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Analysis Of “New Physics”

In The Flavor Sector
Using Effective Field Theory
Methods

Abstract

The enormous amount of data collected by the B
factories as well as the perspective concerning the
upcoming experiments at the LHC provide us with
the opportunity to perform high precision tests of
the standard model. This dissertation presents two
model independent precision tests of the weak sec-
tor of the standard model using extensions of the
weak currents which are set up using effective field
theory methods in order to control the size of the
different contributions. Constraints on the coeffi-
cients of the terms can then be obtained by com-
parison with experimental results.

The first analysis incorporates a test of the left-
handedness of the weak interaction in the quark
sector. By introducing additional weak couplings
the differential and total decay rates of the inclu-
sive semileptonic decay B — X, {7, are calculated.
The calculation includes the computation of the
heavy-quark expansion which describes the inter-
action of the decaying b quark with respect to the
background field of the B meson, up to order 1/mj.
This has been done in a new, systematic way which
does not involve the calculation of gluon matrix el-
ements. Furthermore, radiative corrections have
been included up to order O(a;) including renor-
malization group running.

The second part deals with the introduction of
lepton flavor violating operators in the context of
leptonic 7 decays. These operators give rise to the
effective four-fermion vertex T — ££'¢" as well
as the subsequent radiative decay 7 — {~* —
L0 ¢'=. The resulting Dalitz distributions turn
out to predict completely different signatures for
the radiative and the effective four-fermion vertices
and provide the opportunity to check, whether the
decay is induced either by a radiative or by an ef-
fective four-fermion vertex. Since different models
which contain lepton flavor violation are normally
more sensitive to one of those decay modes than to
the other, the analysis therefore allows the compar-
ison of the different models within an experimental
analysis.

Analyse “Neuer Physik”
im Flavor Sektor
unter Benutzung von Methoden
der effektiven Feldtheorie

Zusammenfassung

Die enorme Menge von Daten, die von den B Fabri-
ken zusammengetragen wurde, sowie die Perspek-
tiven beziiglich der anstehenden Experimente am
LHC, geben uns die Moglichkeit, Tests des Stan-
dardmodells mit hoher Préazision durchzufiihren.
Die vorliegende Dissertation beschéftigt sich mit
zwei modellunabhéangigen Prazisionstests des elek-
troschwachen Sektors des Standardmodells, in wel-
chen Erweiterungen des schwachen Stroms betra-
chtet werden. Diese werden zur Kontrolle der Grofe
der einzelnen Beitrage unter Zuhilfenahme von Me-
thoden der effektiven Feldtheorie eingefiihrt. Werte
bzw. obere Grenzen fiir die Koeffizienten dieser Ter-
me konnen dann experimentell ermittelt werden.

Die erste Analyse besteht aus einem Test der
Linkshéndigkeit der schwachen Wechselwirkung des
Standardmodells im Quark-Sektor. Unter Einfiih-
rung von zusatzlichen schwachen Kopplungen wer-
den dazu die differentiellen und die totale Zerfall-
srate des inklusiven semileptonischen Zerfalls B —
X .l vy berechnet. Dies wird unter Zuhilfenahme
der Heavy-Quark-Entwicklung bis zur Ordnung
1/ mg durchgefiihrt um die Wechselwirkungen des
zerfallenden und gleichzeitig gebundenen b Quarks
richtig zu beschreiben. Dazu wurde mit eine neuen,
systematische Methode angewandt, mit der sich die
Berechnung von Gluonmatrixelementen eriibrigt.
Zudem wurden Strahlungskorrekturen inklusive des
Renormierungsgruppenflusses bis zur Ordnung
O(as) durchgefiihrt.

Der zweite Teil behandelt die Einfithrung von
leptonzahlverletzenden Operatoren im Kontext von
leptonischen 7-Zerfallen. Diese Operatoren resul-
tieren in den vier-Fermion-Vertizes 7 — £’ £ sowie
den Zerfillen 7 — £~* mit anschlieBendem Zerfall
v* — T ¢'~. Die resultierenden Dalitzverteilun-
gen zeigen ein komplett unterschiedliches Verhalten
fiir die radiativen und vier-fermion Vertizes, und
konnen daher benutzt werden, um nachzupriifen,
ob der Zerfall durch einen radiativen oder vier-
fermion Vertex induziert wird. Da verschiedene
Modelle, die Leptonflavorverletzung vorhersagen,
oftmals einen der beiden Zerfallskanéle bevorzu-
gen, kann die vorliegende Analyse dazu verwendet
werden die verschiedenen Modelle in einer experi-
mentellen Analyse miteinander zu vergleichen.
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1.

1.1.

Introduction

Topics and motivation

While the standard model of elementary particle physics [1, 2, B, 4, 5l 6 [7] provides the
possibility of making precise predictions within a vast region of energy scales, it still lacks
the potential to explain the deeper origin of the effects we observe in elementary particle
interactions. This gives rise to the questions:

What is the origin of the 27 input parameters of the standard model?

The standard model contains 27 input parameters which are not explained by the theory,
but have to be determined by experiments. These include the 6 quark masses, the 3
masses of the charged leptons, the 3 neutrino masses, 1 Higgs mass, 1 strong and 2
electroweak gauge coupling constants, 3 quark mixing angles and 1 corresponding weak
phase as well as 3 lepton mixing angles and 3 corresponding phases. The deeper origin
of these parameters remains completely unclear.

How is the neutrino mass implemented into the standard model?

There are various ways to implement the neutrino masses, depending on whether the
neutrinos are Dirac or Majorana particles. While the other masses can be introduced by
the Higgs mechanism there is an additional possibility to generate neutrino masses with
Majorana masses.

What is the origin of the flavor structure described by the standard model?

We do not know the origin of the masses and the mixings in the quark sector. Furthermore,
neutrino oscillation provides a strong evidence that the lepton flavor is violated. Thus
the question is, whether the lepton flavor is also violated within the standard model
interactions.

What is the source of the hierarchy concerning the strength of the different forces?
Up to now we do not know why the gravitational force is 10734 times weaker than the
strong interaction.

How can a grand unification of the strong and the electroweak forces be established?

At present all attempts to unify the strong force and the electroweak force by using
group theoretical methods are not satisfactory. The most prominent structure is the
SU(5) suffering from the prediction of the proton decay at a rate beyond the measured
boundaries [8]. Even the electroweak unification by the Higgs mechanism has not been
proven up to now, since the Higgs particle has not been found. Energies, sufficient enough
to create this particle should soon be available at the Large Hadron Collider (LHC) in
Geneva.

How can a theory of everything be set up?
Besides the fact that we have not found a way to unify the strong and electroweak forces,
gravitation has not even been high energy physics implemented into the standard model.
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Up to now there is no way found to create a consistent renormalizable quantum field
theory for that force. Within high energy physics experiments this force is so weak that
we cannot even detect it. Thus the description of the interactions of elementary particles
works quite well without regarding this force. However, considering situations like black
holes, where the description of gravitational forces is needed as well as the description of
quantum mechanical states due to high densities, the standard model fails.

e What is the source of the baryon asymmetry?
The standard model does not explain why there is much more matter than antimatter in
the universe.

e What are dark matter and dark energy?
Even if we can imagine that dark matter could be produced by some kind of weakly
interacting massive particles which have not been found yet, we do not have any idea
what dark energy is.

e What is the source of CP violation?
It is not known why the charge and parity symmetry is violated for the weak interaction
and not for the strong interaction.

Besides these rather conceptional problems which are mainly induced by parts missing in the
theory, there is a major calculational problem concerning quantum chromodynamics, the part
of the standard model describing the strong interactions. There is no way to describe the
interactions of the elementary particles below the scale of hadronization Agcp, since the strong
coupling constant changes with the energy scale and becomes too big to allow a perturbative
treatment at such low energies.

