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ABSTRACT

Research into the detection of human activities from wearable sensors is a highly active field,
benefiting numerous applications, from ambulatory monitoring of healthcare patients via fitness
coaching to streamlining manual work processes.

We present an empirical study that evaluates and contrasts four commonly employed annotation
methods in user studies focused on in-the-wild data collection. For both the user-driven, in situ
annotations, where participants annotate their activities during the actual recording process, and the
recall methods, where participants retrospectively annotate their data at the end of each day, the
participants had the flexibility to select their own set of activity classes and corresponding labels.

Our study illustrates that different labeling methodologies directly impact the annotations’ quality,
as well as the capabilities of a deep learning classifier trained with the data. We noticed that in situ
methods produce less but more precise labels than recall methods. Furthermore, we combined an
activity diary with a visualization tool that enables the participant to inspect and label their activity
data. Due to the introduction of such a tool were able to decrease missing annotations and increase the
annotation consistency, and therefore the F1-Score of the deep learning model by up to 8% (ranging
between 82.1 and 90.4 % F1-Score). Furthermore, we discuss the advantages and disadvantages of
the methods compared in our study, the biases they could introduce, and the consequences of their
usage on human activity recognition studies as well as possible solutions.

Keywords Human-centered computing · ubiquitous computing · user-driven study · annotations

sectionIntroduction

Sensor-based activity recognition is one of the research fields of Pervasive Computing developed with enormous
speed and success by industry and science and influencing medicine, sports, industry, and therefore the daily lives of
many people. However, current available smart devices are mostly capable of detecting periodic activities like simple
locomotions. In order to recognize more complex activities a multimodal sensor input, such as [1], and more complex
recognition models are needed. Many of the published datasets are made in controlled laboratory environments. Such
data does not have the same characteristics and patterns as data recorded in-the-wild. Data that belongs to similar
classes but is recorded in an uncontrolled versus controlled environment can differ significantly since it contains
more contextual information [2] . Furthermore, study participants tend to control their movements more while being
monitored [3]. The recording of long-term and real-world data is a tedious, time-consuming, and therefore a non-trivial
task. Researchers have various motivations to record such datasets but the technical hurdles are still high and problems
during the annotation process occur regularly.

In Human Activity Recognition research, capturing long-term datasets presents a challenge: balancing precise labeling
with minimal participant burden. Sole reliance on self-recall methods, like activity diaries e.g., [4], often leads to
imprecise time indications that may not accurately reflect actual activity duration. Such incorrectly or noisy labeled



A Matter of Annotation

data later on leads to a trained model that is less capable of detecting activities reliably [5], due to unwanted temporal
dependencies learned by wrongly annotated patterns [6].

The field of HAR is witnessing a growing emphasis on real-world and long-term activity recognition. This focus stems
from the need to address current limitations and achieve reliable recognition of complex daily activities. Existing
long-term datasets often rely heavily on self-recall methods or additional tracking apps. These apps can set labels
either automatically [7] or require manual selection [8]. However, such approaches present challenges, leading many
researchers to favor controlled environments for data collection. As a consequence, the number of publicly available
”in-the-wild” datasets remains limited.
Contribution: Our study focuses on the evaluation of 4 different annotation methods for labeling data in-the-wild:
1 In situ (lat. on site or in position) with a button on a smartwatch, 2 in situ with the app Strava 1 (an app that is

available for iOS and Android smartphones), 3 pure self-recall (writing an activity diary at the end of the day), and 4
time-series assisted self-recall with the MAD-GUI [9], which displays the sensor data visually and allows to annotate
it interactively. Our study was conducted with 11 participants, 10 males, and 1 female, over 2 weeks. Participants
wore a Bangle.js Version 12 smartwatch on their preferred hand, used Strava, and completed self-recall annotations
every evening. In the first week, the participants were asked to write an activity diary at the end of the day without any
helping material and additionally using two user-initiated methods (in situ button and in situ app) to manually set labels
at the start and beginning of each activity. In the second week, the participants were given an additional visualization
of the sensor data with an adapted version of the MAD-GUI annotation tool. With the help of this, participants then
were instructed to label their data in hindsight with the activity diary as a mnemonic aid. Given labels from both weeks
were compared to each other regarding the quality through visual inspection and statistical analysis with regard to the
consistency and quantity of missing annotations across labeling methods.

The participants in this study were given the freedom to self-report their activity classes based on the diverse range of
pursuits encompassed within their daily lives. Consequently, the resulting dataset exhibits a heterogeneous composition,
comprising both commonplace, routine activities such as walking, driving, and eating, as well as more specialized and
niche activities like badminton, yoga, horse riding, and gardening.

Furthermore, we used a Shallow-DeepConv(LSTM) architecture, see [10] and [11], and trained models with a Leave-
One-Day-Out cross-validation method of 6 previously selected subjects and each annotation method.
Impact: Annotating data, especially in real-world environments, is still very difficult and tedious. Labeling such data is
always a trade-off between accuracy and workload for the study participants or annotators. We raise awareness among
researchers to put more effort into exploring new annotation methods to overcome this issue. Our study shows that
different labeling methodologies have a direct impact on the quality of annotations. With the deep learning analysis,
we prove that this impacts the model capabilities directly. Therefore, we consider the evaluation of frequently used
annotation methods for real-world and long-term studies to be crucial to give decision-makers of future studies a better
base on which they can choose the annotation methodology for their study in a targeted way.

1 Related work

A very limited number of datasets are currently publicly available which were recorded in the wild, e.g. [12, 13, 14, 15,
16]. [16] and [15] were captured in naturalistic settings, but the participants were equipped with multiple sensors on
various body locations and were filmed by a third party during the exercises. Such visible equipment and the presence of
an observer could potentially introduce a behavior bias [17] in the data, as it may alter participants’ movement patterns
due to the constant reminder that they are participating in a study [3]. Furthermore, multimodal datasets recorded
with multiple body-worn sensors, rather than a single Inertial Measurement Unit (IMU), have faced the challenge of
proper inter-sensor synchronization [18]. A comprehensive dataset encompassing a diverse range of classes, accurate
annotations, and recorded by a single device that is nearly unnoticeable to the participant (and therefore unlikely to
influence their behavior or movement patterns), is not yet publicly available due to the aforementioned obstacles.

According to [19] and later [8], we distinguish between 6 or 7, respectively, different methods and 2 environments
(online/offline) of labeling data, the methods are (1) Indirect Observation, (2) Self-Recall, (3) Experience Sampling, (4)
Video/Audio Recordings, (5) Time Diary, (6) Human Observer, (7) Prompted Labeling. [20] uses 4 different categories
to classify data labeling approaches, these are (1) temporal (when) - is the label conducted during or after the activity,
(2) annotator (who) - is the label given by the individual itself or by an observer, (3) scenario (where) - is the activity
labeled in a controlled (e.g laboratory) or uncontrolled (in-the-wild) environment, and (4) annotation mechanism
(how) - is the activity labeled manually, semi-automatically or fully-automatically. All labeling methods have their own

1https://www.strava.com/
2https://www.espruino.com/banglejs
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benefits, and costs and come with a trade-off between required time and label accuracy. However, not every method is
suitable for long-term and in-the-wild recording data. [21], evaluated the annotation performance between 6 different
human annotators of a MoCap (Motion Capturing) and IMU HAR Dataset for industrial deployment. They came to
the conclusion that annotations were moderately consistent when subjects labeled the data for the first time. However,
annotation quality improved after a revision by a domain expert. In the following, we would like to go into more detail
on what we consider to be the most important labeling methods for the specific field of activity recognition.

