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VORWORT

Es ist immer eine sehr angenehme Tätigkeit, am Ende einer längeren
wissenschaftlichen Arbeitsperiode, die zur Erreichung eines größeren Zieles
diente, wie das seiner Promotion oder seiner Habilitation, Dank auszu-
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führen. Hinzu kommt, dass die Arbeit an einem Lehrstuhl einer Universität
ohne Rechnerunterstützung heute nicht mehr denkbar wäre. Sei es um, wie in
dieser Arbeit, numerische Simulationen durchzuführen oder um Zeichnungen
zur Illustration anzufertigen und die Arbeit in ansprechender Form zu Papier
zu bringen.

An erster Stelle möchte ich meinem Betreuer Herr Professor Peter Betsch
danken, der auch als erster Gutachter in meinem Habilitationsverfahren
gewirkt hat. Er gab mir die Gelegenheit und den Anstoß zur Bearbeitung der
Thematik dieser Arbeit, und gewährte mir auch die notwendigen Freiräume
die Arbeit in der hier gebotenen Form zu Papier zu bringen, die mir persönlich
sehr am Herzen lag. Ohne sein ungebrochenes Interesse am Fortgang der
Arbeit, hätte sie nicht beendet werden können.

An zweiter Stelle möchte ich mich bei Herrn Professor Christian Miehe
bedanken, der den Zeitaufwand nicht scheute das Habilitationsverfahren als
zweiter Gutachter zu begleiten. Wie viele Stunden er dem Lesen und kritischen
Beurteilen widmen musste wage ich nicht zu schätzen. Ich hoffe aber, dass
es für ihn nicht nur Mühe bedeutet hat, sondern dass auch ein gewisses
Maß an Freunde dabei war. Denn seine wissenschaftlichen Arbeiten, und
die von Professor Juan Carlos Simo, waren ständige Inspirationen für die
wissenschaftliche Ausarbeitung der behandelten Thematik.
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ausschusses, und insbesondere Herrn Professor Klaus Schiffner, möchte ich
dafür danken, dass sie den zügigen Fortgang des Verfahrens unterstützt haben,
und meine Habilitation an der Universität Siegen ermöglichten.

Eine wissenschaftliche Arbeit kann nur dann effektiv durchgeführt werden,
wenn die tägliche Verwaltungsarbeit nicht überhand nimmt. Es ist mir daher
eine besondere Freude, mich bei Frau Gisela Thomas und bei Frau Ursula
Schmidt für die vielfältige Unterstützung in den letzten Jahren zu bedanken.
Zudem möchte ich mich bei Herrn Gerhard Knappstein nicht nur für die sehr
angenehme Atmosphäre im Büro bedanken, sondern auch für die umfassende
Unterstützung im Lehrbetrieb. Bei Herrn Jürgen Beumelburg möchte ich
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bedanken, die mich während meiner Habilitation beschäftigten.
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ZUSAMMENFASSUNG

Diese Arbeit behandelt die energiekonsistente Simulation von Bewegungen
eines viskoelastischen kontinuierlichen Körpers, unter Einbezug der Kopplung
von thermischen und mechanischen Feldern. Der verwendete Algorithmus
basiert auf einer Vier-Feld-Formulierung in Lagrangescher Darstellung, in
der die Deformationsabbildung, das Geschwindigkeitsfeld, das Temperaturfeld
und eine deformationswertige viskose innere Variable unabhängige Variablen
darstellen. Die Bewegungsgleichungen sind deshalb Differentialgleichungen
erster Ordnung. Das Lagrangesche Temperaturfeld wird bestimmt durch
die lokale Entropiebilanz als dritte Differentialgleichung erster Ordnung,
verbunden mit dem Fourierschen Gesetz für Wärmeleitung. Die letzte
Differentialgleichung erster Ordnung stellt die viskose Evolutionsgleichung
dar. Sie basiert auf einer inneren Dissipation, welche quadratisch in einem
nichtlinearen viskosen Verzerrungsratentensor formuliert ist.

Dieses System von gekoppelten nichtlinearen Differentialgleichungen wird
diskretisiert mittels einer neuen Raum-Zeit-Finite-Elemente-Methode, die
sowohl zu kontinuierlichen als auch zu diskontinuierlichen Approximationen
in der Zeit führt. Aufgrund spezieller Zeitapproximationen in den konsti-
tutiven Gesetzen des Problems wird, neben der Gesamtimpuls- und Gesamt-
drehimpulsbilanz, auch eine Stabilitätsabschätzung bezüglich einer relativen
Energiefunktion noch nach der Raum-Zeit-Diskretisierung exakt erfüllt. Daher
ist der resultierende Zeitintegrationsalgorithmus langzeitstabil, auch wenn
Zeitschrittweitenänderungen vorgenommen werden.

Das erhaltene System von gekoppelten nichtlinearen algebraischen
Gleichungen wird mittels einer monolithischen Strategie gelöst. Die damit
verbundenen Newton-Raphson-Verfahren auf globaler Ebene und auf
Elementebene basieren auf einer konsistenten Linearisierung. Die verwendeten
neuen Konvergenzkriterien für die iterative Lösungsprozedur beziehen
die Energiekonsistenz des Algorithmus’ in Betracht, und sind frei von
Skalierungseinflüssen in den vier unabhängigen Variablen. Repräsentative
numerische Simulationen mit verschiedenen Randbedingungen zeigen die
unbegrenzte Genauigkeit und die hervorragende Stabilität des neuen
Zeitintegrationsalgorithmus’.
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ABSTRACT

This paper is concerned with the energy consistent simulation of motions of
a viscoelastic continuum body, under inclusion of the coupling of thermal
and mechanical fields. The corresponding algorithm is based on a four-field
formulation in the Lagrangian description, in which the deformation mapping,
the velocity field, the temperature field and a strain-like viscous internal
variable field are independent unknowns. Hence, the equations of motion are
formulated in first-order form. The Lagrangian temperature field is determined
by the first-order entropy evolution equation, associated with Fourier’s law of
heat conduction. The first-order viscous evolution equation is derived from an
internal dissipation being quadratic in a nonlinear viscous strain-rate tensor.

This coupled system of nonlinear differential equations is discretised by
a new space-time finite element method, consisting of continuous as well as
discontinuous finite element approximations in time. Owing to particular time
approximations in the constitutive laws, beside the total linear momentum as
well as the total angular momentum balance, a nonlinear stability estimate
with respect to a relative energy function is exactly fulfilled in the fully discrete
case as well. Hence, the resulting time integration algorithm is long-time
nonlinear stable also when changing the time step size.

The obtained coupled system of nonlinear algebraic equations is solved by
a monolithic solution strategy. The corresponding Newton-Raphson methods
on the global and the element level are based on a consistent linearisation.
The new convergence criteria used for these iterative solution procedures
take the energy consistency into account, and is free of the scaling in the
independent variables. Representative numerical simulations with various
boundary conditions show the higher-order accuracy and the superior stability
of the new time integration algorithm.

keywords: Multi-Physics Problems, Strong Thermo-Mechanical Coupling, Space-

Time Finite Element Methods, Time-Stepping Algorithms, Energy-Momentum

Consistency, Higher-Order Accuracy, Monolithic Solution Strategy, Consistent

Linearisation, Scaling-Free Convergence Criteria.
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1. INTRODUCTION

In the dynamic finite deformation elasticity, it turned out that well-known
stability estimates for linear problems are not valid for nonlinear problems.
First statements about this topic can be found in Belytschko & Schoeberle [1]
and Hughes [2]. On the other hand, representative numerical simulations
reveal that time integration algorithms can possess instable behaviour (see
Simo & Tarnow [3] and Crisfield & Shi [4], for instance). This numerical
instability is identifiable through the divergence of the used iterative solution
procedure, induced by unphysical time evolutions. In Crisfield & Shi [4], this
behaviour is designated as locking in time, in the light of the well-known
locking in space occurring in calculations with shells and quasi-incompressible
material. In order to avoid the temporal locking with elastic material, two
common approaches are the development of conserving, in particular energy
conserving, time integration algorithms, or the introduction of numerical
dissipation by the time integrator for damping out high-frequent modes.

The approach of energy conserving time integration algorithms is based
on the fact that energy conservation means unconditional numerical stability
(see Richtmyer & Morton [5] and Wood [6]). This knowledge is confirmed
several times during the numerical time integration of conservative systems,
especially of hyperelastic systems. For instance, the authors of LaBudde &
Greenspan [7, 8] investigated energy conserving time integration algorithms
for N -body problems. By considering Hamiltonian systems in Simo et al. [9],
the meaning of total linear as well as total angular momentum conservation for
the numerical time integration is realised. In Simo & Tarnow [3], this approach
is applied to dynamic finite deformation elasticity, and leads to energy-
momentum conserving time integration algorithms. Here, the stability of an
exact energy conserving time integration is confirmed again. This algorithm
is based on a midpoint approximation together with modified internal forces.
In Gonzalez [10], the time integration algorithm is also composed of these
two elements. However, the latter algorithm arise from the well-known
approach of substituting a discrete derivative for an analytical derivative in
the discretisation. The discrete derivative approach is already applied to the
N -body problem in Greenspan [11,12]. The origin of this approach is the view

1



2 1. INTRODUCTION

of a conserving time integration algorithm as discrete conservative mechanical
system, or discrete Hamiltonian system, respectively (see Greenspan [13]).
From this perspective, the positive influence of exact algorithmic conservation
properties on numerical stability and physical quality of the numerical solution
is analytically proved for a model problem in Gonzalez & Simo [14]. Unlike
a discrete stress tensor, a temporal continuous energy conserving stress
approximation is presented in Sansour et al. [15]. In this reference, the energy-
momentum conserving time integration algorithm for shells is based on a
covariant continuum formulation. In Groß et al. [16], a temporal continuous
and energy-momentum conserving stress approximation is given as well.
However, this approach includes the effective discrete gradient in Gonzalez [10]
in the case of a midpoint approximation. An alternative to modifying internal
forces is to enforce the exact energy conservation iteratively as constraint by
means of a Lagrange multiplier. The authors of Hughes et al. [17] apply this
concept on the basis of the trapezoidal rule. In Laursen & Meng [18], exact
energy conservation is also achieved iteratively, using the energy conservation
condition as additional equation for determining a scalar-valued parameter
field. Energy-momentum conserving time integration algorithms for nonlinear
structural dynamic problems are constructed in Simo & Tarnow [19] and
Simo et al. [20]. A similar proceeding in Crisfield & Shi [4, 21] leads to
an energy-momentum conserving time integrator for trusses, in Galvanetto
& Crisfield [22] for two-dimensional beams, and in Zhong & Crisfield [23]
for shells. The authors of Stander & Stein [24] also present a conserving
time integrator for two-dimensional beams, and Brank [25] deals with the
extension of the conserving time integrator for dynamic shell motions in the
foregoing Reference Brank et al. [26] to flexible laminates. In connection with
an iterative enforcement of the energy conservation in structural dynamics,
we mention Kuhl & Ramm [27], wherein, in addition to the total energy
conservation, also the total linear and total angular momentum conservation is
enforced by Lagrange multipliers. Unusually, the time approximation is based
on a numerically dissipative time integration algorithm. Hence, high-frequent
modes of the solution are damped out, however, the decrease of total energy
owing to the numerical dissipation is balanced by the energy conservation
constraint.

The approach of introducing numerical dissipation by means of a time
integrator arise from the knowledge about linear stability of time integration
algorithms. Since the maximum time step size of linear stable time integration
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algorithms is inversely proportional to the highest frequency of the discrete
system, the approach of damping out high-frequent modes of the solution in
order to increase the time step size stand to reason (see Hilber et al. [28]).
Assumption is that these modes are not of primary interest for the considered
motion. The locking effect in time of nonlinear problems, mentioned in
Crisfield & Shi [4], is also traced back to high-frequent modes. In the dynamic
finite deformation elasticity, this approach is applied, because a finite element
approximation in space does not approximate high-frequent modes very well
(see Strang & Fix [29]). Therefore, numerically dissipative time integration
algorithms are developed for nonlinear elastic materials (compare Armero
& Romero [30, 31] for elastic continuum elements and Ibrahimbegovic &
Mamouri [32] for elastic beam elements). However, in the knowledge of the
present authors, it is not sufficiently clear in the scope of nonlinear problems,
if numerically dissipative time integration algorithms do not also damp out
physically relevant modes of the solution. Therefore, this approach is not
considered in the present work.

The aforementioned references show that the exact fulfilment of energy
and momentum balances is an important quality feature of time integration
algorithms for nonlinear elastodynamics. However, the therein presented time
integrators are at most second order accurate. A more accurate solution
can only be achieved by a smaller time step size. This, however, can be
numerically more costly. For this reason, the approaches behind the energy-
momentum conserving time integration algorithms in Gonzalez [10, 33] and
Simo & Gonzalez [34] are carried forward into higher-order accurate time
integration schemes in Groß et al. [16] and Groß [35]. These time integrators
show the stability properties for arbitrary accuracy orders. The improved
numerical stability allows to use larger time steps, and leads to more efficient
calculations. The approach is based on the Galerkin method, which allows a
systematical construction of implicit time integration algorithms of arbitrary
accuracy order by means of finite elements in time. Temporal Galerkin
methods are mainly subdivided into discontinuous Galerkin (dG) methods
and continuous Galerkin (cG) methods (see Eriksson et al. [36]).

In dG methods, the approximation of the test function and the trial
function is assumed to be discontinuous over the element boundaries. The
dG method is traced back at least to Lasaint & Raviart [37], and is described
in detail in Cockburn [38] and Thomee [39], for instance. A first application
on linear elastodynamics is given in Hughes & Hulbert [40], wherein
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simultaneously a Galerkin method in space is applied. In Hulbert [41, 42],
it is focused on the numerical treatment of the semi-discrete equations.
Thereby, the authors decide between a single-field formulation and a two-field
formulation. In the former formulation, one uses only trial functions in the
displacements, where in the latter formulation, one also applies independent
trial functions for the velocities. For example, in Li & Wiberg [43, 44],
the dG method is implemented with linear finite elements in time for the
displacements as well as for the velocities. This work is extended to a nonlinear
model problem in Wiberg & Li [45]. Likewise, nonlinear model problems are
considered in Bonelli & Bursi [46] and Bottasso [47]. The former reference
elaborates on the connection between dG and Runge-Kutta methods. In the
latter reference, the dG method is applied to stiff differential equation systems,
and the numerical cost is compared. The application of the dG method to
nonlinear beams is subject of Bauchau & Theron [48]. This formulation is
extended to elastic multibody systems in Bauchau & Bottasso [49]. However,
when applied to hyperbolic problems as the nonlinear elastodynamics, the
dG methods lead to time integration algorithms with numerical dissipation.
Using constant finite elements in time, for instance, we obtain the well-known
implicit Euler method. Therefore, the dG method is a way of introducing
numerical dissipation, and belongs to the second approach for obtaining stable
time integration algorithms. For this reason, the time integration algorithms
for the nonlinear problems in Bauchau & Bottasso [49] and Bauchau &
Theron [48] is based on the dG method. In Groß et al. [50] and Groß [51],
however, is shown that the ordinary dG method is not appropriate to construct
momentum conserving time integration algorithms, owing to the jump in the
time evolution. Only a reduced time integration in the resulting finite element
method leads to total angular momentum conservation. This integration,
with less Gauss points as in fact for the used polynomial degree of the
shape functions is necessary, is already known from the volume integration
in specific continuum elements. For example, it is used to avoid locking of
continuum elements for quasi-incompressible material (see Wriggers [52] for
an overview). On the other hand, the reduced time integration in the dG
method leads to a time integration algorithm being identical to that, which
follows by a consistent time integration from an ordinary cG method. For
this reason, the authors of Groß et al. [50] and Groß [51] apply only the cG
method for designing conserving time integrators of arbitrary order. Note that
independent of the results in Groß [51], the authors of Larson & Niklasson [53]
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have shown that the cG method can be viewed as a limit of the dG method
if a parameter tends to infinity.

In cG methods, the approximation of the trial functions is assumed to
be continuous over the element boundaries, whereas the approximation of
the test functions is further discontinuous. Therefore, we obtain implicit
time integration algorithms. The cG method seems to go back to Douglas
& Dupont [54] and Swartz & Wendroff [55] for parabolic problems, and
to Hulme [56, 57] for ordinary differential equations. More details about
the continuous Galerkin method can be found in Eriksson et al. [36] and
Fairweather [58], for instance. In Aziz & Monk [59] and Winther [60], the
cG method is also applied to solve partial differential equations. In French &
Schaeffer [61], the time integration of ordinary and different nonlinear partial
differential equations is investigated. In this reference, the aspect of exact
energy conservation is also treated, and leads to an energy conserving time
integration algorithm. In a follow up paper, the exact energy conservation is
also considered as important for nonlinear wave propagation (see French &
Peterson [62]). That the cG method is particulary appropriate to construct
energy conserving time integration algorithms for conservative problems is also
found by other authors. For example, in Betsch & Steinmann [63] is shown that
just the cG method is inherently energy conserving, which means the energy
conservation is achieved for exact calculation of time integrals. This property
leads to a better and better conserved energy with increasing accuracy order
of the numerical quadrature. Also in Larson & Niklasson [64], the conservation
properties of the cG method is investigated and compared with that of the
dG method. In Betsch & Steinmann [65], an energy-momentum conserving
time integration is designed for the N -body problem. This formulation is
extended to semidiscrete nonlinear elastodynamics in a follow up paper (see
Betsch & Steinmann [66]). Since the exact energy-momentum conserving time
integration algorithms in these works are at most second order accurate,
the part Groß et al. [16] of this publication series shows the extension to
higher-order accurate energy-momentum conserving time integration of both
problem classes. The third part also describes the conserving time integration
of coupled elastic and rigid bodies with second-order accurate integrators (see
Betsch & Steinmann [67]).

In the present work, we also apply the Galerkin method in time combined
with a Galerkin method in space. In this way, we obtain a space-time
approximation, which is not restricted in the accuracy order. Whether we
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use a cG or dG method in time is based upon the consistency with energy
balances of our now dissipative problem.

1.1. Literature review

In all of the mentioned references about energy conserving time integrators
for nonlinear elastodynamics is found that an indicator for an unstable
numerical integration is the so-called blow-up behaviour. This phenomenon
means a steadily increased total energy with increasing calculation duration.
An energy blow-up is noticed particularly with high material stiffness. If
no blow-up behaviour is observed, the energy oscillates around a constant
energy level. Consequently, energy inconsistent non-dissipative algorithms
produce algorithmic energy during the integration of elastic systems. In
dynamic problems of dissipative materials is expected that this algorithmically
produced energy is compensated if the physical dissipation is sufficiently high.
And so, the numerical instability cannot be observed. This compensation
is observed in Simo [68], during the time integration of motions of plastic
materials. In the same reference, a non-conserving time integration algorithm
is compared with a total linear and total angular momentum conserving
algorithm. By using numerical simulations, the author concludes that the
latter is more stable than the non-conserving time integrator. Hence, the
relevance of momentum conserving time integration algorithms is verified also
for dissipative materials.

This expected compensation of algorithmically produced energy is not
observed in each case. In Meng & Laursen [69], it is described that a
not sufficiently high internal dissipation of a plastic material leads to an
energy blow-up with subsequent numerical instability. However, this blow-up
behaviour is avoided by using an energy consistent time integration algorithm,
which is an algorithm fulfilling exactly the discrete energy balance. In the
conservative case, the energy is conserved, and in the dissipative case, the
approximated physical dissipation leads to a prescribed energy loss. In this
paper, algorithms for the additive as well as multiplicative plasticity with
isotropic hardening are presented. In Noels et al. [70], a variational formulation
with incremental potentials according to Ortiz & Stainier [71] allows the
construction of a conserving time integrator for elastoplasticity, which is based
on the discrete derivative approach for hyperelastic materials according to
Gonzalez [10]. The procedure in Noels et al. [70] is not restricted to isotropic
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hardening. In Noels et al. [72], these authors introduce numerical dissipation
for high-frequency numerical modes using this variational formulation, and
arrive at a first-order accurate time integrator which also conserve the
total linear and total angular momentum. The introduction of controllable
numerical dissipation by remaining total linear and total angular momentum
conservation is motivated by the energy consistent integrator in Armero [73],
which is based on the schemes in Armero & Romero [30, 31] for nonlinear
elastodynamics. However, in Noels et al. [72], the numerical dissipation is not
only in the additional term of the discrete derivative involved, but also in
the analytical derivative at the midpoint strain. In Armero & Zambrana-
Rojas [74], a volume-preserving energy-momentum scheme for isochoric
multiplicative plasticity is presented, in order to preserve exactly the plastic
volume for isochoric plastic models. This time integrator is based on the
scheme in Armero [73]. In Armero [75], this energy-dissipating momentum-
conserving time integration algorithm is adjusted to assumed strain finite
elements in space, which are constructed for nearly incompressible material
responses. In all these references, the discrete derivative approach is applied,
which also leads to an energy consistent material-point method for dynamic
finite deformation plasticity in Love & Sulsky [76]. The material-point-method
is an extension of the particle-in-cell method, in which particles are interpreted
as material points. Alternatively, in Mohr et al. [77] and Mohr [78], energy
consistent time integration algorithms for finite elasto-plasto dynamics are
presented, which base on a finite element method in time. In these References,
it is also shown that, using a first order accurate algorithm for updating the
plastic internal variables, we obtain an order reduction of a higher-order time
integration method as soon as plastic deformations occur. A remedy of this
formal disadvantage could be to consider elastoplasticity from the viewpoint
of a differential algebraic system. For infinitesimal elastoplasticity, this is done
in Papadopoulos & Taylor [79] and Büttner & Simeon [80], respectively.

The mentioned energy consistent time integration algorithms for
elastoplastic materials are based on the assumption of hyperelastic
constitutive laws for the elastic behaviour. In this plasticity concept, the
inelastic deformation is determined by a flow rule, and the stress is
subsequently derived from the hyperelastic strain energy function (see Simo
& Ortiz [81]). An older procedure is based on hypoelastic stress formulations,
in which the stress follows from the time integration of a stress rate equation.
However, the configuration in which the considered stress tensor is defined
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draw a distinction. In the current configuration, for example, we have
to approximate objective stress rate tensors (see Pinsky et al. [82]). By
means of a discrete form pertaining to such an objective stress rate tensor,
energy consistent algorithms for dynamic finite deformation hypoelasticity are
designed in Noels et al. [83,84]. The difference between these algorithms lies in
the accuracy order of the stress rate approximation. In the former reference,
the approximation is of first order accurate, where in the latter, a second order
accurate stress rate approximation is used.

Since we consider in the present work an internal dissipation of a
viscoelastic material law and a dissipation arising from a classical heat
conduction by means of Fourier’s law, we give an overview about algorithms
for calculating deformations of these dissipative materials. However, beside
intermediate results of the present authors in Groß & Betsch [85, 86]
for the dynamic finite deformation viscoelasticity, in Groß & Betsch [87]
for the dynamic finite deformation classical thermoelasticity, and in Groß
& Betsch [88–91] for nonlinear thermo-viscoelastodynamics, there are no
references known to the present authors, which are concerned with the
simulation of corresponding dynamic problems with energy consistent
algorithms. Mostly the approach of introducing numerical dissipation
is applied. In contrast, for the non-dissipative non-classical theory of
thermoelasticity according to Green & Naghdi [92], an energy consistent time
integration algorithm is presented in Bargmann [93]. This algorithm is also
based on a finite element approximation in space and time (see also Bargmann
and Steinmann [94,95]).

In nonlinear viscoelasticity, for a long time, inelastic stresses are determined
by means of approximated time integrals. These integrals follow directly
from the older representation by means of functionals, or indirect from the
newer representation by means of internal variables (see Haupt [96]). The
concept of internal variables for viscoelastic materials is already known from
Green & Tobolsky [97], and is newly taken up in Lubliner [98]. However,
this concept is increasingly used in numerical implementations only since
Simo [99]. Here, the internal variable plays the role of an non-equilibrium
stress tensor, which is determined by an evolution equation similar to that in
the linear theory. In Holzapfel [100], the evolution of the non-equilibrium stress
determines an internal variable of strain-type. The formulation presented
in Le Tallec et al. [101] is based totally on a strain-type internal variable,
however, the corresponding evolution equation is also derived from the linear



1.1. Literature review 9

theory. The constitutive law in Reese & Govindjee [102] is also based on
internal variables of strain-type. The evolution equations, however, are here
not deduced from the linear theory, wherefore they allow material states far
away from the thermodynamic equilibrium state. The evolution equations in
this reference have the same structure as a plastic flow rule. Therefore, the time
integration is performed by using algorithms known from elastoplasticity. For
example, the exponential mapping algorithm is established for finite isotropic
elastoplasticity (see Simo [68], Weber & Anand [103] and Miehe & Stein [104]).
In the latter references, this algorithm is based on a spectral decomposition
of the considered tensors. However, in Miehe [105], the exponential map
algorithm is applied to anisotropic multiplicative elastoplasticity by avoiding
the spectral decomposition of the argument tensors. For this reason, the
exponential mapping algorithm is appropriate to constitutive laws for
rubber-like polymers based on principal stretches (compare the material in
Ogden [106]). However, the time integration with this algorithm is at most first
order accurate. For obtaining a higher order of accuracy, we have to apply more
general methods for solving ordinary differential equations (see Reese [107]).
Since the time evolution of internal variables are associated with different
time scales, the corresponding differential equations are numerically stiff, and
require robust time integration algorithms. Owing to the better stability,
implicit time integrators are preferred to explicit schemes. In particular,
implicit time integration algorithms with numerical damping, as the implicit
Euler method, is used frequently (see Le Tallec et al. [101]). Another approach
for improving the robustness is the application of an adaptive time step size
control (see Reese [107] and Diebels et al. [108]). The corresponding error
estimate is based on a comparison of the solution of two time integrators with
distinct orders of accuracy. For instance, Runge-Kutta methods are applied,
which are not restricted in their accuracy order (compare Hairer et al. [109]
and Hairer & Wanner [110]). The mentioned implicit Euler method is an
element of the class of implicit Runge-Kutta methods. The consideration of the
viscous evolution equation together with a semi-discrete static boundary value
problem leads to a differential algebraic system of equations (see Kirchner &
Simeon [111], for instance). These most stiff systems of equations are often
solved by using BDF methods. The implicit Euler method, for example, is the
first order BDF method (see Ascher & Petzold [112] and Brenan et al. [113]).
For this reason, higher order BDF methods are used for integrating viscous
evolution equations in time, in order to realise an adaptive time step size
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control. In Kirchner & Simeon [111], a viscous material model for small
strain is considered. For large strains, the differential algebraic approach is
applied in Hartmann [114]. However, the time integration is taken over by
diagonal implicit Runge-Kutta methods. These methods are also considered
to be robust, however, in addition, they have advantages for efficiency and
implementation purposes (compare Ellsiepen & Hartmann [115]).

In classical thermoelasticity, the temperature is considered as additional
independent variable. This is well-founded by the observability of the
temperature, and by the fulfillment of the axiom of causality of constitutive
equations (see Eringen [116]). As additional equation to the balance
of mechanical energy, the balance of internal energy or the balance of
entropy is used. The finite element method approximates the independent
temperature field by spatial trial functions. After the spatial discretisation, we
therefore obtain a coupled system of ordinary differential equations (compare
Oden [117]). Methods for solving these coupled equations apply the monolithic
or the partitioned solution strategy (see Wood [6]). A monolithic solution
is mostly obtained by applying an implicit time integration algorithm, as
the generalised midpoint rule, together with a simultaneous solving of the
resulting algebraic system of equations. As solution strategy for the algebraic
system is applied a direct method or a staggered method (see Argyris &
Doltsinis [118] and Argyris et al. [119]). Partitioned solution strategies are
introduced in order to improve the numerical effort, solving many degrees of
freedom. For example, special time integration methods leading to uncoupled
semi-discrete equations are combined with an explicit extrapolation of the
coupling terms. However, according to Park & Felippa [120], this extrapolation
leads to conditionally stable algorithms. In Simo & Miehe [121], a split of the
elliptic operator of the coupled field equations according to the fractional step
method (see Yanenko [122]) is performed. By means of this operator splitting
technique, the problem is solved sequently in an isothermal mechanical and
a purely thermal phase. Thus, the equations of motion are solved with
constant temperature, and the energy equation during a fixed position. The
time integration is performed by means of the already mentioned first order
accurate implicit Euler method, since the total operator split is a first order
accurate approximation. The algorithm pertaining to this so-called isothermal
split, however, is solely unconditionally stable in the sense of linear stability.
However, this is not sufficient for highly nonlinear problems. For this reason,
the problem in Armero & Simo [123] is solved in an adiabatic mechanical phase
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and in a purely thermal phase. Hence, the motion is now calculated at constant
entropy. But, the condition of a constant entropy leads to a necessary iteration
procedure on the element level. This adiabatic split is also nonlinear stable in
the sense of Lyapunov. The improved stability is also confirmed in Miehe [124]
and Holzapfel & Simo [125], solving problems with entropic thermoelastic
materials. On the other hand, a stability procedure for the isothermal split
is given in Farhat et al. [126]. In a direct comparison of the monolithic
and the partitioned solution strategy for strong coupled problems, which
means relatively high thermal expansion coefficients, for instance, is found
that the former strategy leads to better results (see Reese [107]). This is also
concluded in Ibrahimbegovic et al. [127], wherein a covariant formulation of
thermoelasticity is presented. There are two reasons for this. Solving a strong
coupled problem sequently in split phases, first, the number of iterations is, in
the worst case, nearly twice the number of iterations pertaining to the natural
monolithic strategy, and second, there is possibly a great deviation of both
solutions. This deviation would lead necessarily to an iterative refinement
or a decrease of the time step size. In these cases, the partitioned solution
strategy is therefore no more efficient, and it is not worth to accept the low
accuracy order of the algorithm. On the other hand, an advantage of the
partitioned solution strategy is the possible usage of different time step sizes
in the two phases. In this way, different time scales in the temperature and the
displacement can be considered already during the time integration. However,
since we aim at higher-order accurate algorithms also appropriate for strong
coupled problems, we apply a monolithic solution strategy using a Newton-
Raphson method with consistent tangent. We determine the displacement and
the temperature increment in the iterative solution procedure sequently in an
efficient way, in order to avoid large algebraic systems of equations.

The consideration of thermal effects, as heating of the material after
being deformed (Gough-Joule effect, see Miehe [128])) or changes in the
body temperature arising from internal dissipation, is especially for viscous
materials as polymers of importance. Therefore, viscoelastic material models
are often extended to temperature dependent viscoelastic behaviour. The
viscoelastic material model in the already mentioned reference Holzapfel [100]
is extended in Holzapfel & Simo [129] to such thermal effects. In both
references, the time evolution of a strain-like viscous internal variable is
calculated by means of a linear non-equilibrium stress rate equation. The
modelling by means of a nonlinear strain rate equation (see Reese &
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Govindjee [102]) is used in Reese & Govindjee [130] for simulating thermo-
viscoelastic materials. Accordingly, in order to calculate motions of thermo-
viscoelastic materials, the local iterative solution procedure pertaining to the
viscoelasticity has to be applied on the element level, and the global iterative
solution procedure of a thermoelastic problem is used on the global level.
However, in the entropy evolution equation, there is additionally an entropy
term arising from the internal dissipation of the viscous material law.

1.2. Outline

The outline of the paper is as follows. In Section 2, we define our problem of
continuum motions of a viscoelastic body, under inclusion of the coupling of
thermal and mechanical fields. Thereby, we use the Lagrangian description of
continuum motions. We start with mathematical preliminaries, which explain
the used notation. In order to display the tensors, and the equations in
which they are included, we use a mixed form of a symbolic notation and
an index notation. This notation inherits the advantages of both notations.
Namely, the possible identification of the whole tensor in the equation,
however, with avoiding many shorthand notions for chaining these tensors.
Moreover, this notation simplifies later the transition to the matrix notation
in the implementation. Further, in the light of Marsden & Hughes [131] and
Abraham et al. [132], we reveal the distinction of tangent and cotangent
vectors by subscript and superscript indices, and use different symbols for
the corresponding different sets. Especially, when introducing the viscoelastic
material model and the spatial discretisation, this simplifies to retain
the clarity in which space or set the quantities are defined. Recall the
mentioned necessary distinction in the approximation of rate equations with
respect to the current or the reference configuration. Although, we are only
concerned with rectangular coordinates, the distinction between tangent and
cotangent vectors in the general sense are necessary for explaining which
time discretisations are consistent with the applicable energy function. For
example, the considered boundary conditions have an influence on the defined
energy function, and thus on the energy consistent time discretisation. We
already apply this notation to the mathematical definition of all the concerned
terms, such as reference and current configuration, deformation and motion
and many others (compare Ciarlet [133]), in order to bring the reader close
to this notation and the corresponding perspective. In spite of the theoretical
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purposes of the notation for deriving the finite element method, the used
tensor notation is geared to the common matrix notation, which is used in the
implementation of the algorithm. After defining the physical quantities related
with the Lagrangian description of continuum motions, we also introduce in
Section 2 the governing evolution and constitutive equations, and define the
strong form of the corresponding initial boundary value problem. This section
is closed by deriving the conservation laws and the energy-based stability
estimate of the strong form, whose fulfillment is an aim of the Galerkin finite
element method.

In Section 3, we derive the weak formulation of the initial boundary value
problem straight forward by using the defined energy function. Thus, it is
guaranteed that the Galerkin finite element method, derived in Section 4,
satisfies the stability estimate. Here, we consciously discretise at first in time
and then in space. The idee is to argue that we calculate time curves of
fields over a bounded domain, and we therefore approximate first the time
curves of the fields and then the fields themselves. In this way, we arrive in
Section 5 at an already known temporal approximation of the strain evolution,
called assumed strain approximation in time, which is unaffected by rigid
body motions according to Groß et al. [16] and Groß [35]. In this section, we
also derive additional terms of the weak forms pertaining to the equations of
motion and the thermal evolution equation, which lead to the exact energy
consistency and the nonlinear stability in the sense of Lyapunov also in the
discrete case.

Section 6 then shows by means of numerical simulations that the
modifications in Section 5 do not affect the accuracy order of the finite
element method, but improve the stability. These motions are initiated
by initial conditions in order to verify the stability estimate as well as
the conservation laws. Additionally, we show simulations with mechanical
and thermal excitation by means of boundary conditions, which are also
incorporated energy consistently.

In an appendix, we give details about our implementation of the algorithm.
First, we derive in Section A the discrete initial boundary value problem,
which includes the nonlinear algebraic system of equations, solved by the
numerical solution procedure. Since we solve the problem by using Newton-
Raphson methods with consistent tangent matrices, we linearise this system
of equations in Section B. Here, we also introduce physically motivated
convergence criteria for the Newton-Raphson methods, which take the energy
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consistency of the finite element method into account. In Section C, we show
the physical and numerical applicability of the used Neo-Hookean material
model, called Simo-Taylor material, for the present numerical problem. The
appendix is concluded by Section D, which deduces an analytical solution of
an approximate problem, used for interpreting the numerical results.



2. PROBLEM DEFINITION

We consider arbitrary motions of a continuum body consisting of viscoelastic
material, and take the coupling of thermal and mechanical fields into
account. We start by introducing all the necessary quantities related with
dynamic deformations of thermally extended viscoelastic material, and all
the necessary balance laws of continuum mechanics. Thereby, we restrict us
to the Lagrangian description. Then, we introduce the considered constitutive
equations for the entropy flux arising from conduction of heat, and the viscous
internal variable formulation. We arrive at a system of coupled nonlinear
partial differential equations, representing an initial boundary value problem.
We show that, under certain circumstances, the time evolution of this problem
fulfills conservation laws and a stability estimate.

2.1. Lagrangian description of continuum motions

We are interested in the time evolution of positions of certain particles
pertaining to a continuum body, during a prescribed time interval. Therefore,
we consider in this paper continuum mechanics in dependence of the initial
positions of these particles, which means their Lagrangian description (see
Holzapfel [135] and references therein). This preliminary section introduces
the necessary quantities by emphasising the notion of tangent vectors at curves
and the corresponding cotangent vectors. This point of view is used below for
deriving the energy consistent time integration algorithms. We thereby use a
notation, which simplifies to retain the clarity in which of the many spaces
or sets the used tensors are defined. We begin this section by introducing the
mathematical concept of a continuum, inspired by Marsden & Hughes [131],
Abraham et al. [132] and Bertram [134], which models the body itself and its
ambient space.

2.1.1. Mathematical preliminaries. Let R denote the set of real numbers,
and 1 6 ndim 6 3 be a positive natural number. We denote by A the
set of columns a = [a1, . . . , andim ], where the entries ai ∈ R denote real
numbers. Since A is a real vector space, the element a ∈ A is called a

15
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A

A−1

A∗

AT

(A∗)T

A A

A ∗ A ∗

δδ−1

Figure 2.1. A linear mapping A between two vectors in the ambient space A

possesses an inverse A−1, and a transpose AT as well as a dual mapping A∗ on
the dual ambient space A

∗.

column vector. The vector space A models a continuum with respect to
the Euclidean reference frame. The origin of this frame is given by the zero
vector o = [0, . . . , 0] of A . Since a continuum body B ⊂ A is considered as a
connected subspace of the continuum, the space A denotes the ambient space
of the body.

We associate with the space A a symmetric and positive-definite
matrix δ. The entries of this matrix are the usual Kronecker symbols δij ,
i, j ∈ Nsd = {1, . . . , ndim}. This matrix defines an inner product on A by the
relation

[a, b] = [a]iδij [b]
j (2.1)

Summation on repeated indices is understood. By using this inner product,
we define the Euclidean norm ‖a‖ of the column a by the expression

√
[a,a].

Moreover, Equation (2.1) defines a row vector a∗ = [a1 . . . andim
], whose

entries [a]j are given by the real numbers [a]iδij . This row vector a∗ is called
the covector corresponding to the column vector a. By using this definition,
the inner product on the vector space A can be viewed as a pairing

〈a∗, b〉 = [a∗]j [b]
j (2.2)

of columns b ∈ A and rows a∗. Thus, a covector is an element in the space
L(A ,R) of all linear maps of A to R, called the dual space A ∗ of the
ambient space, and the matrix δ is a mapping from the ambient space
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A to its dual space. Since the matrix δ is positive-definite, the identities
δikδkj [a]j = [a]idefines a symmetric and positive-definite matrix δ−1 on the
dual space A ∗ with the Kronecker symbols δij as entries. By the relation

[a∗, b∗] = [a∗]iδ
ij [b∗]j (2.3)

we denote the corresponding inner product of two row vectors a∗, b∗ ∈ A ∗

in the dual space of the ambient space. Likewise, the matrix δ−1 denotes a
mapping from the dual space A ∗ to the ambient space itself.

A linear mapping or tensor A ∈ L(A ,A ) on the ambient space maps
column vectors to column vectors, and is defined by the relation

[A(a)]i = [A]ij [a]j (2.4)

where the real numbers [A]ij ∈ R denote the entries of the square matrix
corresponding to this linear map. The first index denotes the row and the
second index the column of the matrix. The sum of the entries on the main
diagonal of linear maps A ∈ L(A ,A ) defines the trace

tr(A) = [A]ii ∈ R (2.5)

If the matrix corresponding to A is positive-definite, then there is an
inverse (A)−1. Its matrix entries [(A)−1]ki are defined by the equations
[(A)−1]ki[A]ij = [I]kj , where the linear mapping I ∈ L(A ,A ) denotes the

identity matrix with the Kronecker symbols δk
j as entries. The matrix

corresponding to the transpose (A)T ∈ L(A ∗,A ∗) of the linear map A is
defined by the relation

[a∗]i [A]ij [b]
j = [b]j [(A)T ] i

j [a∗]i (2.6)

with the covector a∗ ∈ A ∗ and the vector b ∈ A . By this definition, the
matrix associated with this transpose emanates from the matrix of A by
interchanging the rows and the columns. A further mapping A∗ in the linear
space L(A ∗,A ∗), which we call the dual mapping of A (see Figure 2.1), can
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be defined by a matrix product with δ and its inverse, given by

[A∗] i
k = δki[A]ijδ

jl (2.7)

Analogous to vectors, a pairing 〈A,B∗〉 of a mapping A in the linear space
L(A ,A ) and the dual mapping of a second mapping B ∈ L(A ,A ) defines an
inner product on this linear space. Then, the squared norm ‖A‖2 of a linear
map A on the ambient space coincides with the inner product [A,A] of this
mapping with itself. The inner product is defined as

[A,B] = [A]ij [(B
∗)T ]ji (2.8)

We denote by ǫijk the permutation or Levi-Civita symbol. It coincides with
one for even permutations of (i, j, k), with minus one for odd permutations
and zero elsewhere. We introduce the bilinear vector product of two column
vectors a, b ∈ A by the components ǫijk[a]j [b]k. By using the vector product,
the triple scalar product of three column vectors is defined as

[a, b, c] = ǫijk[a]j [b]k[c]i (2.9)

for any three column vectors a, b, c in the ambient space. According to the
mentioned properties of the permutation symbol, each triple scalar product
coincides with the product of its even permutated arguments, and with the
negative product of its odd permutated arguments. It vanishes for at least two
equal arguments. The permutation tensor is a linear mapping

[ǫ(T )]i = ǫijk[T ]jk (2.10)

relating uniquely to each skew-symmetric tensor T ∈ L(A ∗,A ), with the
property T = −(T )T , a row vector ǫ in the dual space A ∗ of the ambient
space. However, a symmetric tensor S ∈ L(A ∗,A ), with the property
S = (S)T , is mapped to the zero vector o = (0, . . . , 0) of the ambient space.

2.1.2. The reference configuration. Let the set T denote the time interval
[t0, T ] ⊂ R+ of interest. We consider a continuum body B at initial time
t0 ∈ T as an bounded open set B0 in the ambient space A with a piecewise
smooth boundary ∂B0. Points X in this so-called reference configuration are
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X(s) X
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B0

∂B0

a1

a2

Figure 2.2. A curve X(s) through any point X in the reference configuration B0

and a tangent vector W ∈ TXB0 in the corresponding tangent space at this curve.

thus identified by column vectors

X = [X1, . . . ,Xndim ] ∈ B0 (2.11)

A (topological) curve X(s), connecting points in B0 such that X(0)
coincides with a fixed point X ∈ B0, is a subset of the reference configuration
(see Figure 2.2). A tangent vector W at this curve in the point X is a column
vector [W 1, . . . ,Wndim ] in the ambient space A , defined by the components

[W ]A =
d

ds s=0

[X(s)]A (2.12)

The vector W lies in a space TXB0 of column vectors, which are tangent to
all curves X(s) at the point X in B0. This set is called the tangent space.
The union of the tangent spaces to B0 at all points X ∈ B0 is called the
tangent bundle TB0.

We are able to define a length scale for tangent vectors by using the inner
product on the ambient space, which means

[W ,V ] = [W ]A δAB [V ]B (2.13)
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for any two tangent vectors W and V in TXB0. This inner product defines
a linear mapping W ∗ in the dual space L(TXB0,R) corresponding to the
tangent space TXB0. This dual space is called the cotangent space T ∗

XB0.
Each cotangent vector W ∗ coincides with a row vector [W1 . . . Wndim

]. The
entries WB coincide with the real numbers WA δAB . The bundle space of
the cotangent space is denoted by T ∗B0. We obtain a pairing 〈W ∗,V 〉 of
arbitrary tangent vectors V and cotangent vectors W ∗ by using the dual
pairing corresponding to the ambient space.

2.1.3. The current configuration. The bounded open set Bt ⊂ A denotes
the current configuration of the continuum body at fixed time t ∈ T . Points
x in Bt are designated by column vectors [x1, . . . , xndim ]. The set Bt possesses
a piecewise smooth boundary ∂Bt, on which we prescribe positions x on a
part ∂xBt.