All these problems give rise to the construction of various new models which try to explain the
problems mentioned above (or at least parts of them). One of the most prominent examples
are the supersymmetric theories which give a better access to the unification of the forces
within a SO(10) group-theoretical description, as all the coupling constants seem to meet in
one point for high energies. Within this theory all particles are provided with supersymmetric
partners, for which there is however no evidence nowadays. Other examples are Technicolor or
little Higgs models. All these models have in common that they inherit parts of the standard
model structure to provide compliance with past experiments and add certain specific features.
However, the present analysis shall provide a different access to unknown physics by providing
a model independent analysis. The idea is to treat the standard model as an effective theory
of some yet unknown more fundamental theory to be able to extend it in a controlled way and
yet retain its well tested parts to agree with known data. This gives us the opportunity to test
the standard model interactions by comparison with modern experiments. We will perform two
different analyses which will feature a similar way in expanding the interaction vertices, yet
testing two completely different aspects of the standard model.

In the first analysis we will deal with the inclusive decay B — X.7.e~ of a B meson to
probe the flavor structure of the standard model. This decay is a natural choice as for these
inclusive decays a large data set is available and the theoretical description of semileptonic
decays has become very precise in the last couple of years and seems to be under good control.
Furthermore, there already exists an enormous amount of data generated by the B-factories
BaBar (SLAC) and Belle (KEK) which provide results for the lepton spectra with a precision
of about one percent, as well as additional perspectives concerning future experiments like for
example LHCb. Those B-factories mainly produce the resonance Y(4s) which decays nearly
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exclusively to BY B~ or B°B°. These decay channels are consolidated to the inclusive notation
BB, where the B and B denote all possible mesons containing a b quark and one of the
lighter quarks. The analysis of the decay B — X, 7. e is less suitable since its decay rate is
suppressed by the hierarchy of the CKM matrix (Vg > V) by a factor of about 0.01 compared
to B — X.U.e”. Thus there is a huge background of B — X, 7, e~ for these decays which
leaves only few experimentally accessible regions within the spectra. The theoretical description
of these regions is not as reliable, so that we will not consider B — X, 7, e~ at the moment.

The idea of the analysis is to use effective field theory methods to extend the normally
purely left-handed vector current of the standard models’ weak decay by a right-handed vector
contribution as well as left- and right-handed scalar and tensor currents which will allow us to
test the left-handedness of the weak interaction. The calculation of the weak decay of the b
quark within the background field of the B meson has been performed utilizing a heavy quark
expansion which has been calculated up to order 1/m* in a new systematic way. Since our
extension also contains the standard model contributions this higher order nonperturbative
correction can also be used in plain standard model analyses. Furthermore, the radiative
corrections to the new contributions have been calculated up to one-loop order and attempts
have been made to combine the radiative corrections with the nonperturbative ones making
use of the reparametrization invariance.

A strong evidence for the lepton flavor violation in nature is already given by the neutrino
oscillation. To be able to perform tests whether there are further sources of lepton flavor
violation within the scope of weak decays, we perform a second analysis which features an
extension of the vertex of 7 decays by an effective field theory approach very similar to the one
of the first analysis. However, in contrast to the extension of the inclusive B decays the vertex
is extended in a way that it features a lepton flavor violation, resulting in decays into three
charged leptons like 7 — £¢'¢" with ¢ = e, u. These decays are realized in two different forms.
The first possibility is the direct decay of the tau into three leptons described by an effective
four-fermion vertex. As a second possibility we find the subsequent tau decay of the form
T — fy — 070"~ mediated by a radiative current. As the effective four-fermion vertex and the
radiative vertex provide results with completely different Dalitz plots this calculation can be
used to help experimental studies to classify such rare decays, if the statistics are high enough.
Since lepton flavor violating 7 decays are realized quite differently in various models this could
be used to falsify some models or at least set limits. While for example supersymmetric models
prefer the radiative decay variant little Higgs models usually prefer the four-fermion vertex.
Additionally, we will add an analysis to compute the constraints from minimal flavor violation
on the newly introduced parameters to provide the possibility to gain additional information
from experiments how lepton flavor violation could be established.

1.2. Structure

After this introduction we will start with an introduction of the standard model of elementary
particle physics in chapter The topics discussed here have more or less become textbook
material, and thus this chapter is addressed mainly to readers who are new to the topic. All in
all this chapter is far from being a complete summary of all standard model topics, it should
rather be understood as an introduction to its structure which we will need in later chapters for
the introduction of the extensions mentioned above. For further reading about standard model
or gauge theory there exist many books of different styles. The author has mainly used the
books [9] 10} [IT], 12] as sources during the creation of this chapter. Apart from this, the reader
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should at least have some basic knowledge about group theory. An introduction for physicists
to this topic is given in the book [13].

Chapter [3] presents an introduction to effective field theories and their renormalization. We
will specially emphasize the heavy quark effective theory and the heavy quark expansion which
will be the main tools for the calculation of the inclusive semileptonic decays discussed in
chapter [4] The contents of chapter [3] have become standard in the past years. Thus there are
many review papers and also textbooks about this topic available. Some interesting reviews
associated with the dissertation at hand are [14 [I5] [16].

In chapter [4] we will discuss the calculation of the differential and total decay rates of the
inclusive semileptonic process B — X, 7, e~. We will present the extension of the vertex by new
right- and left-handed vector, scalar and tensor contributions as well as the nonperturbative
1/my, corrections to order 1/mj and the radiative corrections to the currents up to one-loop
order. This chapter contains the authors actual work including a new way of treatment for the
1/my, corrections which has led to the possibility to perform calculations up to order 1/ mg and
the calculation of the renormalization group running for the newly introduced currents. The
results contained in this chapter have been calculated in collaboration with Prof. Dr. Thomas
Mannel, Sascha Turczyk and Robert Feger and were published within the papers [17, 18, [19].

The second part containing new results is presented in chapter Here we perform the
analysis of lepton flavor violating tau decays using a similar effective field theory method
as in chapter Within this chapter we will generate Dalitz plots to provide indications for
experimentalists, how the distributions for these rare decays may look like as well as a possibility
to compare models to the results of the measurements. The corresponding publication of the
work presented in this section is [20] which has been developed with Prof. Dr. Thomas Mannel,
Dr. Thorsten Feldmann and Sascha Turczyk.

The appendix contains some mathematics which is needed throughout this work in chapter[4]
as well as a short introduction to the basics of relativistic quantum field theory and [B| and two
chapters [C| and [D] containing some of the results that have been too lengthy to be integrated
into the text properly.

1.3. Conventions
In this section we shall list the conventions which we will use in the following chapters. First
of all we will work in the so called “God-given” units, where
h=c=1, (1.1)
which is most common in elementary particle physics. In this system we have
[length] = [time] = [energy] ™! = [mass] ! (1.2)

2

The mass m of a particle is therefore equal to its rest energy mc® as well as to its inverse

Compton wavelength mc/h. The units are naturally given in electron volts (eV), where
1eV = 1.602176487(40) x 10719 J. (1.3)

In Fourier transformations the factors of 27 will always appear with the momentum integral,
such that the integrals look like

fa) = [ S fik) (1.4
Fk) = / da e f(z), (1.5)
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for one dimension.

