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Abstract

The papers published as part of this doctoral thesis address significant challenges in the
areas of annotation and synchronization of datasets, data-driven studies in the field of
human-computer interaction, and machine learning related to multimodal activity data.
Specifically, annotation workflows are examined for their robustness, an algorithm for
improved synchronization of different acceleration data is presented, and potential data
distortions in supervised studies involving human subjects are investigated within the
context of a data-driven study. Advanced deep learning methods are employed for the
analysis of human activities based on sensor data. Furthermore, an extensive dataset
of motion data from basketball players has been released. Finally, the applicability of
deep learning techniques, specifically Transfer Learning and Data Augmentation, to
sensor data is explored.

The first research field explores real-world user studies for Human Activity Recogni-
tion (HAR) and introduces the Activate-System. This system enables ad-hoc data
collection using a smartwatch and smartphone app. Furthermore, a presented user
study evaluates and improves data collection and annotation methodologies. A 2-
week study compares self-report diaries and in-situ annotation techniques, finding
visualizing sensor data as time series improves recall accuracy. Additionally, I present
an algorithm that synchronizes signals from multiple on-body sensors by exploiting
cross-correlations of acceleration signals. Finally, the Hawthorne Effect is analyzed by
collecting observed and unobserved data. This effect suggests that study participants
alter their behavior once they are aware of being part of a study or under observation.

The second focus is recognizing activities in complex environments like sports,
specifically basketball. A preliminary study shows the feasibility of detecting fine-
grained basketball activities using a single wrist-worn inertial sensor. The Hang-Time
HAR dataset, with data from 24 players, encompasses periodic, sporadic, and complex
basketball movements, enabling comprehensive classification through deep learning.

The third contribution focuses on transfer learning and data augmentation for sensor-
based activity recognition. Extensive experiments assess model transferability across
sensor positions, modalities, and activity domains. Results reveal high variability
depending on specific factors, such as body location, and deteriorating when source and
target domains differ significantly. Data augmentation with Generative Adversarial
Network (GAN) is also explored, comparing user-wise and fold-wise synthetic data
generation. Expanding the dataset size by a factor of five improves the F1-Score by
11.0% for user-wise augmentation and 5.1% for fold-wise augmentation.
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Chapter 1

Introduction

The integration of wearables into the everyday routines of many people is often driven
by the desire to live a conscious and active life, or by the need for medical monitoring
due to pre-existing conditions. Due to these circumstances and the resulting, high
health-promoting potential, the technological development of wearables as well as
the trialing of new types of devices and principles is still increasing and therefore the
vision that such devices shall fade into the background and become an invisible part
of everyone’s life, formulated by Mark Weiser in 1991 [223], doesn’t seem to be in far
distance anymore.

Beyond everyday uses, activity tracking based on Inertial Measurement Units (IMUs)
opens up numerous possibilities within more specialized domains.

A notable example is the collaborative effort between researchers at the University
of Sussex and the car manufacturer Skoda, the Skoda-mini dataset [237]. A dataset
that categorizes assembly line workers’ tasks into distinct activity classes. Other
companies utilize inertial measurement units in conjunction with video or indoor
positioning systems, such as IndoTrack [119], which can then be leveraged to refine
pose estimation and motion tracking capabilities. Enhanced pose estimation enables
ergonomic analysis and informs workplace modifications to mitigate injury risk and
enhance performance for laborers in physically strenuous occupations [121]. In sports
science, IMUs embedded in wearable activity trackers are utilized to quantify biome-
chanics through motion capture and analysis of movement patterns and technique
execution. Collecting data with IMUs enables the objective evaluation and profiling
of an athlete’s execution form, power, and efficiency across training exercises and
competitive movements. Biomechanical feedback made possible by IMUs facilitates
the systematic identification of strengths, weaknesses, and asymmetries in an athlete’s
mechanics. This evidence-based insight allows sports scientists and coaches to optimize
training programs, correct poor technique, and provide tailored recommendations for
performance enhancement and injury prevention [93]. Medical publications often focus
on understanding diseases that cause motoric disorders, like Parkinson’s, Diabetes,
Spinal Muscular Atrophy, Huntington’s disease, Amyotrophic Lateral Sclerosis, or
sports injuries, and helping patients who suffer from these diseases by using devices
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1.1 Motivation Introduction

that incorporate IMUs. In addition to activity recognition and tracking applications,
advancement in inertial measurement unit technology is significantly driven by demand
from the military industry, as IMUs are a vital component in many weapon systems
including missile and unmanned aerial vehicles navigation, and guidance systems.
The defense industry fuels advancement in IMU technology to meet demands for
lightweight, miniaturized, and highly precise inertial navigation and motion tracking
capabilities.

Due to this demand from multiple domains, the unit market size for IMUs is
forecasted to grow from 17.5 billion USD in 2021 to 24.5 USD in 2026 with an annual
market growth of 7.21%, according to Global Market Estimates Inc. [77].

Section 1.1

Motivation

As a passionate basketball player since a young age, I was very eager about being able
to combine my favorite hobby with my work as a computer scientist.

However, at a very early stage, I realized that most of the datasets available focus
on activities of daily living, and sports are often just covered with very basic classes,
see Section 4.2. Even though sports activities can be seen as the perfect playground
to evaluate the limitations and opportunities for activity recognition - due to the
naturally occurring mixture of periodic, sporadic, and complex activities - there was
no dataset available that combines these characteristics and focuses on fine-grained
activity recognition based on IMU sensor data. This finding inspired us to start with a
feasibility study, see Chapter 4.1 or the corresponding publication [89], in order to test
if fine-grained sports activities can be classified by using machine learning algorithms.
The findings were promising and it motivated me to push the study further. At a later
point during my Ph.D. - when the restrictions regarding the COVID-19 pandemic were
lowered and the Activate System, see Section 3.1 and [92], was published, I decided to
record and publish a comprehensive dataset with fine-grained basketball activities,
including 24 subjects, and all categories of activities (periodic, sporadic, complex)
recorded in both types on environments (controlled and uncontrolled). This study is
presented in detail in Chapter 4.2 and [93]. This dataset has been recorded with one
wrist-worn sensor. However, my initial plan was to include a second IMU in the form
of an earbud called the eSense (Section 2.2), aiming to create a dataset with multiple
types of data inputs.

It is common for HAR researchers to work with a multimodal input. This means, that
the input data for machine or deep learning methodologies were recorded with multiple
sensors installed on the same device or even multiple devices worn on different body
locations with either a full (accelerometer, gyroscope, and magnetometer) or reduced
IMU or other sensors like a Photoplethysmogram (PPG), air pressure or temperature
sensors installed. However, using a multimodal approach generates additional hurdles,
like the synchronization of independently operating sensor devices. Both devices run

2



1.1 Motivation Introduction

with their own internal clock and it is difficult to synchronize them perfectly. This
effect does generate an offset in the time-stamps of the signals, which needs to be
adjusted before the data can be fed to a machine learning algorithm. This is still
an ongoing research topic which many of the available datasets solved by adjusting
the signals manually. However, this solution is time-consuming, error-prone, and
labor-intensive. Chapter 3.3 as well as the publication [91] addresses this problem and
presents a synchronization algorithm that is based on the cross-correlation between
two on-body worn accelerometers.

Upon joining the ActiVAtE Prevention project in 2021, the focus of my Ph.D. took
a new direction, transitioning from sports activity recognition to the recording and
annotation of long-term studies encompassing daily activities. This project monitored
diabetes type 2 patients with the wearable smartwatch Bangle.js 1. In order to perform
such a long-term study I needed to develop an operating system for the smartwatch
and a smartphone app that was capable of downloading the activity data from the
wearable device and uploading it to a database. This software stands as a foundational
element for many of the papers presented in this thesis, thus assuming a critical role in
shaping the conclusive results of this manuscript. Besides the recording of the dataset,
working on this project led me to a deeper investigation of the effect of uncertain
annotations for deep learning models and the usage of different annotation methods
for studies conducted in-the-wild, presented in 3.2 and [96], where obtaining reliable
ground truth is difficult. Moreover, I investigated the influence of the Hawthorne
Effect on deep learning models, see Section 3.4. This phenomenon arises when study
participants modify their behavior due to being under observation during experiments.

While the first two chapters explore user-driven annotation, behavior analysis, and
basketball activity recognition specifically, this thesis provides also a novel investigation
into two key deep learning techniques - Transfer Learning and Data Augmentation
- for Human Activity Recognition using inertial measurement data. The concept of
experimenting with Transfer Learning for the purpose of personalizing pre-trained
classifiers originated from the basketball feasibility study, Section 4.1. The intention
was to leverage the advantages of this approach to expedite training time or enhance
the overall classifier performance by transferring the model weights from one player to
another. Transfer Learning, a methodology within deep learning, holds the potential
to significantly mitigate training expenses, particularly in terms of the training time
required for a deep learning model. This, in turn, leads to a parallel reduction in energy
consumption and the monetary investment associated with hardware components.
Essentially, a model can be initially trained on a more powerful Graphics Processor
Unit (GPU), subsequently shared, and eventually deployed on less powerful hardware
for practical use. This technique has its roots in computer vision, where segments
of a neural network — such as convolutional filters — particularly those focused on
foundational image features like edges or contrast can be transposed to other models
or even datasets from diverse domains. I conducted an extensive study to explore
whether this effect is also transferable to IMU data, see 5.1 or [95]. While the principle
appears sound in theory, its applicability to sensor-based time-discrete signals requires
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1.1 Motivation Introduction

further investigation due to the inherent complexity of data obtained from inertial
measurement units.

Another technique frequently employed to enhance a model’s classification capabili-
ties is Data Augmentation. This technique proves particularly advantageous when a
class has a limited number of instances and is consequently underrepresented. This
imbalance can result in a biased model with constrained proficiency in classifying
such underrepresented categories. Instances of these underrepresented classes are
often found within the category of sporadic classes. In the context of basketball,
notable examples include actions like jumping or passing, as discussed in Section
4.2. Employing data augmentation techniques to expand the pool of viable samples
for training deep neural networks is a well-established practice within deep learning.
Nonetheless, this approach warrants additional exploration, particularly concerning
the determination of which dataset samples should undergo augmentation and the
seamless integration of the newly generated data into the existing dataset. This is
especially important when dealing with personalized IMU data. My publication [94]
focuses on this topic and compares different methods with each other. This topic
becomes more important when we put it in the context of long-term and real-world
studies. Depending on the annotation method, samples can easily be labeled false
[96] or 3.2. A model performance tends to decrease if misclassified samples are used
during the augmentation phase and saved back in the dataset for training purposes
which would finally lead to a poisoned classifier.

Indeed, this thesis investigates a range of research questions at the core of deep
learning for wearable sensor data.

1.1.1. Principal Research Questions

RQ #1. Accurate and robust human activity recognition relies heavily on the quality
of the collected dataset. From the data collection process to the annotation and analy-
sis, multiple factors can introduce noise, biases, and errors that propagate through the
modeling pipeline. We, therefore, aim to identify and mitigate such issues in activity
recognition datasets. First, I examine the impact of annotation quality. Manual
annotations of sensor data are required to train and evaluate activity recognition
models. However, the annotation process is prone to subjectivity, inconsistency, and
errors. Next, I discuss the importance of synchronized sensor streams in multi-modal
activity recognition. Slight misalignments between data sources like multiple inertial
sensors can significantly degrade model performance. Finally, I explore the Hawthorne
effect in activity recognition - where participants alter their behavior during data col-
lection in response to being observed and recorded. I present research quantifying this
observer effect for different activities, sensor modalities, and experimental protocols.
In summary, I investigate:

”How does a participant’s interaction during data recording affect the outcome of
a recorded dataset with regard to the quality and quantity of recorded samples and
associated annotations?”

4



1.2 Contributions Introduction

RQ #2. Recognizing complex, sporadic human activities remains an open challenge
in the field of activity recognition. Most research has focused on simple, periodic activi-
ties like walking or climbing stairs. However, being able to detect activities with greater
temporal and contextual variability is critical for many real-world applications. Sports
analytics is one domain that would greatly benefit from improved recognition of intri-
cate movements and plays. In this work, I explore the capabilities and limitations of
current activity recognition techniques for complex activities, using basketball as a case
study. Basketball provides a rich setting with frequent changes in pace and direction
between players. Activities range from dribbling and shooting to running and jumping.

”What are the capabilities and limitations of current deep learning architectures for
recognizing complex, sporadic, and periodic activities?”

I explore these possibilities and limitations using basketball activities as an example.
Presented results provide insights into the progress and remaining challenges of com-
plex human activity recognition, with basketball as an instructive testbed for pushing
algorithms toward greater flexibility and contextual reasoning.

RQ #3. Transfer learning has shown promise for improving model performance
in many domains by pre-training on large datasets before fine-tuning to a target
task. In human activity recognition, applying transfer learning has achieved varying
degrees of success. In this work, I aim to quantify the adaptability of transfer learning
to human activity recognition. Additionally, I explore data augmentation through
realistic synthetic activity data as another means to improve model generalization.
Specifically, I investigate the research question:

”To what extent is transfer learning adaptable to human activity recognition data,
and how can we successfully generate realistic synthetic sensor-based activity data to
significantly augment a model’s capabilities?”

By evaluating transfer learning strategies and generative data augmentation techniques
on diverse activity recognition tasks, I provide insights into how to effectively leverage
external datasets and knowledge to boost model capabilities in this domain.

In addition to the three primary research questions, the introduction of each chapter
highlights supplementary secondary research questions that were addressed in the
publications included in this thesis.

Section 1.2

Contributions

The contributions of this thesis can be broadly grouped into 3 topics - (1) User Studies
on Human Activity Recognition, (2) Basketball Activity Recognition, and (3) Deep
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1.2 Contributions Introduction

Learning for Human Activity Recognition.

Chapter 3 contains publications centered on user studies on Human Activity
Recognition.
Section 3.1 introduces the Activate system. An open-source data recording system
with which recordings in uncontrolled and controlled environments are possible. It
consists of an operating system for the Bangle.js version 1, an app, a backend, and a
database.
Section 3.2 addresses the uncertainty of labeled data while conducting studies in
real-world situations or settings outside the laboratory, where the deployment of video
cameras to recover the ground truth is not always possible. The study compares 4
different annotation methods for data recorded in-the-wild: (1) A self-recall diary, (2)
ad-hoc labeling with on-device buttons, (3) labeling with an app, and (4) a self-recall
diary with visualized time-series data assistance. I found out that (4) has the best
results with regard to consistency, correctness, workload for the participant, and
usability.
Section 3.3 covers the importance of synchronizing multiple sensors worn by the
same participants when a study is conducted with a multi-modal setup. Exemplary
for other sensors, I synchronize two sensors with each other, one worn at the wrist
and the eSense, a prototypical sensor worn as an earplug, using the accelerometer
signals of both sensors. The algorithm achieves a precision of only 0.30 seconds of
mismatch under certain constraints. Additionally, I present a study that quantifies
the wearing comfort of the eSense earplug.
Section 3.4 investigates the Hawthorne Effect from the sensor data perspective. This
effect indicates that people alter their behavior when being observed. Although this
phenomenon is acknowledged in various human-centered studies, there is a distinct lack
of comprehensive quantitative investigations regarding its influence on data quality
and objectivity in monitored versus unmonitored settings, particularly in the context
of Human Activity Recognition. The examination involves a combination of classical
feature analysis and deep learning techniques applied to accelerometer data from
ten participants. The results indicate that sensor data recorded under monitored
conditions do not differ significantly from data recorded while not being monitored.

Chapter 4 presents two studies that focus on Basketball Activity Recognition.
Section 4.1 contributes a feasibility study that shows that fine-grained activity
recognition is viable even in highly dynamic application scenarios like playing basketball.
Section 4.2 contributes the Hang-Time HAR dataset. A comprehensive dataset with
basketball activities performed by 24 participants in two different countries.

Chapter 5 focuses on the Deep Learning aspects of this thesis by further investi-
gating Transfer Learning (Section 5.1) and Data Augmentation (Section 5.2) for
human activity data.
In Section 5.1, I present a study that examines the effects of Transfer Learning
on a deep learning model, specifically focusing on the DeepConv-LSTM [159]. This
investigation involves transfers between various sensor locations, sensor types, and
even transfers between datasets from distinct domains. Results indicate that the
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1.3 Thesis Outline Introduction

success of such a model transfer is very dataset and parameter-dependent and not
generalizable.
Turning to Section 5.2, my research concentrates on diverse data augmentation
strategies using the Physical Activity Monitoring for Aging People (PAMAP2) dataset
[173]. I systematically examine how the process of selecting class instances for aug-
mentation and the strategy for reintegrating them into the dataset impact the overall
performance of a deep learning model.

Section 1.3

Thesis Outline

This thesis is organized in the following way:

Chapter 1: Introduction
This chapter covers the Motivation (Section 1.1), explains the Contributions (Section
1.2), and gives a brief overview of this thesis in the Thesis Outline (Section 1.3).

Chapter 2: Background and Related Work
This chapter provides comprehensive explanations of essential fundamentals within
the domains of human activity recognition (Section 2.1.1), as well as machine or
deep learning (Section 2.2.4). Additionally, an aggregated compilation of related
work pertinent to subsequent chapters is presented in Section 2.2.

Chapter 3: User Studies on Human Activity Recognition
This chapter encompasses four user studies pertaining to Human Activity Recognition,
with a secondary emphasis on their implications for deep learning projects.

Chapter 4: Basketball Activity Recognition
This chapter presents two studies with regard to basketball activity recognition.
The first study (Section 4.1) focuses on the feasibility of applying machine learning
algorithms and activity recognition methodologies to highly dynamic activities from
the sports domain. The second study introduces the Hang-Time HAR dataset (Section
4.2). A publicly available, comprehensive basketball activity dataset.

Chapter 5: Deep Learning
This chapter presents studies that are focused on deep learning methodologies like
Transfer Learning (Section 5.1) and Data Augmentation (Section 5.2).

Chapter 6: Conclusion and Future Work
This chapter presents the Conclusion (Section 6) and possible Future Works with
regard to all presented studies (Section 6.2).
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Chapter 2

Background and Related Work

This chapter will cover important background information related to all publications
included in this thesis. This includes explanations regarding used hardware and
sensors for recording data and an introduction to Human Activity Recognition and
Deep Learning. Afterward, current scientific publications related to Human Activity
Recognition and Deep Learning will be put in context for this doctoral thesis.

Section 2.1

Background

2.1.1. Human Activity Recognition

The term Human Activity Recognition (HAR) describes a discipline in Computer
Science and Human-Computer Interaction where an activity performed by a human
individual is recognized with regard to sensor signals that were recorded using wearable
devices. This is contrasted by Action Recognition which comes historically seen from
the Computer Vision. Hereby, video footage of humans carrying out activities is
recorded and further analyzed. Typically, HAR researchers often use signals recorded
by IMUs, which can but are not limited to include signals of accelerometers, gyroscopes,
and magnetometers. Additionally to these sensors further input modalities are possible,
e.g. Photoplethysmography (PPG), air pressure, or (skin) temperature sensors. An
activity can be nearly everything that can be described by movement or execution
patterns visible in signal recordings. This can be something sedentary, like sitting or
standing, or something very complex like performing sports-specific activities that
can even consist of multiple activities executed successively. Therefore, the literature
defines different types of activities. Huynh categorizes human activities in 3 different
categories [99]: (1) Gestures, Motions, Motifs - e.g. taking a step or bending an arm;
(2) Low-level activities - e.g. sequences of movements like walking, sitting, running
and (3) High-level activities/scenes/routines - e.g. sightseeing, desk work. However,
other modes of categorization are common and may be more suitable, depending on
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the specific domain of the study. For instance, given that this Ph.D. thesis is centered
on the field of Sports Activity Recognition, the definition provided by Bock et al.
[33] encompasses the entire range of activities we have investigated. The authors
classify activities also in three categories, the categories are (1) Periodic activities,
e.g. walking, standing, or running; (2) Sporadic activities like passing a ball or
jumping and (3) Complex activities like performing a layup in basketball or a dig
in volleyball. Complex, because such activities consist of multiple activities that are
either performed at the same time or successively, like running, followed by jumping in
an upward/forward direction and throwing the ball in the basket during a basketball
layup. As our experiments show, such activities might be very difficult to recognize
reliably.

Activity Recognition Challenges. According to Bulling et al. [45] activity
recognition shares research challenges with other deep learning disciplines, such as
Computer Vision or Natural Language Processing (NLP). For example, Intraclass
Variability, Interclass Similarity, and the NULL Class Problem. However, HAR also
has unique challenges, which are (a) Class Imbalance, (b) Ground Truth Annotation,
and (c) Data Collection Challenges.

(a) Class Imbalance: Class imbalance refers to a situation where the distribution of
classes within a dataset is skewed. In the context of Human Activity Recognition,
certain activities may have significantly more examples than others, leading
to biased models. Techniques like resampling and using specialized evaluation
metrics are common strategies to address this challenge.

(b) Ground Truth Annotation: Ground truth annotation involves manually labeling
data with the correct activity labels. In HAR, this process can be time-consuming,
expensive, and subjective. Inaccurate or inconsistent annotations can impact
model training and evaluation. Ensuring high-quality annotations is crucial.

(c) Data Collection Challenges: Collecting accurate sensor data for HAR presents
challenges. Proper sensor placement, calibration, and noise reduction are es-
sential. Capturing diverse activities, scenarios, and environmental conditions
requires careful planning. Real-world variability adds complexity to dataset
creation.

Furthermore, Bulling et al. mention so-called Application Challenges which refer to
challenges that are connected to the hardware and recording techniques used in the
experiments. Depending on the device used to record data, sensor characteristics can
vary significantly and therefore often datasets recorded with different sensor modalities
are difficult to transfer. In addition to that, obtaining ground truth heavily depends
on the type of study. Long-term studies and studies in real-world environments have
different requirements than studies conducted in a controlled environment. Address-
ing these challenges involves careful experimental design, preprocessing, annotation
strategies, and the application of suitable machine-learning techniques.
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Recording Environments. The recording environments influence the characteristics
of activities. For example, running in real-world conditions will differ from running on
the treadmill. Therefore, we distinguish between controlled or lab environments and
uncontrolled or real-world/in-the-wild environments. Both recording environments
come with their advantages/disadvantages and research challenges. Often, ground
truth is obtained in hindsight by filming the participants during their exercises if a
dataset was recorded in the lab. However, under uncontrolled conditions obtaining
ground truth can be a challenge by itself, since the installation of devices like video
cameras is often simply not possible. Furthermore, studies have shown that participants
tend to alter their behavior as soon as they notice that they are recorded. Therefore,
such circumstances can further influence data characteristics. These differences can
be reflected in machine learning models that are trained with data from one specific
environment and therefore assumed that a classifier trained on data recorded in-the-
wild won’t be able to classify data from a lab-made dataset with high confidence.

Activities: Periodic Activities. Running, walking, standing, and laying are
the classical periodic activities that can be found in many datasets with respect to
Activities of Daily Living (ADL). Such activities have in common that the signals
oscillate in constant patterns as long as the participant does not alter his/her motorics
significantly. These activities can be learned and recognized comparatively easily by
Deep Learning models due to their low complexity, for which simple convolutional
layers are usually sufficient.

Activities: Sporadic Activities. Sporadic activities are activities that are per-
formed occasionally and do not necessarily follow a repetitive pattern. Taken from the
field of basketball activity recognition, such activities can be passing or rebounding
a ball. The moment of execution of sporadic activities is highly context-dependent
and does therefore not occur regularly if the data were recorded in uncontrolled
environments. Therefore, instances of these classes in datasets are normally very
limited, if not a specific exercise was executed to artificially increase the number of
repetitions. Hence, a simple network architecture has limited capabilities to recognize
these activities.

Activities: Complex Activities. Complex activities are a category of activities
that are challenging to recognize - even for state-of-the-art architectures. Such
activities have in common that they consist of multiple activities that are either
executed consecutively or in parallel. This increases the intra-class variability, which
consequently impedes the generalizability of a model. Examples of such classes can
be many household activities, like cleaning, or from the explicit field of basketball
activities a shot or layup.
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2.1.2. Hardware

The experiments detailed in this doctoral thesis primarily employed data collected by
us through the use of three distinct devices. These devices encompass the Platypus, a
self-developed wrist-worn prototype equipped with a full IMU capable of sampling
at rates of up to 300 Hertz (Hz) sampling rate with a sensitivity range of ±16g.
Additionally, the eSense, an ear-worn IMU developed by Nokia-Bell, integrates an
accelerometer and gyroscope and can capture data at a maximum rate of 50 Hz.
Furthermore, the Bangle.js, an open-source smartwatch, features an accelerometer
and magnetometer, with a maximum sampling rate of 100 Hz and a sensitivity of
±8g. Zhou et al. [242] categorizes IMUs into 4 performance classes: (1) marine
and navigation grade IMUs, (2) tactical-grade IMUs, (3) industrial-grade IMUs, and
(4) hobbyist grade. (1) is mostly used for ship, air- and spacecraft navigation, the
second performance class is used for unmanned aerial navigation, (3) is installed on
robotics and industrial machinery and the fourth performance class is widely used
in automotive or consumer grade devices like activity trackers or gaming devices.
Further specifications for the devices used during our research will be described in the
forthcoming chapters. The subsequent Table 2.1 presents a summary of the hardware
specifications for the tools utilized during the course of this thesis.

Table 2.1 This table provides a quick look at the hardware and their specifications used in
the projects of this thesis.

Chipset RAM Storage Sensorics
Max.

Sensitivity
(Accelerometer)

Max.
Sampling Rate

Platypus
(wrist-worn)

22nm Intel Atom ”Tangier” (Z34XX)
with 2 cores with 500 MHz,
Intel Quark with single core 100 MHz

1GB 4GB

Accelerometer
Gyroscope
Magnetometer
Ambient Light sensor

±40g 300 Hz

eSense
(ear-worn)

Qualcomm CSR8670 with 80 Mhz 56 kB None Accelerometer ±20g 50 Hz

Bangle.js Version 1
(wrist-worn)

Nordic 64MHz nRF52832 ARM Cortex-M4 4 MB 4 MB

Accelerometer
Magnetometer
PPG
(Skin) Temperature

±8g 100 Hz

Devices: Platypus. The bulk of the computing power, power management, and
wireless communication modules is provided by this off-the-shelf board, which is
produced by Intel Corporation. The EDI2.SPON.AL.S version of the module, which
is used for the Platypus, is CE and FCC-certified and specifically made for wearable
devices. The module’s main processor is a 22nm Intel Atom ”Tangier” (Z34XX) that
includes two Atom Silvermont cores running at 500 MHz and one Intel Quark core
at 100 MHz (for executing RTOS ViperOS). The system has 1 GB RAM integrated
into the package. There is also 4 GB eMMC flash storage on board, with Wireless
Local Area Network (WiFI), Bluetooth 4, and USB controllers. Its dimensions are
35.5 x 25 x 3.9 mm. The Edison module runs an embedded version of the Linux
operating system, Yocto, which is an open-source collaboration project that provides
templates, tools, and methods to help create custom Linux-based systems for embedded
products, regardless of the specific hardware architecture. All sensors are populated
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Figure 2.1 Our wrist-
worn sensor prototype
captures, pre-processes,
and classifies data lo-
cally. It has an energy-
efficient display, a full
IMU, 5 sensors, a 500
MHz dual-core pro-
cessor, and a 100 Hz
microcontroller. It runs
embedded Linux and
connects via Bluetooth
and WiFi.

on an Edison-compatible printed circuit board that contains several sensors that
immediately interface to the Edison’s microprocessors. Additionally, a battery gauge
and recharging circuit are added, as well as a miniature display connector for a Sharp
Memory LCD. This collection of peripheral modules is directly interfaced to the
Edison board via its miniature 70-pin connector. The board has furthermore been
extended to contain optical pulse oximeters or sensors for measuring skin conductivity,
as separate modules attached to the custom sensor Printed Circuit Board (PCB). The
prototype is powered by an off-the-shelf 3.7V, 600 mAh Lithium-Ion rechargeable
battery of similar dimensions. The display is a 1.28 inch (32.51mm) 128 x 128 pixel
Monochrome HR-TFT Transflective LCD Panel produced by Sharp, which is especially
energy-saving when infrequently updated. The most important sensor for this paper
is the MPU-9250 (by Invensense), which includes a 3D accelerometer, 3D gyroscope,
and a 3D magnetometer to capture motion and orientation as accurately as possible.
Figure 2 shows the whole prototype, enclosed in a custom-built case with a transparent
top part so that the light sensors can still capture ambient light conditions and the
display remains visible, without requiring holes.

Figure 2.2 eSense prototype, developed
by Nokia Bell Labs. Figure adapted from
[105]

Devices: eSense. The eSense is an ear-worn
multi-sensor platform that comes with a 6-
axis IMU (accelerometer and gyroscope), a
microphone, dual-mode Bluetooth, Bluetooth
Classic and Bluetooth Low Energy (BLE), and
high-definition wireless audio speakers.

The device does not have on-device flash
memory or a built-in real-time clock. However,
the data can be streamed, e.g. to a smart-
phone, via BLE reliable with up to 50Hz. The
PCB is equipped with a Qualcomm CSR8670,
a programmable Bluetooth dual-mode flash au-
dio System-on-Chip (System-on-Chip (SoC)) with one microphone; a TDK MPU6050
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six-axis inertial measurement unit including a three-axis accelerometer, a three-axis gy-
roscope, a digital motion processor, and a two-state button; a circular LED; associated
power regulation; and battery-charging circuitry, see Kawsar et al. [105].

Figure 2.3 Bangle.js 1
Smartwatch with our Acti-
vate firmware installed. The
display indicates the bat-
tery charging level, the num-
ber of steps taken during
the day, and the number of
active minutes [104].

Devices: Bangle.js. The Bangle.js Version 11 is a com-
mercial open-source smartwatch on which our open-source
firmware2 was installed. The device comes with a Nordic
64MHz nRF52832 Advanced Reduced Instruction Set Com-
puter (RISC) Machines (ARM) Cortex-M4 processor with
Bluetooth LE, 64kB RAM, 512kB on-chip flash, 4MB ex-
ternal flash, a heart rate monitor, a 3D accelerometer, and
a 3D magnetometer. Our firmware only uses the 3D ac-
celerometer and provides the user with the basic functions
of a smartwatch, like displaying the time and counting
steps. The data were recorded with 25 Hz and ±8g and
are saved on the devices’ memory with a delta compression
algorithm. Therefore, it is possible to save up to 8-9 hours
(depending on how much of the data could be compressed)
of data with the given parameters. The smartwatch stops
recording as soon as the memory is full. At the end of the
day, the participants need to upload their daily data and
program the starting time for the next day using our upload web-tool3.

Sensorics: Accelerometer. The accelerometer senses the acceleration of gravity
in g. In such a sensor, a medium that can swing along one specific axis is positioned
between two or four springs on free bearings. If the sensor is now accelerated, this
medium pushes itself in a specific direction (positive or negative direction along the
axis) and thus deviates from the original position. This deviation now generates a
change in the capacitance value which can be measured and interpreted accordingly.

Sensorics: Gyroscope. A gyroscope or angular rate sensor measures the rate of turn
(rad/sec) without a fixed point of reference. In modern Micro Electrical Mechanical
System (MEMS) a vibrating mass is installed on the device which oscillates fixed along
a given axis as long as no force is applied to the sensor. However, the oscillation of the
mass deviates from the fixed axis as soon as force is applied to the sensor in a certain
direction due to rotation. These deviations from the norm can then be measured and
used for our experiments.

Sensorics: Magnetometer. The magnetometer is another sensor often installed
on IMUs. Even though this type of sensor was not used in any of the studies presented

1https://www.espruino.com/banglejs
2https://github.com/kristofvl/BangleApps/tree/master/apps/activate
3https://www.ubi29.informatik.uni-siegen.de/upload
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in this manuscript, I decided to add it to the basics for the sake of completeness.
The magnetometer measures the magnetic field of the earth around a body, e.g. a
smartphone or a wearable device, with respect to its orientation. To do so, the
so-called Hall Effect is used. When a conductive medium. For example a copper plate
is put under current, the electrons will flow straight through the medium. The Hall
Effect describes that if we bring a magnetic field close to that medium, we disturb
the straight flow - due to the appliance of an external force, called Lorentz Force - of
the electrons and further bind them to one side of the medium. On the other side of
the medium, the positive charge is accumulated. These separated accumulations of
negative and positive charges now generate a voltage that can be measured. Due to
the variation of the earth’s magnetic field depending on the orientation and location
of the magnetometer, the distribution of the negative and positive charges varies.
These variations can be measured and interpreted and later used to determine the
orientation of a wearable device.

Deep Learning on Sensor Data. Deep learning, a subfield of machine learn-
ing inspired by the neural networks of the human brain, has exhibited remarkable
proficiency in discerning intricate patterns and extracting knowledge from complex
data. It effectively embodies an approximated function tasked with mapping input
data to output variables. This function is acquired through the iterative process of
backpropagation, wherein the network adjusts its internal parameters to minimize the
discrepancy between its predictions and the actual target values in the training data.

The quality and accuracy of the learned approximation hinge upon several critical
factors, including the characteristics of the training data and the configuration of vari-
ous parameters. These parameters encompass learning rate, activation functions, loss
functions, weight initialization schemes, regularization techniques, and optimization
algorithms. Additionally, the presence of noise and uncertainty within the training
data can significantly influence the model’s performance.

Furthermore, optional post-processing steps may be applied to the model’s output,
tailoring it to meet specific requirements or constraints imposed by the application
domain. Once a deep learning architecture has undergone the training process and
attained a satisfactory level of performance, it is commonly referred to as a ”model”.

Deep learning applied to sensor data holds several distinctive challenges, requiring
specialized approaches and considerations. These challenges are:

(a) Temporal Dependencies : Sensor data often comprises time-series information,
where observations are recorded over time. Capturing and modeling temporal
dependencies in the data is crucial. Techniques such as Recurrent Neural
Networks (RNNs), or Temporal Convolutional Networks (TCNs) are frequently
employed to address this challenge.

(b) Multimodal Data Fusion: Many sensor data applications involve multiple sensors
of different types or modalities. Integrating information from diverse sources,
such as accelerometers, gyroscopes, cameras, or environmental sensors, is essential
for holistic analysis. Methods like sensor fusion, feature fusion, or multi-stream
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neural networks are employed to fuse data from various sensors effectively.

(c) Data Variability : Sensor data can exhibit variability arising from multiple sources.
Individual differences among users wearing sensors, environmental changes, or
external factors can introduce variations in the data. A robust deep-learning
model needs to be capable of handling and adapting to such variability.

The subdomains of Transfer Learning and Data Augmentation hold particular
significance within the scope of this thesis since this research includes a series of
experiments focused on these specific areas of study. We, therefore, would like to take
the time to explain these two topics.

Transfer Learning is a technique initially employed in the field of Computer Vision,
which transfers the knowledge gained from a model pre-trained on one dataset to
another dataset within the same domain. In HAR, this typically involves pretraining
a deep learning model on a source dataset, which could contain activities like walking,
running, or cycling. Once the model has learned meaningful features from this source
data, it is fine-tuned or adapted to a target dataset that might or might not contain
different activities or variations of activities. This fine-tuning process allows the model
to adapt its learned features to the specific characteristics of the target dataset. This
technique offers the advantage of significantly reducing the training time required for
the second model. It also aids in the adaptation of a model across different domains and
proves beneficial when dealing with target datasets of limited size or lower annotation
quality. Transfer Learning can encompass various aspects, including specific prepro-
cessing or postprocessing steps applied to the data. Additionally, techniques like weight
transfer are commonly employed, involving the transfer of pre-trained weights from
intermediate layers, such as convolutional layers, from a source model to a target model.

Data Augmentation for Human Activity Recognition is a technique used to
increase the diversity and quantity of training data by creating new, slightly modified
samples from the existing dataset. It involves strategies like rotation and orientation
adjustments, time warping, amplitude scaling, noise injection, temporal jittering,
and more. These modifications introduce diversity into the dataset, enabling the
model to better generalize and recognize activities accurately. Data Augmentation
is particularly valuable when dealing with limited or imbalanced data. However, it’s
crucial to strike a balance to avoid introducing excessive noise and overfitting. The
choice of augmentation methods depends on the dataset’s characteristics and modeling
goals.
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Section 2.2

Related Work

The Related Work chapter is subdivided into various subtopics relevant to Human
Activity Recognition. These subtopics encompass Human Activity Recognition, anno-
tation methods, and the potential biases associated with their use, the Hawthorne
Effect in HAR, and Human Activity Recognition in Sports Science. Human Activity
Recognition in Sports Science, explores the application of wearable technology in the
context of sports-related activities. Furthermore, this chapter extensively discusses
publications pertinent to Deep Learning and Machine Learning, with a thematic focus
on Transfer Learning and Data Augmentation. By organizing the chapter in this
manner, the dissertation provides a comprehensive and well-structured review of the
existing literature, laying the foundation for the subsequent chapters’ exploration and
analysis.

2.2.1. Activity Recognition

One of the utmost responsibilities in ubiquitous or pervasive computing is delivering
precise and timely information concerning individuals’ activities and behaviors. The
potential applications are limitless, spanning from healthcare and geriatric care to
sports monitoring and industrial uses, encompassing various sectors like process
optimization, robotics, automotive, and defense technology. Sensor technology and
activity recognition have become integral parts of people’s daily lives, especially with
the widespread adoption of various wearable devices.