1.1 Annotation Methods in Activity Recognition

Self-Recall methodologies are generally called methods in which study participants have to remember an event in
the past. This methodology is used, for instance, in the medical field (e.g. in the diagnosis of injuries [22]), but also
frequently in studies in the field of long-term activity recognition. [23] used this method during a study in which
participants were asked to label their personal daily data at the end of the day. They noticed that the label quality
depends heavily on the participant’s recall and can therefore be very coarse. During a study conducted by [24], every 15
minutes a questionnaire was triggered in which participants needed the answer multiple choice questions about which
of 35 predefined activities were recently performed.

App Assisted Labeling: [8] presented in 2014 the so called Prompted labeling. An approach that is already used
by commercial smartwatches like the Apple Watch3. In this study user’s were asked to set a label for a time period
which has been detected as an activity right after the activity stops. [7] leverages freely available Bluetooth Low Energy
(BLE) information broadcasted by other nearby devices and combines this with wearable sensor data in order to detect
context and direction changes. The participant is asked to set a new label whenever a change in the signal is detected.
[25] published in 2017 the SHL dataset which contains versatile labeled multimodal sensor data that has been labeled
using an Android application that asked the user to set a label whenever they detected a position change via GPS. [26]
presented a smartphone app that was used in their experimental smart home environment with which study participants
were able to either use voice-based labeling, select a label from a list of activities ordered by the corresponding location
or scan NFC tags that were installed at locations in the smart house. Similar to [26], [13] developed an open-source
mobile app for recording sensor measurements in combination with a self-reported behavioral context (e.g. driving,
eating, in class, showering). 60 subjects participated in their study. The study found that most of the participants
preferred to fill out their past behavior through a daily journal. Only some people preferred to set a label for an activity
that they are about to do. [27] developed a web-based GUI which can either be used on a smartphone, tablet, or a PC
to label data recorded in a smart home environment. However, it is important to mention that, According to [8], the
process of continually labeling data becomes laborious for participants and can result in a feeling of discomfort.

Unsupervised Labeling is a methodology that uses clustering algorithms to first categorize new samples without
deciding yet to which class a sample belongs. [28] presented in 2002 the concept of finding multiple subsets of
eigenspaces where, according to [29], each of them corresponds to an individual activity. Huynh uses this knowledge
to develop the eigenspace growing algorithm, whereby, growing refers to an increasing set of samples as well as to
increasing the so-called effective dimension of a corresponding eigenspace. Based on the reconstruction error (when a
new sample is projected to an eigenspace), the algorithm tries to find the best-fitting representation of a sample with
minimal redundancy. [30] recently published a methodology that uses the Pearson Correlation Coefficient to map very
specific labels of a variety of datasets to 4 meta labels (inactive, active, walking, and driving) of the ExtraSensory
Dataset [13].
Human-in-the-Loop (Labeling) is a collective term for methodologies that integrates human knowledge into their
learning or labeling process. Besides of being applied in HAR research, such techniques are often used in Natural
Language Processing (NLP) and according to [31] the NLP community distinguishes between entity extraction [32, 33],
entity linking [34], Q&A tasks [35] and reading comprehension tasks [36].

Active Learning is a machine learning strategy that currently receives a lot of attention in the HAR community. Such
strategies involves a Human-in-the-Loop for labeling purposes. In the first step the learning algorithm automatically
identifies relevant samples of a dataset which are posteriorly queued to be annotated by an expert. Incorporating a human
guarantees high quality labels which directly leads to a better performing classifier. Whether a sample is determined
to be relevant, and as well the decision to whom it may get presented for annotation purposes are the main focus of
research in this field. [37] presents a technique that relies on specific criteria defined by 3 different uncertainty-based
selection functions to select samples that will be presented to an expert for labeling and then be propagated throughout
the most similar samples. [38] benchmarks the performance of different Active Learning strategies and compared
them, with regard to 4 different datasets with a fully-supervised approach. The authors came to the conclusion that
Active Learning needs only 8% to 12% of the data to reach similar or even better results than a fully-supervised trained
model. These results suggest that presenting pre-selected samples to a human for labeling purposes can reduce the

3https://www.apple.com/watch/
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amount of data needed to train a machine learning classifier significantly due to the increased quality of the labels.
[39] presented a system which used the Online Active Learning approach published by Scully [40] to bootstrap [41] a
machine learning classifier. The publication presented a smartphone app that asked the user right after finishing an
activity, which activity has been performed. Afterwards a small subset of the labeled data was used to bootstrap a
personalized machine learning classifier.

2 Methodology

Our study is conducted with 11 participants, from which 10 are male and 1 is female. The participants are between 25
and 45 years old. Out of 11 participants, 6 are researchers in the field of signal processing and are used to read and
work with sensor data. Participants were selected among acquaintances and colleagues.

2.1 Study Setup

The study was conducted over a period of 2 weeks, during which participants wore an open-source smartwatch on their
chosen wrist. Throughout the two-week study period, the participants were instructed to use 4 different labeling methods
in parallel, as illustrated in Figure 1. In the first week they were asked to use the 1 in situ button, 2 in situ app, and
3 pure self-recall methods. At the beginning of the 2nd week, we expanded the number of annotation methods with

the 4 time-series recall. This annotation method combines the activity diary with a graphical visualization of the
participants’ daily data.

1 The Bangle.js smartwatch has 3 mechanical buttons on the right side of the case. These buttons are programmed
to record the number of consecutive button presses per minute. The button-press annotation method captures the
total number of button presses along with their corresponding timestamps, enabling the delineation of the beginning
and end of an activity within the time-series data. However, this approach does not inherently assign a specific label
or description to the identified activity segment. To address this limitation, we employed an inference strategy that
leveraged the temporal alignment of the button-press data with the annotations obtained from other methods. By
identifying segments with similar timestamps across multiple annotation modalities, we could infer the appropriate
label for the button-press annotations.

Figure 1: The study participants collected data for 14 days in total and annotated the data with 4 different methods:
Labeling 1 in situ with a mechanical button, 2 in situ with an app, 3 by writing a pure self-recall diary and 4
writing a self-recall diary assisted by visualization of their time-series data.

4
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2 In addition, the participants were asked to track their activities with the smartphone app Strava. Strava is an activity
tracker that is available for Android and iOS and freely downloadable from the app stores. The user can choose from a
variety of predefined labels and start recording. Recording an activity starts a timer that runs until the user stops it. The
time as well as the GPS position of the user during the activity is tracked and saved locally.

3 The pure self-recall methods consist of writing an activity diary on a daily basis at the end of the day. The
participants were explicitly told that they should only write down the activities that they still remember 2 hours after the
measurement stopped.

4 The time-series recall method can be seen as a combination of an activity diary and a graphical representation of the
raw sensor data. For visualization and labeling purposes, we provided the participants with an adapted version of the
MAD-GUI. The GUI was published by [9] in 2022 and is a generic open-source Python package. Therefore, it can be
integrated into one’s project. Our adaptions to the package are available for download from a GitHub repository4. It
contains changes to the data loader, the definition of available labels, and color settings for displaying the 3D raw data.

Annotation Guidelines: The participants were provided with guidelines that instructed them to document recurring
daily activities, encompassing both sports and activities of daily living, that exceeded a duration threshold of 10 minutes.
However, the annotation process was deferred until approximately 2 hours after the cessation of the recording session.
This temporal offset was implemented to allow for a reasonable time buffer, enabling participants to consolidate their
experiences. For instance, if a daily recording concluded at 7 pm, the participant would typically annotate their data
around 9 pm, allowing for a 2-hour interim period. Each of these annotation methods represents a layer of annotation
that is used for the visual, statistical, and deep learning evaluation. Figure 1 illustrates the overall concept.