A curve x(s) in Bt, which fulfils the given boundary conditions and
coincides for x(0) with the fixed point x, is a subset of this current
configuration. The tangent vector in the space TxBt at the curve x(s) in
the point x is given by the components

[w]a =
d

ds s=0

[x(s)]a (2.14)

The corresponding tangent bundle is denoted by TBt. Accordingly, a tangent
vector w at Bt coincides with a column vector [w1, . . . , wndim ] in the ambient
space A . The inner product [w,v] of arbitrary two tangent vectors w and v
in TxBt arises from the inner product on the ambient space. Likewise, this
inner product defines a cotangent space T ∗

x Bt at the current position x ∈ Bt,
including cotangent vectors

[w∗]b = [w]a δab (2.15)

The matrix corresponding to such cotangent vectors is a row vector
[w1 . . . wndim

] in the dual space A ∗. The inner product defines, in turn, a
pairing 〈w∗,v〉 of arbitrary tangent vectors v and cotangent vectors w∗ in
terms of the pairing on the ambient space.
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Figure 2.3. The current configuration Bt with the curve x(s) through the point
x ∈ Bt and the corresponding tangent vector w ∈ TxBt. Further elements of this
tangent space are the deformation velocity vt(X) as tangent vector at the motion
ϕ(t) and the displacement vector ut(X) as tangent vector at the displacement curve.

2.1.4. Deformation and motion. A smooth injective and orientation
preserving mapping ϕt : B0 → Bt of the reference configuration B0 to a
current configuration Bt is called a deformation field of B0 (see Ciarlet [133]).
The image ϕt(B0) coincides with the current configuration Bt of the
continuum body. The entries xa of the column vector x ∈ Bt at fixed time
t ∈ T are given by

[x]a = [ϕt(X)]a (2.16)

We assume that, for all times t ∈ T , the positions x on the boundary ∂xBt

coincide with the points X on the so-called Dirichlet boundary ∂ϕB0 ⊂ ∂B0.
A motion is a time curve ϕ(t), which coincides for a fixed time t ∈ T with a
deformation field ϕt of the body (see Figure 2.3).

2.1.5. Displacement and velocity. Suppose a smooth curve ϕt(s) of
deformation fields, defined such that the Dirichlet boundary condition is
satisfied and ϕt(0) coincides with a fixed deformation field ϕt. Then, a tangent
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field νt : B0 → TBt at this curve in ϕt is defined locally by the components

[νt(X)]a =
d

ds s=0

[ϕt(X)(s)]a ∀X ∈ B0 (2.17)

where the mapping ϕt(X)(s) denotes the trajectory for any point X ∈ B0.
A curve ϕt(s) satisfies the Dirichlet boundary condition if each trajectory
ϕt(X)(s) coincides with X for all points X ∈ ∂ϕB0 and for all curve
parameter s ∈ R.

For example, the trajectories ϕt(X) + s(ϕt(X) −X) defines such a curve.
The corresponding tangent field ut at this curve is defined by

ut : B0 ∋X 7→ ϕt(X) −X ∈ TxBt (2.18)

which is called displacement field. Hence, a tangent field νt at an admissible
curve ϕt(s) vanishes at the Dirichlet boundary ∂ϕB0.

A further example of a curve ϕt(s) is the time curve ϕt+s, wherein s denotes
a time difference. This curve satisfies the given time-independent Dirichlet
boundary condition. According to the chain rule of differentiation, the tangent
field at this time curve at the deformation field ϕt for a fixed time t ∈ T reads

vt : B0 ∋X 7→ ϕ̇t(X) ∈ TxBt (2.19)

where the dot denotes the partial time derivative. We call this mapping the
Lagrangian deformation velocity field of the body, and refer to the curve v(t)
as the velocity of the motion.

2.1.6. Momentum and kinetic energy. Based on the inner product
corresponding to the ambient space, there is an inner product of arbitrary
two tangent fields ωt and νt, which is given by

[ωt,νt] =

∫

B0

[ρ0(X)ωt(X),νt(X)] =

∫

B0

ρ0(X) [ωt(X)]a δab [νt(X)]b

(2.20)
where ρ0 : B0 → R+ denotes the density field in the reference configuration.
The corresponding squared norm ‖ωt‖2 is given by the expression [ωt,ωt].
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Hence, a cotangent field ω⋆
t corresponding to the tangent field ωt in the

deformation field ϕt can be defined by the components

[ω⋆
t (X)]a = ρ0(X) [ω∗

t (X)]a (2.21)

for any X ∈ B0. By means of the inner product, we obtain a dual pairing
〈ω⋆

t ,νt〉 of this cotangent field with a tangent field νt at the deformation
field ϕt. Thus, in this context, we obtain the Lagrangian momentum field πt,
defined by the components

[πt(X)]a = [v⋆
t (X)]a (2.22)

as the cotangent field corresponding to the Lagrangian deformation velocity
field (compare Simo et al. [136]). Further, we refer to the curve π(t) as the
momentum of the motion.

On the basis of the norm ‖vt‖ of the Lagrangian deformation velocity field
at fixed time t ∈ T , the kinetic energy of the continuum body is defined by

T (t) =
1

2
‖vt‖2 =

1

2

∫

B0

ρ0(X) [vt(X)]a δab [vt(X)]a =
1

2
〈v⋆

t ,vt〉 (2.23)

and can be viewed as a time curve during a motion ϕ(t) in the time interval
of interest. Thus, the kinetic energy is based directly on the pairing of the
Lagrangian deformation velocity field with its cotangent vector.

2.1.7. The deformation gradient field. The relation between a curve X(s) at
a point X in the reference configuration and the corresponding curve x(s) in
the current configuration is given by the deformation mapping. Consequently,
the chain rule of differentiation implies the relations

[w]a =
∂[ϕt(X)]a

∂XA
[W ]A = [∂Xϕt(X)]aA [W ]A (2.24)

of the components pertaining to the corresponding tangent vectors. The
reals [∂Xϕt(X)]aA coincide with the components [Dϕt(X)]

a
A of the Frèchet

derivative Dϕt : B0 → L(TB0, TBt) pertaining to the deformation ϕt at
fixed time t ∈ T (see Figure 2.4).



24 2. PROBLEM DEFINITION
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T ∗B0 T ∗Bt

F t

F T
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t

CtC−1
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Figure 2.4. The deformation gradient field F t and the right Cauchy-Green tensor
field Ct as linear mappings between bundle spaces.

The volume element VX at any point X ∈ B0 is mapped by the non-
negative Jacobian determinant

Jt(X) = det(Dϕt(X)) > 0 (2.25)

to the volume element Vx at the point x ∈ Bt, which indicates the
local impenetrability of matter. Consequently, the tensor Dϕt(X) at
any X ∈ B0 is positive-definite, and an element of the general linear
group GL+(TXB0, TxBt). The Lagrangian field Dϕt is designated as the
deformation gradient field F t, which means

[F t(X)]aA = [∂Xϕt(X)]aA (2.26)

Since for any point X ∈ B0 at fixed time t ∈ T the deformation gradient
F t(X) is a positive-definite tensor, there exists a uniquely defined inverse
(F t(X))−1. This tensor coincides with the Frèchet derivative D(ϕ−1

t )(x)
of the inverse deformation with x = ϕt(X). Hence, the inverse deformation
gradient field is given by the components

[(F t(X))−1]Ba = [D(ϕ−1
t )(ϕt(X))]Ba = [∂x(ϕt

−1)(ϕt(X))]Ba (2.27)
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The Frèchet derivative Dvt : B0 → GL+(TB0, TBt) of the Lagrangian
deformation velocity field vt at time t ∈ T is called the Lagrangian
deformation velocity gradient field. According to Clairaut’s theorem, partial
derivatives commute, and Dvt coincides with the time rate of change Ḟ t of
the deformation gradient field. Hence, we obtain

[Dvt(X)]aA = [∂Xvt(X)]aA = [∂Xϕ̇t(X)]aA =
˙

[∂Xϕt(X)]aA = [Ḟ t(X)]aA

(2.28)
Considering the time curve F t+s at a fixed time t ∈ T , the mapping Ḟ t is a
tangent field at the deformation gradient field according to the chain rule of
differentiation.

2.1.8. The right Cauchy-Green tensor field. The deformation gradient
relates the vector w in the tangent space at the current configuration to the
tangent vector W at the reference configuration. The squared length ‖w‖2 of
the tangent vector w therefore can be written as

‖w‖2 = [w∗]a[w]a = [w∗]a [F t(X)]aA[W ]A (2.29)

by taking Equations (2.24) and (2.26) into account. Next, we substitute the
tangent vector W for the cotangent vector w∗ by recalling that the transpose
(F t(X))T of the deformation gradient is a tensor of the cotangent space T ∗

x Bt

to the cotangent space T ∗
XB0. We arrive at

‖w‖2 = [W ]A [(F t(X))T ]A
a
δab [F t(X)]bB [W ]B = [W ]A [Ct(X)]AB [W ]B

(2.30)
This symmetric positive-definite tensor Ct(X) in the set S+(TXB0, T

∗
XB0)

expresses the length of a tangent vector w ∈ TxBt by means of the
corresponding Lagrangian tangent vector W ∈ TXB0, and is called the
right Cauchy-Green tensor. The corresponding inverse tensor (Ct(X))−1 is
uniquely defined by the components

[(Ct(X))−1]AB = [(F t(X))−1]Aa δab [(F t(X))−T ]b
B

(2.31)

We refer to the field Ct : B0 → S+(TB0, T
∗B0) as the right Cauchy-Green

tensor field. By means of the curve Ct+s at time t ∈ T , we identify the time
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derivative Ċt of the right Cauchy-Green tensor field as a tangent field, which
we call the Lagrangian strain velocity field.

Recalling that the stretch λ denotes the length of change of tangent vectors,
the squared stretch reads

λ2 = ‖w‖2 − ‖W ‖2 = [W ]A {[Ct(X)]AB − [δ]AB} [W ]B = 0 (2.32)

on a rigid body motion, which means the right Cauchy-Green tensor field
coincides with the metric tensor in the ambient space.

Taking the definition of the right Cauchy-Green tensor in Equation (2.30)
into account, the Jacobian determinant is written by the determinant of the
right Cauchy-Green tensor as

Jt(X) =
√

det(Ct(X)) (2.33)

Furthermore, by introducing the symmetric right Cauchy-Green tensor field
Ct as argument of the elastic potential energy function, the elastic material
model is frame-indifferent in the sense that, its free energy is left-invariant
under the (left-) action of the rotation group SO(A ,A ) of the ambient space
on the deformation gradient field (for more details see Simo et al. [137]).

2.1.9. The Lagrangian temperature field. We regard the absolute temper-
atures Θt(X) of each point X ∈ B0 at time t ∈ T as elements of the
temperature set Ht ⊂ R+. The Lagrangian temperature field is denoted by
the mapping

Θt : B0 ∋X 7→ Θt(X) ∈ Ht (2.34)

We assume a piecewise smooth boundary ∂ΘB0 ⊂ ∂B0 on which
temperatures Θt(X) for all points X ∈ ∂ΘB0 at all times t ∈ T coincide
with the constant temperature Θ∞ in the ambient space (see Figure 2.5).

In the temperature set, there is defined a curve Θt(X(s)) by means of the
curve X(s) ⊂ B0. Since this curve is defined such that X(0) coincides with
a fixed point X, the chain rule of differentiation implies

ϑt(X)
.
=

d

ds s=0

Θt(X(s)) = [∂XΘt(X)]A [W ]A = [DΘt(X)]A [W ]A (2.35)
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Figure 2.5. The mappings from the configurations of a deformed body B into the
temperature set Ht, and a corresponding tangent vector ϑt(X) associated with a
tangent vectorW in the tangent space at the pointX in the reference configuration.

between the element ϑt(X) in the tangent space TΘHt at the temperature
curve and the vector W in the tangent space TXB0. The row vector DΘt(X)
lies in the cotangent space T ∗

XB0. Taking relation (2.35) into account, we
identify a tangent vector ϑt(X) at all points X on the Dirichlet boundary
∂ΘB0 as zero. The Frèchet derivative

DΘt : B0 ∋X 7→ DΘt(X) ∈ T ∗
XB0 (2.36)

of the Lagrangian temperature field is called the Lagrangian temperature
gradient field at fixed time t ∈ T .

We obtain a curve Θ t(s) of temperature fields, which fulfills the boundary
condition Θt(X) = Θ∞ at all points X ∈ ∂ΘB0 for all curve parameter
s ∈ R, by means of the temperature trajectories Θt(X) + s (Θt(X) − Θ∞).
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TB0 V

T ∗B0 V ∗

T−1
t

T−T
t

CtΓ
−1
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Figure 2.6. The viscous transformation tensor field T t and the deformation-
dependent metric tensor field c̃t are linear mappings with respect to the tangent
space TB0 at the reference configuration and the subspace V of the ambient space.
The internal variable Γ t can be viewed as a kind of right Cauchy-Green tensor on

the reference configuration.

The tangent vector at such a temperature trajectory is given by

ϑt(X) =
d

ds s=0

Θt,s(X) = Θt(X) − Θ∞ (2.37)

Hence, the mapping ϑt : X ∋ B0 7→ Θ(X) − Θ∞ is a tangent field at the
curve Θ t(s), to which we refer to as the Lagrangian relative temperature field
of the body.

On the other hand, the time curve Θt+s also satisfies the time-independent
temperature boundary condition. Therefore, the Lagrangian temperature
velocity Θ̇t(X) is a tangent vector for all X ∈ B0, and the Lagrangian
temperature velocity field Θ̇t is a tangent field.

2.1.10. The Lagrangian internal variable field. For describing viscous
behaviour, we introduce an invertible tensor T t(X) of the tangent space TXB0

to a subspace VX ⊂ A as internal variable. In order to obtain a viscoelastic
material model, this transformation shall not change the elastic properties of
the material (compare Noll [138] as well as Bertram [139–141]). Therefore, we
carry the right Cauchy-Green tensor Ct(X) in the argument of its free energy
to the vector space VX by the push-forward

[(T t(X))−T ]α
A

[Ct(X)]AB [(T t(X))−1]Bβ = [c̃t(X)]αβ (2.38)
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while Greek indices refer to the space VX (compare Figure 2.6). We obtain
the deformation-dependent metric tensor c̃t(X) ∈ S+(VX ,V ∗

X) for vectors in
the space VX as argument of the free energy.

On the other hand, the matrix corresponding to this metric tensor and the
matrix of the tensor Λt(X) in the linear space L(T ∗

XB0, T
∗
XB0), given by the

components
[Λt(X)]C

A
= [Ct(X)]CB [(Γ t(X))−1]BA (2.39)

where
[(Γ t(X))−1]BA = [(T t(X))−1]Bβ δβα [(T t(X))−T ]α

A
(2.40)

has equal invariants (see Miehe [142], Betsch & Stein [143] and Betsch
& Steinmann [144]). Hence, the symmetric tensor Γ t(X) in the set
S+(TXB0, T

∗
XB0) can be viewed as a viscous internal variable for an isotropic

material, because its free energy depends only on the invariants of its tensorial
arguments. The symmetric tensor Γ t(X) can be interpreted as a kind of right
Cauchy-Green tensor according to its positive definiteness

[W ]A[Γ t(X)]AB [W ]B = [T t(X)]αA[W ]A δαβ [T t(X)]βB [W ]B > 0 (2.41)

for any vector W in the tangent space TXB0. We consider the internal
variables Γ t(X) pertaining to all points X ∈ B0 at a fixed time t ∈ T as
a subspace St of the linear space S+(TXB0, T

∗
XB0). We refer to the set St

as the internal variable set.
In the end, we obtain the potential energy function

U int(t) =

∫

B0

Ψt(X) =

∫

B0

Ψ(Λt(X),Θt(X)) (2.42)

and the associated free energy Ψ : L(T ∗
XB0, T

∗
XB0) × Ht → R. Using the

symmetric tensor field Γ t as internal variable, the potential energy function
is also frame-indifferent in the sense that the free energy Ψ is left-invariant
under the (left-) action of the rotation group SO(A ,A ) on the viscous
transformation field T t.

Note also that a symmetric internal variable does not require the
specification of an inelastic spin tensor by an additional condition as in
Armero [73]. Considering the curve Γ t+s with the time difference s as curve
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Figure 2.7. The first Piola-Kirchhoff stress tensor field P t can be written by the
second Piola-Kirchhoff stress tensor field St and the deformation gradient F t, or by
means of the covariant first Piola-Kirchhoff stress tensor field P ∗

t and the inverse
metric tensor δ−1 corresponding to the current configuration.

parameter, the corresponding tangent field coincides for all X ∈ B0 with the
internal variable velocity Γ̇ t(X). We refer to the tangent field Γ̇ t as the
Lagrangian internal variable velocity field.

2.1.11. Stress and entropy. We consider the directional derivative of the free
energy at the point X ∈ B0 along the continuous time curve Ψt+s(X), and
obtain the time rate of change

Ψ̇t(X) =
∂Ψt(X)

∂ΓAB
[Γ̇ t(X)]AB +

∂Ψt(X)

∂CAB
[Ċt(X)]AB +

∂Ψt(X)

∂Θ
Θ̇t(X)

(2.43)
Since Γ̇ t(X), Ċt(X) and Θ̇t(X) are tangent vectors and the free energy is a
real number, the righthand side of Equation (2.43) defines a dual pairing of
tangent vectors with their corresponding cotangent vectors.

First, the negative partial derivative of the free energy with respect to the
internal variable Γ t(X) defines a cotangent vector

[Υ t(X)]AB = −∂Ψ(Λt(X),Θt(X))

∂ΓAB
(2.44)

which we term Lagrangian non-equilibrium stress tensor. The corresponding
field Υ t is a cotangent field at the internal variable field.

Similarly, twice the partial derivative of the free energy with respect to the
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right Cauchy-Green tensor Ct(X) represents a cotangent vector St(X) in the
linear space S(T ∗

XB0, TXB0), which denotes the second Piola-Kirchhoff stress
tensor. The corresponding dual pairing designates the stress power

P int(t) =

∫

B0

pint
t (X) =

∫

B0

∂Ψt(X)

∂CAB
[Ċt(X)]AB =

1

2

∫

B0

[St(X)]AB [Ċt(X)]AB

(2.45)
at time t ∈ T done by the second Piola-Kirchhoff stress tensor field. Therefore,
the second Piola-Kirchhoff stress tensor field St is called energy-conjugated
to the half of the strain velocity field Ċt. By using the chain rule of
differentiation, the density pint

t (X) of the stress power can be also written
as

pint
t (X) = [St(X)]BA [Rt(X)]BA = [P ∗

t (X)] A
a [Ḟ t(X)]aA (2.46)

where
[Rt(X)]BA = [(F t(X))T ] c

B δca[Ḟ t(X)]aA (2.47)

We refer to Rt(X) as elastic deformation rate tensor, and to the cotangent
vector P ∗

t (X) in the linear space L(T ∗
XB0, T

∗
x Bt) as covariant first Piola-

Kirchhoff stress tensor (compare Miehe [145]).
On the other hand, a cotangent vector corresponding to the negative

Lagrangian temperature velocity Θ̇t(X) ∈ TΘHt is the Lagrangian entropy

ηt(X) = −∂Ψ(Λt(X),Θt(X))

∂Θ
(2.48)

which is an element in the linear space L(TΘHt,R) or the cotangent space
T ∗
Θ

Ht, respectively. The corresponding field is a cotangent field at the
temperature field Θt of the body.

2.2. Lagrangian description of the governing equations

The motion ϕ(t) of the body and the temperature evolution curve Θ(t) are
determined by a system of evolution equations in local or strong form. These
equations emanate from the balance laws of continuum dynamics, postulated
in integral or spatially weak form. We also prefer the Lagrangian description
of these balance laws.



32 2. PROBLEM DEFINITION

For more details see the recent references Haupt [96] and Holzapfel [135],
as well as the classical references Truesdell & Toupin [146] and Malvern [147],
for instance.

2.2.1. The mechanical evolution equation. Let us start by postulating the
balance of mechanical energy of the continuum body, written as the equation

Ṫ + P int = Pext (2.49)

and relating the rate of change of the kinetic energy T (t) with the stress
power P int(t), done by the stress field, and the external mechanical power
Pext(t), done by the acting forces. We neglect a prescribed body force density
field on the reference configuration. In the Lagrangian description this balance
equation then reads

∫

B0

ρ0(X)[v∗t (X)]a [v̇t(X)]a +

∫

B0

[P ∗
t (X)]a

A
[Ḟ t(X)]aA =

∫

∂B0

[v∗t (X)]a [tt(X)]a

(2.50)
where the surface force field tt : ∂B0 → TBt represents the first Piola-
Kirchhoff traction vector field. According to the Piola-Kirchhoff theorem, the
components of the Piola-Kirchhoff traction vector at each point X ∈ ∂B0 is
connected with the outward normal field N0 : ∂B0 → T ∗B0 on the reference
configuration by the relation

[tt(X)]a = [P t(X)]aA [N0(X)]A = δab [P ∗
t (X)]b

A
[N0(X)]A (2.51)

The first Piola-Kirchhoff stress tensor field P t : B0 → L(T ∗B0, TBt) follows
from the covariant first Piola-Kirchhoff stress tensor field P ∗

t by the inverse
metric in the current configuration (compare Figure 2.7). Thus, the righthand
side in Equation (2.50) takes the form

∫

∂B0

[v∗t (X)]a [P t(X)]aA [N0(X)]A =

∫

∂B0

[N0(X)]A [(P t(X))T ]Aa[v∗t (X)]a

(2.52)
where Equation (2.6) for the transposed mapping has been applied to the first
Piola-Kirchhoff stress tensor. The application of Gauss’ divergence theorem
then transforms the boundary integral (2.52) to a volume integral. Since the
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velocity vector vt and the first Piola-Kirchhoff stress tensor P t both depends
on the point X ∈ B0, we obtain

∫

B0

∂[(P t(X))T ]Aa[v∗t (X)]a
∂XA

=

∫

B0

[v∗t (X)]a [∂XP t(X)]aA
A+

+

∫

B0

[P ∗
t (X)]a

A
[Ḟ t(X)]aA

(2.53)

after employing Equation (2.28) for the Lagrangian velocity gradient. We
substitute Equation (2.53) for the righthand side of Equation (2.50). In this
way, the terms associated with the stress power annihilate each other. Noting
the definitions of the Lagrangian momentum field in Equation (2.22) and
of the covariant first Piola-Kirchhoff stress tensor, the localisation theorem
implies the relation

(
[π̇t(X)]a − [∂XP

∗
t (X)] A

a A

)
[vt(X)]a = 0 (2.54)

Note that the tangent vector vt(X) ∈ TxBt at the point ϕt(X) ∈ Bt at fixed
time t ∈ T has to be arbitrary for any point X in the reference configuration.
Taking the definition of the Lagrangian deformation velocity field into account,
for any point X ∈ B0 and a ∈ Nsd, we thus arrive at the partial differential
equation system

[ϕ̇t(X)]a = [vt(X)]a

[π̇t(X)]a = [∂XP
∗
t (X)] A

a A

(2.55)

which represents the local form of the equations of motion in the Lagrangian
setting.

2.2.2. The thermal evolution equation. Now, we consider the case in which
thermal power Q(t) is introduced in the continuum by a heat surface density
field Qt : ∂B0 → R on the boundary of the body, which means

Q(t) =

∫

∂B0

Qt(X) (2.56)
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Figure 2.8. The Piola-Kirchhoff heat flux fieldQ is pointwise projected by the inward
normal field −N 0 on the boundary of the reference configuration. The first Piola-
Kirchhoff traction vector field tt(X

′) follows via a linear mapping from the normal
field N 0 of the reference configuration.

According to Stokes’ heat flux theorem, the heat surface density field Qt is
defined by a Piola-Kirchhoff heat flux field Qt : B0 → TB0 via an inward
normal projection (see Figure 2.8) at a point X ∈ ∂B0 on the boundary, that
is

Qt(X) = −[N0(X)]A [Qt(X)]A (2.57)

The postulate accounting for heat transfer is the second law of
thermodynamics. The corresponding state variable is the Lagrangian entropy
field ηt. In the Lagrangian setting, this balance law postulates a non-negative
total production of entropy D̃(t), defined by

D̃ := Ṡ − Q̃ > 0, (2.58)

where S(t) denotes the entropy possessed by the entire continuum body, and
the entropy input in the body has been designated by the mapping Q̃(t).
Neglecting an entropy source density field, the entropy input Q̃ is solely related
to the Piola-Kirchhoff heat flux field Qt via the assumed entropy flux

[Ht(X)]A =
1

Θt(X)
[Qt(X)]A (2.59)
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(compare Hutter [148]). We postulate the local production of entropy D̃t(X)
for a point X ∈ B0 associated with the total production of entropy D̃(t) by
the relation Dtot

t (X)/Θt(X), where Dtot
t (X) denotes the total dissipation in

the pointX ∈ B0. The Lagrangian form of the second law of thermodynamics
then reads

∫

B0

Dtot
t (X)

Θt(X)
=

∫

B0

η̇t(X) +

∫

∂B0

[N0(X)]A [Ht(X)]A > 0 (2.60)

As next step, we apply Gauss’ divergence theorem to the boundary integral
in Equation (2.60). In this way, the boundary integral can be related to the
associated vector field in B0. Since the Piola-Kirchhoff heat flux Qt and the
body temperature field Θt both depend on the point X ∈ B0, the product
rule of partial differentiation leads to

∫

B0

[∂XHt(X)]AA =

∫

B0

1

Θt(X)
[∂XQt(X)]AA−

−
∫

B0

1

Θt(X)
[DΘt(X)]A [Ht(X)]A

(2.61)

The dual paring [DΘt(X)]A [Ht(X)]A in the second term of Equation (2.61) is
by definition the negative dissipation Dcdu

t (X) arising from conduction of heat
in a point X ∈ B0. The sum of this dissipation and the internal dissipation
Dint

t (X) of the material coincides with the total dissipation. Hence, the terms
associated with Dcdu

t (X) annihilate each other. We arrive at the entropy
balance

−
∫

B0

1

Θt(X)
[∂XQt(X)]AA +

∫

B0

Dint
t (X)

Θt(X)
=

∫

B0

η̇t(X) > 0 (2.62)

The left hand side of inequality (2.62) gives an equation for the time evolution
of the total entropy. The localisation theorem implies a local form determining
the time evolution curve η(t) of the Lagrangian entropy field ηt. For all points
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Figure 2.9. Numerically determined stress-strain hysteresis loop during a cyclic shear
loading of a visco-elastic material by taking into account the inertia of the specimen.

X in the reference configuration B0, we obtain the evolution equation

η̇t(X) = − 1

Θt(X)

{
[∂XQt(X)]AA − Dint

t (X)
}

(2.63)

Recall that the first and the second term on the righthand side of this equation
denotes the entropy input arising from conduction of heat and the internal
production of entropy, respectively.

2.2.3. The constitutive equations. The entropy evolution is restricted by
postulating a non-negative total dissipation Dtot

t . This postulate can be
satisfied by the conditions of a non-negative dissipation Dcdu

t arising from
conduction of heat, and a non-negative internal dissipation Dint

t .
The former condition is always satisfied for Fourier’s law of isotropic heat

conduction (see Holzapfel [135]), which defines the components of the Piola-
Kirchhoff heat flux for each point X ∈ ∂B0 by the matrix product

[Qt(X)]A = −[Kt(X)]AB [DΘt(X)]B

= −k0 Jt(X) [(Ct(X))−1]AB [DΘt(X)]B
(2.64)
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with an isotropic Lagrangian conductivity tensor Kt(X) ∈ S+(T ∗B0, TB0).
The real number k0 > 0 denotes a constant conductivity of the continuum
body in each direction. Fourier’s law of heat condution can be also viewed as
potential relation with respect to a heat flux potential (see Simo [149]). The
dissipation Dcdu

t (X) arising from conduction of heat at the point X ∈ B0 is
non-negative according to the positive definiteness of the inverse right Cauchy-
Green tensor, which means

[W ∗]A [(Ct(X))−1]AB [W ∗]B =

= [(F t(X))−T ]a
A

[W ∗]A δab [(F t(X))−T ]b
B

[W ∗]B > 0
(2.65)

for any cotangent vector W ∗ ∈ T ∗
XB0.

On the other hand, the non-negative internal dissipation is a restriction for
the constitutive equation pertaining to the Lagrangian non-equilibrium stress
tensor Υ t(X). We derive this relation by using the balance of thermal energy
determining the rate of change of the internal energy E(t) of the body. Hence,
we postulate

Ė = P int + Q (2.66)

Combining Equation (2.66) and Equation (2.49), we obtain the balance of
total energy or first law of thermodynamics. In this work, we neglect a heat
source density field with respect to the reference configuration. Accordingly,
in the Lagrangian description, the balance of total energy reads

∫

B0

[π̇t(X)]a [vt(X)]a + ėt(X) =

∫

∂B0

[v∗t (X)]a [tt(X)]a−
∫

∂B0

[N0(X)]A [Qt(X)]A

(2.67)
where et(X) denotes the internal energy density in the reference configuration.
The left hand side denotes the time rate of change Ḣ of the total energy. In
the righthand side of Equation (2.67), we apply Gauss’ divergence theorem
and employ the implications (2.53) of the Piola-Kirchhoff theorem. We obtain
the time rate of change

Ḣ =

∫

B0

[∂XP
∗
t (X)] A

a A [vt(X)]a +

∫

B0

[P ∗
t (X)]a

A
[Ḟ t(X)]aA −

∫

B0

[∂XQt(X)]AA

(2.68)
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Then, we take Equation (2.55.2) into account, and apply the localisation
theorem. After eliminating the divergence of the Piola-Kirchhoff heat flux
field Qt by the entropy evolution Equation (2.63), we arrive at the Clausius-
Planck inequality

Dint
t (X) = Θt(X) η̇t(X) − ėt(X) + [P ∗

t (X)]a
A

[Ḟ t(X)]aA > 0 (2.69)

We define the internal energy density et(X) by the Legendre transform of the
free energy Ψt(X) with respect to the Lagrangian temperature Θt(X). The
internal energy is then given as the associated energy function

et(X) = Θt(X) ηt(X) + Ψt(X) (2.70)

According to Equation (2.46), the last term on the righthand side of
Equation (2.69) denotes the density pint

t (X) of the stress power. Employing
Equation (2.70) in Equation (2.69), the internal dissipation takes the form

Dint
t (X) = pint

t (X) − ηt(X) Θ̇t(X) − Ψ̇t(X) > 0 (2.71)

Now, we combine Equation (2.71) with the rate of change of the free energy
density Ψt(X) in Equation (2.43). After employing the definitions of the
Lagrangian entropy and the Lagrangian non-equilibrium stress, given by
Equations (2.48) and (2.44), respectively, we obtain

Dint
t (X) = [Υ t(X)]AB [Γ̇ t(X)]AB = [M t(X)]A

B
[Lt(X)]AB > 0 (2.72)

where

[Lt(X)]AB =
1

2
[Γ−1

t (X)]AC [Γ̇ t(X)]CB (2.73)

denotes a viscous deformation rate tensor Lt(X) ∈ L(TXB0, TXB0) with
respect to the tangent space at the reference configuration. The corresponding
dual mapping M t(X) in the set L(T ∗

XB0, T
∗
XB0) denotes the energy-

conjugated stress tensor field. According to Equation (2.42), the considered
isotropic free energy function depends directly on the invariants of the
matrix Λt(X). After taking into account the representation in terms of these
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invariants, we find the relation

[M t(X)] B
A = 2 [Γ t(X)]AC [Υ t(X)]CB = [Ct(X)]AC [St(X)]CB (2.74)

by using the chain rule of differentiation.
Accordingly, the stress tensor M t(X) denotes the Mandel stress tensor.

Since this tensor represents an isotropic tensor function with respect to
the unsymmetric tensor Λt(X) (compare Equation (C.48)), the Mandel
stress tensor represents a consistent stress measure for the considered
inelastic isotropic material (compare the conditions for the frame-indifferent
response function of an isotropic material in Ciarlet [133]). Consequently, the
deformation rate tensor Lt(X), in turn, denotes a consistent deformation rate
measure for the present viscoelastic material.

Characteristic for a viscous material is a closed stress-strain hysteresis loop
during a cyclic shear loading (see Reese & Govindjee [102] and Kaliske [150]).
The included area of this loop is proportional to a consistent viscous strain
rate measure. Since this included area indicates the free energy loss during
the deformation (see Figure 2.9), we arrive at a viscous strain rate dependent
internal dissipation. This material behaviour can be modelled by introducing
a viscosity tensor (see Reese [107]), which maps a consistent viscous strain
rate tensor linear on the energy-conjugated stress tensor. Hence, we assume
the relation

[M t(X)] B
A = [Vt(X)] B D

A C [Lt(X)]CD (2.75)

where Vt(X) denotes a fourth order viscosity tensor. Since the most
viscous materials behave quite differently in bulk and shear (see Holzapfel
& Simo [125] for rubber-like solids), we split the viscosity tensor in a
volumetric and a deviatoric projection. We relate the former part with a
volumetric viscosity parameter Vvol > 0 and the latter with a deviatoric
viscosity parameter Vdev > 0. Without loss of generality, we restrict us to
constant viscosity parameters, which leads to a constant viscosity tensor. In
order to arrive from the viscous deformation rate tensor Lt(X) at the set
L(T ∗

XB0, T
∗
XB0), we determine the volumetric part of its transpose. We obtain

[M t(X)] B
A =

(
Vvol −

2Vdev

ndim

)
tr(Lt(X)) δ B

A + 2Vdev [(Lt(X))T ] B
A (2.76)
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In an isotropic hyperelastic response, the material parameter Vvol and Vdev

would correspond to the bulk and shear modulus, respectively. Taking this
duality into account, the parenthesis in the first term then denotes a first
‘viscous’ Lamé parameter, which has to be positive, as the first Lamé
parameter in hyperelasticity. Employing the assumed Mandel stress tensor
field (2.76) in Equation (2.74), arising from the Clausius-Plank inequality, we
arrive at the ordinary differential equation

[Υ t(X)]AD = [Σ t(X)]AD (2.77)

where

[Σ t]
AD =

1

2

(
Vvol −

2Vdev

ndim

)
tr(Lt) [(Γ t)

−1]AD − Vdev

2
[

˙
(Γ t)−1]AD (2.78)

denotes a viscous stress tensor. Note that in Le Tallec et al. [101] a similar
evolution equation is deduced by a different approach. Equation (2.77)
determines the time evolution of the internal variable field at each point X
in the reference configuration. For a shorter description, we have taken into
account the time derivative of the definition of an inverse matrix applied to
the internal variable field, which leads to the relation

[
˙

(Γ t(X))−1]AD = −[(Γ t(X))−1]AB [Γ̇ t(X)]BC [(Γ t(X))−1]CD (2.79)

However, the consideration of the inverse (Γ t(X))−1 as a new internal variable
would not be advantageous for solving Equation (2.77), because it is not
possible to transform both sides of the evolution equation, such that they
depend only on (Γ t(X))−1. One side of the equation every depends directly
on the internal variable.

As last step, we have to verify that the internal dissipation, given by
Equation (2.72), is non-negative when solving the time evolution. We begin
by multiplying the first term on the righthand side of Equation (2.78) with
Γ̇ t(X) from the right, and arrive at

(
Vvol −

2Vdev

ndim

)
{tr(Lt(X))}2

> 0 (2.80)
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by taking Equation (2.73) into account. Since the parenthesis is already
defined to be positive, the entire term is non-negative. Then, we consider the
second term on the righthand side of the internal variable evolution equation.
We take the explicit representation (2.79) pertaining to the time derivative of
the inverse internal variable field into account, and obtain

−[
˙

(Γ t)−1]AD [Γ̇ t]AD = [(Γ t)
−1]AB [Γ̇ t]BC [(Γ t)

−1]CD[Γ̇ t]DA (2.81)

The idea is, now, to transform the righthand side into a squared norm of a well-
defined viscous strain rate tensor, which is obviously non-negative (compare
Le Tallec et al. [101]). Since the viscous internal variable tensor is symmetric
and positive definite, we are able to apply the square-root theorem on it (see
Gurtin [151]). In this way, we obtain the viscous strain rate tensor

[Dt(X)]AD =
1

2
[(Γ t(X))−

1
2 ]AB [Γ̇ t(X)]BC [(Γ t(X))−

1
2 ]CD (2.82)

Bearing this definition in mind, the righthand side of Equation (2.81) leads
to the squared norm of the viscous strain rate tensor, which is non-negative
for all times in consideration of the positive deviatoric viscosity. In summary,
the internal dissipation is thus non-negative and takes the form

Dint
t (X) =

(
Vvol −

2Vdev

ndim

)
{tr(Lt(X))}2

+ 2Vdev ‖Dt(X)‖2
> 0 (2.83)

Hence, the parenthesis has to also be defined positive in order to fulfill the
Clausius-Plank inequality at any material point X ∈ B0 for all times. Note
that we have shown, in this way, that the trace of the square product of the
viscous deformation rate tensor is non-negative, which means

[Lt(X)]BA [Lt(X)]AB = tr
(
{Lt(X)}2

)
= ‖Dt(X)‖2

> 0 (2.84)

We have to show this relation, if we use the Mandel stress tensor in
Equation (2.76) directly in Equation (2.72). Using the abstract notation of
the Mandel stress tensor field in Equation (2.75), the internal dissipation can
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B0

tt(X) Qt(X)

Θ∞

Figure 2.10. In the considered problem, the boundary conditions allow for a fixed
support and an uninsulated part (bottom) as well as for a traction load and a heat
transfer (top). A given vanishing Piola-Kirchhoff heat flux on the boundary ∂QB0

corresponds to an insulated boundary (left and right).

be written as

Dint
t (X) = [Lt(X)]AB [Vt(X)] B D

A C [Lt(X)]CD (2.85)

where the used constant viscosity tensor only introduce the transposed
volumetric and the deviatoric projection of the viscous deformation rate
tensor.

2.3. Strong form of the initial boundary value problem

The coupled differential equation system, given by Equations (2.55), (2.63)
and (2.77), is generally supplemented by conditions on the boundary ∂B0

of the reference configuration (see Figure 2.10). We assume that this
boundary is divided into two disjoint parts for each of the partial differential
equations (2.55) and (2.63). First, Equations (2.55) are supplemented by the
mechanical boundary conditions

ϕt(X) = X for all (t,X) ∈ T × ∂ϕB0

tt(X) = tt(X) for all (t,X) ∈ T × ∂T B0 = T × (∂B0 \ ∂ϕB0)
(2.86)
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specifying the deformation ϕt(X) and the Piola-Kirchhoff traction vector
tt(X) for all pointsX on the corresponding boundary of the body. In analogy,
we assume thermal boundary conditions for Equation (2.63), which prescribe
the Lagrangian temperature Θt(X) and the Piola-Kirchhoff heat flux Qt(X)
as

Θt(X) = Θ∞(X) for all (t,X) ∈ T × ∂ΘB0

Qt(X) = Qt(X) for all (t,X) ∈ T × ∂QB0 = T × (∂B0 \ ∂ΘB0)
(2.87)

Along with the following initial conditions, we arrive at an initial boundary
value problem for the deformation ϕt and the corresponding Lagrangian
deformation velocity field vt as well as the Lagrangian temperature field Θt.
However, we obtain an initial value problem for the viscous internal variable
field Γ t. We assume

ϕt0(X) = X Θt0(X) = Θ0(X)

vt0(X) = v0(X) Γ t0(X) = δ
(2.88)

for all points X ∈ B0\∂B0. The initial condition for the viscous evolution
equation arises from defining the reference configuration at t = t0 as
equilibrium state of the viscous evolution. In fact, we define the reference
configuration as equilibrium state of a total time evolution related with
vanishing external loads, vanishing relative temperatures as well as vanishing
velocities. Finally, the initial conditions

πt0(X) = ρ0(X)v0(X) ηt0(X) = −∂Ψ(I∗,Θ0(X))

∂Θ
(2.89)

for all points X ∈ B0\∂B0 specify the momentum evolution and the entropy
evolution, where the mapping I∗ ∈ L(A ∗,A ∗) denotes the shifter with the
entries δ B

A in the corresponding matrix.

2.3.1. The conservation laws. According to the theorem of Emmy Noether,
the equations of motion have a first integral, under certain circumstances,
if there exists at a fixed time t ∈ T a continuous variation curve ϕt(s) of
deformation fields, which coincides for s = 0 with a fixed deformation field
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ϕt and is compatible with given boundary conditions as well as preserves the
associated symmetry function

K(t) =
1

2

∫

B0

ρ0(X) [ϕ̇t(X)]a δab [ϕ̇t(X)]b −
∫

B0

W (ϕt(X)) (2.90)

The strain energy function W (ϕt(X)) coincides for each point X ∈ B0 with
the free energy Ψ(Λt(X),Θt(X)) of the material, for a fixed Lagrangian
temperature Θt(X) and a fixed Lagrangian internal variable tensor Γ t(X).
The symmetry function K(t) at fixed time t ∈ T is preserved on the variation
curve ϕt(s), if it coincides with the symmetry function Ks(t) associated with
any deformation field on the variation curve. Hence, the symmetry function
does not depend on the curve parameter s, which means the directional
derivative of the function Ks(t) at s = 0 vanish (see also Kuypers [152] and
Groß [35]). We begin by determining the directional derivative of the first
term of the function Ks(t) along the continuous variation curve ϕt(s), and
obtain

1

2

∫

B0

d

ds s=0

ρ0(X) [ϕ̇t(X)(s)]a δab [ϕ̇t(X)(s)]b =

∫

B0

[πt(X)]a [ν̇t(X)]a

(2.91)
where νt(X) denotes the tangent vector at the variation curve ϕt(s) in the
point ϕt(X) ∈ Bt. Here, we have taken into account that the time derivative
and the derivative with respect to the curve parameter s at fixed time
commute. The derivative of the last term with respect to the curve parameter
at s = 0 is given by

−
∫

B0

d

ds s=0

W (ϕt(X)(s)) = −
∫

B0

[P ∗
t (X)] A

a [∂Xνt(X)]aA (2.92)

On the right hand side of Equation (2.92), we take the product rule of the
partial derivative with respect to the coordinates XA into account, and obtain
a similar relation as in Equation (2.53). Then, we also apply Gauss’ divergence
theorem on the left hand side of this relation, and employ the mechanical
Neumann boundary condition, given by Equation (2.86.2). The directional
derivative of the symmetry function Ks(t) along the continuous variation curve
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ϕt(s) then takes the form

d

ds s=0

Ks(t) =

∫

B0

[πt(X)]a [ν̇t(X)]a +

∫

B0

[∂XP
∗
t (X)] A

a A [νt(X)]a−

−
∫

∂B0

[tt(X)]a [ν∗
t (X)]a

(2.93)
In the second term on the right hand side of Equation (2.93), we employ the
local form of the second equation of motion, given by Equation (2.55.2). The
first and the second term can be now combined by taking the product rule
of the partial time differentiation into account. Since Equation (2.93) has to
vanish if the symmetry function is preserved, we obtain the balance equation

İ(t) =

∫

∂B0

[tt(X)]a [ν∗
t (X)]a (2.94)

where

I(t) =

∫

B0

[πt(X)]a [νt(X)]a (2.95)

denotes the first integral associated with the continuous variation curve
ϕt(s). Thus, this balance law yields a conservation law for a motion under
equilibriated external loads tt(X) = o for all pointsX on the boundary ∂T B0

at any time t ∈ T of the time interval of interest. Examples for first integrals
of the kind of Equation (2.95) are the total linear and the total angular
momentum function, as can be seen in the following paragraphs.

The differential equations of the initial boundary value problem under
equilibriated external loads tt(X) = o for all points X ∈ ∂T B0 at any time
t ∈ T and with an empty Dirichlet boundary ∂ϕB0 yields conservation of the
total linear momentum function

L(t) =

∫

B0

[πt(X)]a [ξ0]
a (2.96)

The vector ξ0 ∈ A is arbitrary, fixed in the ambient space, and thus time-
independent (see also Armero [73]). The vector ξ0 denotes the fixed direction
vector of a virtual translation of the body at fixed time t ∈ T (see Figure 2.11).