Application Environments. The application environments for analyzing sensor
data are diverse and encompass various aspects of daily life for many individuals. This
subsection aims to categorize several significant ones, ranging from monitoring daily
activity routines to working environments, such as industrial settings. Additionally,
sports monitoring applications and medical applications, like elderly care, assisted
living, and supporting medical operations, fall within this scope.

The recognition of patterns based on sensor data finds valuable applications in
industrial settings. Examples include predictive maintenance [171] and assisting
workers during specific manufacturing processes, like welding or bending workpieces
[141]. In such environments, the prevalent use of full IMUs for activity recognition
is less common. Instead, the focus shifts towards employing environmental sensors,
such as temperature and air pressure sensors, as well as vibration sensors based on
accelerometers. An intriguing and less conventional example in the realm of industrial
applications is the Skoda mini checkpoint dataset, as presented by Zappi et al. in
2008 [237]. This dataset captures the activities of an assembly line worker within a
car manufacturing plant in Skoda.
Sports represent a major application domain for Human Activity Recognition due
to the vast diversity of athletic activities and their importance for fitness tracking,
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training optimization, injury prevention, and performance analysis. HAR techniques
have been applied to recognize activities in various sports, such as swimming [44],
basketball - including our publications [89, 93] - and soccer [196]. A detailed
overview can be found in Table 2.2. By detecting granular motion patterns, HAR
enables detailed quantification of biomechanics, physiology, and performance indicators
that can provide athletes and coaches with unprecedented insights [106]. For instance,
inertial sensor-based HAR can identify improper exercise forms that may lead to
injury (Acharya et al., 2018). HAR can also automatically track training load, exercise
frequency, and other variables to optimize training regimens and competition readiness
(Falcone et al., 2020). Furthermore, integrating HAR with contextual data like
heart rate provides a richer assessment of physiological demands during training and
competition (Wang et al., 2018). In summary, the diversity of athletic activities
coupled with the utility of motion analytics makes sports a significant domain for
applying HAR techniques. This thesis focuses mainly on sports activity recognition,
therefore, a more detailed section on related work on sports activity recognition
The healthcare sector is an important field for applying Human Activity Recognition
systems for a variety of patient monitoring and care enhancement applications. HAR
uses wearable sensors and machine learning algorithms to automatically detect human
activities, which can provide ubiquitous, unobtrusive monitoring in both clinical and
home settings. For example, HAR systems can be used to continuously monitor
elderly or chronic disease patients to detect falls, track medication adherence patterns,
monitor rehabilitation progress, and identify emerging health issues without constant
supervision [5]. In assisted living environments, HAR enables smart home systems to
support independent living by detecting activities of daily living and alerting caregivers
if anything seems amiss, such as a lack of movement in the morning indicating a
potential overnight fall. HAR can also analyze staff workflows in hospitals to identify
inefficient patterns and improve healthcare operations. The data quantified by HAR
systems can be used to assess patient recovery, such as analyzing gait characteristics
to monitor hip surgery rehabilitation progress, enabling clinicians to better tailor
therapies. Consumer wellness applications like fitness trackers and sleep monitoring
apps also rely on HAR algorithms to automatically detect exercises, sleep quality, and
daily behaviors so personalized health insights can be provided to users. In summary,
HAR provides the ubiquitous sensing capabilities to continuously monitor patients,
assist the elderly and impaired, quantify recovery, and detect wellness indicators
that can enhance the quality of care and improve outcomes by enabling personalized,
data-driven healthcare.
Daily routines is an interesting and useful application area for Human Activity
Recognition systems because the area encompasses many common recurring activities
that people perform regularly, such as sleeping, eating, chores, exercise, work, etc. By
being able to automatically detect and analyze patterns in these routine activities
using sensors and machine learning algorithms, HAR enables a wide range of assistive
technologies and wellness applications. For example, deviations from a person’s
normal daily activity patterns could provide indicators of emerging health issues or
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behavior changes. HAR can also quantify metrics like step counts, activity levels, and
sleep duration to allow people to self-monitor their fitness goals and maintain general
wellness. In smart home environments, recognizing activities allows automated systems
to control lighting, heating, ventilation, air conditioning, and appliances in ways that
suit the user’s habits and preferences. If a HAR system detects that a person is
cooking, it can turn on the ventilation fan or play their favorite music. The contextual
awareness provided by recognizing ongoing activities also enables systems to deliver
tailored reminders and assistance, like notifying someone to take their medication
when they wake up in the morning.

Annotation Methods in Activity Recognition. According to Stikic et al. [194]
and later Cleland et al. [56], we distinguish between 6 or 7, respectively, different
methods and 2 environments (online/offline) of labeling data, the methods are (1)
Indirect Observation, (2) Self-Recall, (3) Experience Sampling, (4) Video/Audio
Recordings, (5) Time Diary, (6) Human Observer, (7) Prompted Labeling. Cruz et
al. [57] uses 4 different categories to classify data labeling approaches, these are (1)
temporal (when) - is the label conducted during or after the activity, (2) annotator
(who) - is the label given by the individual itself or by an observer, (3) scenario
(where) - is the activity labeled in a controlled (e.g laboratory) or uncontrolled
(in-the-wild) environment, and (4) annotation mechanism (how) - is the activity
labeled manually, semi-automatically or fully-automatically. All labeling methods
have their benefits and costs and come with a trade-off between required time and
label accuracy. However, not every method is suitable for long-term and in-the-wild
recording data. Reining et al. [172], evaluated the annotation performance between
6 different human annotators of a Motion Capturing (MoCap) (Motion Capturing)
and IMU HAR Dataset for industrial deployment. They concluded that annotations
were moderately consistent when subjects labeled the data for the first time. However,
annotation quality improved after a revision by a domain expert. In the following, I
would like to go into more detail on what I consider to be the most important labeling
methods for the specific field of activity recognition.

2.2.2. Annotation Methods in Activity Recognition

Self-Recall methodologies are generally called methods in which study participants
have to remember an event in the past. This methodology is used, for instance, in
the medical field (e.g. in the diagnosis of injuries [214]), but also frequently in studies
in the field of long-term activity recognition. Van Laerhoven et al. [217] used this
method during a study in which participants were asked to label their personal daily
data at the end of the day. They noticed that the label quality depends heavily on the
participant’s recall and can therefore be very coarse. During a study conducted by
Tapia et al. [200], every 15 minutes a questionnaire was triggered in which participants
needed the answer multiple choice questions about which of 35 predefined activities
were recently performed.
App Assisted Labeling: Cleland et al. [56] presented in 2014 the so called Prompted
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labeling. An approach that is already used by commercial smartwatches like the Apple
Watch4. In this study, users were asked to set a label for a time period that has been
detected as an activity right after the activity stopped. Akbari et al. [9] leverages
freely available Bluetooth Low Energy (BLE) information broadcasted by other nearby
devices and combines this with wearable sensor data in order to detect context and
direction changes. The participant is asked to set a new label whenever a change in the
signal is detected. Gjoreski et al. [73] published 2017 the SHL dataset which contains
versatile labeled multimodal sensor data that has been labeled using an Android
application that asked the user to set a label whenever they detected a position change
via GPS. Tonkin et al. [207] presented a smartphone app that was used in their
experimental smart home environment with which study participants were able to
either use voice-based labeling, select a label from a list of activities ordered by the
corresponding location or scan Near Field Communication (NFC) tags that were
installed at locations in the smart house. Similar to Tonkin et al. [207], Vaizmann
et al. [213] developed an open-source mobile app for recording sensor measurements
in combination with a self-reported behavioral context (e.g. driving, eating, in class,
showering). 60 subjects participated in their study. The study found that most of
the participants preferred to fill out their past behavior through a daily journal. Only
some people prefer to set a label for an activity that they are about to do. Schröder
et al. [182] developed a web-based GUI that can be used on a smartphone, tablet, or
PC to label data recorded in a smart home environment. However, it is important
to mention that, According to Cleland et al. [56], the process of continually labeling
data becomes laborious for participants and can result in a feeling of discomfort.
Unsupervised Labeling is a methodology that uses clustering algorithms to first
categorize new samples without deciding yet to which class a sample belongs. Leonardis
et al. [117] presented in 2002 the concept of finding multiple subsets of eigenspaces
where, according to Huynh [99], each of them corresponds to an individual activity.
Huynh uses this knowledge to develop the eigenspace growing algorithm, whereby,
growing refers to an increasing set of samples as well as to increase the so-called
effective dimension of a corresponding eigenspace. Based on the reconstruction error
(when a new sample is projected to an eigenspace), the algorithm tries to find the
best-fitting representation of a sample with minimal redundancy. Hassan et al. [86]
recently published a methodology that uses the Pearson Correlation Coefficient to
map very specific labels of a variety of datasets to 4 meta labels (inactive, active,
walking, and driving) of the ExtraSensory Dataset [213].
Human-in-the-Loop (Labeling) is a collective term for methodologies that integrate
human knowledge into their learning or labeling process. Besides, being applied in HAR
research, such techniques are often used in Natural Language Processing and according
to [227] the NLP community distinguishes between entity extraction [71, 240], entity
linking [108], Q&A tasks [220] and reading comprehension tasks [23].

Active Learning is a machine learning strategy that currently receives a lot of
attention in the HAR community. Such strategies involve a Human-in-the-Loop for

4https://www.apple.com/watch/
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labeling purposes. In the first step, the learning algorithm automatically identifies
relevant samples of a dataset which are posteriorly queued to be annotated by an
expert. Incorporating a human guarantees high-quality labels which directly leads to a
better-performing classifier. Whether a sample is determined to be relevant, as well as
the decision to whom it may get presented for annotation purposes is the main focus
of research in this field. Bota et al. [38] presents a technique that relies on specific
criteria defined by 3 different uncertainty-based selection functions to select samples
that will be presented to an expert for labeling and then propagated throughout the
most similar samples. Adaimi et al. [6] benchmarks the performance of different
Active Learning strategies and compares them, with regard to 4 different datasets with
a fully-supervised approach. The authors concluded that Active Learning needs only
8% to 12% of the data to reach similar or even better results than a fully-supervised
trained model. These results suggest that presenting pre-selected samples to a human
for labeling purposes can reduce the amount of data needed to train a machine learning
classifier significantly due to the increased quality of the labels. Miu et al. [143]
presented a system that used the Online Active Learning approach published by
Scully [185] to bootstrap [4] a machine learning classifier. The publication presented a
smartphone app that asked the user right after finishing an activity, which activity has
been performed. Afterward, a small subset of the labeled data was used to bootstrap
a personalized machine-learning classifier.

The Hawthorne Effect. With researchers from a multitude of human-centered
studies being aware of the existence of such an effect, a data-driven study of the
phenomenon and its potential effects remain largely under-explored in the community
of Human Activity Recognition. Human Activity Recognition typically relies on
participants being monitored via wearable sensors, making them consistently aware
of being observed. However, these circumstances may have introduced a behavior
bias [234] into publicly available datasets. This bias manifests as changes in behavior
when study participants are aware of being monitored by another person or a video
recording system [69]. The fundamental research of which the Hawthorne effect
originated, was conducted between 1924 and 1927 as part of an investigation of
whether the productivity of workers of the Hawthorne Western Electric plant could
be increased by a change in lighting conditions [138]. With later studies criticizing
the research methodology [49], Landsberger concluded in 1958 [112] that the increase
in productivity was to be attributed to the workers being aware that they were
monitored and not the change in working conditions. The observed phenomenon,
i.e. the alteration of behavior whenever participants are aware that they are being
monitored, was later then primed as the Hawthorne Effect. In the context of HAR
experiments, the Hawthorne Effect suggests that participants’ awareness of being
monitored can potentially affect the applicability and generalization of trained activity
recognition systems. Knowing they are being observed and activities are being recorded,
participants might result in modifying their movements, behaviors, and/ or daily
routines, leading to a deviation from a natural execution of activities. This alteration
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can introduce biases and inaccuracies in the data collected for HAR experiments,
making it challenging to develop reliable and scalable activity recognition systems
[49]. To mitigate the Hawthorne Effect in HAR experiments, researchers often opt for
minimizing participants’ awareness of being monitored. By employing discrete sensing
techniques, such as using a minimalistic setup of wearable devices [213] or ambient
sensors [144], they can collect activity data without participants constantly focusing
on the monitoring process. By reducing the conscious attention given to monitoring,
researchers aim to capture more natural and representative data that can improve
the accuracy and reliability of HAR systems [96]. While the Hawthorne effect has
been demonstrated psychologically, no scientific publication has examined it from a
sensor perspective. Our publication [90] aims to highlight this aspect and further
investigate how a participant’s awareness of being observed may influence data quality
and classifier performance.

In 2014, Bulling et al. [45] described several research challenges in creating datasets
for Human Activity Recognition that avoid bias. These challenges, being still relevant
to this date, include intra-class variability, inter-class similarity, and the NULL-class
problem. Important in the context of the Hawthorne Effect is the intra-class variability,
which describes how data from the same class differ between participants or sometimes
even instances of one activity from the same individual due to stress, fatigue, or an
emotional or environmental state in which the activity is performed. As such, the
Hawthorne Effect can be categorized as an intra-class variability problem - which can
have a direct effect on classifier capabilities and performance.

2.2.3. Sports Activity Recognition

IMU-based sports activity recognition is one of the main application fields for HAR
studies, as summarized in Table 2.2 and Table 2.3. It has already been proven for a
variety of different sports, such as running [24, 149, 178], ball sports [235, 196, 72, 47,
131, 37], winter sports [115], sports for the disabled [85] or fitness [160, 201, 59], that
activity recognition algorithms are capable of detecting specific activities tied to these
sports based on IMU data as input. Basketball has been used by several studies based
on IMU sensor data since 2014. The studies presented in Table 2.3 focused on a wide
field of applications within basketball.

Hoelzemann et al. [89] detected different dribbling styles and shooting the
ball with one single wrist-worn full IMU and later on published the Hang-
Time HAR dataset [93], both publications are presented in detail in Chapter
4. Mangiarotti et al. [135] used two IMUs worn on both wrists to differentiate
between passing, shooting, and dribbling the ball. Sviler et al. [197] focused on
locomotion-bound activities, like jumping, acceleration, deceleration and change of
direction. Sangüesa et al. used IMU and Red, Green, Blue (RGB) video data to
detect complex basketball tactics. Lu et al. [126] and Liu et al. [123, 124] attached
smartphones to the body and used the built-in accelerometer to detect a variety of
basketball activities. Lu et al. and Liu et al. showed that accelerometer data alone is
sufficient to classify basketball activities. Technically wise, the most comprehensive
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Table 2.2 IMU-based studies have been performed throughout many different sports in
the past years, yet few are publicly available for usage by other researchers (table partially
based on [15], Table 2 ).

Sports Studies with Wearables

Study
Sport &

(#) Activities Performed
Sensors/Systems Used # Subjects Published Analysis Method

Bastiaansen et al. [24] (1) Sprinting
Five IMUs and sensor
fusion algorithms

5 No Statistical Analysis

Borja Muniz-Pardos et al. [149] (1) Running Foot worn inertial sensors 8 No Statistical Analysis

Brouwer et al. [42]

(5) Swing motions
from different
sports: golf swi-
ngs, 1-handed ball
throws, tennis serve,
baseball swings.
and a variety of
trunk motions.

Two IMUs and a MoCap
system

10 No Statistical Analysis

Brunner et al. [44] (5) Swimming Wrist-worn full IMU, barometer 40 No Deep Learning (CNN)

Carey et al. [47]
(1) Physical impacts
while playing rugby

head-worn accelerometer
and gyroscope (x-patch™)

8 No Statistical Analysis

Lee et al. [115] (2) Skiing turns
17 IMUs and
pressure sensors

7 No
3D Kinematic
Model Evaluation

Teufl et al. [201]

(3) Bilateral squats,
single leg squats,
and counter-
movement jumps

Seven IMUs and a MoCap
system

28 No
Rigid Marker Cluster,
Statistical Analysis

Wang et al. [222] (3) Racket Sports Wrist-Worn IMU 12 No
Machine Learning,
(SVM, Naive Bayes)

Whiteside et al. [224] (9) Tennis strokes Wrist-Worn IMU 19 No Statistical Analysi

Ghasemzadeh and Jafari [72] (1) Baseball swing
3 IMUs
(Wrist, Shoulder, Hip)

3 No
Semi Supervised
Clustering

MacDonald et al. [131] (15) Volleyball 6D IMU (Acc. & Gyr.) 13 No Statistical Analysis

Borges et al. [37] (6) Volleyball Waist worn full IMU 112 No Statistical Analysis

Dahl et al. [59]

(5) Cutting, running,
jumping, single
leg squats and
cross-over twist

8 full IMUs, 17 MoCap Cameras 49 No Statistical Analysis

Pajak et al. [160]
(4) Fitness exercises:
dips, pullups, squats,
void

3 full IMUs, Pressure Sensor, Radio Signal - No Deep Learning (CNN)

Yu et al. [235] (1) Soccer kick 6D IMU (Acc. & Gyr.) - Yes, upon request
Attitude Estimation
with Quaternions,
Gravity Compensation

Stoeve et al. [196]
(3) Soccer kick, pass,
void

Shoe-worn IMU 836 No
Machine and Deep
Learning (SVM, CNN,
DeepConv-LSTM)

Bock et al. [36] (19) Fitness activities
4 Accelerometer sensors,
egocentric video footage

18 Yes

Deep Learning
(DeepConv-LSTM,
Attend-and-Discrim-
inate, ActionFormer)

Brognara et al. [41] (-) CrossFit® Full IMU at the lower back 42 Yes, upon request Statistical Analysis

Perri et al. [165] (8) Tennis strokes 1 Full IMU at the scapulae 8 Yes, upon request Statistical Analysis

Azadi et al. [17] (1) Alpine skiing
2 smartphones with IMUs
placed at the pelvis

11 No
Unsupervised Machine
Learning (Gausian Mix-
ture Models, Kmeans)

Jean et al. [103] (-) Running foot-worn 6-axis IMU 41 No Statistical Analysis

Yang et al. [230]
(-) Contact and
flight-time (Running)

2 ankle-worn 6-axis IMUs 36 Yes, upon request
Statistical and
Feature Analysis

Léger et al. [116] (3) Ice Hockey 1 glove-worn IMU 10 Yes, upon request Machine Learning (kNN)

Hamidi et al. [81]
(-) Swimming perfor-
mance

1 sacrum-worn IMU 15 Yes, upon request
Statistical Analysis,
Self-Assessment

Müller et al. [147]
(-) Beach Handball
performance

1 full IMU placed at the upper
thoracic spine

69 Yes Statistical Analysis

Patoz et al. [164]
(-) Contact and
flight-time (Running)

1 sacral-mounted IMU 100 Yes, upon request Statistical Analysis

Lee et al. [114]
(4) stride, step, and
stance duration of
running gait

Sacrum worn 3D Accelerometer,
6 infrared cameras

10 No Statistical Analysis

Harding et al. [84]
(-) Airtime analysis of
snowboarders

One 3D gyroscope 10 No Statistical Analysis

basketball activity study so far was conducted by Nguyen et al. [155]. The group
used data from 5 full IMUs attached to the participants’ shoes, knees, and lower back
to classify frequently occurring basketball activities like walking, running, jogging,
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pivot, jumpshot, layupshot, sprinting, and jumping. However, Table 2.3 shows that
the only study that made their dataset publicly available is Trost et al. [208], even
though this dataset is not available for download at the moment when this manuscript
is written. Observing a basketball game and interpreting activities executed on the
court is a research topic majorly driven forward by computer vision studies. Therefore,

Table 2.3 IMU-based basketball activity recognition studies. Trost et al. is the only team
that made their dataset publicly available for download. However, the dataset is currently
unavailable for download. (*Not accessible from the source given by the manuscript at the
time of writing.)

Sensor Based Basketball Studies

Study (#) Activities Performed Sensors/Systems Used # Subjects Published Analysis Method

Hoelzemann et al. [89]
(4) different dribbling
techniques, shooting

Wrist-Worn Full IMU 3 No
Machine Learning
(kNN, Random Forest)

Sviler et al. [197]
(4) jumping, acceleration,
deceleration and
change of direction

Full IMU 13 No Statistical Analysis

Nguyen et al. [155]

(8) walking, running,
jogging, pivot,
jumpshot, layupshot,
sprinting, jumping

Five Full IMUs 3 No Machine Learning (SVM)

Trost et al. [208]
(7) lying, sitting, standing,
walking, running,
basketball, dancing

Two Full IMUs, 52 Yes*
Statistical Model
(Logistic Regression
Model)

Bo [32]

(5) standing, running
standing dribble,
penalty shot,
jump shot

5 IMUs (Acc. & Gyr.) 20 No Deep Learning (RNN)

Lu et al. [126]
(5) standing, bouncing ball,
passing ball, free throw,
moving with ball

3 smartphones with accelerometer 4 No
Multiple Supervised
Machine Learning
Classifier

Liu et al. 2015 [123] and 2016 [124]
(8) walk, run, jump, stand
throw ball, pass ball,
bounce ball, raise hands

2 smartphones with accelerometer 10 No
Multiple Supervised
Machine Learning
Classifier

Sangüesa et al. [179]
(5) complex basketball tactics:
(pick and roll, floppy offense
press break, post up, fast break)

IMUs and video footage 11 No Machine Learning (SVM)

Mangiarotti et al. [135] (3) passing, shooting, dribbling two wrist-worn IMUs 2 No
Machine Learning
(SVM, kNN)

Staunton et al. [193] (1) jumping
MARG Sensor (magnetic, angular
rate and gravity).

54 No Statistical Analysis

Eggert et al. [65] (1) jump shot foot-worn IMU 10 No Deep Learning (CNN)

Bai et al. [19] (1) basketball shots
one wristband-worn IMU,
one Android smartphone put in the
trouser pocket.

2 No
Multiple Supervised
Machine Learning
Classifier

Hasagawa et al. [85]
(2) Wheelchair basketball:
push and stop

wheelchair equipped with two IMUs 6 No
Feature and
Statistical Analysis

according to Table 2.2.3 Computer Vision-based activity or action recognition datasets
are already publicly available widely to the community. The datasets presented in
Table 2.2.3 mostly contain RGB data. The dataset used by Hauri et al. [87] is available
for download and contains, among other modalities 1D (y-axis) accelerometer data of
National Basketball Association (NBA) players shooting a basketball. However, the
authors confirmed to us that the acceleration data in their dataset were not recorded
with a wearable sensor device. Moreover, they were extrapolated from the video
data by taking into account the positional data of the players and the time stamps.
The study focused on detecting complex tactical group activities like pick and roll or
handoffs. The studies conducted with visual data are more comprehensive with regards
to the number of classes that are distinguished between, compared with IMU-based
activity studies. Gu et al. [80] classified 26 fine-grained basketball activities into 3
broad categories. A very early study, conducted in 2008 by De Vleeschouwer et al.
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Table 2.4 Vision-based basketball activity recognition studies that published their dataset
for download. However, Maksai et al. and Ramanthan et al. are currently not available for
download. (*Not accessible from the source given by the manuscript at the time of writing.)

Vision-based Basketball Studies

Study Action Recognized Sensors/Systems Used Published

Hauri et al. [87]
Group activities:
pick and roll, handoff

Videos and 1D-Accelerometer
(only shots, extrapolated from videos)

Yes

Ma et al. [128] 12 atomic basketball actions RGB-D Video Data Yes

Shakya et al. [187]
two point, three point, mid
range shots (success and fail-
ures separately classified)

RGB Video and optical flow data Yes

Gu et al. [80]
3 broad categories:
dribbling, passing, shooting;
26 fine-grained actions

RBG Video Data Yes

Francia [68]
walk, no action, run, defense,
dribble, ball in hand, pass,
block, pick, shot

RGB Video Data Yes

Parisot et al. [163] player detection RGB Video Data Yes

De Vleeschouwer et al. [60]
Throw, Violation, Foul
Player Exchange, Pass
Rebound, Movement

7 cameras, RGB Video Data Yes, upon request

Maksai et al. [133] Trajectory estimation
RGB Data of various ball sports
(basketball among others)

Yes*

Ramanthan et al. [169]

layups, free throw,
3 point, 2 point shots,
slamdunk (success and
failures separately classified)

RGB Video Data Yes*

Tian et al. [206] basketball tactics detection RGB Video Data published by [236] Yes

[60], mixed basketball activities like throwing, passing, or rebounding the ball, with
detecting context-based activities like a player exchange, rule violation, or foul. Maksai
et al. [133] estimated the trajectory of a ball in different sports, including basketball.
Ramanathan et al. [169] focused on scoring activities, like performing layups, 3 and
2-point shots, free throws, and slamdunks. Although a large number of activity studies
exist that explore sports data and basketball data, in particular, the number of publicly
available benchmark datasets is significantly low. A fine-grained IMU-based sports
dataset representing a single sport has become available only recently, following the
publication of our Hang-Time HAR [93].

2.2.4. Deep Learning in Activity Recognition

Machine Learning for sensor-based Human Activity Recognition has a long tradition.
Many published papers in the last two decades have proven its feasibility [180, 215,
231, 21, 127, 83, 159, 89]. While in the beginning most of the publications worked
with classical Machine Learning approaches [215], [21], nowadays Deep Learning
has replaced classical Machine Learning as the state-of-the-art learning algorithm
[113], [221], because deep learning-based classifiers often outperform classical machine
learning approaches. Latest since [83], IMU sensor signals are used as input to train
neural networks. However, Deep Learning models have the disadvantage that their
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success relies heavily on large amounts of data to be able to converge [39], [151].

During recent years, there have been notable advancements in the domain of deep
learning applied to sensor data analysis. These developments include a range of
techniques and methodologies that have significantly enhanced our ability to process
and extract meaningful insights from sensor-generated information. Key trends in
this field include the adoption of self-supervised learning [199], where a model learns
representations or features from unlabeled data without explicit supervision; the
utilization of few-shot learning approaches to generalize from limited annotated data
[156]; the exploration of federated learning techniques for privacy-preserving and
distributed model training [228, 192]; the integration of attention mechanisms to
dynamically focus on the most salient time-intervals of sensor measurements [50];
the application of Temporal Convolutional Neural Networks for efficient sequential
data analysis [150]; the adaptation of transformer networks for capturing long-range
dependencies; the employment of Graph Neural Networks (GNNs) for modeling
complex sensor networks [145, 120]; the effectiveness of transfer learning strategies to
leverage pre-trained models [76, 95, 129]; the use of data augmentation to enhance
model generalization [94, 212]; the fusion of multi-modal sensor data to provide
comprehensive insights [239, 54]; the realization of real-time processing capabilities
[100, 148]; the deployment of deep learning on edge devices for low-latency applications
[8, 243]; and the advancement of explainable deep learning techniques to enhance
model interpretability [64, 98]. Additionally, noteworthy progress has been made in
model compression and energy efficiency [35], further enhancing the applicability and
sustainability of deep learning approaches in sensor data analysis.

Chapter 5 specifically centers its attention on Transfer Learning and Data Augmen-
tation techniques applied to sensor data. Consequently, the subsequent sections will
place an emphasis on these two subfields.

Transfer Learning. Transfer Learning has become an increasingly important
subtopic of Deep Learning in recent years. Therefore it was only a question of time
until it was investigated whether this technology can be transferred to time-discrete
sensor signals and thus also to Human Activity Recognition. The number of published
papers in this discipline has increased rapidly, e.g. [97], [232], [63], [52], [146] or [118],
especially in the last two years [88]. [146] showed a setup that I built upon and
expanded with tests that artificially mapped the sensor’s placement and orientation
to each other, according to the results of [110] and [245]. Here it is shown, that only
after the sensors have been brought into alignment, the classifier is achieving the best
results. [76] showed, that cross-dataset transfer learning is possible if the source and
target datasets are coming from the same domain. By using an architecture called
MultiResNet [75], which transfers the data into the frequency domain and uses residual
blocks they achieved promising results when transferring from Skoda Mini Checkpoint
[237] to OPPORTUNITY [176], PAMAP2 [173] or JSI-FOS [74]. It seems like due
to the transformation into frequency domain the trained filters are not class specific
anymore and the orientation and location of the sensors axes lose their importance
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for the success of Transfer Learning. Our publication [95] primarily addresses
inter- and intra-dataset sensor transfer, along with essential pre-processing
steps aimed at enhancing the final model capabilities.

Data Augmentation. Data Augmentation is one of the standard regularization
techniques to prevent neural networks from overfitting [62] and in recent years, it has
become an important focus in sensor-based Human Activity Recognition research.
The idea to use synthesized data for training neural networks comes originally from
computer vision, e.g. [101], [188]. Traditional transformations of images, e.g. scale,
zoom, crop, or add noise to the data were adapted and transferred to time-series
data by [212]. By applying these techniques, the original data gets slightly modified.
In reverse, this also means that we never generate new and unique data. Another
approach introduced by Ian Goodfellow [78] to augment data is to use a Generative
Adversarial Network, like e.g. [244], [67]. Especially [67] is of importance, since I
used this architecture as a baseline architecture, on which my system is built. The
GAN published by Esteban et al. [67] consists of two neural networks. A generator
model is used to augment data while a discriminator tries to distinguish between
real and augmented data. These two models are training each other. As soon as the
discriminator is no longer able to detect that the produced samples are synthesized, it
is assumed that real-appearing time-series data is generated. An advantage of this
architecture is that we generate new and therefore unique data, thus increasing not
only the number but also the variability. Our publication [94] examines how the
selection of class instances for augmentation, followed by their inclusion
into the dataset, impacts the overall performance of a deep learning model.
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Chapter 3

Towards Real-World User Studies
for HAR

In the domain of wearable sensor technology, the pursuit of cost-effective and reliable
data collection methodologies has emerged as a critical area of research. This holds
the promise of not only enhancing data acquisition for individual researchers but also
contributing valuable insights to the broader scientific community. The following
chapter tries to answer important research questions focused on study recording
techniques and participants’ behavior during studies.

(a) How can Data Sharing and Accessibility Be Maximized?

In what ways can the data collected through wearable sensors be shared
and made accessible to the wider research community?

(b) Is Multisensor Synchronization Achievable through Cost-efficient Op-
erations?

Can synchronization points be accurately determined for multiple accelerom-
eter signals recorded in parallel, using techniques such as correlation?

(c) What is the Influence of Annotation Methods on Annotations’ Quality
and Quantity?

How does the choice of annotation method impact the final quality and
quantity of labeled data acquired through wearable sensors?

(d) Which Annotation Method Best Suits Specific Research Use Cases?

Which annotation methods align most effectively with specific research
objectives and use cases?

(e) Can the Hawthorne Effect and Behavior Changes be Detected through
Sensor Data?

• Do study participants alter their behavior when they are aware of being
observed during experiments, and can this behavioral shift be detected
through data collected from wrist-worn sensors?

• To what extent can deep learning classifiers identify and quantify such
changes?
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Section 3.1

Activate Data Recording System

[92] Hoelzemann, Alexander, et al.
Open-Source Data Collection for Activity Studies at Scale
May 2022, Part of the Smart Innovation, Systems and Technologies book series
(SIST, volume 291)
https://doi.org/10.1007/978-981-19-0361-8_2

Portions of the original publication have been removed or edited for inclusion in
this thesis. However, no changes were made that altered the results or conclusions
presented in the original work.
Contributions:

• I designed and implemented the smartphone front-end, the backend, and
the communication between both.

• Kristof Van Laerhoven guided this work and assisted in the methodologies.
He developed the Activate firmware and the web-based control panel.

Activity studies range from detecting key indicators such as steps, active minutes,
or sedentary bouts, to the recognition of physical activities such as specific fitness
exercises. Such types of activity recognition rely on large amounts of data from
multiple persons, especially with deep learning. However, current benchmark datasets
rarely have more than a dozen participants. Once wearable devices are phased out,
closed algorithms that operate on the sensor data are hard to reproduce and devices
supply raw data. We present an open-source and cost-effective framework that can
capture daily activities and routines, and which uses publicly available algorithms
while avoiding any device-specific implementations. In a feasibility study, we were able
to test our system in production mode. For this purpose, we distributed the Bangle.js
1 smartwatch as well as our app to 12 study participants, who started the watches at
a time of individual choice every day. The collected data was then transferred to the
server at the end of each day.

3.1.1. Introduction

Many types of studies focus on capturing activity data from human study participants.
We can distinguish these types of studies based on the measurement devices and sensors
used, the carrying position of the sensors, and the domain of the data. The types of
devices used go hand in hand with the sensor technology used. For example, sensors
worn on the wrist offer the possibility of recording the heart rate via PPG sensors,
the skin temperature with a thermometer, and the movements with an accelerometer,
gyroscope, and magnetometer. Studies in which smartphones are mainly used to
record data do not usually offer this supplementary sensor technology. Since the
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devices are not worn directly on the skin, the data is often limited to basic IMU
sensors. In contrast, the carrying position of the sensors goes hand in hand with
the specific domain of the recorded data. The sensor technology used for medical
datasets is often worn on different body positions than sensor technology used for
activity recognition. As previous studies have shown, for many activities, it is often
sufficient to wear the sensors only at key positions such as the wrist [110], [136]. In the
medical environment, however, more complex sensors and different wearing positions
are often required [107], [10]. Empirical studies for which activity plays a crucial role
use indicators such as steps taken, sedentary periods, activity counts, or detected
physical exercises, which often originate from closed-source algorithms. This tends to
lock studies to particular devices and makes the use of other devices or comparisons
difficult. Restricting studies to particular commercial wearables that also record raw
inertial data has the effect that large-scale studies are only possible if the project has
a high budget that allows the purchase of commercial hardware and software. In this
section, we present the ActiVatE prevention system, see Figure 3.1, which is based
exclusively on open-source components, logs raw inertial data, and also offers subjects
a similar wearing comfort as commercially manufactured products. We argue that
it, therefore, lends itself well to the capturing of multiple users simultaneously for
activity studies, while being an open-source, replicable, and low-cost approach.

Figure 3.1 Our system relies on an open-source smartwatch [226] with custom firmware,
smartphone apps, and a server-side database to collect all data centrally. For participants
without a smartphone or in studies where users need to inspect their data or manually forward
their data, a web-based suite (bottom) retrieves the data through a (Web)-Bluetooth Low
Energy (BLE) connection. The raw sensor data is frequently streamed from the smartwatch
either to a nearby computer via a web-based control panel, or via the user’s smartphone to
a dedicated server.
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3.1.2. Our Proposed Approach

The design of our open source system is shown in Figures 3.2 and 3.3. The operating
system is installed once on the Bangle.js via Web-BLE and the apps are downloadable
via the Apple AppStore and the Google Play Store. The app forwards the data from
the smartwatch to the central server. The user interface of the app is kept simple,
the users can only select their daily activity goals and retrieve their daily activity
statistics.

Server

Anonymized participant
information

Data Storage

Activity Data

Machine Learning Module

Explore

Modify

Model

Assess

Personal Devices

Sampling
Reverse Proxy

REST-API

SSL + Basic Auth.

SSH

BLE

Figure 3.2 Open source client-server architecture for recording human activity data. The
data is recorded by the Bangle.js smartwatch and is sent to the server daily with our app.
Anonymized participant information is sent to the server via a reverse proxy that implements
a Secure Sockets Layer (SSL) + Basic Authentication. This reverse proxy communicates via
a REST-API with the Postgres Structured Query Language (SQL) database. The system is
designed following the Sample, Explore, Modify, Model, and Assess (SEMMA) data process
model [186]. (1) Sampling, (2) Explore (3) Modify (4) Model (5) Asses. The model itself
can be seen as a cycle.

The sequence diagram (Figure 3.3) depicts the communication in between the
architecture elements. We recorded the execution time for every communication step,
which is added to the diagram. On average, it takes 185 seconds to send one file
(approx. 200KB and 1 hour of data) from the watch via BLE to the smart device.
After ∅ 45 minutes, the complete daily data is sent from the smartwatch to the
server using our Representational State Transfer (REST) - Application Programming
Interface (API). Smartwatch. To date, few open-source smartwatch designs allow
algorithms for detecting activities, from basic ones such as steps, sedentary bouts, and
active minutes, to recognition of particular exercise repetitions, to be transparently
implemented on a device with integrated inertial sensors. We used the Bangle.js [226]
as an affordable, around $50 USD, low-power system that is equipped with a Nordic
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AppBangle.js ServerWebsite

install OS

sync time

set starting time

start upload

sendNextFile

Number of files (n)

till n is reached

connect
disconnect

connect

disconnect
Upload

Progress

till n is reached

3 sec

500 msec

Ø 185 sec

5 sec

Ø 45 minutes, 
executed daily

executed once
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Figure 3.3 Activate System Sequence Diagram: The operating system is installed from our
web tool via Web-BLE on the Bangle.js. This needs to be executed once. The communication
between Bangle.js and the app occurs on a daily basis. The procedure needs ∅ 45 minutes
for a full day of recording (14 hours of active time) and ∅ 185 seconds for sending one file
from the watch to the smartphone. The upload to the server is executed when all files are
transferred to the smartphone.

64MHz nRF52832 ARM Cortex-M4 processor, inertial sensors, a PPG sensor, sufficient
internal memory, and an internal BLE module. Our firmware on this open-source
platform is capable of storing the sensors’ raw data over a full day, and integrating
recognition algorithms – currently for steps, active minutes, and exercise intensities –
locally on the watch. Users are expected to start the data upload process once a day,
either through the web-based platform or automatically through their smartphone or
tablet app.

Since the logging of activity data requires sampling rates from 10Hz up to as high
as 100Hz, depending on the activity, the recording of raw inertial data is rarely
implemented in a way where local recordings are routinely synchronized and uploaded
to a server. The local storage for a day’s worth of inertial data and the energy footprint
for sending this data tends to be substantial [27]. Instead, the early pre-processing of
inertial data in the aforementioned detected features (steps, active minutes, etc) takes
place on the wearable devices and usually solely these aggregated values are stored.

