 26.61∕0.80 27.83∕0.86
25% 15.13∕0.39 15.13∕0.39 14.87∕0.24 𝟐𝟒.𝟕𝟓∕𝟎.𝟕𝟐

Table 7.1: Measured mean PSNR and structural similarity index measure (SSIM) value
on the validation dataset of BSDS500 for energy dissipation network algorithm with an
𝓁1 and an 𝓁2 data fidelity term for 𝜁1 = 0.05 and 𝜁2 = 30, for running a median filter with
kernel size 3, and for running TV denoising.

(a) Noisy image (b) Median filter (c) TV (d) 𝓁1 fid. term (e) 𝓁2 fid. term
Figure 7.2: Exemplary denoising results of noisy images (a) by running median filter with
kernel size 3 (b), by running TV denoising (c), by running descent on an energy dissipating
network satisfying descent constraints for an 𝓁1 fidelity term (d) and an 𝓁2 fidelity term
(e).

In the following experiments, we train an energy dissipating network on salt and pepper
denoising with mapping on the gradient of the Moreau-Yosida regularization (7.35) and
compare the approach with using dissipating networks on the 𝓁2 norm 𝐸𝓁2

(𝑢) = ‖𝑢−𝑓‖2.
For the latter, the predicted descent direction is mapped to ∇𝐸𝓁2

(𝑢) = 2(𝑢𝑘 − 𝑓 ), s.t. the
update step becomes 𝑑𝑘 = 𝜃(𝑢𝑘,∇𝐸𝓁2

(𝑢𝑘), 𝑓 ). We also compare our results to denoising
using a median filter and TV denoising by min𝑢 ‖𝐷𝑢‖1 s.t. ‖𝑢 − 𝑓‖1 ≤ 𝛿, with 𝐷 being a
finite difference matrix.

As train and validation data, we use the given images from BSDS500 [8] and apply
salt and pepper noise with a probability of 5% each that a pixel takes the value 0 or 1. For
training, we extract patches of dimension 52 × 52 and use them to train the network with
the architecture of [331] for 30000 iterations on the loss function in (7.27) using Adam
optimizer.

Since the step size given in Proposition 2 turns out to be too small at the beginning
to efficiently minimize the energy, we choose our step size as 𝜏𝑖 = max

(

1
𝑖+1

, 𝜏min

)

. In
validation, we compare PSNR and SSIM averaged over 100 validation images for different
fractions of noise, i.e., images that originated outside the potential sampling space of the
training. A quantitative evaluation is given in Table 7.1, where the values are measured
at the stopping point triggered by the criterion in (7.37). It shows good performance for
the 𝓁1 norm as surrogate energy, better than for the 𝓁2 norm (up to 8.8% in PSNR for
5% noise), the median filter (with kernel size 3), or TV denoising, except for the highly
degraded data with 25% noise, which appears to be too far outside of the range of our
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Figure 7.3: Exemplary comparison of the PSNR and SSIM for running descent on an
energy dissipating network satisfying descent constraints for an 𝓁1 fidelity term and an 𝓁2fidelity term with circles shaped markings of the iteration where the stopping criterion is
triggered for 𝑝 = 1 and a star shaped marking where the stopping criterion is triggered for
𝑝 = 2.

training examples, as in our method the network was trained on data with 5% probability
of noise. Exemplary denoising results for 5% noisy data are shown in Figure 7.2, with
the corresponding PSNR and SSIM curve (for the upper images) over the iterations in
Figure 7.3, showing the peak of PSNR and SSIM at a certain point during minimization.

7.4.2 Binary Deblurring

To demonstrate the concept of non-smooth and semi-convex energy dissipating networks,
we consider the deblurring of binary images 𝑢 with pixels that are supposed to be either
zero or one 𝑢𝑖 ∈ {0, 1}, e.g. having the reconstruction of bar-codes or QR-codes in mind.
To ensure binary outputs, we consider the function

𝐸(𝑢) = ‖(𝑢 − 0.5)2 − 0.25‖1, (7.38)
and its Moreau-Yosida regularization, which is illustrated in Figure 7.4 (a) and train a
dissipating network that satisfies the descent constraints for (7.38).

As dataset we use generated bar-codes 𝑏𝑖 ∈ {0, 1}180 of type Code 128, by encoding
randomly chosen sequences of 5 numbers and letters, and blur them using a Gaussian filter
with radius 1.5. Our training set consists of 40960 arrays and our test set of 1024 arrays.
In our experiments, we use the network architecture of [331] and decrease the network
depth to 12 convolutional layers and the width to 32. We train the network using losses of
the form (7.27) for 30000 iterations.

As shown in Figure 7.4 (b), the network-based updates lead to a monotonically decreas-
ing cost function, converging to zero, i.e., to binary predictions in about 60 iterations.

Figure 7.5 shows an input bar code with a blur radius of 1.0 and the result of a dis-
sipating network in comparison to an unconstrained network, with the same network ar-
chitecture and trained on the same blurred data with a radius of 1.5, just without energy
dissipation. Here, for 2D visualization, the arrays were repeated along the height and
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Figure 7.4: Illustration of Energy 𝐸 (7.38) and its Moreau-Yosida regularization 𝐸𝜇 for
𝜇 = 0.1 (a) and their energy curve over the iterations when running descent on an energy
dissipating network (b).

(a) Blurred bar-code (b) Dissipating network (c) Neural network 𝜃

Figure 7.5: Deblurring results for the blurred input bar-code using a Gaussian filter with
radius 1.0 (a), by running descent on an energy dissipating network (b), satisfying (7.38),
and by applying a trained neural network (c).

cropped in width. As it turns out, the unconstrained network, which has no guarantee
of predicting a deblurred binary image on unknown data, fails to predict a binary image,
unlike the constrained energy dissipating network.

7.5 Conclusion

This chapter dealt with the inclusion of data-driven networks to model-based energy mini-
mization approaches, in the form of the prediction of descent steps by (non-smooth) energy
dissipating neural networks.