Annotation Process: To capture realistic daily data reflecting participants’ natural routines, we granted them complete
autonomy in choosing their activity classes. Participants were not restricted to a specific activity protocol; instead, we
left the decision of what to label entirely to their judgment. During the study’s first week, participants employed methods
1 - 3 concurrently. In the second week, method 4 was introduced for them to utilize alongside the existing methods.

The labels provided by the participants were later interpreted by the researchers and, when necessary, categorized into
meta-classes. However, whenever a participant was specific about the activity performed, their label was not summed
up into a meta-class. For example, activities such as yoga, badminton, or horse riding were not combined under the
meta-class sport.

2.2 Hardware

Participants wore the commercial open-source smartwatch Bangle.js Version 1 with our open-source firmware5 installed.
The device comes with a Nordic 64MHz nRF52832 ARM Cortex-M4 processor with Bluetooth LE, 64kB RAM, 512kB
on-chip flash, 4MB external flash, a heart rate monitor, a 3D accelerometer, and a 3D magnetometer. Our firmware only
uses the 3D accelerometer and provides the user with the basic functions of a smartwatch, like displaying the time and
counting steps. The data is recorded with 25Hz, a sensitivity of ±8g and saved on the devices’ memory with a delta
compression algorithm. Therefore, we are able to save up to 8-9 hours (depending on how much of the data could be
compressed) of data with the given parameters. The smartwatch stops recording as soon as the memory is full. At the
end of the day, the participants need to upload their daily data and program the starting time for the next day using our
upload web-tool6.

3 Statistical Analysis

The labels were statistically analyzed based on their consistency using the Cohen κ score as well as the number of
missing annotations across all methods. The Cohen κ score describes the agreement between two annotation methods,
which is defined as follows κ = (p0 − pe)/(1− pe), see [42] and [21]. Where p0 is the observed agreement ratio and
pe is the expected agreement if both annotators assign labels randomly. The score shows how uniform two different
annotators labeled the same data. For calculation purposes, an implementation provided by Scikit-Learn [43], was used.
Furthermore, missing annotations across methods are measured as the percentage of missing or incomplete annotations.
The annotations of all methods were first compared with each other and matched based on the given time indications.
Annotations that could not be assigned or were missing were marked accordingly and are the base for calculating this
indicator, see Section 5.2 for more information.

4https://github.com/ahoelzemann/mad-gui-adaptions/
5Our smartwatch firmware is made publicly available at: https://github.com/kristofvl/BangleApps/tree/master/

apps/activate
6Our web-tool is made publicly available at: https://ubi29.informatik.uni-siegen.de/upload/

5
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Figure 2: The architecture consists of an Input Layer with the kernel-size 10 (window size) x 10 (filter length) x 3
(channels). The data is passed into 3 concatenated convolutional blocks, followed by a MaxPooling (kernel 2x1)
where 50% of the data is filtered. The convolutional block consists of a convolutional layer with a variable kernel size
of 5x1x(n*64) following a ReLU activation function and a BatchNorm-Layer. We decided to use a single LSTM-Layer
with the size of 512 units, as mentioned by [10], which is followed by a Dropout-Layer that filters 30% of randomly
selected samples of the window.

We used a similar representation as [44] to visualize the matches among labeling methods. In this study, the authors
compared genome annotations labeled by different annotators with regard to their error scores between different
annotators.

4 Effects on Deep Learning Performance

The deep learning analyses are performed using the DeepConvLSTM architecture [11] which is based on a Keras
implementation of [45]. We did not perform hyperparameter tuning because it would involve a considerable amount of
additional workload, since we trained 64 models independently during the evaluation. We therefore decided to opt out
of the architecture with regards to efficiency rather than optimal classification results. Additionally, we don’t expect that
the actual experiment - evaluating different annotation methods - would benefit from hyperparameter tuning or gain any
significant information and insights. Instead, we use the default hyperparameters provided by the authors. These are
depicted in the Figure 2. Furthermore, we reduce the number of LSTM layers to one and instead increase the number of
hidden units of the only LSTM layer to 512. According to [10], this modification decreases the runtime up to 48 %
compared to a two-layered DeepConvLSTM while significantly increasing the overall classification performance on 4/5
publicly available datasets: [46], [15], [1], [47], [48]. LSTM-Layers in general are important if the dataset contains
sporadic activities [6]. However, our dataset does not and our evaluation aims to identify long periods of periodic
activities, like walking or running. For this reason, we can conclude that additional LSTM layers are not needed. The
implementation of [45] incorporates BatchNormalization layers after each Convolutional layer, as well as MaxPooling
for the transition between the final convolutional block and the LSTM layer, and a Dropout layer before classification.
Each Convolutional layer employs a ReLU activation function. The inclusion of the BatchNormalization layers serves
to accelerate training and mitigate the detrimental effects of internal covariate shift, as discussed further in [49].

Preprocessing: To prepare the data for neural network training, we perform two preprocessing steps. First, we address
minor inconsistencies in the device’s sampling rate. The original data was collected at a rate of 12.5 Hz. However, for
optimal performance with neural networks, a consistent and regular sampling rate is preferred. To achieve this, we
upsample the data by a factor of two, resulting in a constant frequency of 25 Hz. This upsampling process essentially
inserts additional data points between the existing ones, effectively increasing the resolution of the signal. The second
preprocessing step involves rescaling the accelerometer data to a range between -1 and 1.

Leave-One-Day-Out Cross-Validation: Figure 3 illustrates the train and test setting for the deep learning model.
Instead of following the traditional Leave-One-Subject-Out strategy, we adapted it to our needs by using one day of the
week for testing and training on the remaining days for each study participant and week.

6
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Figure 3: Leave-One-Day-Out Cross Validation. The models are personally trained for every participant and are not
intended to generalize across all study participants. Instead, a generalization across all days of one week is desired.

This approach was necessitated by the unique characteristics of our dataset. It consists of a predominant void class
and a small number of samples per activity class and participant. To mitigate the issue of an disproportionately large
void class, we trained our model with balanced class weights. By not limiting the participants in their choice of daily
activities and not specifying predefined activity labels, we ended up with very unique sets of activities for each study
participant. Given these circumstances, it is unrealistic to expect a model capable of generalizing across participants
and days. The Leave-One-Day-Out strategy aims to maintain the consistency of class labels within each day’s data,
providing a more cohesive and reliable dataset for training and evaluation purposes. This strategy also mitigates the
potential impact of participant-specific biases or variations in class labeling, leading to a more robust and accurate
model. Furthermore, due to the in-the-wild recording setup, the intra-class differences [50] for comparatively simple
activities, such as walking or running can be significant. Consequently, the impact of different labeling methods is
expected to be more pronounced and visible in a personalized model compared to a generalized model.

Post-Processing & Classification: In the classification task, we initially segmented the data into fixed-length sliding
windows of 2 seconds (50 samples). However, our objective extended beyond instantaneous classifications; we aimed
to identify longer periods of recurring activities. To achieve this, we employed a post-processing technique involving a
jumping window approach with a duration of 5 minutes. Within each 5-minute window, a majority vote was applied
to the individual 2-second window predictions. The activity class with the highest number of occurrences within the
5-minute window was then assigned as the predominant activity for the entire window. This approach enabled us to
capture sustained patterns of activities over extended periods, aligning with our goal of analyzing longer-term behavioral
trends.