Detected activity-related concepts such as Active Minutes [104] have been deployed
locally on the Bangle.js smartwatch and are uploaded together with the raw sensor data
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to the server through the smartphone app (or via the browser-based tool suite) daily.
We designed to fully use the watch’s 4Mb flash memory to losslessly compress 16 bit,
12.5 Hz inertial data at +/-8g, along with other data such as the skin temperature
and heart rate.

iOS and Android App. The Activate client is implemented using Flutter. There-
fore, we can design and implement clients for the two major operating systems, iOS
and Android, at once. However, minor code changes are necessary to solve operating
system-specific issues, especially with regard to the BLE connection.

The interface consists of three main views and is displayed in German language. It
was designed to encourage diabetes patients to perform more physical activities in
their daily lives. Beyond the recording of raw inertial data, it is planned for the near
future to expand this open-source app to be able to annotate and detect an arbitrary
number of activities as well. When the app starts, the participant is taken to the
home screen, (1) in Figure 3.4. Here, the user interface visualizes an overview of the
day’s accumulated number of steps taken and active minutes. When pressing the
green button, the study participant saves the data on the server and sets the starting
time for the following measurement (typically the next day). During the first start of
the app, an anonymized user account is created and saved in a Postgres Structured
Query Language (SQL) database. On the second screen in Figure 3.4, the user can

Figure 3.4 The smart-
phone’s user interface:
(1) Home Screen, (2)
Setting daily activity
goals, e.g. Daily Steps
(Tägliche Schritte) and
daily Active Minutes
(Aktive Minuten), (3)
Graphical overview
of daily activities:
Daily Steps (Tägliche
Schritte), Active Min-
utes (Aktive Minuten),
divided into three inten-
sities - low, moderate
and vigorous (niedrige,
mittlere, hohe Inten-
sität).

set their personal goals for the day within its limits. Screen (3) in Figure 3.4 gives a
graphical overview of the daily metrics and shows, besides the total number of steps
and active minutes, the active minutes sorted by their intensities.

Server. The server communicates with the client via two channels, Figure 3.2.
Private information about the study participants, such as gender or age, and the
confirmation of the consent form are sent via Secure Sockets Layer (SSL) and Basic
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Authentication to a reverse proxy which then sends the information to the database
via localhost. The information is stored in an anonymous form. The recorded activity
data, as well as daily steps and active minutes, are sent via SSH to the server and
stored in binary files with delta compression. The activity data can then be processed
and modeled by machine learning algorithms, e.g. Sample, Explore, Modify, Model,
and Assess (SEMMA).

Browser-based data analysis. The smartphone or tablet app and server software
described above can be complemented with a local analysis and annotation tool that
can be used by the study participants. This requires users to simply visit a website that
can connect to the watch through WebBluetooth Low Energy (BLE) and download
the watch’s data locally on the computer for further inspection or manually upload to
our study server, through users’ computers without the need to install software.

3.1.3. Performance Analysis

Since our software is distributed between apps that are available as a web-based
software suit or downloadable in Apple’s App Store and Android’s Play Store, the
deployment of our system is straightforward. We gave the Bangle.js smartwatches to
12 geographically distributed study participants and recorded compliance, comfort
rating, and reliability performance measures for our presented approach to illustrate
the feasibility of our approach and report our findings below.

We analyzed recordings from participants over a window of five days and decided to
let them choose how many hours they recorded by letting them start and stop the
smartwatch with the app at a time of their choice. This is important because of the
age group and the profession of the subject, which entails certain active and inactive,
as well as sleep and wake cycles [66].

During the feasibility study, we focused on detecting basic activity concepts such as
steps as well as the active minutes divided into three subclasses, low, moderate, and
vigorous intensity. The participants wore the smartwatch for an average of 12 hours
per day. In total, we collected approx. 29 MB (12*202KB*12 participants) of raw
compressed data. Basic activity classes are already recognized on the watch without
machine learning. However, since Bangle.js has Tensorflow-Lite already implemented
on the hardware, there is an opportunity to deploy a pre-trained neural network
or machine learning classifier on the watch in the future. A recent article [132]
demonstrates how to implement this for gesture recognition.

We can demonstrate through our experiment that the system we have designed
can be used for data recordings in-the-wild without the subject being biased by the
technology worn since the smartwatch is a commercially designed product and looks
and feels like a normal watch. Due to the 4 Mb memory limitation of Bangle.js, we
limit the inertial measurements to a 12.5 Hz sampling rate so that a full 24-hour day
can still be recorded in one cycle. We consider this sampling rate acceptable since
activity detection is still possible at such a low sampling rate. Furthermore, the signal
can be interpolated as part of the machine learning preprocessing or the sampling
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rate can be increased at the cost of shorter recordings (a 100 Hz recorded data set
corresponds to about 3 hours).

Occasionally, data uploads are hampered because of problems with a reliable Internet
connection and the Bluetooth connection between Bangle.js and the app in particular.
The communication flow as depicted in figure 3.3 has therefore been developed for
stability and has built-in recovery mechanisms that guarantee that individual files are
uploaded reliably. The current version is therefore characterized by high reliability
and accessibility, but also relatively long upload times (around 45 minutes on average
for a full day’s data set). However, this seems acceptable, as the download process
has been integrated with charging the smartphone and Bangle.js smartwatch in the
nightly ”charging cycle”.

Bangle.js 1 Wearing Comfort. In addition to the feasibility study of our
open-source architecture’s ability to accommodate data over multiple users and in
a distributed manner, we decided to investigate Bangle.js in terms of its comfort
of use. We consider this to be important since the success of a study is directly
dependent on the acceptance of a device. We use the Comfort Rating Scale (CRS),
a questionnaire-based method proposed by Knight et al. [109], as a well-known
and state-of-the-art method to evaluate the wearing comfort of wearable devices in
particular. The Bangle.js smartwatch was rated (as Figure 3.5 shows) overall as
comfortable to wear without restricting its users. However, users can feel the device
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on their wrist due to its larger size (5 x 5 x 1.7 cm case) and weight. The device is
heavier and more bulky than most commercial wrist-worn products, which may lead
to slightly negative wearing comfort and perhaps more difficult acceptance in larger
future studies. We consider this an acceptable trade-off, as only one person in the
study reported that the watch had a strong negative emotional impact on them and
that they would have liked to take it off.

3.1.4. Conclusions

The use of low-cost and open-source systems is essential for future machine learning
applications. Only through the development and use of such systems, it will be possible
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to generate the required amount of data to train a neural network to be used in a
real-world context in a generalized way. Many publications show new and exciting
methods in dealing with human activity data, however, these methods are always
evaluated on the same datasets mentioned before. This creates a bias in our scientific
domain, which can only be eliminated by publicly available, understandable, and
reusable implementations for data collection.

The already available open-source platforms and systems presented in chapter 2.2 are
either smartphone-based or smart-home-based solutions. Smartwatch-based solutions
are mostly prototypes, which are not meant to be distributed in scale and are not
open-source. Due to its open-source architecture, the use of the Bangle.js wristwatch
combines the advantages of a product while having an open architecture that is fully
documented. Our custom operating system as well as the client-server architecture can
serve as a starting point that can later be modified or further developed accordingly.
Due to the low purchase price, the device can be used in projects with a smaller
budget or need of a larger group of users. In contrast to a self-developed prototype,
where wearing comfort is often not the main interest, the Bangle.js was confirmed to
offer a high acceptance by study participants in our study using the comfort rating
scale (CRS). We argue that this aspect also contributes to the long-term success of
a scientific study and the scope, quality, continuity, and reliability of the produced
dataset. Commercial products tend to not open the algorithms used and do not give
researchers the same insights into recorded data as a fully open-source implementation
does. Therefore, we made the source code of the smartphone app as well as the
smartwatch operating system available for download and inspection under the MIT
license, to encourage other researchers to replicate and improve on our approach:
https://github.com/ahoelzemann/activateFlutter,
https://github.com/kristofvl/BangleApps/blob/master/apps/activate/app.js
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Section 3.2

Comparing Annotation Methods

[96] Hoelzemann, Alexander, and Van Laerhoven, Kristof.
A Matter of Annotation: An Empirical Study on In Situ and Self-Recall
Activity Annotations from Wearable Sensors
January 2024, Currently Under Review for Frontiers in Computer Science
Manuscript Number: 1379788
A preprint was submitted to the arxiv repository of the Cornell University
https://doi.org/10.48550/arXiv.2305.08752

Portions of the original publication have been removed or edited for inclusion in
this thesis. However, no changes were made that altered the results or conclusions
presented in the original work.
Contributions:

• The study was designed by both authors, but executed and analyzed by
me.

• Kristof Van Laerhoven guided this work and assisted in the methodologies.

Research into the detection of human activities from wearable sensors is a highly ac-
tive field, benefiting numerous applications, from ambulatory monitoring of healthcare
patients via fitness coaching to streamlining manual work processes. We present an
empirical study that compares 4 different commonly used annotation methods utilized
in user studies that focus on in-the-wild data. These methods can be grouped into
user-driven, in situ annotations - which are performed before or during the activity is
recorded - and recall methods - where participants annotate their data in hindsight
at the end of the day. Our study illustrates that different labeling methodologies
directly impact the annotations’ quality, as well as the capabilities of a deep learning
classifier trained with the data. We noticed that in situ methods produce less but more
precise labels than recall methods. Furthermore, we combined an activity diary with a
visualization tool that enables the participant to inspect and label their activity data.
Due to the introduction of such a tool were able to decrease missing annotations and
increase the annotation consistency, and therefore the F1-Score of the deep learning
model by up to 8% (ranging between 82.1 and 90.4 % F1-Score). Furthermore, we
discuss the advantages and disadvantages of the methods compared in our study, the
biases they could introduce, and the consequences of their usage on human activity
recognition studies as well as possible solutions.

3.2.1. Introduction

Sensor-based activity recognition is one of the research fields of Pervasive Computing
developed with enormous speed and success by industry and science and influencing
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medicine, sports, industry, and therefore the daily lives of many people. However,
current available smart devices are mostly capable of detecting periodic activities like
simple locomotions. In order to recognize more complex activities a multimodal sensor
input, such as [176], and more complex recognition models are needed. Many of the
published datasets are made in controlled laboratory environments. Such data does
not have the same characteristics and patterns as data recorded in-the-wild. Data
that belongs to similar classes but is recorded in an uncontrolled versus controlled
environment can differ significantly since it contains more contextual information
[140]. Furthermore, study participants tend to control their movements more while
being monitored [69]. The recording of long-term and real-world data is a tedious,
time-consuming, and therefore a non-trivial task. Researchers have various motivations
to record such datasets but the technical hurdles are still high and problems during
the annotation process occur regularly. With regards to Human Activity Recognition
(HAR), recording a long-term dataset always presents the researcher with the problem
of developing a methodology that, on one hand, allows precise labels and, on the other
hand, does not unnecessarily burden or disturb the study participants. Relying only
on self-recall methods, like writing an activity diary, e.g. [241], can result in imprecise
time indications that do not necessarily correspond to the actual time periods of an
activity. Such incorrectly or noisy labeled data [152] leads to a trained model that is
less capable of detecting activities reliably, due to unwanted temporal dependencies
learned by wrongly annotated patterns [33].

We can see an emerging spotlight on real-world and long-term activity recognition
and think that it will be one of the main research challenges that need to be put
more in focus to overcome current limitations and be capable of recognizing complex
day-to-day activities. Such datasets, rely heavily on self-recall methods or using
additional apps to track movements and set labels either automatically [9] or with
the manual selection of a label [56]. Due to these hurdles, many researchers prefer to
work with datasets from controlled over uncontrolled environments. As a consequence,
only a very limited number of in-the-wild datasets have been published until now.
Contribution: Our study focuses on the evaluation of 4 different annotation methods
for labeling data in-the-wild: 1 In situ (lat. on site or in position) with a button
on a smartwatch, 2 in situ with the app Strava 1 (an app that is available for iOS
and Android smartphones), 3 pure self-recall (writing an activity diary at the end
of the day), and 4 time-series assisted self-recall with the MAD-GUI [157], which
displays the sensor data visually and allows to annotate it interactively. Our study
was conducted with 11 participants, 10 males, and 1 female, over 2 weeks. Participants
wore a Bangle.js Version 12 smartwatch on their preferred hand, used Strava, and
completed self-recall annotations every evening. In the first week, the participants were
asked to write an activity diary at the end of the day without any helping material
and additionally using two user-initiated methods (in situ button and in situ app) to
manually set labels at the start and beginning of each activity. In the second week, the

1https://www.strava.com/
2https://www.espruino.com/banglejs
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participants were given an additional visualization of the sensor data with an adapted
version of the MAD-GUI annotation tool. With the help of this, participants then
were instructed to label their data in hindsight with the activity diary as a mnemonic
aid. Given labels from both weeks were compared to each other regarding the quality
through visual inspection and statistical analysis with regard to the consistency and
quantity of missing annotations across labeling methods. Furthermore, we used a
Shallow-DeepConv(LSTM) architecture, see Bock et al. [35] and Ordoñez et al. [159],
and trained models with a leave-one-day-out cross-validation method of 6 previously
selected subjects and each annotation method.
Impact: Annotating data, especially in real-world environments, is still very difficult
and tedious. Labeling such data is always a trade-off between accuracy and workload
for the study participants or annotators. We raise awareness among researchers
to put more effort into exploring new annotation methods to overcome this issue.
Our study shows that different labeling methodologies have a direct impact on the
quality of annotations. With the deep learning analysis, we prove that this impacts
the model capabilities directly. Therefore, we consider the evaluation of frequently
used annotation methods for real-world and long-term studies to be crucial to give
decision-makers of future studies a better base on which they can choose the annotation
methodology for their study in a targeted way.

3.2.2. Study Setup

Our study is conducted with 11 participants, from which 10 are male and 1 is female.
The participants are between 25 and 45 years old. Out of 11 participants, 6 are
researchers in the field of signal processing and are used to read and work with sensor
data. Participants were selected among acquaintances and colleagues. The study was
conducted over 2 weeks while participants wore an open-source smartwatch on their
wrist of choice. During the two-week study, the participants were instructed to use
4 different labeling methods in parallel, see Figure 3.6. In the first week they were
asked to use the 1 in situ button, 2 in situ app, and 3 pure self-recall methods. At
the beginning of the 2nd week, we expanded the number of annotation methods with
the 4 time-series recall. This annotation method combines the activity diary with a
graphical visualization of the participants’ daily data.

1 The Bangle.js smartwatch has 3 mechanical buttons on the right side of the case.
These buttons are programmed to record the number of consecutive button presses per
minute. The total number of button presses is stored with the given timestamp and
can therefore be used to mark the beginning and end of an activity in the time-series.

2 In addition, the participants were asked to track their activities with the smart-
phone app Strava. Strava is an activity tracker that is available for Android and iOS
and freely downloadable from the app stores. The user can choose from a variety
of predefined labels and start recording. Recording an activity starts a timer that
runs until the user stops it. The time as well as the Global Positioning System (GPS)
position of the user during the activity is tracked and saved locally.
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Figure 3.6 The study participants collected data for 14 days in total and annotated the
data with 4 different methods: Labeling 1 in situ with a mechanical button, 2 in situ
with an app, 3 by writing a pure self-recall diary and 4 writing a self-recall diary assisted
by visualization of their time-series data.

3 The pure self-recall methods consist of writing an activity diary on a daily basis
at the end of the day. The participants were explicitly told that they should only write
down the activities that they still remember 2 hours after the measurement stopped.

4 The time-series recall method can be seen as a combination of an activity diary
and a graphical representation of the raw sensor data. For visualization and labeling
purposes, we provided the participants with an adapted version of the MAD-GUI.
The Graphical User Interface (GUI) was published by Ollenschläger et al. [157] in
2022 and is a generic open-source Python package. Therefore, it can be integrated
into one’s project. Our adaptions to the package are available for download from a
GitHub repository3. It contains changes to the data loader, the definition of available
labels, and color settings for displaying the 3D raw data.
Annotation Guidelines: The participants were briefed to note daily returning
activities (sports or activities of daily living) that are performed longer than 10
minutes roughly 2 hours after the recording stops. The name of the activity was
chosen individually by the participant. Participants decided individually at what
time of the day the recording would start on the next day. Each of these annotation
methods represents a layer of annotation that is used for the visual, statistical, and
deep learning evaluation. Figure 3.6 illustrates the overall concept.

3https://github.com/ahoelzemann/mad-gui-adaptions/

41

https://github.com/ahoelzemann/mad-gui-adaptions/


3.2 Comparing Annotation Methods User Studies for HAR

3.2.3. Statistical Analysis

The labels were statistically analyzed based on their consistency using the Cohen κ
score as well as the number of missing annotations across all methods. The Cohen κ
score describes the agreement between two annotation methods, which is defined as
follows κ = (p0− pe)/(1− pe) (see [16] and [172]). Where p0 is the observed agreement
ratio and pe is the expected agreement if both annotators assign labels randomly.
The score shows how uniform two different annotators labeled the same data. For
calculation purposes, an implementation provided by Scikit-Learn [183], was used.
Furthermore, missing annotations across methods are measured as the percentage of
missing or incomplete annotations. The annotations of all methods were first compared
with each other and matched based on the given time indications. Annotations that
could not be assigned or were missing were marked accordingly and are the base for
calculating this indicator, Figure 3.9 visualizes this. We used a similar representation
as [40] to visualize the matches among labeling methods. In this study, the authors
compared genome annotations labeled by different annotators with regard to their
error scores between different annotators.

3.2.4. Effects on Deep Learning Performance

The deep learning analyses are performed using the DeepConvLSTM architecture [159]
which is based on a Keras implementation of [95]. We did not perform hyperparameter
tuning because it would involve a considerable amount of additional workload, since
we trained 64 models independently during the evaluation. We therefore decided to
opt out of the architecture with regards to efficiency rather than optimal classification
results. Additionally, we don’t expect that the actual experiment - evaluating different
annotation methods - would benefit from hyperparameter tuning or gain any significant
information and insights. Instead, we use the default hyperparameters provided by
the authors. These are depicted in the Figure 3.7. Furthermore, we reduce the number
of LSTM layers to one and instead increase the number of hidden units of the only
LSTM layer to 512. According to [35], this modification decreases the runtime up to
48 % compared to a two-layered DeepConvLSTM while significantly increasing the
overall classification performance on 4/5 publicly available datasets: [174], [198], [176],
[181], [195]. LSTM-Layers in general are important if the dataset contains sporadic
activities [33]. However, our dataset does not and our evaluation aims to identify long
periods of periodic activities, like walking or running. For this reason, we can conclude
that additional LSTM layers are not needed. The implementation of [95] incorporates
BatchNormalization layers after each Convolutional layer, as well as MaxPooling
for the transition between the final convolutional block and the LSTM layer, and
a Dropout layer before classification. Each Convolutional layer employs a Rectified
Linear Unit (ReLU) activation function. The inclusion of the BatchNormalization
layers serves to accelerate training and mitigate the detrimental effects of internal
covariate shift, as discussed further in [102].

Before training the neural network we apply two preprocessing steps to the data.
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Figure 3.7 The architecture consists of an Input Layer with the kernel-size 10 (window size)
x 10 (filter length) x 3 (channels). The data is passed into 3 concatenated convolutional
blocks, followed by a MaxPooling (kernel 2x1) where 50% of the data is filtered. The
convolutional block consists of a convolutional layer with a variable kernel size of 5x1x(n*64)
following a Rectified Linear Unit (ReLU) activation function and a BatchNorm-Layer. We
decided to use a single LSTM-Layer with the size of 512 units, as mentioned by [35], which
is followed by a Dropout-Layer that filters 30% of randomly selected samples of the window.

These are an upsampling to a constant 25 Hz due to small deviations in the device
sampling rate as well as a rescaling of the accelerometer data between -1 and 1.
Leave-One-Day-Out Cross-Validation: Figure 3.8 shows the train- and test-
setting for the deep learning model. For every study participant and every week, a
personalized model has been trained and tested. We adapted the leave-one-subject-out
strategy to fit our needs. Instead of using one participant for testing, we used one
day of the week for testing and trained on every other day. The dataset consists of a
major void -class and a small number of samples per activity class and participant.
To counteract an above-average large void -class, we trained our model with balanced
class weights.

Not limiting the participants in their choice of daily performed activities as well
as well as not specifying predefined activity labels resulted in very unique sets of
activities per study participant. Due to these circumstances, we cannot expect that
it is possible to train a model that is capable of generalizing across participants and
days. Every participant comes with their specific patterns to perform an activity.
Furthermore, due to the in-the-wild recording setup, the intra-class differences [45] for
comparatively simple activities, walking or running can be significant. The impact of
different labeling methods is therefore expected to be more present, and hence more
visible, in a personalized than it would in a generalized model.
Postprocessing & Classification: We classified the data based on a sliding window
with a length of 2 seconds (50 samples). However, we are looking for longer periods of
reoccurring activities and decided therefore to apply a jumping window of 5 minutes
that applies a majority vote to the given time period. The activity with the most
instances in those 5 minutes is set for the whole window.
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Figure 3.8 Leave-One-Day-Out Cross Validation. The models are personally trained for
every participant and are not intended to generalize across all study participants. Instead, a
generalization across all days of one week is desired.

3.2.5. Results

Our participants were asked to annotate activities carried out in their daily lives
performed for more than 10 min. We didn’t limit the participants to a predefined
set of classes. They decided independently which labels they would like to set for
certain periods. After normalizing the labels, e.g. changing “going for a walk” to
“walking” etc., the set of labels as given by the participants contains the following
23 (22 + void) different labels: laying, sitting, walking, running, cycling, bus driving,
car driving, vacuum cleaning, laundry, cooking, eating, shopping, showering, yoga,
sport, playing games, desk work, guitar playing, gardening, table tennis, badminton,
horse riding. Every sample that wasn’t specifically labeled is classified as void.

Missing Annotations and Consistency Across Methods. Missing Annotations
and the consistency of labels set over the course of one week varied greatly depending
on the study participant. However, tendencies with regard to specific methods are
observable.

Method 1 , pressing the situ button on the smartwatch’s case, was not consistently
used by every participant. Furthermore, this method carries the risk that either setting
one of the two markers (start or end) is forgotten. An annotation where one marker
is missing becomes therefore obsolete. The app-assisted annotation method 2 , for
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Figure 3.9 Missing annotations across all study participants and both weeks. The Y-axis
shows the total number of annotations of one specific participant for the corresponding week.
The color codes are as follows: Annotation is missing, Annotation is partially missing
(start or stop time), Annotation is complete. The figure is inspired by [40], Figure 1.

45



3.2 Comparing Annotation Methods User Studies for HAR

which we used the app Strava, is well accepted among the participants who agreed
with using third-party software. However, 4 participants, namely 74e4, 90a4, d8f2 and
f30d did not use the app continuously or refused to use it completely due to concerns
regarding their private data. Strava is a commercial app, that is freely available for
download on the app stores, but it collects certain users’ metadata. To label a time
period with Strava, the participant needs to (1) take the smartphone, (2) open the
app, (3) start a timer, set a label, and (4) end the timer. This procedure contains
significantly more steps than other methods. Therefore, the average value of missing
annotations results in 46.40% (week 1) and 56.79% (week 2). One participant found
the annotation process in general very tedious and therefore dropped out of the study.
These data have been excluded from the dataset and the evaluation. Method 3 pure
self-recall, writing an activity diary, got well accepted by every participant. As Figure
3.9 shows and the results in Table 3.1 proof, it is overall the most complete annotation
method with an average amount of missing annotations of 4.30 % for the first and
8.14 % for the second week. By introducing the MAD-GUI, participants were able to

Table 3.1 Missing annotations across all labeling methods (in %) of both weeks. The
columns contain the subject-ID of all participants. The last column shows the average
percentage of missing annotations across every labeling method, for all participants.

Week 1

Subject 2b88 36fd 74e4 90a4 834b 4531 a506 d8f2 eed7 f30d fc25 Avg.

1 in situ button 40 70.59 79.41 52.18 36.37 50 26.32 96.15 45.46 0 26.81 40.95

2 in situ app 13.30 5.89 97.06 100 5.00 0 36.84 92.30 22.73 100 4.35 43.40

3 pure self-recall 6.67 0 0 0 4.55 0 31.58 0 4.55 0 0 4.30

Week 2

1 in situ button 23.08 73.33 92.00 82.14 8.33 76.47 0 95.33 61.11 0 27.78 49.05

2 in situ app 61.54 6.67 100 89.29 8.33 35.30 100 79.16 33.33 100 11.11 56.79

3 pure self-recall 0 0 8.57 17.88 4.17 35.30 0 12.50 5.56 0 5.56 8.14

4 time-series recall 0 0 22.88 39.29 0 0 0 16.67 0 0 5.56 7.67

inspect their daily data, get insights into what patterns of specific classes look like,
and label them interactively. With an average amount of missing annotations of 7.67%,
this method became the most complete during the second study week. Table 3.2 shows
the resulting Cohen κ scores. Due to the constraint that only one labeling method can
be compared to a second one and since, according to Table 3.1, the most consistent
annotation methods are 3 pure self-recall and 4 time-series recall, we used these
methods as our baseline and compared them with every other method used in the
study. The second column indicates the comparison direction. The abbreviations used
in this column are defined as follows: ( 3 C/W 1 ) pure self-recall compared with in
situ button, ( 3 C/W 2 ) pure self-recall compared with in situ app and ( 3 C/W 4 )
pure self-recall compared with time-series recall. The direction ( 4 C/W 3 ) is not
explicitly included since Cohens κ is bidirectional and both directions result in the
same score. The score indicates how similar two annotators, or in our study labeling
methods, are to each other. The resulting score is a decimal value between -1.0 and
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Table 3.2 Average similarity between annotation methods according to the Cohan κ score
for both study weeks. The columns are ordered subject-wise. The last column shows the
average across all participants for one study week. The Direction column indicates in which
the direction the Cohan κ score is calculated and needs to be interpreted as follows: 1 in
situ button, 2 in situ app, 3 pure self-recall, 4 time-series recall, (C/W) compared with.

Week, Day Direction 2b88 36fd 4531 74e4 834b 90a4 a506 d8f2 eed7 f30d fc25 Avg.

1, 1
3 C/W 1
3 C/W 2

0.32
0.69

0.0
0.85

0.0
0.69

0.0
0.0

0.69
0.76

0.35
0.0

0.79
0.0

0.22
0.0

0.0
0.90

0.23
0.0

0.58
0.49

1, 2
3 C/W 1
3 C/W 2

0.64
0.64

0.69
0.68

0.0
0.84

0.09
0.05

0.85
0.86

0.05
0.0

0.51
0.50

0.0
0.0

0.55
0.93

0.47
0.0

0.74
0.73

1, 3
3 C/W 1
3 C/W 2

0.0
0.86

0.62
0.0

-0.03
-0.03

0.0
0.0

0.39
0.38

0.56
0.0

0.53
0.44

0.0
0.0

0.05
0.28

0.53
0.0

0.51
0.54

1, 4
3 C/W 1
3 C/W 2

0.38
0.99

0.30
0.69

0.91
0.90

0.08
0.0

0.63
0.74

0.03
0.0

0.80
0.57

0.0
0.69

0.66
0.80

0.80
0.0

0.0
0.0

1, 5
3 C/W 1
3 C/W 2

0.33
0.32

0.33
0.83

0.0
0.0

0.04
0.0

0.39
0.37

0.32
0.0

0.93
0.96

0.0
0.0

-0.03
-0.31

0.93
0.0

0.87
0.89

1, 6
3 C/W 1
3 C/W 2

0.0
-0.14

0.0
0.96

0.75
0.71

0.07
0.0

0.0
0.15

0.34
0.0

0.67
-0.07

0.0
0.41

0.42
0.52

0.99
0.0

0.84
0.84

1, 7
3 C/W 1
3 C/W 2

0.30
0.78

0.0
0.15

0.56
0.69

0.04
0.0

0.0
0.10

0.525
0.0

0.99
0.43

0.0
0.0

0.29
0.42

0.90
0.0

0.49
0.77

2, 1

3 C/W 1
3 C/W 2
3 C/W 4
4 C/W 1
4 C/W 2

0.30
0.45
0.85
0.39
0.53

0.56
0.77
0.76
0.43
0.61

0.36
0.37
0.56
0.48
0.45

0.10
0.0

0.10
0.43
0.0

0.51
0.57
0.48
0.74
0.70

0.0
-0.02
0.11
0.0

0.18

0.88
0.0

0.90
0.98
0.0

0.0
0.63
0.78
0.0

0.71

0.41
0.51
0.74
0.58
0.57

0.89
0.0

0.86
0.82
0.0

0.85
0.81
0.46
0.58
0.55

2, 2

3 C/W 1
3 C/W 2
3 C/W 4
4 C/W 1
4 C/W 2

0.82
0.84

-0.02
-0.02
-0.02

0.21
0.75
0.82
0.11
0.83

0.91
0.93
0.62
0.66
0.63

0.05
0.0

0.09
0.38
0.0

0.47
0.90
0.84
0.47
0.92

0.03
0.0

0.09
0.77
0.0

0.70
0.0

0.70
1.0
0.0

0.0
0.87
0.83
0.0

0.96

0.29
0.59
0.56
0.43
0.71

0.74
0.0

0.85
0.70
0.0

0.36
0.81
0.46
0.45
0.46

2, 3

3 C/W 1
3 C/W 2
3 C/W 4
4 C/W 1
4 C/W 2

0.70
0.66
0.68
0.91
0.74

0.44
0.44
0.54
0.53
0.53

0.0
0.98
0.62
0.0

0.82

0.0
0.0

0.91
0.0
0.0

0.62
0.72
0.49
0.77
0.74

0.0
0.0

-0.18
0.0
0.0

0.90
0.0

0.90
1.0
0.0

0.0
0.47
0.86
0.0

0.60

0.28
0.36
0.39
0.88
0.79

0.99
0.0

0.98
0.96
0.0

0.68
0.82
0.58
0.41
0.65

2, 4

3 C/W 1
3 C/W 2
3 C/W 4
4 C/W 1
4 C/W 2

0.45
0.14
0.17
0.71
0.82

0.0
0.85
0.86
0.0

0.51

0.83
0.83
0.84
0.86
0.86

0.0
0.0

0.90
0.0
0.0

-0.02
-0.02
-0.02
0.80
0.80

0.05
0.0
0.0

0.47
0.0

0.64
0.0

0.64
1.0
0.0

0.0
0.0

0.84
0.0
0.0

0.23
0.26
0.38
0.68
0.50

0.67
0.0

0.86
0.66
0.0

0.78
0.87
0.92
0.76
0.85

2, 5

3 C/W 1
3 C/W 2
3 C/W 4
4 C/W 1
4 C/W 2

0.59
0.0

0.48
0.5
0.0

0.0
0.41
0.47
0.0

0.34

0.0
0.77
0.76
0.0

0.89

0.0
0.0

0.16
0.0
0.0

0.28
0.28
0.26
0.82
0.83

0.09
0.01
0.09
0.94
0.60

0.60
0.0

0.59
0.99
0.0

0.0
0.54
0.82
0.0

0.49

0.0
0.54
0.40
0.0

0.70

0.73
0.0

0.43
0.38
0.0

0.95
0.92
0.47
0.46
0.44

2, 6

3 C/W 1
3 C/W 2
3 C/W 4
4 C/W 1
4 C/W 2

0.48
0.0

0.47
0.98
0.0

0.0
0.85
0.86
0.0

0.88

0.90
0.96
0.92
0.95
0.89

0.0
0.0

0.77
0.0
0.0

0.39
0.39
0.30
0.47
0.62

0.0
0.02
0.0
0.0

0.69

0.73
0.0

0.72
0.99
0.0

0.0
0.55
0.83
0.0

0.43

0.0
0.83
0.86
0.0

0.95

0.20
0.0

0.74
0.46
0.0

0.86
0.87
0.86
0.83
0.82

2, 7

3 C/W 1
3 C/W 2
3 C/W 4
4 C/W 1
4 C/W 2

0.0
0.0

0.96
0.0
0.0

0.0
0.41
0.47
0.0

0.80

0.0
0.76
0.72
0.0

0.93

0.0
0.0
0.0
0.0
0.0

0.30
0.30
0.24
0.79
0.78

0.0
0.0

-0.01
0.0
0.0

0.73
0.0

0.42
0.67
0.0

0.40
0.0

0.79
0.46
0.0

0.43
0.14
0.33
0.71
0.46

0.91
0.0

0.92
0.94
0.0

0.86
0.86
0.84
0.78
0.78

Avg. Week 2

3 C/W 1
3 C/W 2
3 C/W 4
4 C/W 1
4 C/W 2

0.48
0.30
0.51
0.50
0.30

0.17
0.64
0.68
0.15
0.64

0.43
0.80
0.72
0.42
0.78

0.02
0.0

0.12
0.42
0.0

0.36
0.45
0.37
0.69
0.78

0.02
0.0

0.01
0.31
0.21

0.74
0.0

0.70
0.94
0.0

0.0
0.44
0.82
0.07
0.46

0.23
0.46
0.33
0.47
0.67

0.73
0.0

0.81
0.70
0.0

0.76
0.85
0.66
0.61
0.65

0.39
0.36
0.52
0.48
0.41
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1.0, where -1.0 means that the two annotators differ at most and 1.0 means complete
similarity. 0.0 denotes that the target method was not used on that specific day.

Comparing the 3 pure self-recall method with the 1 in situ button and 2 in
situ app method we can see that the final results for weeks 1 and 2 are proximate
to one another. 3 Pure self-recall compared with the 4 time-series recall results
in the highest similarity of 0.52. The comparison between the 4 time-series recall
and the 1 in situ button as well as the 2 in situ app assisted annotations result in
higher similarity than the prior comparison of 3 pure self-recall vs. both methods
1 and 2 . This means that subjects rather agree to the timestamps of the in situ

methods than to a self-written activity diary as soon as they can visually inspect the
accelerometer data.

Visual Time-Series Analysis. Figure 3.10 shows exemplary the time-series of
the sixth day of every participant’s second week. The four bars that are visible above
the accelerometer data are the labels set by the participants for every layer. The order
is from bottom to top: 1 in situ button, 2 in situ app. 3 pure self-recall, and 4
time-series recall. Examples of labels that differ with regard to the applied labeling
method are marked with red boxes. The x-axis of every subplot represents roughly
8-9 hours of data. Most of the day was not labeled and is therefore categorized as
void. However, such long periods often contain shorter periods of other activities, like
walking. This makes it difficult to define a distinguishable void -class, which results in

Figure 3.10 Visualization of participants’ accelerometer data on the sixth day in the second
week of the study, together with annotations set by them. The four layers in the upper part
of every participant’s daily data represent the four annotation methods. The order is from
bottom to top: 1 in situ button, 2 in situ app, 3 pure self-recall and 4 time-series recall.
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false positive classifications of non-void samples. Figure 3.10 visually shows that each
participant labels his or her data very subjectively. The long green-labeled periods of
participant 74e4 represent the class desk work. The only other participant that used
this label is 90a4. Since each of the study participants works in an office environment
and thus conclusively works at a desk, we can assume that the same class is classified as
void for all other study participants. This intra-class and inter-participant discrepancy
becomes a problem whenever a model is trained that is supposed to generalize across
individuals. To reduce these side effects and focus on the experiment itself, we decided
to evaluate personalized models that take weekly data from participants into account.

The in situ button annotation is empty for 5 participants: eed7, 36fd, 74e4, 90a4
and d8f2. Labels are only partially set or missing entirely for this annotation method
and we therefore assume that participants tend to forget to press the button on the
smartwatch. Both tables, 3.1 and 3.2, support this assumption, as this labeling method
shows a high percentage of missing annotations as well as a low Cohen κ score of 0.36%
(week 1) and 0.39% (week 2). The pure self-recall method 3 , visible on the 2nd upper
layer, is often misaligned compared to the in situ methods as well as the time-series
recall method 4 . Participants tend to round up or down the start- and stop-time in
steps of 5 or 10 minutes. For example, the annotations in Figure 3.10 given by the
subjects 2b88, 834b or f30d, show such incorrectly annotated data. The pink color
represents the class walking. With a closer look at the corresponding time-series data,
one can see that the in situ button annotation (bottom layer) and time-series recall
annotation (top layer) belongs to the typical periodic pattern of walking than the
period labeled by pure self-recall. A consistent reliable performance in all labeling
methods can only be observed at the participants 4531 and fc25. Other participants
like eed7, 36fd, 74e4 or a506 are very precise in their annotations across methods, but
are missing at least one layer of labels. The complete collection of visualizations is
available in our dataset repository4

Effects on Classification. The results of our deep learning evaluation5 suggest
that the annotation method chosen can have a crucial impact on the classification
ability of a trained deep learning model. Depending on the chosen methodology, the
average F1-Score results differ by up to 8%, as depicted in Figure 3.11. In the first
week, the in situ methodologies, button 1 and app 2 , generally perform better
than the pure self-recall diary 3 . Study participants mostly correctly estimated the
duration of an activity, but tended to round up or down the start and end times. The
in situ methods are up to 8% better than the pure self-recall, although the amount
of annotated data available, due to missing annotations, is significantly lower than
for other methods. Although, we work with a dataset recorded in-the-wild, the deep
learning results generally show a high F1-Score. This is untypical for such datasets
but can be explained by the fact that the majority of the daily data are assigned

4https://doi.org/10.5281/zenodo.7654684
5Detailed results for every participant included in our deep learning evaluation can be accessed

online on the Weights & Biases platform: https://tinyurl.com/4vxvfaed.
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In-Situ Button Pure Self-Recall App-Assisted Annotation
Time-Series Assisted Annotation

Figure 3.11 The overall mean F1-Scores for the Leave-One-Day-Out Cross Validation
across all participants. In the first week, the participants used methods 1 - 3 . In the
second week, we introduced method 4 .

to the void class. This leaves proportionally only a few samples that are crucial for
determining the classification performance.