For our conventions concerning relativity we will follow the notation introduced by Bjorken
and Drell [I0] which is most common in the field of elementary particle physics. We use the
metric tensor

g = g'" = diag(1,—-1,-1,-1) (1.6)

with greek indices running over 0, 1, 2, 3 or ¢, z, y, z and roman indices running only over
the tree spatial components. Following Einstein’s summation convention we sum over repeated
indices in all cases. Four vectors are denoted in the standard light italic type like ordinary
numbers, while three vectors are denoted by boldface type. As an example we have

= (20, ) (1.7)
z, = g’ = (20, —x) (1.8)
p-x=gup'e’ =p'a’ —p-x.
For all on-shell particles we have
p* =pup" = E* — |p|* = m?, (1.10)

where m may of course be 0 for massless particles. The partial derivative corresponding to this

is defined by
0 0

Note that the index of the partial derivative is always on the opposite side compared to the
vector it acts on. The energy and momentum operators action on wave functions follow the
usual conventions

3}
E i@ and p < —iV, (1.12)

where E and p are the energy and momentum operators in momentum space, while 9y and
—1iV denote the according vectors in position space. Transformations between those two spaces
are performed by the Fourier transformations - . The relations can be combined
to p* <« i0*, where the minus sign is conveniently used with the raised index. For the e-tensor

we shall use the convention
N2 — 193 = 1. (1.13)



2. The standard model of particle physics

This chapter shall be a short introduction to the standard model of particle physics which
describes the fundamental microscopic interaction between the elementary particles. These
elementary particles can be divided into two groups, namely the 12 fermions (u, d, s, ¢, b,
t, e, p, T, Ve, v, and v;) of spin 1/2 which are the constituents of all observed matter, and
the bosons (v, g, W—, W+ and ZY) of spin 1 which are the force carriers that mediate the
interactions between the fermions. The latter particles can be assigned to three different types
of interactions, namely the electromagnetic interaction mediated by the photon +, the strong
interaction featuring the gluon g as force carrier and the weak interaction which contains
interaction modes moderated by the charged W~ and W as well as the neutral Z" particles.
The properties of these bosonic particles are listed in Table . The reader might have
noticed that this table contains an additional gauge boson called graviton as a corresponding
interaction particle for the gravitational force. This particle is commonly believed to be of
spin 2. However, up to now there is no known way, how to implement such a particle into
the theory in a renormalizable way, and thus the gravitational force is not implemented into
the standard model. Furthermore, we have no experiments so far which would be capable of
resolving gravitational effects in particle physics. Thus any attempt to integrate gravitation
into the standard model is purely hypothetic. However, due to their tiny relative strength
the effects of the gravitational forces can be safely neglected while analyzing the microscopic
interaction of the other forces. Therefore gravitation is not integrated into the standard model.

The standard model describes the fundamental interactions using a renormalizable theory
which is based on local symmetries. Thus independent symmetry transformations at each
space time point are possible. In total the standard model obeys a spontaneously broken
SU(3) ® SU(2) ® U(1) symmetry, where the SU(3) part contains the symmetries of the strong
interactions, while the SU(2) ® U(1) part describes the symmetries of the electroweak part
which consolidates the electromagnetic and weak interactions. The SU(2) ® U(1) symmetry in
the electroweak sector describes the theory in the massless limit. To introduce masses into the
theory one has to perform a spontaneous symmetry breaking which retains the symmetry for
higher states but breaks the symmetry of the ground state by an explicit choice. By spontaneous
symmetry breaking one also obtains an additional particle with spin 0, namely the Higgs boson
H. This particle is introduced by purely theoretical considerations. The current experimental

interaction force carrier m charge rel. strength

strong 8 gluons g 0 8 strong 1

electromagnetic photon ~ 0 1 electric 1073

weak W*-boson 80,4 GeV 3 weak 1014
Z%-boson 91,2 GeV

gravitational graviton? ? 1 mass 10734

Table 2.1.: The interactions of the standard model and their force carriers



lepton | Lo L, L; | Q m
Ve 1 0 0 0 < 3eV
e 1 0 0 | —le| 511.00keV
Uy 0o 1 0 0 | <0.19MeV
“ 0 1 0 | —1le | 105.66 MeV
Vs 0 0 1 0 | <182MeV
T 0 0 1 |—-le| L777GeV

Table 2.2.: The leptonic content of the standard model

status only shows that it has a mass bigger than 114,4 GeV, but one believes that it can be
discovered with the Large Hadron Collider at CERN which will start to collect data soon. A
more precise introduction to the strong and electroweak interactions will be given in the sections
and respectively. In the following we will group the fermionic particles by their behavior
under these interactions. The different fermions can be characterized by their quantum numbers
and masses. For each fermion an antifermion with the same mass but opposite inner quantum
numbers exists.

Leptons

The fundamental fermions that do not interact strongly are called leptons. Their most impor-
tant properties, such as masses, lifetimes, decay channels etc. can be found in [§]. Table
lists the masses of the leptons as well as their non-vanishing quantum numbers including the
electric charge and the fermion numbers. While all leptons interact weakly, the electric charge
can be used to classify the leptons into two classes. On the one hand we have the electrically
uncharged neutrinos ve, v, and v, which interact exclusively through the weak interaction,
while on the other hand we have the electrically charged leptons e, v and 7 which can also
interact electromagnetically. A further classification of the leptons can be done using the lep-
ton numbers L., L, and L,. We obtain three lepton pairs, namely (e, ve), (1, v,) and (7,
v7), all built up of a charged and an uncharged lepton. These pairs are often called families.
Like the electric charge, the lepton numbers are conserved by the standard model interactions
and thus transitions between those families are forbidden. However, the detection of neutrino
oscillations[] provides strong evidence for a lepton flavor violation. The dissertation will present
a way to test this lepton number conservation by searching for lepton number violating tau
decays in a model independent way in chapter [5l Since the decay of the v, and v, is constricted
by the lepton numbers the electron e and the neutrinos are therefore stable particles, while the
1 and 7 decay by the weak interaction. Note that direct measurements yield only upper limits
for the neutrino masses. As neutrino oscillations can be introduced into the theory only for
non-vanishing neutrino masses, the neutrino masses are expected to be non-vanishing.

Quarks

In contrast to the leptons, the quarks can also interact strongly. The flavor quantum numbers
which are conserved by the strong interaction are the strong isospin (I and its third compo-

!The theory of neutrino oscillations has been introduced by Z. Maki, M. Nakagawa and S. Sakata [21 22] to
solve the solar neutrino problem found by the Homestake collaboration [23], [24]
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quark | 1 I3 s C B T Q m
u 1/2 1/2 0 0 0 0 2/3e 1-5 MeV
d 1/2 —-1/2 0 0 0 0 | —1/3e 3-9 MeV
c 0 0 0 +1 0 0 2/3e | 1.15-1.35 GeV
S 0 0 -1 0 0 0 | =1/3e | 75-170 MeV
t 0 0 0 0 0 +1 2/3e | 174.3+5.1 GeV
b 0 0 0 0 -1 0 | —1/3e| 4.0-44 GeV

Table 2.3.: The quark content of the standard model

nent I3) the strangeness (5), charm (c¢), bottomness (B) and topness (T'). In Table these
quantum numbers are presented together with the mass and electric charge of the particles.
All quarks carry the baryon number 1/3. As for the leptons, we can set up three doublets
according to the quantum numbers, namely (u, d), (¢, s) and (b, t). Additionally, the quarks
can be divided by their electric charge into up-type quarks (u, ¢, t) with charge 2/3e and down
type quarks (d, s, b) with charge —1/3e. The charge of the strong interaction is given by an
additional degree of freedom called color. Each quark carries one of three colors: red, green
and blue (r, g and b). Additionally there exist three anti-colors (7, g and b) which are carried
by the antiquarks. At this point we should mention that the quarks as well as the colors cannot
be observed directly. Caused by confinement which will be shortly introduced in section the
quarks are always found in bound states called hadrons. These bound states are mainly classi-
fied into mesons which are built up of a quark and an antiquark and baryons, built up of three
quarks. Note that this is not exactly correct, since gluons are exchanged between the quarks
bound in a hadron which can decay into virtual quark-antiquark pairs. These are however not
used within the classification of the hadron as they are extremely short-lived. Since no free
quarks exist, their mass cannot be defined in a conventional way. Instead, various definitions of
effective masses are used. The values given in Table are those recommended by the Particle
Data Group [8]. The only quark where one can eventually define a direct mass is the ¢ quark,
as its mass is so high that it can be seen as quasi-free. However, for the other quarks it can
be difficult to perform calculations of interactions of quarks bound in a hadronic state. Up to
now, there does not even exist a possibility to describe the bound states properly, since the
coupling of the strong interaction becomes much too high to perform a perturbation series at
small energies. However, for high energies in weak decays of the heavy quarks ¢ and b within
hadrons there exists an effective theory which will be used in this work to calculate weak decays
of mesons containing a bottom quark.