5 Results

Our participants were asked to annotate daily activities lasting more than 10 minutes. We did not limit them to a
predefined set of classes; they independently decided on labels for their activities. After normalizing the labels (e.g.,
changing ”going for a walk” to ”walking”), the participants assigned 26 different labels: laying, sitting, walking,
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running, cycling, bus driving, car driving, cleaning, vacuum cleaning, laundry, cooking, eating, shopping, showering,
yoga, sport, playing games, desk work, guitar playing, gardening, table tennis, badminton, horse riding, cleaning,
reading, weightlifting, manual work, dish washing. Any unlabeled samples were classified as void. However, after
excluding infrequent or non-standalone classes (e.g., shopping likely combines walking, standing, and sitting), we
reduced the dataset to 23 labels (22 activities plus void): laying, sitting, walking, running, cycling, bus driving,
car driving, vacuum cleaning, laundry, cooking, eating, shopping, showering, yoga, sport, playing games, desk work,
guitar playing, gardening, table tennis, badminton, horse riding. Nevertheless, the graphical representation of the
distribution and the table in Section 5.1 include the full scope of classes.

5.1 Class Distribution

The class distribution reflects a broad range of activity classes that represent the daily lives of our participants. These

Figure 4: This figure illustrates the relative prevalence of various activity classes within the dataset, excluding the
void class, see Table 1 for details. The class labeled as void represents the predominant category within the dataset,
surpassing the frequency of the second most prevalent class, desk work, by a substantial factor of 13. The figure
illustrates a pronounced imbalance in the data distribution, both in terms of the annotation methodology employed and
the distinct week-specific patterns observed in the annotation process.

classes remain primarily participant-specific due to the absence of a predefined annotation protocol, which allows
participants the freedom to label activities according to their own interpretations. Consequently, we decided against
employing a Leave-One-Subject-Out evaluation method, as it might introduce inconsistencies in the dataset due to
the varying class labels assigned by different participants. The walking class is the most consistently annotated class
across participants and annotation methods, although it may not represent the maximum amount of labeled data points.
Notably, the void class, which is not visible in Figure 4, accounts for a substantial portion of the labeled data, ranging
from 80% to 96%, depending on the annotation method employed.

Table 1 shows that daily activities that do not require extensive planning and are inherent to most people’s everyday lives
tend to be the most consistently annotated classes. Among these are activities such as walking, cycling, car driving,
or cooking. On the other hand, activities like badminton, weightlifting, manual work, and others are highly subject-
dependent and occur only sporadically. The observation that the desk work class exhibits the highest frequency is
valid solely when employing the 3 diary- or the 4 GUI-methodology for data collection, suggesting a potential
limitation or bias associated with this particular approach. The classes pertaining to physical activities such as running,
bus driving, yoga, badminton, weightlifting, and sport exhibit a distinct pattern of clustering within specific weeks,
indicating a temporal dependency. This observation highlights the inherent bias introduced by the real-world recording
environment in which the dataset was collected, potentially limiting the generalizability of the model to broader contexts.
Furthermore, it is crucial to note that the size of the void class for the recall methods 3 and 4 is up to 16% smaller
than the in situ methods 1 and 2 . While this disparity in class representation highlights the inherent complexities and
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Table 1: This table presents a comprehensive overview of the number of data points for each activity class, categorized
according to the different annotation methods employed during two distinct weeks. The columns are divided into two
main sections, representing Week 1 and Week 2 of the data collection process. Within each week, the data points are
further subdivided based on the annotation method used, labeled as button, app, diary, GUI (for Week 2 only).

Week 1 Week 2 Instances
button app diary button app diary GUI Total

laying 0 0 135,000 0 0 0 0 1
sitting 0 0 292,500 0 0 607,500 264,041 13
walking 1,409,177 1,380,112 2,462,923 1,446,000 1,168,525 2,160,712 2,228,337 245
running 16,500 74,600 84,000 0 0 0 0 4
cycling 573,000 574,100 647,880 616,500 330,000 610,500 784,224 92
bus driving 0 67,500 15,000 0 0 0 0 2
car driving 708,000 659,950 1,683,176 340,500 155,450 1,025,985 954,882 111
vacuum cleaning 49,500 66,000 67,500 0 42,000 60,000 47,955 10
laundry 0 27,000 30,000 33,000 76,500 112,500 106,316 19
cooking 229,500 45,632 269,132 214,500 96,000 382,500 419,848 44
eating 0 0 5,753 0 0 75,000 92,850 5
shopping 0 57,000 60,000 0 0 45,000 0 3
showering 112,500 0 225,000 34,500 0 251,777 165,721 20
yoga 0 0 0 0 0 22,500 30,680 2
sport 39,000 46,088 45,000 0 0 0 0 3
playing games 0 0 648,926 0 0 45,000 100,771 6
desk work 36,000 0 3,646,985 0 0 4,537,832 1,137,214 21
guitar playing 49,500 0 172,500 111,000 67,060 217,500 234,355 24
gardening 48,000 53,125 43,718 69,000 69,650 375,000 421,794 16
table tennis 0 17,875 0 190,500 108,725 105,000 171,177 29
badminton 0 0 0 0 234,000 210,000 252,725 6
horse riding 0 66,000 199,500 0 519,000 495,000 502,742 18
cleaning 70,500 100,500 240,000 48,000 40,500 502,500 215,034 25
reading 0 0 0 0 0 45,000 0 1
weightlifting 0 0 0 84,000 0 60,000 0 2
manual work 0 0 0 0 0 69,425 157,587 3
dish washing 0 0 0 10,500 21,000 52,500 66,246 9
void 61,581,367 61,685,562 53,948,051 60,240,422 60,510,012 51,369,691 55,083,923 539

challenges associated with the data collection and annotation procedures, it simultaneously presents an opportunity
to address real-world imbalances and biases. By critically examining and accounting for these factors, the resulting
models can potentially enhance their generalizability and applicability across diverse scenarios, ultimately contributing
to a deeper understanding of the underlying phenomena under investigation.

5.2 Missing Annotations and Consistency Across Methods

Missing Annotations and the consistency of labels set over the course of one week varied greatly depending on the
study participant. However, tendencies with regard to specific methods are observable.

We computed missing annotations by merging all available annotations from the various methods used (button, app,
diary, GUI) into an artificial global ground truth. We then compared each individual annotation layer against this
consolidated ground truth to identify any missing annotations, leveraging the collective information as a reference point.

Method 1 , pressing the situ button on the smartwatch’s case, was not consistently used by every participant. Further-
more, this method carries the risk that either setting one of the two markers (start or end) is forgotten. An annotation
where one marker is missing becomes therefore obsolete. The app-assisted annotation method 2 , for which we used the
app Strava, is well accepted among the participants who agreed with using third-party software. However, 4 participants,
namely 74e4, 90a4, d8f2 and f30d did not use the app continuously or refused to use it completely due to concerns
regarding their private data. Strava is a commercial app, that is freely available for download on the app stores, but it
collects certain users’ metadata. To label a time period with Strava, the participant needs to (1) take the smartphone, (2)
open the app, (3) start a timer, set a label, and (4) end the timer. This procedure contains significantly more steps than
other methods. Therefore, the average value of missing annotations results in 46.40% (week 1) and 56.79% (week 2).
One participant found the annotation process in general very tedious and therefore dropped out of the study. These
data have been excluded from the dataset and the evaluation. Method 3 pure self-recall, writing an activity diary, got
well accepted by every participant. As Figure 5 shows and the results in Table 2 proof, it is overall the most complete
annotation method with an average amount of missing annotations of 4.30 % for the first and 8.14 % for the second
week. By introducing the MAD-GUI, participants were able to inspect their daily data, get insights into what patterns
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Figure 5: Missing annotations across all study participants and both weeks. The Y-axis shows the total number of
annotations of one specific participant for the corresponding week. The color codes are as follows: Annotation is
missing, Annotation is partially missing (start or stop time), Annotation is complete.
The figure is inspired by [44], Figure 1.

of specific classes look like, and label them interactively. With an average amount of missing annotations of 7.67%, this
method became the most complete during the second study week. Table 3 shows the resulting Cohen κ scores. Due
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Table 2: Missing annotations across all labeling methods (in %) of both weeks. The columns contain the subject-ID of
all participants. The last column shows the average percentage of missing annotations across every labeling method, for
all participants.