Even though the number of available annotations that have been labeled by the
study participants using the time-series recall method 4 is significantly higher with
92.33%, the average F1-Score is 1.1% lower (89.00%) than the results reached with the
App Assisted method (90.1%). To understand this result it is crucial to look at Table
3.3 in detail and take meta-information about the participants into account. The
participants mostly used their diary as a mnemonic aid for the graphical annotation
method and tried to identify the corresponding periods in the acceleration data. The
results of subjects 2b88, a506 and eed7 show that the performance of the classifier
could be increased with graphical assistance. However, the F1-Score of 2b88 is 0.01%
below the F1-Score of the in situ app assisted annotation method 2 . These subjects
have in common that they are already trained in interpreting acceleration data due
to their prior knowledge and thus assign samples to specific classes more precisely.
Subjects fc25, 4531, and 834b, on the other hand, do not have prior knowledge. Apart
from subject 834b, the deep learning results show that presenting a visualization to
an untrained participant rather harmed than helped the classifier. If one looks at the
visualizations of day 1 & 6, week 2 of fc25, see Figure 3.10 and 3.12, the labels set
by the subject with the help of the graphical interface, it is comprehensible that this
study participant tended to be rather confused by the graphical representation and
therefore labeled the data incorrectly.
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Table 3.3 In detail
representation of
the final F1-Scores
for every annotation
methodology and
a week per study
participant. The
average F1-Scores are
graphically visualized
in Figure 3.11.

Week 1

Subject 2b88 a506 eed7 fc25 4531 834b Average

1 in situ button 0,91 0,92 0,89 0,89 0,91 0,91 90,4

2 in situ app 0,92 0,60 0,91 0,84 0,93 0,92 85,5

3 pure self-recall 0,78 0,76 0,83 0,86 0,86 0,89 83,0

Week 2

1 in situ button 0,88 0,92 0,90 0,92 0,86 0,72 86,8

2 in situ app 0,91 na 0,92 0,94 0,85 0,88 90,1

3 pure self-recall 0,81 0,86 0,82 0,94 0,83 0,67 82,1

4 time-series recall 0,90 0,91 0,95 0,86 0,86 0,86 89,0

Figure 3.12 Visualization of the 1st day in week 2 of subject fc25. Differences can be seen
in the upper annotation layer ( 4 time-series recall), exhibiting larger differences regarding
the annotated start- and stop times compared to other methods.

3.2.6. Discussion

In our 2-week long-term study, we recorded the acceleration data of 11 participants
using a smartwatch and analyzed it visually, statistically, and using deep learning.
The findings of the visual and statistical analysis were confirmed by the deep learning
result. They show that the underlying annotation procedure is crucial for the quality
of the annotations and the success of the deep learning model.

The in situ button method 1 offers accuracy but brings the risk that the setting of a
label is forgotten entirely or incompletely set. However, this method can be combined
with additional on-device feedback or a smartphone app, so that greater accuracy
and consistency of the annotation can be achieved. This involves a considerable
implementation effort, which many scientists avoid because such projects, although
of their significant value to the community, attract little attention in the scientific
world. The use of existing, but often commercial, software and hardware is all too
often accompanied by a loss of privacy. As our research has shown in passing, many
users therefore shy away from using such products.

Through our investigation of the consistency of annotations between methodologies,
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we were able to show that participants in our study seem to prefer to write an activity
diary (pure self-recall method 3 ). This finding corresponds to what Vaizmann et al.
[213] already points out. However, this method has the disadvantage that it can be
imprecise, which is evident in the visualization of the data and annotations. Similarly,
the activity diary methodology performed the least reliably among all methodologies,
which has been confirmed by the deep learning model. Since the deep learning results
using the in situ app annotations 3 are almost similar to the results given by the
time-series recall 4 , even though the number of labeled samples is lower, it raises the
question if a smaller set of high-quality annotations is more valuable for a classifier
than a larger set of annotated data that comes with imprecise labels. This could
mean that in future works we can reduce the amount of necessary training samples
drastically if a certain annotation quality can be assured. However, this needs to be
confirmed by further investigations.

Some participants reported that they found the support provided by the visual
representation of the data helpful. The resulting Cohen κ scores strengthen this
impression since the F1-Scores are much higher when we compare the time-series
recall with both in situ methods vs. the pure self-recall. This indicates that as soon
as the participants received a visual inspection tool, they tended to annotate data
at similar time periods as through the in situ methods since they can easily identify
periods of activity that roughly correspond to the execution time they remember. Our
participants reported similar preferences, which led us to the conclusion that a digital
diary that includes data visualization could combine the benefits of both annotation
methods.

However, the study also showed that participants can find it difficult to interpret
the acceleration data correctly and thus set inaccurate annotations. As our trained
models show, this also has a strong influence on the classification result. If such a tool
is to be made available to study participants, it must be ensured that they have the
necessary knowledge and tools to be able to interpret these data. Thus, to ensure the
success of future long-term and real-world activity recognition projects, prior training
of the study participants regarding data interpretation is of crucial importance if a
data visualization is supposed to be used.

Apart from trying to solve annotation difficulties during the annotation phase
itself, we can also partially counter wrong or noisy classified data by using machine
learning techniques like Bootstrapping, see Miu et al. [143] or using a loss function that
specifically tries to counteract this problem, such as [152, 130]. By using Bootstrapping,
the machine or deep learning classifier is initially trained by a small subset of high-
confident labels and further improved by using additional data. However, this technique
comes with the trade-off that whenever wrong-labeled data is introduced as training
data, the error will get propagated into the model. An effect that sooner or later occurs
as long as the annotation methodologies themselves are not further researched. Other
machine learning techniques that can work with noisy labels, see [191], are already
successfully tested for Computer Vision problems and can, in theory, be adopted for
Human Activity Recognition. However, earlier research has shown that not every
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technique that is applicable in other fields is also applicable to sensor-based data [95].

Discussing different Annotation Biases. We need to take into account that
several biases could have been introduced due to the chosen annotation guidelines
and tools. For example, the usage of in situ annotation methods during the day
can have a positive effect on the self-recall capabilities of a participant at the end of
the day. However, the comparison of consistencies across methods does not confirm
that this effect indeed occurred. Every study participant showed an almost complete
overall profile of self-recall annotations, even though the person has not used or has
incomplete in-situ annotations, see Figure 3.9. However, deeper investigations are
needed to be able to understand such effects better.

Yordanova et al. [234] lists the following 3 biases for sensor-based human activity
data: Self-Recall bias [214], Behavior bias [69] and the Self-Annotation bias [234]. We
showed that indeed a time-deviation bias (which can be seen as a self-recall bias) has
been introduced to annotations created with the pure self-recall method 3 , and that
such a bias affects the classifier negatively. However, visualizing the sensor data can
counter this effect because it was easier for participants to detect active phases in
hindsight.

A behavior bias can be neglected, because the participants were not monitored by a
person or video camera during the day and the minimalistic setup of one wrist-worn
smartwatch does not influence one’s behavior since the wearing comfort of such a
device is generally perceived as positive [161]. A self-annotation bias, a bias that
occurs if the annotator labels their data in an isolated environment and cannot refer to
an expert to verify an annotation, did occur as well. With the deep learning analysis,
we were able to show that the classifier was less negatively impacted by this bias than
by time-deviation bias.

3.2.7. Conclusions

We argue that the annotation methodologies for benchmark datasets in Human
Activity Recognition do not yet capture the attention it should. Data annotation
is a laborious and time-consuming task that often cannot be performed accurately
and conscientiously without the right tools. However, there is a very limited number
of tools that can be used for this purpose and often they do not pass the prototype
status.

Only a few scientific publications, such as [172], focus on annotations and their
quality. However, the use of properly annotated data drastically affects the final
capacities of the trained machine or deep learning model. Therefore, we consider our
study to be important for the HAR community, as it analyzes this topic in greater
depth and thus provides important insights that go beyond the current state of science.
Table 3.4 summarizes the advantages and disadvantages of every method. To guarantee
high-quality annotations in future studies, especially in an uncontrolled real-world
environment where a video recording is not available for the subsequent acquisition of
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Table 3.4 Comparison of advantages and disadvantages of all annotation methods used in
this study.

Methodology Advantages Disadvantages

1 in situ button
- Easy to implement and use
- Can be improved with feedback mechanisms

- Participants tend to forget pressing a button
- Many incomplete annotations that become

unusable for the classifier

2 in situ app

- Tracking apps are already widely used and accepted,
therefore low acceptance threshold

- Can be improved with feedback mechanisms or
additional smartphone functionalities

- List of possible annotations can be expanded with
minimum effort

- Participants tend to set very precise annotations.

- Data and privacy concerns if a commercial app is used.
- Participants often forgot to set an annotation,

especially when they were unfamiliar with tracking apps.
- Implementation workload may be very high

3 pure self-recall

- Easy to use even without technical knowledge
(a handwritten diary)

- Most accepted method in our experiment
- Annotations are very consistent

- Can be very imprecise
- Only suitable for coarse activity labels and activities

that were performed for long periods of time,
like walking or running

4 time-series
recall

- Visualization of data helps participants to set
annotations more accurate than using the pure
self-recall method 3

- Available tools are often in the state of a prototype
and need additional developments and adjustments
and are therefore not impromptu usable.

- Participants need to be trained to be able to interpret
sensor data.

ground truth, further research in this field is necessary. The methodologies used for
annotating activity data need to be challenged and further developed.

The combination of a (handwritten) diary with a correction aided by a data vi-
sualization in hindsight shows the best results in terms of consistency and missing
annotations and provides accurate start and end times. However, this combination
results in additional work for the study participants and therefore, remains a trade-off
between additional workload and annotation quality.

Lesson Learned. During this study, we gained insights about the effects of different
annotation methods on the reliability and consistency of annotations and finally on
the classifier itself, but also about training deep learning models on data recorded
in-the-wild. In this chapter, we would like to share these insights to help other
researchers perform their experiments more successfully. With regards to Table 3.4, we
are able to narrow down specific study setups that either benefit more from self-recall
or in situ annotation methods.

(a) Due to the good acceptance and the low workload for study participants we
can recommend a self-recall method for studies where label precision is not the
highest priority and rough estimations of activities are sufficient.

(b) According to our study, we can increase the label precision of the self-recall
method with additional software that visualizes the raw data, e.g. [157]. We
recommend considering the implementation of such a module and providing
this software to participants together with an introduction on how to interpret
sensor data. According to [213] the self-recall method can also be effectively
improved by introducing server guesses of activities or visually organizing the
day chronologically.

(c) In situ annotations result generally in more precise labels. However, the label
process is more labor intensive than a self-recall method, since it can take a lot
of time and often includes many steps to set the label. We argue, that smaller
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studies with participants who agree with performing such laborious work can
benefit from this method. Such a system needs to be implemented carefully and
with a holistic concept in order to not be seen as a burden by the participants
[233].

(d) Annotating data with commercial apps, like Strava, is negligible due to data
and privacy concerns.

(e) In situ annotation can have the same benefits as an app solution. However, only
if researchers have access to the programming interface of the recording device
and can implement additional features that help participants not forget to set a
label.

As part of our annotation guidelines, we allowed our study participants to name their
activities as they wished. Therefore, we were forced to simplify certain activities. To
be able to create a real-world dataset that contains complex classes or even classes
that consist of several subclasses, more elaborated annotation methods and tools must
be developed. We believe that with the currently available resources, the hurdle lies
very high for such datasets to be annotated accurately.

Our study includes people who cycle to work in their daily work routine and others
who commute by public transport or work in a home office environment. Thus, each
study participant has his or her set of daily repetitive activities. Due to the nature
of our dataset as one recorded in a real-world and long-term scenario, the number of
labeled samples is rather small, and given labels vary participant-dependent. This mix
of factors creates a bias in the dataset and we concluded that a cross-participant train-
/test-strategy is not appropriate for our study design and would not give meaningful
insights, since every study participant has their own set of unique activities which are
too different and hardly generalizable. Therefore, for certain studies, the commonly
known and accepted Leave-One-Subject-Out Cross-Validation is not suitable.
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Section 3.3

Multi-Sensor Synchronization

[91] Hoelzemann, Alexander, et al.
Using an in-ear wearable to annotate activity data across multiple inertial
sensors
Feb. 2020, EarComp’19: Proceedings of the 1st International Workshop on
Earable Computing
https://doi.org/10.1145/3345615.3361136

Portions of the original publication have been removed or edited for inclusion in
this thesis. However, no changes were made that altered the results or conclusions
presented in the original work.
Contributions:

• Kristof Van Laerhoven and I designed the study.
• I implemented and executed the experiments.
• Henry Odoemelem developed the eSense recording system.

Wearable activity recognition research needs benchmark data, which rely heavily on
synchronizing and annotating the inertial sensor data, to validate the activity classifiers.
Such validation studies become challenging when recording outside the lab, over longer
periods. This section presents a method that uses an inconspicuous, ear-worn device
that allows the wearer to annotate his or her activities as the recording takes place.
Since the ear-worn device has integrated inertial sensors, we use cross-correlation
overall wearable inertial signals to propagate the annotation’s overall sensor streams.
In a feasibility study with 7 participants performing 6 different physical activities,
we show that our algorithm can synchronize signals between sensors worn on the
body using cross-correlation, typically within a second. A comfort rating scale study
has shown that attachment is critical. Button presses can thus define markers in
synchronized activity data, resulting in a fast, comfortable, and reliable annotation
method.

3.3.1. Introduction

As wearable sensors have been shrinking and getting less power-hungry, their operation
time and places where they can be worn have inadvertently increased accordingly.
Nowadays, multiple such sensors can be worn as patches or miniature straps anywhere
on the limbs, torso, or even on the head. When doing experiments with such sensor
data, however, the annotation of the data has remained a burden, taking a substantial
amount of effort. Few methods exist that allow the sensor data to be annotated
directly, even fewer methods allow these annotations to be made for any amount of
wearable sensor data from the user’s body. We argue that an in-ear device that is
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equipped with inertial sensors and a button would be an excellent candidate for user
annotation of activity data, as shown in Figure 3.13. It would allow the users to

Figure 3.13 We present an inconspicuous annotation method, in which users can annotate
their activity data in situ with an in-ear wearable (left), to mark and synchronize inertial
data from the ear with all other inertial sensors (right).

annotate their data without much effort in a socially comfortable way, which also
enables in-the-wild experiments as study volunteers annotate activities in their daily
lives. A critical step in our method is the synchronization of sensor data between
all wearable sensors: We assume that all sensors contain inertial sensors that show
sufficient correlation during everyday activities. The synchronization of different sensor
signals plays a decisive role in activity recognition. In most cases, a synchronization
gesture is executed at the beginning and end of the measurements to synchronize
the two or more time series. This method has the decisive disadvantage that it is
time-consuming and error-prone. With this section, we would like to introduce another
approach, that helps synchronize an arbitrary number of sensor signals. These signals
only have the basic preconditions that they must be recorded at the same time and
that sufficient sedentary phases, greater than 1 minute, are included. The presented
algorithm works with very few calculation steps, these are the calculation of the
vector length, the standard deviation, and a binary filter that is used to decide if
the acceleration signal represents a sedentary or non-sedentary activity. The given
results show a median time mismatch of 1.10 seconds and can be used to synchronize
related, but independently captured, sensor signals with a shared time base. In order
for the algorithm to work reliably with the raw data, it must first be prepared and
preprocessed. Our presented algorithm is fast and easy to implement. This allows
researchers to take up this idea and incorporate it into their projects [30].
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3.3.2. System Design

Hardware. The hardware used for collecting labeled data is the eSense-BLE [105]
by the Pervasive Systems group at Nokia Bell Labs, Cambridge. It is built with a
custom-designed 15 x 15 x 3 mm PCB and composed of a Qualcomm CSR8670, a
dual-mode Bluetooth audio system-on-chip (SoC) with a microphone per earbud; an
InvenSense MPU6500 six-axis inertial measurement unit (IMU) including a three-
axis accelerometer, a three-axis gyroscope, and a two-state button; a circular LED;
associated power regulation; and battery-charging circuitry. It is powered by an
ultra-thin 40-mAh LiPo battery but lacks internal storage or a real-time clock. Each
earbud weighs 20g and is 18 x 20 x 20 mm. The left earbud is the one containing
the IMU sensor accessible through the BLE and will be used in the remainder of this
section. The Platypus prototype is a wrist-worn activity sensing platform [89] that is
equipped with a number of sensors, including a full MPU9250 IMU, environmental
sensors, and several processing units included in an Edison System-on-Chip module
that runs an embedded Linux distribution as the operating system. We have used
this prototype as it can record the IMU data at a relatively high sampling speed of
300 Hz and present the recordings via a Secure Shell (SSH) over the built-in WiFI
transceiver.

Mobile Application. To be able to get labeled data for cross-correlation, we
developed an Android App for data collection on Android Studio by adapting only
the needed aspects of the Android library provided by the developers. The Android
ScanFilter was used to restrict the scan result to our desired eSense device, using the
LOW LATENCY scan mode. The notification was enabled by writing to the descriptor
for the push button status and accelerometer data from the onboard IMU, which we
set to a 50Hz sampling rate. The accelerometer works with the default configuration
of +/-4g (sensitivity of 8192 LSB/g) . Using the Android onCharacteristicChanged,
accelerometer data about the three-axis is received and checked for correctness using
the CheckSum, then stored in the internal storage of our mobile phone as a CSV
file in units of g and multiplied by 10 to increase the amplitude. We also saved a
time-stamp in microseconds that have elapsed since January 1, 1970, at 00:00:00 GMT.
Additionally, on every button push, the current data from the accelerometer is labeled
with an ASCII character and stored, as well as displayed on the TextView. We had a
challenge of receiving the same data on different timestamps, but this was resolved by
keeping the processing time in the onCharacteristicChanged method as low as possible,
another problem that we encountered, was that each button push notification caused
some accelerometer package index to be skipped on subsequent readings, restarting
the IMU sampling on each button push solved this problem. Finding and establishing
a connection with the eSense (BLE and classic Bluetooth) is a challenge and requires
several trials.
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3.3.3. Methodology

Besides our study about the reliability of our proposed algorithm, we also asked the
participants to fill out a short questionnaire regarding the wearing comfort of the
eSense earbud by using the Comfort Rating Scale (CRS) as proposed in [109].

Dataset. A data set of activity data of seven participants has been recorded using
the eSense and the platypus. The data recorded by the eSense is sampled at 50 Hz,
and the data recorded with the platypus is sampled at 300 Hz. The participants are
between 20 and 40 years old. We were able to recruit five men and two women for the
study. The platypus data set consists of a total amount of around 2.255.764 samples
or 2.08 hours of data. For the eSense we recorded 375.967 samples, which also resulted
in 2.08 hours. The data set contains acceleration data from both sensors for mixed
activities: (1) reading or desk work, (2) walking, (3) climbing stairs, (4) sitting, (5)
dribbling a basketball, and (6) pause or rest phase.

eSense Wearing Comfort. In addition to the evaluation of the reliability of our
presented algorithm, it was also very important for us to evaluate how comfortable the
provided prototype was perceived by the participants of the study. Table 3.5 shows
the categories and their description. The Emotion, Harm, and Anxiety categories

Table 3.5 Comfort Rating Scale (CRS) categories, as proposed in [109]. The CRS includes
6 categories: Emotion, Attachment, Harm, Perceived change, Movement, and Anxiety.
Title Emotion Attachment Harm

Description
The device is causing me
some harm. The device
is painful to wear

I can feel the device on my body.
I can feel the device moving

I am worried about how
I look when I wear this device.
I feel tense or on edge because
I am wearing the device.

Title Perceived Change Movement Anxiety

Description
Wearing the device makes me feel
physically different. I feel strange
wearing the device.

The device affects the way I move.
The device inhibits or restricts my
movement.

I do not feel secure wearing the device.

are more about personal and psychological sensations when wearing the device, while
the remaining three categories focus on the device’s body feel. The participants can
choose a value between 0 and 10 for every category. 0 means it has a low impact, and
10 is a high impact.

Data Synchronization. For evaluation purposes, a ground truth dataset is required.
Therefore, we utilized a synchronization gesture. The synchronization gesture required
both hands and the head to exhibit the same vertical jump movement, generating
clearly identifiable acceleration signal peaks. The gesture occurred at the start and
conclusion of data recording to timestamp the dataset boundaries. To synchronize
two independently recorded signals, data preprocessing was necessary. The first
preprocessing step cropped the data between the synchronization gesture timestamps.
Due to sample losses from wireless transmission errors or incomplete sampling rates, the
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initial signal durations differed. Signals also required matching sampling frequencies.
Thus, the Platypus data was downsampled to 50 Hz. As eSense provided the only
means of sequence labeling, its timestamps defined the ground truth for all sensors
undergoing synchronization. Under these conditions, all body sensor signals could
be resampled equidistantly. To simulate lacking synchronization gestures, the start
and end of the eSense data was shortened 10%. Since the method for synchronizing
signals is of central importance, it takes up most of the work presented here. Table 3.6
describes step-wise the developed algorithm and the results after every step. When
the algorithm finishes we are able to propagate the label throughout the sensors.
Parameters like the window size and window length, but also the threshold of the
binary filter, can be adjusted variably. In the first version of the algorithm, a simple
ASCII character is written with a button press at the beginning and end of the activity.
In the future, we plan to use the microphone and voice-to-speech recognition for
setting the label.

3.3.4. Results and Discussion

Comfort Rating Scale. Figure 3.14 shows the result of our CRS study. To sum the
result up we can say that in general the device is comfortable to wear, but sometimes

Table 3.6 Step-by-step explanation of the algorithm. The algorithm is divided into 8
steps. First, the dimension of the data is reduced by calculating the vector length, divided
into windows and finally, the standard deviation is calculated. The standard deviations
are now passed through a binary filter, which writes a 0 for sedentary activity and a 1 for
non-sedentary activity. Both signals are then cross-correlated. The position of the highest
correlation can then be used to deduce the synchronization point in the initial signal.

Step 1 2 3 4

Name Dimension Reduction Windowing Feature Extraction Binary-Filter

Description

Calculate vector length
per sample (dimension
reduction from 3D to 1D).

Data is divided into win-
dows. Window length and
overlap ratio can be set
variable.

Calculation of the standard
deviation.

Both standard deviation
signals are passed through
a binary filter. A threshold
is used to decide whether
it’s a sedentary or a non-
sedentary activity. 0 (sed-
entary) if the current value
is smaller than the threshold and
1 (non-sedentary) if higher
than the threshold.

Result: Normalized signals,
with reduced dimension.

Result: Windowed data.
Result: Standard deviation
per window.

Result: Two signals with the
values 0.0 and 1.0 for seden-
tary sequences and 1 or non-
sedentary activities.

Step 5 6 7 8

Name Cross-Correlation Index Selection
In-Window-
Cross-Correlation

Label Propagation

Description

Cross-correlation [3] of both
binary filtered signals. The
eSense signal is cross cor-
related with the other signals.

The window with the
highest correlation co-
officiant marks the best
index to synchronize the
signal.

Cross correlation for all
samples in this window.

Labels from the eSense sig-
nal can be copied to the
other sensor data.

Result: Cross-Correlation
coefficient

Result: Start window for
synchronizing

Result: Exact index for
synchronization.

Result: Labeled data.
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you can feel it moving in your ear. One participant in the study noted that the earplugs
tend to fall out of the ear during heavy movements, like dribbling a basketball, even if
adjusted correctly. The average values for the Emotion, Harm, and Anxiety categories
show that users are generally not concerned about their appearance. This is certainly
due to the fact that earbuds are very inconspicuous and devices like these have long
since found their way into our everyday lives. The results in the other categories

Figure 3.14 CRS
result means and stan-
dard deviations. Anx-
iety: 0.57, 0.6; Move-
ment: 2.64, 3.09; Per-
ceived Change: 2.85,
3.17; Harm: 0.71, 0.8;
Attachment: 5.42, 2.38;
Emotion: 0.85, 1.31.

vary. This shows the standard deviation. The perceived wearing comfort is strongly
user-dependent and is probably also related to the individual shape of the inner ear.
This is as unique as the fingerprint [58], which is why it is difficult to develop a shape
that everyone feels comfortable with.

Data Synchronization Method. In order to investigate the reliability in terms of
automatically synchronizing the inertial data streams, we decided to use the time and
sample mismatch between the ground truth and the index used as the synchronization
point. To evaluate the performance of our algorithm we first calculated the best
working parameters for window size and overlap ratio by using a brute force method.
This was possible because of the short computational time and, compared to long-
term benchmark data, a limited amount of data. The determined parameters from
these experiments were found to be: window-size 50, overlap-ratio 85%. With these
parameters fixed, we calculated the time mismatch separately for every inertial data
recording, as depicted in Table 3.7. The graphical representation as given out by our
algorithm is shown in Figures 3.15, 3.16, and 3.17. These figures present two different
signals: The top one is the one recorded at the wrist by the Platypus prototype.
The bottom plot contains the inertial data from the eSense. The ground truth, as
obtained from synchronization gestures before and after the recording (not shown), as a
reference is plotted transparently. Overlaying the ground truth the resulting shortened
and synchronized signal is depicted, with the vertical red lines marking the beginning
and ending of the calculated synchronization point. The black line plot embedded in
each bottom plot shows the correlation signal. The inertial signals are synchronized
according to the highest cross-correlation. In the first version of the algorithm, the
binary filter was not yet part of it, which resulted in problems synchronizing correctly,
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Table 3.7 Synchronization error
per record in samples and seconds.
The records are from 7 participants
and 6 activities. Synchronization
tends to be within one second for
records with clear sequences of dif-
ferent intensities: (1) read or desk
work, (2) walk, (3) climbing stairs,
(4) sit, (5) dribble basketball, and
(6) pause or rest.

Record Mismatch in Samples Mismatch in Seconds Activity
1 15 0.30 1, 3, 5, 6
2 16 0.32 1, 6
3 16 0.32 1, 4, 6
4 20 0.40 1, 6
5 21 0.42 1, 2, 5, 6
6 21 0.42 1, 4, 6
7 23 0.46 1, 3, 5, 6
8 87 1.47 1, 3, 5, 6
9 293 5.86 1, 3, 5, 6
10 386 7.72 1, 4
11 418 8.36 5
12 874 17.48 1, 4
13 1195 23.90 1, 2, 3, 5
14 1742 34.84 1, 4

if no pause phases have been part of the record, for example, record 11 in Table 3.7.
The binary filter sets a very hard boundary between sedentary and non-sedentary
activities, decided by a threshold, wherefore we needed to have a closer look at the
calculated standard deviation signal. Here we saw that the threshold needs to be
between 0.500 mg and 0.515 mg. After setting the boundaries we evaluated that the
best working threshold is at 0.508 mg. The mismatch (median) of the algorithm was
61 samples or 1.22 seconds. Due to the usage of the binary filter, we were able to
improve our results to 55 samples or 1.10 seconds of mismatch. The records that could
be rather poorly synchronized with our algorithm are records that mostly consist of
sedentary activities as e.g. sitting, reading, or desk work, as depicted in Figure 3.16
or records with heavy movements, but without pause phases, Fig. 3.15. Very well

Figure 3.15 Best-case synchronization with a mismatch of 0.30 seconds. The figure shows
that synchronization works best with sufficient long periods of sedentary activity. The
inertial signal of the wrist (top) is compared with the synchronized signals of the head
(bottom). The black signal at the bottom left depicts the cross-correlation between the
binary-filtered signals.
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Figure 3.16 Data without sufficient pause phases, with plots defined as in Figure 3.15,
using Record 13 in Table 3.7. Our algorithm’s synchronization was off by 1195 samples or
23.90 seconds.

devoted, data sets can be synchronized that reflect activities involving a high degree
of locomotion as well as sufficient phase of pauses, e.g. Figure 3.15.

(a) Minimum time mismatch: 0.30 seconds or 15 samples

(b) Maximum time mismatch: 34.84 seconds or 1742 samples

(c) Median time mismatch: 1.10 seconds or 55 samples

Figure 3.17 Worst-case synchronization with a mismatch of 34.84 seconds, record 14 in
Table 3.7. In this data, mostly desk work has been performed. The inertial signal of the
wrist (top) is compared with the synchronized signals of the head (bottom). The black
signal at the bottom left depicts the cross-correlation between the binary-filtered signals.
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3.3.5. Conclusions

We presented in this section a novel annotation method for recording activity recog-
nition benchmark data. Our method relies on users wearing a small earbud-like
device in their ear, which is equipped with a button and an inertial measurement
unit. The inertial data from the ear-worn sensor are synchronized to all other data
via cross-correlation, after which the user presses serve as labels that annotate all
sensor streams. In a preliminary study with 7 users, we investigated how well this
synchronization works, as well as how comfortable the earbud-like wearable was to
our study volunteers. This paper offers a first approach to spread the annotations
temporally correct over any number of sensors and to synchronize time series that have
been recorded at the same time from different devices. If the data contains sequences
that can be uniquely assigned to an activity, with sufficient periods of resting activity,
the synchronization was found to be sufficiently reliable. However, the algorithm
does not work reliably enough if the head and hand movements during an activity
do not basically follow the same direction or if they can completely differ from each
other. In addition, care must be taken to ensure that the movements follow a pattern
that includes rest periods. The evaluation, as in Table 3.7, has shown that these are
essential for reliable synchronization. In terms of wearing comfort, we found that
the used eSense prototype is highly promising as an annotation tool for everyday
recordings in-the-wild. The fact that it can be worn comfortably, with attachment as
the weakest link for some participants, and almost hidden in the ear makes it ideal
for recording and annotating data outside our laboratory. As such devices could be
operated simultaneously as wireless headsets, the one remaining hurdle for the use of
our method in long-term and day-long activity recordings is the eSense’s battery.
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Section 3.4
The Hawthorne Effect in Sensor-Based Human

Activity Recognition

[90] Hoelzemann, Alexander, et al.
A Data-Driven Study on the Hawthorne Effect in Sensor-Based Human Activity
Recognition
Oct. 2023, HASCA23: Proceedings of the 11th International Workshop on
Human Activity Sensing Corpus and Applications
https://doi.org/10.1145/3594739.3610743

Portions of the original publication have been removed or edited for inclusion in
this thesis. However, no changes were made that altered the results or conclusions
presented in the original work.
Contributions:

• All authors contributed to designing the study.
• Ericka Andrea Valladares Bast́ıas, Salma El Ouazzani Touhami and Kenza

Nassiri and I recorded the dataset.
• Marius Bock and I analyzed the data.
• Kristof Van Laerhoven guided this work and assisted in the methodologies.

Known as the Hawthorne Effect, studies have shown that participants alter their
behavior and execution of activities in response to being observed. With researchers
from a multitude of human-centered studies knowing of the existence of the said
effect, quantitative studies investigating the neutrality and quality of data gathered in
monitored versus unmonitored setups, particularly in the context of Human Activity
Recognition, remain largely under-explored. With the development of tracking devices
providing the possibility of carrying out less invasive observation of participants’ con-
duct, this study provides a data-driven approach to measure the effects of observation
on participants’ execution of five workout-based activities. Using both classical feature
analysis and deep learning-based methods we analyze the accelerometer data of 10
participants, showing that a different degree of observation only marginally influences
captured patterns and predictive performance of classification algorithms. Although
our findings do not dismiss the existence of the Hawthorne Effect, it does challenge the
prevailing notion of the applicability of laboratory compared to in-the-wild recorded
data.

3.4.1. Introduction

Body-worn sensor systems bear great potential in analyzing our daily activities with
minimal intrusion, yielding various applications from the provision of medical support
to supporting complex work processes [45]. With (deep) neural networks representing
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the state-of-the-art technology for the automatic analysis of such wearable data, a
bottleneck becomes the correct annotation of data for the underlying training. Due to
the fact that inertial data is difficult to interpret in hindsight without any additional
context, most publicly available datasets remain captured in controlled, video-recorded
environments with researchers being in close proximity of study participants. The
Hawthorne Effect, originally discovered in 1958 [112], describes the phenomenon that
humans alter their behavior and execution of activities in response to being observed.
The phenomenon’s discovery has led to numerous studies trying to measure the said
effect in clinical trials [25, 139, 219, 175, 134, 167], and, more targeted toward physical
activities, showed that the effects can be quantified, for instance with gait parameters
like step length and cadence of gaits [219]. With researchers from a multitude of
human-centered studies being aware of the existence of such an effect, a data-driven
study of the phenomenon and its potential effects remain largely under-explored in
the community of Human Activity Recognition. Given that the performance and
applicability of learning algorithms, such as neural networks, in real-world scenarios
heavily depend on the representativeness of the training data, our study aims to
investigate whether the prominent observation of participants during data collection
introduces biases and results in measurable and altered executions of activities which,
in turn, may potentially lead to less effective and less generalized networks. Inspired
by the works of Vickers et al. [219], our paper provides a data-centric analysis of
measuring a possible Hawthorne Effect on a variety of fitness activities through the
modality of wrist-worn inertial sensor data. This is done by explicitly letting the
participants be observed through cameras and/or the researchers. Contributions of
our paper are three-fold:

(a) We designed a HAR experiment where volunteers perform a set of activities
under three observation settings: 1) fully-observed (video-recorded + monitoring
by researchers), 2) semi-observed (video-recorded + no monitoring), and 3)
non-observed (no video recording + no monitoring).

(b) We collected data from 10 participants performing 5 different activities, jumping,
walking, jogging in place, sit-ups, and jumping jacks over several days.

(c) We perform both feature analysis and investigation of changes in the predictive
performance of a deep learning classifier [35] based on the type of observation
applied during validation as well as its capabilities to distinguish between each
participant’s session.

3.4.2. Methodology

Study Protocol: To investigate any potential effects observation of participants
can have on collected inertial data, we asked 10 participants (4 females, 6 males) to
perform a short workout across multiple days, employing different types of observation
(see Figure 3.18). The study was approved by our university’s ethics council. Study
participation was voluntary, and informed consent was obtained from all participants
before the study. The workout plan consisted of a fixed order of 5 different activities,
i.e. jumping, walking, jogging in place, sit ups, and jumping jacks, each performed for
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Briefing & 
survey

Session 0: 
Video recorded & 

in-presence monitoring

Session 1: 
Video recorded & 

no in-presence monitoring

Session 3: 
Video recorded & 

in-presence monitoring

Session 2: 
No Video recorded & 

no in-presence monitoring

Figure 3.18 Applied study protocol. After having a briefing and filling out a pre-study
survey, each participant performed the workout 4 times across 4 different days. The first and
last workouts (sessions 0 and 3) were video-recorded and performed under the observation
of at least one researcher. The second and third workouts (sessions 1 and 2) were performed
without the observation of any researcher at a location chosen by the participant (e.g. at
home). The second workout (session 1) was additionally video-recorded.

Table 3.8 Pre-study sur-
vey answers provided by
each participant. The sur-
vey asked participants to
provide age, gender, and
whether they perform reg-
ular private workouts and
wear a wearable device
(e.g. fitness smartwatch)
in their daily lives.

ID Age Gender Pvt. Workouts Pvt. Wearable

sbj 0 18-25 F ✗ ✗

sbj 1 26-35 F ✓ ✗

sbj 2 26-35 M ✓ ✓

sbj 3 18-25 M ✓ ✓

sbj 4 18-25 F ✗ ✓

sbj 5 26-35 M ✓ ✓

sbj 6 18-25 F ✗ ✓

sbj 7 18-25 M ✗ ✗

sbj 8 26-35 M ✗ ✗

sbj 9 26-35 M ✗ ✗

120 seconds with breaks in-between the activities.

Before their first workout session, each participant was briefed about the study
protocol in a structured manner and shown sample data collected by the tracking device.
Participants were further asked to answer a short survey asking for gender and age
group as well as whether they perform regular private workouts and a fitness tracker in
their daily lives (see Table 3.8). To avoid any unwanted biases, participants remained
unaware throughout the study that the data would be analyzed to assess differences
between supervised and unsupervised recording setups. In total, each participant
was tasked to perform the workout 4 times using 3 different types of observation.
After having been briefed, each participant was equipped with a smartwatch on their
wrist of choice and given a demonstration by one of the researchers of the correct
execution of each exercise. The smartwatch, a Bangle.js Version 1, was set to record
3D accelerometer data at a constant sampling rate of 12.5 Hz with a sensitivity of
±8g using a custom, open-source firmware[216]. The first workout session (session
0 ) was performed under the observation of one researcher in a location decided by
the participant and researchers with a video-recording device taping the execution of
the routine. After the completion of session 0, participants were walked through the
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control of the smartwatch and tasked to perform the workout plan within the next
days twice at a location of their choice (e.g. their home) – one-time video-recording
(session 1 ) and another time without video-recording their workout (session 2 ). Lastly,
participants were invited back to where they originally performed the first session and
asked to perform the workout a second time under the observation of a researcher
with a video recording in place (session 3 ). In between the 4 sessions participants
were asked to wear the smartwatch as much as possible throughout their daily life,
keep a brief recount of their daily activities, and note down the start and end times
of each of them. To further ensure the workout of interest can properly be identified
in the activity streams, each session started and ended with the activity jumping.
Having identified the workouts in the inertial data recordings, the 3D-acceleration
data streams were cropped to only include the workout activities, labeled accordingly,
and saved session-wise for each participant into separate files.