Besides the quantum numbers which are introduced by the theoretical description, it is also
interesting to know the input parameters of the standard model which have to be taken from
experiment. The standard model contains 27 input parameters in total (we count 3 charged
lepton masses, 3 neutrino masses, 6 quark masses, 3 gauge coupling constants, 3 quark mixing
angles and one corresponding complex phase, 3 lepton mixing angles and 3 complex phases, 1
Higgs mass as well as the QCD vacuum expectation value). If neglecting the neutrino masses,
as they were assumed to be zero in earlier definitions of the standard model, leaves 24 pa-
rameters. As already mentioned, there is not much known about the masses of the neutrinos,
since measurements only provide upper bounds for the neutrino masses. In this work we will
mainly neglect the neutrino masses, as they are comparatively small, but within the descrip-
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tion of lepton flavor violating 7 decays in chapter [5| we will encounter the mixing in the lepton
sector which will force us to take the neutrino masses into consideration. A short description
regarding how to introduce the neutrino masses into the theory is given in section [2.2]

The following sections shall provide an introduction to the standard model interactions. To
understand this introduction the reader should at least have some basic knowledge about group
theory (especially Lie algebras) and the basics of relativistic quantum field theory. However,
for the readers new to these topics short introductions are given in the appendices and [B]
respectively.

2.1. Electroweak interactions

Within the standard model the electromagnetic as well as the weak interactions are described by
the Weinberg-Salam-Glashow model which is a gauge theory whose input fermionic degrees of
freedom are massless spin one-half chiral particles. It has the structure SU(2);, @ U(1)y, where
the SU(2)r and U(1)y represent weak isospin and hypercharge respectively. The subscript
‘L’ on SU(2)y, indicates that among fermions only left-handed states transform nontrivially
under weak isospin. By left- and right-handed we mean the projections of the particles by the
chirality projectors

1F~
Prp= 5 2, (2.1)

which fulfill the relations
P p=Prr, PrjrPrip =0, Prrys=Pyr and  Prryu, = %Pr/L, (2.2)

where we have used the relations (75)? = 75 and {Vu:75} = 0 respectively. For an arbitrary
fermion ¢ we will denote the projection by an index L or R, such that we have

Yr/r=Pr/rt. (2.3)

Due to the fact that the left- and right-handed particles have a different transformation behavior
under the gauge group, they have to be treated differently. We will reflect this by writing the
left-handed particles as doublets which transform under the SU(2); and the right-handed
particles as singlets which are not affected by SU(2), transformations. Thus we define

o-(()0). ()

q = (U, d7 S, ¢, b7 t) (24)

u = (u,c,t)

d=(d,s,b)

for the quarks and
=((:(0)-()
e I T
(2.5)

e=(e,u,T)

v = (Ve,Vy,vr)
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for the leptons. The singlets of the up type quarks w and down type quarks d as well as for
the electrons e and neutrinos v have been taken separately for later purposes. Additionally we
will introduce the vectors

o= ((9-0)-6)-0)-0)-()

Y = (u7 d7 S, C, bvta €, U, T, Ve, V;u VT)

(2.6)

where we combine the fermion doublets and fermion singlets for easier notation later on. We
implicitly assume that the generations of the quarks and leptons behave in the same way
under the gauge transformations and thus only the masses of the particles differ. The different
behavior of the left and right-handed particles leads to some awkward consequences. For
example it is not possible to implement masses directly into the Lagrange density. If we directly
write down a mass term m and split the fermions up into left- and right-handed components
we get
g 0 = (55 + ) ma (W5 + 0) = G5 ma O + 0 ma 6. (2.7)
We note that only the combinations of left- and right-handed fields survive, as the other ones
vanish because of the projectors and the absence of any Dirac structure between the fields.
These terms are not invariant under SU (2), transformations and thus cannot be implemented in
the electroweak Lagrangian which by definition has to be invariant under these transformations.
Since the transformation behavior of the left-handed doublets differs from the one of the right-
handed singlets another quantum number has to be introduced to distinguish those objects from
each other. This quantum number is known as the weak hypercharge. The weak hypercharge
assignment is determined by the requirement that the particles should have the correct charge.
It reads

Yw =2(Q —T3) (2.8)

for quarks and leptons, where T3 is the third component of the weak isospin 1" of the particle
which should not be confused with the isospin I carried by the v and d quarks introduced at
the beginning of the chapter. The weak isospin 7' = 1/2 is assigned to all left-handed particles,
while it vanishes for the right-handed particles. Furthermore, all down-type quarks d and
charged leptons e feature T3 = —1/2 for the third component, while 75 = 1/2 is assigned to
the up-type quarks w and the neutrinos.

The other quantum numbers for fermions in the electroweak sector have already been given
in the tables and Having assigned the quantum numbers, we can go on with the
analyzation of the electroweak Lagrange density. The electroweak Lagrangian can be separated
into three additive parts

Lew = Lo + Lr + Ly, (2.9)

namely the gauge (G), fermion (F) and Higgs (H) part. The gauge and fermion part will again
describe the interaction and propagation of the particles like in the QCD, while the Higgs part
will generate the masses of the particles. At first we will take a look at the gauge part

1 , 1
La = _zFiNVFfw - ZBW/B;UJ (2.10)
of this Lagrangian. Here
Fi, = 0,W.—0,W} — g2 €* WiW} (2.11)

10
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with ¢ = 1,2, 3 denotes the SU(2) field strength and
By, = 0,B, — 0,B, (2.12)

the U(1) field strength. The W), = (Wﬁ, Wi, WB) and the B, symbolize the weak isospin and
weak hypercharge gauge boson fields. Again, the gauge sector describes the propagation of the
gauge bosons as well as the interaction between the weak gauge bosons and the electromagnetic
ones. The fermionic sector of the Lagrange density contains both, the right-handed as well as
the left-handed chiralities. Summing over the left-handed weak isodoublets ()7, and the right-
handed weak isosinglets gr, we obtain

Lp=> Wp i} +> gil) . (2.13)

The covariant derivative for the second term which describes the interaction between right-
handed particles, takes the simple form

Dy = (9 +i% Yiw By ) v (2.14)

since the right-handed chiral fermions do not couple to weak isospin. This expression serves
to define the U(1) coupling g;. Its normalization obviously depends on our convention for the
weak hypercharge Y. The corresponding covariant derivative for the SU(2) doublet Qp, is

D% = (1 (0, +i%Yiw By ) +iga W) ¥4 (2.15)

since the left-handed fermions transform under the SU(2), as well as under the U(1)y. In the
upper equation we have introduced SU(2)1 gauge coupling constant go, the 2 x 2 unit matrix
I and the vector T = (11, 72, 73) containing the Pauli matrices. For the reason of simplicity we
do not display the quark color degree of freedom in this section, thus every time we sum over
quark internal degrees of freedom we also have to sum over the colors. The equations given
above define a mathematically consistent gauge theory of weak isospin and weak hypercharge,
but as we have already mentioned, it does not contain the mass terms that are experimentally
observed.

This leads us to the third part of the Lagrange density, namely the Higgs part which is
dedicated to add the masses to the theory. Note that in the course of this section we will not
introduce neutrino masses within the Weinberg-Salaam part of the standard model, as their
description becomes a bit more complicated. However, we will discuss the neutrino masses in
section alongside the introduction of the Pontecorvo-Maki-Nakagawa-Sakata matrix. The
Higgs part Ly of the Lagrangian can itself be split up into two segments. The first one is Ly
which contains the Higgs-gauge couplings, and Lyr which contains the Higgs-fermion couplings.
The former can be written as

Luc = (D'®)*D,® — V(®). (2.16)

Here we have introduced a new complex doublet
+
® = ( ‘Zo ) (2.17)

11
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of spin 0 Higgs fields. The index of the fields show the electric charge assignments. Each of the
quanta of these fields carry one unit of the weak hypercharge. The covariant derivative acting
on this doublet is given by

D@ = (19, +1%B,) +igsZW,.) @. (2.18)

Additionally we introduced the potential
V(®) = —p2@® + \(®T®)?, (2.19)

which describes the self interaction of the Higgs fields. The parameters p? and A are positive
but otherwise arbitrary. The Lagrange density for the Higgs-fermion couplings reads

Lup=—) yiQi®up— > yhQi®dy = yili®ey +he, (2.20)
1,3 i,J 0,3

where uﬁé and dlé denote the up- and down-type right-handed quarks as introduced in (2.4)).