46 2. PROBLEM DEFINITION

replacemen

x′

x
Bt

B′
t

ϕt(X) = ϕt(X)(0) ϕt(X)(s′)

a1

a2

ξ0

Figure 2.11. The current configuration Bt is virtually translated in the configuration
B

′

t at fixed time. The tangent vector at the virtual translation curve ϕt(X)(s)
through the point x ∈ Bt is given by the direction vector ξ

0
of the virtual

translation.

This translation can be written as a smooth curve ϕt(s) of deformation fields,
defined locally by the relation ϕt(X) + sξ0 for each pointX ∈ B0. According
to Equation (2.17), the components

[ν0(X)]a = [ξ0]
a ∀X ∈ B0 (2.97)

define the tangent field at this virtual translation curve. We verify the balance
of total linear momentum by using the fundamental theorem of calculus
corresponding to the total linear momentum function, and obtain the relation

L(T ) − L(t0) =

∫

T

L̇(t) =

∫

T

∫

B0

[π̇t(X)]a [ξ0]
a (2.98)

Then, we employ Cauchy’s first equation of motion (2.55.2) in the righthand
side of this equation for each point X ∈ B0. After using the definition of a



2.3. Strong form of the initial boundary value problem 47

transposed tensor, the volume integral is transformed such that

∫

B0

[∂XP
∗
t (X)]a

A
A [ξ0]

a =

∫

B0

[ξ∗0]a [∂XP t(X)]aA
A =

∫

B0

∂[(P t(X))T ]Aa[ξ∗0]a
∂XA

(2.99)
where the vector ξ∗0 = ν∗

0(X) ∈ T ∗
x Bt designates the cotangent vector

corresponding to the tangent vector (2.97) at the virtual translation curve.
Using Gauss’ divergence theorem together with the Piola-Kirchhoff theorem,
the mechanical boundary condition (2.86.2) leads to

∫

∂T B0

[N0(X)]A [(P t(X))T ]Aa [ξ∗0]a =

∫

∂T B0

[ξ∗0]a [tt(X)]a (2.100)

With regard to the assumed vanishing loads tt(X) = o for each point
X ∈ ∂T B0 at all times t ∈ T , we arrive at the conservation of the total
linear momentum function in the sense that L(t0) = L(T ) for any fixed
tangent vector ξ0 ∈ TxBt. According to the arbitrariness of the vector ξ0,
the components

[L(t)]a =

∫

B0

[πt(X)]a (2.101)

of the total linear momentum L(t) at any time t ∈ T are constants of the
motion.

On the other hand, the total angular momentum function J (t) is a
second first integral about the origin of the ambient space, supposing identical
circumstances. This function is defined by

J (t) =

∫

B0

ǫabcδ
cd [ϕt(X)]b [πt(X)]d[ξ0]

a (2.102)

The fixed vector ξ0 represents the axial vector, that is the direction vector
of the rotation axis, pertaining to a virtual rotation of the body at fixed
time t ∈ T around the origin of the ambient space (see Figure 2.12). Such
a virtual rotation is a circular curve ϕt(s) with the radius ‖ϕt(X)‖ for each
pointX ∈ B0. Consequently, the axial vector ξ0 is a vector going through the
centre of the circle, and being perpendicular to each radius vector ϕt(X)(s)
and the corresponding tangent vector dϕt(X)(s)/ds at any position s on the
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circle. Thus, we obtain the relation

[
dϕt(X)(s)

ds

]a

= δabǫbcd [ξ0]
c [ϕt(X)(s)]d = [ξ̄0]

a
d [ϕt(X)(s)]d (2.103)

which represents an ordinary differential equation with respect to s. The
mapping ξ̄0 associated with the axial vector ξ0 denotes the spin tensor in
the rotation group SO(A ,A ) corresponding to the ambient space. Evaluating
Equation (2.103) at s = 0, we obtain the tangent field νt at the virtual rotation
curve, given by the matrix entries

[νt(X)]a = [ξ̄0]
a

d [ϕt(X)]d (2.104)

The explicit function of the curve ϕt(s) follows from solving the ordinary
differential Equation (2.103) associated with the initial condition ϕt(0) = ϕt.
The solution ϕt(X)(s) of this equation coincides with the mapping
exp(s ξ̄0)ϕt(X) ∈ A , where the linear mapping exp denotes the matrix
exponential map in the ambient space. The balance of total angular
momentum follows from the fundamental theorem of calculus

J (T ) − J (t0) =

∫

T

∫

B0

ǫabcδ
cd [ϕ̇t(X)]b [πt(X)]d [ξ0]

a+

+ǫabcδ
cd [ϕt(X)]b [π̇t(X)]d [ξ0]

a
(2.105)

Employing Equations (2.55) for each X ∈ B0 and recalling Equation (2.22)
as definition of the Lagrangian momentum field, the first volume integral on
the righthand side vanishes due to the properties of the permutation symbol.
The last volume integral yields

∫

B0

ǫabcδ
cd [ϕt(X)]b [∂XP

∗
t (X)] A

d A [ξ0]
a =

=

∫

B0

ǫcab [ξ0]
a [ϕt(X)]b [∂XP t(X)]cA

A

(2.106)

by taking into account the equality of the permutation symbol for even
permutations. Furthermore, by using the product rule of partial differentiation
with respect to the Lagrangian coordinates {XA}, this integral can be written
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as

∫

B0

∂
{
ǫcab [ξ0]

a [ϕt(X)]b [P t(X)]cA
}

∂XA
− ǫcab [ξ0]

a [∂Xϕt(X)]bA [P t(X)]cA

(2.107)
Now, we convert the last term of Equation (2.107). First, we employ
Equation (2.26) for the deformation gradient. Then, we transform the first
Piola-Kirchhoff stress tensor into the second Piola-Kirchhoff stress tensor,
according to Equation (2.46). Hence, the last term takes the form

∫

B0

ǫabc [ξ0]
a [F t(X)]cB [St(X)]BA [(F t(X))T ]A

b
=

∫

B0

ǫabc [ξ0]
a [(τ t(X))T ]bc

(2.108)
where the tensor τ t(X) ∈ S+(T ∗

XBt, TXBt) denotes the symmetric Kirchhoff
stress tensor, defined for each point X ∈ B0 in the reference configuration by
the components

[τ t(X)]ab = [F t(X)]aA [St(X)]AB [(F t(X))T ]B
b

(2.109)

Hence, Equation (2.108) vanishes according to the properties of the
permutation tensor in Equation (2.10). Next, we apply to the first term in
Equation (2.107) Gauss’ divergence theorem, and employ the Piola-Kirchhoff
traction vector according to the Piola-Kirchhoff theorem. According to the
boundary condition (2.86.2), this term takes the form

∫

∂T B0

[N0(X)]A [(P t(X))T ]Ac [ν∗
t (X)]c =

∫

∂T B0

[ν∗
t (X)]c [tt(X)]c (2.110)

where the vector ν∗
t (X) ∈ T ∗

x Bt denotes the cotangent vector corresponding
to the tangent vector at the virtual rotation curve, given by Equation (2.104).
Since the assumed loads vanish for each point X ∈ ∂T B0 on the traction
boundary at all times t ∈ T , we obtain a conserved total angular momentum
function, in the sense that J (t0) = J (T ) for an arbitrary time interval T of
interest. Hence, further constants of the motion are the components of the
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B′
t

ϕt(X) = ϕt(X)(0)
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−ξ0

Figure 2.12. The current configuration Bt is virtually rotated in the configuration B
′

t

at fixed time. The tangent vector νt ∈ TxBt at the virtual rotation curve ϕt(X)(s)
through the point x ∈ Bt is perpendicular to the corresponding position vector and

the axial vector ξ
0

of the virtual rotation.

total angular momentum J(t), given by

[J(t)]a =

∫

B0

ǫabcδ
cd [ϕt(X)]b [πt(X)]d (2.111)

Note that the just mentioned curves ϕt(s) represent one-parameter groups
of diffeomorphisms arising from actions of the Lie groups A and SO(A ,A ),
respectively. The tangent fields νt at these curves are therefore called the
infinitesimal generator of these actions (see Marsden & Ratiu [153]).

Summing up, the total linear momentum L(t) and the total angular
momentum J(t) is conserved for vanishing loads, if the body can be virtually
translated or rotated, respectively.

2.3.2. The nonlinear stability estimate. The equilibrium state of the body
is a fix point of its time evolution equations. If there exists a corresponding
Lyapunov function, this equilibrium is stable in the sense of Lyapunov (see
Hahn [154]). Therefore, stability of nonlinear equilibria is often phrased in
terms of an ‘a priori’ estimate arising from a Lyapunov-like function. For the
considered time evolution equations, there exists such a function, which allows
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for a stability estimate (compare Gurtin [155] and Simo [156]).
In this estimate, it is possible to incorporate a conservative Piola-Kirchhoff

traction vector tt(X) for all points X ∈ ∂T B0, which is derived via the
directional derivative

U̇ ext(t) =

∫

∂T B0

[DV ext(ut(X))]a [ϕ̇t(X)]a =: −
∫

∂T B0

[t
∗
t (X)]a [ϕ̇t(X)]a

(2.112)
of a potential energy U ext(t) along the time curve γt(s) = U ext(t + s). The
density function V ext : TxBt → R denotes the corresponding potential. We
consider the thermal Neumann boundary ∂QB0 = ∅ in the absence of heat
sources, which means an adiabatic process with a non-decreasing total entropy
according to Equation (2.58). We define the Lyapunov-like function

V(t) = T (t) + U int(t) + U ext(t) +

∫

B0

ηt(X)ϑt(X) (2.113)

In the following, we refer to the sum of the potential energy function U int(t)
and the volume integral as relative internal energy Ê(t). According to the
tangent fields ϑt and ut, as well as a free energy Ψ vanishing at ambient
temperature and initial position, the Lyapunov-like function vanish in the
equilibrium state at ambient temperature. The fundamental theorem of
calculus leads to the equation

V(T ) − V(t0) =

∫

T

∫

B0

[π̇t(X)]a [vt(X)]a + η̇t(X)ϑt(X) + ηt(X) Θ̇t(X)+

+

∫

T

∫

B0

Ψ̇t(X) −
∫

T

∫

∂T B0

[t
∗
t (X)]a [ϕ̇t(X)]a

(2.114)
where in the first term of Equation (2.114) the definition of the Lagrangian
momentum field πt has been employed.

Now, we employ Equations (2.55) in the first and in the last term, and bear
in mind the product rule of partial differentiation with respect to the point
X ∈ B0. In this way, the first term reads

∫

B0

[π̇t(X)]a [vt(X)]a = Pext(t) − P int(t) (2.115)
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after applying Gauss’ divergence theorem together with the Piola-Kirchhoff
theorem and the mechanical boundary condition (2.86.2) to the volume
integral. Since terms associated with the stress power and the external
mechanical power annihilate each other, and likewise the terms with the time
derivative of the temperature, we arrive at the stability estimate

V(T ) − V(t0) =

∫

T

∫

B0

η̇t(X)ϑt(X) − [Υ t(X)]AB [Γ̇ (X)]AB (2.116)

Now, we consider the thermal evolution. We employ the strong form of
the entropy evolution equation in the first term on the righthand side of
Equation (2.116). The product rule of partial differentiation leads to a volume
integral, which we transform into a boundary integral by applying Gauss’
divergence theorem. Then, we employ in this boundary integral the Piola-
Kirchhoff heat flux according to Equation (2.87.2). We obtain the relation

∫

B0

η̇t(X)ϑt(X) = −
∫

B0

Θ∞

Θt(X)
Dtot

t (X) +

∫

B0

Dint
t (X) +

∫

∂QB0

ϑt(X)

Θt(X)
Qt(X)

(2.117)
where we denoted by Qt the heat surface density field associated with the
Piola-Kirchhoff heat flux Qt on the thermal Neumann boundary. The last
term in this equation vanishes due to the assumed thermal Neumann boundary
∂QB0 = ∅.

As last step, we introduce in the last term of Equation (2.116) the evolution
equation for the viscous internal variable. According to Equation (2.83), this
term coincides with the negative internal dissipation, and it remains the
stability estimate

V(T ) − V(t0) = −
∫

T

∫

B0

Θ∞

Θt(X)
Dtot

t (X) 6 0 (2.118)

for the thermo-viscoelastic evolution of the continuum body B in the arbitrary
time interval T of interest (compare the estimates in Armero & Simo [123]
and Laursen [157] as well as in Holzapfel & Simo [125]).
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Usually, the spatially weak formulation of the considered evolution equations
is derived from its strong form by introducing a class of test functions, which
vanish on the Dirichlet boundary of the body. A second common way is to use
a variational principle with certain independent variables. In this connection
note that the authors of Antman & Osborn [158] show that the weak form of
the equations of motion can be also derived by precisely formulated versions
of integral laws of motion. On the temporal test functions, there are mostly
no requirements provided. Some exceptions are Hansbo [159] and Betsch &
Steinmann [63, 65–67] as well as Groß et al. [16], where the temporal test
functions are chosen subject to energy conservation.

Here, we generalise this approach, and view the fulfillment of the stability
estimate (2.118) as constraint for the temporal test functions. The idea is to
derive the weak forms of the evolution equations directly from the Lyapunov-
like function (2.113), in order to fulfill the stability estimate (2.118) by the
weak formulation of the time evolution. Since this function represents the total
energy of the body relative to the equilibrium state of the material, we choose
the temporal test functions so that the weak forms link the corresponding
energy terms together. In this way, the discrete form of the balance principles
are directly related with the residual equations solved in the iterative solution
procedure. This leads to further advantages, which we utilise in solving the
discrete problem.

We begin by determining the directional derivative of the kinetic energy
T along the continuous time curve γt(s) = T (t + s). Subsequently, the
fundamental theorem of calculus leads to the balance equation

T (T ) − T (t+0 ) =

∫

T

d

ds s=0

T (t + s) =

∫

T

∫

B0

[π̇t(X)]a [vt(X)]a (3.1)

where

T (t+0 ) = lim
s→0+

T (t0 + s) and T (T ) = lim
s→0+

T (T − s) (3.2)
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T (t + s)

T (T )

T (t0) Ṫ (t)

Ê(t + s)
Ê(T )Ê(t0)

Ê(t+0 )

X

x

t0 t T

B0

BT

Figure 3.1. The continuous curve T (t + s) connects the kinetic energy T (t0) of the
reference configuration B0 with the kinetic energy T (T ) of the final configuration
BT . However, the lower bound of the continuous relative internal energy curve

Ê(t + s) does not coincide with the energy Ê(t0) of the reference configuration.

denote the kinetic energies at the lower and upper bound of the time curve,
respectively (see Figure 3.1). Note that the vector field π̇t at any time
t ∈ T is tangent to a continuous variation curve γt(s) = πt+s. We employ
Equation (2.55.1) in the righthand side of Equation (3.1), and obtain the
identity ∫

T

∫

B0

[π̇t(X)]a [vt(X)]a =

∫

T

∫

B0

[π̇t(X)]a [ϕ̇t(X)]a (3.3)

The time curve γt do not violate a vanishing conjugated momentum at the
time-independent Dirichlet boundary nor a constant initial value, so that the
corresponding tangent vectors vanish. Hence, the tangent vector π̇t represents
an admissible test function for the weak form

∫

T

∫

B0

[δπ̇t(X)]a [ϕ̇t(X)]a =

∫

T

∫

B0

[δπ̇t(X)]a [vt(X)]a (3.4)

determining a continuous weak motion ϕ(t). Consequently, the initial
condition of the motion and the assumed Dirichlet boundary can be fulfilled
exactly. Employing the first space-time weak equation of motion (3.4) in
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Equation (3.1), we obtain

T (T ) − T (t+0 ) =

∫

T

∫

B0

[π̇t(X)]a [ϕ̇t(X)]a (3.5)

Next, we employ Equation (2.55.2) in the righthand side of Equation (3.5).
Integration by part then leads to a volume integral, which we transform in
a boundary integral by using Gauss’ divergence theorem. Noticing the Piola-
Kirchhoff theorem (2.52) and the mechanical boundary conditions (2.86), we
arrive at

∫

T

∫

B0

[π̇t(X)]a [ϕ̇t(X)]a =

∫

T

∫

∂T B0

[t
∗
t (X)]a [ϕ̇t(X)]a−

−
∫

T

∫

B0

[P ∗
t (X)] A

a [∂Xϕ̇t(X)]aA

(3.6)

Note that the vector field ϕ̇t at any time t ∈ T is tangent to the continuous
variation curve γt(s) = ϕt+s of deformation fields. Since the Dirichlet
boundary nor the initial value are violated by this curve, the vector field ϕ̇t

represents an admissible test function. Accordingly, we determine a continuous
weak momentum π(t) with the weak form

∫

T

∫

B0

[π̇t(X)]a [δϕ̇t(X)]a =

∫

T

∫

∂T B0

[t
∗
t (X)]a [δϕ̇t(X)]a−

−
∫

T

∫

B0

[P ∗
t (X)] A

a [∂X(δϕ̇t(X))]aA

(3.7)
Hence, the initial kinetic energy T (t0) and the kinetic energy T (t+0 ) at the
lower bound of the time curve coincide. Nevertheless, the time evolution P ∗(t)
of the covariant first Piola-Kirchhoff stress tensor field is, for the time being,
only related with the field P ∗(t+0 ). The weak form (3.7) leads to the kinetic
energy balance

T (T ) − T (t0) =

∫

T

∫

∂T B0

[t
∗
t (X)]a [ϕ̇t(X)]a −

∫

T

P int(t) (3.8)



56 3. WEAK FORMULATION OF THE PROBLEM

where Equation (2.28) has been taken into account. For a conservative
Piola-Kirchhoff traction vector field, the integrand of the first term on the
righthand side of Equation (3.8) coincides with the time integral of the
negative directional derivative (2.112). Since the weak motion is continuous,
the initial potential energy U ext(t0) and the energy U ext(t+0 ) at the lower bound
of the time curve coincide. By using the fundamental theorem of calculus,
Equation (3.8) takes the form

T (T ) + U ext(T ) − T (t0) − U ext(t0) = −
∫

T

P int(t) (3.9)

As next step, we calculate the directional derivative of the relative internal
energy along the continuous time curve γt(s) = Ê(t + s), and apply the
fundamental theorem of calculus. The relative internal energies Ê(t+0 ) and

Ê(T ) denote the energies at the lower and upper bound of the time curve,
respectively. Noticing the definitions of the cotangent vectors corresponding
to the free energy, we obtain the balance equation

Ê(T )−Ê(t+0 ) =

∫

T

P int(t)+

∫

T

∫

B0

η̇t(X)ϑt(X)−[Υ t(X)]AB [Γ̇ t(X)]AB (3.10)

The Lagrangian relative temperature field is tangent to the variation curve
γt(s) = Θt + s ϑt of the fixed temperature field Θt. This curve does not violate
the fixed ambient temperature Θ∞ at the thermal Dirichlet boundary. Hence,
the Lagrangian relative temperature field is an admissible test function for
Equation (2.63) at fixed time t ∈ T in the time interval of interest. We
therefore combine this equation with the first term on the righthand side
of Equation (3.10), and arrive at

∫

T

∫

B0

η̇t(X)ϑt(X) =

∫

T

∫

∂QB0

ϑt(X)

Θt(X)
Qt(X)+

+

∫

T

∫

B0

Θ∞

Θt(X)
[∂Xϑt(X)]A [Ht(X)]A +

ϑt(X)

Θt(X)
Dint

t (X)

(3.11)
after integration by part and applying Gauss’ divergence theorem, as well
as employing the thermal boundary condition (2.87.2). Since the relative
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Lagrangian temperature field ϑt at any time t ∈ T vanish solely at the thermal
Dirichlet boundary, the temperature variation curve γt(s) generally varies the
temperature field Θt0 at initial time t0. Consequently, we obtain a jump

JΘt0K = Θt0 − Θ0 (3.12)

in the temperature time evolution at initial time t0, wherefore the initial
condition for the Lagrangian temperature field cannot be fulfilled exactly.
According to the definition of the Lagrangian entropy field, we also get a jump
Jηt0K in the entropy time evolution. Thus, the relative internal energy Ê(t+0 )

differs from the initial value Ê(t0). However, by introducing Equation (3.10)
in the identity

Ê(T )−Ê(t0) = Ê(T )−Ê(t+0 )+ Ê(t+0 )−Ê(t0) =
r
Ê(t0)

z
+ Ê(T )−Ê(t+0 ) (3.13)

we arrive at the energy difference between the upper bound Ê(T ) and
the initial value Ê(t0). Now, we add Equation (3.9), Equation (3.10) and
Equation (3.13). Since terms associated with the stress power annihilate each
other, we obtain the balance equation

V(T )−V(t0) =
r
Ê(t0)

z
+

∫

T

∫

B0

η̇t(X)ϑt(X)− [Υ t(X)]AB [Γ̇ t(X)]AB (3.14)

We want to derive from this balance equation a weak form of the
entropy evolution equation. Thereby, the initial condition associated with
the temperature has to be enforced weakly by a so-called trace term (see
Cockburn [38]). We have to deduce a trace term, which fulfills the balance
in Equation (3.14). We start by recalling the density êt(X) of the relative
internal energy, given by the expression

êt(X) = ηt(X)ϑt(X) + Ψt(X) (3.15)

The energy jump in the balance Equation (3.14) then leads to a jump Jêt0(X)K
in the density for all pointsX ∈ B0. We assume that this jump coincides with
the trace term ϑt0(X) η̂t0(X), where η̂t0(X) is an unknown entropy trace. We
search for the smallest entropy trace, which fulfills this constraint. Hence, we
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determine the trace η̂t0(X) by minimising the Lagrange function

F (η̂t0(X), λ(X)) =
1

2
η̂2

t0(X) + λ(X) {ϑt0(X) η̂t0(X) − Jêt0(X)K} (3.16)

where λ(X) denotes the associated Lagrange multiplier. According to the
Euler-Lagrange equation corresponding to the entropy trace, η̂t0(X) coincides
with −λ(X)ϑt0(X). Employing this relation in the Euler-Lagrange equation
corresponding to the Lagrange multiplier, the energy jump term reads

r
Ê(t0)

z
=

∫

B0

Jêt0(X)K =

∫

B0

η̂t0(X)ϑt0(X) =

∫

B0

Jêt0(X)K
ϑt0(X)

ϑt0(X) (3.17)

Now, we consider the entropy trace as function of the temperature Θt0(X),
and apply L’Hôpital’s rule. In this way, we realise that the limit of this fraction,
as Θt0(X) approaches Θ∞, is zero as for the density jump Jêt0(X)K alone.
Since the density jump vanishes at ambient temperature Θ∞, we have not
introduced a singularity in this way. Thus, Equation (3.14) can be written as

V(T ) − V(t0) =

∫

B0

Jêt0(X)K
ϑt0(X)

ϑt0(X)+

+

∫

T

∫

B0

η̇t(X)ϑt(X) − [Υ t(X)]AB [Γ̇ t(X)]AB

(3.18)

The first and the second term of this equation include the relative Lagrangian
temperature as test function. These terms are therefore related to the space-
time weak form of the entropy evolution equation. Taking Equation (3.11)
into account, we obtain the weak form

∫

B0

Jêt0(X)K
ϑt0(X)

δΘt0(X) +

∫

T

∫

B0

η̇t(X) δΘt(X) =

∫

T

∫

∂QB0

δΘt(X)

Θt(X)
Qt(X)+

+

∫

T

∫

B0

Θ∞

Θt(X)
[∂X(δΘt(X))]A [Ht(X)]A + δΘt(X)

Dint
t (X)

Θt(X)

(3.19)
The mapping δΘt0 varies the Lagrangian temperature field Θt0 at the limit
from above. Bearing in mind the vanishing thermal Neumann boundary in
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conjunction with the stability estimate (2.118), a comparison of this weak
form with the first two terms on the righthand side of Equation (3.18) yields
the balance

V(T ) − V(t0) = −
∫

T

∫

B0

Θ∞

Θt(X)
Dtot

t (X)+

+

∫

T

∫

B0

Dint
t (X) − [Υ t(X)]AB [Γ̇ t(X)]AB

(3.20)

in which the definition of the dissipation arising from conduction of heat has
been used.

The last step is a weak formulation of Equation (2.77). Here, we go a
different way as for the former time evolution equations. We determine the
viscous internal variable at each considered point X ∈ B0. That is possible,
because the viscous internal variable evolution is only a coupled initial value
problem. Employing Equation (2.77) in the last term of Equation (3.20), we
obtain the temporally weak equation

∫

T

[Υ t(X)]AD [δΓ̇ t(X)]AD =

∫

T

[Σ t(X)]AD [δΓ̇ t(X)]AD (3.21)

wherein the test function δΓ̇ t(X) is a tangent vector at the variation curve
γt(X)(s) = Γ t+s(X) in the internal variable set. Since this variation curve
does not violate a constant value at initial time t0 for all X ∈ B0, the initial
condition of the internal variable at any pointX ∈ B0 can be satisfied exactly.
Hence, the time evolution of the viscous internal variable is continuous.
Equation (3.21) leads to the identity

∫

T

∫

B0

[Υ t(X)]AF [Γ̇ t(X)]AF =

∫

T

∫

B0

Dint
t (X) (3.22)

relating the last term on the righthand side of Equation (3.20) to the internal
dissipation, given by Equation (2.83). Note that we employ a temporally weak
equation at each integration point in the reference configuration. According
to Equations (3.20) and (3.22), we arrive at the ‘a priori’ stability estimate.



60 3. WEAK FORMULATION OF THE PROBLEM



4. FINITE ELEMENT APPROXIMATION

First, we perform a finite-dimensional approximation of the considered time
evolutions. This leads to a temporal finite element approximation. Then,
we obtain a finite-dimensional approximation of the Lagrangian fields at
fixed time by introducing a spatial finite element approximation. Here, we
incorporate the boundary conditions on the fields over the continuum body.

Note that we approximate the flow of the dynamical system on the ambient
space A before we approximate the considered subset B0 ⊂ A in the ambient
space. The reason is that we calculate time curves of fields over a bounded
domain. Therefore, we approximate first the time curves of the fields and
subsequently the fields themselves. That leads to the mentioned assumed
strain approximation in time, which reproduce exactly the vanishing strains
in a rigid body motion (see Groß et al. [16] and Groß [35]).

In this way, we arrive at a space-time finite element approximation, which
is consistent with the ‘a priori’ stability estimate. A detailed description of
nonlinear finite element methods for solids can be found in Hughes [160],
Belytschko et al. [161] and Oden [162].

4.1. Temporal finite element approximation

We introduce a partition of the time interval T = [t0, T ] of interest into
mel > 1 disjoint sub-intervals T n, n ∈ Mel = {1, . . . ,mel}, such that the
union of all sub-intervals coincides with T . This partition is related with
a mesh t0 = t1 < t2 < . . . < tmel < tmel+1 = T of time points. We refer to
a sub-interval T n = [tn, tn+1] as the n-th time element. We consider time
nodes tni < tnk ∈ T n, where i < k ∈ Men = {1, . . . ,men}, distributed such
that tn1 = tn and tnmen

= tn+1 denote the boundaries of the n-th time element
(see Figure 4.1). The difference hn = tnmen

− tn1 then designates the time step
size. By the transformation

τn(α) =

men∑

i=1

M i(α) tni α ∈ [0, 1] (4.1)
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. . .
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mel−1
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τn(α) Dτn(α)
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αi αk

Figure 4.1. The time interval of interest T is partitioned in sub-intervals T
n, which

are related with time nodes. By introducing a transformation τn(α), a parent domain
Iα is mapped on such a sub-interval.

we map a temporal parent domain Iα = [0, 1] on a time element T n.
Accordingly, the time nodes αk ∈ Iα, k ∈ Men, on the parent domain are
mapped to the time nodes tnk = τn(αk) by the transformation (4.1). The
shape functions M i(α) denote Lagrange polynomials on the parent domain,
satisfying the condition M i(αk) = δk

i. Since we restrict ourselves to an
equidistant distribution of the time nodes tnk on the n-th time element, there
remains the transformation

τn(α) = (1 − α) tn1 + α tnmen
(4.2)

The partition of T divides the time integrals of the space-time weak forms
into a sum of mel sub-integrals with respect to the time elements T n. We get
n coupled systems of weak forms determining the time evolutions on the time
elements T n. By using the time transformation (4.2), we transform each time
element to the parent domain. For each n ∈ Mel, we obtain the weak form

∫

Iα

∫

B0

[δπ̇n
α(X)]a [ϕ̇n

α(X)]a =

∫

Iα

∫

B0

[δπ̇n
α(X)]a [vn

α(X)]a (4.3)

of the first space-time weak equation of motion. We have used the substitution
rule together with the identity Dτn(α) = hn for relating the time integration
to the parent domain on both sides. The mapping ϕn

α = [ϕ|T n ◦ τn](α)
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designates a deformation field ϕt at any time point T n ∋ t = τn(α) on the
n-th time element, parameterised by the transformation (4.2). The field vn

α

denotes the corresponding Lagrangian deformation velocity field at the same
time point. We approximate the corresponding time evolutions, such that

ϕn
α(X) =

men∑

i=1

M i(α)ϕn
αi

(X) and vn
α(X) =

men∑

i=1

M i(α)vn
αi

(X)

(4.4)
by applying the same shape functions as for the transformation (4.1). In this
way, we obtain an isoparametric finite element approximation in time. We have
to apply the chain rule of differentiation for calculating the time derivatives
in Equation (4.3). The first space-time weak equation of motion for the time
element T n, n ∈ Mel, then takes the form

1

hn

∫

Iα

∫

B0

[δπ̊n
α(X)]a [ϕ̊n

α(X)]a =

∫

Iα

∫

B0

[δπ̊n
α(X)]a [vn

α(X)]a (4.5)

where the symbol ˚ indicates the partial derivative of a time evolution
ϕ̂|T n(τn(α),X) with respect to α. Note that we do not multiply both sides
with hn, because then the weak form no longer relates virtual energy to virtual
work, but with the time step size weighted virtual energy and work. However,
that the weak equations of motion exactly relate virtual energy to virtual work
is used later for solving the problem. We approximate the time evolution of
the tangent fields δπ̊n

α on the parent domain Iα, pertaining to the Lagrangian
momentum field on the n-th time element, such that

δπ̊n
α(X) =

meq∑

j=1

M̃ j(α) δπn
α̃j

(X) (4.6)

with δπ̊n
α1

(X) = o for all points X ∈ B0. The shape functions M̃ j(α)
denote Lagrange polynomials on the parent domain, satisfying the condition
M̃ j(α̃l) = δl

j , with j, l ∈ Meq = {1, . . . ,meq}. The points α̃l designate test
notes on the parent domain. Note that the number meq of these test notes
coincides with men − 1, because they support a velocity field approximation.
Since the variation at the initial time node tn1 = τn(α1) vanishes, the initial
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condition πn
α1

= πtn−1
men

is fulfilled exactly.

On the other hand, according to Equation (3.7), we obtain for each time
element T n, n ∈ Mel, the space-time weak form

1

hn

∫

Iα

∫

B0

[π̊n
α(X)]a [δϕ̊n

α(X)]a =

∫

Iα

∫

∂T B0

[t
∗,n
α (X)]a [δϕ̊n

α(X)]a−

−
∫

Iα

∫

B0

[P ∗,n
α (X)] A

a [∂X(δϕ̊n
α(X))]aA

(4.7)
by using the substitution rule and the constant Frèchet derivative of
the transformation (4.2). Further, the chain rule has been used for the
time differentiation of the approximations. We approximate the Lagrangian
momentum field πn

α(X) on the basis of Equations (2.22) and (4.4). The time
evolution corresponding to the tangent field δϕ̊n

α pertaining to the deformation
during the n-th time element is again directly approximated on the parent
domain. Hence, we obtain the approximations

πn
α(X) =

men∑

i=1

M i(α)πn
αi

(X) and δϕ̊n
α(X) =

meq∑

j=1

M̃ j(α) δϕn
α̃j

(X)

(4.8)
with δϕ̊n

α1
(X) = o for all X ∈ B0.

Now, we formulate the space-time weak Equation (3.11) with respect to the
parent domain. We transform the integrals by using the substitution rule and
the Frèchet derivative of the transformation (4.2). Subsequently, we apply the
chain rule to the time differentiation of the approximation ηn

α(X) pertaining to
the Lagrangian entropy field on the n-th time element T n. For each n ∈ Mel,
we obtain the space-time weak equation

∫

Iα

∫

B0

η̊n
α(X)ϑn

α(X) = hn

∫

Iα

∫

∂QB0

ϑn
α(X)

Θn
α (X)

Q
n

α(X)+

+hn

∫

Iα

∫

B0

Θ∞

Θn
α (X)

[∂Xϑn
α(X)]A [Hn

α(X)]A +
ϑn

α(X)

Θn
α (X)

Dint,n
α (X)

(4.9)
From the outset, we considered the Lagrangian entropy field as state variable,
on which the thermal time evolution equation is based. Therefore, we
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approximate the time evolution of the Lagrangian entropy field, and the time
evolution of the Lagrangian temperature field in the exact same manner. We
arrive at

ηn
α(X) =

men∑

i=1

M i(α) ηn
αi

(X) and Θ
n
α (X) =

men∑

i=1

M i(α)Θ
n
αi

(X)

(4.10)
Note that this temporal entropy approximation goes with the time
approximation of the nonlinear energy equation in Holzapfel & Simo [125].
In this way, we approximate the time evolution of the Lagrangian entropy
field in the time interval of interest before we approximate the Lagrangian
entropy field in the ambient space. The test space for Equation (4.9) has to
include the time evolutions of the relative Lagrangian temperature field ϑn

α.
Consequently, we obtain the approximation

δΘn
α (X) =

men∑

i=1

M i(α) δΘn
αi

(X) (4.11)

which only vanish at the boundary ∂ΘB0. Hence, the initial condition for the
Lagrangian temperature field cannot be fulfilled exactly, and the temperature
Θn

α1
generally differ from the initial value for the temperature evolution on the

time element. In analogy to Equation (3.19), we incorporate the corresponding
jump in an energy consistent way. We obtain

∫

B0

q
ên
α1

(X)
y

ϑn
α1

(X)
δΘn

α1
(X) +

∫

Iα

∫

B0

η̊n
α(X) δΘn

α (X) =

∫

Iα

∫

∂QB0

hn δΘn
α (X)

Θn
α (X)

Q
n

α(X)

+hn

∫

Iα

∫

B0

Θ∞

Θn
α (X)

[∂X(δΘn
α (X))]A [Hn

α(X)]A + δΘn
α (X)

Dint,n
α (X)

Θn
α (X)

(4.12)
for each T n, n ∈ Mel, with respect to the parent domain. On each time
element, the initial condition of the temperature is incorporated by the jumpq
ên
α1

(X)
y

of the relative internal energy density.
At last, we perform an isoparametric approximation for the time evolution

of the pointwise determined Lagrangian internal variable field Γ
n
α on the

parent domain. According to Equation (3.21), the corresponding test space
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has to include the time evolution of the internal variable velocity field Γ̊
n

α

with respect to the parent domain. We arrive at

Γ
n
α(X) =

men∑

i=1

M i(α)Γn
αi

(X) and δΓ̊
n

α(X) =

meq∑

j=1

M̃ j(α) δΓn
α̃j

(X)

(4.13)

with δΓ̊
n

α1
(X) = O∗ due to the continuity, where O∗ denotes the matrix

corresponding to the zero element in the linear space L(A ,A ∗). First, we
divide each integral of Equation (3.21) into mel sub-integrals. Then, we apply
the substitution rule to the time integrals and the chain rule of differentiation
to the time derivatives. Either in the light of the constant Frèchet derivative
of the transformation (4.2). For each n ∈ Mel and X ∈ B0, we obtain the
temporally weak form

∫

Iα

[Υn
α(X)]AD [δΓ̊

n

α(X)]AD = −
∫

Iα

Vdev

2hn
[

˚
(Γn

α(X))−1]AD [δΓ̊
n

α(X)]AD +

+
1

2

∫

Iα

(
Vvol −

2Vdev

ndim

)
tr(Ln

α(X)) [(Γn
α(X))−1]AD [δΓ̊

n

α(X)]AD

(4.14)
where

[Ln,e
α (X)]AC =

1

2hn
[(Γn,e

α (X))−1]AB [Γ̊
n,e

α (X)]BC (4.15)

designates the approximated viscous deformation rate tensor during the n-th
time interval.

In order to obtain a unique interpolation of the temporal test nodes at
each temporal quadrature point, a family of m shape functions has to be
evaluated at exactly m distinct quadrature points. Since we approximate the
test function associated with Equation (4.12) with one Lagrange polynomial
more as compared to the other weak forms, we have to use one quadrature
point more. Therefore, in the following, we endue the symbol Iα of the time
integration domain associated with Equation (4.12) with the suffix η to refer
to this different number of quadrature points.
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X
x
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0
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we
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0(η)
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Dψe
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F n,e
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Figure 4.2. The reference configuration B0 is partitioned into disjoint sub-
domains B

e
0. A parent domain B� is mapped on each sub-domain in the

reference configuration and on the corresponding sub-domain B
n,e
αi

in the current
configuration.

4.2. Spatial finite element approximation

We consider a partition of the reference configuration B0 into nel > 1 disjoint
sub-domains Be

0, e ∈ Nel = {1, . . . , nel}, called the e-th element of B0, such
that the union of all these spatial elements, in turn, is given by B0. Each
element Be

0 is defined by spatial element nodes aXe, a ∈ N e
en = {1, . . . , nen}.

Element nodes, which lie on the mechanical Dirichlet boundary, are indicated
by index sets N e

ϕ = {a ∈ N e
en|aXe ∈ ∂ϕB0}. We introduce a spatial parent

domain B� (see Figure 4.2), of which each point η ∈ B� is mapped on a point
X in the spatial element Be

0 by the transformation

ψe
0(η) =

∑

a∈N e
en

Na(η) aXe (4.16)

The shape functions Na(η) on the parent domain are Lagrange polynomials.
The conditions Na(ηb) = δb

a, a, b ∈ N e
en, provides that the nodes ηb ∈ B�

in the spatial parent domain are mapped to the spatial element nodes
bXe = ψe

0(η
b). In the isoparametric concept, the spatial parent domain B�

is mapped on the corresponding deformed spatial element Bn,e
αi

in the current
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configuration at the time node tni = τn(αi) by

ϕn,e
αi

(η) =
∑

a∈N e
en\N e

ϕ

Na(η) ax
n,e
αi

+
∑

b∈N e
ϕ

Nb(η) bX
e

(4.17)

analogously to Equation (4.16). The last sum arises from the boundary
condition (2.86.1). Equation (4.17) is defined to coincide with the composition
ϕn,e

αi
(X) ◦ψe

0(η), so that ϕn,e
αi

(η) approximates the deformation ϕn,e
αi

(X) of
the point X ∈ Be

0 at the time node tni ∈ T n on the spatial parent domain.
Hence, a material curve in the e-th spatial element is related to a curve in

the spatial parent domain by Equation (4.16). Differentiation with respect to
the curve parameter implies the relation

[W e]A = [Dψe
0(η)]Ai [νη]i (4.18)

between the tangent vector W e ∈ TXBe
0 at a point X ∈ Be

0 and the tangent
vector νη ∈ TηB� at a point η ∈ B�.

On the other hand, the Jacobian matrix Dϕn,e
αi

(η) maps the tangent
vector νη on a tangent vector we ∈ TxBn,e

αi
at a point x ∈ Bn,e

αi
in the

current configuration. Multiplying Equation (4.18) with the inverse Jacobian
(Dψe

0)
−1, the deformation gradient

[F n,e
αi

(η)]aA = [Dϕn,e
αi

(η)]ai [(Dψe
0)

−1(η)]iA (4.19)

maps the tangent vector W e on the tangent vector we. The index i indicates
the coordinates in the spatial parent domain.

The volume element V e
X at the point X ∈ Be

0 in the e-th spatial element
is defined by the triple scalar product [W e

1 ,W e
2 ,W e

3 ] of tangent vectors at
three curves, crossing each other in X ∈ Be

0. This volume element is mapped
by the Jacobian determinant

Je
0 (η) ≡ det(Dψe

0(η)) =
det(Dϕn,e

αi
(η))

Jn,e
αi (η)

(4.20)

to the volume element Vη at the point η ∈ B� in the spatial parent domain.
Now, the partition of B0 divides the spatial integrals in the space-time
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weak forms into a sum of nel sub-integrals with respect to the spatial elements
Be

0, e ∈ Nel. Transforming each material point X ∈ Be
0 to the spatial parent

domain by the mapping ψe
0, Equation (4.5) takes the form

1

hn

∫

Iα

∫

B�

[δπ̊n,e
α (η)]a [ϕ̊n,e

α (η)]aJe
0 (η) =

∫

Iα

∫

B�

[δπ̊n,e
α (η)]a [vn,e

α (η)]aJe
0 (η)

(4.21)
for all (n, e) ∈ Mel × Nel. The velocity field vn,e

αi
is a tangent field of the

motion at the time node αi ∈ Iα, and the test field δπn,e
α̃j

is a tangent field at

a variation of the cotangent field πn,e
α̃j

at the deformation field. With exception
of the different boundary conditions, tangent and cotangent fields at the
deformation field are approximated as the deformation field itself. Hence, we
obtain

vn,e
αi

(η) =
∑

a∈N e
en\N e

ϕ

Na(η) av
n,e
αi

and δπn,e
α̃j

(η) =
∑

a∈N e
en\N e

ϕ

ρe
0(η)Na(η) aδvn,e

α̃j

(4.22)
according to the Dirichlet boundary conditions, where ρe

0(η) = [ρ0|Be
0
◦ψe

0](η)
denotes the density of the element Be

0.
To account for the mechanical Neumann boundary ∂T B0 of the reference

configuration, we define the index set N e
T = {a ∈ N e

en|aXe ∈ ∂T Be
0}, which

includes the nodes on the Neumann boundary of the element Be
0. Then, we

introduce a transformation

ψ̄
e
0(η̄) =

∑

a∈N e
T

N̄a(η̄) aX
e (4.23)

from a parent domain ∂B� to the e-th (Neumann) boundary element ∂T Be
0.

The shape functions N̄a(η̄) are Lagrange polynomials on the parent domain,
satisfying the condition N̄a(η̄b) = δb

a. Therefore, nodes η̄b ∈ ∂B� are mapped
to nodes bXe = ψ̄

e
0(η̄

b) on a boundary element ∂T Be
0.

After dividing up the spatial integrals in Equation (4.7), the
transformations (4.16) and (4.23) to the parent domains provides the weak
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form

1

hn

∫

Iα

∫

B�

[π̊n,e
α (η)]a [δϕ̊n,e

α (η)]aJe
0 (η) =

∫

Iα

∫

∂B�

[t
∗,n,e
α (η)]a [δϕ̊n,e

α (η)]aJ̄e
0 (η)−

−
∫

Iα

∫

B�

[P ∗,n,e
α (η)] A

a [∂X(δϕ̊n,e
α (η))]aAJe

0 (η)

(4.24)
for all (n, e) ∈ Mel × Nel. The mapping J̄e

0 (η̄) = det(Dψ̄
e
0(η̄)) denotes

the Jacobian determinant of the transformation (4.23). The Lagrangian
momentum field πn,e

αi
at the node αi ∈ Iα is a cotangent field at the

deformation field, whereas the test field δϕn,e
α̃j

is a tangent field at the
deformation field. Hence, we approximate these fields in an analogous manner
as in Equation (4.22).

However, under the boundary integral sign on the righthand side of
Equation (4.24), this spatial approximation of the test field δϕn,e

α̃j
is reduced to

an approximation of the variations at the boundary nodes, using the boundary
shape functions on the spatial parent domain. For simplicity, we restrict us to
boundary loadings with deformation-independent directions, which exclude a
pressure boundary loading as treated in Simo et al. [163]. Further, we assume
that the time course of the Piola-Kirchhoff traction vector field t

n,e
α is given.