Feature Analysis. The feature analysis incorporates a Fast Fourier Transform
(FFT), as depicted in Figure 3.19 and a comparison of the total number of repetitions,
indicated by the

∑
-sign, and repetitions per second for a specific activity, indicated

by the ∅-sign, taking into account the subject and session in which the activity was
performed. The results are presented in Table 3.9. Both, the FFT [203] and the
repetitions per second, calculated with a peak detection algorithm [205], are calculated
utilizing functions provided by the SciPy community. The peak detection algorithm
specifically processes 1-dimensional time-series data. For our analysis, we computed
the magnitude of the accelerometer signal and employed it for the algorithm. Given
the periodic nature of the activities under study, each positive peak observed in the
signal can be interpreted as indicating one repetition. To validate the accuracy of the
peak detection, a visual confirmation was conducted.

Deep Learning Analysis. As proposed by Ordoñez and Roggen in [159], a
popular methodology in human activity recognition remains the usage of convolutional
and recurrent layers. The former is used to automatically extract discriminative
features. Having shown quantitative differences in the feature analysis, the following
will investigate the effect said (potential) differences have on the performance and
applicability of neural networks. All experiments were conducted using a shallow
DeepConvLSTM [35] employing a kernel size of 3, 1024 hidden LSTM units, and
inertial data which was split into sliding windows of 1 second with a 50% overlap. We
reuse hyperparameters reported in [35], proven to work on a multitude of activity
recognition datasets, and only increase the number of epochs (300) while employing a
step-wise learning rate schedule, decreasing the learning rate by a factor of 0.9 every
30 epochs. To minimize the risk of performance differences between experiments being
the result of statistical variance, reported metrics are averaged across three runs using
three different random seeds. Our three types of experiments aim to answer three
types of questions: (1) Cross-session generalization: How well does a network,
trained using fully-observed data, predict data recorded employing different degrees of
observation? That is, for each subject, predict each session’s activities individually
having trained on all other subjects’ session 0 data. (2) Session differentiation:
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Can a network be trained to classify data records into the respective session type
they originate from? That is, for each subject, predict each data records session type
having trained on all other subjects’ data. (3) Fully-observed overfitting: Are
patterns learned by a network overfitted on a subject’s fully-observed data transferable
to data employing different degrees of observation? That is, for each subject, predict
activities recorded during sessions 1, 2, and 3 using a network overfitted, i.e. reaching
close-to-perfect classification scores, on session 0 data. In order to achieve the network
overfitting, these experiments involve increasing the number of epochs (1000), learning
rate (0.2), and applied learning rate scheduler step size (250).

3.4.3. Results

Overall, we were not able to prove that the Hawthorn Effect is directly verifiable
by any of the aforementioned analyzing methods or that data recorded in various
recording environments (controlled or semi-controlled) differ significantly.

Feature Analysis. The analysis of the Fast Fourier Transform, Figure 3.19, reveals
that fully monitored sessions 0 and 3 generally do not exhibit similar dominant
frequencies, which is also the case for semi-monitored and unmonitored sessions 1 and
2. In particular, several activities and subjects align with our previously established
hypothesis that the signal from session 3 should converge back to that of session 0.
Such behavior is evident for sbj 6, sbj 7 and sbj 8 during the jumping jacks activity,
and for sbj 2 during the sit ups activity. It is important to acknowledge that this bias
may have arisen both due to the researcher’s observations and the spatial variations in
the workout environment. The fact that this behavior is more evident while executing
jumping jacks, might indicate that a Hawthorne Effect is limited to a specific kind

Figure 3.19 Fast Fourier Transform (FFT) calculated on every participant and every
activity included in our study. Light-green represents session 0 (monitored and video
recorded), blue session 1 (non-monitored, video recorded at home), red session 2 (non-
monitored, non-video-recorded), dark-green session 3 (monitored and video recorded)
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Table 3.9 This table shows the total number of repetitions (
∑

) encountered in the activities’
signal and the number of repetitions per second (∅). Every subject has 4 rows that represent
the session. Activities that are marked as represent cases where the number of repetitions
per second was higher during the monitored sessions than during the unmonitored ones,
activities colored in are activities where the number of repetitions per seconds was higher
during the unmonitored sessions than during the monitored sessions.

jumping∑
, ∅

walking∑
, ∅

jogging in place∑
, ∅

jumping jacks∑
, ∅

sit ups∑
, ∅

sbj 0

41, 1.68
51, 1.66
51, 1.64
61, 1.85

39, 1.77
41, 1.28
40, 1.11
54, 1.34

79, 1.92
43, 1.44
43, 1.41
75, 2.02

32, 1.01
31, 1.03
32, 1.03
35, 1.08

20, 0.61
16, 0,53
16, 0.52
27, 0.75

sbj 1

42, 1.33
40, 1.32
48, 1.48
47, 1.55

45, 1.48
58, 1.70
51, 1.73
56, 1.55

68, 2.17
60, 2.04
60, 2.08
39, 2.08

65, 1.75
49, 1.66
47, 1.50
54, 1.73

9, 0.23
10, 0.30
14, 0.27
11, 0.35

sbj 2

19, 0.70
19, 0.62
22, 0.69
18, 0.60

48, 1.28
41, 1.34
39, 1.42
53, 1.33

36, 1.15
37, 1.19
36, 1.20
36, 1.14

30, 0.97
31, 1.00
31, 1.03
31, 0.99

16, 0.37
13, 0.40
10, 0.32
16, 0.44

sbj 3

35, 1.08
32, 1.09
27, 0.96
30, 1.03

67, 1.28
50, 1.35
37, 1.27
48, 1.44

80, 2.62
78, 2.68
71, 2.61
72, 2.37

40, 1.14
41, 1.36
42, 1.46
37, 1.20

14, 0.43
13, 0.41
6, 0.364
10, 0.35

sbj 4

31, 1.07
30, 1.07
35, 1.16
29, 1.10

39, 1.33
40, 1.14
37, 1.30
40, 1.18

45, 1.45
42, 1.40
44, 1.45
47, 1.52

58, 2.01
60, 1.93
59, 1.91
55, 1.90

13, 0.45
10, 0.30
13, 0.38
10, 0.29

sbj 5

46, 1.59
47, 1.50
50, 1.68
46, 1.35

46, 1.37
44, 1.42
35, 1.16
48, 1.27

31, 1.03
32, 0.95
30, 0.98
28, 0.99

33, 1.02
33, 1.05
31, 1.09
33, 1.05

8, 0.32
10, 0.31
13, 0.26
11, 0.36

sbj 6

40, 1.25
42, 1.30
46, 1.44
52, 1.52

52, 1.42
48, 1.35
42, 1.35
52, 1.56

83, 2.58
78, 2.46
81, 2.58
87, 2.52

55, 1.63
49, 1.63
48, 1.55
57, 1.75

11, 0.34
11, 0.31
8, 0.244
11, 0.32

sbj 7

50, 1.58
56, 1.76
54, 1.79
56, 1.87

42, 1.14
36, 1.16
27, 1.04
40, 1.09

55, 1.64
40, 1.34
36, 1.18
39, 1.22

31, 0.93
27, 0.89
28, 0.95
31, 0.94

12, 0.35
12, 0.31
9, 0.30
11, 0.34

sbj 8

23, 0.76
29, 0.96
25, 0.90
53, 1.85

36, 1.34
40, 1.32
40, 1.28
45, 1.46

36, 1.21
33, 1.10
33, 1.07
33, 1.06

31, 0.95
21, 0.87
24, 0.81
23, 0.74

11, 0.34
10, 0.33
10, 0.32
9, 0.29

sbj 9

27, 1.06
27, 1.05
25, 0.91
24, 0.92

48, 1.45
48, 1.44
49, 1.37
48, 1.38

66, 2.34
67, 2.37
65, 2.59
65, 2.60

37, 1.41
37, 1.42
31, 1.08
32, 1.08

10, 0.28
8, 0.23
10, 0.34
9, 0.33
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of activity. Further noteworthy differences are visible in the signals of the activities
jumping, jogging in place and sit ups. Here, the results of the FFT suggest that
sbj 1, sbj 4, and sbj 9 altered their activity execution behavior depending on the
experience gained during the study. The light-green (session 0) and blue (session 1)
most dominant frequencies are more similar to each other than red (session 3) and
dark-green (session 4), which in turn show greater similarities to each other than
compared to the first two sessions 0 and 1. Table 3.9 provides a color-coded depiction
of repetition patterns across each individual recording session. One can see that the
table does not reveal any universally applicable patterns that confirm the Hawthorne
Effect across all scenarios. Only two subjects, sbj 0 and sbj 2, demonstrate a difference
in the number of repetitions per second between monitored and unmonitored sessions.
More specifically, sbj 0 shows an increase in repetitions for 4 out of 5 activities when
observed by a researcher, with only the activity jumping jacks not showing such a
trend. However, this activity shows an equal number of repetitions per second for both
unsupervised sessions. Similarly, sbj 2 demonstrates a higher frequency of repetitions
for the activities walking, jogging in place, and jumping jacks; yet, this behavior is
even less commonly observed compared to the first scenario.

Deep Learning Analysis. Table 3.10 summarizes the average accuracy and macro
F1-scores obtained during each of the three deep-learning-based experiments. Using
data recorded during session 0, i.e. data originating from the same session as data
used for training the network, resulted, as expected, in the highest validation metrics
(70% accuracy and 64% macro F1-score).

Further, being recorded under the same conditions, validating using data recorded
during session 3 resulted in the second-to-best results, being on average only around a
percentage point worse than the validation using session 0 data. Surprisingly, using
the self-recorded participant data, sessions 1 and 2, for validation did not result in
a significant drop in performance. Even though participants recorded themselves in
a completely unmonitored recording setup (session 2) performance drops were only
around 4% compared to using fully-observed data. With accuracy scores being close to
random guessing, Table 3.10 further shows that the shallow DeepConvLSTM [35] was
incapable of being trained to differentiate data records based on the session which they
originate from. Lastly, inference of networks overfitted on session 0 data showed to
produce similar results across all sessions, with, though applying a different observation
scenario, session 1 (semi-observed) producing the highest classification results. Overall,
the results of all three experiments suggest that the predictive performance of the
network of choice only marginally suffers when being used for inference on data
recorded by applying a different degree of observation. Especially visualization of
the per-class and per-participant results of the (1) cross-session generalization and
(3) fully-observed overfitting experiments (see Figure 3.20) shows that, besides sbj 6,
results remained stable across all sessions. Even though the non-observed setup
(session 3) remained on average the least performant session, it nevertheless shows the
lowest standard deviation across subjects.
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Table 3.10 Average accuracy and
F1-scores of the three types of per-
formed experiments ((1), (2) and (3)).
Experiments are divided by the type
of session data used during validation.
Results are the averages and standard
deviation across subjects across three
runs using three different seeds. Note
that given the altered prediction sce-
nario (session instead of activity type)
experiment (2) does not involve split-
ting each subject’s data into different
session types.

Exp Val. Set Accuracy F1-score

(1
)

Session 0 70.11 ± 10.55 64.45 ± 12.07
Session 1 64.46 ± 13.11 60.18 ± 13.48
Session 2 66.02 ± 8.10 62.35 ± 8.93
Session 3 69.33 ± 12.34 65.81 ± 12.45

(2
) All 25.21 ± 3.32 21.90 ± 3.05

(3
)

Session 1 77.58 ± 11.18 76.74 ± 11.37
Session 2 71.42 ± 8.21 69.55 ± 9.89
Session 3 75.87 ± 9.31 74.27 ± 10.32

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

sbj_0 sbj_1 sbj_2 sbj_3 sbj_4 sbj_5 sbj_6 sbj_7 sbj_8 sbj_9 NULL jumping walking jogging jumping jacks sit-ups

(1) Cross-session generalization 

50.00%
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70.00%

80.00%

90.00%

100.00%

sbj_0 sbj_1 sbj_2 sbj_3 sbj_4 sbj_5 sbj_6 sbj_7 sbj_8 sbj_9 NULL jumping walking jogging jumping jacks sit-ups

(3)  Fully-observed overfitting 

Session 1
(semi-observed)

Session 2
(non-observed)

Session 0
(fully-observed)

Session 3
(fully-observed)

Figure 3.20 Per-subject and per-activity accuracy results of the (1) cross-session gener-
alization and (3) fully-observed overfitting experiments. Results are averaged across three
runs using three different seeds. With the exception of sbj 6 differences amongst sessions
remain marginal. Though producing the on-average lowest results, data recorded in semi-
and non-observed environments were shown to be similarly applicable in terms of predictive
performance than compared to fully-observed data, and, in the case of the semi-observed
data, is even more reliably predicted by a network overfitted on fully-observed data.

3.4.4. Conclusions and Discussion

This paper presented a data-driven investigation aiming at measuring the effects of the
Hawthorne Effect in the context of Human Activity Recognition. The study involved
the recording of 10 participants performing 5 distinct activities on 4 different days.
With the first and last day being supervised and video-recorded by researchers, the
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remaining two days had participants self-record themselves at a location of their choice
with and without video recording in place. To avoid potential biases, participants
remained unaware throughout the study that the data would be analyzed to assess
differences between supervised and unsupervised sessions. As part of analyzing
the captured data, we employed a feature and deep learning analysis, ultimately
concluding that the recorded data does not exhibit a measurable Hawthorne Effect.
While the feature analysis did not reveal any generalizable patterns, the deep learning
analysis showed that data originating from the unmonitored sessions produced similar
classification results and even outperformed the fully observed in some cases. Although
our findings do not dismiss the existence of the Hawthorne Effect, especially given the
numerous clinical trials proving said effect, (see Section 3.4.1), it does challenge the
prevailing notion of the applicability of laboratory compared to in-the-wild recorded
data. Results of our study show that though an altered behavior of participants might
be present, classification algorithms seem to learn discriminative features of similar
applicability regardless.

At this point, it is important to acknowledge the limitations of this study and
discuss possible reasons why the effects between the different observation scenarios
were not as pronounced as we hypothesized when designing the study. Generally, the
recorded dataset may not have the necessary size to draw generalizable conclusions
and can only indicate a trend. Furthermore, the recorded activities solely represent a
subset of periodic nature within the broader context of activity recognition. Several
reasons for the lack of significant differences could be: (1) The participants were for
all observation settings made aware that their inertial data was recorded (as this is
required by the ethics council). This might mean that a possible Hawthorne Effect
could have been present under all measured conditions and that this was not more
pronounced when observed by additional cameras and the researchers being present.
(2) The choice of activities could have resulted in overly simplistic movement classes
that make it hard to find stark differences between the different observation sessions
through our analysis methods. (3) It is also possible that the Hawthorne Effect in
general is relatively small for our five-activity-class scenario when compared to more
behavior-oriented activities (such as ”brushing teeth”) or fine-grained characterizations
(for instance for gait analysis).

Due to the inherently limited interpretability of neural networks and the opaqueness
of their decision-making processes, it is uncertain whether the observed disparities in
prediction performance can be attributed solely to varying learned feature representa-
tions resulting from different levels of observation. Therefore, further investigation is
warranted to explore the presence and potential impact of these influences. We believe
that the results of this paper’s study are nevertheless worthy of more discussion and
we encourage others to perform further, more extensive research on this topic.
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Section 3.5

Summary

Chapter 3 presents user-based studies focused on enhancing data recording methods
and studying the human bias on dataset recordings and annotations. The research
questions previously outlined have been thoroughly addressed through the studies
presented in this chapter’s publications.

The development of the Activate System, Section 3.1 marks a critical breakthrough,
laying the foundation for many subsequent studies. Characterized by its robustness
and comprehensiveness, this system enables not only our research team but also
fellow scientists to collect reliable, consistent data for their studies. As an entirely
open-source platform, the front-end and back-end components facilitate seamless
data transfer from the smartwatch to a centralized server. With accessible source
code, other users have the flexibility to customize the system to suit their specific
requirements and contribute to its ongoing development. This approach promotes
maximal accessibility, data sharing, and standardization of parameters across datasets
recorded using this system. Moreover, the affordability of the Bangle.js 1 device
streamlines procurement, allowing research labs to acquire numerous units for their
projects.

In Section 3.2, a comprehensive study is presented, involving the monitoring of 11
participants equipped with a Bangle.js 1, featuring the Activate System, over a period
of 2 weeks. This study is designed to address two primary questions: 1) How does the
choice of annotation method impact the quality and quantity of labeled data obtained
through wearable sensors? and 2) Which annotation methods are most effectively
aligned with specific research objectives and use cases? To investigate these questions,
participants were instructed to utilize four different annotation methods, consisting of
in situ methods (Methods 1 and 2 ) and recall methods (Methods 3 and 4 ).

The findings suggest that each method has its own set of advantages and drawbacks.
However, in terms of precise annotations, particularly regarding time and assigned
labels, in situ methods outperform self-recall methods. Conversely, self-recall methods
provide a more comprehensive overview and a complete set of a participant’s daily
activities. It’s worth noting that participants often perceived in situ methods as
laborious and burdensome due to their heightened awareness and constant involvement
in the study. In contrast, recall methods only require a brief 2-5 minute session for
noting the day’s activities along with estimated execution times. The choice between
these methods should be determined by the specific research requirements. More
detailed conclusions can be found in the respective section.

Multisensor synchronization is essential for datasets utilizing multiple devices, as
it requires aligning separate systems with their internal clocks and maintaining this
synchronization over time. In Human Activity Recognition, post-processing synchro-
nization after data collection is more commonly used than real-time synchronization
methods. However, researchers often resort to manually aligning data streams using
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synchronization gestures performed at the start and end of recordings. This manual
process is labor-intensive and susceptible to human error. The publication discussed
in Section 3.3 addresses this challenge by introducing an automated synchronization
algorithm. I propose a novel synchronization algorithm for multisensor data streams
that leverages cross-correlation to identify corresponding segments in simultaneously
captured sensor signals representing the same activity. By aligning these matching
segments, the algorithm synchronizes the data streams. My evaluation demonstrates
a median synchronization error of only 1.10 seconds, with 50% of examples achieving
synchronization within 0.5 seconds precision. Furthermore, the algorithm proves
effective when a distinct synchronization gesture is performed, preceded and followed
by periods of inactivity. This allows for accurate gesture detection and subsequent
alignment across sensor signals.

In essence, this algorithm offers a significant advancement over prior manual synchro-
nization methods, which were both time-consuming and prone to errors. It automates
the process, achieving precise alignment with demonstrably high accuracy.

In the final section of this chapter, Section 3.4, I investigate the Hawthorne Effect in
data-driven HAR studies. This effect, well-established in psychological research, refers
to the tendency for study participants to alter their behavior when conscious of being
observed. The study records 10 participants across 4 days under 3 different conditions:
(1) being observed by a researcher and filmed, (2) only being filmed while recording
data at home, and (3) recording data at home without observation or filming. Through
feature analysis and deep learning, the results did not reveal any clear, generalizable
pattern confirming the Hawthorne Effect.

However, data from monitored sessions consistently produced similar classifiers that
outperformed those trained on unmonitored data. While these findings do not dismiss
the effect’s existence, they suggest classifiers trained on monitored data may exhibit
sufficient robustness for deployment on unmonitored real-world data.

In summary, this study provides unique insight into the potential impacts of the
Hawthorne Effect in HAR research. Although no unambiguous effect was observed, the
performance patterns imply that monitored data can yield robust classifiers. Further
research is warranted to fully understand the implications of experimental observation
on participant behavior and classifier effectiveness.
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Chapter 4

Basketball Activity Recognition

This chapter applies activity recognition methodologies to sensor-based human activity
data, with a focus on basketball activities captured by wrist-worn sensors. Through
an initial feasibility study, I demonstrate that machine learning models like Random
Forest and k-nearest neighbor can classify diverse basketball activities. This study is
followed by the presentation of Hang-Time HAR, a comprehensive basketball activity
dataset. The research questions addressed in Chapter 4 are:

(a) To What Extent Can Basketball Activities Be Detected Using Wrist-
Worn Sensors?

• Among the spectrum of basketball-related activities, which ones consistently
demonstrate strong classification accuracy when using wrist-worn sensor
data, and which activities encounter difficulties or limitations in terms of
accurate identification?

• In the context of basketball games, characterized by sporadic and dynami-
cally changing activity patterns, can wrist-worn sensors effectively detect
relevant activities? What challenges arise due to the less homogeneous
nature of in-game actions?

The intersection of wrist-worn sensors and basketball activities represents a novel,
high-potential area for investigation. Addressing these research questions will advance
the fields of sports science and activity recognition for dynamic domains like basketball.
Moreover, findings will facilitate the refinement of wearable applications in sports
through sensor-based analytics.
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Section 4.1

Preliminary Basketball Study

[92] Hoelzemann, Alexander, and Van Laerhoven, Kristof
Using wrist-worn activity recognition for basketball game analysis
Sept. 2018, Proceedings of the 5th International Workshop on Sensor-based
Activity Recognition and Interaction
https://doi.org/10.1145/3266157.3266217

Portions of the original publication have been removed or edited for inclusion in
this thesis. However, no changes were made that altered the results or conclusions
presented in the original work.
Contributions:

• Both authors designed the study.
• I implemented the study, recorded and analyzed the data
• Kristof Van Laerhoven guided this work and assisted in the methodologies.

Gameplay in the sport of basketball tends to combine highly dynamic phases in which
the teams strategically move across the field, with specific actions made by individual
players. Analysis of basketball games usually focuses on the locations of players at
particular points in the game, whereas the capture of what actions the players were
performing remains underrepresented. In this paper, we present an approach that
allows to monitor players’ actions during a game, such as dribbling, shooting, blocking,
or passing, with wrist-worn inertial sensors. In a feasibility study, inertial data from a
sensor worn on the wrist were recorded during training and game sessions from three
players. We illustrate that common features and classifiers are able to recognize short
actions, with overall accuracy performances around 83.6%, k-Nearest-Neighbor (kNN),
and 87.5% Random Forest (RF). Some actions, such as jump shots, performed well (±
95% accuracy), whereas some types of dribbling achieved low (± 44%) recall.

4.1.1. Introduction

Monitoring sports activities is a well-known field of application for human activity
recognition systems, with a large number of possible use cases for recognizing and
analyzing sports activities. In this paper, we introduce an approach for recognizing
different kinds of activities for basketball specifically, from wrist-worn inertial sensor
data (Figure 4.1). For this purpose, data has been collected during the training of
a local amateur team from three participants using an IMU sensor. We annotated
the gathered IMU data in five particularly challenging classes: low dribbling (ld),
crossover (co), high dribbling (hd), jump shot (js), and a void class for less relevant
actions, and used a supervised learning approach to examine how distinctive these
motion classes are. With further development, our aim is to recognize more activities

78

https://doi.org/10.1145/3266157.3266217


4.1 Preliminary Basketball Study Basketball Activity Recognition

Figure 4.1 A basketball player while dribbling and shooting (top), the raw inertial sensor
data (middle plot) with classified sequences (bottom plot).

Classification. This subsection investigates the nature of the recorded raw data,
the structures of the feature vectors, and the methods used in the field of machine
learning. A first visual inspection shows through example data records for the data
to be classified. As an example, typical patterns for low dribbling is the constant
frequency of particular peaks that occur at shorter intervals in time than in the classes
crossover and high dribbling, see Figure 4.2. High dribbling, as depicted in Figure

Figure 4.2 Typical time series for the low dribbling motion, showing the acceleration in
milli-g and gyroscope data in rad/sec over time. Faster and more high-speed patterns can
be seen in both the acceleration and gyroscope data.
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4.3, can be characterized by a strongly increasing acceleration, which remains at a
high level for about half a second, rather than dropping rapidly again. A crossover
movement can be recognized by the fact that there is a gap of about 2 - 3 seconds
between two dribblings, as seen in Figure 4.4. The reason for this is that the player
wears the sensor at the dominant hand, but the ball is dribbled with the other hand for
a short time, thus the acceleration on the dominant hand decreases sharply for a short
period of time. In Figure 4.5 one can see the recorded data as recorded for a jump shot.
Significant for this class are consecutive peaks followed by a major drop of approx.
10000 milli-g back to 0 milli-g in the acceleration. Due to the dropping acceleration
of the z-axis (blue line), the first peak can be interpreted as dribbling followed by
a jump shot. Based on the data we used sliding windows with a window size of
one second that got classified by our algorithm. This window size has been chosen

Figure 4.3 Typical time series for the high dribbling motion, showing the acceleration
in milli-g and gyroscope data in rad/sec over time. Clear patterns can be seen in both
acceleration and gyroscope data, but for further analysis, we will focus on accelerometer
data.

because basketball is a very fast sport with rapidly changing activities. Therefore
one activity mostly is in the range of milliseconds to one second. Features have been
calculated for every window. For feature extraction only the acceleration data is
used. In the first step, the data from the gyroscope, magnetometer, environmental
sensors, or battery status are not taken into account by the algorithm. The used
features are the arithmetic mean and the standard deviation for every axis of the
acceleration data. This allows us to work with a 6-dimensional feature vector. In our
first approach, we used a supervised learning method and focused on three different
kinds of dribbling as well as jump shots. The machine learning models are trained
on a small subset that contains six seconds of data per class and per participant.
The sampling rate at which the data has been recorded is 25 Hz. To optimize the
classification results and to improve comparability, classification has been done with a
k-nearest-neighbor as well as a Random Forest classifier, both from the scikit-learn
package and implemented in Python. For parameter optimization of the individual
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Figure 4.4 Time series example for a crossover motion, showing the acceleration in milli-g
and gyroscope data in rad/sec over time.

classifiers, we ran the cross-validation experiments mentioned in the following section
for parameters over several ranges to obtain the optimal choices as listed in Table 4.1.

Figure 4.5 Typical time series for a jump shot, showing the acceleration in milli-g and
gyroscope data in rad/sec over time. Clear patterns can be seen in both acceleration and
gyroscope data.

4.1.2. The Study

In this section, the followed methodology is described in more detail and a first
evaluation of the results is presented. Three participants were recruited for a user
study. The participants are between 26 and 31 years old, none of them female, and
all of them experienced basketball players. Participants wore the sensor, which was
started approximately half an hour before the practice, on their dominant hands
and were briefed on the purpose of the study before the recording. From participant
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1 30 minutes or about 45000 data points were recorded, whereas from both other
participants 2 and 3, one hour or about 90000 data points were recorded, summing up
to approximately 235000 data points in total. For later annotation of the data, the
participants were filmed during the game. With the additional time-based information
from the video material, we are able to identify specific sequences in the data and
annotate them with the correct label. With the labeled data we trained the model
with a supervised method in combination with leave-one-out cross-validation. To avoid
an imbalance in the model, we decided to limit the number of training data per class
to 450 examples. To determine the accuracy, precision, and recall for each class and
classifiers, their values were calculated for each iteration step of the leave-one-user-out
cross-validation and finally, the average across all folds was formed. The results, as
depicted in Figure 4.6, as well as the determined accuracy, precision, and recall in
Table 4.1 show that it is possible to achieve an average accuracy of 87.6% even with
few training data and simple features. The confusion matrices show that the classes

Figure 4.6 The confusion matrix for kNN (left) shows particular confusion among dribbling
and good results for jump shots. The confusion matrix for Random Forest (right) shows
a slightly better per-class performance and equal confusion among the different dribbling
actions.

low dribbling and high dribbling are slightly better recognized than crossover. Above-
average recognizable are jump shots. The recognition of this class is already possible
with an accuracy of 96,6%. Due to the good accuracy, but fluctuating precision, it can
be stated that the values of the features formed vary greatly, but the classification is
nevertheless largely correct. This suggests that in the further course of research, the
annotation of the training data must be carefully examined again and, if necessary,
improved. Both classifiers vary in their results in terms of precision and recall. This
leads to the conclusion that in future works more classifiers should be tested with
our data. An average accuracy of 87.5% is not yet optimal. This still leaves room for
improvement of the system. An extension or refinement of the used features would
result in an improvement of the algorithm. The presented application setup shows a
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Table 4.1 The accuracy, precision, and recall performance in percent for all classes: fast
dribbling (fd), crossover (co), high dribbling (hd), jump shot (js), and background data
(void), together with the best-performing parameters per classifier.

k-Nearest-Neighbor
Class ld co hd js void
Accuracy 76.5 81.4 81.0 94.5 87.7
Precision 43.2 57.7 51.8 85.5 67.7
Recall 56.0 27.0 58.4 87.6 74.2
F1-Score 49.0 37.0 55.0 87.0 71.0

Hyperparameters
n neighbors=4; leaf size=10; algorithm=kd tree;
metric=minkows; weights=distance; p=1

Random Forest
Class ld co hd js void
Accuracy 83.5 83.0 82.4 96.6 91.9
Precision 62.4 56.3 55.5 89.6 82.0
Recall 44.2 67.8 61.5 94.2 76.0
F1-Score 52.0 62.0 58.0 92.0 79.0

Hyperparameters
n estimators=10; max features=auto; min sample leaf=1;
min sample split=2; max depth=None; bootstrap=true

novel combination that works well under laboratory conditions and with hardware
comparable to the design and comfort of smartwatches.

4.1.3. Discussion

In this section, the most related work of [155] is compared to our proposed method.
Furthermore, the differences, as well as the advantages and disadvantages of both
approaches will be discussed. The technical setup of [155] consists of five self-developed
boards with installed IMU sensors. The hardware needs to be placed on the player’s
body. One needs to be attached at the lower back, and each one on both legs and feet.
Those five devices are recording the data independently from each other. The recorded
data run through the common known processes of a machine learning application, i.e.
preprocessing, segmentation, feature extraction, and classification. For recognizing
a specific activity a decision tree has been developed. Wherein, the first step is to
distinguish between a standing and moving activity. Only after a moving activity has
been recognized they decide which movement has been executed. Ten features are
utilized to calculate the correct class, for every segment of data each accelerometer, in
a total of four values, is obtained and transformed into a feature vector. The used
features are range, sum, mean, standard deviation, mean crossing rate, skewness,
kurtosis, frequency bands, energy, and number of peaks above a threshold.

The sampling frequency that is used was first set at 200 Hz but was down-sampled
to 40 Hz for the accelerometers due to redundant data. In contrast to this, the
approach presented comes with a single IMU worn at the wrist, which is the most
active part of the body while playing basketball for the player who currently owns the
ball. As a result of this, the focus of our system is set on the direct interaction with
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the ball. The used features are limited to mean and standard deviation for every axis
of the accelerometer. Therefore the setup is less complex compared to [155]. Both
approaches are evaluated with the signals of three participants. The lower complexity
of the experiment is at the same time its greatest advantage. The small number of
devices involved results in less redundant data. In addition, the system offers less
space for disturbing factors. Furthermore, with only one device that the player has
to wear on the body, the system offers better wearing comfort and has less impact
on the player’s performance. As other works already depicted, for example, [53], it is
also possible to detect walking or running activities by only wearing one wrist-placed
IMU sensor. Due to these circumstances, we would prefer a test setup as proposed by
us and try to improve it further to be able to classify more activities and improve the
accuracy.

4.1.4. Conclusions

We argue in this work that wristwatch-based motion sensors are ideally placed to
detect basketball-relevant actions and gestures. The results of this first feasibility
study suggest that it is possible to classify different movements of a basketball player
using an inertial sensor that is worn on the wrist. Through this feasibility study, it is
now possible to expand the system and add more activity classes. By completing the
system and the resulting possibility to recognize all actions of a basketball game only
by means of acceleration data, it is possible in the following to recognize the actions
of players in real-time and without the help of video data annotation. This enables a
live analysis system that is able to visually display the recorded games and, in the
next step, develop the system for live game analysis. Furthermore, one could use the
system for training purposes and thus design, for example, a feedback system that
gives the training player feedback as to whether the action he was currently performing
was technically correct. This would be especially useful for shooting training: The
board could be equipped with visual feedback reflecting the correctness of the action
performed, or offer more detailed action analysis.
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Section 4.2

Hang-Time HAR

[92] Hoelzemann, Alexander et al.
Hang-Time HAR: A Benchmark Dataset for Basketball Activity Recognition
Using Wrist-Worn Inertial Sensors
June 2023, MDPI Sensors 2023, 23(13), 5879, Special Issue ”Inertial Measure-
ment Units in Sport”
https://doi.org/10.3390/s23135879

Portions of the original publication have been removed or edited for inclusion in
this thesis. However, no changes were made that altered the results or conclusions
presented in the original work.
Contributions:

• All authors contributed to the conceptualization of the study.
• Julia Lee Romero and I recorded and annotated the dataset.
• I implemented the feature analysis and the corresponding visualizations.
• Marius Bock implemented the Deep Learning Analysis and the correspond-

ing visualizations.
• Kristof Van Laerhoven and Qin Lv have guided this work and assisted in

the methodologies.

This section presents a benchmark dataset for evaluating physical human activity
recognition methods from wrist-worn sensors, for the specific setting of basketball
training, drills, and games. Basketball activities lend themselves well for measurement
by wrist-worn inertial sensors, and systems that are able to detect such sport-relevant
activities could be used in applications of game analysis, guided training, and personal
physical activity tracking. The dataset was recorded from two teams in separate
countries, the United States of America (USA) and Germany, with a total of 24 players
who wore an inertial sensor on their wrist, during both a repetitive basketball training
session and a game. Particular features of this dataset include an inherent variance
through cultural differences in game rules and styles as the data was recorded in two
countries, as well as different sports skill levels since the participants were heterogeneous
in terms of prior basketball experience. We illustrate the dataset’s features in several
time-series analyses and report on a baseline classification performance study with
two state-of-the-art deep learning architectures.

4.2.1. Introduction

Human activity recognition (HAR) systems aim to track people’s physical movements
and categorize them according to predefined activity classes or clusters. Methods
from machine learning, and especially deep learning, are applied in order to classify
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samples of sensor data into predefined classes. According to [61], only 30 datasets
in total have ever been released publicly and 11 out of the 13 most cited datasets in
the HAR community were released in 2015 or prior. Such datasets, especially the
older ones, are commonly recorded in laboratories and follow strict activity protocols
and movement patterns. Since scientists lack solid annotation methods and tools
for recordings in-the-wild, they tend to fall back to a controlled lab environment, in
which visual systems, often cameras, can be installed to facilitate labeling the sensor
data in hindsight. Due to the labor-intensive work of labeling data, the number of
participants is often limited. Significant hurdles for experiments conducted in-the-wild
lead to an imbalance in the number of publicly available datasets from controlled
environments in comparison to uncontrolled environments. However, depending on
the design of the experiment itself, a sports environment, e.g. Figure 4.7, can be
seen as a semi-controlled environment, since its recording sessions can include both
practice drills (controlled) and game sessions (uncontrolled). Due to the nature of the
sports domain, this data contains highly variable and dynamical movement patterns,
which exhibit high intraclass variability, as well as high intersubject variability [142]
due to gender, height, weight, personal play style, and athletic ability of the subject.
These differences are important in real-world scenarios, and classifiers, in general,
perform worse on in-the-wild datasets than on lab-recorded datasets due to effects

Figure 4.7 A scene and activities from the dataset: Offensive play of player 12 (yellow)
and player 6 (red), see Table 6, with player 12 dribbling the ball (1), (2), and then passing
(3) to player 6. Player 6 then performs a layup (4). Video frames 1–4 and the performed
activities are highlighted in the time-series below. The activity running is marked as yellow,
layup as red, dribbling as mauve and pass is colored in blue.
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such as weak labeling [154] or smoothness in the performed activities [69]. Therefore,
providing a publicly available dataset containing complex sports-related activities can
have an important impact on how we design and validate our future HAR algorithms
and gives researchers the security of a semi-controlled environment with precise labels
based on video recordings.

Many previous studies, as summarized in Table 2 (for sports), Table 3 (for basketball),
and earlier published surveys (e.g., [168, 51]), demonstrate that there is an interest in
using inertial measurement unit (IMU)-based wearable solutions for activity recognition
in sports. Professional athletes use sensor-based training methods to improve their
sporting skills. The German professional soccer clubs, Hannover 96 and 1. FC
Magdeburg utilizes the commercial body-worn IMU sensors, Vmaxpro [31], which
monitors the athletes’ movements and presents training recommendations, including
specific strength training exercises, via smartphone for the trainer and athlete. In
2021, the sports fashion company Adidas released a sensor-equipped inlay sole for a
soccer shoe [7], which is capable of detecting soccer-specific activities. Similarly, in
2020 the Finnish-based company SIQ [189] released a sensor-equipped basketball with
feedback aiming to improve players’ shooting skills.

Contributions: This dataset is the first publicly available dataset with sensor-based
basketball activities collected from teams of players doing both structured practice
drills and an unstructured game. The classes included were selected by researchers
with many years of experience in playing basketball and represent a full range of
basketball activities that cover key aspects of the sport. The activities included show
high dynamics, complexity, and variability within the same subject (due to different
execution styles) and also between subjects (due to experience and play style). Since
recordings are split into warm-up, drill, and game sessions, the dataset provides a
mix of controlled and uncontrolled environments. The game shows a higher dynamic
because of the influence of other players and a higher pace than that in the drills. This
setup can be seen as a transition from a controlled environment to a semi-controlled
recording environment. Because the dataset does not contain information about
successful scoring, it is not necessarily meant to be used for skill assessment. However,
the metadata does contain information about the players’ experience (novice or
expert). Novices are players with little prior experience in playing basketball. Players’
execution of activities can therefore be expected to display a large variance. Since the
dataset was recorded from 24 participants (roughly the size of two complete teams)
across two continents, it also includes the inherent differences within the rule sets
played by the International Basketball Federation, franz. Fédération Internationale
de Basketball (FIBA), in Europe and the National Basketball Association (NBA) in
Northern America. This is a unique setup that is not available in other sports.