Week 1

Subject 2b88 36fd 74e4 90a4 834b 4531 a506 d8f2 eed7 f30d fc25 Avg.
1 in situ button 40 70.59 79.41 52.18 36.37 50 26.32 96.15 45.46 0 26.81 40.95
2 in situ app 13.30 5.89 97.06 100 5.00 0 36.84 92.30 22.73 100 4.35 43.40
3 pure self-recall 6.67 0 0 0 4.55 0 31.58 0 4.55 0 0 4.30

Week 2

1 in situ button 23.08 73.33 92.00 82.14 8.33 76.47 0 95.33 61.11 0 27.78 49.05
2 in situ app 61.54 6.67 100 89.29 8.33 35.30 100 79.16 33.33 100 11.11 56.79
3 pure self-recall 0 0 8.57 17.88 4.17 35.30 0 12.50 5.56 0 5.56 8.14
4 time-series recall 0 0 22.88 39.29 0 0 0 16.67 0 0 5.56 7.67

to the constraint that only one labeling method can be compared to a second one and since, according to Table 2, the
most consistent annotation methods are 3 pure self-recall and 4 time-series recall, we used these methods as our
baseline and compared them with every other method used in the study. The second column indicates the comparison
direction. The abbreviations used in this column are defined as follows: ( 3 C/W 1 ) pure self-recall compared with
in situ button, ( 3 C/W 2 ) pure self-recall compared with in situ app and ( 3 C/W 4 ) pure self-recall compared
with time-series recall. The direction ( 4 C/W 3 ) is not explicitly included since Cohens κ is bidirectional and both
directions result in the same score. The score indicates how similar two annotators, or in our study labeling methods,
are to each other. The resulting score is a decimal value between -1.0 and 1.0, where -1.0 means that the two annotators
differ at most and 1.0 means complete similarity. 0.0 denotes that the target method was not used on that specific day.

Comparing the 3 pure self-recall method with the 1 in situ button and 2 in situ app method we can see that the
final results for weeks 1 and 2 are proximate to one another. 3 Pure self-recall compared with the 4 time-series
recall results in the highest similarity of 0.52. The comparison between the 4 time-series recall and the 1 in situ
button as well as the 2 in situ app assisted annotations result in higher similarity than the prior comparison of 3 pure
self-recall vs. both methods 1 and 2 . This means that subjects rather agree to the timestamps of the in situ methods
than to a self-written activity diary as soon as they can visually inspect the accelerometer data.

5.3 Visual Time-Series Analysis

Figure 6 shows exemplary the time-series of the sixth day of every participant’s second week. The four bars that are
visible above the accelerometer data are the labels set by the participants for every layer. The order is from bottom to
top: 1 in situ button, 2 in situ app. 3 pure self-recall, and 4 time-series recall. Examples of labels that differ with
regard to the applied labeling method are marked with red boxes. The x-axis of every subplot represents roughly 8-9
hours of data. Most of the day was not labeled and is therefore categorized as void. However, such long periods often
contain shorter periods of other activities, like walking. This makes it difficult to define a distinguishable void-class,
which results in false positive classifications of non-void samples. Figure 6 visually shows that each participant labels
his or her data very subjectively. The long green-labeled periods of participant 74e4 represent the class desk work. The
only other participant that used this label is 90a4. Since each of the study participants works in an office environment
and thus conclusively works at a desk, we can assume that the same class is classified as void for all other study
participants. This intra-class and inter-participant discrepancy becomes a problem whenever a model is trained that is
supposed to generalize across individuals. To reduce these side effects and focus on the experiment itself, we decided to
evaluate personalized models that take weekly data from participants into account.

The in situ button annotation is empty for 5 participants: eed7, 36fd, 74e4, 90a4 and d8f2. Labels are only partially
set or missing entirely for this annotation method and we therefore assume that participants tend to forget to press
the button on the smartwatch. Both tables, 2 and 3, support this assumption, as this labeling method shows a high
percentage of missing annotations as well as a low Cohen κ score of 0.36% (week 1) and 0.39% (week 2). The pure
self-recall method 3 , visible on the 2nd upper layer, is often misaligned compared to the in situ methods as well as the
time-series recall method 4 . Participants tend to round up or down the start- and stop-time in steps of 5 or 10 minutes.
For example, the annotations in Figure 6 given by the subjects 2b88, 834b or f30d, show such incorrectly annotated
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Table 3: Average similarity between annotation methods according to the Cohan κ score for both study weeks. The
columns are ordered subject-wise. The last column shows the average across all participants for one study week. The
Direction column indicates in which the direction the Cohan κ score is calculated and needs to be interpreted as follows:
1 in situ button, 2 in situ app, 3 pure self-recall, 4 time-series recall, (C/W) compared with.

Week, Day Direction 2b88 36fd 4531 74e4 834b 90a4 a506 d8f2 eed7 f30d fc25 Avg.