Additionally we have introduced the charge conjugate

~ (I)O*
S =ind = ( . ) (2.21)

to . Note that does not contain right-handed neutrinos. These have not been integrated
into the theory, since we assume the neutrinos to be massless up to this point. Moreover, note
that each of the terms in Ly is written in a SU(2);, ® U(1)y invariant form. The mass
generation for fermions and gauge bosons can now be obtained by the spontaneous breaking
of the SU(2)r, ® U(1)y symmetry. Therefore we first have to get the ground state Higgs
configuration by minimizing the potential V' which gives the identity

oV
od!
We interpret this ground state relation in terms of vacuum expectation values which will be

labeled with a zero subscript. The ground state equation has two solutions, the trivial solution
(®)o = 0 and the nontrivial solution

= B(—p? + 2281 ®) = 0. (2.22)

1)2

(@1®)o = (2.23)
with
12
=/ 2.24
b=/ (2.21)

The trivial solution does not give any new information as it just eliminates the Higgs Part of the
Lagrangian and leaves us with the massless theory. Therefore we will consider the nontrivial
solution in the following. Thus the breaking of the original SU(2); ® U(1)y is given by the
nontrivial vacuum expectation value

(@)o = (v/?/i) : (2.25)

As field components we would obtain

®= <(v + H?:ix)/\/i) ’ (2.26)

12



2.1. Electroweak interactions

with a physical massive Higgs field of mass mpy = v/2u and three unphysical Goldstone boson
fields ®* and y. However, we will not implement these Higgs fields in the further calculations,
since this would lead to Higgs interactions which will be of no interest for the further chapters.
We shall rather determine the fermion and gauge boson masses by inserting for the Higgs
field everywhere in the Lagrange density L. Furthermore, we define the charged boson fields

1 .
Wi = \@(Wg FiWg) . (2.27)

Substituting this into the Lagrange density Lgw we obtain the mass contribution
v . : v _. . v . .
Ly=——= ) yluguy — —= > yldidy——=> yfere

Vg2 QW’*W“ v? Wi 3 —qig2 (WY
+<2) H _+8(“) -q192 G B*

from the Higgs-fermion part Lyr of the Lagrangian, where the sums run over the quark flavors
u' = u,c,t and d' = d, s,b as well as the charged leptons €' = e, i, 7. We can now define the
matrices

(2.28)

M, = \ﬁy (2.29)
where in this case a = u, d, e denotes all types of charged fermions which we have introduced
in and . Note that these matrices are not necessarily diagonal. This means that
the states which appear in the original gauge invariant Lagrangian are generally not mass
eigenstates. Thus we have to distinguish between the gauge eigenstates which form the gauge
basis, and the mass eigenstates which form the mass basis respectively. Therefore the next step
is to perform a transformation from the gauge to the mass basis to get a proper description of
the masses. If we take only the fermionic part of we find

_EM,F =uarMup + JLMddR +erM.er + h.c.
— @ SES M, S S up + drSE ST MSEST dR + 1,55 S¢TM.SE S e + hec.
= WP MR 4 dp MTdR + eFM™e? + h.c.

= @" M "™ + d" M d™ + " M™e™ + h.c.

(2.30)

where the superscript m indicates the states in the mass basis. The 3 x 3 unitary matrices S¢ 5
relate the basis states

wp = S, dp = Sidy, ep = SSel,

4 (2.31)
up = Spulp, dr=Spdy, er=Sgief,
and induce the biunitary diagonalizations
M =S¥ M, S, MP =S¢ MySY and MM =S¢ M, S4. (2.32)
This yields the diagonal quark and lepton mass matrices
m, O 0 mg O 0 me O 0
M= {0 mgq 0], M*=[0 ms O and M"=10 m, O (2.33)
0 0 my 0 0 my 0 0 m,

13



2. The standard model of particle physics

in the mass basis. Note that this theory does not present a way to calculate the fermion masses,
since we do not know the values of the arbitrary Higgs-fermion couplings. Thus all masses have
to determined from experimental data. The charged W-boson masses

v
can be taken directly from (2.28)), but the symmetry breaking induces the neutral gauge bosons
to undergo mixing. Their mass matrix is not diagonal in the basis of the W?2 and B states.
The diagonalization of the basis gives us the new fields

Zy, = cos Oy W) — sin by B, (2.35)
A, =sin Hl/VWEZ + cos Oy By, (2.36)
(2.37)

where the weak mixing angle 0y is defined by

tan Oy = 2 (2.38)

g2

and the fields A, and Z, correspond to the massless photon and the massive Z O_boson respec-
tively. The neutral gauge boson masses are found to be

M, =0 and Mz:%\/g%—l—g%. (2.39)

Note that we also get the fixed W*-to-Z° mass ratio

M

F‘Z = cos Oy . (2.40)
In the following we will observe how the electroweak currents are described in the standard
model. Using the SU(2)r, ® U(1)y description which has been introduced above, we obtain the
interaction Lagrange density

Ly= _% (W:JSH + W;:Jg;f{) — W Tys — 91By (T — Avs) » (2.41)
where 5 )
Jhy = —ert'e+ gﬂv"u - gc_l'y“d (2.42)
is the electroweak current,
Jhy = v (1— e+ uy"(1 —75)d (2.43)

is the charged weak current and J{j;; is the third component of the weak isospin current
~ T
I = I =Qf. 2.44
W za:QL’Y 2QL ( )

Note that this is still given in the language of interaction eigenvalues. Although the Weinberg-
Salam model is initially written down in terms of the gauge basis states, calculations which
confront theory with experiment are performed using the mass basis states. Therefore we will

14
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rewrite 1) in terms of the mass eigenstates. Substitution of A, and Z, for B, and Wj’ in

[B41) yields
Lr=—L (Wit + Wi gt —e A Jb  — —2 76 (o) ! 2.45
1= N cn Wy Jen € AuJEm 2 cos Oy P 9oVt Ga V5 ) P (2.45)

with the electromagnetic and weak coupling constants

e = g1 cos By = go sin Oy (2.46)
gl = T5 + 2sin®(0w)Q/, (2.47)
gl =T} (2.48)

We still have to rewrite the currents in into the mass basis. Therefore we will use
the equations to transform the currents in analogy to the masses. It turns out that
the transformation has no effect on the structure of the electromagnetic and weak currents.
The reason for this is that each generation is (aside from the mass) a replica of the others,
and products of the unitarity transformation matrices always gives rise to the unit matrix in
flavor space. Therefore there are, at Lagrangian level, no flavor changing neutral currents in the
theory. As an example for that we will consider the leptonic contribution to the electromagnetic
current. We obtain

Jhy = —ert'e
= —ery'er, —epyl'er
= —erSiViSter, — erSyN Shen (2.49)

_ ST b T M . [T
= —€rvy e —erpv épr

= —eMyte™,

Note that there is no difficulty in passing the unitarity matrices 5’27 r through the Dirac matrices
~*, since the former matrices act in flavor space, whereas the latter matrix acts in spin space.
The quark contribution of the electromagnetic current and the charged weak current of the
leptons behave analogously.