Impact: This dataset can be used by the Ubiquitous Computing community to
tackle a variety of research questions in the area of Human Activity Recognition. A
(sports) dataset of this scope and study design is not yet publicly available, since
it contains the same set of activities recorded with the same hardware and sensor
modalities in both controlled and uncontrolled environments. The study is multi-
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part where some parts are controlled by prescribed activities and other parts are
uncontrolled, such as a “free-movement” game. The nature of basketball is such that
this mix of controlled conditions is easily captured in video and manually labeled in
detail. The multi-part study adds complexity and diversity to the data and gives
researchers a new playground to benchmark algorithms and approaches as well as
(possibly) spot deficiencies in existing state-of-the-art architectures. Furthermore,
the game phases include data that models team and game dynamics. This feature
is something that can be explored more deeply by future studies with regard to
group activity recognition. This work provides layered labels, or multi-labels, as
certain activities consist of a series of other activities. The complex characteristics of
the data and the differences due to the location can help to address open research
problems, such as Transfer Learning and Data Augmentation, recognizing complex
activities in dynamic and real-world environments. Further development in these
areas may include - but is not restricted to - research focused on data recording
techniques and annotation procedures, data preprocessing (e.g., data segmentation),
feature extraction, or developing new deep learning methodologies and evaluation
methods. Methodology-wise, we restricted our recording setup to commercial and
mostly open-source recording components (in particular the smartwatches and their
firmware). Such a low-effort recording setup has the significant advantage of being
deployable in spontaneous situations and would not be restricted to basketball - if
further developed. The labeling setup builds on previous work by the community and
focuses on reproducibility by other research labs.

4.2.2. Motivation

Basketball is played across the globe, but the two of the most dominant rule sets
are (1) Fédération Internationale de Basketball (FIBA) [70], which is played by:
Basketball Champions League, Euroleague Women, Basketball Champions League
Americas, FIBA Europe Cup, EuroCup Women, FIBA Asia Champions Cup, FIBA
Intercontinental Cup, Olympic Games - and, the most important basketball league
worldwide - (2) National Basketball Association (NBA) [153] - played in North America.
The two sets of rules are similar but differ in several details1. For example, in contrast
to the FIBA rules, NBA rules allow players to do a so-called 0-step - an additional
step between catching the ball and the first dribble. Other differences include game
time (40 minutes for FIBA games vs. 48 minutes for NBA games) and basketball
court dimensions (28m x 15m for FIBA vs. 28.7m x 15.2m for NBA). In addition
to these differences, the play styles in professional European and North American
basketball tend to be slightly different as well. NBA teams often build their game
around one or a few star players and a more aggressive defense. In contrast, European
teams focus more on team play and a compact defense.

Basketball is a very dynamic and highly intense sport that combines fast movements,
quick switching between offense and defense, and diverse execution of activities.

1https://www.fiba.basketball/rule-differences
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Activities in this sport can be characterized into one of the following activity categories
(1) short actions or micro-activities (passing or rebounding), (2) complex activities
(shooting the ball, layups), and (3) periodical activities (sitting, standing, walking,
running and dribbling). These activities are performed differently by every player,
but also by the same player depending on factors such as in-game situations, physical
fatigue and stress level, mental state, and improving skills over time. For that reason,
the three research challenges defined in 2014 by Bulling et al. [45] – (1) intraclass
variability, (2) interclass similarity, and (3) the NULL-class problem – are all reflected
by the dataset presented here. These three challenges become more significant with
less structured, real-world data, such as data from a real basketball game. In a game
situation where external influences, such as other players, affect the gameplay and
physical movements, these characteristics are more apparent.

A dataset like the one presented in this article, which is recorded during two real
basketball training sessions lasting between 1 - 2 hours, also offers the opportunity to
close the gap between controlled and uncontrolled study setups. After a few minutes in
the warm-up session, participants reported that they forgot that they were monitored
through their smartwatches and nearby cameras, and behaved like they would in a
usual training session. We argue that the basketball game part of the dataset equally
encouraged participants to move naturally [69], [14]. Results show that even though
science is advancing fast in the area of HAR, it is still challenging to train machine
learning models that are capable of reliably detecting activities in naturalistic scenarios,
such as [26]. In order to overcome this challenge, we consider the next important step
in HAR to be that future algorithms are developed and evaluated on realistic datasets.
Sports HAR datasets in general can be the perfect setting for researchers to do exactly
this and they could allow for deeper insights for sports scientists as well as the deep
learning and HAR community. Specific datasets that contain sports activities, e.g.,
DSADS [11] or the study presented by Trost et al. [208], often contain a variety of
different sports in one dataset and reduce entire sports, such as playing basketball, to
single target classes to be detected. The UTD Multimodal Human Action Dataset
[48] contains four repetitions from eight subjects of 27 different activities from a
variety of domains, such as sports. However, the included sports activities are limited
to one specific activity per sport, e.g., shooting a basketball. Activities from these
datasets are not representative of an entire sport. Inertial sensor-based and sports-
specific datasets that capture the variability and complexity of a sport are not yet
available in public repositories. Even recently published datasets, such as TNDA-HAR
[229], focus on simple periodical locomotion activities, and additionally, available
datasets that are used by the Ubiquitous and Pervasive Computing community rarely
combine (1) scope, (2) quality, (3) variability, (4) complexity, and (5) reproducibility
in the same benchmark dataset. The basketball data published by [11, 208, 48]
does not represent the same level of complexity regarding the recently mentioned
characteristics with the dataset we present since the class defined as basketball is
highly simplified. We, therefore, highlight this as one of the main motivations for
such a dataset. The following Table 4.2 gives an overview of relevant HAR datasets.
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As one can see in the Environment column, most of the datasets are recorded in
controlled environments, partly because data collection is easier, and partly due to
the lack of annotation methods without synchronized video recordings. Tools such as
[137], [157] or [166] are designed to be used in hindsight, with video footage and with
well-defined synchronization gestures at the beginning and end of the video. Among
the datasets presented in Table 4.2, only ActiveMiles [170] and Leisure Activities
[26] are recorded in an uncontrolled environment. ActiveMiles is limited to simple

Table 4.2 The most relevant datasets used by the HAR community, as well as examples
for datasets from uncontrolled or semi-controlled environments (with challenges based on
Table 1 from [51]).

Dataset Device # Subjects # Classes Domain Environment Challenges Published

HHAR [195] Smartphone 9 6 Locomotion
Controlled
(Lab)

Multimodal,
Distribution Discrepancy

2015

RWHAR [198]
Smartphone,
Wearable IMUs

15 8 Locomotion
Controlled
(Outside)

Multimodal 2016

Opportunity [177]
Wearable IMUs,
Object-Atteched Sensors,
Ambient Sensors

4 9
ADL, Kitchen
Activities

Controlled
(Lab)

Multimodal Composite
Activity

2010

Opportunity++ [55]
Wearable IMUs,
Object Attached Sensors,
Ambient Sensors

4 18
ADL, Kitchen
Activitie, Video,
OpenPose tracks

Controlled
(Lab)

Multimodal Composite
Activity

2021

PAMAP2 [173] Wearable IMUs 9 18
Locomotion,
ADL

Controlled
(Lab, Household)

Multimodal 2012

Skoda [237] Wearable IMUs 1 12
Industrial
Manufacturing

Controlled
(Industrial
Manufacturing)

Multimodal 2008

UCI-HAR [12] Smartphone 30 6 Locomotion
Controlled
(Lab)

Multimodal 2013

WISDM [111] Wearable IMUs 29 6 Locomotion
Controlled
(Lab)

Class Imbalance 2011

UTD-MHAD [48] Wearable IMUs, Video 8 27 Gestures, Sports
Controlled
(Lab)

Multimodal 2015

Daphnet [18] Accelerometer 10 3 ADL, Locomotion
Controlled
(Lab)

Simple 2009

DSADS [11] Wearable IMUs 8 19 Sports, ADL
Controlled
(Lab & Gym)

Multimodal 2010

ActiveMiles [170] Smartphone 10 7 Locomotion
Uncontrolled
(In-The-Wild)

Real-World 2016

Baños et al. [20] Wearable IMUs 17 33 Sports (Gym)
Controlled
(Gym)

Multimodal 2012

Leisure Activities [26] Wearable IMU 6 6 ADL
Uncontrolled
(In-The-Wild)

1 activity
per subject

2012

WetLab [181]
Wearable IMU,
Egocentric Video

22 9
Experiments
(Wetlab)

Semi-Controlled
(Wetlab)

Multimodal 2015

TNDA-HAR [229] Wearable IMUs 23 8 Locomotion
Controlled
(Lab)

Multimodal 2021

CSL-SHARE [122]
Wearable IMUs, EMG,
Electrogoniometer,
Microphone

20 22 Locomotion, Sports
Controlled
(Lab)

Multimodal 2021

Hang-Time HAR
Wrist-worn
accelerometer

24 15 Sports (Basketball)
Controlled and
uncontrolled
(Gym)

Different recording
environments,
Class Imbalance

2023

locomotion activities, and Leisure Activities consist of six participants’ wrist-worn
inertial data over a week where each of them performed one specific leisure activity
daily. The WetLab dataset can be seen as recorded in a semi-controlled environment,
where participants were told to follow a specific protocol for an experiment in the
wet lab, but they were allowed to execute steps in their preferred order and at their
own speed. This environment in combination with the sporadic activities makes it a
difficult dataset to learn for machine or deep learning models with results of ∼40%
F1-Score. Stoeve et al. [196] took IMU-based activity recognition from the lab to
a real-world soccer scenario where passing and shooting in real soccer games are
recognized. This study did not publish the dataset publicly, however. We consider
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sports in general to be a highly interesting scenario for benchmark datasets that are
aimed at further developing learning mechanisms that are also capable of detecting
periodic activities, such as sitting, standing, walking, running, short or micro-activities
such as passing, or rebounding and also complex activities such as shooting a basketball
or performing a layup.

Finally, we summarize the main features of our Hang-Time HAR dataset as the
following:

(a) Hang-Time HAR consists of wrist-worn inertial data from 24 participants from
two teams and from two countries with two different rule sets, performing 10
different basketball activities.

(b) Hang-Time HAR is recorded in three different types of sessions: (1) warm-up,
(2) drill, and (3) game. The drill sessions are executed in a structured way where
participants were instructed to execute single specific activities, in a predefined
order. However, the warm-up and game session followed the teams’ typical
routine and were not tied to an activity protocol and participants were allowed
to play as they preferred.

(c) Hang-Time HAR includes considerable variety, with both simple and periodic
activities, short or micro-activities, and complex activities. Hang-Time HAR
also explicitly contains data from participants with different experience levels
and following different basketball rule sets.

(d) Hang-Time HAR is labeled on four different layers: (I) coarse, (II) basketball,
(III) locomotion, and (IV) in/out. This will allow future researchers to combine
labels, such as for example dribbling + walking, dribbling + running, or jump
shots. This results in more complex activities and it becomes more challenging
for the classifier to perform well.

4.2.3. Methodology

This section provides detailed information about the study parameters, the hardware,
and software used to record the data, the preprocessing and labeling process, as well
as recommendations for other researchers for recording IMU data. The second part of
this section describes in detail the dataset in regard to the class characteristics.

Study Design. This dataset contains data collected during two separate periods
and following the same study protocol. The first author supervised Study 1 at the
University of Siegen, following FIBA regulations, which did not require Institutional
Review Board (IRB) review. The second author conducted Study 2 at the University
of Colorado Boulder, according to NBA regulations, and the study is IRB-approved.
In subject recruitment, we excluded any person with a disability impairing their ability
to play basketball and any person under the age of 18 years. Four modes of data
were collected during the study: information collected manually by researchers, online
questionnaires, smartwatch accelerometers, and video cameras in order to annotate
the accelerometer data. However, the video data contains information that could
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de-anonymize our participants and is therefore not included in the dataset.

Prior to the study, participants signed a consent form that outlined the study protocol
and risks of harm, and they were informed that the questionnaire and accelerometer
data will lack any personally identifiable information and that a dataset containing
these two modes of collected data will be made publicly available. At the start of
the study, participants received one smartwatch and were assigned a unique identifier.
The researchers manually collected the unique ID and name of the participants, in
order to allow them to retroactively request for their data to be deleted prior to the
release of the dataset. Participants filled out an online questionnaire collecting age,
height, weight, gender, dominant hand, and history of playing basketball. Participants
were then instructed to wear the smartwatch on their dominant hand and perform a
sequence of basketball-related activities (i.e., standing, walking, running, dribbling,
shooting, layups, and a game). Two cameras were used to record each study, see
Figure 4.8, and the footage was combined for the labeling process. The study protocol

Figure 4.8 Our study design used 24 subjects with 13 subjects living in Germany and 11
subjects living in the United States of America. In each study, the players simultaneously
performed the drills and game while the entire basketball court was monitored using two
wide-angle cameras. After the study, the camera footage was used for detailed annotation of
all activity-relevant data.

is divided into two parts. The first part is designed to collect controlled data by
having participants complete a sequence of predefined activities for a defined period
of time, while this first part is controlled, it also simulates real-world basketball drills
in practice sessions where players repeatedly practice a certain activity (e.g., layups,
shooting, dribbling, running). The second part is a basketball game between two
teams each with five players per team on the court, and extra players rotated into the
game. Video cameras were set up along the sidelines of the court in order to record
each participant’s activities for the labeling process. The differences between the two
studies as well as the specifications of the recorded videos are documented in Table
4.3. We have several recommendations for the collection of similar datasets based on
our own experiences conducting the study and annotating the data. In the context
of this study, we recommend setting up two wide-angle lens cameras, e.g., GoPro,
side-by-side with each one capturing one half of the court and additionally instructing
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Table 4.3 Differences between the two studies and a description of the camera recording
settings and file sizes for each study and camera employed.

Ball
Regulation

Number of
Participants

Study
Duration

Video Camera
Duration
(Minutes)

Resolution
(Pixels)

File
Size

FPS
SD Card
Capacity

Europe FIBA 13 110
GoPro Hero 4
GoPro Hero 8

110
110

1920 x 1080
1920 x 1080

20 GB
20 GB

60
60

64 GB
64 GB

North
America

NBA 11 76
GoPro Hero 8
Sony NEX6

76
40

2704 x 1520
1920 x 1080

26 GB
5 GB

60
60

125 GB
32 GB

participants to wear uniquely colored clothing to aid the labeling process. We found
that the cameras have a short battery life and it was necessary to bring extra batteries
or a portable power bank to continuously charge the camera for the duration of the
study. Finally, in order to synchronize the video footage with the smartwatch data, we
recommend having participants complete a synchronization gesture, such as jumping,
simultaneously on video at the start and end of the study.

Hardware: Each subject’s inertial data was captured by an open-source smartwatch,
which was fitted to the user by the author conducting the study to fit comfortably
around the dominant wrist. This watch was used to record 3D accelerometer data at
∼50 Hz and at a sensitivity of ±8 g, This watch was used to record 3D accelerometer
data at ∼50 Hz and at a sensitivity of ±8 g, using the Bangle.js smartwatch with our
custom firmware [211] The watch firmware was programmed to record the acceleration
data and display the current time and date. It did not need pairing to other (e.g.,
Bluetooth) devices during the study. The axis orientation, viewed from above, is
as follows: +X-axis points at a 90° angle to the left, +Y-axis points at a 90° angle
forward and the +Z-axis points upwards at a 90° angle.

Controlling the Bangle.js Smartwatches: The Bangle.js smartwatches can be
controlled with a custom smartphone app, which is implemented as an open-source
cross-platform solution using Flutter [79] and is made available on the Apple AppStore,
the Google Play Store, and on Github [209]. The app communicates via Bluetooth
Low Energy with smartwatches. In order to download the data from the devices after
stopping the recordings, the smartwatches can be connected via Web-BLE with a
local PC. Through a website [210] the devices’ flash storage space can be accessed.
The following Figure 4.9 depicts the procedure of starting the smartwatches. The first
screen of the figure shows the app searching for nearby Bangle.js devices. After all
nearby devices were found, 4 smartwatches in total, one can either start all devices
individually or press the button “Start All” to start all visible devices simultaneously,
screen (2). Both options open a dialogue, screen (3), where the researcher can choose
the sampling rate (Hz), sensitivity (g), and starting time. Available sampling rates
are 12.5, 25, 50, and 100 Hz and the sensitivity can be set to ±2, ±4, and ±8 g. The
smartwatches need to be programmed to start at a preselected full hour. If the device
should start immediately it needs to be set to the current hour. After pressing the
Start button (3), the app connects to either one or all Bangle.js devices, synchronizes
the time, and programs the preselected parameters. We did not evaluate how many
Bangle.js smartwatches can be started simultaneously; however, we did not encounter
any issues while starting up the 14 devices at the same time.
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Figure 4.9 Our custom smartphone app was used to synchronize all smartwatches’ real-
time clocks at the beginning of each recording through Bluetooth Low Energy (BLE) serial
commands and start recording simultaneously. After the app is started, it first scans for
all available Bangle.js smartwatches. After that, the user has the option of either starting
all devices simultaneously or individually. Before the smartwatches are started, the user is
asked to enter the desired parameters (sampling rate, sensitivity, and start time). After
pressing the start button, all smartwatches are started with the desired parameters.

Obtaining Ground Truth. The raw accelerometer data is stored in CSV format.
The labeling of ground truth was performed in hindsight with the multimedia annota-
tion tool EUDICO Linguistic Annotator (ELAN) [43], which was originally developed
as a linguistic annotation tool. The tool has the functionality to visualize additional
time-series data [202] and display both modalities together. Before the annotation of

Figure 4.10 Illustration of the multi-tier labeling approach, depicting the inertial data of
subject 05d8 eu (top), the ground truth locomotion Layer (middle), and the ground truth
basketball layer (bottom).
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the data, we ensured that the sensor and video data were aligned with each other by
using a jumping as a synchronization gesture with a few seconds of sedentary activity
before and after the jump. The accelerometer data were then manually moved to the
correct position. Figure 4.10 shows exemplary ground truth for Locomotion and the
Basketball layer of subject 8 (with ID 05d8 eu).

Most of the samples are labeled as not labeled, especially on the basketball layer,
since basketball activities tend to occur sporadically (whenever a player has the ball).

Dataset. The term Hang-Time generally refers to the time a player spends in the
air while shooting or passing a ball. This term, however, has been used by sports
magazines [190], game developers [225] or producers of basketball equipment [28] as an
inspiration to name their product. We decided to name our dataset Hang-Time HAR
- which is focused on the time-series analysis of basketball activities - due to its high
memorability and its short and succinct form. The name represents to us the dataset’s
direct relationship between basketball, time-series data classification and therefore
human activity recognition. The name was consensually approved by the authors.
Hang-Time HAR provides accelerometer data recorded with ∼50 Hz and ±8 g. Even
though a full IMU has not been used, the data provided can be specified as complex
due to the given classes. Table 4.4 provides additional meta-information about every
participant. The same information is available in the file meta.txt and downloadable
from the dataset repository. In total, we recorded ∼1:50:00 h of 13 participants from
Germany and ∼1:16:00 h of 11 participants from the USA. The study was conducted

Table 4.4 Meta information as given through the study questionnaire by all participants, 13
from Germany, Europe (eu) and 11 from USA, North America (na). A total of 3 participants
were female and 21 were male. The players were between 18 and 39 years old. Through
self-assessment, in which participants were asked to evaluate their experience in basketball, 8
players responded with novice and 16 with expert. Two people were left-handed. Additional
about the anthropomorphy of our participants are excluded due to restrictions given by the
Ethical Council of our university. Note: Subject 2dd9 na wore the smartwatch on the left
wrist even though the right hand is dominant.
Europe
# 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13.
ID e90f eu b512 eu f2ad eu 4991 eu 9bd4 eu 2dd9 eu ac59 eu 05d8 eu a0da eu 10f0 eu 0846 eu 4d70 eu ce9d eu
Age 25 39 20 28 19 34 29 19 20 35 18 36 25
Dom. Hand right right left right left right right right right right right right right
Height (cm) 191 167 178 188 190 196 190 178 193 172 171 188 175
Weight (kg) 85 85 67 100 80 83 83 77 87 773 60 74 73
Gender male male male male male male male male male male male male male
Experience expert expert expert expert expert expert expert expert expert expert novice expert expert
North America
# 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24
ID b512 na 9bd4 na 2dd9 na 4d70 na c6f3 na f2ad na a0da na ac59 na 10f0 na 0846 na ce9d na
Age 27 26 24 26 24 25 28 28 27 30 24
Dom. Hand right right right right right right right right right right right
Height (cm) 165 178 175 183 180 170 170 173 154 165 188
Weight (kg) 68 65 84 68 83 69 73 65 49 65 73
Gender male male female male male male male male female female male
Experience expert novice novice expert novice expert novice expert novice novice novice

in collaboration between two laboratories from the University of Siegen, Germany, and
the University of Colorado Boulder, United States of America. In total 24 subjects
participated in the study. Participants from Germany were mostly players from a
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semi-professional basketball team that participates actively in a basketball league.
Participants from the USA were mostly graduate students with mixed prior experience
in basketball. We originally included a void class for miscellaneous movements outside
of the primary labeled ones, such as drinking from a water bottle or tying shoes. These
were mostly performed during rest breaks. The samples annotated as void resulted
in an irrelevant small class, which could not be recognized by our classifier because
they are most often performed in conjunction with one of the locomotion classes.
We ultimately decided against including this void class, since it was very rare that
players were not performing one of the 10 classes of locomotion or basketball activities.
However, the data that is not annotated as one of the aforementioned classes are
categorized as not labeled. This class can be seen as a very noisy but realistic void
class that can be used by researchers who focus on deeper insights in the NULL-class
problem defined by Bulling et al. [45] or who would like to evaluate deep learning
architectures that are focused on the robust classification of void data. This class
mostly contains data during resting periods or transitions between sessions. However,
since the data is recorded under real-world conditions, many participants did not
sit and rest during these periods, instead, they tended to walk through the gym,
shoot the ball, or perform individual dribbling exercises. One of the players, namely
2dd9 na, wore the smartwatch accidentally on their non-dominant hand, out of habit.
We decided to keep this participant in the dataset since this participant represents
something that could easily happen in real-world scenarios. Therefore, we think that
the participant has added value to the dataset and can be useful for certain studies at
a later date.

Preprocessing: We decided to keep the preprocessing on the raw data from the
smartwatches to a minimum, as these were already provided with a timestamp and
in the g unit. The smartwatch’s accelerometer samples’ timestamps contained slight
(<2%) deviations, so we adjusted the time-series by resampling to ensure that all
data maintains exact 50 Hz equidistant timestamps. Other common methods of
preprocessing inertial data for activity recognition, such as rescaling or normalization
to improve machine learning results, were not applied.

Labeling: The data was labeled by two experts, one from each institute, and
labeled on 4 different layers: (I) coarse, (II) basketball, (III) locomotion, and (IV)
in/out. After both experts had finished the labeling, the labels were checked again by
expert 1 using visual inspection, see Figure 4.10, and corrected if necessary. Using
this labeling methodology, we aimed to obtain as precise as possible annotations with
human annotators, where some degree of human error and mislabeling cannot be
completely ruled out. Especially in the game phase, activities are often performed
both quickly and briefly, which can lead to minor deviations in labels between manual
annotations.

Specifically, (I) coarse separates the samples into different sessions, including (1)
warmup; (2) drills: (a) sitting, (b) standing, (c) walking, (d) running, (e) dribbling,
(f) penalty shots, (g) two point shots, and (h) three point shots; (3) game; and (4)
in/out. By keeping the information whether a shot is either a (f) penalty shots, (g)
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two point shots, or (h) three point shots later studies can use these labels to distinguish
between different shot distances. The label (3) game indicates when a game was played.
The study from Germany contains 2 game sessions with ∼10 min each and the study
conducted in the USA contains one session of ∼22 min. The two layers (II) basketball
and (III) locomotion contain the labels that correspond to one of the classes shown in
Table 4.5, as well as the label not labeled, which is used whenever the information of
what exactly a player is doing at a specific moment, could not be seen in the ground
truth video or between sessions. The fourth layer in/out is only relevant during the
game session since this layer indicates whether a player is on the court or not. However,
this layer can be seen as additional meta-information, which can be relevant for future
researchers. It has not been used for deep learning validation, since the challenge of
classifying if someone is active or non-active seems to be trivial in this scenario.

Class Definitions: The following Table 4.5 contains the class descriptions and
Figure 4.11 visualizes one example for each class. Sitting and standing mostly show

Table 4.5 Detailed class description for every class included in the dataset. The dataset is
multi-tier labeled with 4 different layers (I) Coarse, (II) Locomotion, (III) Basketball, and
(IV) In/Out. The coarse layer is not listed, since it is meant to indicate to which session an
activity belongs. Relevant classes are classes 2–13. However, the classes in and out were not
used in our validation.

All Layers
1. not labeled All samples in between sessions, or if it was not possible to recognize the activity in the video (e.g. due to occlusions).

In/Out

2. In
Indicates that the subject is currently actively
participating in the game.

3. Out
Indicates that the subject is currently not actively partici-
pating in the game. This class mostly included sitting
or walking.

Locomotion Basketball

4. sitting Sitting on the floor or the reserve bench. 9. dribbling
Dribbling while performing one of the following locomotion
activities: (3) standing, (4) walking, (5) running.

5. standing Standing still. 10. shot
A basketball shot with and without a jump. Included are
penalty shots, 2-point and 3-point shots.

6. walking
Walking at the average walking speed of
a human (4-5 km/h).

11. layup
A layup is a complex class that involves: grabbing the ball,
making 2 steps (FIBA) or 3 steps (NBA), jumping and put-
ting the ball in the basket.

7. running

Running is a metaclass for all velocities of
running. Therefore, it contains jogging
(5-6 km/h), fast running (6km/h <10 km/h)
and sprinting (>10km/h).

12. pass
Passing the ball. Included are chest passes, bounce passes,
overhead passes, one-handed push passes and so-called
baseball passes.

8. jumping
A jump typically is part of a more complex
activity, like (10), (11) or (13).

13. rebound
The player jumps and catches the ball mid-air with one or
two hands.

sedentary acceleration patterns with sporadic movements of people moving their wrists,
while walking and running show the commonly known oscillating patterns. Dribbling
can vary depending on how a player is dribbling. For example, a player can dribble
with their dominant or non-dominant hand, dribble the ball by switching hands, or
do even fakes and tricks. These styles have slightly different characteristics and can
be distinguished, see [89]. However, we decided to summarize these differences in one
class. Even when the ball is dribbled with the non-dominant hand, the data from
the dominant hand shows the oscillating characteristics of the dribbling movement.
Jumping is an assembled class that also includes jumps belonging to either a shot,
rebound, or layup activities. These classes share the trait that the jump - a peak on
the coronal plane - is clearly visible. However, the classes differ mainly in the sensor
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Figure 4.11 Exemplar time-series data for the included activities. The examples shown
for the periodic activities sitting, standing, walking, running, and dribbling contain 1200
samples (approx. 24 s). In order to better represent the complex activities shot and layup
as well as the micro-activities pass and rebound. Jumps are marked in classes where the
activity occurs. Such short periods were summarized in the activity jumping.

data prior to the peak. The shot contains the player grabbing and lifting the ball
before jumping mostly straight up to shoot or, in the case of a penalty shot, performed
in a standing position. A rebound is mainly a clear jump upwards or in the forward
direction and a layup contains the combination of running 2 or 3 steps (depending
on FIBA or NBA rules), a jump, and throwing the ball in the basket while jumping
forward. The pass is a very short activity characterized by a forward acceleration on
the sagittal plane. Figure 4.12 shows how the classes are distributed over the sessions.

As one can see, locomotion activities such as walking and running are distributed
almost equally over the sessions. Sitting was not performed during the warm-up session
and layup is almost exclusively performed during warm-up and the game. Samples
labeled as dribbling and shot were mostly recorded during the drill sessions and, similar
to layups, performed way less in the game. Rebound is the least recorded activity.
The imbalance is caused by the realistic recording setup of the dataset and reflects
the reality of a training session including training games in basketball. The imbalance
should be considered a challenge rather than an obstacle since all data recorded in real
environments show such characteristics. Most of the datasets mentioned in Table 4.2
share an imbalance either with regards to the class distribution or study participant
homogeneity. Further, we believe that future studies would benefit from (rather than
negatively impacted by) class imbalance and intersubject variability in the dataset.
Even though evaluation metrics may not reach their maximum easily, we argue that
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Figure 4.12 Class distribution of the Hang-Time HAR dataset. The total number of
samples per class is: sitting : 383,622 (∼2.1 h), standing : 368,189 (∼2.0 h), walking : 1,885,644
(∼10.5 h), running : 1,100,942 (∼6.1 h), jumping : 96,857 (∼0.53 h), dribbling : 878,514 (∼4,8
h), shot : 149,040 (∼0.82 h), layup: 62,393 (∼0.34 h), pass: 86,291 (∼0.47 h), and rebound :
18,886 (∼0.10 h). In total: 5,030,378 labeled samples or ∼27.7 h of data.

this setup is more realistic and more representative of a recreational sport itself and
will help researchers understand open research questions better than a fully balanced
dataset.

Combining Classes: The layers provided in our dataset make it possible to
extend it with additional and more challenging classes. For example, shots can be
distinguished between penalty shots, two point shots, and three point shots by taking
into account the coarse layer. The locomotion layer holds the information if the
activity dribbling was performed while the player was standing, walking, or running.
Therefore, the class definitions in Table 4.5 only contain the basic classes and can be
extended individually - depending on the requirements of one’s project.

4.2.4. Analysis

This section will provide a preliminary inspection of our dataset. The range of methods
employed here includes descriptive statistics, baseline statistical analyses, and machine
learning performance results. Our feature analysis focuses on experts vs. novices
since we believe that this feature is a strong asset of our dataset that needs to be
highlighted. Differences in the data with regard to the players’ experience are visible
through features and can be used in later research to develop systems that react
to these differences, such as supporting and accompanying a player in the further
development of his/her playing skills. If researchers would like to use the dataset as a
benchmark dataset for deep learning experiences, they can exclude one or the other
group.
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Feature Analysis. Our analysis focuses on the representation of intraclass variability
and interclass similarity, as well as clarifying the differences between novices and
experts. Figure 4.13 contains the raw data of approximately 7 min of dribbling while
the person stands, walks, and runs with different velocities. The locomotion speed
increases over time. Through visual inspection, we can already clearly see that the
dribbling patterns differ greatly between novices and experts.

Figure 4.13 Feature analysis of the class dribbling for players 4d70 eu, 10f0 eu, and
05d8 eu (experts) and 2dd9 na, ce9d na, and c6f3 na (novices). The plot consists of 4
columns. (1) Raw data as recorded during the dedicated dribbling drill (approx. 7 min of
data (Germany) and 5 min of data (USA). The X-axis is represented in red, the Y-axis
in green, and the Z-axis in blue color. (2) Standard deviation (diamond shape), median,
interquartile q1 and q3 (rectangle shape) as well as upper and lower fences. (3) Fast Four
Transform [203]. (4) Local maxima [204] (prominence = 1.4 ) calculated using the magnitude
of the input signal (1), every red dot indicates a peak that is interpreted as one dribbling.

The results of the Fast Fourier Transform (FFT), visible in column (3), indicate that
expert players dribble the ball with a wider frequency spectrum than novices, caused
by variations in the dribbling style (changing hands, dribbling low/high or fast/slow,
or doing tricks). Furthermore, the expert players show a higher mean frequency as
well as a higher magnitude column (4) than novice players.

However, this is explainable since player b512 na mostly dribbled the ball at a
walking pace (visible in the video footage) and player 0846 eu has intermediate
dribbling skills, even though the overall skill level can be categorized as a novice.
Additionally, for the features depicted in Figure 4.13, we calculated the arithmetic
mean of dribble per second AM.D. and the Signal-to-Noise-Ratio (SNR), as defined in
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the following equation.

SNRdb = 10 · log10
(
Psignal

Pnoise

)
(4.1)

The experts have a higher rate of dribbles per second than the novices, and this
shows that experts dribble the ball more comfortably resulting in fewer ball losses and
a faster pace, as shown in column (4) of Figure 4.13. More significance is illustrated
in the SNR between the two groups. A higher value means that more noise is present
in the signal, or the ball is dribbled in a less controlled manner, and this is also visible
in the raw data of Figure 4.13.

The Principle Component Analysis (PCA) [184], shown in Figure 4.14, calculated
for the same participants shows, exemplary on the basis of the classes shot and layup,
the intraclass variability but also the interclass similarity mentioned at the beginning.
The first column contains all subjects, the following three columns contain the experts,
and the last three columns contain the novices. The PCA shows that novices follow
less coherent movement patterns. Experts, however, present more similar patterns,
which differ minimally on both component axes of the PCA.

Figure 4.14 Principle Component Analysis of the classes (1) shot and (2) layup. For the
same subjects mentioned in Figure 4.13 and Table 4.6. The colors represent the 6 different
participants included in this figure. 4d70 eu is represented in blue, 10f0 eu in red, 05d8 eu
in green, 2dd9 na in purple, ce9d na in orange, and c6f3 na in turquoise.

Table 4.6 Arithmetic Mean of dribbles/second (AM D.) and Signal-to-Noise-Ratio (SNR)
are listed per subject and separated between experts and novices.

Experts Novices
ID 10f0 eu 05d8 eu 4d70 eu 2dd na c6f3 na ce9d na
AM D. 1.10 1.05 1.04 1.01 1.02 1.01
SNR 3.40 2.97 3.47 5.93 8.43 7.17

The following Figures 4.15 and 4.16 show 10 examples for the same six participants
used in the figures before. The shots show participant-independent patterns that
include a negative peak on the z-axis (jump) followed by a positive peak on the y-
and z-axis (shot). Such a coherent pattern is hardly visible for the layup class.
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Figure 4.15 Ten instances of the class shot for the same subjects as mentioned in Figures
4.13 and 4.14. A clearly visible pattern can be seen in all examples. The length of the
activity typically varies between 1000 and 3000 ms with an average duration of approx. 1700
ms, depending on the subject and the execution-style. The X-axis is represented in red, the
Y-axis in green, and the Z-axis in blue color.

Figure 4.16 Ten instances of the class layup for the same subjects as mentioned in Figures
4.13 and 4.14. The patterns vary by subject and sometimes even differ between instances
of the same subject. This class inherits a strong intraclass and intersubject variability.
The length of the activity typically varies between 1000 and 3000 ms, with an average
duration of approx. 2000 ms, depending on the subject and the execution-style. The X-axis
is represented in red, the Y-axis in green, and the Z-axis in blue color.
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Such perfect examples, as seen in Figure 4.11 are rare for the layup, especially when
the player is contested. The intensity, as well as the execution of the activity, differs a
lot depending on the situation.

Deep Learning Analysis. We investigated a variety of prediction scenarios to
provide a first impression of potential test cases and benchmark scores that can be
achieved using the Hang-Time HAR dataset. As architectures for our classifiers, we
chose to use both a shallow variant of the DeepConvLSTM network [35] and Attend-
and-Discriminate network [3]. Each of the defined training scenarios employs either
a Leave-One-Subject-Out (LOSO) cross-validation or a train-test split to evaluate a
network’s predictive performance. The former (LOSO) involves each subject becoming
the validation set once while all other subjects are used for training the network, while
the latter (split), as the name suggests, simply splits the data into two parts - one
used solely for training and the other used solely for testing. During all experiments,
we employ a similar hyperparameter setup as used in [35]. We further alter the
architecture suggested by Abedin et al. [3] to encompass the findings discussed in [35],
i.e. employing a 1-layered recurrent part and utilizing 1024 hidden recurrent units
for both architectures. Lastly, in order to minimize the effect of statistical variance,
for each test case we calculate the average predictive performance across 3 runs, each
time employing a different random seed drawn from a predefined set of 3 random
seeds. In order to determine a suitable sliding window size, three different window
lengths, i.e. 0.5, 1, and 2 seconds, with an overlap of 50% were evaluated using a
LOSO cross-validation on the complete Hang-Time HAR dataset. Amongst the tested
window lengths results showed little to no difference with the standard deviation of
the macro F1-score ranging only between 0.4% (shallow DeepConvLSTM [35]) and
1.2% (Attend-and-Discriminate [3]). Nevertheless, we determine a sliding window
length of 1 second with an overlap ratio of 50% to be most suited for the Hang-Time
HAR dataset as we expect that:

(a) A smaller window length would not be able to capture enough data, and thus
patterns specific to activities, which could be learned by the network.

(b) A larger window length would capture too much data, increasing the risk of
patterns specific to short-lasting activities being mixed with patterns of other
activities. This would make it less likely that a network learns to attribute only
relevant patterns to short-lasting activities.

During our experiments, we are investigating how well our network generalizes in two
regards:

(a) Subject-independent generalization: As with almost any activity, basketball
players tend to have their own specific traits in performing each basketball-
related activity. Within these test cases, we investigate how well our network
generalizes across subjects by performing a LOSO cross-validation on the drill
and warm-up data of all subjects. During each validation step, the activities
of a previously unseen subject are predicted, and thus the experiments will
determine how well our network generalizes across subjects and whether subject-
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independent patterns can be learned by our architecture.