1, 1 3 C/W 1
3 C/W 2

0.32
0.69

0.0
0.85

0.0
0.69

0.0
0.0

0.69
0.76

0.35
0.0

0.79
0.0

0.22
0.0

0.0
0.90

0.23
0.0

0.58
0.49

1, 2 3 C/W 1
3 C/W 2

0.64
0.64

0.69
0.68

0.0
0.84

0.09
0.05

0.85
0.86

0.05
0.0

0.51
0.50

0.0
0.0

0.55
0.93

0.47
0.0

0.74
0.73

1, 3 3 C/W 1
3 C/W 2

0.0
0.86

0.62
0.0

-0.03
-0.03

0.0
0.0

0.39
0.38

0.56
0.0

0.53
0.44

0.0
0.0

0.05
0.28

0.53
0.0

0.51
0.54

1, 4 3 C/W 1
3 C/W 2

0.38
0.99

0.30
0.69

0.91
0.90

0.08
0.0

0.63
0.74

0.03
0.0

0.80
0.57

0.0
0.69

0.66
0.80

0.80
0.0

0.0
0.0

1, 5 3 C/W 1
3 C/W 2

0.33
0.32

0.33
0.83

0.0
0.0

0.04
0.0

0.39
0.37

0.32
0.0

0.93
0.96

0.0
0.0

-0.03
-0.31

0.93
0.0

0.87
0.89

1, 6 3 C/W 1
3 C/W 2

0.0
-0.14

0.0
0.96

0.75
0.71

0.07
0.0

0.0
0.15

0.34
0.0

0.67
-0.07

0.0
0.41

0.42
0.52

0.99
0.0

0.84
0.84

1, 7 3 C/W 1
3 C/W 2

0.30
0.78

0.0
0.15

0.56
0.69

0.04
0.0

0.0
0.10

0.525
0.0

0.99
0.43

0.0
0.0

0.29
0.42

0.90
0.0

0.49
0.77

2, 1

3 C/W 1
3 C/W 2
3 C/W 4
4 C/W 1
4 C/W 2

0.30
0.45
0.85
0.39
0.53

0.56
0.77
0.76
0.43
0.61

0.36
0.37
0.56
0.48
0.45

0.10
0.0

0.10
0.43

0.0

0.51
0.57
0.48
0.74
0.70

0.0
-0.02
0.11
0.0

0.18

0.88
0.0

0.90
0.98
0.0

0.0
0.63
0.78
0.0

0.71

0.41
0.51
0.74
0.58
0.57

0.89
0.0

0.86
0.82

0.0

0.85
0.81
0.46
0.58
0.55

2, 2

3 C/W 1
3 C/W 2
3 C/W 4
4 C/W 1
4 C/W 2

0.82
0.84

-0.02
-0.02
-0.02

0.21
0.75
0.82
0.11
0.83

0.91
0.93
0.62
0.66
0.63

0.05
0.0

0.09
0.38

0.0

0.47
0.90
0.84
0.47
0.92

0.03
0.0

0.09
0.77
0.0

0.70
0.0

0.70
1.0
0.0

0.0
0.87
0.83
0.0

0.96

0.29
0.59
0.56
0.43
0.71

0.74
0.0

0.85
0.70

0.0

0.36
0.81
0.46
0.45
0.46

2, 3

3 C/W 1
3 C/W 2
3 C/W 4
4 C/W 1
4 C/W 2

0.70
0.66
0.68
0.91
0.74

0.44
0.44
0.54
0.53
0.53

0.0
0.98
0.62

0.0
0.82

0.0
0.0

0.91
0.0
0.0

0.62
0.72
0.49
0.77
0.74

0.0
0.0

-0.18
0.0
0.0

0.90
0.0

0.90
1.0
0.0

0.0
0.47
0.86
0.0

0.60

0.28
0.36
0.39
0.88
0.79

0.99
0.0

0.98
0.96

0.0

0.68
0.82
0.58
0.41
0.65

2, 4

3 C/W 1
3 C/W 2
3 C/W 4
4 C/W 1
4 C/W 2

0.45
0.14
0.17
0.71
0.82

0.0
0.85
0.86
0.0

0.51

0.83
0.83
0.84
0.86
0.86

0.0
0.0

0.90
0.0
0.0

-0.02
-0.02
-0.02
0.80
0.80

0.05
0.0
0.0

0.47
0.0

0.64
0.0

0.64
1.0
0.0

0.0
0.0

0.84
0.0
0.0

0.23
0.26
0.38
0.68
0.50

0.67
0.0

0.86
0.66

0.0

0.78
0.87
0.92
0.76
0.85

2, 5

3 C/W 1
3 C/W 2
3 C/W 4
4 C/W 1
4 C/W 2

0.59
0.0

0.48
0.5
0.0

0.0
0.41
0.47
0.0

0.34

0.0
0.77
0.76

0.0
0.89

0.0
0.0

0.16
0.0
0.0

0.28
0.28
0.26
0.82
0.83

0.09
0.01
0.09
0.94
0.60

0.60
0.0

0.59
0.99
0.0

0.0
0.54
0.82
0.0

0.49

0.0
0.54
0.40

0.0
0.70

0.73
0.0

0.43
0.38

0.0

0.95
0.92
0.47
0.46
0.44

2, 6

3 C/W 1
3 C/W 2
3 C/W 4
4 C/W 1
4 C/W 2

0.48
0.0

0.47
0.98
0.0

0.0
0.85
0.86
0.0

0.88

0.90
0.96
0.92
0.95
0.89

0.0
0.0

0.77
0.0
0.0

0.39
0.39
0.30
0.47
0.62

0.0
0.02
0.0
0.0

0.69

0.73
0.0

0.72
0.99
0.0

0.0
0.55
0.83
0.0

0.43

0.0
0.83
0.86

0.0
0.95

0.20
0.0

0.74
0.46

0.0

0.86
0.87
0.86
0.83
0.82

2, 7

3 C/W 1
3 C/W 2
3 C/W 4
4 C/W 1
4 C/W 2

0.0
0.0

0.96
0.0
0.0

0.0
0.41
0.47
0.0

0.80

0.0
0.76
0.72

0.0
0.93

0.0
0.0
0.0
0.0
0.0

0.30
0.30
0.24
0.79
0.78

0.0
0.0

-0.01
0.0
0.0

0.73
0.0

0.42
0.67
0.0

0.40
0.0

0.79
0.46
0.0

0.43
0.14
0.33
0.71
0.46

0.91
0.0

0.92
0.94

0.0

0.86
0.86
0.84
0.78
0.78

Avg. Week 2

3 C/W 1
3 C/W 2
3 C/W 4
4 C/W 1
4 C/W 2

0.48
0.30
0.51
0.50
0.30

0.17
0.64
0.68
0.15
0.64

0.43
0.80
0.72
0.42
0.78

0.02
0.0

0.12
0.42

0.0

0.36
0.45
0.37
0.69
0.78

0.02
0.0

0.01
0.31
0.21

0.74
0.0

0.70
0.94
0.0

0.0
0.44
0.82
0.07
0.46

0.23
0.46
0.33
0.47
0.67

0.73
0.0

0.81
0.70

0.0

0.76
0.85
0.66
0.61
0.65

0.39
0.36
0.52
0.48
0.41

data. The pink color represents the class walking. With a closer look at the corresponding time-series data, one can
see that the in situ button annotation (bottom layer) and time-series recall annotation (top layer) belongs to the typical
periodic pattern of walking than the period labeled by pure self-recall.
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A consistent reliable performance in all labeling methods can only be observed at the participants 4531 and fc25. Other
participants like eed7, 36fd, 74e4 or a506 are very precise in their annotations across methods, but are missing at least
one layer of labels. The complete collection of visualizations is available in our dataset repository7

5.4 Effects on Classification

The results of our deep learning evaluation8 suggest that the annotation method chosen can have a crucial impact on the
classification ability of a trained deep learning model. Depending on the chosen methodology, the average F1-Score
results differ by up to 8%, as depicted in Figure 7. In the first week, the in situ methodologies, button 1 and app 2 ,
generally perform better than the pure self-recall diary 3 . Study participants mostly correctly estimated the duration
of an activity, but tended to round up or down the start and end times. The in situ methods are up to 8% better than the
pure self-recall, although the amount of annotated data available, due to missing annotations, is significantly lower
than for other methods. Although, we work with a dataset recorded in-the-wild, the deep learning results generally
show a high F1-Score. This is untypical for such datasets but can be explained by the fact that the majority of the daily
data are assigned to the void class. This leaves proportionally only a few samples that are crucial for determining the
classification performance.

Even though the number of available annotations that have been labeled by the study participants using the time-series
recall method 4 is significantly higher with 92.33%, the average F1-Score is 1.1% lower (89.00%) than the results
reached with the App Assisted method (90.1%). To understand this result it is crucial to look at Table 4 in detail and
take meta-information about the participants into account. The participants mostly used their diary as a mnemonic
aid for the graphical annotation method and tried to identify the corresponding periods in the acceleration data. The
results of subjects 2b88, a506 and eed7 show that the performance of the classifier could be increased with graphical
assistance. However, the F1-Score of 2b88 is 0.01% below the F1-Score of the in situ app assisted annotation method

7https://doi.org/10.5281/zenodo.7654684
8Detailed results for every participant included in our deep learning evaluation can be accessed online on the Weights & Biases

platform: https://tinyurl.com/4vxvfaed.

Figure 6: Visualization of participants’ accelerometer data on the sixth day in the second week of the study, together
with annotations set by them. The four layers in the upper part of every participant’s daily data represent the four
annotation methods. The order is from bottom to top: 1 in situ button, 2 in situ app, 3 pure self-recall and 4
time-series recall.
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Figure 7: The overall mean F1-Scores for the Leave-One-Day-Out Cross Validation across all participants. In the first
week, the participants used methods 1 - 3 . In the second week, we introduced method 4 .