Up to this point we did not encounter any differences between the gauge basis states and the
mass eigenstates. However, we will now see, how the mixing between generations manifests in
the charged weak interaction currents. By convention we will assign the mixing to the down
type quarks by

Jhy = wrytdy = wPyt Sy St = wly Vo dy, (2.50)

where we defined the so called Cabbibo Kobayashi Maskawa (CKM) [25] matrix

Vud Vus Vub
Vorm =S84 = [ Veg Ves Vi | - (2.51)
Via Vis Vi

Thus the down type quark states participating in transitions of the weak current are linear
combinations of the mass eigenstates. Since the CKM matrix is the product of two unitary
matrices, it is itself unitary. Therefore the CKM matrix can be described by three mixing
angles 6;; (7,7 = 1,2, 3) and one complex phase ¢ which means it can be viewed as an Eulerian

15
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construction of three rotation matrices and a phase matrix. These matrices read:

ciz2 s12 0 13 0 s13
Uiz=|-5s12 c12 0 Ulz( 0 1 0
0 0 1 513 0 C13 (2'52)
1 0 0 1 0 O
U23: 0 C23 5923 U5: 0 1 0
0 —S8923 (€23 0 0 eié

where s;; = sinf;; and ¢;; = cosb;; (i,7 = 1,2,3). Combining everything by a product of the
three rotations, where Ujj is transformed by the matrix Us according to

Verm = UssUUr3UsUns (2.53)
as purposed in [8] we obtain
—is
c12€13 512€13 s12e€
6 i6
VokM = | —s12¢23 — c12523513 €' C12C03 — S12823S813 €' s23C13 | - (2.54)
i i
512823 — C12¢23513 €0 —C12823 — S12¢23513 €0 C23C13

All CP violation induced by this matrix is done by the phase J, since the combination of the
three rotation matrices Uia, U1z and Usg yields a general unitary matrix.

2.2. Neutrino masses and lepton mixing

Up to now we have not introduced any neutrino mass terms into the standard model. We have
not done this for two reasons. The first reason is that in early versions of the standard model
the neutrinos have been assumed to be massless. However, there recently has been evidence
that neutrinos have masses, and therefore consequently also underly a mixing [26] 27, 28]. The
second reason is that there is an additional way of mass creation for right-handed neutrinos
which differs from the mass creation in the Weinberg-Salaam model and explains the smallness
of the neutrino masses in a natural way.

As we have seen in the past section the masses in the Weinberg-Salaam model are usually
created by connecting the left-handed fields to their right-handed partners. Thus the mass
term is the term that flips the chirality. Mass terms of this kind are usually called Dirac mass
terms and take the form

m(Ypry + h.c.). (2.55)

The introduction of the Dirac mass terms for neutrinos goes along the same line as the intro-
duction (2.20)) of the other fermion masses. In particular we find

Lpm = — Z yfjlzL:I; Vi 4+ hee., (2.56)
i’j
which becomes
Lov = —vrMyvgr +h.c. (2.57)

after employing the mechanism of spontaneous symmetry breaking.
Another possibility to introduce masses into the theory is given by the Majorana mass terms
which take the form

M(ppp g +he.), (2.58)
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where 1¢ = Cy%¢* with C' = —ivp7, is the charge-conjugate field of 1 and ¥, = ()¢ = PL°
has left-handed chirality. The Majorana mass term violates the lepton number conservation
by two units and makes the particle and its antiparticle indistinguishable. This means that we
can use it only for right-handed neutrinos which carry neither hypercharge nor weak SU(2),
charge and can therefore be assumed to be equal to their antiparticles. Extending this for three
families we obtain the Lagrange density

1
Lyyv = —iljRMV(]:{+h-C- (2.59)
for the Majorana masses. This gives us the possibility to write the complete mass term as
Y e (0 mi ()R
L= —5 (VL7 (VR)L) (mgj’ Mij Vg% ) (260)

where we have made use of the relation

VR (WL R =VLVR (2.61)

Adding this to the original Lagrangian of the standard model which we have evolved in the
earlier sections, we find that the right-handed neutrinos interact with the other particles exclu-
sively through the Lagrangian £y;. Thus the classical experiment by M. Goldhaber, who showed
the left-handedness of the neutrino using the weak interaction '™ Eu + e~ —1%28m + v, [29],
does not preclude the possibility of a Majorana neutrino. The absence of interactions of the
right-handed neutrinos offers us an interesting possibility to create small neutrino masses by
the so-called seesaw mechanism [30] BI]. Since the Majorana mass term does not evolve from
the Higgs mechanism it is not connected to the electroweak vacuum expectation value. This
implies that the Majorana masses of the right-handed neutrinos can be large, maybe even as
large as the scale of grand unification. This can be used to construct an effective theory by
integrating out the right-handed neutrinos. This results in the replacement of the right-handed
neutrino fields within their interaction terms

v = M&l mj; vy (2.62)

with all other fields. The upper relation therefore represents an equation for small momenta
which means that the kinetic energy of the right-handed neutrino is neglected. From this we
get a dimension 5 operator which introduces a Majorana mass term for left-handed neutrinos
of the form

viar = — (v T Ml C v+ v, [ M~y €7, (2.63)

where the Majorana masses of the left-handed neutrinos are small, as they are suppressed by
the large Majorana masses of the right-handed neutrinos. This means the seesaw mechanism
gives us a natural way to create small Majorana masses for the left-handed neutrinos, especially
for the case in which the Majorana masses which have been introduced for the right-handed
neutrinos in a most natural way, are expected to be large.

No matter how the mass matrices have been defined, as well as still have to be
diagonalized in the same manner as we did for the quarks and charged leptons in section [21]
Therefore we again have to perform the biunitary transformations

M =S¥ M, Sy (2.64)
M™ =S¥ mT M~ tm ¥ (2.65)
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to diagonalize the mass matrices for the Dirac and Majorana neutrinos respectively. The
quantities M,* and M™ denote the diagonal mass matrices in the mass eigenspace with the
mass eigenvalues of the (in the case of Majorana masses left-handed) neutrinos. This leads to
a mixing matrix similar to the CKM Matrix. The charged current interaction now reads

Lcc = \%DL Y Venns e W, (2.66)

where ej, denotes again the three left-handed charged leptons and
Vonins = Sy1S¢ (2.67)

is the unitary Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix which is often also called
MNS matrix in the literature. This matrix connects the mass matrices of the neutrinos in
the mass eigenbasis (v1, 2, 13) with the ones given in the gauge eigenbasis (ve, vy, vr) by the
relation

Vo =) Viins¥i (2.68)
5

with o = e, u, 7 and i = 1,2, 3, just as the CKM matrix does for the quarks. Like the CKM
matrix the PMNS matrix can be parametrized with three angles, but with three C'P violating
phases (0, a1 and «3) instead of one. Thus in the standard notation given by [8] it reads

C12€13 512€13 s12e7 % eten/? 0 0
B s s .
VpMNs = | —S12023 — c12523513 €’ C12023 — 512523513 €' 523C13 0 e/2 0
i i
512823 — C12¢23513 €'° —C12523 — 512C23513 €0 C23C13 0 0 1
(2.69)

using the same notation conventions as for the CKM matrix introduced at the end of the last
section as purposed in [§].
Here we will order the basis of mass eigenstates in such a way that m? < m3 and Am3; <
2 2

|Am3,|, where Am%j = mj —mj;. The mass difference Am3; can be obtained experimentally

from solar neutrinos. Thus the notation Am?2, = |Am3,| is often found in the literature.
Likewise, the mass difference Am%2 can be obtained by the analysis of atmospheric neutrinos,
and thus can be written as Am2, = |Am32,|. Given the current precision of neutrino oscillation
experiments and the fact that neutrino oscillations are only sensitive to the mass-squared

differences, three possible arrangements of the neutrino masses are allowed:

e Normal hierarchy, i.e. m; < ms < mgs. In this case we find Amatm = m% — m% > 0 and
thus mg ~ \/Am?2, . The solar neutrino oscillation relates the squared masses of the two
lighter neutrinos, leaving the mass of the lightest neutrino unconstrained. If we assume
m1 < my we can find a specific value for ms.

e Inverted hierarchy, i.e. m; ~ mo > mg3 which implies mq o ~ vV —Am2, = and Am2, =
2 2

m3 — m5 < 0. Here we have no information about ms, except that its value is much
smaller than the ones of the two other masses.

e Degenerate neutrinos i.e. m; >~ mg =~ ms.