We first discussed the mapping of a neural network’s prediction onto a suitable convex
set, as proposed by Möller et al. [214], which ensures that iterative updates converge
to a minimizer of the corresponding energy function. Subsequently, we demonstrated
how to extend their framework of energy dissipating networks to non-smooth energies
by exploiting the equivalence of the proximal point algorithm and gradient descent on
a cost functions’ Moreau-Yosida regularization. In numerical experiments, we applied
this approach to the 𝓁1-norm for salt and pepper denoising, and to a non-smooth (semi-
convex) function for binary deblurring, demonstrating improved performance compared
to an unconstrained network.
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CHAPTER 8

Efficient Low-Rank Permutation Representation

While the previous chapters concern the combination and comparison of model- and learn-
ing-based methods, we now deal with problem formulations, that can appear in model- and
learning-based approaches likewise. This chapter is based on [87], where we study the
memory-intensive permutation matrix for assignment problems in data-driven and classi-
cal applications and discuss another representation of the permutation matrix by two ma-
trices and a nonlinearity, with their dimensions motivated by the so-called Kissing number.

8.1 Introduction

Permutation matrices, which encode the reordering of elements, arise naturally in any
problem that can be phrased as a bijection between two equally sized sets. As such, they
are fundamental to many important computer vision applications, including matching se-
mantically identical key points in images [329, 308, 309, 328], matching 3D shapes or
point clouds [148, 303, 204], estimating scene flow on point clouds [240] and solving
jigsaw puzzles [208], as well as to various sorting tasks [23, 116]. As briefly discussed
in the introduction to assignment problems in Section 4.3, permutations can be alterna-
tively representated by an enumeration of the permuted elements. However, it is quickly
concluded that this representation is unsuitable for optimization tasks due to its discrete
nature. Therefore, most methods for predicting permutations, especially learning-based
approaches, prefer a permutation matrix representation as given in (4.15).

Yet, the advantages of the matrix form representation (4.15) come at the cost of a
prohibitive increase in memory, as it requires storing 𝑛2 binary numbers 𝑃𝑖𝑗 ∈ {0, 1}, or
– after commonly used relaxations – even 𝑛2-many floating point numbers instead of the
𝑛 integers in (4.14). This renders matching problems with 𝑛 > ∼ 104 largely infeasible
as their corresponding permutation matrix 𝑃 constitutes over one hundred million entries.
To handle large matrices whose size prohibits explicit processing and storage, existing
approaches typically either turn to sparse representations, i.e., storing only a small portion
of matrix values in the form of (𝑖, 𝑗, 𝑃𝑖,𝑗) triplets, where 𝑃𝑖,𝑗 ≠ 0, or employ low rank
representations, i.e., forming a large matrix 𝑃 as a product of matrices

𝑃 = 𝑉 𝑊 𝑇 , (8.1)
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Figure 8.1: Geometric intuition behind our approach on a 2D unit sphere. For well-
distributed vectors 𝑉 ∈ ℝKiss(2)×2, where the number of vectors is determined by the
Kissing number (Kiss(2) = 6),the cosine angle between different vectors 𝑉𝑖,∶ and 𝑉𝑗,∶,
𝑖 ≠ 𝑗, is ⟨𝑉𝑖,∶, 𝑉𝑗,∶⟩ = cos(𝛼) ≤ 0.5, while ⟨𝑉𝑖,∶, 𝑉𝑖,∶⟩ = 1 for the same vector. Thus, for
any permutation 𝑃 , the matrix-matrix product of 𝑉 and (𝑃𝑉 )𝑇 merely has to be thresh-
olded suitably to represent the permutation 𝑃 , i.e. 𝑃 = 2max(𝑉 (𝑃𝑉 )𝑇 − 0.5, 0).

with 𝑉 ,𝑊 ∈ ℝ𝑛×𝑚 and 𝑚 << 𝑛.
Unfortunately, neither of these approaches is applicable to permutation matrices: sparse

representation cannot be used as the sparsity pattern is not only unknown a-priori but ac-
tually the sought-after solution to the problem. On top of that, since permutation matrices
are by definition full rank, a low-rank representation (8.1) can yield only a crude approxi-
mation at best.

In this chapter, we alleviate the limitation on problem size by harnessing the well-
studied problem of (bounds for) the so-called Kissing number, which, in practice, trans-
lates to introducing a simple adaptation to the matrix factorization approach (8.1). In
particular, we exploit the fact that for row-normalized matrices 𝑉 and 𝑊 , the entries of
𝑉 𝑊 𝑇 correspond to the cosines of the angles between the matrix rows. We then apply
a pointwise non-linearity on the product of the matrices in (8.1), which allows represent-
ing any permutation while using 𝑚 << 𝑛. We use the Kissing number theory to provide
an estimate for how small an 𝑚 we can use. While previous work on the approximation
of sparse and non-negative matrices by nonlinear matrix decomposition [264], and fur-
ther (accelerated) methods on this subject [269] have been proposed in the last few years,
including an analysis of the geometric relationship between the sparse and low-rank ma-
trices [263], we exploit this problem of low-rank approximation for permutation matrices
and show its relationship to the Kissing number. We elaborate on our theoretical con-
siderations in Section 8.3 and provide an illustration of the geometric intuition for our
approach in Figure 8.1. We then demonstrate the applicability of the proposed approach
through several numerical experiments tackling various problems that involve estimating
permutations, including a study on point alignment, LAPs, QAPs, and a real-world shape
matching application. We find that the proposed approach trades off only little accuracy to
offer significant memory saving, thus enabling handling bijection mapping problems that
are larger than was previously possible, when full permutation matrices had to be stored.

8.2 Kissing Number Theory

The origin of the Kissing number is said to have arisen in the late 1600s from a dispute
between Isaac Newton and David Gregory, who were discussing how many billiard balls
could touch a given other billiard ball at once, whereby the balls are called to “kiss” if they
touch. Newton said 12, Gregory claimed 13, whereas in 1953 Schütte and Waerden [267]
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Figure 8.2: Geometrical interpretation of the Kissing number in 2D.

proved Newton to be correct. [237]
The Kissing number Kiss(𝑚) can be interpreted as the maximal number of non-over-

lapping 𝑚-dimensional spheres ∈ ℝ𝑚 that can touch another same sized 𝑚-dimensional
sphere. The geometrical interpretation in two dimensions is given in Figure 8.2, demon-
strating that the Kissing number Kiss(2) = 6. Further the Kissing numer in one dimension
would be Kiss(1) = 2. Many research has been done to solve this problem for higher di-
mensions. Beside the Kissing number of dimensions 1, 2 and 3, the exact Kissing number
has been proven only for 𝑚 = 4, 8, 24 [219, 228, 165]. For some further dimensions there
have been calculated upper and lower bounds [176, 219, 44].