Thus, we only approximate the spatial distribution, and obtain

t
n,e
α (η) =

∑

a∈N e
T

N̄a(η̄) at
n,e
α and δϕn,e

α̃j
(η) =

∑

a∈N e
T

N̄a(η̄) aδxn,e
α̃j

(4.25)
The vectors atn,e

α denote the traction on the boundary nodes.
In the last term on the righthand side of Equation (4.24), we have to

determine the gradient with respect to a material point X ∈ Be
0. Analogous

to the relation for the deformation gradient in Equation (4.19), the gradient
of the test function reads

[∂X(δϕ̊n,e
α (η))]aA = [D(δϕ̊n,e

α )(η)]ai [(Dψe
0)

−1(η)]iA (4.26)

Now, we define index sets N e
Θ

= {a ∈ N e
en|aXe ∈ ∂ΘBe

0} to indicate
the nodes on the thermal Dirichlet boundary ∂ΘB0, and index sets
N e

Q = {a ∈ N e
en|aXe ∈ ∂QBe

0} to designate nodes on the thermal Neumann
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boundary ∂QB0. Taking the partition of B0 into account, and relating spatial
integrals to the corresponding parent domains, Equation (4.12) reads

∫

B�

q
ên,e
α1

(η)
y

ϑn,e
α1

(η)
δΘn,e

α1
(η)Je

0 (η) +

∫

I
η
α

∫

B�

η̊n,e
α (η) δΘn,e

α (η)Je
0 (η) =

=

∫

I
η
α

∫

B�

hn

{
Θ∞[∂X(δΘn,e

α (η))]A
[Hn,e

α (η)]A

Θ
n,e
α (η)

+ δΘn,e
α (η)

Dint,n,e
α (η)

Θ
n,e
α (η)

}
Je

0 (η)+

+hn

∫

I
η
α

∫

∂B�

δΘn,e
α (η̄)

Θ
n,e
α (η̄)

Q
n,e

α (η̄) J̄e
0 (η̄)

(4.27)
for all (n, e) ∈ Mel × Nel. The geometric approximation of the thermal
Neumann boundary coincides with that of the mechanical Neumann boundary.
According to the isoparametric concept, the approximation of the Lagrangian
temperature field Θn,e

α on the e-th spatial element during the time interval
T n is given by

Θ
n,e
αi

(η) =
∑

a∈N e
en\N e

Θ

Na(η) a
Θ

n,e
αi

+
∑

b∈N e
Θ

Nb(η)Θ∞ (4.28)

where the constant ambient temperature Θ∞ on the thermal Dirichlet
boundary has been taken into account. We approximate the Lagrangian
entropy field ηn,e

αi
and the test field δΘn,e

αi
at the nodes in the parent domain in

compliance with their definitions as cotangent and tangent field, respectively.
We define

ηn,e
αi

(η) = −∂Ψ(Λn,e
αi

(η),Θn,e
αi

(η))

∂Θ
and δΘn,e

αi
(η) =

∑

a∈N e
en\N e

Θ

Na(η) aδΘn,e
αi

(4.29)
According to Equation (2.39), the spatial approximation of the tensor

Λ
n,e
αi

(η) in the e-th spatial element at the time nodes in the parent
domain follows from the spatial approximation Cn,e

αi
(η) of the right Cauchy-

Green tensor field and the locally determined tensor field Γ
n,e
αi

(η). The
approximation of the right Cauchy-Green tensor at the time nodes, in turn,
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follows from the push-forward operation

[Cn,e
αi

(η)]AB = [(Dψe
0(η))−T ] k

A [Cn,e,�
αi

(η)]kl [(Dψ
e
0(η))−1]lB (4.30)

where
[Cn,e,�

αi
(η)]kl = [(Dϕn,e

αi
(η))T ] a

k δab[Dϕ
n,e
αi

(η)]bl (4.31)

denotes the right Cauchy-Green tensor with respect to the spatial parent
domain.

We restrict us to a heat surface density field Q
n,e

α on the thermal Neumann
boundary ∂QBe

0, which is also given directly in dependence of the time
α ∈ Iα. Another possible Neumann boundary condition is a convective
heat exchange on the boundary, which depends linear on the Lagrangian
relative temperature field (see Wriggers et al. [164]). We define inward normal
projections aQe

α of the heat flux at the nodes of the boundary element, and
approximate their spatial distribution. Likewise, we approximate the test field
on this boundary. We obtain the distributions

Q
n,e

α (η) =
∑

a∈N e
Q

N̄a(η)aQn,e
α and δΘn,e

αi
(η) =

∑

a∈N e
Q

N̄a(η) aδΘn,e
αi

(4.32)
along the corresponding element boundary.

Since we determine the Lagrangian internal variable field Γ
n,e
α at the

considered points η ∈ B� in the spatial parent domain, we desist from a spatial
approximation. The temporally weak form

∫

Iα

[Υn,e
α (η)]AD [δΓ̊

n,e

α (η)]AD = −
∫

Iα

Vdev

2hn
[

˚
(Γn,e

α (η))−1]AD [δΓ̊
n,e

α (η)]AD +

+
1

2

∫

Iα

(
Vvol −

2Vdev

ndim

)
tr(Ln,e

α (η)) [(Γn,e
α (η))−1]AD [δΓ̊

n,e

α (η)]AD

(4.33)
is thus solved on the parent domain of each spatial element Be

0, e ∈ Nel, in
the reference configuration.
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In order that the conservation laws and the stability estimate are also valid in
the discrete setting, we have to supplement the weak forms. One reason is that
both properties are based on the exact fulfillment of the fundamental theorem
of calculus. However, using solely numerical quadrature, this is generally not
possible. Furthermore, we have to guarantee that terms, which annihilate in
the exactly integrated stability estimate, still annihilate with numerical time
integration.

First, we consider the directional derivative of the approximated total linear
momentum function along the continuous time curve γn

t (s) = L(t + s) in the
n-th time element. Time integration leads to

∫

T n

d

ds s=0

L(t + s) =

nel∑

e=1

∫

Iα

∫

B�

[π̊n,e
α (η)]a [ξ0]

aJe
0 (η) (5.1)

If we employ the time approximation (4.8) corresponding to the Lagrangian
momentum field, the time integration concerns only the temporal shape
functions. Since this time integrals can be computed exactly with the
recommended meq-point Gaussian quadrature, the fundamental theorem of
calculus is fulfilled. The left hand side of Equation (5.1) therefore coincides
with L(tn+1) − L(tn).

On the righthand side, we bear in mind the equations of motion in order
to verify conservation. First, the vector ξ0 ∈ A is fixed in the ambient space
and hence time-independent. Nevertheless, it can be rewritten as

[ξ0]
a =

meq∑

j=1

nel∑

a=1

M̃ j(α)Na(η) [ξ0]
a (5.2)

because both sums separately coincide with one due to the completeness
condition of the Lagrange polynomials. Thus, the constant direction vector
ξ0 is an admissible test function δϕ̊n,e

α (η) of Equation (4.24). According to
the absence of Dirichlet and Neumann boundary conditions, the righthand

73
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side of Equation (5.1) then coincides with

−hn
nel∑

e=1

∫

Iα

∫

B�

[P ∗,n,e
α (η)] A

a [∂Xξ0]
a
AJe

0 (η) = 0 (5.3)

Thus, we obtain total linear momentum conservation for an arbitrary
approximation of the covariant first Piola-Kirchhoff stress tensor and for an
arbitrary time step size.

On the other hand, the directional derivative of the approximated
total angular momentum function along the continuous time curve
γn

t (s) = J (t + s) in the n-th time element leads to

∫

T n

d

ds s=0

J (t + s) =

nel∑

e=1

∫

Iα

∫

B�

ǫabcδ
cd[ξ0]

a[ϕ̊n,e
α (η)]b[πn,e

α (η)]dJ
e
0 (η)+

+

nel∑

e=1

∫

Iα

∫

B�

ǫabcδ
cd[ξ0]

a[ϕn,e
α (η)]b[π̊n,e

α (η)]dJ
e
0 (η)

(5.4)
After employing the time approximations (4.4) and (4.8), the fundamental
theorem of calculus with respect to J (t) is fulfilled, because the time integrals
associated with the temporal shape functions can be calculated exactly, using
the meq-point Gaussian quadrature. The left hand side of Equation (5.4)
therefore coincides with the difference J (tn+1) − J (tn).

In order to show the conservation, we have to employ Equation (4.21) in
the first term to the right. However, in Equation (5.4), the corresponding
test function is not interpolated by the Lagrange polynomials {M̃ j(α)}meq

j=1

at the temporal test nodes α̃j , j = 1, . . . ,meq. Therefore, we determine nodal
values πn,e

α̃j
(η) associated with the temporal test nodes by solving the linear

equations

meq∑

j=1

M̃ j(ξ̃k)πn,e
α̃j

(η) =

men∑

i=1

M i(ξ̃k)πn,e
αi

(η) (k = 1, . . . ,meq) (5.5)

where the values ξ̃k, k = 1, . . . ,meq, denote quadrature points. The Haar

matrix [M̃ j(ξ̃k)]
meq

j,k=1 is invertible, if the quadrature points are distinct (for a
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proof see Groß et al. [16] and Groß [35]). Hence, the exactly meq quadrature
points, which are already recommended for obtaining a unique interpolation
at the temporal test nodes, are important for the total angular momentum
balance. Due to Equation (4.21), the first term on the righthand side of
Equation (5.4) thus takes the form

hn

∫

Iα

∫

B�

{ρe
0(η) ǫabc[ξ0]

a[vn,e
α (η)]c} [vn,e

α (η)]bJe
0 (η) (5.6)

by taking the definition of the Lagrangian momentum field into account.
According to the skew-symmetry of the permutation symbol, this term
vanishes independent of the time step size. In order to employ Equation (4.24)
in the second term of Equation (5.4), we determine nodal values ϕn,e

α̃j
(η)

associated with the temporal test nodes by a corresponding linear system of
the form given in Equation (5.5). Then, the second term reads

−hn

∫

Iα

∫

B�

[P ∗,n,e
α (η)] A

d

∂
{
δdc ǫabc[ξ0]

a[ϕn,e
α (η)]b

}

∂XA
Je

0 (η) (5.7)

Since the vector ξ0 ∈ A is fixed in space, the partial derivative with respect
to the point X ∈ B0 is only related to the deformation ϕn,e

α (η). Taking the
definitions of the deformation gradient F n,e

α (η) and of the Kirchhoff stress
tensor τn,e

α (η) into account, the second term of Equation (5.4) is given by

hn

∫

Iα

∫

B�

ǫacb[ξ0]
a[τn,e

α (η)]cbJe
0 (η) (5.8)

Accordingly, a symmetric approximation of the Kirchhoff stress tensor in
conjunction with the skew-symmetry of the permutation symbol leads to the
annihilation of the sums in Equation (5.8), independent of the time step size.
Since both terms of Equation (5.4) vanish, we obtain total angular momentum
conservation for any time step size.

Now, we consider the directional derivative of the approximated kinetic
energy along the continuous time curve γn

t (s) = T (t + s) in the n-th time
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element. Time integration leads to

∫

T n

d

ds s=0

T (t + s) =

nel∑

e=1

∫

Iα

∫

B�

[π̊n,e
α (η)]a [vn,e

α (η)]aJe
0 (η) (5.9)

After substituting Equation (4.4) and (4.8) for the velocity and the
momentum, respectively, the time integration concerns only the temporal
shape functions. The fundamental theorem of calculus is therefore fulfilled
exactly by the meq-point Gaussian quadrature, and the left side of
Equation (5.9) coincides with the difference T (tn+1) − T (tn).

Since the derivative π̊n,e
α (η) is an admissible test function for

Equation (4.21), the righthand side of Equation (5.9) takes the form

1

hn

nel∑

e=1

∫

Iα

∫

B�

[π̊n,e
α (η)]a [ϕ̊n,e

α (η)]aJe
0 (η) (5.10)

Moreover, the derivative ϕ̊n,e
α (η) of the deformation approximation lies in the

test space of Equation (4.24). Therefore, we are able to relate Equation (5.10)
to this weak form. Since the fundamental theorem of calculus with respect
to T (t) is satisfied, Equation (5.9) in conjunction with the weak equations of
motion leads to the kinetic energy balance

T (tn+1) − T (tn) =

nel∑

e=1

∫

Iα

∫

∂B�

[t
∗,n,e
α (η)]a [ϕ̊n,e

α (η)]aJ̄e
0 (η)−

−
nel∑

e=1

∫

Iα

∫

B�

[P ∗,n,e
α (η)] A

a [F̊
n,e

α (η)]aAJe
0 (η)

(5.11)

Considering again a conservative Piola-Kirchhoff traction vector, the first
term on the righthand side of Equation (5.11) can be expressed by the
Frèchet derivative of the density function V ext(un,e

α (η)). In order to fulfil the
corresponding fundamental theorem of calculus, the Piola-Kirchhoff traction
vector has to be at most linear in the displacement un,e

α (η), as the Lagrangian
deformation velocity in Equation (5.9). If this condition is satisfied, the first
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term reads

−U ext(tn+1) + U ext(tn) =

nel∑

e=1

∫

Iα

∫

∂B�

[t
∗,n,e
α (η)]a [ϕ̊n,e

α (η)]aJ̄e
0 (η) (5.12)

Now, we determine the directional derivative of the relative internal energy
along a continuous time curve γn

t (s) = Ê(t + s) in the n-th time element.
At the time integration of this derivative, we bear in mind the different
quadrature rules in the discrete setting, which is indicted by the suffix c at the
symbol Iα of the time integral. Noticing the definitions of all the cotangent
vectors pertaining to the free energy, we obtain the relation

∫

I c
α

∫

B�

d

ds s=0

ên,e
α+s(η)Je

0 (η) =

∫

I
η
α

∫

B�

η̊n,e
α (η)ϑn,e

α (η)Je
0 (η)+

+

∫

Iα

∫

B�

{
[P ∗,n,e

α (η)] A
a [F̊

n,e

α (η)]aA − [Υn,e
α (η)]AB [Γ̊

n,e

α (η)]AB

}
Je

0 (η)

(5.13)
for all (n, e) ∈ Mel × Nel. In this equation, the free energy depends on the
mapping Cn

α = [C|T n ◦ τn](α), which designates the right Cauchy-Green
tensor field during the n-th time element at any time point α ∈ Iα in
the temporal parent domain. We approximate the time evolution of the
corresponding right Cauchy-Green tensor Cn,e

α (η), and the time evolution
of the deformation gradient F n,e

α (η) pertaining to the e-th spatial element,
such that

Cn,e
α (η) =

men∑

i=1

M i(α)Cn,e
αi

(η) and F n,e
α (η) =

men∑

i=1

M i(α)F n,e
αi

(η)

(5.14)
Note that with these independent time approximations, the time evolution
of the stress power in Equation (2.45) does not exactly coincide with the
time evolution of the stress power in Equation (2.46). The reason is that
a dependence of the time evolution of the right Cauchy Green tensor from
the time evolution of the deformation gradient is the assumption for the
transformation of the second Piola-Kirchhoff tensor in Equation (2.46).
However, after a numerical time integration, the distance of both stress powers
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lies in the order of the quadrature error. Since the stress power density,
determined by the weak equations of motion, coincides with the stress power
density in Equation (2.46), we use in the second equation of motion, the
right Cauchy Green tensor only in the argument of the free energy. Further,
through the linearity of the deformation gradient field in the deformation field,
the time approximation of the deformation gradient can be traced back to the
time approximation of the deformation.

The time integration of the directional derivative in Equation (5.13)
is, in general, not computable exactly. Therefore, we have to enforce the
fundamental theorem of calculus with respect to ên,e

α (η). Analogous to the
construction of the jump term (3.17), we formulate a corresponding constraint,
given by

GS(Ŝ
n,e

α (η)) = ên,e
αmen

(η) − ên,e
α1

(η) −
∫

I c
α

d

ds s=0

ên,e
α+s(η) −

−
∫

Iα

[Ŝ
n,e

α (η)]BA [Rn,e
α (η)]BA

(5.15)

where
[Rn,e

α (η)]BA = [(F n,e
α (η))T ] b

B δba[F̊
n,e

α (η)]aA (5.16)

in analogy to the elastic deformation rate tensor defined in Equation (2.47).
In this constraint, the stress power density is consciously formulated as
in Equation (2.46), because, as just mentioned, that is the stress power
determined by the weak equations of motion. Since we need a symmetric
approximation of the Kirchhoff stress tensor for retaining total angular
momentum conservation, we determine a trace tensor Ŝ

n,e

α (η) corresponding
to the second Piola-Kirchhoff stress tensor. We also obtain an isoperimetrical
minimisation problem associated with the Lagrange functional

FS(Ŝ
n,e

α (η), λ(η)) = λ(η)GS(Ŝ
n,e

α (η)) +
1

2

∫

Iα

[Ŝ
∗,n,e

α (η)]AB [Ŝ
n,e

α (η)]AB

(5.17)
where the star indicates the corresponding dual map (compare Mohr et al. [77],
Bargmann [93] and Groß [35]). Applying the time approximation of the right
Cauchy-Green tensor in Equation (5.14), the stress trace tensor coincides with
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λ(η) C̊
∗,n,e

α (η). We obtain the Lagrange multiplier by employing this stress
trace tensor in the vanishing Gâteaux derivative with respect to λ(η). We
arrive at the weak term

−
∫

B�

GS(O)∫

Iα

[C̊
∗,n,e

α (η)]BA [Rn,e
α (η)]BA

∫

Iα

[C̊
∗,n,e

α (η)]BA [δRn,e
α (η)]BAJe

0 (η)

(5.18)
where

[δRn,e
α (η)]BA = [(F n,e

α (η))T ] b
B δba[∂X(δϕ̊n,e

α̃ (η))]aA (5.19)

and O denotes the matrix corresponding to the zero element in the linear
space L(A ∗,A ). We add the weak term (5.18) on the righthand side of
Equation (4.24). This additional term in Equation (4.24) annihilates the stress
power in Equation (5.11) independent of the quadrature rule, and introduces
the relative internal energy density behind the jump. We obtain the kinetic
energy balance

V(tn+1) − T (tn) − U ext(tn) =

nel∑

e=1

∫

B�

{
ên,e
α1

(η) +

∫

I
η
α

η̊n,e
α (η)ϑn,e

α (η)

}
Je

0 (η)−

−
nel∑

e=1

∫

Iα

∫

B�

[Υn,e
α (η)]AB [Γ̊

n,e

α (η)]AB Je
0 (η)

(5.20)
Recall that we arrive at the stability estimate (2.118) by the assumption

that the time integrals of the internal dissipation in Equation (3.19) and (3.22)
are identical. In the discrete setting, however, we have to enforce this
property owing to the different quadrature rules. Consequently, we formulate
a constraint for a viscosity trace tensor in Equation (3.19), given by

GV (V̂n,e
α (η)) =

∫

Iα

Dint,n,e
α (η) −

∫

I
η
α

Dint,n,e
α (η)−

−
∫

I
η
α

ϑn,e
α

Θ
n,e
α

[Ln,e
α (η)]AC [V̂n,e

α (η)] C F
A D [Ln,e

α (η)]DF

(5.21)
where the approximated viscous deformation rate tensor (4.15) on the e-th
spatial element during the n-th time interval already includes the reciprocal
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time step size arising from the finite element transformation (4.2). We search
for a viscosity trace tensor minimising the augmented Lagrange functional

FV (V̂n,e
α (η), λ(η)) = λ(η)GV (V̂n,e

α (η))+
1

2

∫

I
η
α

[V̂∗,n,e
α (η)]A D

C F [V̂n,e
α (η)] C F

A D

(5.22)
where the star denotes the corresponding dual mapping. The viscosity trace
tensor arises from a vanishing Gâteaux derivative associated with a viscosity
curve. Then, we employ the viscosity trace tensor in the vanishing Gâteaux
derivative with respect to the Lagrange multiplier. By introducing this
viscosity trace tensor in Equation (2.83), we arrive at the integral

hn

∫

B�

∫

Iα

Dint,n,e
α (η) −

∫

I
η
α

Dint,n,e
α (η)

∫

I
η
α

{
ϑn,e

α (η)
Θ

n,e
α (η)

‖Ln,e
α (η)‖2

}2

∫

I
η
α

δΘn,e
α (η)

ϑn,e
α (η)

{
ϑn,e

α (η)

Θ
n,e
α (η)

‖Ln,e
α (η)‖2

}2

Je
0 (η)

(5.23)
This weak term is added on the righthand side of Equation (4.27). After
employing the relative temperature field as admissible test function in the
now supplemented Equation (4.27), we get at the balance equation

∫

B�

{
ên,e
α1

(η) +

∫

I
η
α

η̊n,e
α (η)ϑn,e

α (η)

}
Je

0 (η) =

∫

B�

êe
tn

(η)Je
0 (η)−

−hn

∫

I
η
α

∫

B�

Θ∞

Θ
n,e
α (η)

Dtot,n,e
α (η)Je

0 (η) + hn

∫

B�

∫

Iα

Dint,n,e
α (η)Je

0 (η)

(5.24)

of the relative internal energy pertaining to the e-th space element, wherein
the energy density êe

tn
(η) denotes the element energy at the initial time of

the n-th time element, and Dtot,n,e
α (η) denotes the total dissipation in the

e-th spatial element at any time point α ∈ Iα. A comparison with the kinetic
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energy balance (5.20) leads to the balance equation

V(tn+1) − V(tn) = −hn
nel∑

e=1

∫

I
η
α

∫

B�

Θ∞

Θ
n,e
α (η)

Dtot,n,e
α (η)Je

0 (η)+

+

nel∑

e=1

∫

B�

∫

Iα

{
hn Dint,n,e

α (η) − [Υn,e
α (η)]AB [Γ̊

n,e

α (η)]AB

}
Je

0 (η)

(5.25)

pertaining to the Lyapunov-like function.
Due to the finite element approximation of the spatially weak forms, we

solve the temporally weak internal variable evolution in Equation (4.33) at
the considered points η ∈ B� in the spatial parent domain. We employ the
time derivative Γ̊

n

α(η) as admissible test function, and obtain the relation

∫

Iα

[Υn,e
α (η)]AD [Γ̊

n,e

α (η)]AD = −
∫

Iα

Vdev

2hn
[

˚{Γn,e
α (η)}−1]AD [Γ̊

n,e

α (η)]AD +

+

∫

Iα

(
Vvol −

2Vdev

ndim

)
{tr(Ln,e

α )(η)}2

(5.26)
According to Equation (2.83), the integrand on the righthand side of
Equation (5.26) coincides with the internal dissipation hn Dint,n,e

α (η) in the
e-th spatial element during the n-th time element. Therefore, the last sum on
the righthand side of Equation (5.25) vanishes, and we arrive at the stability
estimate

V(tn+1) − V(tn) = −hn
nel∑

e=1

∫

I
η
α

∫

B�

Θ∞

Θ
n,e
α (η)

Dtot,n,e
α (η)Je

0 (η) 6 0 (5.27)

which coincides with Equation (2.118). Recall that in the discrete setting,
we apply the Gaussian quadrature rule. Hence, the existing time integrals
associated with the temporal shape functions are calculated exactly, which is
important for the conservation laws and for the kinetic energy and external
energy balance as verified. The stability estimate (5.27) is fulfilled independent
of the order of the temporal shape functions.
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6. REPRESENTATIVE NUMERICAL SIMULATIONS

We now verify the characteristic properties of the finite element method.
First, we show the consistency of the time approximations by verifying the
expected order of accuracy in time. A time approximation to a quantity is
m-th order accurate if the term O((hn)m) in the temporal Taylor expansion
of the quantity is correctly reproduced. Hence, the order of accuracy of a finite
element method in time follows from the quadrature rule with the lowest order
of accuracy. In this work, this is the meq-point Gaussian quadrature rule in
the equations of motion and the viscous evolution equation, which is 2meq-th
order accurate.

Second, we verify the predicted conservation laws and stability properties of
the finite element method. For this purpose, we consider a free flying body with
an uninsulated part on the boundary. We close this section with simulations
subject to suspensions associated with dynamic traction and heat flux loads.
Here, we show that external power is incorporated consistently with the energy
balance equations.

6.1. Consistency of the inherently energy consistent method

We start by demonstrating the consistency of the non-standard right Cauchy-
Green tensor approximation in time, given by Equation (5.14), to which
is referred to as assumed strain approximation in time (see Betsch &
Steinmann [66]). We verify the order of accuracy in time by means of
the relative L2-error of the primary variables. Further, we demonstrate the
inherently energy consistency with this time approximation by determining
the order of accuracy in time of the energy balance in Equation (5.27).

Recall that the finite element method without the additional terms (5.18)
and (5.23) in the weak forms is inherently energy consistent, which means
this method fulfills Equation (5.27) up to the accuracy of the used Gaussian
quadrature rule. Hence, the expression

V(tn+1) − V(tn) + hn
nel∑

e=1

meq+1∑

l=1

∫

B�

Θ∞

Θ
n,e
α̂l

(η)
Dtot,n,e

α̂l
(η)Je

0 (η)wα̂l
(6.1)
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is of order O((hn)2 meq+2), where α̂l denote the Gauss points in time and wα̂l

denote the corresponding quadrature weights.
The assumed strain approximation in time arises from a temporal

approximation before an interpolation over spatial nodes is performed. We
indicate the finite element method with this approximation by the shorthand
notation mhG(meq) method, where the number meq coincide with the
polynomial order of the shape functions M i in the time finite elements. In
contrast to the assumed strain approximation in time, the standard right
Cauchy-Green tensor approximation is given by

[Cn,e
α (η)]AB = [(Dψe

0(η))−T ] k
A [Cn,e,�

α (η)]kl [(Dψ
e
0)

−1(η)]lB (6.2)

where
[Cn,e,�

α (η)]kl = [(Dϕn,e
α (η))T ] a

k δab[Dϕ
n,e
α (η)]bl (6.3)

denotes the right Cauchy-Green tensor with respect to the spatial parent
domain at any time point α ∈ Iα in the temporal parent domain. The
Jacobian matrix Dϕn,e

α (η) follows from a spatial approximation of the
deformation mapping ϕn,e

α (η) at any time in the temporal parent domain
analogous to Equation (4.17), and a subsequent temporal approximation of
the trajectories axn,e

α pertaining to the spatial nodes as in Equation (4.4). We
obtain the equation

Dϕn,e
α (η) =

men∑

i=1

∑

a∈N e
en\N e

ϕ

DNa(η)M i(α) ax
n,e
αi

+
∑

b∈N e
ϕ

DNb(η) bX
e

(6.4)

which also results from the temporal approximation (4.4) and a subsequent
spatial approximation (4.17) owing to the linearity in the space-time
nodal values axn,e

αi
of the current configuration. Accordingly, the standard

right Cauchy-Green tensor approximation arise from a spatial interpolation
before a temporal interpolation is done, in contrast to the assumed strain
approximation in time. We indicate the inherently energy consistent finite
element method associated with the standard right Cauchy-Green tensor
approximation by the shorthand notation hG(meq) method.
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6.1.1. The finite element L2-error. The order of accuracy in time coincides
with the slope of the curves, resulting from plotting the local solution error
against the corresponding time step size in double logarithmic scale. Therefore,
we determine the relative L2-error of the deformation field, the Lagrangian
velocity field and the Lagrangian temperature field on a current configuration
BT at a fixed time T . In general, the relative L2-error eϕt

of a Lagrangian
vector field ϕt : B0 → Bt at the time t ∈ T with reference to the vector field
ϕt : B0 → Bt is defined via the L2-norm ‖ · ‖2 by the expression

eϕt
=

‖ϕt −ϕt‖2

‖ϕt‖2
(6.5)

The L2-norm ‖Φt‖2 of any Lagrangian vector field Φt : B0 → Bt at the
time t ∈ T in the time interval of interest is a natural norm for Lagrangian
vector fields in infinite-dimensional vector spaces associated with weak forms
(compare Gonzalez [165]). The definition reads

‖Φt‖2 =

√∫

B0

[Φt(X)]c δcd [Φt(X)]d (6.6)

Since we use a spatial finite element approximation of a Lagrangian field in
analogy to Equation (4.17), the spatial integration is concerned only with
the spatial Lagrangian shape functions Na(η), included in the area element
matrix blocks

He
ab =

∫

B�

Na(η)Nb(η)Je
0 (η) a, b ∈ N e

en (6.7)

Hence, the L2-norm of the Lagrangian vector field Φt is reduced to a weighted
Euclidean norm of the corresponding spatial nodal values aze

t . We arrive at
the L2-norm of the spatial finite element approximation pertaining to the
Lagrangian vector field Φt : B0 → Bt by the summation

‖Φt‖2 =

√ ∑

e∈Nel

∑

a,b∈N e
en

[az∗,e
t ]c (He

ab[I]
c
d) [aze

t ]
d (6.8)
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The sums over the element nodes can be expressed by matrix products
after combining the spatial element nodes in element vectors ze and z∗,e,
respectively, and the area element matrix blocks in an area element matrix He.
The parenthesis in Equation (6.8) then coincides with the Kronecker product
of the area element matrix He and the identity matrix I of column vectors in
the ambient space. We obtain

‖Φt‖2 =


 A

e∈Nel

z
∗,e
t [He ⊗ I] zt




1/2

(6.9)

We transform this local matrix form on each element e ∈ Nel into a global
matrix form for the entire body by assembling all spatial element matrices to
global matrices. We obtain a global nodal column vector zt and a global nodal
row vector z∗t . Finally, a global area matrix H occurs, such that the L2-norm
of the spatial approximated Lagrangian vector field Φt is given by

‖Φt‖2 =
√

z∗t [H ⊗ I] zt (6.10)

The L2-norm of a Lagrangian scalar field θt : B0 → R as the Lagrangian
temperature field can be calculated analogously, except that the Kronecker
product with the identity matrix I has to be dropped.

6.1.2. The numerical example. We compare the order of accuracy pertaining
to the hG(meq) and the mhG(meq) method by means of the following
numerical example: A small polymeric plate consisting of the Neo-Hookean
material described in Appendix C, with the edge length 0.1m and the density
ρ0 of 8.93 kg/m2. The Lamé constants in the free energy function are given by
µ = 7.5 J/m2 and λ = 30 J/m2, respectively. In the thermal part of the free
energy, the thermal expansion coefficient of the material is set to β = 10−4 K−1

and the specific heat capacity of the body amounts to c = 100 J/m2K. In the
heat conduction term of the entropy evolution, the constant specific thermal
conductivity is chosen to be k0 = 10W/K. The deviatoric and volumetric
viscosity is set to Vdev = 10000 Js/m2 and Vvol = 50000 Js/m2, respectively.
The temperature of the bottom of the plate coincides with the ambient
temperature, however, the remainder of the body is heated about 10K. The
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Figure 6.1. On the left, the reference configuration of a small polymeric plate,
discretised by one four node Lagrange element, is depicted. The arrows shows the
initial velocities of the nodes. The colour in the element indicates the interpolation
of the initial temperature at the nodes in Kelvin. On the right, the relative total
energy V(t), determined with quartic finite elements in time (meq = 4) and a time
step size hn = 1 ms, is plotted versus the time interval T = [0, 10 ms] of interest.

motion is initiated by an initial velocity field with the components

[v0(X)]a = 2
m

s
δa1 − 0.7

1

s
δabǫb3c[X]c (6.11)

and is simulated during the time interval T = [0, T ] with T = 10ms (see
Figure 6.1). The plate is moving freely in a two-dimensional continuum with
ambient temperature Θ∞ of 298.15K.

For this motion, we determine the L2-error corresponding to the
deformation field ϕT , the velocity field vT and the temperature field ΘT at
the final time T with reference to a calculation with quartic finite elements in
time (meq = 4) and a time step size hn = 1ms. Since the deformation field and
the velocity field is determined by a continuous Galerkin (cG) method with
Gaussian quadrature of accuracy O((hn)2 meq ), we obtain the accuracy orders
2, 4 and 6 (see Figure 6.2). With these approximated fields, we calculate a
temperature field approximation of the same order of accuracy. However, the
discrete energy balance in Equation (6.1) shows the accuracy O((hn)2 meq+1)
of the quadrature rule in the entropy evolution equation with the orders
3, 5 and 7 (see Figure 6.3). A comparison of the curves in Figure 6.2 and
Figure 6.3 shows the consistency of the assumed strain approximation given



88 6. REPRESENTATIVE NUMERICAL SIMULATIONS

 

 

10

10

10

10

10

101010

−12

−10

−8

−6

−4

−4 −3 −2

2

4
6

hG(1)

hG(2)

hG(3)

mhG(1)

mhG(2)

mhG(3)

hn (s)

e ϕ
t
(1

)

 

 

10

10

10

10

10

101010

−12

−10

−8

−6

−4

−4 −3 −2

2

4

6

hG(1)

hG(2)

hG(3)

mhG(1)

mhG(2)

mhG(3)

hn (s)

e v
t
(1

)
Figure 6.2. On the left, the relative L2-errors of the deformation field ϕT at the final
time T = 10 ms is plotted versus the time step sizes hn used for the calculations.
On the right, the relative L2-error of the corresponding velocity field vT is depicted
as function of the time step size. The reference solution is calculated with quartic

finite elements in time (meq = 4) and a time step size hn = 1ms.

by Equation (5.14) in the considered time approximation. Neither the orders
of accuracy of the time approximation nor the inherently energy consistency
of the weak forms is violated.

6.2. Consistency of the exactly energy consistent method

The finite element method in this work is energy consistent by adding the
additional terms (5.18) and (5.23) in the weak forms. We designate this
enhanced finite element method by the shorthand notation ehG(meq) method.
The number meq specify the polynomial order of the temporal shape functions
for the primary variables. We verify the order of accuracy of the exactly energy
consistent method by using a similar numerical example as in Section 6.1. We
consider the free flight of a large polymeric plate with an edge length 1m
during the time interval T = [0, T ] of interest with a final time T = 0.1s. The
motion is initiated by the initial velocity field given by Equation (6.11). The
polymeric plate consists of the material specified in Section 6.1.

In Figure 6.4 to the left, the approximated initial velocity field is depicted
by the velocities at the spatial nodes. We determine the relative L2-error
pertaining to the deformation field ϕT , the Lagrangian velocity field vT as
well as the Lagrangian temperature field ΘT in the current configuration at the
final time T . The reference solution is determined by quartic finite elements
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Figure 6.3. On the left, the relative L2-error of the temperature field ΘT at the
final time T = 10ms is plotted as function of the time step size hn, used for the
calculation. On the right, the corresponding relative L2-error of the energy balance
in Equation (5.27) is depicted. The reference solution is calculated with quartic finite

elements in time (meq = 4) and a time step size hn = 1 ms.

in time (meq = 4) and a small time step size hn = 1ms. The right plot in
Figure 6.4 shows the final configuration and the Lagrangian velocity field
pertaining to the reference solution.

The left diagram in Figure 6.5 shows the associated relative total energy
during the time interval of interest. The order of accuracy of the methods
coincide with the slope of the curves in the L2-error plots. Owing to the
accuracy of the Gaussian quadrature rule in the equations of motion, we
obtain the order 2meq of the time approximation. The L2-error plot of
the deformation field in Figure 6.5, as well as the error curves pertaining
to the Lagrangian velocity and Lagrangian temperature field in Figure 6.6,
corroborate this theoretical result.

6.3. Conservation laws and stability properties

In this section, we verify the robustness of the time integration algorithms with
respect to large constant time step sizes throughout the calculation, as well as
with respect to time step size changes. The spatial mesh is thereby hold fixed.
Large time steps are desirable for effective long time simulations, and time
step size changes appear in time-adaptive time stepping schemes, for instance.
In order to verify the total linear and total angular momentum conservation,
we consider a translational and rotational free motion of a continuum body
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Figure 6.4. On the left, the reference configuration of the polymeric plate, discretised
by nine four node Lagrange elements, is depicted. The arrows show the initial
velocities of the nodes, and the colour in the spatial elements indicates the
interpolation of the temperature at the corresponding element nodes in Kelvin.
On the right, the current configuration of the plate at time T = 100 ms, determined
with quartic finite elements in time (meq = 4) and a time step size hn = 1 ms, is

shown.

without mechanical loads. We are able to verify also the stability estimate in
Equation (5.27), because we neglect thermal loads.

6.3.1. The numerical example. We consider a free flying ring, consisting
of the Neo-Hookean material described in Appendix C. The inner radius
of the ring is Ri = 0.5m and the outer radius is given by Ra = 1.5m. We
orientate the material properties to a polyurethane elastomer. The density
ρ0 of the material is 30 kg/m2, and the first and second Lamé constant
in the Neo-Hookean free energy function is chosen to be µ = 7500 J/m2

and λ = 30000 J/m2, respectively. The thermal expansion coefficient of the
material is set to β = 10−4 K−1 and the specific heat capacity of the ring
amounts to c = 1500 J/m2K. The heat conduction in the ring is determined
by the constant specific thermal conductivity k0 = 0.02W/K. The deviatoric
viscosity is set to Vdev = 10000 Js/m2 and the volumetric viscosity amounts
to Vvol = 50000 Js/m2. The motion is initiated by an initial velocity field with
components given by

[v0(X)]a = 20
m

s
δa1 − 7

1

s
δabǫb3c[X]c (6.12)
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Figure 6.5. On the left, the relative total energy V(t) of the reference solution,
determined by quartic finite elements in time (meq = 4) and a time step size
hn = 1 ms, is plotted versus the time interval T = [0, 0.1 s] of interest. On the right,
the relative L2-errors of the deformation field ϕT at the final time T = 0.1 s is

depicted as function of the time step size.

The temperature Θ∞ in the ambient space of the two-dimensional continuum
body amounts 298.15K. The temperature at a small portion of the outer side
of the ring coincides with the ambient temperature, which means this is the
only uninsulated part of the ring. However, the remainder of the ring is heated
about 10K.

6.3.2. The heat flux projection. Arising from the uninsulated part of the ring,
a Lagrangian temperature gradient field acts on the reference configuration
from the outset. According to Equation (2.64), we obtain on B0 a Lagrangian
heat flux at any time t ∈ T with the components

[Qt(X)]A = −k0 Jt(X) [(Ct(X))−1]AB [DΘt(X)]B (6.13)

in each point X ∈ B0. After performing the spatial finite element
approximation, the Lagrangian heat flux is given at the spatial Gauss points
of the entropy evolution equation. In order to depict the Lagrangian heat flux
on the ring as smooth vector field by vector arrows at the nodes, we project all
element heat fluxes Qe

t (η) at the spatial Gauss points onto the corresponding
spatial element nodes by using a global least square minimisation with the
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Figure 6.6. On the left, the relative L2-errors of the Lagrangian velocity field vT

at the final time T = 0.1 s is plotted versus the corresponding time step sizes used
for the calculations. The right diagram shows the relative L2-error pertaining to the
Lagrangian temperature field ΘT as function of the time step size. The reference
solution is calculated with quartic finite elements in time (meq = 4) and a time step

size hn = 1 ms.

Lagrange functional

FQ(Q̂t) =
1

2

∑

e∈Nel

∫

B�

[
[Q̂

e

t (η)]A − [Qe
t (η)]A

] [
[Q̂

∗,e

t (η)]B − [Q∗,e
t (η)]B

]
Je

0 (η)

(6.14)

where Q̂
e

t (η) denotes the projected element heat flux, interpolating nodal

vectors aQ̂
e

t over the entire finite element e ∈ Nel. This procedure is entered
into the literature as patch recovery technique (see Denzer et al. [166] and
Zienkiewicz & Zhu [167] for more details). We interpolate the element heat
flux just as the primary variables, which means

[Q̂
e

t (η)]A =
∑

a∈N e
en

Na(η) [aQ̂
e

t ]
A (6.15)

Applying in Equation (6.14) the directional derivative to the unknown

projected element heat flux Q̂
e

t (η) in direction of a variation δQ̂
e

t (η) of the
projected element heat flux, the corresponding weak Euler-Lagrange equations
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take the form

∑

e∈Nel

∑

a,b∈N e
en

[bδQ̂
∗,e

t ]A
(
H

e
ba[I]AB

)
[aQ̂

e

t ]
B =

∑

e∈Nel

∑

b∈N e
en

[bδQ̂
∗,e

t ]A [bQ̃
e

t ]
A

(6.16)
where the variation of the projected element heat flux is approximated as the
projected element heat flux itself. Since, on the left hand side, the spatial
integration is concerned only with the spatial Lagrangian shape functions, we
also obtain the area element matrix blocks in Equation (6.7). On the right
hand side, the shorthand notation

[bQ̃
e

t ]
A =

∫

B�

Nb(η) [Qe
t (η)]A (6.17)

denotes the assignment of the element heat flux to any spatial element
node b ∈ N e

en. As next step, we substitute matrix products for the distinct
summations. We start with the summation over the tensor components. Then,
we express the summation over the element nodes by a matrix product of block
matrices. In this way, we arrive at the discrete weak forms

δQ̂
∗,e

t

[
(He ⊗ I) Q̂

e

t − Q̃
e

t

]
= 0 (6.18)

for each spatial element e ∈ Nel. After the assembling procedure, we obtain a

column vector Q̂t and a row vector δQ̂
∗

t , including the projected heat flux and
its variations, respectively, at the spatial nodes of the reference configuration.

The element heat fluxes Q̃
e

t leads to a global column vector Q̃t, and the area
element matrices coalesce to the global area matrix H of the ring. According to
the fundamental lemma of calculus of variations, we obtain a linear algebraic
system

(H ⊗ I) Q̂t = Q̃t (6.19)

which we solve for the unknown nodal heat fluxes by using the Gaussian
elimination method. Among the projected Lagrangian heat flux at initial time
t = 0, this projection allows to show the Lagrangian heat flux in the reference
configuration of the ring at each temporal Gauss point of the entropy evolution
equation in the considered sub-interval T n.
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6.3.3. The second order tensor field projection. Similarly, we depict the norm
of any Lagrangian second order tensor field, given at the points X ∈ B0, by
means of colours in the reference or current configuration, respectively. For
example, we illustrate the first Piola-Kirchhoff stress tensor field P t by colours
in the reference configuration. Since the finite element method furnishes a
Lagrangian stress field locally at spatial Gauss points, we project all these
tensors onto the corresponding spatial element nodes also by a global least
square minimisation.

As first step, we transform the considered second order tensor field at each
point X ∈ B0 in a column vector. For the first Piola-Kirchhoff stress tensor
P t(X) in the case of a two-dimensional ambient space, we obtain

Pt(X) =
[
[P t(X)]11, [P t(X)]21, [P t(X)]12, [P t(X)]22

]
(6.20)

Then, we perform the corresponding global least square minimisation of
the spatial finite element approximation as for the heat flux projection. We
substitute matrix products for each summation and assemble the discrete
weak forms. After applying the fundamental lemma of calculus of variations,
we arrive at the linear algebraic system

[(H ⊗ I) ⊗ I] P̂t = P̃t (6.21)

where the global column vectors P̂t and P̃t includes the unknown values
of the tensor components at the spatial nodes, and the spatially averaged
tensor components defined on the element level analogous to Equation (6.17),
respectively.

In order to depict the projected tensor field by colours in the element, we
determine a norm of the tensor field. However, we first split up the tensor field
additively in a spherical part and a deviatoric part, because a temperature
change only leads to a volume change. We show the spectral norm 9 · 9 of
the nodal tensors

sph(AP̃ t) =
tr (AP̃ t)

ndim

I and dev(AP̃ t) = AP̃ t − sph(AP̃ t)

(6.22)
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in the global numbering A ∈ Nno as colours in the finite elements. In the
case of the spherical part, the spectral norm simply coincides with the trace
divided by the space dimension. By using this projection, we show projected
second order tensor fields of the ring at the initial time t0 = 0 as well as at
each temporal Gauss point of the second equation of motion in the considered
sub-interval T n.