2.3. Quantum chromodynamics

Quantum chromodynamics (in the following sometimes abbreviated with QCD) is the descrip-
tion of the strong interactions through a non-abelian gauge theory. It contains quarks and
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gluons instead of leptons and photons as its basic degrees of freedom. The theory of quantum
chromodynamics is described by a renormalizable gauge theory which is based on the symmetry
group SU(3). In the following we will denote quark fields with q]f adopting the notation from
the last section defined in equation (2.4). The index j = 1,2,3 represents the color in the
fundamental representation of the SU(3). The gauge bosons are the gluons which will be sym-
bolized as Aj,. The gluons also carry color, but denote that the index arrises from the adjoint
representation which implies a = 1, ..., 8. In this section we will denote the octet color indices
by the letters at the beginning of the alphabet (e.g. a,b,c,... = 1,...,8) and the triplet color
indices by the ones in the middle (e.g. j, k,l,... = 1,2,3). Using this notation the Lagrangian
of quantum chromodynamics takes the form

1 rya
Lqcp = —ZF,f F/‘jy + qu (lejk - mféjk) q,{, (2.70)
where the repeated indices are summed over. The gauge field strength tensor is given by
Ff, = 0,A% — 0,A% — gy fare AV, AS. (2.71)

Here g5 denotes the SU(3) gauge coupling parameter and fup. the antisymmetric structure
constant of the fundamental representation of the SU(3). The gauge covariant derivative is
defined by

iDy, =0, + gs t* AL (2.72)

Note that this is independent of the representation and the t* symbolize any set of SU(3)
generators for an arbitrary representation matching the representation of symbol the derivative
acts on. When acting on a quark field, like in the QCD Lagrangian (2.70) it is used in its fun-
damental representation, and the matrices take the form of the Gell-Mann matrices presented
in appendix The first term in contains, like in QED, the propagators of the gauge
fields. But since the gluons carry color themselves, it also gives rise to gluon-gluon interactions.
This makes the structure of the QCD more difficult than the one of QED, calculations up to
one-loop level and beyond are considered. The second term describes the interactions of the
quarks with the gluon fields. Remember that the covariant derivative contains the gauge field
which induces the interaction terms. In this way the gauge covariance is directly associated
with the interaction. Additionally, this term contains the mass terms for the quarks. In spite
of its putative simple structure, the QCD Lagrangian has a very abundant dynamical content.

Because of its huge relative strength regarding the other forces contained in the standard
model, radiative corrections are performed exclusively with respect to the QCD within this
work. In the later sections we will see that the effects of QCD play a crucial role in the
phenomenology of weak decays of hadrons - especially since all decays of single quarks take
place in the background field of the hadron because of confinement. In the present subsection
we will shortly review the basic formalism of perturbative QCD and its renormalization, where
we will concentrate specially on the aspects which we will need for the present work. The
starting point shall again be the Lagrangian density of QCD. Expressing it in a more verbose
way than in equation (2.70) and adding a gauge fixing term to eliminate the superfluous gauge
degrees of freedom which can give rise to specific divergencies, we obtain

1
2%

2
gs aoc a a Ccv gS aoe pgcde a C 17
-5 F(0, AL — 0, A%) AW A — o fobe pede A2 AD Ak A%

1 £ C ax a
Lacp == 5 (Ou 4], — O, A7) (0" A%)? + go fUU(OMX ™ XD AS) + X 0" D x

(2.73)

+ 95 @ Tl A + g iy — mT8i5)a]
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where x® denotes the ghost field and £ the gauge parameter. The ghost fields are Grassmann
variables which couple to gluons exclusively. They occur only within loops and never appear
as asymptotic states (which is, why we have not introduced them in equation ), but only
remove unphysical fields introduced by the gauge fixation which appear in non-abelian gauge
theories.

To deal with the divergencies that appear during the calculation for loop corrections to the
green functions two steps have to be performed. The first one consists of the regularization
which means to explicitly parametrize the singularities. A common method for this is the
dimensional regularization, where a continuation of the space-time dimensions to D = 4 — 2¢
[32, B3, 34, 35], B6] is performed. The reason for this is that integrals which are UV divergent
for D = 4 dimensions, are convergent for a sufficiently small D. In the next step the analytic
continuation of D results in the transformation of the divergencies to singularities in the complex
D plane. Therefore the loop integrals are replaced by the description

d4 dP
[a—e e

The arbitrary reference mass scale p has been introduced to obtain a dimensionless coupling
gs in D = 4 — 2¢ dimensions. This approach has the advantage that Lorentz invariance and
gauge invariance are retained. The only problem arrising is the fact that the Dirac matrix s
has no trivial continuation to D dimensions. However, there are solutions to this problem by
either installing correction terms to restore the chiral symmetry or modifying 5 algebra.

The second step consists of the renormalization to obtain finite Greens functions. This is
often done by the subtraction of the divergences in the minimal subtraction scheme M S [37]
or the modified minimal subtraction scheme (M.S) [38]. While the M.S scheme only consists of
the subtraction of the 1/¢ poles (where € = 4 — D) which have been separated form the physical
contributions, the modified minimal subtraction scheme MS also removes additional terms of
In(47) and vg (the Euler constant) which normally accompany the divergencies. To eliminate
the divergencies the fields and parameters in the Lagrangian have to be renormalized. This is
commonly done by multiplying the parameters by renormalization constants Z. These read

1/2 1/2 ~1/2
b= 2504 d =2 =2

B a B B (2.75)
gsO—Zggs/L §o = 23§ mo = Zmm,

where the index 0 marks the unrenormalized quantities. Since we will not consider Greens
Functions with external ghost fields, it is not necessary to apply a ghost field renormalization.
Furthermore, we do not need the gauge parameter renormalization when we are dealing with
gauge independent quantities like Wilson coefficient functions (which we will encounter in later
sections). Considering the parameters and fields in the original Lagrange density as
unrenormalized (bare) quantities, we may now re-express in terms of . This results
in a Lagrange density where only renormalized quantities appear. As an example we obtain

Le=aqidq) —mald =" idd" —md o +(Z, - V)T iddd — (24 Z0 —1)md ¢f (2.76)

for the quark kinetic term. The counterterms that appear additionally to the terms we had
for the bare quantities can now formally been treated as interaction terms contributing to the
Green functions calculated in pertubation theory. The Feynman rule for the counterterms
contained in , for example, reads

i(Zg — V) — i(ZyZn — V). (2.77)
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2.3. Quantum chromodynamics

The constants are then chosen in such a way that they cancel the divergencies in the Green
functions according to the chosen renormalization scheme. This way of implementation of
the renormalization is called the counterterm method, since additional interaction vertices are
provided to cancel the divergencies.

In the following lines we will deal with the renormalization group equations which play an
important role in the study of perturbative QCD effects. These differential equations describe
the dependence of the renormalized parameters on the renormalization scale u. Te renormal-
ization group equations can be easily derived from the definition by using the fact that
the bare quantities are p independent. Thus the renormalized coupling gs(u) obeys

d
———gs(u) = B(€, gs ; 2.
T 9:(0) = e, 92(0) (2.78)
where 1 4z
_ o, 9 _ _
5(6795) = —€gs — Gs Zg dln s €gs + ﬁ(.%)a (2-79)

which serves as a definition of the 3 functionﬂ The upper equations are valid in arbitrary
dimensions. For four dimensions (e, gs) reduces to (5(gs) with e = 0. Similarly, the anomalous
dimension ~,, of the mass can be defined by

dm(p) _
dln(p) —Ym(gs)m(p) (2.80)
and
Ym(9s) = %(ﬁiz : (2.81)

In the MS and MJS scheme the renormalization constants contain just the pole terms in e.
Therefore they can be expanded by

[ee]
1
Zi=1+ ; :kzi,k(gs) . (2.82)

Applying the equations (2.78]) and (2.79)) results in

i dZZ _ 2621-71(98)
Zdln(u) P g2

(2.83)

which can be used to perform a direct calculation of the renormalization group functions from
the 1/e-pole part of the renormalization constants. Up to two-loop level the beta function reads

[14] , .