Formally the Kissing number can be defined as the maximum value for which points
can distributed on a unit sphere, s.t. the angle between each pair of points is at least
arccos(0.5):
Definition 11. For a given 𝑚 ∈ ℕ, we define the Kissing number Kiss(𝑚) as

Kiss(𝑚) ∶=max
𝑛

{𝑛 ∈ ℕ | ∃𝐴 ∈ ℝ𝑛×𝑚, ‖𝐴𝑖,∶‖2 = 1, 2⟨𝐴𝑖∶, 𝐴𝑗,∶⟩ ≤ 1, 𝑖 ≠ 𝑗}. (8.2)
We take advantage of the Kissing number properties in our work, namely using the

fact that there exists a set of vectors of unit length for which the cosine angle 𝛼 between
two vectors is bounded, and benefit from the additional literature that derives theoretical
bounds on the number and dimension of those vectors.

8.3 Low-Rank Permutation Matrix Representation

A common approach to solve optimization problems with costs 𝐸 over the set of permu-
tation matrices 𝑛 (including those arising from training neural networks for predicting
assignments) is to relax the problem by replacing 𝑛 by its convex hull conv(𝑛), i.e., the
set of doubly-stochastic matrices:

min
𝑃∈conv(𝑛)

𝐸(𝑃 ). (8.3)

Since 𝑃 grows quadratically in 𝑛, has an unknown sparsity pattern, and the true solution
is always full rank, such problems pose significant challenges for large 𝑛. In this work,
we make the interesting observation that a non-linearity as simple as a rectified linear
unit (ReLU, denoted by 𝜎) is sufficient not only to restore a full rank, but to represent any
permutation matrix exactly. More precisely, we propose to replace the set conv(𝑛) in (8.3)

68



CHAPTER 8. EFFICIENT LOW-RANK PERMUTATION REPRESENTATION

with the set 𝑚(𝑛) = {𝜎(2𝑉 𝑊 𝑇 − 1) | 𝑉 ,𝑊 ∈ ℝ𝑛×𝑚} and use the Kissing number [31,
219, 344] (see (8.2)) to show that 𝑛 ⊂ 𝑚(𝑛) for a surprisingly small 𝑚.

Remind that the Kissing number can be interpreted geometrically as the maximum
number of points that can be distributed on an 𝑚-dimensional unit sphere such that the
angle formed between each pair of different points is at least arccos(0.5). This property
quickly establishes 𝑛 ⊂ 𝑚(𝑛):
Proposition 1. Let 𝑃 ∈ 𝑛 be an arbitrary permutation matrix, and let 𝜎, 𝜎(𝑥) =
max(𝑥, 0) denote a rectified linear unit (ReLU). Then for every 𝑚 such that 𝑛 ≤ Kiss(𝑚)
there exist 𝑉 ,𝑊 ∈ ℝ𝑛×𝑚 such that

𝑃 = 𝜎(2𝑉 𝑊 𝑇 − 1). (8.4)
Proof. Let 𝑉 ∈ ℝ𝑛×𝑚 be a matrix that satisfies the equalities and inequalities of (8.2), and
let 𝑊 = 𝑃𝑉 . Then it holds that

2⟨𝑉𝑖,∶,𝑊𝑗,∶⟩

{

≤ 1 if 𝑃𝑖,𝑗 ≠ 1
= 2 otherwise . (8.5)

Consequently

𝜎(2⟨𝑉𝑖,∶,𝑊𝑗,∶⟩ − 1) =

{

0 if 𝑃𝑖,𝑗 ≠ 1
1 otherwise , (8.6)

which proves the assertion.
To determine the minimal rank 𝑚 that is required for representing a permutation of

𝑛 elements, we rely on extensive studies in the past few decades which computed either
exact values or lower and upper bounds for different values of 𝑚 [44].

Using 𝑃 = 𝜎(2𝑉 𝑊 𝑇 − 1) for relaxing (8.3) yields a relaxation that requires only 2𝑚𝑛
instead of 𝑛2 parameters, with 𝑚 << 𝑛 = Kiss(𝑚). For instance, Kiss(24) = 196560 im-
plies that matrices of rank 𝑚 = 24 are sufficient for representing any arbitrary permutation
matrix of up to 𝑛 = 196560 elements, thus requiring ∼ 4000 times less storage memory:
2⋅24⋅196560 instead of 1965602 parameters. Furthermore, 𝑛 ⊂ 𝑚(𝑛) ensures that – in
stark contrast to direct low-rank factorization – any permutation matrix can still be repre-
sented exactly. Empirically, the optimization over parametrizations 𝜎(2𝑉 𝑊 𝑇 − 1) turned
out to cause significant challenges, likely due to the non-convexity and non-smoothness
of the problem. To alleviate this problem, we resort to a smoother version of (8.4) which
can still approximate permutations to an arbitrary desired accuracy:
Proposition 2. Let 𝑃 ∈ 𝑛 and 𝑔 denote an arbitrary permutation matrix and an arbitrary
entry-wise strictly monotonically increasing function, respectively, and let 𝑠 denote the
row-wise Softmax function 𝑠(𝐴)𝑖,𝑗 =

exp𝐴𝑖,𝑗
∑

𝑘 exp𝐴𝑖,𝑘
. Then ∀𝑛 ≤ Kiss(𝑚) and ∀𝜖 > 0 there exist

𝑉 ,𝑊 ∈ ℝ𝑛×𝑚 and 𝛼 > 0, such that

‖𝑃 − 𝑠
(

𝛼𝑔(𝑉 𝑊 𝑇 )
)

‖ ≤ 𝜖. (8.7)
Proof. Similar to the proof in Proposition 1, we start by choosing 𝑉 satisfying (8.2) and
setting 𝑊 = 𝑃𝑉 to obtain

(𝑉 𝑊 𝑇 )𝑖𝑗 = ⟨𝑉𝑖,∶,𝑊𝑗,∶⟩

{

= 1 if 𝑃𝑖,𝑗 = 1
≤ 0.5 otherwise . (8.8)
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Then ∀𝑖, 𝑗, 𝑘 s.t. 𝑃𝑖𝑗 = 1 and 𝑘 ≠ 𝑗 (i.e., 𝑃𝑖𝑘 = 0) it holds that 𝑔(𝑉 𝑊 𝑇 )𝑖𝑗 > 𝑔(𝑉 𝑊 𝑇 )𝑖𝑘.
Finally, to yield the assertion we use the Softmax property of converging to the unit vector
in the limit 𝑠(𝛼𝐴𝑖,∶)

𝛼→∞
→ 𝑒𝑗 (with 𝑗 = argmax𝐴𝑖,∶), by taking 𝛼 > 0 to be large enough.