2 . These subjects have in common that they are already trained in interpreting acceleration data due to their prior
knowledge and thus assign samples to specific classes more precisely.

Subjects fc25, 4531, and 834b, on the other hand, do not have prior knowledge. Apart from subject 834b, the deep
learning results show that presenting a visualization to an untrained participant rather harmed than helped the classifier.
If one looks at the visualizations of day 1 & 6, week 2 of fc25, see Figure 6 and 8, the labels set by the subject with
the help of the graphical interface, it is comprehensible that this study participant tended to be rather confused by the
graphical representation and therefore labeled the data incorrectly.

6 Discussion

In our 2-week long-term study, we recorded the acceleration data of 11 participants using a smartwatch and analyzed it
visually, statistically, and using deep learning. The findings of the visual and statistical analysis were confirmed by the
deep learning result. They show that the underlying annotation procedure is crucial for the quality of the annotations
and the success of the deep learning model.

Table 4: In detail representation of the final F1-Scores for every annotation methodology and a week per study
participant. The average F1-Scores are graphically visualized in Figure 7.

Week 1

Subject 2b88 a506 eed7 fc25 4531 834b Average
1 in situ button 0,91 0,92 0,89 0,89 0,91 0,91 90,4
2 in situ app 0,92 0,60 0,91 0,84 0,93 0,92 85,5
3 pure self-recall 0,78 0,76 0,83 0,86 0,86 0,89 83,0

Week 2

1 in situ button 0,88 0,92 0,90 0,92 0,86 0,72 86,8
2 in situ app 0,91 na 0,92 0,94 0,85 0,88 90,1
3 pure self-recall 0,81 0,86 0,82 0,94 0,83 0,67 82,1
4 time-series recall 0,90 0,91 0,95 0,86 0,86 0,86 89,0
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Figure 8: Visualization of the 1st day in week 2 of subject fc25. Differences can be seen in the upper annotation layer
( 4 time-series recall), exhibiting larger differences regarding the annotated start- and stop times compared to other
methods.

The in situ button method 1 offers accuracy but brings the risk that the setting of a label is forgotten entirely or
incompletely set. However, this method can be combined with additional on-device feedback or a smartphone app, so
that greater accuracy and consistency of the annotation can be achieved. This involves a considerable implementation
effort, which many scientists avoid because such projects, although of their significant value to the community, attract
little attention in the scientific world. The use of existing, but often commercial, software and hardware is all too often
accompanied by a loss of privacy. As our research has shown in passing, many users therefore shy away from using
such products.

Through our investigation of the consistency of annotations between methodologies, we were able to show that
participants in our study seem to prefer to write an activity diary (pure self-recall method 3 ). This finding corresponds
to what [13] already points out. However, this method has the disadvantage that it can be imprecise, which is evident in
the visualization of the data and annotations. Similarly, the activity diary methodology performed the least reliably
among all methodologies, which has been confirmed by the deep learning model. Since the deep learning results using
the in situ app annotations 3 are almost similar to the results given by the time-series recall 4 , even though the
number of labeled samples is lower, it raises the question if a smaller set of high-quality annotations is more valuable
for a classifier than a larger set of annotated data that comes with imprecise labels. This could mean that in future
works we can reduce the amount of necessary training samples drastically if a certain annotation quality can be assured.
However, this needs to be confirmed by further investigations.

Some participants reported that they found the support provided by the visual representation of the data helpful. The
resulting Cohen κ scores strengthen this impression since the F1-Scores are much higher when we compare the time-
series recall with both in situ methods vs. the pure self-recall. This indicates that as soon as the participants received a
visual inspection tool, they tended to annotate data at similar time periods as through the in situ methods since they
can easily identify periods of activity that roughly correspond to the execution time they remember. Our participants
reported similar preferences, which led us to the conclusion that a digital diary that includes data visualization could
combine the benefits of both annotation methods.

However, the study also showed that participants can find it difficult to interpret the acceleration data correctly and thus
set inaccurate annotations. As our trained models show, this also has a strong influence on the classification result. If
such a tool is to be made available to study participants, it must be ensured that they have the necessary knowledge
and tools to be able to interpret these data. Thus, to ensure the success of future long-term and real-world activity
recognition projects, prior training of the study participants regarding data interpretation is of crucial importance if a
data visualization is supposed to be used.

Apart from trying to solve annotation difficulties during the annotation phase itself, we can also partially counter wrong
or noisy classified data by using machine learning techniques like Bootstrapping, see [39] or using a loss function that
specifically tries to counteract this problem, such as [5, 51]. By using Bootstrapping, the machine or deep learning
classifier is initially trained by a small subset of high-confident labels and further improved by using additional data.

15



A Matter of Annotation

However, this technique comes with the trade-off that whenever wrong-labeled data is introduced as training data,
the error will get propagated into the model. This is an effect that sooner or later occurs as long as the annotation
methodologies themselves are not further researched. Other machine learning techniques that can work with noisy
labels, see [52], are already successfully tested for Computer Vision problems and can, in theory, be adopted for Human
Activity Recognition. However, earlier research has shown that not every technique that is applicable in other fields is
also applicable to sensor-based data. [45].

Cause of Missing Annotations: We believe that specific activities are more likely to be forgotten during the labeling
process than others. These activities are generally more spontaneous and require less dedicated preparation time.
Examples might include classes like laying, sitting, walking, bus driving, car driving, eating, or desk work. In
contrast, other classes like shopping, yoga, playing games, badminton, cooking, or horse riding are often time-intensive,
physically or mentally demanding, and frequently planned in advance or even take place at dedicated locations.
Therefore, it is likely that participants find these activities easier to recall and label accurately. Obtaining separate
annotations for each activity through distinct and dedicated annotation processes would have yielded valuable insights;
however, this approach was deemed unfeasible for the participants involved in our study. The immense time commitment
and laborious efforts required from our participants to annotate each activity individually would have imposed an
unreasonable burden, rendering such a comprehensive annotation strategy impractical within the constraints of our
study.

6.1 Discussing different Annotation Biases

Directly quantifying the perceived workload of subjective tasks like data labeling is a complex challenge. This difficulty
stems from several factors. Firstly, individual differences in mental stamina and task perception mean what one person
finds laborious, another might find manageable [53]. Secondly, memory biases can lead to under- or overestimates of
effort depending on the emotional context of the task or the participant’s current state [54]. Social desirability bias can
also come into play, with participants potentially downplaying their workload to appear competent or exaggerating it to
justify breaks [55]. Therefore, accurately quantifying the workload associated with each of the four labeling methods
presents a significant challenge. While surveys, like the NASA TLX [56], asking participants about perceived effort hold
some value, these results are inherently subjective and can be heavily influenced by individual experiences and biases.
While aiming for a fully objective measure of workload is desirable, it might require collecting more personal data from
participants. This additional data could include details like preferred wearable devices (e.g., smartwatches), smartphone
usage patterns, or individual memory recall capabilities or the emotional state of a participant [57]. While recording
and quantifying this type of personal data would have provided valuable insights, it would have also significantly
increased the workload placed on participants. This additional workload fell outside the scope of the current study,
which prioritized collecting data through the four predefined methods.

However, we need to acknowledge that several biases could have been introduced due to the chosen annotation
guidelines and tools. For example, the usage of in situ annotation methods during the day can have a positive effect
on the self-recall capabilities of a participant at the end of the day. The comparison of consistencies across methods
does not confirm that this effect indeed occurred. Every study participant showed an almost complete overall profile
of self-recall annotations, even though the person has not used or has incomplete in situ annotations, see Figure 5.
However, deeper investigations are needed to be able to understand such effects better.