6.3.4. The inherently energy consistent method. We start the stability
investigation with the hG method, and use linear finite elements in time,
for instance. We discretise the ring by 416 four-node Lagrange elements (see
Hueck & Wriggers [168] for implementational aspects) and totally 448 spatial
nodes. For simplicity, we use the same mesh for the mechanical as well as for
the thermal Lagrangian fields. The time step size hn is chosen to be 10ms
throughout the calculation. For the iterative solution procedure described in
Appendix B, we prescribe the global tolerance tol = 10−6 J, and the local
iteration is stopped if the tolerance tolevo is gone bellow 10−9 J/m2. The initial
configurations of the ring at time t0 = 0 is shown in Figure 6.7. At initial time,
the reference configuration to the right and its current configuration to the
left coincide. In the reference configuration, the colour designates the spectral
norm of the spherical part of the projected first Piola-Kirchhoff stress tensor,
and the vector arrows depict the projected first Piola-Kirchhoff heat flux. The
stress vanishes due to the assumed Neo-Hookean free energy. In the current
configuration, the colour indicates the initial temperature 308.15K of the
ring. The vector arrows at the spatial nodes indicate the initial Lagrangian
velocity field, which results from a superposition of a translation in horizontal
direction and a rotation about the centre of mass (see Equation (6.12)). That
implies the instantaneous centre of rotation at the lowest point of the ring.
On the uninsulated part of the ring (see right side of the ring), the initial
temperature is given by the ambient temperature Θ∞ of 298.15K. Hence, we
obtain a temperature gradient field at the spatial nodes of the corresponding
elements. In the reference configuration, a projected first Piola-Kirchhoff heat
flux is the consequence of this temperature gradient field.

Figure 6.8 shows the current configurations pertaining to the first total
rotation of the ring. Owing to the low heat conduction compared to the
specific heat capacity of the ring, the small uninsulated portion gives rise
to a slowly decreasing temperature level. This is observable in Figure 6.9,
where time evolutions of the calculations are depicted. The time evolution
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of the primary unknowns pertain to a spatial node A at the outside of the
ring opposite the uninsulated portion. The temperature oscillates around a
decreasing level, till an abrupt temperature jump arise at time tn = 1.39 s.
At this time point, the global Newton-Raphson method is not gone bellow
the prescribed tolerance tol. Further, we realise high-frequent oscillations
in the time evolution of the temperature and the corresponding velocity,
especially after the time tn = 1.39 s. However, not in the time evolution of
the corresponding position. We also see that the hG(1) method calculates a
relative total energy, which oscillates around a decreasing energy level. The
decreasing energy level is mainly based on the viscous dissipation, and these
unphysical local energy rises are associated with a local increase of the non-
negative viscous dissipation. However, an energy rise would mean a negative
physical dissipation, which is not the case. Hence, the hG(1) method produce
negative numerical dissipation. The time evolution of the relative total energy
ends in a blow up behaviour at time tn = 1.47 s, as the global Newton-
Raphson method is not gone bellow the prescribed tolerance for the second
time. Nevertheless, the total linear and total angular momentum is conserved
in all time steps. This oscillating relative total energy is associated with an
oscillating first Piola-Kirchhoff stress field, which is shown in Figure 6.10. We
see the reference configurations of the time interval at the beginning of the
motion, in which the total dissipation reaches the highest value. The colour
denotes the spectral norm of the spherical part pertaining to the corresponding
projected first Piola-Kirchhoff stress tensor. The stress reaches a maximum
value at the inner radius and a minimum value at the outer radius. However,
we obtain spurious radial stress waves at these time points at which the hG(1)
method is diverged, which is shown in Figure 6.11. In the time step, where
the energy additionally blows up (the plot to the left), there is observable
a particularly high-frequent wave in front of the uninsulated portion on the
righthand side of the ring. In this figure, we also depict the absolute value
of four residual equations versus time. First, we observe the violation of the
stability estimate in Equation (2.118). The reason is that on each time element
the time integral of the directional derivative of the relative internal energy
along a continuous time curve does not coincide exactly with the difference
of the corresponding energies at the time nodes. Hence, relative total energy
is produced and annihilated algorithmically, which leads to the oscillations
in the time evolution of the relative total energy. Then, we show the time
evolution pertaining to the absolute value of the global mechanical residual
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Gmech(Z ; x̃∗,n) in Appendix B. This residual equation coincides with the
kinetic energy balance in Equation (5.11), which, in turn, is the time averaged
balance of mechanical energy of the ring. Since the time integral of the kinetic
energy rate is evaluated exactly by the applied Gaussian quadrature rule in
time, the peaks in this time evolution probably arise from an interpolation
error in the temporal quadrature of the associated dual pairing of the free
energy. In the kinetic energy balance, the dual pairing denotes the stress
power. That would explain why at the same time points peaks in the absolute
value of the thermal residual Gther(Z ;u∗,n) appear. Because, in the thermal
residual, there is also a dual pairing of the free energy involved, that is the dual
pairing corresponding to the Lagrangian entropy field. The first four peaks in
these time evolutions does not lead to a divergence according to the global
convergence criterion in Equation (B.99). But the last two peaks correspond
to the divergence at the time tn = 1.39 s and the blow up at time tn = 1.47 s,
respectively. In contrast, the time evolution of the spatially assembled and
integrated residual equation

∣∣∣∣∣

nel∑

e=1

∫

B�

Gvisc(Z ; ĩ
∗,n,e

(η))Je
0 (η)

∣∣∣∣∣ = 0 (6.23)

pertaining to the local mechanical residual are even of the order of the local
tolerance tolevo, which is only claimed at each spatial Gauss point. Thus, the
prescribed global tolerance tol lies between the convergence criterion and the
sum of the absolute values of each Galerkin form, which is possible due to the
triangle relation for the convergence criterion, given by

∣∣∣∣∣Gther(Z ;u∗,n) + Gmech(Z ; x̃∗,n) −
nel∑

e=1

∫

B�

Gvisc(Z ; ĩ
∗,n,e

(η))Je
0 (η)

∣∣∣∣∣6 tol6

6 |Gther(Z ;u∗,n) | + |Gmech(Z ; x̃∗,n) | +
∣∣∣∣∣

nel∑

e=1

∫

B�

Gvisc(Z ; ĩ
∗,n,e

(η))Je
0 (η)

∣∣∣∣∣
(6.24)

The mentioned interpolation error in the temporal quadrature has different
algebraic signs in the global mechanical and the thermal residual. Therefore,
in the convergence criterion, this error does not appear. Referring to the global
convergence criterion in Equation (B.99), we found that this criterion identifies
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unphysical numerical results as spurious stress waves, before the resulting blow
up behaviour occurs.

The divergence of the hG(1) method appear to be associated with spurious
stress waves at the time points of divergence. Therefore, we modify the
approximation of the second Piola-Kirchhoff stress tensor by substituting
the assumed strain approximation in Equation (5.14) for the standard right
Cauchy-Green tensor approximation in Equation (6.2). We obtain the mhG
method, which is now compared to the hG method. We also apply linear
finite elements in time and bilinear finite elements in space, for instance.
We consider the same motion with the same time step size hn of 10ms
throughout the calculation. The first distinctive feature of the mhG(1) method
in comparison to the hG(1) method is that the simulation runs over the time
points tn = 1.39 s and tn = 1.47 s, at which the hG(1) method is not converged.
Ultimately, we stop the calculation at time tn = 5 s, since the mhG(1) method
calculates the initiated motion of the ring without numerical problems.

Looking at the time evolutions of the primary unknowns in Figure 6.12, we
realise no major differences in comparison to the time evolutions of the hG(1)
method before it diverged. However, we obtain a distinct behaviour in the time
evolution of the relative total energy, because, in Figure 6.13, we see no further
local energy rises. The relative total energy is steady decreasing with variable
speed, and approaches asymptotically towards a constant value associated
with a purely elastic behaviour of the material at ambient temperature. The
speed of the energy decrease depends mainly on the dissipated internal energy
Dint,n of the entire ring on each time element T n, which can be directly
calculated by the weak form of the viscous evolution equation, according to
the energy consistent approximation (see Equation (B.51)). Hence, we obtain

Dint,n =

∫

T n

∫

B0

Dint
t (X) =

∑

e∈Nel

∫

B�

ĩ
∗,n,e

(η) zn,e(η) (6.25)

We depict this energy loss versus the corresponding time points tn also in
this figure. We realise that the steps in the time evolution of the relative
total energy corresponds to the minima of the dissipated internal energy. On
the other hand, it can be seen that both the total linear and total angular
momentum are not affected by the assumed strain approximation. This more
physically meaningful time evolution of the relative total energy arise from
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the better fulfilled stability estimate, see Figure 6.14. Moreover, in opposition
to the constant violation of the stability estimate by the hG(1) method, the
mhG(1) method fulfils the stability estimate better and better the lower the
dissipated internal energy is. There is also a distinction in the time evolution
of the global mechanical Galerkin form. Whereas the hG(1) method fulfills
this Galerkin form in the range of 10−11 J, however, with sporadic high peaks,
the mhG(1) method fulfills the global mechanical Galerkin form throughout in
the range of the Newton-Raphson tolerance tol. The reason is that the mhG(1)
method need predominantly two global Newton-Raphson iterations per time
step, and the hG(1) method three iterations. Hence, we save CPU time. Since
we have not modified the spatial approximation of the stress field by using
the assumed strain approximation in time, the stress distribution over the ring
corresponding to the mhG(1) method looks like that of the hG(1) method,
see Figure 6.15.

Regarding a node A at the outside of the ring opposite the uninsulated
portion, in Figure 6.16, we see a relative smooth time evolution of the
projected first Piola-Kirchhoff stress calculated by the mhG(1) method,
however, a superposed high-frequency mode in the time evolution of the hG(1)
method. This superposed high-frequency mode is especially distinct near the
time point tn = 1.39 s of the first divergence. Accordingly, the assumed strain
approximation in time affects the temporal approximation of the second Piola-
Kirchhoff stress, and reduces a spurious high-frequency solution in the time
evolution of the first Piola-Kirchhoff stress field. This leads to a more robust
mhG method concerning a constant time step size throughout the simulation.
As next step, we investigate the behaviour of the mhG method after changing
the time step size during the simulation. We calculate with a time step size
hn of 10ms till the time tn = 2.5 s, and afterwards, we choose a time step size
of 62.5ms.

In Figure 6.17, we see time evolutions of the ring pertaining to the node
A at the outside of the ring opposite the uninsulated portion. By using the
small time step size at the beginning, we see the relative high frequency of the
temperature oscillations with an approximate period of 125ms. Changing the
time step size to the higher value of 62.5ms, we obtain a temporal aliasing
according to the Nyquist criterion, because the time step size is not smaller the
half period. Consequently, the high frequent oscillation cannot be reproduced
by the time integrator. At the time point tn = 3.25 s, the mhG(1) method
diverge the first time and calculates an abrupt decay in the temperature
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evolution. The period of the oscillation pertaining to the velocity and the
position of approximate 940ms in consequence of the initiated rotation can
be also reproduced with the higher time step size. The second divergence of
the mhG(1) method at time tn = 3.4375 s finally leads to a blow up in the time
evolution of the relative total energy. Before blowing up, however, the relative
total energy decays owing to the temperature decay after the first divergence
at time tn = 3.25 s. In spite of the divergences, the total linear momentum is
conserved, however, the total angular momentum shows a jump in the third
component after the second divergence.

Figure 6.18 includes the time evolution of the dissipated internal energy
before and after the time step size change. Since the approximation error of the
time integration dependents on the time step size hn, the dissipated internal
energy Dint,n, given by Equation (6.25), increases with a greater time step,
however decrease with increasing simulation time as before the time step size
change. Only at the first divergence at time tn = 3.25 s, we obtain an abrupt
energy increase, and at time tn = 3.4375 s, a blow up of the dissipated internal
energy goes with the second divergence. This temporal behaviour is reflected
in the stability estimate, given by Equation (2.118), because in the considered
motion, the dissipated internal energy dominates in the stability estimate.
This time step size dependent approximation error of the time integration
is also the reason for the higher values of Equation (6.23), associated with
the local mechanical Galerkin form. However, these absolute values are even
of the order of the absolute value of the local tolerance tolevo = 10−9 J/m2,
associated with the criterion for the convergence of the spatially local viscous
evolution equation, given by Equation (B.51). The convergence criterion of the
global iterative solution procedure in Equation (B.99) is associated directly
with the relative internal energy balance and not with the kinetic energy
balance. Therefore, a converged solution allows a small exceedance of the
global tolerance tol = 10−6 J by the absolute value of the global mechanical
residual, see the time point tn = 140ms. The last two peaks correspond to
the divergence of the mhG(1) method at the time points tn = 3.25 s and time
tn = 3.4375 s. On the other hand, it is remarkable that a greater time step
size with a greater approximation error in the time integration can leads to a
visibly smaller absolute value of the global mechanical residual. Recall that the
distinction between solving the local mechanical Galerkin form and the global
mechanical Galerkin form lies in the effect of the spatial quadrature associated
with the given spatial discretisation. Whereas the local mechanical Galerkin
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Figure 6.7. Initial configurations of the ring at t0 = 0 with an uninsulated portion on
its righthand side. In the reference configuration to the left, the initial projected heat
flux is depicted by vector arrows at the spatial nodes in Joule per square meter. The
colour denotes the spectral norm of the spherical part of the projected first Piola-
Kirchhoff stress tensor field. In the current configuration to the right, the colour
indicates the initial temperature field in Kelvin, and the vector arrows at the spatial

nodes designate the initial velocity field.

form is solved at each spatial quadrature point without an influence of a
spatial quadrature, the global mechanical Galerkin form consists of spatially
integrated virtual energy terms. Thus, it seems that the greater time step
size hn of 62.5ms goes better with the spatial mesh of the ring. Since we
used for the Lagrangian temperature field the same spatial discretisation as
for the deformation field, and in the thermal Galerkin form the same spatial
quadrature as in the global mechanical Galerkin form, we observe this effect
also in the thermal Galerkin form. However, the absolute value of the thermal
residual is always below the global tolerance tol of 10−6J. We also show the
time evolution of the projected first Piola-Kirchhoff stress pertaining to the
node A at the outside of the ring opposite the uninsulated portion. We see,
this time evolution pertaining to the outside of the ring is not conspicuously
modified after changing the time step size. Only the aliasing by virtue of the
larger time step is observable. However, in Figure 6.19, it can be seen that
the projected first Piola-Kirchhoff stress at the inside of the ring increases
with increasing simulation time. Moreover, we observe an increasing radial
stress wave with progressing simulation time till the mhG(1) method at time
t = 3.4062 s ultimately diverge.
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Figure 6.8. Current configurations pertaining to one rotation of the ring. The colour
indicates the Lagrangian temperature field in Kelvin, and the vector arrows at the
spatial nodes designate the Lagrangian velocity field. The motion is calculated by
the hG method with linear finite elements in time and bilinear finite elements in

space. The time step size hn is chosen to be 10 ms throughout the simulation.
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Figure 6.9. Time evolutions pertaining to the motion of the ring, calculated by the
hG(1) method with linear finite elements in time and bilinear finite elements in
space. The time step size hn is equal to 10ms throughout the calculation. First, the
temperature, the vertical velocity and the vertical position pertaining to a node A
at the outside of the ring opposite the uninsulated portion is depicted versus time
tn. Second, the figure shows the time evolutions of the relative total energy as well
as of the components of the total linear and total angular momentum, respectively.

The legends in the last row indicate the components a of the momenta.
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Figure 6.10. Reference configurations pertaining to the motion of the ring. The
colour indicates the spectral norm of the spherical part pertaining to the projected
first Piola-Kirchhoff stress field in Joule per square meter, and the vector arrows
at the spatial nodes designate the projected Piola-Kirchhoff heat flux. The motion
is calculated by the hG(1) method with linear finite elements in time and bilinear
finite elements in space. The time step size hn is chosen to be 10ms throughout the

simulation.
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Figure 6.11. The reference configurations pertaining to the two time points, whose
calculation led to the divergence of the hG(1) method with linear finite elements
in time and bilinear finite elements in space (first row). The colour indicates the
spectral norm of the spherical part pertaining to the projected first Piola-Kirchhoff
stress field in Joule per square meter, and the vector arrows at the spatial nodes
designate the projected Piola-Kirchhoff heat flux. The time step size is given by
hn = 10 ms throughout the calculation. In the second row on the left hand side,
the absolute value of the residual of Equation (2.118) is depicted. The remainder
diagrams show the absolute values of the Galerkin forms in Appendix B versus the
corresponding time points tn. The dashed lines indicate the used tolerance tol of the

global Newton-Raphson method.
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Figure 6.12. Time evolutions pertaining to the motion of the ring, calculated by the
mhG(1) method with linear finite elements in time and bilinear finite elements in
space. The time step size hn is equal to 10 ms throughout the calculation. The plots
show the temperature, the vertical velocity and the vertical position pertaining to
the node A at the outside of the ring opposite the uninsulated portion versus the

corresponding time points tn.
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Figure 6.13. Time evolutions pertaining to the motion of the ring, calculated by the
mhG(1) method with linear finite elements in time and bilinear finite elements in
space. The time step size hn is equal to 10ms throughout the simulation. The plots
show the relative total energy V(tn) (first row), and the dissipated internal energy
D

int,n (second row) versus the time points tn. The last row shows the total linear
and total angular momentum components versus the same time points.
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Figure 6.14. Time evolutions pertaining to the motion of the ring, calculated by the
mhG(1) method with linear finite elements in time and bilinear finite elements in
space. The time step size hn is equal to 10ms throughout the simulation. In the
first row on the left hand side, the absolute value of the residual of Equation (2.118)
is depicted. The remainder plots show the absolute values of the Galerkin forms in
Appendix B versus the corresponding time points tn. The dashed line indicates the

used tolerance tol of the global Newton-Raphson method.

6.3.5. The exactly energy consistent method. The robustness of the
inherently energy consistent finite element method with respect to a
large constant time step size is increased by applying the assumed strain
approximation in time in the argument of the free energy function as well
as in the Lagrangian conductivity tensor. The assumed strain approximation
in time improves the time evolution of the first Piola-Kirchhoff stress tensor,
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Figure 6.15. Reference configurations pertaining to the motion of the ring. The
colour indicates the spectral norm of the spherical part pertaining to the projected
first Piola-Kirchhoff stress field in Joule per square meter, and the vector arrows at
the spatial nodes designate the projected Piola-Kirchhoff heat flux. The motion is
calculated by the mhG(1) method with linear finite elements in time and bilinear
finite elements in space. The time step size hn is chosen to be 10ms throughout the

simulation.
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Figure 6.16. Time evolution of the projected first Piola-Kirchhoff stress pertaining
to the node A at the outside of the ring opposite the uninsulated portion. The
simulations are done by the hG(1) method (first row) and the mhG(1) method (last
row), respectively, with linear finite elements in time and bilinear finite elements in

space. The time step size hn is chosen to be 10 ms throughout the calculation.

however, does not avoid the formation of high spurious stress waves in radial
direction of the ring after changing the time step size. These spurious stress
waves are especially distinctive when the mhG method diverges. Therefore,
in order to improve the robustness with respect to time step size changes,
we modify also the spatial approximation of the first Piola-Kirchhoff stress
tensor field by keeping the total linear and total angular momentum conserved.
Furthermore, since we observe a blow up of the dissipated internal energy, we
modify the viscosity in the entropy evolution equation. For these purposes,
we introduce the enhanced virtual work and the enhanced virtual viscous
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Figure 6.17. Time evolutions pertaining to the motion of the ring, calculated by the
mhG(1) method with linear finite elements in time and bilinear finite elements in
space. The time step size hn is equal to 10 ms till the time tn = 2.5 s, and afterwards
62.5 ms. The dotted line designates the time step size change. First, the temperature,
the vertical velocity and the vertical position pertaining to the node A at the outside
of the ring opposite the uninsulated portion is depicted versus time tn. Second, the
time evolutions of the relative total energy as well as of the components of the total
linear and total angular momentum are shown. The legends in the last row indicate

the components a of the momenta.
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Figure 6.18. Time evolutions pertaining to the motion of the ring, calculated by the
mhG(1) method with linear finite elements in time and bilinear finite elements in
space. The time step size hn is equal to 10ms till the time tn = 2.5 s, and afterwards
62.5 ms. The dotted lines designate the time step size change. In the first row, the
dissipated internal energy and the absolute value of the residual of Equation (2.118)
is depicted. The remainder plots, but the last to the right in the third row, show the
absolute values of the Galerkin forms in Appendix B versus the corresponding time
points tn. In the last plot, the time evolution of the projected first Piola-Kirchhoff
stress pertaining to the node A at the outside of the ring opposite the uninsulated

portion is displayed.
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Figure 6.19. Reference configurations pertaining to three time points after the time
point tn = 2.5 s where the time step size is changed from 10ms to 62.5 ms. The
simulation is done by the mhG(1) method with linear finite elements in time and
bilinear finite elements in space. The colour indicates the spectral norm of the
spherical part pertaining to the projected first Piola-Kirchhoff stress field in Joule
per square meter. The vector arrows at the spatial nodes designate the projected
Piola-Kirchhoff heat flux. On the ordinate of the plot in the bottom right corner, the
stress norm pertaining to nodes A on a radial line is indicated, which ends at a node
on the outside of the ring opposite the uninsulated portion. The corresponding radial
positions in the reference configuration at time t0 = 0 are shown on the abscissa.

dissipation, derived in Section 5 from the view point of energy consistency.
We arrive at the exactly energy consistent ehG method, which we now apply
for simulating the free flight of the ring. More precisely, the simulation
based on the ehG(1) method with linear finite elements in time and bilinear
finite elements in space. Again, we compute in time steps of 10ms till the
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time tn = 2.5 s, and afterwards, we set the time step size to 62.5ms. The
ehG(1) method calculates the initiated motion of the ring without numerical
problems, and runs over the time points tn = 3.25 s and time tn = 3.4375 s
at which the mhG(1) method is diverged. Therefore, we ultimately stop the
calculation after five seconds.

In Figure 6.20, we show the discrete time evolution of the temperature
pertaining to the node A at the outside of the ring, opposite the uninsulated
portion. In the time interval [0, 2.5 s], where the small time step size
hn = 10ms is used, the temperature decreases more than using the greater
time step size of 62.5ms afterwards. The reason is, according to the exactly
fulfilled stability estimate, the total dissipated energy on the righthand side
of Equation (6.1) depends on the error of the used numerical time integration
rule. On the other hand, the temporal aliasing in the temperature evolution
after changing the time step size does not lead to convergence problems. In
the time evolution of the corresponding nodal velocity and position, there
are hardly any changes after changing the time step size. Since the time
evolution of the velocity and position is not affected by high-frequent modes,
we occasionally realise the cutting of maxima and minima only. The reduced
total dissipation is also observable in the time evolution of the relative total
energy, when we compare the slope of this time curve. Further, owing to the
exactly fulfilled stability estimate, spurious node-to-node oscillations in the
relative total energy course are avoided at the time points where the internal
dissipation is minimal. The dissipated energy is thus really non-negative. In
this figure, the time evolution of the total linear and total angular momentum
is also depicted. We see, the modified stress further satisfies the conservation
laws, since we enhanced the second Piola-Kirchhoff stress tensor in order to
retain the symmetry of the Kirchhoff stress tensor.

In Figure 6.21, the time evolution of the internal dissipation also shows the
dependence on the approximation error of the time integration rule. However,
the ehG method is stable, and therefore, the internal dissipation decreases
with increasing time, also after the time step size change. We also observe
the fulfillment of the stability estimate during the total simulation time. The
convergence criterion requires a maximal absolute value of tol = 10−6J. Again,
the residual equation associated with the local mechanical Galerkin form is
fulfilled, since its absolute values are even of the order of the local tolerance
tolevo = 10−9J/m2. As the convergence criterion requires the fulfillment of
the stability estimate, a converged solution allows a small exceedance of the
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tolerance tol by the global mechanical Galerkin form and by the thermal
Galerkin form. The thermal Galerkin form of the ehG(1) method is again
better fulfilled with the greater time step size. Also interesting is that the
greater time step size leads to a smaller spectral norm of the spherical part of
the first Piola-Kirchhoff stress tensor. A possible conclusion is, in turn, that
the greater time step size goes better with the spatial mesh.

In Figure 6.22, we show the reference configurations determined by the
ehG(1) method for the purpose of comparison with the mhG(1) method.
Recall, at the last time point, the mhG(1) method is diverged. We see, the
modified spatial stress approximation by means of the enhanced stress tensor
avoids distinctive overstresses at the inner ring, and high spurious stress
waves. However, depicting the spectral norm of the spherical part pertaining
to the projected first Piola-Kirchhoff stress tensor on a radial line, we identify
small spurious stress waves in the radius interval [0.5m,∼0.86m]. The stress
distribution in the disjoint interval ]∼ 0.86m, 1.5m] is smooth.

In Figure 6.23, it is shown by the plot in the upper left corner, that these
spurious stress waves are also present before the time step size has been
changed. We compare the numerical results with the closed-form analytical
solution pertaining to the steady-state stress distribution of a free rotating
linear elastic ring in the linearised theory (see Appendix D). We see the
corresponding stress distribution in the stress plots as solid lines. The bottom
solid line depicts the radial stress distribution, and the upper solid line the
spectral norm of the spherical part pertaining to the linearised Cauchy stress
tensor. We recognise that the waves lie approximately in the radius interval
[Ri,

√
RiRa] between the vertical solid lines, in which the linearised radial

stress decrease. The waves are also present in the radial distribution of the
spectral norm of the spherical part pertaining to the projection of the Euler-
Almansi strain tensor

[et(X)]ab = [(F t(X))−T ] A
a [Et(X)]AB [(F t(X))−1]Bb (6.26)

which is defined as the push-forward of the Green-Lagrange strain tensor
Et(X), defined by Equation (D.12), at each point X ∈ B0 in the reference
configuration. Here, it is noticeable that between the vertical lines the Euler-
Almansi strain decrease, and the waviness in this interval is increasing as the
slope of the Euler-Almansi strain distribution increases. The circles in the
plots indicate the grid points of the spatial mesh which is used for the ring as
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hitherto in this paper. The corresponding grid point distribution is stretched
in radial direction toward the outer radius (compare the radial grid point
distributions). These spurious waves are reminiscent of the spurious note-
to-note oscillations appearing in steady and unsteady convection-dominated
transport problems (see Donea & Huerta [169] and Eriksson et al. [36],
for instance). In these problems, a to course mesh in relation to high
material parameters leads to decaying non-physical oscillations, downhill in
the descending interval of the solution, after a steeply ascending interval
(compare the first shown Euler-Almansi distribution). In our problem, the
operative material parameter for the spurious waves in the strain and stress
distributions is the second Lamé constant λ in the volumetric free energy (see
Appendix C). For a given spatial mesh, the higher this penalty parameter
is the higher the spurious waves. Otherwise, in relation to a given second
Lamé constant, we obtain high spurious waves using a to course mesh in the
radius interval between the vertical lines. This shows the calculation of the
ring with an equally-spaced radial grid point distribution. On the other hand,
a finer spatial mesh in the inner region of the ring leads to less waves. In the
comparison of the radial grid point distributions of these three spatial meshes,
the different markers goes with the markers in the corresponding stress and
strain plots.

Finally, in Figure 6.24, we show a simulation of the ring with a lower second
Lamé constant of λ = 3000 J/m2, and with the initial mesh denoted by the
circles. We see, the distribution is also more smooth.

6.4. Energy consistent incorporated Neumann boundaries

In Section 2.3, we also specify so-called Neumann boundary conditions on the
initial boundary value problem. That means Piola-Kirchhoff traction loads
for all points X on the boundary ∂T B0 of the continuum body, leading to
an added term in the weak form of the second equation of motion, and a
Piola-Kirchhoff heat flux on the boundary ∂QB0 of the body, incorporated
in the weak form of the entropy evolution equation (see Section 3). The
Piola-Kirchhoff traction vector causes an external mechanical power Pext(t),
which is added in the balance of mechanical energy of the body. According
to the inherently energy consistent finite element approximation, this balance
equation coincide with the global mechanical Galerkin form Gmech(Z ; x̃∗,n) at
the variations x̃∗,n arising from the rate of change of the deformation field.
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Figure 6.20. Time evolutions pertaining to the motion of the ring, calculated by the
ehG(1) method with linear finite elements in time and bilinear finite elements in
space. The time step size hn is equal to 10 ms till the time tn = 2.5 s, and afterwards
62.5 ms. The dotted lines designate the time step size change. The first plots show
the temperature, the vertical velocity and the vertical position pertaining to the
node A at the outside of the ring, opposite the uninsulated portion. Then, the time
evolutions of the relative total energy as well as of the components of the total linear
and total angular momentum, respectively, are depicted. The legends in the last row

indicate the components a of the momenta.
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Figure 6.21. Time evolutions associated with the flying ring, calculated by the ehG(1)
method with linear finite elements in time and bilinear finite elements in space. The
time step size hn is set to 10 ms till the time tn = 2.5 s, and afterwards to 62.5 ms.
The dotted lines indicate this change of the time step size. In the first row, the
dissipated internal energy and the absolute value of the residual of Equation (2.118)
is shown. The remainder plots, but the last, show the absolute values of the Galerkin
forms in Appendix B. In the right plot in the last row, the time evolution of the
projected first Piola-Kirchhoff stress pertaining to the node A at the outside of the

ring opposite the uninsulated portion is displayed.
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Figure 6.22. The first three plots show reference configurations pertaining to three
time points after the change of the time step at time tn = 2.5 s from the size 10ms
to 62.5 ms. The simulation is done by the ehG(1) method with linear finite elements
in time and bilinear finite elements in space. The colour indicates the spectral norm
of the spherical part pertaining to the projected first Piola-Kirchhoff stress field
in Joule per square meter. The vector arrows at the spatial nodes designate the
projected Piola-Kirchhoff heat flux. The plot in the bottom right corner shows the
stress norm pertaining to nodes A on a radial line which ends at a node on the
outside of the ring opposite the uninsulated portion. The radial positions of these

nodes in the reference configuration at time t0 = 0 are shown on the abscissa.

Hence, we are able to verify exactly the balance of introduced external
mechanical power and saved or dissipated internal energy by applying
the exactly energy consistent finite element method. Analogously, external
thermal power, introduced in the continuum body by means of a Piola-
Kirchhoff heat flux over the boundary ∂QB0, is incorporated by the inherently



120 6. REPRESENTATIVE NUMERICAL SIMULATIONS

 

 

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

500

1000

1500

2000

2500
0.005 s
0.535 s
1.335 s

ring radius rA
t0 (m)

9s
p
h
(P

A t
)
9

(J
/m

2
)

 

 

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01
0.005 s
0.535 s
1.335 s

ring radius rA
t0 (m)

9s
p
h
(e

A t
)
9

(1
)

 

 

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

500

1000

1500

2000

2500

3000
0.005 s
0.535 s
1.335 s

ring radius rA
t0 (m)

9s
p
h
(P

A t
)
9

(J
/m

2
)

 

 

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

2

4

6

8

10

12

14

equally spaced
stretching 1
stretching 2

ring radius rA
t0 (m)

gr
id

p
oi

n
t

n
u
m

b
er

(1
)

 

 

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

500

1000

1500

2000

2500
0.005 s
0.535 s
1.335 s

ring radius rA
t0 (m)

9s
p
h
(P

A t
)
9

(J
/m

2
)

 

 

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01
0.005 s
0.535 s
1.335 s

ring radius rA
t0 (m)

9s
p
h
(e

A t
)
9

(1
)

Figure 6.23. Stress and strain distributions of the ring pertaining to three time
points before the time step size change at time tn = 2.5 s from 10ms to 62.5 ms. The
simulation is done by the ehG(1) method with linear finite elements in time and
bilinear finite elements in space. The distributions are spectral norms pertaining
to nodes A on a radial line which ends at a node on the outside of the ring
opposite the uninsulated portion. The radial positions of these nodes in the reference
configuration at time t0 = 0 are shown on the abscissa. The ordinates of the plots
in the left column indicate the spectral norm of the spherical part pertaining to the
projected first Piola-Kirchhoff stress field. The ordinates of the plots in the upper
right and bottom right corner designate the spectral norm of the spherical part
pertaining to the projected Euler-Almansi strain field. The right plot in the middle

row show the radial grid point distributions of the compared spatial meshes.
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Figure 6.24. Stress and strain distribution of the ring pertaining to three time points
before the time step size change at time tn = 2.5 s from 10 ms to 62.5 ms The second
Lamé constant is here λ = 3000 J/m2, and the initial mesh is used. The simulation
is done by the ehG(1) method with linear finite elements in time and bilinear finite
elements in space. The distributions are spectral norms pertaining to nodes A on a
radial line, which ends at a node on the outside of the ring opposite the uninsulated
portion. The radial positions of these nodes in the reference configuration at time
t0 = 0 are shown on the abscissa. The ordinate of the left plot indicates the spectral
norm of the spherical part pertaining to the projected first Piola-Kirchhoff stress
field. The ordinate of the right plot designates the spectral norm of the spherical

part pertaining to the projected Euler-Almansi strain field.

energy consistent finite element approximation of the entropy evolution
equation. Therefore, the exactly energy consistent algorithm uses exact the
prescribed value of the mechanical external power and the thermal power in
order to affect the primary variables of the initial boundary value problem. We
show this in the following numerical simulations. Note that a Piola-Kirchhoff
traction vector field and a Piola-Kirchhoff heat flux is also borne in mind in
the recommended convergence criterion (see Appendix B.3). Therefore, we
have not to change the global iterative solution procedure.

6.4.1. The example with boundary traction field. We consider the cross
section of an axisymmetric polymer spring, consisting of the Neo-Hookean
material described in Appendix C. The height of the spring is 10m and the
width is given by 12.82m. The density ρ0 in the cross section is 30 kg/m2.
The first and second Lamé constant in the Neo-Hookean free energy function
is chosen to be µ = 7500 J/m2 and λ = 30000 J/m2, respectively. The thermal
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Figure 6.25. Configurations of the spring after the first time step. The simulation is
done by the ehG(1) method with linear finite elements in time and bilinear finite
elements in space. The boundary elements on the Neumann boundaries are linear
finite elements in space. The time step size hn is given by 10ms throughout the
calculation. On the left, the reference configuration of the spring at time t = 5 ms is
shown. The projected heat flux is depicted by vector arrows at the spatial nodes. The
colour denotes the spectral norm of the spherical part of the projected first Piola-
Kirchhoff stress tensor field in Joule per square meter. On the right, the current
configuration of the spring is depicted at time tn = 10ms with the uninsulated
portion on its bottom. The colour indicates the Lagrangian temperature field in
Kelvin. The thin vector arrows at the spatial nodes designate the Lagrangian velocity
field, and the bold arrows designate the distributed boundary traction load in vertical

direction.

expansion of the cross section is governed by the coefficient β = 10−4 K−1,
and the storage of heat by the specific heat capacity c = 1500 J/m2K. The
heat conduction through the cross section is conditioned by the constant
specific conductivity k0 = 0.02W/K. The deviatoric viscosity is set to
Vdev = 10000 Js/m2 and the corresponding volumetric viscosity amounts to
Vvol = 50000 Js/m2. The ambient temperature Θ∞ of this two-dimensional
continuum body amounts 298.15K. The temperature at the bottom of the
spring coincides with the ambient temperature, and represents the only
uninsulated boundary. Figure 6.25 shows the heat flux in the reference
configuration over this uninsulated boundary. The remainder of the spring
is heated about 10K. The spring bottom is clamped, and the spring sockets
at the bottom and the top can only slide in vertical direction by prescribed
vanishing horizontal displacements of the corresponding nodes on the sides.
A vertical tension, respectively pressure, is initiated by the prescribed time-
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Figure 6.26. Load-displacement curve and time evolutions pertaining to the tensile
test of the spring, calculated by the ehG(1) method with linear finite elements in
time and bilinear finite elements in space. The boundary elements on the Neumann
boundaries are linear finite elements in space. The time step size hn is equal to 10ms
throughout the simulation. The dotted line in the time evolutions designates the end
of the first loading period. The vertical traction load, the temperature, the vertical
velocity and the vertical position pertaining to the middle node A on the top of the
spring is depicted versus time tn. The load-displacement curve of the same node is
shown in a normalised scale. The time evolution of the relative total energy is also

displayed.
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Figure 6.27. Current configurations of the tensile test of the spring. The colour
indicates the spectral norm of the spherical part pertaining to the projected
Kirchhoff stress field in Joule per square meter. The thin vector arrows at the spatial
nodes designate the Lagrangian velocity field, and the bold arrows designate the
distributed boundary traction load in vertical direction. The motion is calculated by
the ehG(1) method with linear finite elements in time and bilinear finite elements in
space. The boundary elements on the Neumann boundaries are linear finite elements

in space. The time step size is chosen to be 10 ms throughout.
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Figure 6.28. Current configurations pertaining to the tensile test of the spring. The
colour indicates the Lagrangian temperature field in Kelvin. The thin vector arrows
at the spatial nodes designate the Lagrangian velocity field, and the bold arrows
designate the distributed boundary traction load in vertical direction. The motion
is calculated by the ehG(1) method with linear finite elements in time and bilinear
finite elements in space. The boundary elements on the Neumann boundaries are
linear finite elements in space. The time step size hn is chosen to be 10 ms throughout

the simulation.
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Figure 6.29. Time evolutions associated with the tensile test of the spring, calculated
by the ehG(1) method with linear finite elements in time and bilinear finite elements
in space. The boundary elements on the Neumann boundaries are linear finite
elements in space. The time step size hn is set to 10 ms throughout the simulation.
The dotted lines indicate the end of the first loading period. In the first row to the
left, the absolute value of the residual of the relative total energy balance is shown.

The remainder plots show the absolute values of the Galerkin forms.

dependent Piola-Kirchhoff traction components

[att]
1 = 0 [att]

2 = 40000
N

m
sin

(
2π

1.6 s
t

)
(6.27)

at the free spatial element nodes a on the top. In this way, we obtain
a distributed traction load. Hence, we perform a kind of stress controlled
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Figure 6.30. Reference configurations (left) and current configurations (right)
associated with the tensile test of the spring, calculated by the ehG(1) method with
linear finite elements in time and bilinear finite elements in space. The boundary
elements on the Neumann boundaries are linear finite elements in space. The time
step size hn is set to 10 ms throughout the simulation. In the reference configurations,
the colour indicates the spectral norm of the spherical part pertaining to the
projected first Piola-Kirchhoff stress field in Joule per square meter. The vector
arrows at the spatial nodes designate the projected Piola-Kirchhoff heat flux. In
the current configurations, the colour denotes the Lagrangian temperature field in
Kelvin. Thin vector arrows at the spatial nodes designate the Lagrangian velocity

field, and bold arrows designate the distributed boundary traction load.

uniaxial extension and compression experiment (compare the real experiments
in Johnson & Beatty [170, 171], and the numerical experiment in Nagtegaal
& De Jong [172]). We compute with a time step size hn of 10ms throughout
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the simulation by using the ehG(1) method. We stop the calculation at time
tn = 5 s.

In Figure 6.26, we show the load-displacement curve and any time
evolutions pertaining to this enforced vibration of the spring. For example,
the amplitude of the traction load is depicted versus the simulation time.
This harmonic enforcement leads to the shown load-displacement curve. We
plot the curve with respect to normalised axes. The abscissa indicates the
displacement of the middle node on the top of the spring. First, we recognise
that the loading path is different from the unloading path according to the
internal dissipation. Second, we see laterally displaced loops. This indicates
a dynamical simulation by taking into account the inertia of the specimen.
In this figure, we also show the primary variables pertaining to the middle
node on the top of the spring. In the time evolution of the temperature,
we realise an initial cooling while stretching, which changes to a heating at
a certain minimum point. This effect entered into the literature as the so-
called thermoelastic inversion point, at which thermal expansion and entropy
contraction balance. This effect therefore depends on the linear expansion
coefficient of the material (for more details see Holzapfel [135], for instance).
In the time evolution of the vertical velocity, we see that the velocity course
becomes more and more chaotic. Further, it is affected by high-frequent modes,
which expand into the temperature evolution via the internal dissipation and
also in the time evolution of the position. The time evolution of the relative
total energy reveals that the pressure phases lead to greater local increases
of the relative total energy as the tension phases. The reason is the extension
of the free energy to the compressible range by using a high second Lamé
constant as penalty parameter (see Appendix C).

In Figure 6.27, we depict current configurations pertaining to time points
in the different phases of the first loading period. The two plots in the first row
show the stretching phase. In the plot to the left, the loading rate is positive
and the velocity field is upward oriented in direction to the prescribed loading.
However, in the right plot, we recognise on the midline a stagnation point at
about y = 12m with vanishing velocity, which means a singular point of the
velocity field. Above this point, the velocity field is downward oriented. The
reason is, the loading rate is now negative and the inertia of the spring emerge.
The greatest stress occurs at the suspension. The current configuration depicts
a time point pertaining to the phase with increasing pressure load. Here, we
also realise a stagnation point on the midline and high stresses on edges and at
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the clamping. In the bottom left corner, we show a time point with decreasing
pressure loading rate. We obtain a thermal expansion of the material around
the midline owing to the increased Lagrangian relative temperature field. The
high stress in the middle of the spring arise from this thermal expansion. In
the last calculated time point, we see that the traction load causes also a
second kind of a singular point in the Lagrangian velocity field. We realise
vortex points, which lead to increased stresses in surrounding regions.

In Figure 6.28, current configurations pertaining to the third loading period
are illustrated. We identify an increased temperature level throughout the
cross section of the spring. Particularly, the region from the interior through
to the edges of the bottom are heated.

In order to show the energy consistent incorporation of the Neumann
boundaries, we depict in Figure 6.29 the time evolutions of the absolute values
pertaining to the Galerkin forms and to the residual of the relative total energy
balance. The absolute values of the latter residual are below the prescribed
tolerance tol = 10−6 J of the global iterative solution procedure, owing to the
used convergence criterion. Likewise, the absolute values pertaining to the
spatially integrated and assembled local mechanical Galerkin form. In the time
evolution corresponding to the global mechanical and thermal Galerkin form,
however, we observe violations of the limit, especially at the times tn = 1.86 s
and tn = 3.8 s in the simulation interval.

In Figure 6.30, we show the reference configurations and the current
configurations pertaining to these time points. These two time points share
vortices in the Lagrangian velocity field, however, the position of the maximal
velocities (longest vector arrows) occur in different regions of the cross section.
At the time point tn = 1.86 s with the highest peak in the Galerkin forms,
the maximal velocities are directly around the vortex centres, while at time
tn = 3.8 s the maximal velocities occur at the top of the spring. On the other
hand, the Lagrangian temperature fields at these two time points show no
particularities. In the reference configurations, we see the high first Piola-
Kirchhoff stress in the vortex centres and the clamping on the bottom.

6.4.2. The example with boundary traction field and boundary heat flux. We
simulate a further dynamic tensile test of the spring. The material data and the
traction load is given as in Section 6.4.1, however, we introduce a prescribed
Piola-Kirchhoff heat flux on the thermal Neumann boundary ∂QB0 on the
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Figure 6.31. Time evolutions associated with the tensile test of the spring with
prescribed boundary heat flux on the top, calculated by the ehG(1) method with
linear finite elements in time and bilinear finite elements in space. The boundary
elements on the Neumann boundaries are linear finite elements in space. The time
step size is 10ms throughout the simulation. The dotted line in the time evolutions
designates the end of the first loading period. The first row shows the prescribed
vertical traction load and the inward normal heat flux pertaining to the middle node
A on the top of the spring. In the middle row, the corresponding current temperature
and vertical velocity is depicted. The vertical position of the middle node A as well

as the relative total energy is shown in the last row.
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Figure 6.32. Reference configurations pertaining to the tensile test of the spring with
prescribed boundary heat flux on the top. The simulation is done by the ehG(1)
method with linear finite elements in time and bilinear finite elements in space.
The boundary elements on the Neumann boundaries are linear finite elements in
space. The time step size is given by 10 ms throughout the simulation. The colour
indicates the spectral norm of the spherical part pertaining to the projected first
Piola-Kirchhoff stress field in Joule per square meter. The vector arrows at the

spatial nodes designate the projected Piola-Kirchhoff heat flux.

top of the spring, given by

aQt = 45000
W

m
sin

(
2π

1.6 s
t

)
(6.28)

at the free spatial element nodes a on the top. The sides of the spring are also
insulated.