In practice, we use 𝑔(𝑥) = 2𝑥, in accordance with the representation in (8.4). We use
this smoother version to validate the proposed low-rank representation for handling large
matching problems in the experiments we report next.

8.4 Numerical Evaluation

The following experiments validate our efficient permutation estimation method for differ-
ent applications, and they confirm the ability to scale to very large problem sizes. First, as
a proof of concept, we demonstrate our approach on the application of point cloud align-
ment for the two non-linearities proposed in Section 8.3 and introduce our sparse training
technique. We then valdidate the effectiveness of our approach in the context of linear
assignment problems and show how to handle sparse cost matrices. We perform further
experiments in the context of generic NP-hard quadratic assignment problems, and inte-
grate our approach into a state-of-the-art shape matching pipeline, thus providing the same
level of accuracy while enabling a higher spatial resolution.

8.4.1 Implementation Details

We use the PyTorch Adam optimizer [153] with its default hyperparameters in all our
experiments.

Stochastic Optimization. Fully benefiting from our proposed compact representation
requires the costs 𝐸 (or an approximation thereof) to be evaluated without ever forming the
full (approximate) permutation matrix, as this step would inherently return to necessitate
𝑛2 many entries. To this end, we introduce the concept of stochastic optimization, which
– for our softmax-based representation 𝑠(2𝛼𝑉 𝑊 𝑇 ) arising from Proposition 2 – is not a
stochastic training in a classical sense: we propose to fix all but two entries in each row
of our approximate permutation. More specifically, in any supervised (learning-based)
scenario where it is known that the 𝑦𝑖-entry of the 𝑖-the row of the final permutation 𝑃
ought to be equal to one, each step of our optimizers merely computes the 𝑦𝑖-th and one
randomly chosen (𝑟𝑖-th entry) of each row, and computes the softmax 𝑠 on these two entries
only, i.e.,

𝑃𝑖,[𝑦𝑖,𝑟𝑖] = 𝑠(2𝛼𝑉𝑖,∶(𝑊[𝑦𝑖,𝑟𝑖],∶)
𝑇 ), (8.9)

while implicitly assuming 𝑃𝑖,𝑗 = 0 for 𝑗 ∉ {𝑦𝑖, 𝑟𝑖}.
In the above, we used 𝑊[𝑦𝑖,𝑟𝑖],∶ to denote the 2×𝑚 matrix consisting of the 𝑦𝑖-th and the

𝑟𝑖-th row of 𝑊 . Our stochastic approach requires the computation of 2𝑛 entries per gradi-
ent descent iteration only and – by randomly choosing the 𝑟𝑖 – manages to still approximate
the desired objective well.

Normalization of𝑉 and𝑊 . Since Proposition 1 and Proposition 2 rely on row-normalized
matrices, we explicitly enforce this constraint whenever we compute the permutation 𝑃 , by
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using 𝑉𝑖,∶ ←
1

‖𝑉𝑖,∶‖
𝑉𝑖,∶, 𝑊𝑖,∶ ←

1
‖𝑊𝑖,∶‖

𝑊𝑖,∶. We omit this step from the presentations below
for the sake of readability.

Softmax Temperature. Since the values of ⟨𝑉𝑖,∶,𝑊𝑗,∶⟩ are bounded by one following
the aforementioned normalization, the temperature parameter 𝛼 determines the trade-off
between approximating a hard maximum (as required for accurately representing permuta-
tions, see Proposition 2) and favorable optimization properties (i.e., meaningful gradients).
We specify the schedule (constant or monotonically increasing) in each of the experiments
below.

8.4.2 Point Cloud Alignment

As a proof of concept, we demonstrate that our proposition is correct and the optimiza-
tion process converges. We explore the different choices of non-linearity, starting with
ReLU and continuing with Softmax, using the task of predicting a linear transformation
over point clouds. In this task we aim to match a point cloud 𝑋1 ∈ ℝ𝑛×𝑚 consisting of 𝑛
𝑚-dimensional points, uniformly distributed on the unit hyper-sphere, to its linearly trans-
formed and randomly permuted version 𝑋2 ∈ ℝ𝑛×𝑚.

To obtain 𝑋2 we multiply 𝑋1 by a randomly drawn matrix ΘGT ∈ ℝ𝑚×𝑚 and apply
a random permutation. Then, we optimize over the estimated transformation matrix Θ
which in this experiment defines our permutation matrix 𝑃 (Θ):

𝑃 (Θ) = 𝜎
(

2𝑉 𝑊 (Θ)𝑇 − 1
)

. (8.10)
Note that in this case, our representation in (8.4) is fully parameterized by Θ, with 𝑉 = 𝑋1and 𝑊 (Θ) = 𝑋2Θ, and 𝑉 and 𝑊 are row-wise normalized in each iteration. Here 𝑃 (Θ)
is equal to the correct permutation if the matrix Θ correctly aligns the point clouds, i.e.
minimizes the angle between two corresponding points in 𝑉 and 𝑊 (Θ) while maximizing
the angles between non-corresponding points.

We solve for the permutation by performing 20000 minimizing steps with a learning
rate set to 0.01 over the negative log-likelihood loss

Θ̂ = argmin
Θ

− 1
𝑛

𝑛
∑

𝑖=1
log

(

𝑃 (Θ)𝑖,𝑦𝑖
)

, (8.11)

where 𝑦𝑖 is the index of the point in 𝑋2 which corresponds to the 𝑖th point in 𝑋1. We
experiment with different numbers of points 𝑛, each time choosing the dimension 𝑚 to be
just big enough to satisfy the Kissing number constraint from Proposition 1, i.e., Kiss(𝑚) ≥
𝑛 > Kiss(𝑚 − 1).