[17] lists the following 3 biases for sensor-based human activity data: Self-Recall bias [22], Behavior bias [3] and the
Self-Annotation bias [17]. We showed that indeed a time-deviation bias (which can be seen as a self-recall bias) has
been introduced to annotations created with the pure self-recall method 3 , and that such a bias affects the classifier
negatively. However, visualizing the sensor data can counter this effect because it was easier for participants to detect
active phases in hindsight.

A behavior bias can be neglected, because the participants were not monitored by a person or video camera during
the day and the minimalistic setup of one wrist-worn smartwatch does not influence one’s behavior since the wearing
comfort of such a device is generally perceived as positive [58]. A self-annotation bias, a bias that occurs if the annotator
labels their data in an isolated environment and cannot refer to an expert to verify an annotation, did occur as well. With
the deep learning analysis, we were able to show that the classifier was less negatively impacted by this bias than by
time-deviation bias.

A Parallel annotation bias can arise in two scenarios: when multiple annotators independently label the same data,
or when a single annotator uses multiple labeling methods for the same data, where the application of one method
influences the subsequent labeling decisions made with other methods. There are three main ways this bias can manifest:

1. Anchoring bias [59]: The initial labeling method might act as an anchor, subtly influencing the annotator’s
decisions when using subsequent methods, even if their initial assessment might differ.
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2. Confirmation bias [60]: The annotator might subconsciously favor interpretations that align with labels
generated from previous methods, overlooking alternative possibilities.

3. Method bias [61]: Certain methods might inherently be easier or more difficult to use for specific types of data,
potentially leading to systematic inconsistencies across the labeled data.

The presence of parallel annotation bias in this context suggests that the annotations might not be entirely independent
between methods, potentially impacting the overall quality of the data. Anchoring and confirmation bias can lead to
a lack of diversity in annotations and potentially perpetuate errors. Method bias can introduce inconsistencies that
complicate data analysis. We recognize the possibility of parallel annotation bias in our dataset, where applying one
labeling method might influence subsequent methods used by the same participant. However, prioritizing participant
engagement, we opted for a parallel approach. This decision ensured the workload remained manageable and prevented
participant dropout from the study.

7 Conclusions

We argue that the annotation methodologies for benchmark datasets in Human Activity Recognition do not yet capture
the attention it should. Data annotation is a laborious and time-consuming task that often cannot be performed accurately
and conscientiously without the right tools. However, there is a very limited number of tools that can be used for this
purpose and often they do not pass the prototype status.

Only a few scientific publications, such as [21], focus on annotations and their quality. However, the use of properly
annotated data drastically affects the final capacities of the trained machine or deep learning model. Therefore, we
consider our study to be important for the HAR community, as it analyzes this topic in greater depth and thus provides
important insights that go beyond the current state of science. Table 5 summarizes the advantages and disadvantages of
every method.

Table 5: Comparison of advantages and disadvantages of all annotation methods used in this study.

Methodology Advantages Disadvantages

1 in situ button
- Easy to implement and use
- Can be improved with feedback mechanisms

- Participants tend to forget pressing a button
- Many incomplete annotations that become

unusable for the classifier

2 in situ app

- Tracking apps are already widely used and accepted,
therefore low acceptance threshold

- Can be improved with feedback mechanisms or
additional smartphone functionalities

- List of possible annotations can be expanded with
minimum effort

- Participants tend to set very precise annotations.

- Data and privacy concerns if a commercial app is used.
- Participants often forgot to set an annotation,

especially when they were unfamiliar with tracking apps.
- Implementation workload may be very high

3 pure self-recall

- Easy to use even without technical knowledge
(a handwritten diary)

- Most accepted method in our experiment
- Annotations are very consistent

- Can be very imprecise
- Only suitable for coarse activity labels and activities

that were performed for long periods of time,
like walking or running

4 time-series
recall

- Visualization of data helps participants to set
annotations more accurate than using the pure
self-recall method 3

- Available tools are often in the state of a prototype
and need additional developments and adjustments
and are therefore not impromptu usable.

- Participants need to be trained to be able to interpret
sensor data.

High-quality annotations are crucial for accurate activity recognition, especially in uncontrolled real-world settings
where video recordings are unavailable for ground truth verification. To address this challenge, further research on
activity data annotation methodologies is necessary. These methodologies should empower annotators to label data
in a way that comprehensively captures the subtleties of everyday life. The annotations must not only be extensive
but also complete and coherent, ensuring a consistent and well-defined understanding for the AI model to learn from.
Furthermore, leveraging learning methodologies like Weakly Supervised Learning methods, exemplified by works such
as [62] and [63], can potentially utilize datasets like ours. However, a more comprehensive evaluation is needed to
determine their suitability for real-world application.

The combination of a (handwritten) diary with a correction aided by a data visualization in hindsight shows the best
results in terms of consistency and missing annotations and provides accurate start and end times. However, this
combination results in additional work for the study participants and therefore, remains a trade-off between additional
workload and annotation quality.
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Lesson Learned. During this study, we gained insights about the effects of different annotation methods on the
reliability and consistency of annotations and finally on the classifier itself, but also about training deep learning models
on data recorded in-the-wild. In this chapter, we would like to share these insights to help other researchers perform
their experiments more successfully. With regards to Table 5, we are able to narrow down specific study setups that
either benefit more from self-recall or in situ annotation methods.

1. Due to the good acceptance and the low workload for study participants we can recommend a self-recall
method for studies where label precision is not the highest priority and rough estimations of activities are
sufficient.

2. According to our study, we can increase the label precision of the self-recall method with additional software
that visualizes the raw data, e.g. [9]. We recommend considering the implementation of such a module and
providing this software to participants together with an introduction on how to interpret sensor data. According
to [13] the self-recall method can also be effectively improved by introducing server guesses of activities or
visually organizing the day chronologically.

3. In situ annotations result generally in more precise labels. However, the label process is more labor intensive
than a self-recall method, since it can take a lot of time and often includes many steps to set the label. We
argue, that smaller studies with participants who agree with performing such laborious work can benefit from
this method. Such a system needs to be implemented carefully and with a holistic concept in order to not be
seen as a burden by the participants [64].

4. Annotating data with commercial apps, like Strava, is negligible due to data and privacy concerns.

5. In situ annotation can have the same benefits as an app solution. However, only if researchers have access to
the programming interface of the recording device and can implement additional features that help participants
not forget to set a label.

As part of our annotation guidelines, we allowed our study participants to name their activities as they wished. Therefore,
we were forced to simplify certain activities. To be able to create a real-world dataset that contains complex classes or
even classes that consist of several subclasses, more elaborated annotation methods and tools must be developed. We
believe that with the currently available resources, the hurdle lies very high for such datasets to be annotated accurately.

Our study includes people who cycle to work in their daily work routine and others who commute by public transport or
work in a home office environment. Thus, each study participant has his or her set of daily repetitive activities. Due to
the nature of our dataset as one recorded in a real-world and long-term scenario, the number of labeled samples is rather
small, and given labels vary participant-dependent. This mix of factors creates a bias in the dataset and we concluded
that a cross-participant train-/test-strategy is not appropriate for our study design and would not give meaningful insights,
since every study participant has their own set of unique activities which are too different and hardly generalizable.
Therefore, for certain studies, the commonly known and accepted Leave-One-Subject-Out Cross-Validation is not
suitable.
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[28] Aleš Leonardis, Horst Bischof, and Jasna Maver. Multiple eigenspaces. Pattern recognition, 35(11):2613–2627,
2002.
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