(b) Session-independent generalization: As previously mentioned, data recorded
during an actual basketball game can heavily differ from ”artificial” data recorded
during the drill and warm-up sessions, as subjects did not have to adhere to any
(experimental) protocol. Thus, the session-independent test cases investigate
how well our network predicts the same activities performed by already-seen
subjects during an actual game. Within these experiments, we train our network
using data recorded by all subjects during the drill and warm-up sessions and try
to predict the game data of said subjects. These type of experiments will give a
sense of how well our network is able to generalize specifically to real-world data
and simulates the transition from a controlled to an uncontrolled environment.
The network learns player-specific patterns from the warm-up and drill sessions
and tries to classify the more dynamic game subset.

In the following, the results obtained during the two test case types will be illustrated.
All results as well as the raw log files of each test case can be found on the projects’
Netpune.ai page2. The used architectures and the code of the performed experiments
are published in our GitHub repository3. Looking at the results in Figure 4.17 and
4.18 one can see that there are major differences regarding how well our network
generalized across study sessions (parts) and across subjects. Overall one can see that
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Figure 4.17 Overall results of the deep learning experiments using a shallow DeepCon-
vLSTM [35] (blue) and Attend-and-Discriminate architecture (orange). Both models were
trained with a 1-layered recurrent part with 1024 hidden units and a sliding window of
1 second with 50% overlap. The left plot (a) shows the per-class LOSO results obtained
from training on the drill and warm-up data. The right plot (b) shows the per-class results
predicting the game data when trained on the drill and warm-up data. All results are
averages across 3 runs using a set of 3 random seeds. Both architectures suffer a significant
loss in predictive performance when being applied to in-game data, i.e. data recorded in an
uncontrolled environment.

using the Hang-Time HAR dataset as input both architectures did not generalize well

2https://app.neptune.ai/o/wasedo/org/hangtime
3https://github.com/ahoelzemann/hangtime_har
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Figure 4.18 Confusion matrices of a shallow DeepConvLSTM [35] applied to the Hang-
Time dataset. The model was trained with a 1-layered recurrent part with 1024 hidden
units, a sliding window of 1 second with 50% overlap, and a fixed random seed. The left
confusion matrix (a) is obtained from averaging the per-subject LOSO results using the drill
and warm-up data as input data. The right confusion matrix (b) is obtained from training
on the drill and warm-up data and validating on the game data. One can see an increase in
overall confusion when applying the architecture to in-game data, i.e. data recorded in an
uncontrolled environment.

across sessions, i.e., from drills to games. Looking at the subject-independent results
one can see that almost all classes tend to transfer well with only layups (< 45%
macro F1-score), passing (< 30% macro F1-score), and rebounds (< 10% macro
F1-score) as outlying activities, with the average macro F1-score above 50% for both
architectures. Contrarily, the session-independent results show a significant decrease
in overall predictive performance by around 24% for the shallow DeepConvLSTM [35]
and around 19% for the Attend-and-Discriminate [3] architecture. Nevertheless, this
trend does not apply to all activities equally, with most locomotion activities (walking,
running, and sitting) not as heavily affected (< 50% macro F1-score) in prediction
performance as the basketball activities (dribbling, shooting, passing, rebound and
layup) whose macro F1-scores do not exceed 20% for both architectures. We accredit
this drop in performance to the fact that basketball games by nature have more
unforeseen situations to which players need to adjust their movement too. In general,
it is rare that players are able to perform e.g. an uncontested layup (e.g., certain
fastbreak situations) resulting in altered feet and arm movement in order to find
the necessary space and successfully score. The influence of a game-like situation
can particularly be seen in the locomotion activity standing which sees a major
decrease when trying to be predicted in-game. Players constantly move to defend an
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oncoming player of the opposing team, which makes standing in-game very different
from standing during drills, as players are e.g. going into a defensive position or are
keeping in contact with their assigned player on defense.

We identify the challenges for future research and experiments to be two-fold:

(a) Results obtained during session-independent experiments show the poor general-
ization of basketball-related activities from controlled to uncontrolled environ-
ments. This further underlines the bias introduced by researchers when relying
on data recorded in a controlled environment compared to uncontrolled environ-
ments. It is to be investigated whether it is possible to increase generalization
through means of altering the training process or employing architectures.

(b) Employing the definition as defined in [34], Hang-Time HAR offers both complex
(shot, layup) and sporadic (rebound, pass) activities. As said activities are not
as reliably detected (even in controlled an environment) as other activities, it
is to be investigated whether this lies in the nature of the activities, or can be
accredited to the employed network architecture reaching its limits.

4.2.5. Discussion

We present our dataset Hang-Time HAR, an extensive dataset for (Basketball) Activity
Recognition. The dataset was recorded in two different sessions and continents (using
two different sport-specific rule sets) in a real-world scenario with approximately
2266 min of real basketball training sessions and training games. The dataset we
introduce offers a large variety of activities performed by 24 subjects in both (partly)
scripted (drill and warm-up) and unscripted (game) recording sessions. Activities
range from simple ones, such as a player‘s locomotion, to complex ones, such as
layups and shooting which consist of in-activity sequences. Each basketball player
was equipped with a single wrist-worn inertial sensing smartwatch, and labeling was
performed by annotating video footage of the sessions.

The feature analysis shows that Hang-Time HAR has considerable intraclass vari-
ability and interclass similarity as described by Bulling et al. [45]. This effect was
strengthened by the recording setup of a semi-controlled environment. From the
perspective of deep learning for human activity recognition, the dataset offers a variety
of new challenges. As evident in the results of our Deep Learning analysis, during the
LOSO cross-validation the architectures we chose reached their limits with respect to
the classes rebound and layup in both session types we evaluated, see Figures 4.17 and
4.18. To be able to recognize it in a LOSO cross-validation, where no prior information
on the subject is given to the classifier, we need either more samples of that class, e.g.,
through applying techniques such as data augmentation or a deep learning architecture
that is able to handle under-represented classes. Basketball-specific classes were pre-
dicted during the game, on average, with a 25% F1-Score. Passes and rebounds were
extremely difficult for the classifier to detect since their execution time is often under 1
s. Furthermore, the most significant part of the activity rebound is the jump - which is
a sub-activity that is shared with other classes such as shot or layup. These activities
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that were predicted poorly when missing subject-specific training data also correspond
to the fewest samples in the dataset. Future work could involve testing techniques such
as artificially increasing the under-represented classes through data augmentation or a
more suitable deep learning architecture for handling class imbalances. According to
Bock et al. [34] we distinguish between sporadic, simple/periodical, transitional, and
complex activities. However, datasets shown in Table 4.2 mostly focus on locomotion
activities and activities of daily living. Only a few, such as [177, 55, 36, 122], include
sporadic, transition or complex activities, and many datasets that do include sports
[11, 20] aggregate an entire sport into a single activity. Published sports studies tend
to not release their datasets publicly or only upon request - with Trost et al. [208] and
Bock et al. [36] as the only exceptions, as shown in Tables 2.2 and 2.3. As a result,
sports-specific IMU-based datasets available to the public that reflect the complexity
and characteristics of a specific sport are very limited. Due to the nature of the sport
of basketball, our dataset contains classes where the characteristics mentioned by Bock
et al. apply. Rebound, pass, and jump can be considered as sporadic classes. The
locomotion classes - sitting, standing, walking, and running are periodic classes, shot
and layup contain complex, interrelated activities. During the warm-up and game, all
activities were situation-based and therefore the dataset contains natural and fluently
performed transitions between classes as well as overlapping activities.

By using the different semantic layers of the dataset - coarse, basketball, locomotion,
and in/out - researchers are able to focus on different aspects of activity recognition
by studying the different semantic levels either in isolation or in combination and
incorporate them in their research appropriately. In particular, the combination of
various semantic levels offers researchers the possibility to design and develop game
analysis algorithms based on IMU signals. Such algorithms could either analyze the
players’ performance with or without focusing on specific activities or could analyze
the game itself in a holistic approach. Wrist-worn smartwatches - as used in this study
- are not allowed to be worn during an official basketball game, since they bear the
risk of harming the player or other players on the field. However, we believe that it
can be replaced in future studies, e.g., by sweatbands that incorporate IMU sensors.
Such a device could come in a similar form as those in [162] or [19].

Apart from providing a benchmark dataset for future machine and deep learning
studies, we believe that our dataset has cross-domain application purposes that can
help to solve open research questions such as activity recognition of complex classes
in real-world scenarios, including the development of preprocessing or postprocessing
algorithms for real-world data as well as designing neural network architectures for
such scenarios. In particular, the game data introduces a completely new scenario for
human activity recognition in which activities overlap each other and are performed
with a higher pace and altering patterns, due to the ball possession and the psycho-
logical pressure during a game situation. Such semantic learning can become another
important sub-field for HAR in the near future, as demonstrated by the recently
published architecture SemNet by Venkatachalam et al. [218].

It is known that transfer learning for HAR does not perform as well as it does for
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vision data. Pretraining and transferring a neural network do have a positive effect
on the classifiers’ capabilities as well as the training time [95]. Our dataset can help
explain these phenomena since the locomotion layer is class-wise compatible with
many other datasets shown in Table 4.2 and should be therefore transferable. However,
due to the recording environment and activity domain, the classes are expected to
differ from similar classes published by datasets shown in this table. Further transfer
learning studies that test the effectiveness of pretraining a neural network model with
regard to several domain-specific datasets can be of interest to the activity recognition
community. We think that pretraining a neural network on a sports dataset and
transferring the model to another sport can have a higher positive impact on the
classifier than pretraining it on a non-domain dataset. However, this is speculative at
this point and needs to be investigated by future studies. The different skill levels of
our participants shall not be seen as a disadvantage, but rather as a unique feature that
opens up challenges and opportunities for not yet addressed research questions. The
distinction between the two levels of skills can help understand the real effect of noisy
real-world performed instances of activities on a trained classifier. As Section 4.2.4
describes, we were able to identify differences in the patterns between novices and
experts due to unclean performed activities, such as shooting the ball with both hands
or dribbling the ball with less control than experienced players. Including or excluding
one or the other will have an effect on the classifier. We think that these effects are
valuable and should be investigated as part of a larger and more complex study in the
context of classifier poisoning, transfer learning, or research problems with regard to
data labeling.

An IMU-based approach has the advantage over vision-based approaches since
wearables (e.g., smart watches) are low-cost, widely available, and quickly deployable
to players on every court (indoor and outdoor). Vision-based approaches require a
more complex tech build, which is cost- and labor-intensive to set up and configure.
Furthermore, in future works, a simple model can be trained and deployed on a
wearable device in order to classify motions through IMU data in real-time and on-
device. Recent advances, such as the TinyHAR [243], are capable of detecting human
activities with fewer trainable parameters and are therefore power-efficient enough to
be deployable on wearable devices, such as the Bangle.js smartwatch (the Bangle.js
comes with TensorFlow Lite preinstalled on the microcontroller). We, therefore, expect
that our benchmark dataset will have a significant impact on activity recognition
research in itself, but also encourage more follow-up work in the methodologies for
designing, recording, and annotating such datasets. We argue that the sports domain,
in general, offers researchers a recording environment that can range from a controlled
to an uncontrolled setting with the advantage that data can be labeled retrospectively
using video footage.

The players’ meta information can be used to gain deeper insights into how a person’s
build and sports experience affects the execution style of an activity. Even though the
metadata contains basic information about the players’ prior basketball experience, it
does not claim to evaluate the playing skills of individual players. The video footage
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might be used to provide such annotations to be added as extra annotation layers. In
future work, we would like to add another layer to the game sessions called def/off,
which indicates whether a player is currently playing defense or offense, respectively.
This information is useful with regard to a player’s locomotion since the defense
position is usually played in an upright position with hands raised and knees slightly
bent, see Figure 4.7. Furthermore, since this paper focuses on feature analysis and
deep learning-driven classification methods, medical statistics such as a Bland–Altman
analysis [29] and biomedical derived studies [22, 114, 46], fall out of our scope of study
but could supplement this paper in future works.

Besides the use case of basketball activity recognition, we expect that certain
activities are generalizable across different sports. Periods in which a player did run
without dribbling (the periods can be filtered by taking into account the different
semantic levels of annotations) can be transferred to sports such as handball, indoor
soccer, futsal, or in general indoor sports that share similar field size and have periods
of players running without a ball. The dribbling movement seems to be transferable
between basketball and handball. However, we expect that the transferability will
have its limitations. For example, the class jumping will have different characteristics
in volleyball compared with a jump in basketball, since the game volleyball itself
is more focused on the vertical space and has different patterns depending on what
action the players perform. Volleyball has basically six different skills that players
perform during a game, which are: serve, pass, set, attack, block, and dig. All of
them, except two special variants of serve and pass (float serve and forearm pass)
involve jumping. Hypothetically, if a wrist-worn sensor-based dataset with volleyball
activities were published, it would be interesting to explore whether the class jumping
would be transferable.

4.2.6. Conclusions

During this study, we have developed a basketball activity dataset that brings a variety
of unique features with it and is, to the best of our knowledge, the only sensor-based
and publicly available activity recognition dataset that focuses on fine-grained team
sports activities. The dataset introduces data from wrist-worn inertial sensors of
24 players from two teams and recorded in two different continents where slightly
different rule sets are applied. The participants perform ten different basketball
activities that are grouped into four different semantic levels. The dataset contains
warm-ups, drills, and game phases. Typical routines were followed during the drills
but not during the warm-up and game, where players were allowed to play as they
preferred. Therefore, this dataset contains data from controlled as well as uncontrolled
environments which can be filtered as needed by researchers. The different semantic
levels of the annotations make it not only possible to focus on general locomotion or
specific basketball activities, but also to create more complex classes as mentioned
before. The two levels of skills, novice, and expert, inherit a strong intraclass and
intersubject signal-variability which has already been mentioned by Bulling et al. [45]
in 2014 and is still an ongoing research challenge in real-world scenarios. Therefore,
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we argue that this feature is directly relevant to real-world activities of any domain
and can be used to investigate these problems further. As aforementioned, the class
not labeled contains data that corresponds to NULL activities as well as activities that
are not part of the dataset. As such, this class represents a very realistic and naturally-
designed void class which can be of interest to studies that focus on investigating
the NULL-class problem. The results of our deep learning analysis show that current
architectures are not capable of detecting complex classes. In order to overcome this
obstacle, further research on data preprocessing and architectural neural network
design is needed. This problem becomes more challenging if the data is recorded in a
real-world and uncontrolled environment.

Given its uniqueness as a fine-grained sports dataset, class variability, high number
of study participants, and comprehensive coverage of rule-set-varying basketball
characteristics, we firmly believe this dataset will suit evaluating machine learning and
deep learning algorithms, network architectures, and previously mentioned problems.
The dataset should also serve as an ideal benchmark for the human activity recognition
community across application domains.
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Section 4.3

Summary

While initially a straightforward attempt to expand activity recognition to a specific
sport, like basketball, the initial feasibility study [89] sparked the inception of this
thesis and led toward further exploration of concepts interconnected with activity
recognition in the domain of sports and beyond. The feasibility study addressed
recognizing diverse basketball activities including shooting and dribbling, as well as
discerning between three distinct dribbling methods: low, medium, and high dribbling,
in addition to the execution of a crossover maneuver. It furthermore demonstrated that
even traditional machine learning techniques, such as Random Forest and k-nearest-
neighbor, have the capacity to effectively classify complex basketball activity patterns
using data obtained from wrist-worn sensors. We, therefore concluded that more
sophisticated deep learning techniques could potentially detect additional nuanced
activity classes.

Based on these findings, the concept emerged to develop a comprehensive dataset
that not only portrays basketball activities but also captures group behavior during
basketball game sessions. However, this idea was deferred until the finalization of
the Activate System, see Section 3.1, to ensure sufficient simultaneous equipping of
subjects with wearable sensors, and further postponed until COVID-19 pandemic-
related restrictions were lifted. Before engaging in dataset development and its
subsequent utilization, I hypothesized that trained neural networks, such as the
Deep Convolutional LSTM [159] or Attend-And-Discriminate [3], could effectively
distinguish various basketball classes. Through assessment of the conducted tests and
feature analysis, I conclude that the multi-class problem was successfully classified with
high F1-Scores for certain activities. Overall, I demonstrate that activity recognition
can effectively work on a granular scale for specific sports when sensors are strategically
placed at biomechanically relevant body locations. However, further investigation
is requisite to accurately classify a dataset encompassing periodic, complex, and
spontaneous actions. These classes in particular posed challenges for the trained
models.

We hold the perspective that the dataset we’ve presented holds potential value for
fellow researchers focusing on advancing exploration into group activity recognition
or detecting complex and spontaneous classes as described in our publication. The
dataset is further strengthened by the inclusion of an uncontrolled game session,
which closely replicates a real-world scenario. This uncontrolled environment provides
valuable insights into sensor behavior in more natural conditions. Participants engaged
naturally, simulating a regular training session, thereby ensuring unbiased sensor data
and mitigating any potential Hawthorne Effect [90]. Therefore, Hang-Time HAR
exhibits characteristics of both controlled, protocol-driven datasets with fixed sessions,
as well as uncontrolled real-world datasets with strong participant and situation-
dependent activity patterns. This attribute is pivotal for subsequent investigations.
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Chapter 5

Deep Learning for Human Activity
Recognition

The advent of deep learning in the last decade is followed by a shift away from tradi-
tional machine learning, resulting in remarkable improvements in capabilities across
all domains of recognition or projection problems. A key advantage of deep learning
is the ability of deep neural networks to automatically learn feature representations
from raw input data, bypassing manual feature engineering that relies heavily on
domain expertise. This data-driven feature learning improves efficiency while requiring
minimal human effort and domain knowledge.

This chapter focuses on a critical investigation of specific deep learning techniques,
including transfer learning and data augmentation, and their application to HAR data
plus limitations in this domain. The research questions framing my exploration are:

(a) Transfer-Learning Across Datasets or Sensor Positions: Feasibility
and Benefits

Can model transfer between diverse datasets or sensor positions effectively
enhance classification outcomes? I assess the viability of cross-dataset
and cross-sensor transfer learning, examining its potential advantages and
limitations.

(b) Assessing the Impact of Sensor Orientation Alignment on Classification

How does aligning sensor orientations, for instance through axis inversion,
influence classification accuracy? I’m exploring the impact of orientation
alignment on model performance. By aligning the data points in a specific
orientation, I aim to determine if this improves the effectiveness of the
model.

(c) Comparing Data Augmentation Sample Selection Strategies

Data augmentation is a prominent strategy to expand training datasets and
mitigate overfitting. I evaluate the significance of employing participant-
wise and fold-wise selection methods for data augmentation, shedding light
on their respective effectiveness.
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Section 5.1
Transfer Learning for Human Activity

Recognition

[95] Hoelzemann, Alexander, and Van Laerhoven, Kristof
Digging deeper: Towards a Better Understanding of Transfer Learning for
Human Activity Recognition
Proceedings of the 2020 ACM International Symposium on Wearable Computers,
50-54
https://doi.org/10.1145/3410531.3414311

Portions of the original publication have been removed or edited for inclusion in
this thesis. However, no changes were made that altered the results or conclusions
presented in the original work.
Contributions:

• Both authors designed the study.
• I implemented the study and analyzed the results.
• Kristof Van Laerhoven guided this work, assisted in the methodologies,

and helped with analyzing the results.

Transfer Learning is becoming increasingly important to the Human Activity Recog-
nition community, as it enables algorithms to reuse what has already been learned from
models. It promises shortened training times and increased classification results for
new datasets and activity classes. However, the question of what exactly is transferred
is not dealt with in detail in many of the recent publications, and it is furthermore
often difficult to reproduce the presented results. Therefore we would like to contribute
with this paper to the understanding of transfer learning for sensor-based human
activity recognition. Our experiment uses weight transfer to transfer models between
two datasets, as well as between sensors from the same dataset. As source- and
target-datasets PAMAP2 and Skoda Mini Checkpoint are used. The utilized network
architecture is based on a DeepConvLSTM. The result of our investigation shows that
transfer learning has to be considered in a very differentiated way since the desired
positive effects of applying the method depend very much on the data and also on the
architecture used.

5.1.1. Introduction

The recording of datasets is always associated with a very large investment of time
and energy and is also always accompanied by significant costs. For this reason, the
community has relatively few datasets at its disposal that are suitable for training
neural networks due to their nature, with respect to scope, quality, and reliability.
Therefore, algorithms have been increasingly the focus of research in recent years, which
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either allow to enrich datasets with information at low cost or to reuse information
from already learned models, like Transfer Learning.

Transfer Learning is a Machine Learning technique with which we are able to
transfer knowledge from one previously-trained model to another and therefore use
this knowledge to solve a similar problem. Many of the already published papers in
which Transfer Learning is used for Human Activity Recognition focus mainly on the
feasibility of the methodology or on improving the classification results on the target
dataset by adapting the used network architecture. As a result, Transfer Learning for
Human Activity Recognition still contains many unknown aspects. However, since
this technique has great potential to improve classification results and to reduce the
computational time for training neural networks, it is necessary to do more research
on this topic and put the spotlight on the mechanism details. We think that the
definition of when, where, and how to use Transfer Learning should be called into
question when it comes to Human Activity Data. Therefore this paper concentrates
more on understanding the source and target datasets, as well as understanding the
process of weight transfer between models. We want to encourage researchers to take
a closer look at these aspects and dig deeper into the mechanism of Transfer Learning.

5.1.2. Methodology

Two publications that influenced our choice of datasets are [76] and [146]. The results
presented here show, that Skoda Mini Checkpoint is basically suitable as a source
dataset and PAMAP2 as target data. PAMAP2, on the other hand, has already
proved in previous publications, for example, [159] or [82], to be suitable for use with
neural networks.
Datasets. We have chosen to evaluate these two publicly available activity recognition
datasets as the type of sensors, the sampling rate, and the location at which the sensor
was worn match particularly well:

PAMAP2: The PAMAP2 dataset consists of 19 different classes of activities of
daily living and is recorded with a sampling rate of 100Hz and a sensitivity of ±16g. 9
subjects participated in the experiment. To train the PAMAP2 models we used data
that has been recorded following the experiment protocol. We also concentrate on
activities that are performed by every subject. With these conditions, the used data
is reduced to 7 subjects performing 8+1 (null class) different activities of daily living.
Activities that are taken into account are: null (0), lying (1), sitting (2), standing (3),
walking (4), ascending stairs (12), descending stairs (13), vacuum cleaning (16) and
ironing (17).

Skoda Mini Checkpoint: The Skoda Mini Checkpoint dataset is recorded by 1
subject, performing 10 different activities, with a sampling rate of approx. 98Hz, and
a sensitivity of ±3g. Classes used from this dataset are restricted to the ones, where
the activity is performed equally by both hands. Hence classes that were taken into
account are null (32), open hood (49), close hood (50), check gaps on the front door
(51), close both left doors (54), check trunk gaps (55), open and close trunk (56) and
check steering wheel (57).
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Figure 5.1 Default
Sensor Orientation of
PAMAP2 (left) and
Skoda Mini Checkpoint
(right). The X-axis (red)
and Y-axis (green) are
switched and the Z-axis
(blue) is inverted.

While corresponding with the authors of PAMAP2 and Skoda Mini Checkpoint
we realized that these two datasets were recorded with different sensor orientations.
Figure 5.1 illustrates this problem.

Preprocessing. We used the same preprocessing steps for the baseline model and
the transferred model. (1) concatenate the data into an array with one channel per
sensor-axis, (2) delete all synchronization gestures from the dataset, (3) scale all axes
of the data at ones between -1 and 1, (4) apply a jumping window with a length of
50 samples and an overlap-ratio of 50%, (5) shuffle the windows with a fixed random
seed. For defining the label of the current window we followed the approach used in
[159], where the label of the last sample defines the label of the window. Early tests
showed, that the classification results between the default 98Hz and resampling to
100Hz for the Skoda Mini Checkpoint dataset are marginal and therefore negligible.

Baseline Model. In order to investigate the effects of transfer learning between
different types of sensors, sensors mounted on different body parts, as well as misaligned
axes, we had to train two different baseline models. One trained on the wrist-worn
PAMAP2 accelerometer, and one on the Skoda Mini Checkpoint, using only the
data from the accelerometer of the right wrist. Instead of using RMSProp as the

Table 5.1 Parameters used for the baseline model as well as the different transfer methods.
Fixed parameters for all models are Batch-Size (64), Conv. Kernel-Size (5x3), LSTM-Cells
per layer (128), learning-rate (0.001). After the transfer, the trainable parameters were
either: frozen (f), trainable (t), or reinitialized and trainable (lecun uniform)

Parameter
Baseline
Model

Transfer
Method 1

Transfer
Method 2

Transfer
Method 3

Transfer
Method 4

Training Epochs 1000 30 30 30 30
Weight Init.
Conv.-Layers

lecun
uniform

pretrained
(f)

pretrained
(f)

pretrained
(f)

pretrained
(t)

Weight Init.
LSTM-Layers

lecun
uniform

pretrained
(f)

pretrained
(t)

lecun
uniform

lecun
uniform

Optimizer Adadelta RMSProp RMSProp RMSProp RMSProp
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optimizer, as proposed by [159], we switched to Adadelta, which performs slower but
is more stable. RMSProp showed an unstable behavior regarding the classification
performance with massive negative peaks in longer training periods but seems to be a
good choice for fine-tuning operations. All training parameters are listed in Table 5.1.

Transfer Learning. We have applied four different methods of transferring the
model. All methods follow the weight transfer method, e.g. used in [125] and [146],
to transfer the pre-trained model. We transferred the pre-trained weights from the
baseline model and replaced the classification layer with an untrained one, which
fits the number of classes of the target dataset. We also switched the optimizer
of the transferred model to RMSProp, since we only fine-tuned our model for 30
epochs. Following we distinguish between different levels of post-transfer trainable
layers: (1) All layers are frozen after transfer, except the classification-layer, (2)
Only the ConvBlocks are frozen after transfer, LSTM-Layers stay trainable, (3) the
ConvBlocks are frozen after transfer, LSTM-Layers stay trainable, but are reinitialized
with lecun-uniform initialization and (4) the Conv.- and LSTM-Layers are trainable,
but LSTM-Layers are reinitialized with lecun-uniform initialization. Figure 5.2 depicts
the used architecture and transfer method. To evaluate the results, we determined
the respective Training F1-Score. In order to simulate all possible orientations of a
sensor relative to the baseline model, we decided to permute and invert the position
of the sensor axes. This results in 48 possible combinations. Thus, all models were
transferred 48 times in each test that was not transferred back to the source dataset.
A transfer back to the source data was done as a sanity check. These sanity checks, as
well as transfer within the dataset, but to another sensor worn at the same position,
are done with a leave-one-fold-out cross-validation with 4 folds.

5.1.3. Results and Evaluation

We tested Transfer Learning between different sensor locations, different sensor types,
and different sensor orientations for intra-, as well as inter-dataset transfer. Transfer
back to the source dataset was performed as a sanity check, see experiment (1), and
(5). Similar results after transfer with method 1 ensure that no errors occurred during
transfer or data preprocessing. If irregularities occur in the preprocessing or transfer
process, the after-transfer performance of method 1 would decrease significantly. The
result of (1) with methods 2, 3, and 4 shows that transfer learning harms the classifier
in general and needs to be fine-tuned to perform reliably. The result of experiment (2)
with method 1 must be subjected to closer examination. The best result is achieved
after the X-axis is first inverted and then swapped with the Z-axis, which results in
a Z, Y, -X orientation. Whether this orientation corresponds to the actual position
of the axes relative to the sensor worn on the wrist cannot be said with certainty at
this point, but it is evident, that this result deviates from the average by about 10%.
Remarkable is experiment (3) with method 1, in which the model trained on the data
of the right wrist of Skoda Mini Checkpoint, is applied to the data of the left wrist.
The best result was obtained after leaving the axes in the default position but inverting
the X-axis. Thus the left-hand data was artificially mapped to the orientation of the
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Figure 5.2 DeepConvLSTM [159] architecture. Red blocks do not have trainable parame-
ters, whereas green blocks are trained, transferred, and frozen (represented as blue blocks)
in the target model, depending on the used transfer method. The original last dense layer is
replaced with a new output layer during transfer, with a size according to the number of
classes of the target dataset. One ConvBlock consists of three layers, a convolutional layer,
a batch normalization layer, and an activation layer with a ReLu activation function.
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Table 5.2 Deep Learning train-F1-Score in %, given as minimum, maximum, and mean.
PAMAP2 (P), Skoda (S), Accelerometer (A), Gyroscope (G), Magnetometer (M), Wrist
(W), Chest (C).

Source → Target
Method 1 Method 2

Min Max Mean Min Max Mean
1 S (W, Right) → S (W, Right) 97.5 98.5 97.8 93.1 93.5 93.2
2 S (W, Right) → S (C, Right) 43.3 64.4 54.8 84.1 93.6 93.0
3 S (W, Right) → S (W, Left) 50.8 61.0 54.6 89.1 93.4 91.1
4 S (W, Right) → P (A, W) 12.1 26.6 20.7 54.9 69.4 63.6
5 P (W, A) → P (W, A) 82.3 82.5 82.4 92.8 93.0 93.0
6 P (W, A) → P (C, A) 23.3 42.6 35.2 59.1 73.4 65.8
7 P (W, A) → S (W, Right) 38.1 46.3 42.8 73.0 86.4 79.4
8 P (W, A) → P (W, G) 03.2 03.4 03.3 21.6 23.6 22.4
9 P (W, A) → P (W, M) 36.6 37.4 37.1 66.6 68.1 67.5

Source → Target Method 3 Method 4
1 S (W, Right) → S (W, Right) 96.0 96.6 96.2 60.9 64.2 63.0
2 S (W, Right) → S (C, Right) 85.5 94.4 89.0 42.0 69.8 63.4
3 S (W, Right) → S (W, Left) 90.1 94.4 92.0 63.4 77.9 72.6
4 S (W, Right) → P (W, A) 54.5 70.7 64.6 11.0 63.7 52.1
5 P (W, A) → P (W, A) 94.7 95.4 94.9 54.9 55.9 55.1
6 P (W, A) → P (C, A) 59.3 73.5 66.7 57.1 64.4 60.7
7 P (W, A) → S (W, Right) 77.3 87.7 82.3 34.2 72.8 61.5
8 P (W, A) → P (W, G) 21.5 23.2 22.5 05.4 07.1 06.0
9 P (W, A) → P (W, M) 67.6 68.0 67.5 09.8 19.8 15.5

trained model. Experiment (6) resulted in the highest F1-Score when the axes were
left in the original position but differed by up to 19.3% during the permutation test.
This means that the alignment of the chest sensors matches the alignment of the
one worn at the wrist. Inter-Dataset Transfer Learning, experiment (4) and 7 with
method 1 always resulted in very low F1-Scores. However, the transfer from PAMAP2
to Skoda (7) had better results than from Skoda to PAMAP2 (4), which might be
a direct result of the bigger size and variability of the PAMAP2 dataset. A transfer
between types of sensors is in general not recommendable. (8) and (9) show that a
model trained on accelerometer data is not capable of classifying the same activities
recorded by a gyroscope or magnetometer.

5.1.4. Discussion and Conclusion

We started this experiment by assuming that by properly adjusting the position
and orientation axes of the inertial data along the sensor axes we could significantly
increase the classification results. We could demonstrate this with the results of
method 1, but these results did not reach the significance as initially expected and are
therefore not an acceptable final state for a classifier. Matching the alignment of the
sensor axes results in a more adapted classifier, but it is not possible to achieve the
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classification properties of the baseline model. Due to the mostly frozen architecture,
the adaptation process of fine-tuning the classification layer reaches its limits very
quickly.
The results of methods 2 and 3 are very similar. However, these experiments show that
it is basically advisable to reinitialize the LSTM-Layers to default since the F1-Score
is on average 3.4% higher with method 3 than with method 2. The experimental
results of method 4 demonstrate that convolutional layers should not be fine-tuned
after model transfer. The comparatively worse results of this method are caused by
the outputs of the convolutional layer being fed as input to the LSTM-layers due to
their position in the architecture. By re-initializing these layers, but also keeping
the convolutional layers trainable, the pre-trained data-dependent link between these
layers is lost.
The datasets used in this paper share many modalities, such as the position of the
sensors on the body, the sampling rate, and the sensor technology used, but differ
fundamentally in the underlying classes. Thus, we assume that the features of the
filters trained in the convolutional layers are very dataset-dependent and thus class-
specific. Using pre-trained weights can provide a speed advantage and thus lead to
faster network convergence, due to less trainable parameters, but we consider the
impact on the final classification performance, even with artificial adjustments of
the orientation and position of the sensors, to be marginal. These results largely
correspond to those of [146].

It is surprising that although the modalities of both datasets are largely identical,
a transfer between them is always accompanied by strong performance losses. This
observation leads us to the following research challenges, which we leave open at this
point for the research community to address:

(a) Under which exact conditions is Transfer Learning recommendable for wearable-
based activity data?

(b) How transferable are the pre-trained convolution filters between inertial activity
datasets?

(c) Which preprocessing steps are suitable to make models transferable, regardless
of their architecture?

We argue that the three questions for designing transfer learning – What? When?
How? – are hard to adapt from other disciplines and should be reconsidered for
Transfer Learning with inertial sensors-based signals.
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Section 5.2

Data Augmentation Strategies for HAR

[94] Hoelzemann, Alexander, Nimish Sorathiya, and Van Laerhoven, Kristof
Data augmentation strategies for human activity data using generative
adversarial neural networks
2021 IEEE International Conference on Pervasive Computing and Communica-
tions Workshops and Other Affiliated Events (PerCom Workshops)
https://doi.org/10.1109/PerComWorkshops51409.2021.9431046

Portions of the original publication have been removed or edited for inclusion in
this thesis. However, no changes were made that altered the results or conclusions
presented in the original work.
Contributions:

• All authors designed the study.
• Nimish Sorathiya and I implemented the study and analyzed the results.
• Kristof Van Laerhoven guided this work and assisted in the methodologies.

Previous studies have shown that available benchmark datasets from the field of
Human Activity Recognition are of limited use for Deep Learning applications. This
can be traced back to issues in the quality, the scope, as well as in the variability
of the datasets. These limitations often lead to the overfitting of networks and
thus to results that are only conditionally generalizable. One way to counteract
this problem is to extend the data by using data augmentation techniques. This
paper presents an algorithm and compares two augmentation strategies: (1) user-wise
augmentation and (2) fold-wise augmentation, to expand the size of a dataset with
any number of synthetic samples. This is demonstrated using the PAMAP2 dataset.
These synthesized data resemble the user- and activity-specific characteristics and fit
seamlessly into the dataset. They are created by a recurrent Generative Adversarial
Network, with both the generator and discriminator modeled by a set of LSTM cells to
produce the synthetic time-series data. In our evaluation, we trained four DeepConv-
LSTM models with supervised learning, three times with a LOSO cross-validation:
one baseline model and two times with additional data but different augmentation
strategies, as well as one model without cross-validation that monitors the synthesized
data quality. The compared augmentation strategies demonstrate the impact as well
as the generalized nature of the augmented data. By increasing the size of the dataset
by factor 5, we improved the F1-Score by 11.0% with strategy (1) and 5.1% with
strategy (2).
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5.2.1. Introduction

In the context of deep learning and neural network development, having sufficient data
to train and test algorithms is crucial for obtaining a high-performance classification
model. However, this essential step is often hindered by the fact that not enough data
is freely available for many types of applications. For this reason, methods for data
synthesis have been developed in the past years. These algorithms are already widely
used in computer vision and natural language processing, however, they are still in
their early stages of development with regard to activity recognition from wearable
inertial sensors. In order to accelerate research in the field of Deep Learning for
Human Activity Recognition, it is essential to increase the scope of its public datasets
in the future. We already know from other disciplines that more data can lead to more
precise results and is an effective tool against overfitting. The further development
of augmentation and synthesis algorithms can serve as a catalyst that will enable us
to close the current gap in the available data. In this paper, we propose a neural
network architecture based on [67] and further developed to generate data for an
arbitrary number of samples of sensor-based activity data. The network can be trained
to synthesize both subject- and activity-specific characteristics. The quantitative
enlargement of the dataset improves the classification potential of the neural network
on the one hand and protects it efficiently against overfitting on the other hand.
Our tests show that these artificial data can be used to increase the classification
capabilities of a neural network model, due to an increase in variability and scope of
the dataset, but the impact varies depending on how the data was synthesized and
merged back into the initial dataset.

5.2.2. Experiment

The PAMAP2 dataset consists of 19 activities of daily living and was recorded by 9
subjects. The sampling rate of the dataset is 100Hz and the sensitivity ±16g, the
sensors are placed on the chest, right ankle, and right wrist [173]. For our experiment,
we decided to use the protocol subset, since these data were recorded according to a
fixed protocol sequence and therefore can be interpreted more uniformly. Furthermore,
we limited the subset to the wrist sensor and to activities that are recorded by each
subject equally. We decided to not take the null class into account, following the
author’s recommendation. Under these conditions, the data is reduced to a subset
that contains 8 subjects performing 6 different activities of daily living. Activities
that are taken into account are: lying, sitting, standing, walking, vacuum cleaning,
and ironing.

Our developed approach is depicted as a process cycle and is easy to follow up, see
Fig. 5.5. This figure a total of 3 different variations of the dataset that are used
or created during the augmentation process. One is the initial dataset, as earlier
described. The same data, but organized as Leave-One-Subject-Out (LOSO)-folds is
further referred to as α-dataset, which consists of all selected subjects and activities.
The α-subset is used to obtain the ground truth, also called baseline, and serves as
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the input for synthesizing new data. Since the used protocol subset of PAMAP2
contains data from 8 different subjects, our α-subset contains 8 folds, wherein each of
the subsets one subject is excluded and used as the test data. After the augmented
data is merged into the α-dataset, the set is referred to as β-dataset.