To check that we were able to find the correct transformation matrix Θ – and there-
fore the correct permutation matrix 𝑃 – through optimization, we verify that the nearest
neighbor (closest point) for each row 𝑖 in 𝑉 is located in row 𝑗 of matrix 𝑊 that satisfies
𝑃𝑖,𝑗 = 1. We find that this is indeed the case in all experiments with different number
of points 𝑛 ∈ {10, 100, 1000, 10000}, thus establishing that we could reach the correct
representation through optimization. We achieve equally good results when replacing the
point-wise non-linearity ReLU with Softmax 𝑃 (Θ) = 𝑠

(

2𝛼𝑉 𝑊 (Θ)𝑇
).

Due to the quadratically growing size of the permutation matrix with an increasing
number of points, we further propose to optimize for the permutation matrix stochasti-
cally, as described in Section 8.4.1. We ran experiments with similar settings as above,
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wherein we gradually increased the value of the temperature parameter 𝛼 linearly during
optimization from 𝛼 = 5 ⋅ 10−5 to 𝛼 = 1000. In these experiments, we again found that
each point was paired with its corresponding nearest neighbor, while reducing the memory
consumption, as shown in Figure 8.3.

Accuracy values to the prediction of a linear transformation over point clouds are
shown in Table 8.1. Here, we measure the distance between the true point clouds and
their transformed counterparts, for each problem size (𝑛).

nonlin.\𝑛 10 100 1000 10000
ReLU 2.362 × 10−4 1.0597 × 10−4 4.115 × 10−4 1.0387 × 10−4
SoftMax 0.0829 0.026 0.0057 0.0012
Stoch. Softmax 0.0712 0.0164 0.00173 0.0002

Table 8.1: 𝓁2 norm distance between true and transformed point clouds in the point cloud
alignment experiment across various non-linearities, and problem size (𝑛).

8.4.3 Point Cloud Alignment on Spectral Point Representation

We conduct an additional experiment on point cloud alignment in the context of the func-
tional maps framework [230]. Here, the goal is to extract a point-to-point correspondence
between two shapes 𝑋, 𝑌 from a 𝑚 × 𝑚-dimensional functional map 𝐶 [230] where 𝑚
is much smaller than the number of vertices in 𝑋 and 𝑌 . A possible interpretation of 𝐶
is that it aligns the spectral point representations 𝜙𝑋 , 𝜙𝑌 ∈ ℝ𝑛×𝑚 in which each point 𝑥
is represented by the vector of values of the first 𝑚 Laplace-Beltrami eigenfunctions at
𝑥 such that 𝑃 ⋅ 𝜙𝑋 ≈ 𝜙𝑌 ⋅ 𝐶 where 𝑃 is the unknown permutation between 𝑋 and 𝑌 .
Given 𝐶 , 𝑃 can be retrieved by a nearest-neighbor query between 𝜙𝑋 , 𝜙𝑌𝐶 , as proposed
in the original paper (see [230], Section 6.1), or by solving a Linear Assignment Problem
(LAP) if a bijection is desired. This is exactly the same setting as in Section 8.4.2 with a
small amount of noise in the point clouds. We use the FAUST registrations [26] with the
original 6890 vertices, a downsampled version to 502 vertices for those experiments and
𝐶 generated by the ground-truth correspondence. Then, 𝜙𝑋 , 𝜙𝑌𝐶 can be directly used for
𝑉 and 𝑊 in our method.

We compare our method, which calculates correspondences the same way as described
in Section 8.4.2, to a general LAP solver (specifically the Jonker-Volgenant algorithm from
sklearn.linear_sum_assignment), nearest neighbor computation, optimal transport (as im-
plemented in the python POT package), and stochastic matrices generated by Sinkhorn
iterations. In Table 8.2 we show that our method outperforms all baselines in terms of
geodesic error of the final matching and shows positive trends in terms of runtime and
memory consumption.

8.4.4 Linear Assignment Problems

We next validate our method on balanced Linear Assignment Problems (LAPs), which
typically involve assigning a set of agents to an equally sized set of tasks, e.g., when opti-
mizing the allocation of resources. We show results on a collection of regularized LAPs
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502 vertices, 𝑚 = 20 6890 vertices, 𝑚 = 50
Method Error Time Memory Error Time Memory
LAP 1.3 × 10−1 0.023s 8.02 MB 3.1 × 10−1 79.2s 565.31 MB
Nearest-Neighbors 8.2 × 10−1 0.008s 5.22 MB 4.0 × 10−1 2.6s 34.00 MB
Optimal Transport 3.8 × 10−1 0.524s 12.58 MB 2.0 × 10−1 182.7s 1862.27 MB
Sinkhorn iterations 1.4 × 10−1 0.030s 9.4 MB 3.0 × 10−1 12.0s 750.55 MB
Ours 2.2 × 10−3 0.801s 18.18 MB 2.5 × 10−2 77.6s 42.35 MB

Table 8.2: Comparisons of point-wise correspondence extraction from ground-truth func-
tional map [30] for FAUST. The error is the mean geodesic matching error of all points.
Please note that all code except ours and Sinkhorn iterations are from libraries that are
likely more optimized in terms of runtime and memory consumption. The memory con-
sumption is evaluated on CPU only.

in the form
argmin

𝑉 ,𝑊
tr(𝐴 ⋅ 𝑃 (𝑉 ,𝑊 ))
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟

LAP term

+𝜇(𝑃 (𝑉 ,𝑊 ))
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

regularizer

, (8.12)

where 𝑃 (𝑉 ,𝑊 ) = 𝑠
(

2𝛼𝑉 𝑊 𝑇
) is a permutation and 𝐴 ∈ ℝ𝑛×𝑛 is some given similarity

matrix. While the Softmax non-linearity ensures all rows sum to one, 𝜇(𝑃 (𝑉 ,𝑊 )) is a
regularization term enforcing columns summing to one as well, to satisfy the permutation
constraints:

𝜇(𝑃 ) =
∑

𝑗

(
∑

𝑖 𝑃𝑖𝑗 − 1
)2 . (8.13)

Due to the row-wise Softmax all rows already sum to one but we incentive the columns to
sum to one as well, as is necessary for permutations.