In Figure 6.31, we show the corresponding time evolutions. Again, we show
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Figure 6.33. Current configurations pertaining to the tensile test of the spring with
prescribed boundary heat flux on the top. The colour indicates the Lagrangian
temperature field in Kelvin. The thin vector arrows at the spatial nodes designate the
Lagrangian velocity field, and the bold arrows designate the distributed boundary
traction load in vertical direction. The motion is calculated by the ehG(1) method
with linear finite elements in time and bilinear finite elements in space. The boundary
elements on the Neumann boundaries are linear finite elements in space. The time

step size is throughout 10 ms.
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Figure 6.34. Time evolutions associated with the tensile test of the spring with
prescribed boundary heat flux on the top, calculated by the ehG(1) method with
linear finite elements in time and bilinear finite elements in space. The boundary
elements on the Neumann boundaries are linear finite elements in space. The time
step size is 10 ms throughout the simulation. The dotted lines indicate the end of
the first loading period. In the first row to the left, the absolute value of the residual
of the relative total energy balance is shown. The remainder plots show the absolute

values of the Galerkin forms in Appendix B.

the time evolutions of the primary variables pertaining to the middle node on
the top of the spring. Owing to the high specific heat capacity in comparison
to the specific thermal conductivity, the heat flux has only a minor influence
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Figure 6.35. Reference configurations (left) and current configurations (right)
associated with the tensile test of the spring with prescribed boundary heat flux
on the top, calculated by the ehG(1) method with linear time finite elements and
bilinear finite elements in space. The boundary elements are linear finite elements
in space. The time step size hn is set to 10ms throughout the simulation. In the
reference configurations, the colour indicates the spectral norm of the spherical part
pertaining to the projected first Piola-Kirchhoff stress field in Joule per square meter.
The vector arrows at the spatial notes denote the projected Piola-Kirchhoff heat flux.
In the current configurations, the colour designates the Lagrangian temperature field
in Kelvin. Thin vector arrows at the spatial nodes designate the Lagrangian velocity

field, and bold arrows the distributed boundary traction load.

on the trajectory of the middle node on the top, which can be seen by
the unmodified velocity and position course in comparison to Section 6.4.1.
However, the time evolution of the temperature is directly affected by the
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heat flux course. Therefore, a well-known application of boundary heat fluxes
is to solve the inverse problem of determining a time-dependent boundary
heat flux in order to achieve a prescribed temperature distribution at final
time (see Jiang [173]). According to the major contribution of the mechanical
energies to the relative total energy, the time evolution of the relative total
energy is also not conspicuously modified by the boundary heat flux.

In Figure 6.32, the effect of the boundary heat flux on the projected Piola-
Kirchhoff heat flux in the reference configuration is depicted. The depicted
reference configurations pertain to the first loading period. In addition to the
boundary heat flux over the Dirichlet boundary at the bottom, we recognise
the boundary heat flux over the Neumann boundary at the top.

In Figure 6.33, we see in the current configurations the heating and cooling
of the top of the spring by the boundary heat flux.

Figure 6.34 illustrates the energy consistent incorporation of the boundary
heat flux. We see, the absolute value of the residual of the relative total energy
balance, and the spatially assembled and integrated local mechanical Galerkin
form, are in turn below the limit of 10−6 J prescribed in the convergence
criterion. However, the global mechanical Galerkin form and the thermal
Galerkin form show again two high peaks in their time evolutions. Although
the fulfillment of the mechanical Galerkin form is better as in Section 6.4.1
without the boundary heat flux.

In Figure 6.35, the reference configurations and the current configurations
pertaining to these two time points are shown. These time points share the
distinctive first Piola-Kirchhoff stress waves in the reference configuration.
Here, the velocity fields show no particularities as distinctive stagnation points
or vortex points, respectively.
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7. CONCLUSIONS

In this paper, we address the development and implementation of energy-
momentum consistent algorithms for simulating dynamic finite deformation
thermo-viscoelastic problems. Such algorithms provide an extension of energy-
momentum conserving simulation algorithms for nonlinear elastodynamics. In
both problem classes, the key concept is to satisfy a valid stability estimate
as well as momentum balances of the initial-boundary value problem also in
a discrete sense. In this way, unconditionally stable simulation algorithms are
assured.

Since we aim at higher-order accurate space-time discretisations, we apply
the finite element method in the space as well as in the time domain. We
perform the spatial discretisation by means of a common Bubnov-Galerkin
approximation. However, the discretisation in time is designed to be exactly
energy-momentum consistent as follows: First of all, we design an inherently
energy-momentum consistent finite element method in time. That means, we
address to fulfil also in a discrete sense (a) the stability estimate exactly for
exact quadrature in time, and (b) total linear and total angular momentum
conservation also with numerical quadrature. In the final design step, we
transform the accuracy order dependent fulfillment of the stability estimate
in an exact fulfillment by keeping the momenta conserved. The inherently
energy consistency is a matter of the appropriate Galerkin method for
the corresponding time evolution equation. For the first order form of the
equations of motion, it is well-known that the continuous Galerkin (cG)
method is inherently energy consistent. In this paper, we also deduce the
energy consistent Galerkin method for the used internal variable evolution
equation as well as the entropy evolution equation. The former equation is
solved consistently to the stability estimate by using the cG method as well.
The reason is the claimed weak equality of two non-equilibrium stress tensors.
Weak in the sense of an equal viscous dissipation with both stress tensors.
However, the stability estimate claim to solve the entropy evolution equation
by a specific discontinuous Galerkin (dG) method. The specific feature of this
dG method is a jump term formulated in the internal energy. The final design
step is realised by a higher-order extension of the discrete gradient method.
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This extension is based on a closed-form minimisation being not restricted to
gradients. In this way, we obtain two additional terms in the weak formulation,
which provide the fulfillment of the stability estimate in the discrete sense, in
spite of using numerical quadrature.

This space-time discretisation leads to a system of algebraic nonlinear
equations, which we solve by using a monolithic solution strategy. The
corresponding Newton-Raphson methods on the global and the element level
are based on a consistent tangent matrix. The used convergence criteria take
the inherently energy consistency into account and compare energy rates,
in contrast to usual solution-based criteria. Thus, different scales in the
independent variables are borne in mind in a natural manner.

Numerical simulations show that the inherently energy conserving method
is higher-order accurate, and that the modifications of the inherently energy
consistent Galerkin method do not affect this accuracy. Further, we compare
the stability properties. In this connection, we show that the stability estimate
is an indicator of the instability, however, that the instability is caused
by insufficient approximations of physical quantities. Therefore, the used
modifications of the Galerkin method arise from the approach of improving
these insufficient approximations subject to the claim of energy consistency.
One numerical simulation also reveals that an improvement can be a proper
spatial mesh, which is adjusted to the material parameters. The reason
for this effect is that the best approximation property of the Galerkin
method depends on the element size in relation to the material parameters.
Numerical simulations with mechanical and thermal excitation show the
energy consistent incorporation of boundary conditions, which means the
identification of the corresponding external power in the energy balances
and the enhancement of the proposed convergence criterion. Thus, only the
introduced external mechanical or thermal power affects the time evolution
of the primary variables, and not spurious algorithmic introduced powers
adulterate the numerical results.



8. OUTLOOK

Having in mind the stability estimate, we realise that the dissipated energy
depends on the time step size, because the total dissipation has to be
integrated numerically in time. Thus, an energy consistent finite element
method can provide, independently of the time step size, only a non-negative
dissipated energy, but with a time step size dependent value. In numerical
simulations, the negative tangent of the decreasing relative total energy
therefore depends on the time step size. A remedy would be a total dissipation,
which coincides with a time derivative from a non-negative smooth convex
potential function. Then, according to the fundamental theorem of calculus,
the time integral in the stability estimate could be replaced, and an energy
consistent finite element method leads to a non-negative dissipated energy
depending not on the time step size. However, it might be that, for the
heat conduction, this can be realised only by means of a non-classical
formulation of thermoelasticity (see Dascalu & Maugin [174] and Maugin
& Kalpakides [175]). Such a non-classical formulation also influences the
appropriate Galerkin method in time (see Bargmann & Steinmann [95] and
Bargmann [93]), so that it is possible that a continuous Galerkin method in
time is energy consistent for the thermal evolution, contrary to the special
discontinuous Galerkin method for the classical thermoelasticity in this work.

Moreover, on both sides of the stability estimate, the spatial integration has
to be approximated by an element-wise numerical integration. The reachable
error of the relative total energy balance (the tolerance tol) therefore depends
on the approximation error of the spatial quadrature rule. However, the
knowledge about the expectable error with a given spatial mesh and a given
spatial quadrature rule would be desirable for energy consistent numerical
simulations of motions.

Simulating motions of quasi-incompressible polymeric materials as rubber,
it is an improvement to incorporate assumed strain formulations in space in an
energy consistent way (see Armero [75] and Müller & Betsch [176]). Also useful
for dynamics of rubber is a material formulation based on principal stretches,
because important constitutive laws as Ogden’s material are formulated in
eigenvalues (compare Müller et al. [177]).
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In order to simulate other engineering problems, the energy consistent
incorporation of more complicated boundary conditions is advantageous. For
example, a boundary pressure as configuration dependent traction load (see
Simo et al. [163]), or an energy consistent coupling with a rigid body (see
Betsch & Steinmann [67] and Betsch [178]) in order to simulate with time-
dependent Dirichlet boundaries. The coupling of two distinct solid materials
(bi-material body or body with inclusion) in an energy consistent way also
opens many possible practical applications (see Johnson & Chen [179]). The
problem is here that discontinuities arise in the first Piola-Kirchhoff stress
field (see Mergheim & Steinmann [180]), and a transition condition for the
Piola-Kirchhoff traction vector has to be enforced. Otherwise, the resulting
stress jump is an unnessary burden for the time integration algorithm. This
coupling also includes simulations of one material law, but with two distinct
material parameter sets (see Mergheim [181]).

Also important, for tyre simulations for instance, are energy consistent
contact algorithms for polymeric materials (see Laursen [157], Hesch &
Betsch [182] and Hesch [183]).

In each case, a coupling in such a way, that the involved energy balances
and conservation laws are exactly fulfilled, is advantageous for unconditional
stability and physically meaningful numerical results. Therefore, the presented
energy consistent formulation is derived by the general energy balances, which
can be also formulated for these extensions.



A. DISCRETE WEAK INITIAL BOUNDARY VALUE PROBLEM

The numerical solution procedure of the derived weak initial boundary value
problem involves the transformation of the continuous weak forms into a
nonlinear algebraic problem. We therefore derive the fully discrete weak
forms by employing the space-time finite element approximations. Then,
we introduce a matrix form of this fully discrete weak forms, in order to
obtain a system of nonlinear algebraic equations in Appendix B. According to
the inherently energy consistent discretisation, the fully discrete weak forms
arrive at energy balance equations after substituting the corresponding energy
consistent nodal values for their nodal variations.

In this way, we are able to determine the energy balances by the residual
equations. This is utilised for defining a converged solution in the numerical
solution procedure, and in the post-processing of the numerical examples for
verifying the energy consistency of the solution.

A.1. First equation of motion

We start with the left hand side of the weak form pertaining to the first
equation of motion, given by Equation (4.21). First, we employ the stated
finite element approximations

δπ̊n,e
α (η) =

meq∑

j=1

∑

a∈N e
en\N e

ϕ

M̃ j(α) ρe
0(η)Na(η) aδv∗,n,e

α̃j
(A.1)

and

ϕ̊n,e
α (η) =

men∑

i=1

∑

c∈N e
en\N e

ϕ

M̊ i(α)Nc(η) cx
n,e
αi

(A.2)

According to the completeness condition pertaining to the temporal shape
functions M i, i = 1, . . . ,men, the time derivative of the Dirichlet boundary
approximation due to Equation (4.17) is vanished in Equation (A.2). Since the
spatial integration concerns only the spatial shape functions and the element
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density, we define the element mass matrices

Me =

∫

B�

ρe
0(η)ne(η)n∗,e(η)Je

0 (η) ⊗ I (e ∈ Nel) (A.3)

where
ne(η) = [Na(η)]a∈N e

en\N e
ϕ

(A.4)

denotes the shape functions column vector and n∗,e(η) the corresponding row
vector. The symbol ⊗ designates the Kronecker product of matrices. Since the
nodal positions cxn,e

α1
at the first time node are known, owing to the temporal

continuity in the approximated body motion, we split up the sum over the time
nodes αi into two parts. As the time integration concerns only the temporal
shape functions, we define the matrix components

[ã]j =

∫

Iα

M̃ j(α) M̊1(α) and [Ã]j,k+1 =

∫

Iα

M̃ j(α) M̊k+1(α) (A.5)

j, k = 1, . . . ,meq, for the first and second part, respectively. We obtain a
matrix form by substituting matrix products for all the summations. First,
we generate element matrices by combining the position nodes cxn,e

αi
and

the variations aδv∗,n,e
α̃j

in a column vector xn,e
αi

and in a row vector δv∗,n,e
α̃j

,

respectively. In this way, we obtain the bilinear form (e ∈ Nel)

∑

a,c∈N e
en\N e

ϕ

[aδv∗,n,e
α̃j

]d[M
e
ac]

d
b[

cx
n,e
αi

]b
1

hn
= δv∗,n,e

α̃j
Me xn,e

αi

1

hn
(A.6)

Now, we assemble all spatial elements Be
0. A vector associated with a spatial

node is then identified by a global node number A ∈ Nno = {1, . . . , nno}. As
usual, the global node numbers and the element node numbers are related
by connectivity matrices. The global numbers of the spatial nodes on the
mechanical Dirichlet boundary are defined as elements of the index set
Nϕ = {A ∈ Nno|AX ∈ ∂ϕB0}. After the assembling of all spatial elements,
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the bilinear forms in Equation (A.6) leads to a bilinear form

A
e∈Nel

δv∗,n,e
α̃j

Me xn,e
αi

1

hn
= δv∗,n

α̃j
Mxn

αi

1

hn
(A.7)

where M denotes the global mass matrix, and the spatial node vectors δv∗,n
α̃j

and xn
αi

includes the variations and nodal positions, respectively, indexed
by the set Nno \ Nϕ. The last step is to substitute matrix products for
the remaining summations over the time nodes or temporal test nodes,
respectively. We put the unknown position vectors xn

αk+1
, k = 1, . . . ,meq, in a

column vector xn = [xn
α2

, . . . , xn
αmen

]. Likewise, we obtain the row vector δv∗,n

including all variations of the first space-time weak equation of motion. We
arrive at the matrix form

1

hn
δv∗,n

[
ã ⊗ Mxn

α1

]
+

1

hn
δv∗,n

[
Ã ⊗ M

]
xn (A.8)

for the left hand side of Equation (4.21).
On the righthand side, we employ the approximation of the test function

associated with the Lagrangian momentum field in Equation (A.1), and the
approximation

vn,e
α (η) =

men∑

i=1

∑

a∈N e
en\N e

ϕ

M i(α)Na(η) av
n,e
αi

(A.9)

of the Lagrangian deformation velocity field. Again, the spatial integration is
only concerned with the spatial shape functions and the element density, and
leads to the element mass matrices (A.3). Analogously, the time integration,
in turn, is only related with the temporal shape functions. Hence, we obtain
the matrix entries

[b̃]j =

∫

Iα

M̃ j(α)M1(α) and [B̃]j,k+1 =

∫

Iα

M̃ j(α)Mk+1(α)

(A.10)
j, k = 1, . . . ,meq. As for the integral on the left hand side, we obtain a bilinear
form by defining element velocity vectors vn,e

αi
, which subsequently has to be

assembled to global velocity vectors vn
αi

. We arrive at a full matrix form by
combining the unknown velocity vectors vn

αk+1
, k = 1, . . . ,meq, in a column
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vector vn = [vn
α2

, . . . , vn
αmen

].
In this way, we obtain the discrete weak form of the first equation of motion,

given by

1

hn
δv∗,n

{[
ã ⊗ Mxn

α1

]
+
[
Ã ⊗ M

]
xn
}

= δv∗,n
{[

b̃ ⊗ Mvn
α1

]
+
[
B̃ ⊗ M

]
vn
}

(A.11)
Note that this equation can eliminate the velocity node vector vn in the
discrete weak form of the second equation of motion, after applying the
fundamental lemma of calculus of variations.

A.2. Second equation of motion

We derive the matrix form pertaining to the second equation of motion
in the same line. In the left hand side of Equation (4.24), we employ the
approximations

π̊n,e
α (η) =

men∑

i=1

∑

a∈N e
en\N e

ϕ

M̊ i(α) ρe
0(η)Na(η) av

∗,n,e
αi

(A.12)

and

δϕ̊n,e
α (η) =

meq∑

j=1

∑

c∈N e
en\N e

ϕ

M̃ j(α)Nc(η) cδxn,e
α̃j

(A.13)

By transforming the variations cδxn,e
α̃j

into the associated covectors cδx∗,n,e
α̃j

,

and the covectors av∗,n,e
αi

of the velocities at the element nodes into the
corresponding vectors avn,e

αi
, we obtain the components of the element mass

matrices, defined in Equation (A.3). Assembling the element matrices, we
arrive at the matrix form

1

hn
δx∗,n

[
ã ⊗ Mvn

α1

]
+

1

hn
δx∗,n

[
Ã ⊗ M

]
vn (A.14)

In the boundary integral on the righthand side of Equation (4.24),
we employ the approximation of the Piola-Kirchhoff traction vector field
in Equation (4.25) and the approximation of the test function, given by
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Equation (A.13). According to the boundary integration, the spatial shape
functions Nc(η) of the test function leads to the reduced spatial shape
functions N̄c(η̄), c ∈ N e

T , on the mechanical Neumann boundary, and zero
elsewhere. Since the boundary integration concerns only the reduced spatial
shape functions, we obtain the boundary element matrix with the entries

[H
e

ca]db =





∫

∂B�

N̄c(η̄) N̄a(η̄)J̄e
0 (η) [I]db for c, a ∈ N e

T ,

0 for c, a ∈ N e
en \ N e

ϕ \ N e
T

(A.15)
The assignment of the Piola-Kirchhoff traction load t

n,e
α to any temporal test

node α̃j in the time element Iα takes over a time integration of the nodal

load vector multiplied with the shape function M̃ j(α). Thus, we obtain a
temporally averaged element traction load vector, which we combine in a
column vector

[at̄n,e,j ]b =





∫

Iα

M̃ j(α)[at
n,e
α ]b for a ∈ N e

T ,

0 for a ∈ N e
en \ N e

ϕ \ N e
T

(A.16)

Now, we combine the variations in a row vector. Then, we assemble these
element matrices. We obtain the boundary matrix H, which takes over the
exact assignment of the traction loads to all boundary nodes independent
of the size of the boundary elements. In the end, we obtain the matrix
formulation

meq∑

j=1

δx∗,n
α̃j

Ht
n,j

= δx∗,nFn
ext (A.17)

where the external force vector Fn
ext includes the loads for all nodes on the

mechanical Neumann boundary in each direction, and zeros elsewhere.
In the volume integral, we apply the approximation of the test function in

Equation (A.13), together with Equation (4.26) for calculating its Lagrangian
gradient. We arrive at the internal force vector

[cF
n,e,j
int ]d = −

∫

Iα

M̃ j(α)

∫

B�

[cB
n,e
α (η)]dlk[Sn,e,�

α (η)]lkJe
0 (η) (A.18)
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where
[cB

n,e
α (η)]dlk = [Dϕn,e

α (η)]dl [DNc(η)]k (A.19)

denotes the entries of the so-called B-Tensor with respect to the spatial
parent domain B�. The tensor Sn,e,�

α (η) designates the pull-back of the second
Piola-Kirchhoff stress tensor into B�. This operation is analogous to pulling
the Kirchhoff stress tensor τn,e

α (η) with respect to the current configuration
back to the second Piola-Kirchhoff stress tensor with respect to the reference
configuration by using the deformation gradient. Hence, we define

[Sn,e,�
α (η)]ij = [(Dψe

0)
−1(η)]iA [Sn,e

α (η)]AB [(Dψe
0)

−T (η)] j
B (A.20)

We formulate the double contraction of the second Piola-Kirchhoff stress
tensor with the B-Tensor as a matrix product. Thereby, we use the Voigt
notation for the symmetric second Piola-Kirchhoff stress tensor. For a two-
dimensional ambient space, any symmetric second order tensor S and any
second order tensor T can be written as column vectors

vecs(S) = [S11, S22, S12] and vec(T ) = [T11, T22, {T12 + T21}]
(A.21)

The matrix operator vecs maps the upper triangular matrix elements of a
symmetric tensor S into a column vector s with the dimension nvoi × 1, where
the Voigt dimension nvoi coincides with ndim(ndim + 1)/2. On the other hand,
to set up the matrix form of the B-tensor, we need the matrix operator vec,
which maps the matrix elements of a tensor T into a nvoi × 1 column vector t.
Hence, the element matrices corresponding to the internal force vector reads

F
n,e,j
int = −

∫

Iα

M̃ j(α)

∫

B�

Bn,e
α (η) sn,e,�

α (η)Je
0 (η) (A.22)

where

Bn,e
α (η) =

[(
vec
(
[cB

n,e
α (η)]d=1

))T
, . . . ,

(
vec
(
[cB

n,e
α (η)]d=ndim

))T]

c∈N e
en\N e

ϕ

(A.23)
denotes the matrix form of the B-tensor and sn,e,�

α (η) designates the
Voigt notation vecs(Sn,e,�

α (η)) of the second Piola-Kirchhoff stress tensor,
respectively. Assembling the element matrices, and combining the global
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force vectors at the test nodes, we obtain a matrix form analogous to
Equation (A.17).

The matrix form of the additional weak term in Equation (5.18) takes
the same form. Only the second Piola-Kirchhoff stress tensor field in
Equation (A.18) has to be replaced by the corresponding trace tensor.

In this way, we arrive at the discrete weak form

1

hn
δx∗,n

{[
ã ⊗ Mvn

α1

]
+
[
Ã ⊗ M

]
vn
}

= δx∗,n [Fn
ext + Fn

int + Fn
enh] (A.24)

including the virtual work of the global force vectors. Recall that the velocity
note vector vn can be eliminated by the first equation of motion. Then, the
left side coincides with the kinetic energy increment T (tn+1) − T (tn) owing
to the exact time integration (compare Equation (5.11)).

A.3. Entropy evolution equation

We use the space-time weak form of the entropy evolution in Equation (4.27)
for determining the time evolution of the temperature. Hence, the temperature
in the spatial notes at the time notes are the primary unknowns. On the left
hand side, we employ only the approximations

δΘn,e
α1

(η) =
∑

c∈N e
en\N e

Θ

Nc(η) cδΘn,e
α1

(A.25)

and
δΘn,e

α (η) =

men∑

j=1

∑

c∈N e
en\N e

Θ

M j(α)Nc(η) cδΘn,e
αj

(A.26)

Since the first weak term is only related to the test nodes at the first time note,
we use the notation cδΘn,e

αj
δj

1 associated with a Kronecker symbol for relating
these terms to all time nodes. The spatial integration in the first weak term is
related to the jump of the internal energy density, to the relative temperature
field at the first time node as well as to the spatial shape functions. Hence,
we obtain an averaged entropy production vector

Sn,e,1
tra =

∫

B�

ne
Θ
(η)

ên,e
α1

(η) − ên,e
0 (η)

ϑn,e
α1

(η)
Je

0 (η) (A.27)
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where
ne
Θ
(η) = [Na(η)]a∈N e

en\N e
Θ

(A.28)

denotes the shape functions column vector pertaining to the temperature,
and the index 0 designates the initial value at tn−1. We arrange the variations
and the entropy trace at the element nodes in a row vector δo∗,n

αi
and in a

column vector Sn,e,1
tra , respectively. The assembly of these element matrices

leads to matrices in the global numbering A ∈ Nno \ NΘ . By combining the
variations at all time nodes in a row vector, we obtain the matrix form

men∑

j=1

δo∗,n
αj

δj
1 Sn,1

tra = δo∗,n Sn
tra (A.29)

where the column vector Sn
tra includes the vector Sn,1

tra as first entries, and zeros
elsewhere.

In the second weak term, we employ the temporal approximation of the
entropy in Equation (4.10). The time integration is only concerned with the
temporal shape functions, and leads to the matrix components

[A]ji =

∫

I
η
α

M j(α) M̊ i(α) i, j = 1, . . . ,men (A.30)

The spatial integration of the entropy at the time nodes, multiplied with the
spatial shape function Na(η), a ∈ N e

en \ N e
Θ

, leads to the spatially averaged
entropies at the element nodes. The assignment of the averaged entropy rate
to the test nodes takes over the entries of the matrix A. We obtain the column
vector

Sn,e,j
rat =

men∑

i=1

[A]ji

∫

B�

ne
Θ
(η) ηn,e

αi
(η)Je

0 (η) (A.31)

After the assembly of the corresponding element matrices, the second weak
term is given by a multiplication of a column vector Sn

rat with the row vector
δo∗,n, as in Equation (A.29).

In the first term on the righthand side of Equation (4.27), we employ the
approximation of the assumed entropy flux in Equation (2.59), which is based
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on the temperature approximation

Θ
n,e
α (η) =

men∑

i=1

∑

a∈N e
en

M i(α)Na(η) a
Θ

n,e
αi

(A.32)

where the temperatures aΘ
n,e
α , a ∈ N e

en, denotes the temperatures of all
element nodes, including the element nodes on the thermal Dirichlet boundary
∂ΘBe

0. The volume integration is confined only to the Lagrangian conductivity
tensor and the Lagrangian gradient of the spatial shape functions. This
Lagrangian gradient is split into to the Jacobian matrix

Dne
Θ
(η) = [DNa(η)]a∈N e

en\N e
Θ

(A.33)

of the shape functions column vector and the inverse Frèchet derivative of the
isoparametric transformation ψe

0(η) into the reference configuration. However,
in view of the symmetry of the Lagrangian conductivity tensor, the entries
of the Jacobian matrix in Equation (A.33) and the entries of the Jacobian
matrix pertaining to the temperature approximation in Equation (A.32) are
combined in the matrix form

ΘB
n,e

α (η) =
[(

vec
(
(DΘ

n,e
α (η))T

DNc(η)
))T ]

c∈N e
en\N e

Θ

(A.34)

of the temperature-B-Tensor, defined analogously to Equation (A.23). Similar
to the pull-back of the stress in Equation (A.20), the inverse Frèchet
derivatives of the isoparametric transformation leads to a pull-back Kn,e,�

α (η)
of the Lagrangian conductivity tensor. Time integration then leads to a
temporally averaged entropy input arising from conduction of heat, given by

S
n,e,j
cdu = −

∫

Iα

M j(α)

∫

B�

Θ∞

{Θn,e
α (η)}2

ΘB
n,e

α (η) kn,e,�
α (η)Je

0 (η) (A.35)

where kn,e,�
α (η) denotes the Voigt notation vecs(Kn,e,�

α (η)). We assemble these
column vectors, and subsequently combine all the entropy inputs at the time
nodes in a column vector Sn

cdu.
The next weak term is concerned with the internal production of entropy.
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Employing Equation (A.26) of the test function, we obtain the element matrix
entries

S
n,e,j
dis =

∫

Iα

M j(α)

∫

B�

ne
Θ
(η)

Dint,n,e
α (η)

Θ
n,e
α (η)

Je
0 (η) (A.36)

and finally the corresponding column vector Sn
dis. Likewise, we deal

with the additional dissipation term in Equation (5.23). Substituting the
corresponding algorithmic production of entropy for the internal dissipation
in Equation (A.36), we obtain the column vector Sn

alg of the algorithmic
production of entropy.

In the boundary integral, we employ the test function and Equation (4.32)
pertaining to the normal heat flux. The boundary integration is then
concerned with the time-dependent boundary element matrix, given by the
entries

caG
n,e

α =





∫

∂B�

1

Θ
n,e
α (η̄)

N̄c(η̄) N̄a(η̄) J̄e
0 (η) for c, a ∈ N e

Q ,

0 for c, a ∈ N e
en \ N e

Θ
\ N e

Q

(A.37)
analogous to Equation (A.15). In a column vector qn,e

α , we collect the normal
heat fluxes at the element nodes in the set N e

Q , and account for the element
nodes in the difference set N e

en \ N e
Θ

\ N e
Q by a zero. We multiply this vector

with the quadratic boundary element matrix corresponding to the entries in
Equation (A.37), and obtain the temporally averaged entropy input vectors

Sn,e,j
ext =

∫

Iα

M j(α)G
n,e

α qn,e
α (A.38)

for each element, which has to be assembled. After combining all time nodes
in one column vector, we obtain the column vector Sn

ext for the entropy input
over the boundary.

Finally, we obtain the discrete weak form

δo∗,n [Sn
tra + Sn

rat] = hn δo∗,n
[
Sn

ext + Sn
cdu + Sn

dis + Sn
alg

]
(A.39)

of the space-time weak form of the entropy evolution equation.
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A.4. Internal variable evolution equation

We determine the internal variable evolution locally in the spatial parent
domain, by using the temporally weak form in Equation (4.33) in conjunction
with the approximations

δΓ̊
n,e

α (η) =

meq∑

j=1

M̃ j(α) δΓn,e
α̃j

(η) and Γ
n,e
α (η) =

men∑

i=1

M i(α)Γn,e
αi

(η)

(A.40)
Due to the symmetry of the internal variable in consequence of the isotropy
of the material, the non-equilibrium stress tensor Υα(η) is also symmetric.
In order to substitute an equivalent matrix product for the summation over
the indices A and D, we apply the Voigt notation

yn,e
α (η) = vec (Υn,e

α (η)) and δi∗,n,e
α̃j

(η) =
(
vecs

(
δΓ̊

n,e

α̃j
(η)
))T

(A.41)
where the first matrix is a column vector and the second matrix is a row
vector.

First, we consider the left hand side of Equation (4.33). Since the time
integration in this term concerns the temporal shape functions associated
with the test function as well as the non-equilibrium stress tensor, we define
the temporally averaged column vector

yn,e,j(η) =

∫

Iα

M̃ j(α) yn,e
α (η) (A.42)

We combine the vectors of the non-equilibrium stress and the test function
pertaining to all temporal test nodes in a column vector yn,e(η) and a row
vector δi∗,n,e(η), respectively. Thus, the left hand side of the weak form in
Equation (4.33) reads

meq∑

j=1

δi∗,n,e
α̃j

(η) yn,e,j(η) = δi∗,n,e(η) yn,e(η) (A.43)

On the righthand side, we cannot derive a more explicit form of the discrete
problem, if employ the approximation of the internal variable. Therefore, we
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also use here the test function only. The approximated viscous stress tensor
reads

[Σn,e
α (η)]AD = Vdev [Ln,e

α (η)]AC [(Γn,e
α )−1(η)]CD+

+
1

2

(
Vvol −

2Vdev

ndim

)
tr (Ln,e

α (η)) [(Γn,e
α )−1(η)]AD

(A.44)
Now, we proceed as for the non-equilibrium stress tensor. We define the
temporally averaged stress tensor as in Equation (A.42). After introducing
the Voigt notation and the final matrix form, we arrive at the column vector
zn,e. In the end, we obtain the matrix form

δi∗,n,e(η) yn,e(η) = δi∗,n,e(η) zn,e(η) (A.45)

pertaining to the temporally weak form (4.33) of the viscous evolution
equation. We refer to the left side as virtual non-equilibrium dissipation and
to the right side as virtual viscous dissipation.
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We obtain a numerical solution of the nonlinear algebraic problem derived
in Appendix A by linearising the corresponding equations with respect to
the primary variables, and iterating till a prescribed convergence criterion
is fulfilled. The linearisation is performed by the procedure in Laursen &
Meng [184]. We apply the directional derivative directly on the weak form,
and introduce in the obtained scalar equations a matrix notation for the
implementation.

In this way, we obtain not only the tangent matrices, but also the total
Newton-Raphson method. Hence, typical implementation errors with the
Voigt notation are avoided, and more appropriate convergence criteria as the
norm of the solution vector can be derived.

B.1. Discrete mechanical Galerkin forms

We resolve the first equation of motion for the velocity node vector vn, and
eliminate this vector in the weak form of the second equation of motion.
First, we transform Equation (A.11) in a residual form and factor out the test
vector δv∗,n. According to the fundamental lemma of calculus of variations,
the bracket has to vanish, and the velocity node vector reads

vn =
1

hn

[
B̃

−1
ã ⊗ xn

α1

]
+

1

hn

[
B̃

−1
Ã ⊗ I

]
xn −

[
B̃

−1
b̃ ⊗ vn

α1

]
(B.1)

We employ the velocity node vector in Equation (B.1) in the weak form of the
second equation of motion, given by Equation (A.24), and arrive at the global
mechanical Galerkin form Gmech depending on the nodal position vector xn,
the nodal temperature vector on, the internal variable vectors in,e(η) and the
test node vector δx∗,n. This Galerkin form takes the form

Gmech({xn, on, in,e(η)}; δx∗,n) ≡ Gmech(Z ; δx∗,n) ≡ δx∗,n Rmech(Z ) = 0
(B.2)

153
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where we refer to the column vector

Rmech(Z ) :=
1

(hn)2

[
ÃB̃

−1
Ã ⊗ M

]
xn +

1

(hn)2

[
ÃB̃

−1
ã ⊗ Mxn

α1

]
+

+
1

hn

[
ã − ÃB̃

−1
b̃
]
⊗ Mvn

α1
− [Fn

ext + Fn
int + Fn

enh]

(B.3)

as the residual vector. The above equation is one of two equations, which
constitutes the global iteration of the coupled nonlinear equation system. In
order to apply a Newton-Raphson scheme to these two equations, we begin
by deriving the linearised equation

Gmech(Z ; δx∗,n) + ∆xGmech(Z ; δx∗,n) + ∆oGmech(Z ; δx∗,n)+

+∆iGmech(Z ; δx∗,n) = 0
(B.4)

The term ∆xGmech denotes the x-increment of the global mechanical Galerkin
form, and the terms ∆oGmech and ∆iGmech represent the o- and i-increment
of Equation (B.2), respectively.

B.1.1. The x-increment of the global mechanical Galerkin form. We start
with the increment of the Galerkin form Gmech pertaining to the nodal position
vector, given by

∆xGmech(Z ; δx∗,n) =
d

ds s=0

Gmech({xn + s∆xn, on, in,e(η)}; δx∗,n) (B.5)

Assuming no displacement-depending external loads in the global mechanical
Galerkin form, the first virtual energy term in the second line of
Equation (B.2) as well as the internal and enhanced virtual work associated
with the internal and algorithmic global force vector, respectively, contribute
to ∆xGmech. We obtain

∆xGmech =
1

(hn)2
δx∗,n

[
ÃB̃

−1
Ã ⊗ M

]
∆xn − δx∗,n d

ds s=0

{
Fn

int,s + Fn
enh,s

}

(B.6)
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According to Equation (A.22), the x-increment of the internal force vector is
split up into two parts. The so-called geometrical part results from linearising
the B-tensor, and the linearisation of the second Piola-Kirchhoff stress tensor
implies a material part. Going down to the element level, the increment takes
the form

−δx∗,n d

ds s=0

Fn
int,s = −δx∗,n

{
GeoK

n
Int +MatK

n
Int

}
∆xn

= −
meq∑

j=1

δx∗,n
α̃j

meq∑

k=1

{
k+1
GeoK

n,j
Int +

k+1
MatK

n,j
Int

}
∆xn

αk+1

= −
meq∑

j=1
A

e∈Nel

δx∗,n,e
α̃j

meq∑

k=1

{
k+1
GeoK

n,e,j
Int +

k+1
MatK

n,e,j
Int

}
∆xn,e

αk+1

(B.7)
where K symbolise a quadratic stiffness matrix. The geometrical part of the
element stiffness matrix is based on the pull-back Sn,e,�

α (η) of the second
Piola-Kirchhoff stress tensor in the parent domain, given by Equation (A.20).
With this definition, we obtain the element stiffness matrix

k+1
GeoK

n,e,j
Int = −

∫

Iα

M̃ j(α)Mk+1(α)

∫

B�

Dne(η)Sn,e,�
α (η) (Dne(η))T Je

0 (η) ⊗ I

(B.8)
The material part of the element stiffness matrix results from linearising

the stress tensor Sn,e,�
α (η) with respect to the nodal position vector. First, we

determine the derivative of the stress tensor with respect to the right Cauchy-
Green tensor Cn,e,�(η), defined in Equation (4.31). A pull-back operation
leads to the components

[CC
L

n,e,�

α (η)]lkmn = 2
∂[Sn,e,�

α (η)]lk

∂CCD
[(Dψe

0)
−T (η)] m

C [(Dψe
0)

−T (η)] n
D

(B.9)
of the fourth-order material tensor CC

L
n,e,�
α (η) with respect to the spatial

parent domain. Since this material tensor is symmetric in its first and second
slot as well as in its third and fourth slot, we apply the Voigt matrix notation
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in Equation (A.21) to the first and the second double contraction. In this way,
we obtain the square matrix

CCL
n,e,�

α (η) =




[CC
L

n,e,�
α (η)]1111 [CC

L
n,e,�
α (η)]1122 [CC

L
n,e,�
α (η)]1112

[CC
L

n,e,�
α (η)]2211 [CC

L
n,e,�
α (η)]2222 [CC

L
n,e,�
α (η)]2212

[CC
L

n,e,�
α (η)]1211 [CC

L
n,e,�
α (η)]1222 [CC

L
n,e,�
α (η)]1212




(B.10)
for a two-dimensional ambient space. Finally, we linearise the right Cauchy-
Green tensor Cn,e,�

α (η) with respect to the nodal positions of the e-th element
at the time nodes. We obtain a further B-tensor with respect to the spatial
parent domain B�, given by the components

[aB
∗,n,e
αk+1

(η)]mnb = [DNa(η)]m[(Dϕn,e
αk+1

(η))T ] o
n δob (B.11)

Since we apply the matrix form of the material tensor in Equation (B.10),
we have to introduce a matrix form B∗,n,e

αk+1
(η) corresponding to this B-tensor.

This matrix takes a form, which is analogous to the transpose of the matrix
Bn,e

α (η). In the end, the material part of the element stiffness matrix reads

k+1
MatK

n,e,j
Int = −

∫

Iα

M̃ j(α)Mk+1(α)

∫

B�

Bn,e
α (η) CCL

n,e,�

α (η) B∗,n,e
αk+1

(η)Je
0 (η)

(B.12)
where

B∗,n,e
αk+1

(η) =
[
vec([aB

∗,n,e
αk+1

(η)]b=1) . . . vec([aB
∗,n,e
αk+1

(η)]b=ndim
)
]
a∈N e

en\N e
ϕ

(B.13)
Now, we determine the linearised enhanced virtual work associated with

the algorithmic global force vector Fn
enh. The corresponding stiffness matrix is

composed of four parts. First, we have a geometrical part analogous to that in
Equation (B.8), however, associated with the stress trace tensor with respect
to the spatial parent domain. We obtain the geometrical tangent

k+1
GeoK

n,e,j
Enh = −

∫

Iα

M̃ j(α)Mk+1(α)

∫

B�

Dne(η) Ŝ
n,e,�

α (η) (Dne(η))T Je
0 (η) ⊗ I

(B.14)
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where

[Ŝ
n,e,�

α (η)]ij = [(Dψe
0)

−1(η)]iA [Ŝ
n,e

α (η)]AB [(Dψe
0)

−T (η)] j
B (B.15)

Then, we obtain a material stiffness matrix by linearising the derivative
with respect to α of the approximated right Cauchy-Green tensor in the
reference configuration. In the following, we use a shorthand notation for the
lengthy fraction in Equation (5.18). The numerator is indicated by Ne,�

S (η)
and the scaling term in the denominator is denoted by De,�

S (η). We arrive at
the material tangent

k+1
MatK

n,e,j
Enh = −

∫

Iα

M̃ j M̊k+1

∫

B�

Bn,e
α

Ne,�
S

De,�
S

symLe,� B∗,n,e
αk+1

Je
0 (B.16)

The matrix symLe,� denotes a matrix form of a fourth order tensor analogous
to Equation (B.10). The corresponding fourth-order tensor coincides with the
pull-back of the double partial derivative of the right Cauchy-Green tensor
in the reference configuration with respect to itself into the spatial parent
domain, given by

[symL
e,�(η)]lkmn = [(ce

0(η))−1]lm[(ce
0(η))−1]kn + [(ce

0(η))−1]ln[(ce
0(η))−1]km

(B.17)
where

[ce
0(η)]lm = [(Dψe

0(η))T ] A
l δAB [Dψe

0(η)]Bm (B.18)

designates the right Cauchy-Green tensor of the isoparametric transformation
from the spatial parent domain in the reference configuration.

The next step comprises the linearisation of the numerator Ne,�
S (η) of the

stress trace tensor, which leads to the tangent matrix

k+1
NumK

n,e,j
Enh = −

∫

Iα

M̃ j

∫

B�

Bn,e
α

1

2De,�
S

symLe,� c̊
n,e,�
α Numb∗,n,e

αk+1
Je

0 (B.19)

where the vector cn,e,�
α denotes the column vec(Cn,e,�

α ) of the right Cauchy-
Green tensor with respect to the spatial parent domain, according to the
definition in Equation (4.31) and the time approximation in Equation (5.14).
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The row vector Num b∗,n,e
αk+1

is composed of two terms. The first term corresponds

to the time node tn+1 only, wherefore we introduce the Kronecker symbol
δk+1,men . Then, we obtain

δk+1,men

{
s∗,n,e,�
αk+1

(η) − ϑn,e
αk+1

(η) t∗,n,e,�
αk+1

(η)
}

B∗,n,e
αk+1

(η) (B.20)

The star at the matrix form sn,e,�
αk+1

of the stress tensor at the unknown time
nodes with respect to the spatial parent domain indicates a row vector. The
row vector t∗,n,e,�

αk+1
arise from the matrix form of the stress-temperature tensor

with respect to the spatial parent domain, given by

tn,e,�
αi

(η) = vecs(T n,e,�
αi

(η)) = vecs(∂ΘS
n,e,�
αi

(η)) (B.21)

The second term is a sum of time integrals, which are associated with the
nodal position vectors at each unknown time node. In this term, we introduce
the matrix form of the tensor B∗,n,e

α , which is analogously defined as in
Equation (B.11), however, depends on the Fréchet derivative of the time
approximation, given by Equation (4.17). The second term reads

+

∫

I
η
α

M̊k+1(α)ϑn,e
α (η) t∗,n,e,�

αk+1
(η)B∗,n,e

αk+1
(η)−

−
∫

Iα

s∗,n,e,�
α (η)

{
Mk+1(α) B̊

∗,n,e

α (η) + M̊k+1(α)B∗,n,e
α (η)

}
−

−
∫

Iα

Mk+1(α) r∗,n,e,�
α (η) CCL

n,e,�

α (η) B∗,n,e
αk+1

(η)+

+

∫

Iα

Mk+1(α)̊ i
∗,n,e

α (η) ΓCL
n,e,�

α (η) B∗,n,e
αk+1

(η)

(B.22)

The row vector r∗,n,e,�
α (η) coincides with the transposition of the column

vector vec(Rn,e
α (η)), arising from the elastic deformation rate tensor with

respect to the spatial parent domain. Analogous to Equation (2.47), we define

[Rn,e,�
α (η)]kl = [(Dϕn,e

α (η))T ] a
k δab[

˚
Dϕ

n,e
α (η)]bl (B.23)
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We transform the first and the second double contraction of the material
operator ΓC

L
n,e,�
α (η) in the corresponding matrix form. Since the row

vector i∗,n,e
α coincides with the transposition of the column vector vecs(Γn,e

α )
according to the symmetry of the internal variable, we obtain the matrix

ΓCL
n,e,�

α =




[ΓC
L

n,e,�
α ]1111 [ΓC

L
n,e,�
α ]1122 [ΓC

L
n,e,�
α ]1112

[ΓC
L

n,e,�
α ]2211 [ΓC

L
n,e,�
α ]2222 [ΓC

L
n,e,�
α ]2212

2 [ΓC
L

n,e,�
α ]1211 2 [ΓC

L
n,e,�
α ]1222 2 [ΓC

L
n,e,�
α ]1212


 (B.24)

where

[ΓC
L

n,e,�

α ]ABlk =

{
∂[Υn,e

α ]AB

∂CCD
+

∂[Υn,e
α ]AB

∂CDC

}
[(Dψe

0)
−T ] l

C [(Dψe
0)

−T ] k
D

(B.25)
The last part of the linearised enhanced virtual work follows from linearising

the denominator De,�
S (η) of the Lagrange multiplier pertaining to the stress

trace tensor. We obtain two terms. The first is associated with the time
derivative of the right Cauchy-Green tensor, and the second corresponds to
the elastic deformation rate tensor. Thus, we obtain the tangent

k+1
DenK

n,e,j
Enh =

∫

Iα

M̃ j

∫

B�

Bn,e
α

Ne,�
S

2 (De,�
S )2

symLe,� c̊
n,e,�
α Den b∗,n,e

αk+1
Je

0 (B.26)

where

Den b∗,n,e
αk+1

=
1

2

∫

Iα

c̊
∗,n,e,�
α symLe,�

{
Mk+1 B̊

∗,n,e

α + M̊k+1 B∗,n,e
α

}
+

+

∫

Iα

M̊k+1 r∗,n,e,�
α symLe,� B∗,n,e

αk+1

(B.27)

denotes a row vector, which has to be separately integrated over the temporal
parent domain.