Network Architectures: DeepConv-LSTM. A DeepConv-LSTM architecture is
used, see Ordoñez et al. [159], to train four different models. The first model is trained
with all subjects and all activities used in this experiment. This network monitors the
quality of the generated samples by predicting the sample classes. Another model is
trained by using the LOSO cross-validation with the α-subset to obtain the baseline
for the final evaluation. A third and fourth model is trained with the β-subset, which
contains the LOSO-folds (α-subset) as well as the synthesized data. However, the
β-subset differs depending on the chosen augmentation strategy.

Network Architectures: Generative Adversarial Network (GAN). The
architecture of this work is based on the network introduced as Recurrent GAN
[67] and follows an architecture in which both, the generator and discriminator, are
LSTM-Networks instead of multi-layer perceptrons. The generator network takes
random noise at the start of the training. The length of the noise-vector corresponds
to the number of timesteps of the LSTM-cell. The discriminator network is used as a
binary classifier, which takes the output from the generator as synthetic time series
and real data at each LSTM timestep.

Training of the discriminator as a binary classifier minimizes the average negative
cross-entropy between the prediction and real labels for both synthetic and real
examples. Considering CE as the average cross-entropy between sequences Xn and
yn, where Xn (Xn ∈ RT∗d) is the matrix that comprises the output sequence T from
the LSTM cells in the discriminator and yn, where yn can be a vector, 1 or 0; the
discriminator loss is given by,

Dloss (Xn, yn) = −CrossEntropy(LSTMD(Xn), yn) (5.1)

This loss is used by the generator to mislead the discriminator network by producing
real-like data that minimize the average negative cross-entropy between the discrimi-
nator output on synthetic data and the actual label, considering Zn as a sequence of
samples from noise space z;

Gloss (Zn) = Dloss(LSTMG(Zn), 1)

= −CrossEntropy(LSTMD(LSTMG(Zn)), 1)
(5.2)

The generator consists of LSTM cells with 100 units as hidden layers and a linear
activation function, instead of the tanh-function used by [67]. The discriminator
uses the sigmoid-function as the output activation function. Both, the generator
and discriminator are simultaneously trained at each epoch. Considering the data
generating distribution as px from the generative distribution as pg; After an arbitrary
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number of timesteps, both of the networks will hold an equilibrium condition and
cannot be further improved than pg=pdata. The architecture is depicted in Figure 5.3.

minibatch

minibatch

Optimization

Optimization

GAN input

GAN output

Training Data 

Noise Space

GAN Network

Generator 
Network

Discriminator 
Network

Discriminator 
Loss

Generator Loss

Figure 5.3 GAN ar-
chitecture. Both net-
works, Generator and
Discriminator (orange
boxes), consist of 100
hidden LSTM cells.
Random noise from
noise space is fed as
input to the Generator.
The trained Genera-
tor synthesizes samples
as an output. Using
cross-entropy loss, both
networks are optimized
at each time-step. The
network will take the
original sample win-
dows from α-subset as
an input and generate
samples (β-subset) as
the output of the net-
work.

Methodology. In our experiment, we first trained a model of the DeepConv-LSTM
with the complete protocol-subset of PAMAP2. This network is trained for 200 epochs
and achieved a validation F1-Score of 96%. This means that this network knows the
characteristics of all subjects and all used activities, therefore it is able to distinguish
between real and fake data and can be used as a model to select just appropriate data
generated from the GAN. Important training parameters for the GAN network are:
learning-rate = 0.10, batch-size = 20, latent-dimension (or noise space for generator
input) = 10, and the number of times the generator and discriminator network are
optimized at each epoch = 5. Due to the unknown number of exactly needed training
epochs of the generator and discriminator, in which the GAN starts to produce real-
looking synthetic data, the network needs to be trained for many epochs. Training the
GAN for approximately 1000 epochs is an appropriate estimate to start the process.
As soon as fitting hyperparameters and epochs are found, we are able to synthesize
an arbitrary number of samples.

Since we are tuning between two networks (generator and discriminator), the
discriminator often shows lower loss values than the generator. Although the generator
misled the discriminator, the produced data does not look realistic. Therefore the
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synthesized data from the generator is fed for a quality-check to the DeepConv-LSTM.
If the F1-Score achieves ≥ 95%, the data is considered to have reached the supposed
quality and the data will be saved or otherwise discarded. If the required amount of
data is reached, the process will be terminated.

Two different strategies, (1) Subject- & Activity-Wise Augmentation and (2) Folder-
& Activity-Wise Augmentation, are developed, see Fig. 5.4. Both strategies follow the
process cycle as shown in Fig. 5.5, but differ in the input data of the GAN. Therefore

Figure 5.4 Data Augmentation Strategies: Grey background represents the initial dataset,
green the augmented data, and blue the data after merging both (β-dataset). Yellow squares
represent the test-subject for each fold. (1) Subject- & Activity-Wise augmentation and
merging strategy. After augmenting the data, the augmented data is merged back into the
subject’s data, afterwards the LOSO-Folds will be created; (2) Fold-Wise augmentation and
merging strategy. LOSO-Folds are created before the augmentation process starts. The
fold-wise arranged data is then used as input for the augmentation. The synthesized data
results in non-subject-specific data, since it contains characteristics from all subjects of the
fold.

the augmented data show deviant characteristics.
(1) Subject- & Activity-Wise Augmentation
This strategy uses only the personal activity of a subject as input. The data generated
in this way is thus subject-specific. The synthesized data is then added to the subject
in the original dataset. Afterward, the different folds for the cross-validation are
generated.
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(2) Fold- & Activity-Wise Augmentation
The data augmentation process itself is divided into 2 phases: (1) Generator phase
and (2) Discriminator phase. Figure 5.5 illustrates the complete augmentation process.
A separate GAN must be trained for each activity. If the generated samples cannot
be distinguished from real samples anymore, they will be saved, otherwise, they will
be discarded. Generator and Discriminator networks train parallel on the real data.
This process is repeated till the discriminator unit decides that the data looks real.
Therefore we talk about this as a cycle with n iteration steps. However, due to
improper parameter tuning of the generator and discriminator, it can happen that
the generator misleads the discriminator, which results in unreal-looking samples.

The fold-wise activity selection uses activity data of all subjects from a fold as input

Dataset

Subject- & Activity 
Selection

Preprocessing

Activity 1 Activity 2 Activity 3 Activity n

Windowing Windowing Windowing Windowing

GAN 1 GAN 2 GAN 3 GAN n

Generated 
Samples at 
every 5 
epoch

Generated 
Samples at 
every 5 
epoch

Generated 
Samples at 
every 5 
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Generated 
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every 5 
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DeepConv
Network

Windowing 

Pretrained 
Model

Save the data

Extended 
Dataset
(β-subset)

Evaluation 
Network

Improved 
Classification

yes
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Remove 
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classifies 
correctly ?
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correctly ?

yes
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correctly ?

yes

classifies 
correctly ?

Save the data Save the data Save the data
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Augmentation Input-Data (⍺-subset). 
(Strategy 1) Subject- or (Strategy 2) fold-wise organized.

GAN 
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Remove 
data
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Remove 
data

no
Remove 
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Figure 5.5 Data Augmentation Process Cycle: The complete dataset is needed to train
the model that monitors the quality of the augmented data. The α-subset represents the
input data, the β-subset the dataset after merging the augmented data with the α-subset.
For every activity, subject- or fold-wise organized data, a new GAN needs to be trained.
After 5 epochs the generated data is tested, if it reaches the predefined F1-Score of 95% it
will be kept. If not, the data will be discarded.
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for the augmentation. The resulting data can no longer be assigned to a specific
subject. Rather, it contains characteristics of each subject in the fold. Thus, the data
is not assigned to the subjects but is merged into the folds directly. In contrast, the
test dataset is not enlarged as in strategy (1), instead, the test subjects of the α-dataset
are used. Once the subjects and activities to be augmented have been selected, the
preprocessing is applied. It is important to note that the data generated by the GAN
will be of the same nature as the input data. This means that if raw data has to be
generated, the preprocessing must not include operations that alter the raw data itself.
Our goal is to produce raw data that appears genuine. Therefore, during preprocessing,
we only remove missing values from the dataset and do not apply normalization, even
though normalization leads to better classification results. Afterwards, a jumping
window algorithm is applied on both subsets with a window length of 100 samples (1
second in time-domain) and without overlapping samples. The windows are labeled
according to the method proposed by [159], where the assigned label of the window is
identical to the last sample of the window. These labels are one-hot encoded with
0.0 or 1.0. After merging synthesized and original data. Our final subset is called
β-subset.

We synthesized 80000 samples per class using this method, which is approx. 5 times
more than the original dataset. Table 5.3 sums up the process depicted in Figure
5.5 in a compact format and can be used as a progress guide to implementing a data
augmentation algorithm for sensor-based human activity data.

5.2.3. Results

We trained our classification network with both augmentation strategies and compared
the results to the baseline, the results are summed up in Table 5.4 and visualized as
confusion matrices in Figure 5.6. As shown in the table, the strategies can increase

Figure 5.6 Confusion Matrices of the average classification results from the loso-cross-
validation. From left to right: without augmented data, with Activity- & Subject-Wise
augmented data, with Fold- &Activity-Wise augmented data.
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Table 5.3 Process guide to augment data exemplary on PAMAP2.

Step Action Result Pitfalls

(1) Subject and
Activity
Selection

(1) Select Subjects
(2) Select Activities

protocol subset

Select Activities or
Subjects with insuffi-
ciant number of
samples.

(2) Preprocessing

(1) Delete missing values
(Optional) Normalization
(2) Create Windows
(3) One-Hot-Encoding of
labels
(4) Create LOSO-Subsets

α–subset
(Preprocessed)

If the data is norma-
lized, be sure that the
same normalization
method is applied on
all subsets. We re-
commend to skip norm-
alization and work with
raw data.

(3a) Train
Monitoring-Network

Use protocol subset to
train the test-network

trained model
to test the quality
of the augmented
data

Over- or underfitting of
the Network. If an over-
or underfitting of your
network already happens
with the complete data-
set, it will also happen
with the reduced β-
subsets.
Hint: Quality-
check with cross-
validation on the
baseline model, to see
if the model is over-
or underfitted.

(3b) Train
baseline

Calculate the baseline
by training a
DeepConv-LSTM with the
α-subset

LOSO-Baseline

(3c) Train
GANs

(1) Select subjects and
activities, for which
data should be gen-
erated.
(2) Decide for an
augmentation strategy
(3) Train the GAN-
Networks and generate
augmented data using
α-subset

Augmented windo-
ows of samples.

The Generator does
not produce realistic
samples at initial
steps although
discriminator loss is
quite low.
Introducing a new
activity, results in
fine-tuning the
parameters at first

(4) Merge Data
(1) Merge α-subset
with augmented data

β-subset

(5) LOSO cross-
validation

(1) Train/Test Model with
β-subset and
LOSO-Cross-Validation

Final classification
results

Not choosing the
correct metrics with
respect to the dataset
attributes.

128



5.2 Data Augmentation Strategies for HAR Deep Learning

Table 5.4 Precision (P), Recall (R), and F1-Score (F1) as resulted from the different
augmentation strategies for every activity class, as well as the calculated weighted average.
The baseline without data augmentation reached an F1-Score of 67.5%. Both augmentation
methods improved the classification results. Subject-specific augmentation method improves
the total F1-Score to 78.5%. The Fold-Wise augmentation pushes the F1-Score to 72.6%.

Fold 0 1 2 3 4 5 6 7
Metrics P R F1 P R F1 P R F1 P R F1 P R F1 P R F1 P R F1 P R F1

Total avg
F1-Score: 67.5

Baseline without Data Augmentation

lying 76 36 49 100 92 96 100 91 95 94 72 81 83 93 88 78 94 86 100 95 97 02 00 01
sitting 00 00 00 99 59 74 90 98 94 95 95 95 91 76 83 99 83 90 99 91 95 68 52 59

standing 00 00 00 20 11 14 97 54 70 79 80 80 50 38 43 84 36 50 88 92 90 19 02 03
ironing 31 100 48 54 95 69 84 71 77 94 93 94 78 89 83 80 89 84 89 97 93 41 49 45
vacuum
cleaning

60 79 68 48 83 61 53 89 67 51 64 56 47 60 53 64 89 74 79 73 75 21 80 33

walking 82 84 83 99 50 67 95 93 94 86 88 87 83 72 77 93 95 94 96 97 96 44 01 03
weighted

avg
42 50 41 70 64 63 87 83 84 84 83 83 73 73 73 83 81 80 92 92 92 33 30 24

Total avg
F1-Score: 78.6

Subject- & Activity-Wise Augmentation

lying 96 95 95 100 98 99 99 98 99 99 92 95 96 97 97 95 99 97 99 100 100 01 00 01
sitting 00 00 00 99 96 97 95 100 97 98 97 98 98 93 96 100 97 98 99 99 99 85 40 54

standing 69 06 11 94 91 93 95 90 92 93 98 95 81 52 63 94 52 67 94 99 96 08 00 00
ironing 29 100 45 98 98 98 96 85 90 98 97 98 88 97 92 98 96 97 97 98 98 33 46 38
vacuum
cleaning

78 89 83 84 95 89 86 96 91 89 92 90 53 89 67 67 91 77 95 90 93 28 88 42

walking 55 16 25 99 94 96 95 97 96 97 96 96 91 60 72 88 98 93 98 97 97 86 61 71
weighted

avg
55 51 44 96 95 95 94 94 94 96 95 95 85 81 81 90 89 88 97 97 97 40 39 35

Total avg
F1-Score: 72,6

Fold- & Activity-Wise Augmentation

lying 81 70 75 100 92 96 98 92 95 98 86 92 98 92 95 83 94 89 95 98 97 02 00 01
sitting 00 00 00 90 59 72 87 100 93 94 95 95 93 72 81 80 94 86 97 92 95 59 51 54

standing 08 00 01 74 95 83 92 67 77 85 91 88 48 42 45 83 46 59 80 97 88 43 02 05
ironing 33 100 49 93 91 92 83 57 68 97 92 94 81 87 84 94 82 88 89 97 93 35 38 37
vacuum
cleaning

76 73 74 59 79 67 56 86 68 65 75 70 67 60 63 63 86 73 92 48 63 23 79 35

walking 89 86 88 97 83 90 92 93 93 91 89 90 68 91 78 92 94 93 90 97 93 84 37 52
weighted

avg
49 56 49 87 84 84 85 83 83 89 88 89 76 76 75 84 83 82 90 89 88 42 35 31

the F1-Score by about 5.1% using strategy 2. The subject-specific augmented data,
strategy (1), increases the F1-Score by 11.0%. Furthermore, the cross-validation shows
that the characteristics of the data of subjects 0 and 7 do not seem to match those
of the other study participants, resulting in lower classification results. They were
only conditionally increased for the classes lying, standing, vacuum cleaning, and
walking (only strategy 2). The confusion, visible in Figure 5.6, belongs mostly to these
subjects and shows that subject-specific confusion is not solvable by just increasing the
number of samples, since even though the number of samples was increased by factor
5, and the confusion remained. The baseline results of our experiment do not reach
results presented in other papers, for instance, [238], [82] that worked with similar
architectures and datasets. This is due to the fact that we have limited ourselves
to the wrist sensor, as well as the smaller protocol subset, and have refrained from
preprocessing.
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5.2.4. Conclusions and Discussion

This section introduces a new approach to augment sensor-based human activity
data. The generative part of our architecture works with a Generative Adversarial
Network (GAN), which builds on the work of Esteban et al. [67] and is further
developed for using inertial data. Our method synthesizes data that mimics the
input data characteristics. By following two strategies, we are able either to augment
subject- or fold-specific activity data. The GAN is able to produce raw data, as
well as preprocessed appearing signals. We argue that with the generated data we
are able to increase the scope and variability of a dataset, which helps to increase
the classification performance of a neural network and to prevent negative effects,
such as over- or underfitting. This work has also shown that adding augmented
data could have negative effects on certain classes and subjects. This approach is
applicable to an arbitrary number of activities and subjects and can be transferred
to other sensor-based human activity datasets. Through the presented process cycle,
we offer an easy-to-follow method that helps other scientists adopt, reproduce, and
integrate such a method into their own experiments. The architecture of the test
network can be exchanged at will and thus be adapted to individual needs. However,
further development of GAN architectures is necessary to be able to overcome the
time-consuming disadvantage of choosing the correct hyperparameters. To avoid
this factor in the future, we plan to extend the architecture with an independently
acting search algorithm to find satisfying hyperparameters for the GAN. In further
experiments, it is important to consider how much the size of the augmented dataset
influences the classification capabilities of a model. Due to space constraints, those
effects were not explored in detail, but they are an important factor for the real-world
application of such strategies and algorithms.
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Section 5.3

Summary

Section 5.1 is dedicated to investigating the applicability of transfer learning techniques
in the context of sensor-based human activity data analysis. To explore the potential
and limitations of this approach, a series of experiments were conducted. These
experiments encompassed endeavors such as sensor alignment optimization as part of
preprocessing, model transfer between different sensor locations, and model transfer
between distinct datasets. We distinguished between different levels of post-transfer
trainable layers: (1) All layers are frozen after the transfer, except the classification-
layer, (2) Only the ConvBlocks are frozen after the transfer, LSTM-Layers stay
trainable, (3) the ConvBlocks are frozen after the transfer, LSTM-Layers stay train-
able, but are reinitialized with lecun-uniform initialization and (4) the Conv.- and
LSTM-Layers are trainable, but LSTM-Layers are reinitialized with lecun-uniform
initialization. The findings, summarized in Table 5.1.3, reveal that the effectiveness
of transfer learning is contingent upon specific model configurations and dataset
characteristics. Transfer learning exhibits advantages primarily in terms of reduced
training durations and a diminished requirement for extensive data to adapt a model.
Nevertheless, the overall improvement in a model’s capacity to accurately classify data
was not found to be statistically significant. Specifically, the attempt to transfer a
model between datasets originating from distinctive domains yielded unremarkable
results, as the classifier’s performance showed no noticeable enhancement post-model
transfer.

Section 5.2 or [94] introduces a novel approach to augment sensor-based human
activity data using a custom GAN architecture designed for inertial data. The approach
offers two strategies for augmenting subject-specific or fold-specific activity data, with
the aim of expanding dataset variability and scope. The generated data is intended to
improve neural network classification performance while addressing overfitting and
underfitting issues. I highlight, that the introduction of augmented data may have
negative impacts on specific classes and subjects. The approach is versatile and can
be applied to various activities and subjects, making it accessible to other researchers.
I further acknowledge the time-consuming process of hyperparameter selection for
the GAN and suggest future work to automate this task. Additionally, I emphasize
on the need for further investigation into how the size of the augmented dataset
affects classification performance, especially in real-world applications. Overall, this
paper contributes to the exploration of data augmentation strategies with potential
implications for sensor-based human activity data analysis.
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Chapter 6

Conclusion and Future Work

Accurate and robust human activity recognition relies heavily on high-quality datasets.
However, several factors can introduce noise, biases, and errors into activity recog-
nition datasets, which then propagate through the modeling pipeline. One critical
issue is the quality of manual annotations for sensor data, which are required to
train and evaluate activity recognition models. The annotation process is prone to
subjectivity, inconsistency, and errors on the part of human labelers. This can lead to
unreliable or incorrect labels, which then degrade model performance. Strategies are
needed to obtain higher quality and more consistent annotations. Another factor is
synchronization between different sensor streams in multi-modal activity recognition.
Systems combining data from multiple sensors like inertial measurement units on
different body parts require precise synchronization between the sensor streams. Even
small misalignments of a few milliseconds can significantly degrade model performance.
Thus, robust synchronization techniques are necessary when working with multi-sensor
setups. The Hawthorne effect refers to when participants change their behavior be-
cause they know they are being observed during an experiment. While psychologists
have confirmed this effect, a data-driven user study was unable to reproduce it. Still,
completely negating the potential impact of the Hawthorne effect on activity recogni-
tion datasets would be short-sighted. More research is needed to quantify if and how
this observer effect manifests in different experimental protocols. Addressing these
factors will enable more accurate deep learning for activity recognition. In addition,
techniques like transfer learning and data augmentation can further enhance model
performance. Transfer learning could leverage knowledge from pre-trained models,
potentially improving accuracy and reducing training time. Data augmentation, by
artificially expanding the dataset, can address potential biases and lead to more robust
modeling, particularly for underrepresented classes.
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Section 6.1

Conclusion

The contributions of this thesis can be categorized into four primary areas: (1)
The data recording system - Activate, (2) User Studies that address research
questions directly related to human activity recognition and deep learning, including
the enhancement of recording methods, the synchronization of multiple sensors, and
the assessment of annotation methods widely used in activity recognition, (3) Deep
Learning aspects, such as transfer learning and data augmentation, and (4) a
series of publications on Sports Activity Recognition, which interconnect all the
aforementioned topics.
Data Recording System (1) and User Studies (2): The impact in this field is
multifaceted. I contributed an open-source recording system, Activate. Its
open-source character enables other researchers to adapt it according to their needs
and reduces the hurdles to recording activity data for their projects.

The second contribution in this field of study highlights hurdles that arise while
annotating data during in-the-wild studies. The quality of human activity recognition
systems depends heavily on the underlying dataset annotations. However, manual
annotations are inherently subjective and inconsistent. Human errors and variabilities
during the annotation process propagate downstream, negatively impacting model
performance. I conducted a study to quantify these annotation inconsistencies on
real-world sensor-based activity data. My findings revealed significant inter-annotator
disagreements, even between experts, when labeling the same activities using video
ground truth. With the introduction of a data visualization and annotation tool
were able to decrease the number of missing annotations and increase the annotation
consistency. Therefore, the F1-Scores of the deep learning model have been increased
by up to 8% (ranging between 82.1 and 90.4 % F1-Score). This highlights the difficulty
of achieving consistent manual annotations. By quantifying annotation challenges
and developing solutions to enhance consistency, this thesis enables the collection
of more accurate and reliable benchmark datasets. My contributions provide
methodological improvements that will benefit future data collection efforts
across the activity recognition community.

Furthermore, I focused on the automated and precise synchronization of data
recorded by multiple wearable sensors. This is critical for human activity analysis, yet
non-trivial in practice. Drift between device clocks of ubiquitous systems gradually
desynchronizes the sensor streams, even if correctly aligned initially. Uncontrolled
sensor power-on sequences introduce further misalignments from the outset. To enable
robust multi-sensor activity recognition, I developed an automated algorithm that
accurately realigns drift-prone streams post-recording. This alleviates tedious manual
synchronization while achieving higher precision than simplistic alignment assumptions.
My contribution provides a pragmatic solution for synchronizing data
recorded by wearable devices. I developed an algorithm to align multi-sensor
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data by exploiting signal correlations. Cross-correlation detects matching patterns
across the sensor streams indicating synchronization points. It then shifts the signals
to align based on these anchored points. This avoids cumbersome manual alignment
of long, continuous recordings. By applying this synchronization method I was able
to synchronize independent data stream with a minimum mismatch of 0.30 seconds or
15 samples.

Another core contribution challenges the widely held view that the Hawthorne Effect
causes people to modify behavior when monitored during observed and controlled
studies. I conducted a data-driven study analyzing the Hawthorne Effect in activity
recognition by having participants perform fitness activities in observed, semi-observed,
and non-observed sessions. Participants wore a smartwatch running the Activate
system to collect motion data. Through feature analysis and training a deep learning
classifier on the multi-session data, I did not find significant differences between the
observation conditions. While my study does not wholly refute the existence of the
Hawthorne Effect, as evidenced by prior clinical trials, it does contest the common
assumption about differences between laboratory and real-world data. Though some
behavioral changes may occur when participants are observed, my results indicate
classifiers can still learn similarly useful discriminative features.

By empirically investigating the Hawthorne Effect in an activity recogni-
tion context, my work provides new data-driven insights about the relevance
of controlled studies for real-world applications. My findings challenge
prevailing notions and will inform future protocol designs.

Deep Learning (3): I explored transfer learning and data augmentation techniques
for improving model generalization in human activity recognition. Transfer learning by
pre-training on large generic datasets can help, but performance gains are inconsistent
across target tasks. I propose tailored pre-training strategies more aligned
with the activity recognition domain. For data augmentation, I generated
synthetic data using a generative adversarial network and evaluated samples with a
DeepConv-LSTM. My key contribution was developing novel strategies to
select appropriate real samples to augment human activity datasets. I
investigated two selection strategies: participant-wise and fold-wise. The results prove
that the success of the augmentation process heavily depends on the selected input
data and the chosen augmentation strategy. Fold-wise augmentation increases the
F1-Score by about 5.1% and subject-specific augmented data, increases the F1-Score
by 11.0%.

Augmentation techniques are often copied from computer vision, where images can be
flipped, rotated, cropped, or color-inverted. However, these transformations retain the
core image information - an image of a dog remains an image of a dog. Though these
techniques can work for HAR, directly applying them to sensor-based time-series data
is illogical. Sensor data contains complex time-dependent information that standard
augmentations would destroy, resulting in non-representative samples unrelated to
the original class. Therefore, developing tailored augmentation techniques is essential
for artificially increasing HAR training data. Standard image augmentations change
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pixel values while retaining high-level content. However, altering sensor readings
destroys precise time-series signatures needed for HAR models. Flipping, cropping, or
rotating sensor data removes critical timing cues. While augmentations can still help
tune model weights, generating realistic sensor data that preserves time-dependent
relationships and class-discriminative features remains an open challenge. Effective
data augmentation for HAR requires techniques specifically designed for sensor modal-
ities, rather than directly adapting image-based approaches. Careful augmentation
that considers sensor data complexity is needed to synthesize representative samples
without distorting class-specific signatures. Despite progress in deep learning for HAR,
focused research is still needed to uncover best practices surrounding transfer learning
and data augmentation in this domain. Advancing knowledge in these areas will
enable more rigorous leveraging of these techniques.

Sports Activity Recognition (4): I studied the capabilities and limitations
of current deep learning architectures for recognizing the combination of periodic,
complex, sporadic activities, using basketball as the domain of choice for a case
study. Basketball provides a rich testbed with frequent changes in pace, direction, and
intricate full-body movements. I trained state-of-the-art convolutional and recurrent
neural networks on basketball activity recognition using inertial sensor data. The
models were able to recognize the introduced basketball classes with limitations.
Subject-independent F1-Scores were slightly above 50% for both architectures used.
On the contrary, the overall performance for session-independent training shows a
significant decrease and reaches around 24% for the shallow DeepConvLSTM [35]
and 19% average F1-score for the Attend-and-Discriminate architecture [3]. My
analysis revealed remaining challenges in accurately detecting infrequent,
unstructured motions like layups, rebounds, passes, or jumps-shots. The
models struggled to differentiate subtle motion variations and lacked longer-
term temporal context. This highlights the need for more flexible networks with
stronger reasoning capabilities.

In summary, this thesis has advanced the understanding of critical issues in activity
recognition datasets - from the data collection process to annotation and analysis. The
methods and insights provided here will enable the development of more accurate and
robust activity recognition systems. Moving forward, I identify the recognition of com-
plex, contextual activities as an open challenge for the field. As demonstrated through
the basketball case study, sporadic activities require flexible models with greater
reasoning capabilities. Transfer learning and data augmentation show promise for
improving model generalization. Progress in this direction will expand the applicability
of activity recognition to new real-world domains.
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Section 6.2

Future Work

This Ph.D. thesis encompassed multiple topics related to human activity recognition.
I believe further investment is warranted regarding annotation methodologies applied
to human activity datasets. Robust and precise annotation methods especially for
datasets recorded in-the-wild remain an underinvestigated area despite the importance
of researchers developing new datasets. Weaknesses and strengths of certain methods
must be discovered to overcome limitations. Results from such studies should be
disseminated to the research community to develop methodologies that can be easily
implemented and advanced by others. Our community still lacks powerful graphical
annotation tools that surpass prototype status, undergo continuous improvement, and
remain maintained. The study on the Hawthorne effect for wearable data recordings
necessitates expanded participant cohorts, more diverse activities, and multiple record-
ing environments to achieve sufficient representation across data collection scenarios
potentially introducing bias.

The second critical aspect involved publishing the Hang-Time HAR dataset, which
is the first dataset that is extensively focused on a single sport by targeting multiple
basketball-specific activities. This enables researchers to concentrate on group activity
recognition and activities with varying characteristics and challenges. For future
work, I would like to augment this dataset with depth image data using a top-down
camera below the basketball hoop and add context information of in-between players’
activities.

Deep learning for human activity recognition presents numerous open research
opportunities despite the maturity of some techniques. For example, transfer learning
and data augmentation are established methods in deep learning, but unresolved
questions remain surrounding their implementation for HAR. Regarding transfer
learning for HAR, the field would benefit from determining optimal approaches such
as sufficient data volume to enable model transfer, identifying data characteristics
that allow transferability, preprocessing techniques that may be necessary to facilitate
transfer, and which activity classes transfer well versus poorly. Although transfer
learning shows promise for HAR, these open questions need to be addressed before it is
widely adopted. Similarly, while data augmentation is an effective technique to increase
training data volume, implementation details remain unclear in HAR applications.
Potential research directions involve determining: the number of augmented training
samples needed per activity class, which augmentation techniques work better for
different HAR activity types, and which classes are difficult to augment realistically.
Investigating these aspects would help the community establish best practices for
effective data augmentation when working with HAR datasets.
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Kamiar Aminian, Smartswim, a novel imu-based coaching assistance, Sensors
22 (2022), no. 9, 3356.

[82] Nils Y. Hammerla, Shane Halloran, and Thomas Ploetz, Deep, convolutional, and
recurrent models for human activity recognition using wearables, arXiv:1604.08880
[cs, stat] (2016).

[83] Nils Yannick Hammerla, James Fisher, Peter Andras, Lynn Rochester, Richard
Walker, and Thomas Plötz, Pd disease state assessment in naturalistic en-
vironments using deep learning, Twenty-Ninth AAAI conference on artificial
intelligence, 2015.

[84] Jason W Harding, Colin G Mackintosh, Allan G Hahn, and Daniel A James,
Classification of aerial acrobatics in elite half-pipe snowboarding using body
mounted inertial sensors, The Engineering of Sport 7 (2008), no. 2, 447–456.

[85] Ryosuke Hasegawa, Akira Uchiyama, and Teruo Higashino, Maneuver classifica-
tion in wheelchair basketball using inertial sensors, 2019 Twelfth International
Conference on Mobile Computing and Ubiquitous Network (ICMU), IEEE, 2019,
pp. 1–6.

[86] Iqbal Hassan, Abtahi Mursalin, Robin Bin Salam, Nazmus Sakib, and HM Zabir
Haque, Autoact: An auto labeling approach based on activities of daily living
in the wild domain, 2021 Joint 10th International Conference on Informatics,
Electronics & Vision (ICIEV) and 2021 5th International Conference on Imaging,
Vision & Pattern Recognition (icIVPR), IEEE, 2021, pp. 1–8.

[87] Sandro Hauri and Slobodan Vucetic, Group activity recognition in basket-
ball tracking data–neural embeddings in team sports (nets), arXiv preprint
arXiv:2209.00451 (2022).

[88] Netzahualcoyotl Hernandez, Jens Lundström, Jesus Favela, Ian McChesney,
and Bert Arnrich, Literature review on transfer learning for human activity

151

https://www.globalmarketestimates.com/market-report/inertial-measurement-unit-market-3331
https://www.globalmarketestimates.com/market-report/inertial-measurement-unit-market-3331
https://flutter.dev/
https://flutter.dev/


BIBLIOGRAPHY

recognition using mobile and wearable devices with environmental technology, SN
Computer Science 1 (2020), no. 2, 66.

[89] Alexander Hoelzeemann and Kristof Van Laerhoven, Using wrist-worn activity
recognition for basketball game analysis, Proceedings of the 5th international
Workshop on Sensor-based Activity Recognition and Interaction, 2018, pp. 1–6.

[90] Alexander Hoelzemann, Marius Bock, Ericka Andrea Valladares Bast́ıas, Salma
El Ouazzani Touhami, Kenza Nassiri, and Kristof Van Laerhoven, A data-
driven study on the hawthorne effect in sensor-based human activity recognition,
UbiComp/ISWC ’23 Adjunct, Association for Computing Machinery, 2023,
p. 486–491.

[91] Alexander Hoelzemann, Henry Odoemelem, and Kristof Van Laerhoven, Using
an in-ear wearable to annotate activity data across multiple inertial sensors,
Proceedings of the 1st International Workshop on Earable Computing, 2019,
pp. 14–19.

[92] Alexander Hoelzemann, Jana Sabrina Pithan, and Kristof Van Laerhoven, Open-
source data collection for activity studies at scale, Sensor-and Video-Based
Activity and Behavior Computing, Springer, 2022, pp. 27–38.

[93] Alexander Hoelzemann, Julia Lee Romero, Marius Bock, Kristof Van Laer-
hoven, and Qin Lv, Hang-time har: A benchmark dataset for basketball activity
recognition using wrist-worn inertial sensors, Sensors 23 (2023), no. 13, 5879.

[94] Alexander Hoelzemann, Nimish Sorathiya, and Kristof Van Laerhoven, Data
augmentation strategies for human activity data using generative adversarial neu-
ral networks, 2021 IEEE International Conference on Pervasive Computing and
Communications Workshops and other Affiliated Events (PerCom Workshops),
IEEE, 2021, pp. 8–13.

[95] Alexander Hoelzemann and Kristof Van Laerhoven, Digging deeper: towards a
better understanding of transfer learning for human activity recognition, Pro-
ceedings of the 2020 International Symposium on Wearable Computers, 2020,
pp. 50–54.

[96] , A matter of annotation: An empirical study on in situ and self-recall
activity annotations from wearable sensors, arXiv preprint arXiv:2305.08752
(2023).

[97] Derek Hao Hu, Vincent Wenchen Zheng, and Qiang Yang, Cross-domain activity
recognition via transfer learning, Pervasive and Mobile Computing 7 (2011),
no. 3, 344–358.

[98] Iqram Hussain, Rafsan Jany, Richard Boyer, AKM Azad, Salem A Alyami,
Se Jin Park, Md Mehedi Hasan, and Md Azam Hossain, An explainable eeg-based
human activity recognition model using machine-learning approach and lime,
Sensors 23 (2023), no. 17, 7452.
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multimodal fusion techniques for three-stage sleep classification using ubiqui-
tous sensing, Proceedings of the ACM on Interactive, Mobile, Wearable and
Ubiquitous Technologies 5 (2021), no. 4, 1–33.

163



Bibliography

[240] Shanshan Zhang, Lihong He, Eduard Dragut, and Slobodan Vucetic, How to
invest my time: Lessons from human-in-the-loop entity extraction, Proceedings
of the 25th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, 2019, pp. 2305–2313.

[241] Kunlun Zhao, Junzhao Du, Congqi Li, Chunlong Zhang, Hui Liu, and Chi Xu,
Healthy: A diary system based on activity recognition using smartphone, 2013
IEEE 10th international conference on mobile Ad-Hoc and sensor systems, IEEE,
2013, pp. 290–294.

[242] Lin Zhou, Eric Fischer, Can Tunca, Clemens Markus Brahms, Cem Ersoy,
Urs Granacher, and Bert Arnrich, How we found our imu: Guidelines to imu
selection and a comparison of seven imus for pervasive healthcare applications,
Sensors 20 (2020), no. 15, 4090.

[243] Yexu Zhou, Haibin Zhao, Yiran Huang, Michael Hefenbrock, Till Riedel, and
Michael Beigl, Tinyhar: A lightweight deep learning model designed for hu-
man activity recognition, International Symposium on Wearable Computers
(ISWC’22), Atlanta, GA and Cambridge, UK, September 11-15, 2022, 2022.

[244] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A. Efros, Unpaired image-
to-image translation using cycle-consistent adversarial networks, (2018).

[245] Tobias Zimmermann, Bertram Taetz, and Gabriele Bleser, Imu-to-segment
assignment and orientation alignment for the lower body using deep learning,
Sensors 18 (2018), no. 1, 302.

164


	Title
	Declaration of Authorship
	Acknowledgments
	Preface
	Abstract
	Contents
	Introduction
	Motivation
	Principal Research Questions

	Contributions
	Thesis Outline

	Background and Related Work
	Background
	Human Activity Recognition
	Hardware

	Related Work
	Activity Recognition
	Annotation Methods in Activity Recognition
	Sports Activity Recognition
	Deep Learning in Activity Recognition


	User Studies for HAR
	Activate System
	Introduction
	Our Proposed Approach
	Performance Analysis
	Conclusions

	Comparing Annotation Methods
	Introduction
	Study Setup
	Statistical Analysis
	Effects on Deep Learning Performance
	Results
	Discussion
	Conclusions

	Multi-Sensor Sync.
	Introduction
	System Design
	Methodology
	Results and Discussion
	Conclusions

	The Hawthorne Effect
	Introduction
	Methodology
	Results
	Conclusions and Discussion

	Summary

	Basketball Activity Recognition
	Preliminary Basketball Study
	Introduction
	The Study
	Discussion
	Conclusions

	Hang-Time HAR
	Introduction
	Motivation
	Methodology
	Analysis
	Discussion
	Conclusions

	Summary

	Deep Learning
	Transfer Learning
	Introduction
	Methodology
	Results and Evaluation
	Discussion and Conclusion

	Data Augmentation Strategies for HAR
	Introduction
	Experiment
	Results
	Conclusions and Discussion

	Summary

	Conclusion and Future Work
	Conclusion
	Future Work

	References