Dense Matrices. We evaluate on a set of LAPs based on descriptor similarities of 3D
shapes from the FAUST dataset of human scans [26], with 𝑛 randomly chosen vertices
per object [106]. Let 𝐷𝑋 , 𝐷𝑌 ∈ ℝ𝑛×𝑘 be two k-dimensional point-wise descriptors of the
shapes 𝑋, 𝑌 corresponding to 𝑛 points. We use the SHOT [261] (ℝ𝑛×352) and the heat
kernel signature [283] (ℝ𝑛×101) with their default parameters as descriptors and stack them
together to comprise 𝐷⋅ ∈ ℝ𝑛×453 in total, then 𝐴 = 𝐷𝑋 ⋅ 𝐷⊤

𝑌 . Solving an LAP with this
type of similariy matrix 𝐴 is used e.g. in [303] as the initialization strategy.

We generate 100 problem instances by pairing each of the 100 shapes in FAUST with
a random second shape to get the pair 𝑋, 𝑌 and evaluate the relative error of the energy
(restricted to solutions that were valid permutations), and the average Hamming distance
to the next valid permutation (namely, the number of rows or columns that violate the
permutation constraint). We ran the experiments with 𝑛 = 100, 𝑚 = 30, 𝛼 = 20 and used
a greedy heuristic to generate valid permutations from the results violating the permutation
constraint (iteratively projecting the maximum value of the permutation to one, and the
rest of the corresponding row and column to zero). Out of the 100 instances, 53 lead
to valid permutations without the heuristic. The average relative error of immediately
valid permutation is 1.8% and after pseudo-projection of all instances it is 2.0%. Due to
the Softmax, every matrix has 100 non-zero entries that are all nearly equal to one. On
average, the Hamming distance of invalid permutations to the next valid one is 1.38 (1.4%
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of the problem size) which means in most cases one would have a valid permutation after
only adjusting one entry.

Sparse Matrices. Given a matrix 𝐴 , that is sparsely populated and only contains non-
zero entries in a subset 𝑆 = {(𝑖, 𝑗)|𝐴𝑖,𝑗 ≠ 0}, we compute and optimize the permutation
matrix sparsely in (𝑖, 𝑗) ∈ 𝑆 by calculating the matrix factorization only at the required
entries, similar to Section 8.4.1, but without restricting the number of entries per row of
𝑃 to two. Also we take into account random entries (𝑞, 𝑟) ∉ 𝑆. We ran experiments for
𝐴 with a matrix density of |𝑆| = 0.01𝑛2 for 𝑛 = 1000, 5000 and 10000 and 𝑚 = 20 with
increasing 𝛼 from 1 to 20 iteratively and measure a Hamming distance of at most 0.28%
of the problem size. To get a valid permutation matrix, we used the same heuristic as
in the dense case and measured a relative error below 7.8%, compared to the Hungarian
algorithm. Also, we could measure a memory reduction by over 65%.

8.4.5 Quadratic Assignment Problems

The QAP is a broadly employed mathematical tool for many real-life problems in opera-
tions research such as circuit design and shape matching. We demonstrate the application
of our approach to non-convex QAPs of the form

argmin
𝑉 ,𝑊

𝑝(𝑉 ,𝑊 )𝑇𝐴 𝑝(𝑉 ,𝑊 ) (8.14)

where 𝑝(𝑉 ,𝑊 ) = vec(𝑠 (2𝛼𝑉 𝑊 𝑇
)

) is the vectorized version of the permutation and
𝐴 ∈ ℝ𝑛2×𝑛2 is a cost matrix. 𝑉 and 𝑊 are normalized. The permutation matrix was
optimized in a convex-concave manner, by optimizing the objective function

argmin
𝑉 ,𝑊

𝑝(𝑉 ,𝑊 )𝑇 (𝐴 − 𝛽𝐼) 𝑝(𝑉 ,𝑊 ) + 𝜇(𝑃 (𝑉 ,𝑊 )) (8.15)
with 𝛽 being iteratively increased from −‖𝐴‖2 to ‖𝐴‖2 and with 𝜇(𝑃 (𝑉 ,𝑊 )) being the
same permutation constraint regularizer as in (8.13).

We show results on the QAPLIB [42] library of quadratic assignment problems of real-
world applications which range between 𝑛 = 12 and 𝑛 = 256 and we choose 𝑚 = ceil( 𝑛

3
).

The problems in the dataset are meant to be challenging and optimal solutions for some of
the larger problems are not provided because they are unknown. Thus, we report the gap
to optimality (when known) of our solution and consider a solution to be good if it falls
within 10% of the optimum. We report the relative error and runtime in Figure 8.4. In 75
out of 87 instances the result was a proper permutation matrix.
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Table 8.3: Geodesic errors and standard deviation (std) for noise-free and noisy data by
Marin et al. [203] and our approach

𝑒𝑝𝑟𝑜𝑏 std (𝑒𝑝𝑟𝑜𝑏) 𝑒𝑒𝑚𝑏 std (𝑒𝑒𝑚𝑏)
[203] 0.051 17.4 × 10−4 0.029 3.5 × 10−4
ours 0.047 26.9 × 10−4 0.026 29.2 × 10−4 noisy
[203] 0.043 16.3 × 10−4 0.022 3.5 × 10−4
ours 0.041 8.1 × 10−4 0.019 3.7 × 10−4 noise-free

8.4.6 Shape Matching

Finally, we further assess the effectiveness of our approach for the application of non-rigid
shape matching, a common task in computer graphics and computer vision. To this end,
we incorporate our permutation matrix representation approach into the state-of-the-art
shape-matching approach by Marin et al. [203], which learns the point correspondences
using two consecutive networks 𝜃 and ̃𝜃, predicting shape embeddings and probe func-
tions, respectively. We propose to replace the calculation of the permutation matrix based
on the output of the first network 𝜃 by 𝑠