B.1.2. The o-increment of the global mechanical Galerkin form. The
next step in the linearisation of the global mechanical Galerkin form in
Equation (B.2) is to determine the o-increment pertaining to the men
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unknown temperature nodes. Since we assume temperature-independent
external forces, the directional derivative applied to the internal and
algorithmic global force vector leads to

∆oGmech(Z ; δx∗,n) = −
meq∑

j=1
A

e∈Nel

δx∗,n,e
α̃j

men∑

k=1

{
k
k

n,e,j
Int +

k
k

n,e,j
Enh

}
∆on,e

αk

(B.28)
The tangent pertaining to the internal global force vector is based on the

dependency of the second Piola-Kirchhoff stress tensor on the temperature.
Therefore, this tangent depends on the stress-temperature tensor with respect
to the spatial parent domain, and we arrive at

k
k

n,e,j
Int = −

∫

Iα

M̃ j(α)Mk(α)

∫

B�

Bn,e
α (η) tn,e,�

α (η)n∗,e Je
0 (η) (B.29)

Since the denominator and the right Cauchy-Green tensor does not depend
on the temperature nodes, we only have to linearise the numerator of the
stress trace tensor. Therefore, we obtain only one part from linearising the
algorithmic global force vector, given by

k
k

n,e,j
Enh = −

∫

Iα

M̃ j

∫

B�

Bn,e
α

1

2De,�
S

symLe,� c̊
n,e,�
α Enhn∗,n,e

αk
Je

0 (B.30)

where

Enhn∗,n,e
αk

(η) =
(
δmen,k − δ1,k

)
ϑn,e

αk
(η) ∂Θηn,e

αk
(η)n∗,e(η)−

−
∫

I
η
α

{
M̊k(α)ϑn,e

α (η) ∂Θηn,e
αk

(η) + Mk(α) η̊n,e
α (η)

}
n∗,e(η)−

−
∫

Iα

Mk(α) r∗,n,e,�
α (η) tn,e,�

α (η)n∗,e(η)−

−
∫

Iα

Mk(α)̊ i
∗,n,e

α (η) ∂Θyn,e
α (η)n∗,e(η)

(B.31)
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Note that this row vector includes a part which is associated only with
the element temperatures at the first and the last temporal time node, and
furthermore, the time integration of the rest term is based on two different
quadrature rules.

B.1.3. The i-increment of the global mechanical Galerkin form. Finally, we
determine the i-increment of the global mechanical Galerkin form. Here, we
also obtain vecs(∆Γ

n,e
αk+1

(η)) as the matrix form of the increment. Applying
the directional derivative to the internal and algorithmic global force vector,
we obtain the increment

∆iGmech(Z ; δx∗,n) = −
meq∑

j=1
A

e∈Nel

δx∗,n,e
α̃j

meq∑

k=1

∫

B�

k+1
ConK

n,e,j
Mec (η)∆in,e

αk+1
(η)Je

0 (η)

(B.32)
where

k+1
ConK

n,e,j
Mec (η) =

k+1
ConK

n,e,j
Int (η)+

k+1
ConK

n,e,j
Enh (η) (B.33)

denotes the consistent tangent matrix for the internal variable evolution.
Recall that the increments and the tangents depend on the position in
the spatial parent domain. Since the matrix form pertaining to the partial
derivative of the stress tensor with respect to the internal variable follows
from Equation (B.24), we arrive at the tangent

k+1
ConK

n,e,j
Int (η) =

∫

Iα

M̃ j(α)Mk+1(α)Bn,e
α (η) (ΓCL

n,e,�

α (η))T (B.34)

where the transpose of the negative material operator matrix ΓCL substitute
the matrix form CΓL pertaining to the partial derivative of the second Piola-
Kirchhoff stress tensor with respect to the internal variable tensor.

The numerator of the stress trace tensor depends on the internal variable,
because the free energy depends on the internal variable. In analogy to the
tangent in the increment of the temperature nodes, we also obtain one tangent
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part, written as

k+1
ConK

n,e,j
Enh (η) = −

∫

Iα

M̃ j(α)

2De,�
S (η)

Bn,e
α (η) symLe,�(η) c̊

n,e,�
α (η) Enh l∗,n,e

αk+1
(η)

(B.35)
where

Enh l∗,n,e
αk+1

(η) = δmen,k+1
{

ϑn,e
αk+1

(η) ∂Θy∗,n,e
αk+1

(η) − y∗,n,e
αk+1

(η)
}
−

−
∫

I
η
α

M̊k+1(α)ϑn,e
α (η) ∂Θy∗,n,e

αk+1
(η)+

+

∫

Iα

Mk+1(α) r∗,n,e,�
α (η) (ΓCL

n,e,�

α (η))T +

+

∫

Iα

{
M̊k+1(α) y∗,n,e

α (η) + Mk+1(α)̊ i
∗,n,e

α (η)
ΓΓ
NonLn,e

α (η)
}

(B.36)

In the row vector Enh l∗,n,e
αk+1

(η), we have to employ the matrix form of the second
partial derivative of the free energy with respect to the internal variable. Since
we have on both sides of this fourth-order tensor a matrix form, which is
associated with the symmetric internal variable, we obtain the matrix

ΓΓ
NonLn,e

α =




[
ΓΓ
NonL

n,e,�
α ]1111 [

ΓΓ
NonL

n,e,�
α ]1122 2 [

ΓΓ
NonL

n,e,�
α ]1112

[
ΓΓ
NonL

n,e,�
α ]2211 [

ΓΓ
NonL

n,e,�
α ]2222 2 [

ΓΓ
NonL

n,e,�
α ]2212

2 [
ΓΓ
NonL

n,e,�
α ]1211 2 [

ΓΓ
NonL

n,e,�
α ]1222 4 [

ΓΓ
NonL

n,e,�
α ]1212


 (B.37)

where

[
ΓΓ
NonL

n,e
α (η)]ABCD =

1

4

{
∂[Υn,e

α (η)]AB

∂ΓCD
+

∂[Υn,e
α (η)]BA

∂ΓCD

}
+

+
1

4

{
∂[Υn,e

α (η)]AB

∂ΓDC
+

∂[Υn,e
α (η)]BA

∂ΓDC

} (B.38)
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denotes the negative components of the second partial derivative of the free
energy.

B.1.4. The increments of the local mechanical Galerkin form. The i-
increment in the global mechanical Galerkin form is determined by the local
mechanical Galerkin form

Ge
visc(Z ; δi∗,n,e(η)) ≡ δi∗,n,e(η)Re

visc(Z ) := δi∗,n,e(η) {yn,e(η) − zn,e(η)}
(B.39)

pertaining to the viscous evolution equation. Since the non-equilibrium stress
tensor generally depends on the nodal positions, the nodal temperatures as
well as the internal variable, the total increment of the linearised equation is
a sum of three increments. Hence, the corresponding linearised equation takes
the form as in Equation (B.4), with the total increment

∆Ge
visc(Z ; δi∗,n,e(η)) =

meq∑

j,k=1

δi∗,n,e
α̃j

(η)
k+1
ConK

n,e,j
Evo (η)∆xn,e

αk+1
+

+

meq∑

j,k=1

δi∗,n,e
α̃j

(η)
k
k

n,e,j
Evo (η)∆on,e

αk
+

+

meq∑

j,k=1

δi∗,n,e
α̃j

(η)
k+1

K
n,e,j
Evo (η)∆in,e

αk+1
(η)

(B.40)

where
K

n,e
Evo(η) = NonK

n,e
Evo(η) − VisK

n,e
Evo(η) (B.41)

denotes the tangential operators corresponding to the non-equilibrium stress
tensor and the viscous stress tensor. We also assume in this equation constant
viscosity parameters, so that there are no x- and o-increment from the viscous
stress tensor. We only obtain the matrices

k+1
ConK

n,e,j
Evo (η) =

∫

Iα

M̃ j(α)Mk+1(α) ΓCL
n,e,�

α (η)B∗,n,e
αk+1

(η)

k
k

n,e,j
Evo (η) =

∫

Iα

M̃ j(α)Mk(α) ∂Θyn,e
α (η)n∗,e(η)

(B.42)
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from linearising the non-equilibrium stress tensor with respect to the nodal
positions and temperatures, respectively.

The linearisation of the non-equilibrium stress tensor with respect to the
internal variable leads to the matrix form in Equation (B.37), and the tangent
matrices

k+1
NonK

n,e,j
Evo (η) =

∫

Iα

M̃ j(α)Mk+1(α)
ΓΓ
NonLn,e

α (η) (B.43)

pertaining to the k + 1 unknown nodal values of the internal variable.
The linearised form of the viscous stress tensor in Equation (A.44) is

associated with fourth-order tensors for each unknown time node, which are
written in matrix form analogously to Equation (B.37). The corresponding
components read

[
k+1
Vis L

n,e
α (η)]ADEF =

1

4

{
[k+1

zL
n,e
α (η)]ADEF + [k+1

zL
n,e
α (η)]DAEF

}
+

+
1

4

{
[k+1

zL
n,e
α (η)]ADFE + [k+1

zL
n,e
α (η)]DAFE

}

(B.44)
where

[k+1
zL

n,e
α ]ADEF =

M̊k+1

hn
2Vdev [(Γn,e

α )−1]AE [(Γn,e
α )−1]DF +

+
M̊k+1

hn

(
Vvol −

2Vdev

ndim

)
[(Γn,e

α )−1]AD[(Γn,e
α )−1]EF−

− 2Mk+1

(
Vvol −

2Vdev

ndim

)
[(Γn,e

α )−1]AD [Ln,e
α ]EC [(Γn,e

α )−1]CF−

− 2Mk+1

(
Vvol −

2Vdev

ndim

)
tr (Ln,e

α ) [(Γn,e
α )−1]AE [(Γn,e

α )−1]DF−

− 2Mk+1 2Vdev[(Γ
n,e
α )−1]AE [Ln,e

α ]DC [(Γn,e
α )−1]CF−

− 2Mk+1 2Vdev[L
n,e
α ]AC [(Γn,e

α )−1]CE [(Γn,e
α )−1]DF

(B.45)
Here, we have employed the time approximation in Equation (4.15) pertaining
to the viscous deformation rate tensor. For each test node α̃j , we obtain the
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tangent matrix blocks

k+1
VisK

n,e,j
Evo (η) =

∫

Iα

M̃ j(α)

4

k+1
Vis Ln,e

α (η) (B.46)

associated with the k + 1 unknown nodal values of the internal variable.

B.1.5. The local iterative solution procedure. In order to determine the
internal variable evolution, we solve the Galerkin form in Equation (B.39)
on each spatial element. Therefore, the increments pertaining to the nodal
positions and the nodal temperatures vanish in this case. Combining the nodal
values pertaining to the temporal nodes, we arrive at a matrix form of a system
of algebraic equations. Then, we apply the fundamental lemma of calculus of
variations, and obtain the increment

∆in,e(η) = −
[
K

n,e
Evo(η)

]−1

Re
visc(Z ) (B.47)

Using locally an iterative solution procedure, we stop the iteration as soon
as the Galerkin form in Equation (B.39) is numerically zero in the sense that
its absolute value is less than a small tolerance tolevo. Therefore, we have to
determine the variations at the test nodes corresponding to each iteration.
Since the internal variable velocity lies in the test space corresponding to the
local mechanical Galerkin form given by Equation (B.39), we solve a linear
algebraic system at fixed and pairwise distinct points ξ̃k, k = 1, . . . ,meq, in
the temporal parent domain Iα as in Equation (5.5). We obtain

δin,e(η) = ĩ
n,e

(η) :=
[
(W̃)−1W′ ⊗ Ivoi

] [
in,e
α1

(η)
in,e(η)

]
(B.48)

where W̃ denotes the Haar matrix pertaining to the shape functions M̃ j(α),
j = 1, . . . ,meq, at the points ξ̃k, and the meq × men rectangular matrix W′ has

the entries M̊ i(ξ̃k) with the column index i. The identity matrix Ivoi has the
dimension nvoi × nvoi. As points ξ̃k, we choose the Gaussian quadrature points
with respect to the interval Iα, at which we interpolate the time integrals in
the Galerkin form. Employing the determined values at the test nodes, the
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Galerkin form (B.39) leads to the stopping criterion

∣∣∣Ge
visc(Z ; ĩ

∗,n,e
(η))

∣∣∣ ≡
∣∣∣ ĩ

∗,n,e
(η)Re

visc(Z )
∣∣∣ 6 tolevo (B.49)

where tolevo is a small tolerance that indicates the notion ‘numerically zero’.
The virtual viscous dissipation δi∗,n,e(η) zn,e(η) in the residual can

be rewritten by recalling Equation (4.15) for the approximated viscous
deformation rate tensor. Thus, the last term of the residual takes the form

hn

∫

Iα

{
2Vdev tr

(
{Ln,e

α (η)}2
)

+

(
Vvol −

2Vdev

ndim

)
{tr (Ln,e

α (η))}2

}
(B.50)

Since the integrand of Equation (B.50) is identical to the approximated
internal dissipation Dint,n,e

α (η), this stopping criterion means that the
difference between the temporally averaged non-equilibrium dissipation and
the temporally averaged viscous dissipation is numerically zero, which is a
discrete counterpart of Equation (2.72). Hence, we stop the iteration if the
relation ∣∣∣∣ ĩ

∗,n,e
(η) yn,e(η) − hn

∫

Iα

Dint,n,e
α (η)

∣∣∣∣ 6 tolevo (B.51)

holds for a small tolerance tolevo. In this way, we use a physically motivated
stopping criterion in contrast to the usual mathematically motivated stopping
criterion of comparing any norm of the unknown nodes with tolevo. The
advantage of the stopping criterion (B.49) is that the deformation of the
element is taken into account, and so scaling problems are avoided.

B.1.6. The total increment of the global mechanical Galerkin form. Since the
Galerkin form Gvisc(Z ; δi∗,n,e(η)) is numerically zero after the local iterative
solution procedure, the increment in Equation (B.40) is numerically zero as
well. Therefore, assuming an especially small tolerance tolevo, the fundamental
lemma of calculus of variations approximately leads to the increment

∆in,e(η) = −
[
K

n,e
Evo(η)

]−1

ConK
n,e
Evo(η)∆xn,e −

[
K

n,e
Evo(η)

]−1

k
n,e
Evo(η)∆on,e

(B.52)
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By employing this equation in the increment ∆iGmech of the global mechanical
Galerkin form, we are able to express the increment ∆in,e(η) pertaining
to the internal variable vector by means of the increments of the nodal
positions and nodal temperatures. Hence, we have to combine all the temporal
nodes of the internal variable approximation in column vectors, before we are
able to eliminate the increment. Then, we assemble the spatial nodes, and
subsequently, we combine the temporal test nodes. In this way, the increment
∆iGmech takes the form

∆iGmech(Z ; δx∗,n) =

meq∑

j=1
A

e∈Nel

δx∗,n,e
α̃j

[
K

n,e,j
Mec ∆xn,e + k

n,e,j
Mec ∆on,e

]

=

meq∑

j=1

δx∗,n
α̃j

K
n,j
Mec∆xn +

meq∑

j=1

δx∗,n
α̃j

k
n,j
Mec∆on

= δx∗,n K
n
Mec∆xn + δx∗,n k

n
Mec∆on

(B.53)
where

K
n,e,j
Mec =

∫

B�

ConK
n,e,j
Mec (η)

(
K

n,e
Evo(η)

)−1

ConK
n,e
Evo(η)Je

0 (η)

k
n,e,j
Mec =

∫

B�

ConK
n,e,j
Mec (η)

(
K

n,e
Evo(η)

)−1

k
n,e
Evo(η)Je

0 (η)

(B.54)

The total increment pertaining to the discrete mechanical Galerkin form then
depends only on the increments of the nodal positions and nodal temperatures.
After employing this increment in Equation (B.4), we arrive at the linearised
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equation

Gmech(Z ; δx∗,n) +
1

(hn)2
δx∗,n

[
ÃB̃

−1
Ã ⊗ M

]
∆xn−

− δx∗,n
[
GeoK

n
Int +MatK

n
Int −K

n
Mec

]
∆xn−

− δx∗,n
[
GeoK

n
Enh +MatK

n
Enh +NumK

n
Enh +DenK

n
Enh

]
∆xn−

− δx∗,n
[
k

n
Int +k

n
Enh −k

n
Mec

]
∆on = 0

(B.55)
Note that the coefficient matrix of each increment in Equation (B.52) can be
interpreted as the solution X of a matrix equation of the general form AX = B,
which means, in a computational implementation, we have not to calculate
the inverse matrices explicitly.

B.2. Discrete thermal Galerkin form

In this section, we linearise the Galerkin form associated with the discrete
weak form of the entropy evolution in Equation (A.39). We define the residual
of this weak form as the discrete thermal Galerkin form

Gther(Z ; δo∗,n) := δo∗,n [Sn
tra + Sn

rat]−

−hn δo∗,n
[
Sn

ext + Sn
cdu + Sn

dis + Sn
alg

]
= 0

(B.56)

We obtain a linearisation analogous to Equation (B.4) pertaining to the
discrete mechanical Galerkin form.

B.2.1. The x-increment of the thermal Galerkin form. We start with the
linearisation in the column vector xn including the nodal positions. Since
the column vector Sn

tra, associated with the internal energy density jump,
only depends on the initial positions, we immediately linearise the vector Sn

rat

associated with the entropy rate. The linearisation leads to the incremental
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virtual energy

δo∗,n
∆xS

n
Rat(Z ) = δo∗,n d

ds s=0

Sn
Rat(x

n + s∆xn, on, in,e(η))

= δo∗,n K
n
Rat ∆xn

=

men∑

j=1
A

e∈Ne
el

δo∗,n,e
αj

meq∑

k=1

k+1
K

n,e,j
Rat ∆xn,e

αk+1

(B.57)

According to Equation (A.31), we have to apply the directional derivative
to the entropy approximation at the time nodes. Since the entropy directly
depends on the right Cauchy-Green tensor, we arrive via the linearisation of
Cn,e

αk+1
(η) at the third-order B∗-tensor, defined in Equation (B.11). Taking

the definition of the stress-temperature tensor into account, we obtain the
matrix blocks

k+1
K

n,e,j
Rat = −[A]j,k+1

∫

B�

ne(η) t∗,n,e,�
αk+1

(η)B∗,n,e
αk+1

(η)Je
0 (η) (B.58)

of the global tangent matrix K
n
Rat.

Since we neglect a heat surface density field Qt which depends on the
current position in the ambient space, the x-increment of the external load
vector Sn

ext vanishes. The next step is therefore the linearisation of the
temporally averaged entropy input arising from conduction of heat, given by

δo∗,n
∆xS

n
cdu(Z ) =

men∑

j=1
A

e∈Ne
el

δo∗,n,e
αj

meq∑

k=1

k+1
K

n,e,j
Cdu ∆xn,e

αk+1
(B.59)

Here, we have to linearise the determinant Jn,e
α (η) of the deformation gradient.

Regarding Equation (4.20), this determinant coincides with the quotient of the
Jacobian determinant pertaining to the approximated deformation mapping
by the Jacobian determinant Je

0 (η) of the spatial parametrisation. Then, we
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linearise the conductivity tensor on the spatial parent domain, and obtain so
the matrix blocks

k+1
K

n,e,j
Cdu = −

∫

I
η
α

M j Mk+1

∫

B�

Θ∞

{Θn,e
α }2

ΘBn,e
α CduL

n,e,�
α B∗,n,e

αk+1
Je

0 (B.60)

where

CduL
n,e,�
α (η) = k0

det(Dϕn,e
α (η))

Je
0 (η)

{
icn,e,�

α (η) ic∗,n,e,�
α (η)− C

symLn,e,�
α (η)

}

(B.61)
The column vector icn,e,�

α (η) coincides with the matrix notation
vecs((Cn,e,�

α (η))−1) of the inverse right Cauchy-Green tensor on the spatial
parent domain. The symmetric fourth-order tensor in Equation (B.61) is
defined by substituting in Equation (B.17) the tensor Cn,e,�

α (η) for the tensor
ce
0(η).
Since the internal dissipation Dint,n,e

α and the algorithmic production of
entropy in Equation (5.23) both do not depend on the nodal positions, we
obtain no further x-increments.

B.2.2. The o-increment of the thermal Galerkin form. Now, we determine
the increment of the temperature node vector. First, we linearise the first
bracket in Equation (B.56), and obtain

A
e∈Ne

el

δo∗,n,e
α1

1
k

n,e,1
Tra ∆on,e

α1
+

men∑

j=1
A

e∈Ne
el

δo∗,n,e
αj

men∑

k=1

k
k

n,e,j
Rat ∆on,e

αk
(B.62)

In the first term, we obtain no temporal summation, because the column
vector Sn

tra pertaining to the entropy trace at the spatial element nodes
depends only on the first temporal node, and is solely related with the
variation at the first time node. Hence, the tangent includes only one non-
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zero block matrix, which is given by

1
k

n,e,1
Tra =

∫

B�

ne(η)

{
∂ηn,e

α1
(η)

∂Θα1

−
q
ên,e
α1

(η)
y

{ϑn,e
α1

(η)}2

}
n∗,e(η)Je

0 (η) (B.63)

In contrast, the column vector Sn
rat depends on all unknown temperature

nodes, because, according to Equation (4.10), the averaged entropy rate arise
from an interpolation over the entropy rates at the time nodes. Thus, for each
unknown time node, we arrive at tangent matrix blocks similar to the first
term of Equation (B.63), which means

k
k

n,e,j
Rat = [A]jk

∫

B�

ne(η)
∂ηn,e

αk
(η)

∂Θαk

n∗,e(η)Je
0 (η) (B.64)

Next, we linearise the column vector Sn
ext of the entropy input over the

boundary. Since we solely assume a time-dependent normal heat flux Q
n,e

α (η)
during the motion, we have to apply the directional derivative only to the
corresponding boundary element matrix in Equation (A.37). Hence, we obtain
the linearised form

δo∗,n
∆oS

n
ext(Z ) =

men∑

j=1
A

e∈Ne
el

δo∗,n,e
αj

men∑

k=1

k
k

n,e,j
Ext ∆on,e

αk
(B.65)

where

k
k

n,e,j
Ext = −

∫

I
η
α

M j Mk





∫

∂B�

Qn,e
α

{Θn,e
α }2

N̄c N̄a J̄e
0 for c, a ∈ N e

Q ,

0 for c, a ∈ N e
en\N e

Θ
\N e

Q

(B.66)
denotes the corresponding blocks of the tangent matrix. In order to arrived
at matrix blocks which corresponds to all free nodes, we extended the matrix
with zero entries, as already shown above in this work.

The linearised form of the assumed entropy flux field in the body is split
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into two parts, given by

δo∗,n
∆oS

n
cdu(Z ) =

men∑

j=1
A

e∈Ne
el

δo∗,n,e
αj

men∑

k=1

{
k

Geok
n,e,j
Cdu +

k
Matk

n,e,j
Cdu

}
∆on,e

αk
(B.67)

First, we obtain a geometrical part by linearising the Piola-Kirchhoff heat
flux, and second, a material part from applying the directional derivative to
the temperature in the denominator. Taking into account the Jacobian matrix
of the shape functions in the first part and the definition of the temperature-
B-tensor in the material part, we obtain the tangent blocks

k
Geok

n,e,j
Cdu = −

∫

I
η
α

M j Mk

∫

B�

Θ∞

{Θn,e
α }2

Dne
Θ K

n,e,�
α (Dne

Θ)T Je
0

k
Matk

n,e,j
Cdu =

∫

I
η
α

M j Mk

∫

B�

2Θ∞

{Θn,e
α }3

ΘB
n,e

α kn,e,�
α n∗,e Je

0

(B.68)

where we used the symmetric conductivity tensor with respect to the parent
domain as square matrix and as column vector, respectively.

The linearisation of the entropy production Sdis pertaining to the internal
dissipation leads to one tangent part only, because Dint

α solely depends on the
internal variable tensor. The corresponding block matrices read

k
k

n,e,j
Dis = −

∫

I
η
α

M j(α)Mk(α)

∫

B�

ne(η)
Dint,n,e

α (η)

{Θn,e
α (η)}2

n∗,e(η)Je
0 (η) (B.69)

We split the linearisation of the additional weak term in Equation (5.23)
in two parts. First, we linearise the temperature quotient behind the test
function. We arrive at a material tangent part. Then, we linearise the
denominator of the large fraction. Thus, we arrive at the linearised form

δo∗,n
∆oS

n
alg(Z ) =

men∑

j=1
A

e∈Ne
el

δo∗,n,e
αj

men∑

k=1

{
k

Matk
n,e,j
Alg +

k
Denk

n,e,j
Alg

}
∆on,e

αk
(B.70)
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In order to write this matrix blocks in compact form, we introduce a shorthand
notation for the large fraction in Equation (5.23). The numerator is denoted
by the symbol Ne,�

D (η), and the symbol De,�
D (η) accounts for the corresponding

denominator. Using this notation, we obtain the element matrices

k
Matk

n,e,j
Alg = −

∫

I
η
α

M j Mk

∫

B�

ne Ne,�
D

De,�
D

ϑn,e
α − Θ∞

{Θn,e
α }3 ‖Ln,e

α ‖4 n∗,e Je
0

k
Denk

n,e,j
Alg = −

∫

I
η
α

M j

∫

B�

ne Ne,�
D

{De,�
D }2

ϑn,e
α

{Θn,e
α }2 Denn

n,e
αk

‖Ln,e
α ‖4 n∗,e Je

0

(B.71)

where

Denn
n,e
αk

(η) =

∫

I
η
α

2Mk(α)
ϑn,e

α (η)Θ∞

{Θn,e
α (η)}3 ‖Ln,e

α (η)‖4 (B.72)

denotes the linearisation of the denominator with respect to the k-th time
node.

B.2.3. The i-increment of the thermal Galerkin form. The column vector
Sn

tra arising from the internal energy density jump only depends on the first
time node of the internal variable. However, the column vector Sn

rat associated
with the entropy rate and the column vector Sn

dis pertaining to the internal
dissipation depends on all time nodes. Hence, a linearisation of these vectors
leads to the incremental virtual energy

men∑

j=1
A

e∈Nel

δo∗,n,e
αj

meq∑

k=1

∫

B�

{
k+1
ConK

n,e,j
Rat (η)+

k+1
ConK

n,e,j
Dis (η)

}
∆in,e

αk+1
(η)Je

0 (η) (B.73)

The linearisation of the entropy rate with respect to the internal variable at
the time nodes leads to the partial derivative of the non-equilibrium stress
with respect to the temperature. Using the matrix form of this tensor, we
obtain the row vectors y∗,n,e

αk+1
at the unknown time nodes. We summarise the

linearised internal dissipation in a time-dependent row vector d∗,n,e
α pertaining
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to each unknown node. In the end, we obtain the tangent blocks

k+1
Con K

n,e,j
Rat (η) = [A]j,k+1 ne(η) ∂Θy∗,n,e

αk+1
(η)

k+1
Con K

n,e,j
Dis (η) =

∫

I
η
α

M j(α)

Θ
n,e
α (η)

ne(η) k+1
Disd

∗,n,e
α (η)

(B.74)

The linearisation of the internal dissipation consists of the incremental value
pertaining to the squared trace of the viscous deformation rate tensor on the
one hand, and pertaining to the trace of the squared viscous deformation rate
tensor on the other hand. Hence, we obtain a sum of two row vectors

k+1
Disd

∗,n,e
α (η) = tr (Ln,e

α (η))

(
Vvol −

2Vdev

ndim

)
k+1
Vold

∗,n,e
α (η) + 2Vdev

k+1
Devd

∗,n,e
α (η)

(B.75)
The first row vector is associated with the ‘viscous’ Lamé parameter, and the
second is multiplied with the deviatoric viscosity parameter. Since both row
vectors are based on the linearised form of the viscous deformation rate tensor,
they are similar in the structure. The row vectors arise via the transposed vec-
operator from the tensor components

[ k+1
Vold

n,e
α (η)]ED =

M̊k+1(α)

hn
[(Γn,e

α (η))−1]ED−

−2Mk+1(α)[Ln,e
α (η)]EB [(Γn,e

α (η))−1]BD

[ k+1
Devd

n,e
α (η)]ED =

M̊k+1(α)

hn
[Ln,e

α (η)]EB [(Γn,e
α (η))−1]BD−

−2Mk+1(α)[Ln,e
α (η)]EA[Ln,e

α (η)]AB [(Γn,e
α (η))−1]BD

(B.76)
In a final step, we determine the i-increment of the algorithmic production

of entropy, given by the column vector Sn
alg in the thermal Galerkin form.

According to Equation (5.23), we divide the tangent matrix corresponding to
this increment in three parts. The first (material) part is associated with the
linearisation of the squared norm of the viscous deformation rate tensor, given
by the row vector k+1

Alg d∗,n,e
α (η) in matrix form. The blocks of the material
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tangent therefore reads

k+1
MatK

n,e,j
Alg (η) =

∫

I
η
α

M j(α)ne(η)
Ne,�

D (η)

De,�
D (η)

2ϑn,e
α (η)

{Θn,e
α (η)}2 ‖L

n,e
α (η)‖2 k+1

Algd
∗,n,e
α (η)

(B.77)
where

[ k+1
Algd

∗,n,e
α (η)]ED =

M̊k+1(α)

hn
[(Γn,e

α (η))−1]EA [L∗,n,e
α (η)] D

A −

−2Mk+1(α) [(Γn,e
α (η))−1]EA[L∗,n,e

α (η)] B
A [(Ln,e

α (η))T ] D
B

(B.78)

The second part arise from the linearisation of the numerator Ne,�
D (η) in

Equation (5.23). The numerator consists of the time integration of the internal
dissipation Dint

α on the temporal parent domain, whose linearisation is already
given by Equation (B.75). The tangent matrix blocks take the form

k+1
NumK

n,e,j
Alg (η) =

∫

I
η
α

M j(α)ne(η)
1

De,�
D (η)

ϑn,e
α (η)

{Θn,e
α (η)}2 ‖L

n,e
α (η)‖4

Numd∗,n,e
αk+1

(η)

(B.79)
with

Numd∗,n,e
αk+1

(η) =

∫

Iα

k+1
Disd

∗,n,e
α (η) −

∫

I
η
α

k+1
Disd

∗,n,e
α (η) (B.80)

In the denominator, the derivative in direction of the i-increment also
concerns the squared norm of the viscous deformation rate tensor. However, we
have to integrate this linearisation with respect to time, using the integration
rule pertaining to the entropy evolution equation. Hence, we arrive at the
block matrices

k+1
DenK

n,e,j
Alg (η) = −

∫

I
η
α

M j ne Ne,�
D

{De,�
D }2

ϑn,e
α

{Θn,e
α }2 ‖Ln,e

α ‖4
Dend∗,n,e

αk+1
(B.81)
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wherein

Dend∗,n,e
αk+1

(η) =

∫

I
η
α

2

{
ϑn,e

α (η)

Θ
n,e
α (η)

‖Ln,e
α (η)‖

}2
k+1
Algd

∗,n,e
α (η) (B.82)

denotes the row vector pertaining to the linearisation of the denominator. By
summing up all the tangents in this section, the total increment of the thermal
Galerkin form with respect to the internal variable element vector in,e is given
by

∆iGther(Z ; δo∗,n) =

men∑

j=1
A

e∈Nel

δo∗,n,e
αj

∫

B�

ConK
n,e,j
The (η)∆in,e(η)Je

0 (η) (B.83)

where

ConK
n,e,j
The (η) = ConK

n,e,j
Rat (η) − hn

ConK
n,e,j
Dis (η)−

−hn
{

MatK
n,e,j
Alg (η) − NumK

n,e,j
Alg (η) − DenK

n,e,j
Alg (η)

} (B.84)

defines a shorthand notation for writing the total increment of the thermal
Galerkin form in the next section in a more compact form.

B.2.4. The total increment of the thermal Galerkin form. The increment of
the internal variable vector at any point in the spatial parent domain is given
by Equation (B.52). Hence, we employ this equation in Equation (B.83), and
obtain the tangent matrices

K
n,e,j
The =

∫

B�

ConK
n,e,j
The (η)

(
K

n,e
Evo(η)

)−1

ConK
n,e
Evo(η)Je

0 (η)

k
n,e,j
The =

∫

B�

ConK
n,e,j
The (η)

(
K

n,e
Evo(η)

)−1

k
n,e
Evo(η)Je

0 (η)

(B.85)

which express the increment ∆iGther(Z ; δo∗,n) by means of the x-increment
and the o-increment. We assemble the spatial element nodes, and summarise
the blocks pertaining to the temporal test nodes in global tangent matrices.
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We obtain the matrix form

∆iGther(Z ; δo∗,n) = −
men∑

j=1
A

e∈Nel

δo∗,n,e
αj

{
K

n,e,j
The ∆xn,e + k

n,e,j
The ∆on,e

}

= −δo∗,nK
n
The ∆xn − δo∗,nk

n
The ∆on

(B.86)
The other tangent matrices are build up in the usual way. First, we assemble

the increments at the spatial nodes pertaining to each time node, and then we
substitute the summations over the time nodes by matrix products. Since the
temperature increment of the entropy trace is solely related to one unknown

time node and one temporal test node, the corresponding global matrix k
n
Tra

is zero with the exception of the block in the upper left corner. In the end, we
arrive at the linearised equation

Gther(Z ; δo∗,n) − hn δo∗,n K
n
Cdu ∆xn + δo∗,n

[
K

n
Rat −K

n
The

]
∆xn−

− hn δo∗,n
[
k

n
Ext +k

n
Dis

]
∆on+

+ δo∗,n
[
k

n
Tra +k

n
Rat −k

n
The

]
∆on−

− hn δo∗,n
[
Geok

n
Cdu +Matk

n
Cdu +Matk

n
Alg +Denk

n
Alg

]
∆on = 0

(B.87)
Applying the fundamental lemma of calculus of variations, the corresponding
residual vector can be solved in a global iterative solution procedure, together
with the linearised mechanical Galerkin form in Equation (B.55).

B.3. Global iterative solution procedure

After linearising the global mechanical as well as the thermal Galerkin form,
we determine the increments in an iterative solution procedure. First of all,
we initiate the unknown position nodes by using the mechanical residual
vector. We neglect in the mechanical residual the implicit terms, and solve the
resulting system of algebraic linear equations for the unknown position nodes.
In this way, the unknown position nodes are initiated by initial velocities and
external forces. The unknown temperatures and internal variables are simply
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initiated by the corresponding values at the initial time points, because in the
associated residuals all terms are implicit.

Then, the increments can be determined simultaneously with one large
linear algebraic system, or successively with three small linear algebraic
systems. We choose the last option. We first eliminate the o-increment in
the global mechanical residual, and then determine the x-increment. Finally,
we update the o-increment (compare the solution procedure in Laursen &
Meng [184]). According to Equation (B.87), the temperature increment reads

∆on = − [kn
ther]

−1
[Rther(Z ) + Kn

ther∆xn] (B.88)

where Rther(Z ) denotes the residual vector corresponding to the thermal
Galerkin form. We summarise the tangent matrices of the x-increment in the
matrix Kn

ther, and the tangent matrices associated with the o-increment in the
matrix kn

ther. We employ Equation (B.88) in the residual equation arising from
the global mechanical Galerkin form, and obtain the linear algebraic system

{XnKn
ther − Kn

mech}∆xn = Rmech(Z ) − XnRther(Z ) (B.89)

The coefficient matrix Xn of the thermal residual vector Rther(Z ) and the
thermal tangent matrix Kn

ther, respectively, defines the coupling to the global
thermal Galerkin form. This matrix can be determined without an explicit
inversion of the matrix kn

ther by solving the matrix equation

Xn kn
ther = kn

mech (B.90)

for the thermal coupling matrix Xn as an intermediate step. Having solved
these two linear algebraic systems, we update the o-increment. We employ the
new x-increment in Equation (B.88), and solve the linear algebraic system

−kn
ther∆on = Rther(Z ) + Kn

ther∆xn (B.91)

for the o-increment.
The iteration proceeds till a prescribed convergence criterion is fulfilled.

Analogous to the local iterative solution procedure, we stop the iteration
loop if the considered Galerkin forms are numerically zero. In the global
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iterative solution procedure, we solve three Galerkin forms in one global
iteration. Hence, we derive from all Galerkin forms one physically meaningful
equation, whose absolute value has to be less than a small tolerance tol. Since
the weak forms are inherently energy consistent approximated, we arrive at
real energy and work terms, respectively, by substituting the variations of
the weak forms by real values. A physically motivated convergence criterion
for all Galerkin forms then follows from the directional derivative of the
approximated negative relative internal energy along the continuous time
curve γn

t (s) = Ê(t + s) in the n-th time element, given by

∫

T n

∫

B0

− η̇n
t (X)ϑn

t (X) − [P ∗,n
t (X)] A

a [Ḟ
n

t (X)]aA + [Υn
t (X)]AB [Γ̇

n

t (X)]AB

(B.92)
By using the time transformation in Equation (4.2), we transform the

integral and the time derivatives in this equation to the temporal parent
domain. We are able to relate the first term of Equation (B.92) to the discrete
thermal Galerkin form, because the relative temperature field is an admissible
test function. The relative temperature nodes aϑn,e

αk
therefore coincide with

the variations aδΘn,e
αk

of the thermal Galerkin form. Combining the relative
temperatures of the mesh in the global column vector un, the first term of
Equation (B.92) is equivalent to

−
nel∑

e=1

∫

Iα

∫

Be
0

η̊n,e
α (X)ϑn,e

α (X) = −u∗,nSn
rat (B.93)

Next, we relate the second term of Equation (B.92) to the discrete
mechanical Galerkin form. Therefore, we determine the corresponding
variations. Since the time derivative of the deformation field is an admissible
test function, the variations of the nodal positions are given by

δx∗,n = x̃∗,n := x∗,n
[
(W′)T (W̃)−T ⊗ Iϕ

]
(B.94)

where Iϕ denotes an nϕ × nϕ identity matrix. The real nϕ coincides with
the number |Nno\Nϕ| of the free position nodes of the mesh. Taking these
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variations into account, the second term of Equation (B.92) reads

−
nel∑

e=1

∫

Iα

∫

Be
0

[P ∗,n,e
α (X)] A

a [F̊
n,e

α (X)]aA = x̃∗,n,eFn
int (B.95)

In the last term of Equation (B.92), the integrals have to be interchanged by
using Fubini’s theorem, in order to employ the local mechanical Galerkin form.
Subsequently, using the corresponding test nodes given by Equation (B.48),
this integral can be written as

nel∑

e=1

∫

Iα

∫

Be
0

[Υn,e
α (X)]AB [Γ̊

n,e

α (X)]AB =

nel∑

e=1

∫

B�

ĩ
∗,n,e

(η) yn,e(η)Je
0 (η) (B.96)

by transforming the spatial integral to the corresponding parent domain.
Employing Equations (B.93), (B.95) and (B.96) in Equation (B.92), the
temporally averaged rate of the negative relative internal energy can be
written by the nodal vectors in the corresponding residuals. We arrive at
the sum

−u∗,nSn
rat + x̃∗,n,eFn

int +

nel∑

e=1

∫

B�

ĩ
∗,n,e

(η) yn,e(η)Je
0 (η) (B.97)

By definition, each Galerkin form is identical zero. Hence, each Galerkin form
is related to a corresponding residual equation. Each term of the sum in
Equation (B.97) can be therefore expressed by the corresponding Galerkin
form, and we arrive at the residual equation

Gther(Z ;u∗,n)+Gmech(Z ; x̃∗,n)−
nel∑

e=1

∫

B�

Gvisc(Z ; ĩ
∗,n,e

(η))Je
0 (η) = 0 (B.98)

This residual equation is zero only if the global and local mechanical Galerkin
form as well as the global thermal Galerkin form is zero. Hence, we stop the
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global iteration if this residual equation is numerically zero, which means

∣∣∣∣∣Gther(Z ;u∗,n) + Gmech(Z ; x̃∗,n) −
nel∑

e=1

∫

B�

Gvisc(Z ; ĩ
∗,n,e

(η))Je
0 (η)

∣∣∣∣∣ 6 tol

(B.99)
Since the convergence criteria is derived from the temporally averaged rate

of the negative relative internal energy, it has a concrete physical meaning by
taking into account the definitions of the terms in the Galerkin forms. The
first term of Equation (B.98) is given by

Gther(Z ;u∗,n) = Ê(tn+) − Ê(tn)+

+

∫

T n
η

∫

B0

Θ∞

Θn
t (X)

Dtot,n
t (X) −

∫

T n

∫

B0

Dint,n
t (X)

+

∫

T n
η

∫

B0

η̇n
t (X)ϑn

t (X) −
∫

T n
η

∫

∂QB0

ϑn
t (X)

Θn
t (X)

Q
n

α(X)

(B.100)

where the index η at the n-th time element T n indicates the time integration
rule in the thermal weak form, and the energy Ê(tn+) denotes the relative
internal energy at the first time node τn(α1) of the time evolution. The second
term of Equation (B.98) associated with the global mechanical Galerkin form
reads

Gmech(Z ; x̃∗,n) = T (tn+1) + Ê(tn+1) − T (tn) − Ê(tn+)−

−
∫

T n

∫

B0

[̄t
∗,n
t (X)]a [ϕ̇n

t (X)]a−

−
∫

T n
η

∫

B0

η̇n
t (X)ϑn

t (X) +

∫

T n

∫

B0

[Υn
t (X)]AB [Γ̇

n

t (X)]AB

(B.101)
In the last term of Equation (B.98), the local mechanical Galerkin forms of
all elements are spatially integrated and summed up. Accordingly, this term
coincides with the difference of the non-equilibrium dissipation and the viscous
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dissipation pertaining to the entire body, which means

nel∑

e=1

∫

B�

Gvisc(Z ; ĩ
∗,n,e

(η))Je
0 (η) =

∫

T n

∫

B0

[Υn
t (X)]AB [Γ̇

n

t (X)]AB−

−
∫

T n

∫

B0

Dint,n
t (X)

(B.102)
Note that the internal dissipation in Equation (B.100) is integrated
with the quadrature rule associated with the mechanical evolution
equations by virtue of the algorithmic production of entropy. Employing
Equations (B.100), (B.101) and (B.102) in Equation (B.98), the relative

internal energies Ê (tn+) as well as the non-equilibrium dissipation and viscous
dissipation terms vanish. Equation (B.98) then reads

T (tn+1) + Ê(tn+1) − T (tn) − Ê(tn) +

∫

T n

∫

B0

Θ∞

Θn
t (X)

Dtot,n
t (X)−

−
∫

T n

∫

B0

[̄t
∗,n
t (X)]a [ϕ̇n

t (X)]a −
∫

T n
η

∫

∂QB0

ϑn
t (X)

Θn
t (X)

Q
n

t (X) = 0

(B.103)
Assuming conservative mechanical loads and vanishing thermal loads as in
Section 2.3.2, the stopping criterion for the global iteration loop means that
the absolute value of the stability estimate (5.27) is less than the small
tolerance tol. Consequently, we also use a physically meaningful stopping
criterion in the global iterative solution procedure.