(

𝛼𝑉 𝑊 𝑇
), with 𝛼 = 40. The network transforms

the vertices of 3D objects 𝑋 and 𝑌 into embeddings 𝜙𝑥 = 𝜃(𝑋) and 𝜙𝑦 = 𝜃(𝑌 ), which
are used to compute 𝑉 = 𝜙𝑥(𝜙𝑥 †𝑃𝑔𝑡𝜙𝑦) and 𝑊 = 𝜙𝑦. 𝑉 here replaces a transformed
embedding. The network is trained on the modified loss function

min
𝜃

∑

𝑙
‖𝑠

(

2𝛼𝑉 𝑊 𝑇 )𝑙 𝑌 𝑙 − 𝑃 𝑙
𝑔𝑡𝑌

𝑙
‖

2
2 (8.16)

for a given ground truth permutation 𝑃𝑔𝑡, and 𝑉 and 𝑊 being normalized row-wise. Sim-
ilar to Marin et al. , we train the networks over 1600 epochs on 10000 shapes of the SUR-
REAL dataset [300] and evaluate our experiments on 100 noisy and noise-free objects of
different shapes and poses of the FAUST dataset [26], that are provided by [203] in [202].
We follow the evaluation of Marin et al. [203] and calculate the geodesic distance be-
tween the ground truth matching and the predicted matching 𝑚𝑎𝑡𝑐ℎ1 =  (𝜙𝑥𝐶𝑇

1 , 𝜙
𝑦)

for 𝐶1 = ((𝜙𝑦 †̃𝜃(𝑌 ))𝑇 )†(𝜙𝑥 †̃𝜃(𝑋))𝑇 , whereby  is the nearest neighbor, † denotes
the Moore-Penrose inverse and the calculation of 𝐶1 arises from the following relation
𝐶𝑇

1 𝜙
𝑦 †̃𝜃 = 𝜙𝑥 †̃𝜃 of the alignment𝐶1. In the following, we refer to the measured geodesic

distance as 𝑒𝑝𝑟𝑜𝑏. A second error (𝑒𝑒𝑚𝑏) which only concerns the first network’s predictions,
is measured by the geodesic distance towards 𝑚𝑎𝑡𝑐ℎ2 =  (𝜙𝑥, 𝜙𝑦𝐶2) for 𝐶2 = 𝜙𝑦 †𝑃𝑔𝑡𝜙𝑥,
which is, again, calculated following Marin et al. [203]. The results of our experiments
are reported in Table 8.3, showing the average geodesic errors (over 10 runs for each ex-
periment) for the approach presented in [203] and our method. The table reveals improved
results compared to [203].

Stochastic Training. Given that the explicit calculation of the permutation matrix in
(8.16) is memory-intensive for a large number of vertices, we employ stochastic training to
avoid the need for computing the full permutation matrix. As we describe in Section 8.4.1
we only calculate the loss over a few entries where the final permutation ought to be equal
to one and on 𝑘 (here 𝑘 can be ≥ 1) randomly chosen entries of each row of 𝑃 in each iter-
ation. This approach reduces the memory requirement and gives us the possibility to train
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Figure 8.5: Visualized matching results (a) and error values (b) for the FAUST dataset for
different levels of sparseness 𝑘 during stochastic training.

with larger shapes consisting of more vertices. In our experiments, we applied the stochas-
tic training technique on the SURREAL dataset, and then evaluated the performance on
FAUST by measuring the error rates for varying values of 𝑘, as depicted in Figure 8.5b.
We observed a small relative increase of less than 17% in 𝑒𝑒𝑚𝑏, and also a small effect on
𝑒𝑝𝑟𝑜𝑏, but with a less clear tendency as one could see for 𝑒𝑒𝑚𝑏. For 𝑒𝑝𝑟𝑜𝑏 we measured an av-
erage standard deviation of 2.25×10−3 and for 𝑒𝑒𝑚𝑏 of 3.3×10−4. Two noise-free examples
of correspondences, visualized for full training and for stochastic training with 𝑘 = 1, are
shown in Figure 8.5a, with the reference image on the left and the corresponding shapes
on the right.

Further details regarding the influence of the variable 𝑘, that determines the sparsity
of the calculated permutation matrix, on the computation speed are shown in Figure 8.6.
It shows the average computational speed per epoch (employing a batch size of 8) for the
network 𝜃.

1 100 400 full
0

100

200

300

𝑘

𝑠𝑒𝑐
𝑒𝑝𝑜𝑐ℎ

Figure 8.6: Average time (in seconds) needed to optimize the shape matching network 𝜃per epoch, depending on the stochastic variable 𝑘.

To evaluate the impact on the error and memory consumption when dealing with ob-
jects of larger size (consisting of more vertices), we ran further experiments using data
from the TOSCA dataset [36].
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Figure 8.7: Memory usage when training the shape matching network with different per-
mutation matrix representations: Using full matrices (red) vs. using our stochastic training
scheme with different sparseness levels 𝑘 (green).
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Figure 8.8: The relative memory-error trade-off for a varying number of vertices (𝑛) and
for varying sparseness (which causes the memory reduction), whereby the memory con-
sumption is relative to 𝑘 = 100 and the errors are relative to full training by [203] for
𝑛 = 1000.

We trained for 400 epochs on the objects of the classes victoria and michael (32 objects
in total) where up to 20000 vertices were sampled. These experiments revealed a reduc-
tion of memory consumption as shown in Figure 8.7. There, we further visualize how the
proposed approach enables handling large problems that would have been infeasible oth-
erwise. The dashed red curve added to this figure corresponds to the estimated memory
that would have been required to accommodate full permutation matrices, as a function of
problem size 𝑛. While our approach can accurately handle large problems with as much
as 𝑛 = 20000 vertices (green curves), running the equivalent experiments without it (red
curves) would require prohibitively large amounts of memory (∼ 73.6 GB, vs. 10.7 GB
using 𝑘 = 1). For estimating memory values (dashed curve) we assume memory usage
follows a 𝑐 ⋅ 𝑛2 curve, and estimate the value for 𝑐 based on the full matrix experiments
(solid red) we conducted for 𝑛 ≤ 11000. We evaluated the training on the class 𝑑𝑎𝑣𝑖𝑑 of
TOSCA and reported a relative memory-error trade-off for up to 20000 samples of each
object in Figure 8.8. The graph indicates a correlation between higher memory usage and
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lower error values for 𝑒𝑒𝑚𝑏. The trends observed in the memory-error trade-off for 𝑒𝑒𝑚𝑏 are
generally applicable to 𝑒𝑝𝑟𝑜𝑏 as well, although with some noticeable outliers.

8.5 Conclusion

In this chapter, we proposed a strategy to represent permutation matrices by a low-rank
matrix factorization followed by a nonlinearity and showed that by using the Kissing num-
ber theory, we can determine the minimum rank necessary for representing a permutation
matrix of a given size, allowing for a more memory-efficient representation. We validated
this method with experiments on LAPs and QAPs as well as a real-world shape matching
application and showed improvements in the latter. Additionally, we explored the poten-
tial of optimizing permutations stochastically to decrease memory usage, which opens the
possibility of handling high-resolution data.

Our method offers a promising solution to contribute positively to the environment by
reducing the computational cost of a variety of problems involving permutation matrices.
However, it is important to acknowledge a limitation of our method. For certain prob-
lem formulations, such as the Koopmans and Beckmann form QAPs, stochastic learning
may not be feasible because the double occurrences of the permutation matrix make the
stochastic computation not applicable. Moreover, our method requires devising a non-
trivial, problem-specific adaptation.

Adaptions to our method can involve the learning rate, as well as the selection of the
𝛼-parameter. If talking about (8.4), one can consider the adaptation of the thresholding
(for the equation 2𝜎(2𝑉 𝑊 𝑇 −1) the threshold is set to 1). By decreasing the threshold, we
simplify the optimization process, as fewer gradients are excluded from the experiment,
while this could result in a less precise outcome. Additional adaptions might concern opti-
mization techniques, such as fixing one matrix with descent characteristics (e.g. Gaussian
random) in order to simplify the optimization. Moreover, it’s possibly also necessary to
adapt a network architecture that predicts the matrices 𝑉 and 𝑊 , and with further re-
search in this direction, we believe to expand the potential to provide memory reduction
benefits.
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CHAPTER 9

Conclusion

In this work, we explored various methods for combining model-based and learning-based
approaches and analyzed their individual behaviors. We also discussed how to harness
the power of deep learning for inverse problems that are traditionally addressed using
classical methods. Throughout this study, we observed a consistent trend: the combination
of model-based and learning-based methods offers advantages across diverse applications.

9.1 Summary and Impact

We first considered a sparse data scenario, which is important in situations where a vast
dataset is unavailable or impractical, and analyzed the model- and learning-based capa-
bilities in Chapter 5 for single image segmentation with user induced scribbles. Although
deep learning has made significant steps in various domains, especially in specific sce-
narios such as single image learning, traditional model-based approaches are still of great
value, as notably cleverly designed model-based techniques have shown to outperform
standalone deep learning methods. However, the use of semantic data, which may be ac-
quired through learning-based approaches on other data, supports further improvement of
traditional methods, leading to a favor of combining modell- and learning-based methods.

The semantic information that comes from the data-driven methods can be of high
value for classical approaches in multiple ways. In scenarios with enough available (train-
ing-) data, data-driven methods can offer support of classical approaches, that ensure strict
result guarantees. Particularly in underdetermined reconstruction problems, classical ap-
proaches offer data consistency, but still introduce ambiguities in the result. Our findings
indicate that underdetermined classical methods can be enhanced and better regulated us-
ing deep learning, especially when considering biases present in the training data. In
the context of CT imaging, inaccuracies in data recordings can lead to misleading re-
constructions. However in Chapter 6 we have shown that by semantically guiding the
reconstruction process, we can prioritize semantically relevant scenarios. Furthermore,
in Chapter 7 we demonstrated that underdetermined classical reconstruction challenges
can benefit from semantic data-driven insights, even for non-differentiable problems like
binarization or Poisson noise denoising, by extending energy dissipating networks to non-
differentiable energies.
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CHAPTER 9. CONCLUSION

Another kind of task that can arise in the field of computer vision are problems where
the challenge lies in the problem formulation itself, concerning model- and learning-based
methods likewise. One kind of problem, where the challenges lie in their intrinsic formu-
lation, are memory-intensive assignment problems. In Chapter 8 we were able to largely
solve the problem by changing the representation of the memory-intensive permutation
matrix by representing large binary permutation matrices by nonlinear matrix factoriza-
tion. This approach not only reduced memory requirements, but also showed better per-
formance in shape matching.

In this thesis we have analyzed modell- and learning-based capabilities, discussed the
value of deep learning for underdetermined problems, and studied intrinsic formulation
challenges. As the challenges in computer vision continue to change, it is important to
take advantage of the best of both worlds to achieve optimal results.

9.2 Limitations and Future Work

The results of this thesis open up several interesting directions for further research and
technical challenges.

When comparing model-based methods, which are cleverly constructed, with scribble-
based single image segmentation using neural networks, the former was found to be ahead
in performance. An interesting question for further research is whether the underlying
concepts of this model-based method, which uses both spatial and color information, can
be integrated into learning methods. Two possible directions to do this are techniques such
as unrolling or the learning of individual weights within this model-based framework.

The use of an adversarially pre-trained classification network for semantically guid-
ance of CT reconstruction raises the question about how adversarial training influences
the reconstruction results. Future research could explore how different adversarial train-
ing techniques for neural networks might yield different outcomes. Also, to prevent the
development of visually implausible outcomes arising from the semantic guidance, the
integration of learning techniques such as GAN and close collaboration with medical ex-
perts are important to ensure clinically reliable results. We have limited the guidance only
to restricted regions with abnormalities in the target image – an application of the method
to different areas where there has been no abnormality so far, as well as an extension of
the guidance to the full reconstruction image by e.g. integration of detection networks are
open and important research directions.

This approach, as well as the semantic application by energy dissipating networks, has
the potential for other applications in different imaging modalities, such as 3D CT or MRI.
In addition, for energy dissipating networks, future work on the extention of this approach
to non-convex energies would be interesting to broaden the scope of applications.

In the context of permutation prediction by nonlinear matrix factorization, especially
for shape matching problems, we have shown good results, but faced problems concern-
ing the adaptability of this representation to different algorithms which remains an area for
further research. For learning-based applications, a detailed analysis of the influence of
network properties on permutation prediction performance could give information about
inconsistent results observed in our experiments. Furthermore, while stochastic optimiza-
tion has successfully reduced memory requirements, it has also increased computation
time. Addressing this issue is less of a research question and more of a technical challenge.
An efficient GPU implementation using custom kernels could significantly decrease the
runtime.
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