The advantage of this stopping criterion is that the unknowns are
naturally scaled while checked. Hence, great different values pertaining to the
nodal displacements and nodal relative temperatures do not lead to scaling
problems. Note that the convergence criterion in Equation (B.99) also works
without the additional weak terms in the global Galerkin forms. However, the
physical meaning is no longer that of a stability estimate.
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In this appendix, we derive the thermo-viscoelastic free energy, used
in the numerical simulations. We consider elastomeric polymers with
internal damping, which are isotropic and highly deformable. On the
one hand, we have to distinguish between solid and foamed elastomeric
polymers. Solid elastomeric polymers are nearly incompressible, whereas
the foamed elastomers are compressible. Therefore, we apply a model
for an isotropic compressible hyperelastic material, which describes an
incompressible material in the limit.

On the other hand, the free energy of elastomeric polymers at fixed
elongation depends on the relative temperature field of the material. We
assume a constant specific heat capacity and derive a corresponding purely
thermal contribution to the free energy. A constant specific heat capacity is
justifiable for limited compressible materials with a sufficient accuracy (see
Simo [156]). Also known is that a slight thermal expansion of elastomeric
polymers governs the thermoelastic inversion phenomenon, which describes an
initial cooling and a subsequent heating while stretching (see Holzapfel [135]).
Hence, we extend the free energy by a thermo-mechanical contribution,
modelling thermal expansion.

C.1. Model for incompressible hyperelastic materials

The considered polymers are composed of a network of long-chain molecules.
This network is a randomly coiled bundle of molecule chains, which are
chemically cross-linked (see Holzapfel [135]). Purely elastic behaviour occurs
if the chemical crosslinks are permanent, whereas viscoelastic behaviour
is governed by reforming processes of weak chemical interactions (see
Reese [107]). In a stress free configuration, the network is in a state of
maximum entropy. If the molecule chains are extended, the entropy is
decreased.

We consider a homogenous deformation of a specimen B0 with the principal
stretches λ1

t , . . . , λ
ndim
t in the current configuration Bt. Recall that a squared

principal stretch coincides with the corresponding principal value of the right

183



184 C. NEO-HOOKEAN MODEL FOR ISOTROPIC MATERIALS

 

 

1

1

2

2

3

3

4

4

5

5

6

6

0.5

0.5

1.5

1.5

2.5

2.5

3.5

3.5

4.5

4.5

5.5

5.5
0

50

100

150

200

250

λ1 (1)

λ
2

(1
)

 

 

1

1

2

2

3

3

4

4

5

5

6

6

7

8

9

0.5 1.5 2.5 3.5 4.5 5.5
0

50

100

150

200

250

λ1 (1)

Ψ
in

c
(J

/m
2
)

Figure C.1. On the left, the isolines of the free energy Ψ
inc
t (X) with shear modulus

µ = 7.5 J/m2 is depicted in the two-dimensional case (ndim = 2) in the principal
stretch space (λ1, λ2). The colours indicate the values of the free energy in Joule
per square meter. The local minimum point of this free energy lies in the origin of
the principal stretch space, and not in the intersection point of the dashed lines,
denoting an undeformed current configuration. The value of the free energy in the
origin is negative. On the right, the isolines of the free energy, plotted versus the
first principal stretch λ1 at constant second principal stretches λ2, are depicted. The

colours therefore denote the value of the second principal stretch.

Cauchy-Green tensor. The material is idealised as totally incompressible, such
that there is no change in volume on deformation. The stretching do not lead
to a storage of potential energy in the molecule chains. The change of free
energy is rather determined by the degree of order of the chains, and thus by
the entropy difference

∆η(X) = −Nk m

2

{
ndim∑

i=1

(
λi

t(X)
)2 − ndim

}
(C.1)

of the network. Here N denotes the number of chains in a unit volume in
the network, and k the Boltzmann constant. The coefficient m arise from
different end-to-end distances of the molecule chains in the network and
detached from their network. The free energy of the network follows from
the change of entropy by integrating Equation (2.48) with respect to the
temperature. We obtain the Neo-Hookean free energy at the point X in the
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Figure C.2. On the left, the isolines of the principal value P 1

t (X) associated with
the free energy Ψ

inc
t (X) corresponding to the shear modulus µ = 7.5 J/m2 are

depicted in the principal stretch space (λ1, λ2). The colours indicate the values of
the principal stress in Joule per square meter. On the right, the isolines pertaining to
the principal stress P 1

t (X), plotted versus the first principal stretch λ1 at constant
second principal stretches λ2, are shown. The colours denote the value of the second
principal stretch. Since the first principal stress do not depend on λ2, only one curve

is visible.

reference configuration B0 of the specimen, given by

Ψ
inc
t (X) =

µ

2

{
ndim∑

i=1

(
λi

t(X)
)2 − ndim

}
(C.2)

The parameter µ > 0 denotes the shear modulus or first Lamé constant of the
specimen, and coincides with Nk mΘ∞ for a purely mechanical contribution
(see Holzapfel [135]). The initial free energy in the undeformed reference
configuration is set to zero. Since the sum in Equation (C.2) coincides with the
trace of the right Cauchy-Green tensor Ct(X), we arrive at the free energy

Ψ
inc
t (X) =

µ

2

{
[Ct(X)]AB δBA − ndim

}
(C.3)

The free energy in Equation (C.2) or Equation (C.3) vanish in an
undeformed state, achieved by unity principal stretches or a deformation
ϕt = id, respectively. However, this state is not a local minimum of the
free energy (see Figure C.1). Therefore, the reference configuration and a
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Figure C.3. The solid line denotes the ln(J) function. Its derivative 1/J is depicted
as chain dotted line, and its tangent J − 1 in the root is plotted as dashed line. The
dotted line designates the function 1 + J2, which is always greater than ln(J) or

J − 1, respectively.

rigid body motion is not stress free, which can be verified by means of the
principal stretch space (compare Knowles & Sternberg [185]). We consider
the directional derivative of the free energy Ψ inc

t (X) along a continuous time
curve, and identify the partial derivative

∂Ψ inc
t (X)

∂λi
= µλi

t(X) (C.4)

as the principal value P i
t (X) of the first Piola-Kirchhoff stress tensor in

direction of the principal stretch λi
t(X). Thus, these principal stress values

coincide with µ > 0 in the undeformed configuration (see Figure C.2). Further,
the free energy do not tend to infinity, and the stress to negative infinity, under
infinite large pressure load. That means the conditions

lim
λi→0

Ψ
inc
t (X) −→ ∞ and lim

λi→0

∂Ψ inc
t (X)

∂λi
−→ −∞ (C.5)

are violated. These properties, however, are necessary for a free energy to
be meaningful in the large deformation range. Therefore, we modify the free
energy function (C.3) in the next subsection.

Nevertheless, Equation (C.4) implies the strict monotonicity of the first
Piola-Kirchhoff stress, which implies a strictly convex free energy in the
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Figure C.4. On the left, the isolines of the free energy Ψ̄
inc
t (X) with shear modulus

µ = 7.5 J/m2 are depicted in the two-dimensional principal stretch space (λ1, λ2).
The colours indicate the values of the free energy in Joule per square meter. The
intersection point of the dashed lines indicates the minimum point of the free energy
at the point (1, 1), associated with an undeformed current configuration. The value
of the free energy in this point is zero, where the free energy tends to infinity in the
limit zone of zero principal stretches. On the right, the isolines of the free energy,
plotted versus the first principal stretch λ1 at constant second principal stretches

λ2, are shown. The colours denote the value of the second principal stretch.

principal stretch space (see also Figure C.1). A strictly convex free energy
with the equilibrium state as local minimum implies the equilibrium state as
strict minimiser of the Lyapunov-like function in Equation (2.113) (compare
Ciarlet [133]). In turn, this is a necessary condition for formal stability of
the equilibrium state during a motion (see Simo et al. [137]). Generally, a
free energy Ψt(X) is strictly convex in the principal stretch space, if for any

s1 ∈ [0, 1] and two distinct points λ̂t(X) and λt(X) in the principal stretch
space, the inequality

Ψ(s1λ̂t(X) + (1 − s1)λt(X)) < s1 Ψ(λ̂t(X)) + (1 − s1)Ψ(λt(X)) (C.6)

holds (see Ball [186, 187], for instance). Considering a free energy being
symmetric in the principal stretches, which means the free energies of arbitrary
permutations of the principal stretches coincide, the graph of the free energy
is symmetric about the diagonal of the principal stretch space (compare
Figure C.1). Hence, we investigate the free energy as a function of one principal
stretch λi

t(X), i ∈ Nsd, and consider the remaining principal stretches λj
t (X),
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Figure C.5. On the left, the isolines of the first principal stress P̄ 1

t (X), associated
with the free energy Ψ̄

inc
t (X), are depicted in the principal stretch space with a shear

modulus µ = 7.5 J/m2. The colours denote the stress value in Joule per square meter.
The first principal stress is zero in the equilibrium point, and tends to negative
infinity as the principal stretches approaches to zero. On the right, the isolines
pertaining to the principal stress P̄ 1

t (X), plotted versus the first principal stretch
λ1 at constant second principal stretches λ2, are shown. The colours denote the
value of the second principal stretch. Since the first principal stress do not depend

on λ2, only one curve is visible.

j ∈ Nsd \ {i}, as parameters. We apply Inequality (C.6) twice. First, on λi
t(X)

as first point and a perturbed state λi
t(X) + s2∆λi

t(X), s2 ∈ (0, 1], as second
point, and then vice versa. Subsequently, for any (non-vanishing) increment
∆λi

t(X), we obtain the relation

∂Ψ(1 + s2∆λi
t(X);λj

t (X))

∂λi
∆λi

t(X) >
∂Ψ(1;λj

t (X))

∂λi
∆λi

t(X) (C.7)

by differentiating these inequalities with respect to s1 at s1 = 0, and by adding
the obtained free energy differences. Here, the positivity of the real number s2

has been taken into account. Equation (C.7) implies the strict monotonicity
of the principal values of the first Piola-Kirchhoff stress tensor (compare Kuhl
et al. [188]). Applying Equation (C.7) on the free energy in Equation (C.3),
we obtain the relation

s2 µ (∆λi
t(X))2 > 0 (C.8)

Since the parameter s2 and the first Lamé constant µ are positive, the free
energy is therewith verified as being strictly convex in the entire principal
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Figure C.6. The left diagram shows the isolines of the free energy Ψ̄
com
t (X)

associated with the penalty function ln(Jt(X)), corresponding to a shear modulus
µ = 7.5 J/m2 and a second Lamé constant λ = 3000 J/m2. The colours denote the
value of the free energy in Joule per square meter. The diagonal of the principal
stretch space indicates the symmetry of the free energy function. The region
above the hyperbola-shaped curve represent the concave domain of the free energy
function. On the right, the isolines of the free energy, plotted versus the first principal
stretch λ1 at constant second principal stretches λ2, are shown. The colours denote
the value of the second principal stretch. In this perspective, the concave region is

obviously visible.

stretch space.
In cases, where the monotony condition (C.7) is not definitely fulfilled,

differentiation of this condition with respect to s2 leads to the inequality

∂2Ψ(λi
t(X);λj

t (X))

∂λi∂λi
(∆λi

t(X))2 > 0 (C.9)

After substituting an equality sign for the inequality sign, this condition is
useful in order to localise regions in the principal stretch space, in which
the principle values of the first Piola-Kirchhoff stress decrease (see the next
section).

C.2. Model for compressible hyperelastic materials

Since a real solid elastomeric polymer is not completely incompressible, and
foamed elastomeric polymers are compressible, we extend the free energy
in Equation (C.3) to the compressible range, such that a unity Jacobian
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Figure C.7. In the left diagram, the first principal stress P̄ 1

t (X), associated with
the free energy Ψ̄

com
t (X) corresponding to the penalty function ln(Jt(X)), is

displayed in the principal stretch space (shear modulus µ = 7.5 J/m2 and second
Lamé constant λ = 3000 J/m2). The colours denote the value of the first principal
stress in Joule per square meter. The region above the hyperbola-shaped curve
indicates a domain of decreasing stress value. The right diagram shows the isolines
pertaining to the principal stress P̄ 1

t (X), plotted versus the first principal stretch
λ1 at constant second principal stretches λ2. The colours denote the corresponding
value of the second principal stretch. In this perspective, the decreasing of stress is

obviously visible.

determinant Jt(X) will be reached in the limit of incompressibility.
We start by adding a linear combination of a function H depending on the

Jacobian determinant to Equation (C.3), such that we obtain a free energy

Ψ̄
inc
t (X) = Ψ

inc
t (X) + aH(Jt(X)) (C.10)

We determine the parameter a and the function H so, that the free
energy (C.3) has a local minimum at a unity Jacobian determinant or unity
principal stretches, respectively. Considering the directional derivative of the
free energy Ψ̄ inc

t (X) along the continuous time curve, the partial derivative

∂Ψ̄ inc
t (X)

∂λi
= µλi

t(X) + aDH(Jt(X))
Jt(X)

λi
t(X)

(C.11)

denote the corresponding principal value P̄ i
t (X) of the first Piola-Kirchhoff

stress tensor associated with the principal stretch λi
t(X). The function
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Figure C.8. On the left, the isolines of the free energy Ψ̄
com
t (X) corresponding

to the penalty function Jt(X) − 1 are plotted versus the first principal stretch λ1

at constant second principal stretches λ2 (shear modulus µ = 7.5 J/m2 and second
Lamé constant λ = 3000 J/m2). The colours denote the value of the second principle
stretch. In the limit of incompressibility, the free energy at the lower boundary of
the principal stretch space tends to the half second Lamé constant. On the right, the
isolines pertaining to the corresponding principal stress P̄ 1

t (X) are plotted versus
λ1. The colours also indicate the value of the second principal stretch. In the limit
of incompressibility, the principal stress vanish in the origin of the principal stretch

space, which indicates a saddle point of the free energy.

DH(Jt(X)) denotes the Frèchet derivative of the function H(Jt(X)). Since
the minimum of the free energy is defined by vanishing partial derivatives of
the free energy with respect to each of the principal stretches, the equation

(
λi

t(X)
)2

= −a

µ
DH(Jt(X))Jt(X) (C.12)

has to lead to unity principal stretches λi
t(X), i ∈ Nsd. Further, the principal

values of the first Piola-Kirchhoff stress tensor has to tend to negative infinity,
if each principal stretch approaches to zero. Both is trivially fulfilled if
the parameter a is equal to the negative shear modulus, and the function
DH(Jt(X)) coincides with the inverse Jacobian determinant Jt(X) for all
times. The last assumption represents an ordinary differential equation with
respect to the Jacobian determinant. Integrating this ordinary differential
equation, we arrive at the function

H(Jt(X)) = ln(Jt(X)) + c (C.13)



192 C. NEO-HOOKEAN MODEL FOR ISOTROPIC MATERIALS

 

 

0.5

0.5

1

1

1.5

1.5

2

2

2.5

2.5

3
3

3

20

40

60

80

100
x 10

λ1 (1)

λ
2

(1
)

 

 

0.5

0.5

1

1

1.5

1.5

2

2

2.5

2.5

3

3
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

λ1 (1)

Ψ
c
o
m

(J
/m

2
)

Figure C.9. On the left, the isolines of the free energy Ψ
com
t (X) corresponding to

the penalty functions Jt(X) − 1 and ln (Jt(X)) are plotted in the principal stretch
space (shear modulus µ = 7.5 J/m2 and second Lamé constant λ = 3000 J/m2). The
colours denote the value of the free energy in Joule per square meter. On the
right, the isolines of the free energy plotted versus λ1 at constant second principal
stretch are depicted. The colours indicate the value of the second principal stretch.

Obviously, the free energy function is convex in the principal stretch space.

where c denotes the integration constant (compare Figure C.3). Note that
this function H can be also derived from the statistical theory of molecular
chains by taking into account a change of volume in each chain (see Shu &
Wenji [189]). Since we still claim that the free energy in the undeformed state
vanish, the integration constant c also has to vanish. In the end, we arrive at
the free energy

Ψ̄
inc
t (X) =

µ

2

{
[Ct(X)]AB δBA − ndim − 2 ln(Jt(X))

}
(C.14)

Now, we employ the determined parameter a and the function H(Jt(X))
in the corresponding principal value of the first Piola-Kirchhoff stress
tensor, given by Equation (C.11). Taking Equation (C.7) into account, the
monotonicity of the first Piola-Kirchhoff stress tensor imply the inequality
condition

(
1

λi
t(X)

[
λi

t(X) + s2∆λi
t(X)

] + 1

)
µ s2 (∆λi

t(X))2 > 0 (C.15)
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Figure C.10. In the left diagram, the first principal stress P 1

t (X), associated with
the free energy Ψ

com
t (X) corresponding to the penalty functions ln(Jt(X)) and

Jt(X) − 1, is displayed in the principal stretch space (shear modulus µ = 7.5 J/m2

and second Lamé constant λ = 3000 J/m2). The colours denote the value of the first
principal stress in Joule per square meter. The right diagram shows the isolines
pertaining to the principal stress P 1

t (X), plotted versus the first principal stretch
λ1 at constant second principal stretches λ2. The colours denote the corresponding
value of the second principal stretch. In this perspective, the strictly monotonically

increasing principal stress is obviously visible.

Since the principal stretch value λi
t(X) and its perturbed value in the brackets

are both positive, this inequality is fulfilled for each increment ∆λi
t(X).

Hence, the principal values of the first Piola-Kirchhoff stress tensor increases
monotonically (see Figure C.5), which imply the convexity of the free energy
in the principal stretch space (compare Figure C.4).

The next step is the extension to the compressible range. We apply a
penalty formulation

Ψ
com
t (X) = Ψ̄

inc
t (X) + λG(Jt(X)) (C.16)

by adding a penalty term, consisting of a non-negative penalty function G and
the positive constant λ > 0 as penalty parameter (see Simo & Taylor [190]),
which coincides in the linear theory with the second Lamé constant. Again,
the function G has to vanish in an undeformed current configuration with a
Jacobian determinant Jt(X) which is equal to one for all points X in the
reference configuration. Similarly, the corresponding principal values of the
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first Piola-Kirchhoff stress tensor, given by

(P com
t )i(X) = µ

{
λi

t(X) − 1

λi
t(X)

}
+ λDG(Jt(X))

Jt(X)

λi
t(X)

(C.17)

has to vanish at unity principal stretches. In an undeformed current
configuration, the last term of Equation (C.17) vanish only if the Frèchet
derivative DG vanish at a unity Jacobian determinant. Therefore, we assume
a function G being quadratic in a function G̃ which itself vanish at unity
principal stretches. We obtain the functions

G(Jt(X)) =
1

2

{
G̃(Jt(X))

}2

and DG(Jt(X)) = G̃(Jt(X))DG̃(Jt(X))

(C.18)
Moreover, the function G has to fulfill further conditions to be physically

meaningful. First, when the continuum degenerates to a single point under a
pressure load, which is happened in the origin of the principal stretch space,
the free energy tends to infinity and the first Piola-Kirchhoff stress tends to
negative infinity, which means

lim
λi→0+

{
G̃(Jt(X))

}2

−→ ∞ (C.19)

and

lim
λi→0+

G̃(Jt(X))

{
DG̃(Jt(X))

Jt(X)

λi
t(X)

}
−→ −∞ (C.20)

These conditions are satisfied if (1.a) G̃ tends to infinity and the limit of DG̃
is negative, or if (1.b) G̃ approaches to negative infinity and the limit of the
brace is positive.

Second, when the continuum expands to an infinite volume under tension,
which means each principal stretch λi

t(X) approaches to infinity, the free
energy as well as the first Piola-Kirchhoff stress tends to infinity in the sense

lim
λi→∞

{
G̃(Jt(X))

}2

−→ ∞ (C.21)
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and

lim
λi→∞

G̃(Jt(X))

{
DG̃(Jt(X))

Jt(X)

λi
t(X)

}
−→ ∞ (C.22)

These conditions are fulfilled if (2.a) G̃ tends to negative infinity and DG̃
approaches to a negative limit, or if (2.b) G̃ tends to infinity and the limit of
the brace on the righthand side is positive.

The function ln(Jt(X)) and its tangent line Jt(X) − 1 in the abscissa (see
Figure C.3) are two functions, which vanish in an undeformed configuration,
and are therefore two penalty functions

G̃1(Jt(X)) = ln(Jt(X)) and G̃2(Jt(X)) = Jt(X) − 1 (C.23)

(compare also Shu & Wenji [189]). The function G̃1 satisfies the condition
(1.b) of the first case, however, violates the conditions associated with the
second case, because the corresponding partial derivatives with respect to the
principal stretches tends to zero according to L’Hôpital’s rule. Applying the
convexity condition in Equation (C.9), the implicit functions

1 +
(
λi

t(X)
)2

+
λ

µ
{1 − ln (Jt(X))} = 0 (C.24)

therefore defines a bound of a depression in the profile pertaining to the i-th
principal value of the first Piola-Kirchhoff stress tensor (see Figure C.7). In
turn, this depression in the principal stresses imply a concave domain in the
profile of the free energy, which is extending while the positive quotient λ/µ
is increasing.

On the other hand, the function G̃2 violates the conditions associated with
the first case, because of its finite value at the lower boundary of the principal
stretch space. In the limit of incompressibility, the corresponding free energy
Ψ com

t (X) is therefore likewise bounded, and the principal values of the first
Piola-Kirchhoff stress tensor vanish in the origin of the principal stretch space
(compare Figure C.8). Nevertheless, the monotony condition

µ s2 (∆λi
t(X))2

{
1

λi
t(X)

(
λi

t(X) + s2 ∆λi
t(X)

) + 1 +
λ

µ
(λj

t (X))2

}
> 0

(C.25)
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corresponding to this free energy holds for any increment ∆λi
t(X), and the

penalty function G̃2 fulfills the condition (2.b) corresponding to the second
case.

Therefore, when applying both penalty functions, all conditions are satisfied
(compare Simo & Taylor [190]). Firstly, the free energy at any point X ∈ B0

tends to positive infinity, if the volume element Vx at the corresponding
deformed point x ∈ Bt tends to infinity or zero, respectively (see Figure C.9).
Secondly, by applying the convexity condition in Equation (C.9), we obtain
the relation

µ

(
∆λi

t(X)

λi
t(X)

)2{
1 + (λi

t(X))2 +
λ

µ

[
1 + (Jt(X))2 − ln(Jt(X))

]}
> 0

(C.26)
which holds because the bracket is greater than zero (see the illustration in
Figure C.3). Hence, the principal values of the first Piola-Kirchhoff stress
tensor are strictly monotonically increasing in the entire principal stretch
space (see Figure C.10), and the free energy is therefore strictly convex in
the principal stretch space without restrictions. Accordingly, we arrive at the
recommendable free energy function

Ψ
com
t (X) =

µ

2

{
[Ct(X)]AB δBA − ndim − 2 ln(Jt(X))

}
+ Ψ

vol
t (X) (C.27)

where

Ψ
vol
t (X) =

λ

2

{
(ln(Jt(X)))2 + (Jt(X) − 1)2

}
(C.28)

for a compressible elastomeric polymer undergoing large deformations. The
first term determines the distortion of the material, and the function Ψvol

t (X)
describes a change of volume. Further volumetric free energy functions can be
found in Doll & Schweizerhof [191] and in references therein.

C.3. Model for compressible thermoelastic materials

We now extend the free energy for describing absorption of heat and a
thermal expansion of the body (compare Carlson [192] for a contribution
within the linear theory). We show that a constant specific heat capacity
c > 0 is a consistent assumption in conjunction with the constant material
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parameters in Equation (C.27) and Equation (C.28). We supplement this
claim through a constant coefficient β of linear thermal expansion (compare
Simo & Miehe [193]).

The specific heat capacity c at constant volume is the incremental internal
energy det(X) which is required for producing an incremental temperature
change dΘt(X) in the volume element Vx corresponding to the pointX ∈ B0.
Since a change in the temperature of an isotropic material only affects a change
of its volume, we view only the volumetric free energy in Equation (C.28) as
a function depending on the temperature Θt(X) of the body. According to
Equation (2.70), the corresponding incremental internal energy density reads

devol
t (X) =

{
ηt(X) +

∂Ψvol
t (X)

∂Θ

}
dΘt(X) + Θt(X) dηt(X)+

+
∂Ψvol

t (X)

∂J
dJt(X)

(C.29)

Taking Equation (2.48) as definition of the entropy into account, the bracket
drops out of the summation. Since at fixed volume the incremental change
of the Jacobian determinant is zero, the incremental change of the internal
energy density then takes the form

devol
t (X) = Θt(X)

∂ηt(X)

∂Θ
dΘt(X) =

∂ηt(X)

∂ ln(Θ)
dΘt(X) (C.30)

with

ηt(X) = − ∂Ψvol
t (X)

∂Θ
Jt(X)

(C.31)

Hence, the coefficient of the temperature differential dΘt(X) in Equa-
tion (C.30) defines the specific heat capacity c of the material.

This definition can be viewed as a partial differential equation for the
entropy, wherefore we integrate this equation with respect to the temperature
at constant Jacobian determinant. We obtain the entropy

ηt(X) = c ln(Θt(X)) + M(Jt(X)) + Kη
t (X) (C.32)
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with the last two terms as integration constants. We choose Kη
t (X) such

that at ambient temperature Θ∞ only mechanical entropy M(Jt(X)) remains.
We specify the mechanical entropy function M by incorporating a constant
coefficient α of thermal expansion, which determines a relative change of a
volume element by the relation

α {Θt(X) − Θ0(X)} =
Vx − VX

VX
≡ Jt(X) − 1 (C.33)

Determining the total differential of Equation (C.33), the coefficient α of
thermal expansion relates the incremental change of the Jacobian determinant
to an incremental change of the temperature of the body. For isotropic
material, the coefficient of thermal expansion coincides with ndimβ, such that

ndimβ =
∂Jt(X)

∂Θ
(C.34)

Accordingly, the coefficient of thermal expansion is a differential relation
between the arguments of the volumetric free energy Ψvol

t (X).
According to Maxwell, there exist relations between primary variables

and their cotangent vectors after applying a Legendre transform (see
Holzapfel [135]). Therefore, we transform the volumetric (Helmholtz) free
energy into the Gibbs free energy

gvol
t (X) = Ψ

vol
t (X) − pt(X) (Jt(X) − 1) (C.35)

After considering the total differential of this Gibbs free energy, the
incremental change of the Jacobian determinant drops out if pt(X) coincides
with the cotangent vector of the Jacobian determinant, called the hydrostatic
pressure. Thus, the Gibbs free energy is a function depending on the
temperature and the hydrostatic pressure

pt(X) =
∂Ψvol

t (X)

∂J
Θt(X)

=
λ

Jt(X)

{
ln(Jt(X)) + (Jt(X))2 − Jt(X)

}

(C.36)
in the case of employing the volumetric free energy in Equation (C.28). By a
comparison of the total differentials pertaining to the left hand side and the
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righthand side of Equation (C.35), we arrive at the so-called Gibbs relations
corresponding to this function, which here defines the Jacobian determinant
and the entropy as partial derivatives of the Gibbs free energy. Applying
Young’s theorem of the symmetry of mixed partial derivatives of a continuous
function, we arrive at the Maxwell relation

∂Jt(X)

∂Θ
pt(X)

=
∂ηt(X)

∂p
Θt(X)

(C.37)

This Maxwell relation represents another partial differential equation for the
entropy. According to Equation (C.34), the left hand side coincides with the
coefficient of thermal expansion. Therefore, integration with respect to the
hydrostatic pressure at constant temperature leads to the entropy

ηt(X) = ndimβ
∂Ψvol

t (X)

∂J
+ T (Θt(X)) + Kη

t (X) (C.38)

A comparison with Equation (C.32) identifies the first term as the mechanical
entropy M , the second term as the thermal entropy arising from the constant
specific heat capacity, and the last term as the integration constant Kη

t (X)
in Equation (C.32).

Finally, employing the definition of the entropy on the righthand side and
integrating over the temperature at constant Jacobian determinant, we arrive
at the thermal volumetric free energy

Ψ
the
t (X) = c

{
ϑt(X) − Θt(X) ln

(
Θt(X)

Θ∞

)}
− ndim β ϑt(X)

∂Ψvol
t (X)

∂J

(C.39)
where we have taken into account that the total volumetric free energy has
to coincide with the purely mechanical volumetric free energy Ψvol

t (X) at
ambient temperature. Thus, starting from a constant specific heat of the
material, we actually arrive at an additive split of the purely mechanical part
and a thermal part.
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C.4. Model for compressible thermo-viscoelastic materials

For describing a viscoelastic isotropic material, we introduce in Section 2.1.10
a symmetric Lagrangian internal variable field by transforming the right
Cauchy-Green tensor in the argument of its hyperelastic free energy. Thereby,
the elastic properties of the material remain unchanged. Here, we transform
the elastic Neo-Hookean free energy Ψ com

t (X) in a viscoelastic Neo-Hookean
free energy

Ψ
vis
t (X) =

µ

2

{
[Λt(X] A

A − ndim − 2 ln(
√

det(Λt(X)))
}

+

+Ψ
vol(
√

det(Λt(X)))
(C.40)

depending on the unsymmetric tensor Λt(X). Then, we arrive at a thermo-
viscoelastic Neo-Hookean model for isotropic compressible materials, which
introduce viscous behaviour as well as the affects of absorption of heat and
thermal expansion, by defining the total free energy

Ψt(X) = Ψ
com
t (X) + Ψ

vis
t (X) + Ψ

the
t (X) (C.41)

The iterative solution procedure of the weak forms is based on the first and
second partial derivatives of the free energy. Therefore, we state the second
Piola-Kirchhoff stress tensor according to Equation (2.45). By differentiating
the pure mechanical free energy Ψ com

t (X) with respect to the components of
the right Cauchy-Green tensor, we obtain the mechanical part

[Scom
t (X)]AB = µ δAB + F (Jt(X)) [(Ct(X))−1]AB (C.42)

where

F (Jt(X)) = pt(X)Jt(X) − µ

= λ
{
ln(Jt(X)) + (Jt(X))2 − Jt(X)

}
− µ

(C.43)

denotes a scalar function depending on the Jacobian determinant. The viscous
part of the free energy depends directly on the trace and the determinant of the
tensor Λt(X), defined by Equation (2.39) via the right Cauchy-Green tensor.
Hence, we apply the chain rule of differentiation, and obtain the viscous part
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of the second Piola-Kirchhoff stress, given by

[Svis
t (X)]AB = µ [(Γ t(X))−1]AB + F (

√
det(Λt(X))) [(Ct(X))−1]AB (C.44)

The last term of the total second Piola-Kirchhoff stress tensor originate from
the mechanical entropy, which leads to the thermal expansion of the material.
We differentiate the free energy Ψ the

t (X) with respect to the right Cauchy-
Green tensor, where we apply the chain rule for determining the partial
derivative of the Jacobian determinant. In the end, the thermal part reads

[Sthe
t (X)]AB =

ndimβ λϑt(X)

Jt(X)

{
ln(Jt(X)) − (Jt(X))2 − 1

}
[(Ct(X))−1]AB

(C.45)
In the viscous evolution equation, we need the non-equilibrium stress

tensor. According to Equation (2.44), it coincides with the negative partial
derivative of the free energy with respect to the internal variable. In the total
free energy in Equation (C.41), solely the viscous part depends on the internal
variable. Using a further abbreviation, we arrive at

[Υ t(X)]AB =
µ

2
[Ω t(X)]AB +

1

2
F (
√

det(Λt(X))) [(Γ t(X))−1]AB (C.46)

where

[Ω t(X)]AB = [(Γ t(X))−1]AC [Ct(X)]CD[(Γ t(X))−1]DB (C.47)

denotes a symmetric tensor. By multiplying the non-equilibrium stress tensor
with the internal variable from the left, we obtain a stress tensor which
depends only on the tensorial argument Λt(X) of the viscous free energy.
According to Equation (2.74), this tensor coincides with the Mandel stress
tensor. For the considered Neo-Hookean material, we obtain

[M t(X)] B
A = µ [Λt(X)] B

A + F (
√

det(Λt(X))) δ B
A (C.48)

Note that this tensor function is isotropic, according to the first representation
theorem, and therefore a consistent response function for the viscoelastic stress
of the considered isotropic material.
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Since the function Ψ the
t (X) include the only terms of the total free energy

depending on the temperature field, the entropy are given by

ηt(X) =
ndim β λ

Jt(X)

{
ln(Jt(X)) + (Jt(X))2 − Jt(X)

}
+c ln

(
Θt(X)

Θ∞

)
(C.49)

In the material part of the x-increment pertaining to the global mechanical
Galerkin form, for instance, the partial derivative of the second Piola-Kirchhoff
stress tensor with respect to the right Cauchy-Green tensor is used (see
Equation (B.9)). This material tensor corresponding to the total free energy
in Equation (C.41) also consists of three parts. The mechanical part is given
by

[CC
L
com

t ]ABCD =K(Jt) [C−1
t ]AB [C−1

t ]CD− F (Jt) [ C
symLt]

ABCD (C.50)

with

K(Jt(X)) = Jt(X)DF (Jt(X)) = λ
{
1 − Jt(X) + 2 (Jt(X))2

}
(C.51)

The fourth-order tensor C
symLt(X) is defined by the fully symmetric tensor

in Equation (B.17), applied to the right Cauchy-Green tensor Ct(X) instead
of to the right Cauchy-Green tensor ce

0 in the spatial parent domain. The

viscous part CC
L
vis

t (X) of the material tensor has the same structure as the
mechanical part, however, the Jacobian determinant Jt(X) has to be replaced
by the square root

√
det(Λt(X)) in the arguments of the functions F and K.

The thermal part of this material tensor is given by

[CC
L
the

t ]ABCD =
ndim β λϑt

Jt

{
2 − ln(Jt) − (Jt)

2
}

[C−1
t ]AB [C−1

t ]CD+

+
ndim β λϑt

Jt

{
1 − ln(Jt) + (Jt)

2
}

[ C
symLt]

ABCD

(C.52)
In the linearised enhanced virtual work associated with the algorithmic global
force vector, we employ the partial derivative of the non-equilibrium stress
tensor with respect to the right Cauchy-Green tensor (see Equation (B.25)).
Since the internal variable tensor Γ t(X) is included only in the viscous part
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of the second Piola-Kirchhoff stress tensor, the total material tensor reads

[ΓC
Lt]

ABCD =
1

2
K(
√

det(Λt)) [Γ−1
t ]AB [C−1

t ]CD +
1

2
µ [ Γ

symLt]
ABCD (C.53)

The i-increment of the global mechanical Galerkin form is based on the
partial derivative of the non-equilibrium stress tensor with respect to
the internal variable tensor. Therefore, we differentiate the stress tensor
in Equation (C.46), and obtain the corresponding material tensor in
Equation (B.37) in the form

[
ΓΓ
NonLt]

ABCD = −µ

4

{
[Γ−1

t ]AC [Ω t]
BD + [Γ−1

t ]AD[Ω t]
BC+

+[Ω t]
AC [Γ−1

t ]BD + [Ω t]
AD[Γ−1

t ]BC
}
−

−1

4
F (
√

det(Λt))
{
[Γ−1

t ]AC [Γ−1
t ]BD + [Γ−1

t ]AD[Γ−1
t ]BC

}
−

−1

4
K(
√

det(Λt) [Γ−1
t ]AB [Γ−1

t ]CD

(C.54)

Next, we determine the stress-temperature tensor T t(X), defined by
Equation (B.21), which occur in the linearisation pertaining to the numerator
of the stress trace tensor. Since only the thermal part Sthe

t (X) of the
second Piola-Kirchhoff stress tensor depends on the temperature, the stress-
temperature tensor reads

T t(X) =
ndimβ λ

Jt(X)

{
ln(Jt(X)) − (Jt(X))2 − 1

}
[(Ct(X))−1]AB (C.55)

For the o-increment of the global mechanical Galerkin form, we give the partial
derivative of the non-equilibrium stress and the entropy with respect to the
temperature field of the body. The former partial derivative vanish for the
total free energy (C.41), however, the incremental temperature change of the
entropy is given by

∂ηt(X)

∂Θ
=

c

Θt(X)
(C.56)

where c denotes the specific heat capacity.
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D. FREE ROTATING ELASTIC RING IN THE LINEAR THEORY

In this section, we derive the steady-state stress distribution of a free rotating
linear elastic ring in the linearised theory, in order to validate the simulation
result of the exactly energy consistent finite element method (for more details
see Timoshenko & Goodier [194], Hahn [195] and Roark & Young [196]). Since
we calculate with the Neo-Hookean model for isotropic compressible materials,
given by Equation (C.41) in dependence of Lamé’s first and second parameter,
we also relate Poisson’s ratio and Young’s modulus in the case of plane stress
to these two parameters.

D.1. Stress distribution in radial and transverse direction

We consider the dynamic equilibrium of a small element with a surface area
of r dr dϕ cut out from the ring, where r and ϕ denote the polar coordinates
(see Figure D.1). In the steady state, there is no transverse component of the
inertia vector in the dynamic equilibrium. Only the radial component, also
called the centrifugal force, remains in the radial direction. Further, owing to
the symmetry of the ring, the stress do not dependent on the polar coordinate
ϕ. Hence, the dynamic equilibrium is reduced to the equation

σr dr dϕ + dσrr dϕ − σϕ dr dϕ + r2ω2ρdr dϕ = 0 (D.1)

after neglecting terms not part of a differential 2-form, and employing the
infinitesimal mass ρdr dϕ in the centrifugal force of the element. The stress
components σr and σϕ pertains to the radial and transverse direction,
respectively (see Figure D.2). We factor out the product dr dϕ, and arrive
at the differential equation

d

dr
(r σr) − σϕ + ρω2r2 = 0 (D.2)

according to the arbitrariness of the infinitesimal change of the polar
coordinates, and taking into account the chain rule of differentiation in order
to simplify the terms pertaining to the stress in radial direction.

205
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r
dr

dϕ

ω

Figure D.1. A circular ring rotating around its center.

As next step, we introduce Hooke’s law for plane strain in polar coordinates,
given by

E
dur

dr
= σr − νσϕ and E ur = r σϕ − ν r σr (D.3)

where ur denotes the only displacement in radial direction, and the
material constants ν and E designate Poisson’s ratio and Young’s modulus,
respectively. We differentiate Equation (D.3.2) on both sides with respect to
the polar coordinate r, and employ the resulting equation in Equation (D.3.1).
We obtain a second differential equation for the stress distribution, which takes
the form

σr − νσϕ =
d

dr
(r σϕ) − ν

d

dr
(r σr) (D.4)

By using Equation (D.2), we eliminate the stress σϕ in transverse direction
in Equation (D.4). Then, by also running the chain rule of differentiation
backward, we arrive at an ordinary differential equation of second order, which
can be integrated with respect to r successively. This equation reads

d

dr

(
r3 dσr

dr

)
= − (3 + ν) ρω2r3 (D.5)

The integration leads to two integration constants, which has to be determined
by boundary conditions. In the case of a free rotating circular ring, there are
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no forces acting on the inner and outer boundary. Therefore, the radial stress
σr vanish at the inner radius Ri and the outer radius Ra. In the end, the
radial stress distribution takes the form

σr(r) =
3 + ν

8
ρω2

(
R2

i + R2
a − R2

i R
2
a

r2
− r2

)
(D.6)

According to the boundary conditions, the minimum values lie at the
boundaries. Thus, there exist a maximum value on the ring. We determine
the only root pertaining to the derivative of the concave function, given by
Equation (D.6). We obtain the position

√
RiRa, at which the maximum stress

in radial direction amounts to

σmax
r =

3 + ν

8
ρω2 (Ra − Ri)

2
(D.7)

The stress distribution in transverse direction simply follows from employing
Equation (D.6) in Equation (D.2). We obtain a function σϕ(r) with negative
slope throughout the ring, and an inflection point at which the function
changes from convex to concave with increasing polar coordinate r. Hence,
the maximum value of the stress distribution

σϕ(r) =
3 + ν

8
ρω2

(
R2

i + R2
a +

R2
i R

2
a

r2
− 1 + 3ν

3 + ν
r2

)
(D.8)

is at the inner boundary, and the minimum values lies at the outer boundary.
In comparison to the maximum value of the stress in radial direction, given
by Equation (D.7), the stress in transverse direction is greater throughout the
ring. We obtain the bounds

σmin
ϕ =

3 + ν

4
ρω2

(
R2

i +
1 − ν

3 + ν
R2

a

)
(D.9)

and

σmax
ϕ =

3 + ν

4
ρω2

(
R2

a +
1 − ν

3 + ν
R2

i

)
(D.10)
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PSfrag

r

dr

r2ω2ρdr dϕ

dϕ

dϕ
2dϕ

2
σr

σr + dσr

σϕσϕ

Figure D.2. An infinitesimal sector cut out from the circular ring.

of the stress in transverse direction.

D.2. Lamé’s first and second parameter in the case of plane stress

In the case of linear elasticity, Lamé’s first and second parameter µ > 0 and
λ > 0, respectively, are related to Poisson’s ratio ν and Young’s modulus E.
However, the relations for plane stress differ from that valid for a three-
dimensional body. Therefore, we derive the relations valid for a plate by
starting with the second Piola-Kirchhoff stress tensor of linear finite elasticity,
given by the components

[St(X)]AB = 2µ [Et(X)]CD δACδBD + λ tr(Et(X)) δAB (D.11)

where

[Et(X)]CD =
1

2
([Ct(X)]CD − δCD) (D.12)

denotes the components of the Green-Lagrange strain tensor. After linearising
the kinematic measures, the Green-Lagrange strain tensor in Equation (D.11)
has to be substituted by its linear part, which means Cauchy’s infinitesimal
strain tensor ǫt(x). A further consequence of the geometric linearisation is,
that the deformation gradient F t(X) coincides with the shifter with the
entries δa

A in the corresponding matrix (see Guo [197]). Hence, we have not
to distinguish between X and x as argument, and the Piola-Kirchhoff stress
tensors P t(X) and St(X) both pass into Cauchy’s stress tensor σt(x) (see
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Pabst [198]). In this way, we arrive at the components

σ11 = 2µǫ11 + λ (ǫ11 + ǫ22) σ22 = 2µǫ22 + λ (ǫ11 + ǫ22) σ12 = 2µǫ12
(D.13)

by omitting the time index t and the argument x referring to the material
point of the plate. The indices 1 and 2 indicate the axes of a Cartesian
coordinate system.

On the other hand, according to Hooke’s law, there are linear relations
between the components σij of stress and the components ǫij of strain. In the
case of a plate, loaded by forces parallel to the plane of the plate, the stress
components are given by

σ11 =
E

1 − ν2
(ǫ11 + νǫ22) σ22 =

E

1 − ν2
(ǫ22 + νǫ11) σ12 = 2Gǫ12

(D.14)
where E > 0 denotes Young’s modulus, and ν < 1 designates Poisson’s ratio.
Comparing the stress σ12 in Equation (D.13) with that of Equation (D.14),
the shear modulus G coincides with the first Lamé parameter µ. A comparison
of the main diagonal elements σii of the stress furnish the relations

ν =
λ

λ + 2µ
E = 4µ

λ + µ

λ + 2µ
(D.15)

after solving a system of algebraic linear equations, which are obviously
different from the well-known relations for the three-dimensional case (see
Ciarlet [133]). Particularly, in the case of plane stress, Poisson’s ratio is smaller
than one and not smaller than a half.
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