_ a9 9s
Blg) = =boggrz ~ Priggrme

The second term becomes relevant only for next-to-leading order corrections, and can be ne-

glected for the calculations which we will perform in chapter @] However, we include this term

for convenience. The upper equation can be rewritten in terms of s = g2 /47 which yields

(2.84)

doyg a? al
=232 — 23] —2~ 2.85
dIn () o —2M (2.85)

(4m)?”
2The beta function is also called Callan-Symanzik function, as it was introduced by C. G. Callan Jr. [39] and
K. Symanzik [40]
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2. The standard model of particle physics

In the same way we can write the two-loop expression for the anomalous quark mass dimension
which reads

m0) =m0 s+ (52 (2.56)
Furthermore, we shall include the 1/e pole part
g\ 2
Zyy = a1 + (47T) (2.87)

of the quark field renormalization constant Z; to O(a?). The coefficients contained in the upper
equations calculated in the M.S (M.S) scheme read:

11N —2ng 34 5 10 N? -1
=——"1 —N?—-—Nn;-2C Cp =
bo 3 =73 g T ERER EET TN
97 10
Ym0 = 6CF Yml = Cr <3 Cr+ 3 —N — 3nf> (2.88)

3 17 1
= — = — ——N —
al Cr as Cr <4CF 1 +2nf> R

where NN is the number of colors and n; is the number of quark flavors. The expressions
for a; and a9 are valid in Feynman gauge (£ = 1). At two-loop order the solution of the
renormalization group equation |2.85| provides the running coupling constant

In (In £
() = — 2T 1_ﬁ1( AQ> (2.89)
s\ 12 ﬁg n 12 . .
Adcp

at NLO. This running coupling constant vanishes for ;1/Aqcp — oo due to asymptotic freedom.
To retain the leading order corrections (31 simply has to be set 0. Finally, we write down the
two-loop expression for the running quark mass in the M.S (M.S) scheme

i =i 28] [+ (30 - ) 22522 o

which is obtained by integrating equation (2.80). Up to one-loop order the equations ([2.84)
and ([2.88) above provides us with

3
B=- (11 . gnf> 1(?;2 (2.91)
for three colors. The sign of this function is obviously negative, if the number of flavors ny does
not exceed 16. For the observed case of ny = 6 flavors this has interesting consequences which
distinguish the QCD from the QED. The QED vacuum acts like a medium with the dielectric
constant eqpp > 1 which comes from the vacuum polarization (the spontaneous creation of
virtual fermion-antifermion pairs). This results in a screening of the electric charges which
leads to a weakening of the electric force for long distances. The magnetic susceptibility of the
QED vacuum is therefore pqrp < 1 and hence the QED vacuum is a diamagnetic medium. In
QCD the analog effect is given by the creation of virtual quark-antiquark pairs. But as the
gluons also contain a color charge one obtains additional contributions from the creation of
virtual gluons which even exceed the effects of the quark-antiquark pairs in the case of ny < 16.

22



2.4. The S-matrix and the optical theorem

Therefore the QCD vacuum is a paramagnetic medium with pgep > 1 which antiscreens the
color charges because of eqcp < 1. Thus the color charges become even stronger with growing
distance. This implies that the coupling constant gs decreases and vanishes asymptotically for
increasing energies. However, for small energy scales the coupling constant gets too strong
for an expansion in its orders. This happens for about u < Aqcp. Thus it is not possible to
describe hadrons in low energy processes by using QCD up to now.

Another well known effect in QCD is the confinement. It describes the fact that quarks can
appear only in bound states - in contrast to leptons which can be measured separately. The
confinement results from the potential between two color charges which is phenomenologically
often taken in the form

Vo=—o—+kr, (2.92)

where k > 0 is a constant. For short distances r a potential proportional to —1/r like the
Coulomb potential is obtained, while for long distances the second term in provides a
strong growth to the forces at high distances of the color sources. This makes it impossible
to separate the quarks, since more energy has to be expend for the separation than for the
creation of a new quark-antiquark pair. Thus every attempt to separate the quarks results
in the creation of two new hadrons instead of the separation of the quarks. Color charged
particles like quarks and gluons can therefore only be found in bound color neutral states as
mesons or baryons. Experimentally this can be shown in reactions like eTe™ — ¢g with high
center of mass energies. The color charged quark-antiquark pair in this reaction is separated
with high velocities which results in the creation of additional quark-antiquark pairs. The
resulting particles are observed as jets of color neutral hadrons. In this work we are specially
interested in the semileptonic decays of B-mesons. The weak interactions describe only the
interactions between quarks and leptons, since we have the quarks in a bound state caused by
confinement we have to implement the strong interactions between the b-quark and the light
spectator quark. This is done by the heavy quark effective theory which is described in section

3.3l

2.4. The S-matrix and the optical theorem

In this section we will introduce how to calculate a differential decay rate. Therefore we will
analyze the differential cross section and show how it is connected to the differential decay rate
by the optical theorem. The starting point is to consider two wave packets ¢4 and ¢p in the
initial state in the distant past T — —oo and final state of n wave packets ¢1¢o ... ¢, in the
distant future 7" — co. How the interaction at T' = 0 really works is unknown and furthermore
not measurable. Therefore we will avoid to be forced to do calculations in this point. A wave
packet can be described by the state

P’k 1
= | —=——==0(k)|k), 2.93
9= [ Gtk (2.93)
where ¢(k) is the Fourier transform of the spatial wave function and |k) is a one-particle state of
momentum k in the interacting theory. In a free theory we would have |k) = \/2Eka2|0). The
factor of 1/4/2 E}, is chosen to convert the relativistic normalization of |k) to the conventional
normalization in which the sum of all probabilities adds up to 1:
4’k

@y =1 if / Gl =1 (2.94)
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2. The standard model of particle physics

The probability for transition from the initial state |¢p4¢p) to the final state |¢1, @2, .. .) is now
given by

P=|(g12...|9a0dn)*. (2.95)
future past

The state |¢pa¢p) of two wave packets is constructed in the far past, while the state |¢1, ¢, .. .)
is a state for several wave packets in the far future. In the following we will mark this with the
subscripts in and out respectively. Even though these states are constructed in the Heisenberg
picture (and therefore are time independent) they are set up for two different times, and
therefore have an nontrivial overlap.

The in state |p4pp)in can be defined by setting up |¢pa¢p) in the remote past and taking
the limit in which the wave packets ¢;(k;) become concentrated around definite momenta p,.
It is useful to view |p¢p) as a superposition of such states. Furthermore, it is important to
take into account the transverse displacement of the wave packets ¢p relative to ¢ 4 in position
space. Although this could be left implicit in the form ¢(kp) we prefer to write ¢(kp) with
an explicit factor of exp(—ib - kp) for the spatial translation with an impact parameter b to
get collinear wave functions in the reference momentum-space. The initial state can then be

written by
[ @Pka [ Pkp dalka)op(kp)e ks _
‘¢A¢B>m_/ (27r)3/ (27)3 (2E4)(2E3) Ik aks)in. (2.96)

Analogously we define

d3
out <¢1¢2 . H/ pf ¢f pf out <P2p2 s ’ (297)

for the out states. To combine these states we first have to calculate the matrix element
out(P1Py - - - |kakp)in which gives the probability that the initial state |kakp)in is migrated
to the final state out(pipPs...|]- Therefore we take |kskp)in at the time —7' while we take
out(P1Ps - - .| at the time +7 for T' — oco. The two pieces can then be connected by the time
evolution operator e~*(2T) with which we transform the out state to an in state. The matrix
element is then given by

out (P1p2 - - - |k1ko)in = TliiI;O<p1p2 | kkg)
T _T
= Thm (p1p2 - .. [e” D)k foy)

= <p1p2 cee ‘S’k‘le) .

After this any reference time can be chosen, since the matrix element only depends on the
time difference of the states. Thus the S-matrix is defined by the time evolution operator
and describes how the initial and final states which live in different times, are connected to
each other by the scattering. Independent of the initial and final states, we always have four
momentum conservation. Therefore we always get a factor of 6 (ky + ky — 3 pf) which can
be extracted from the matrix element to get the invariant matrix element M defined by

(prpa-|iT|k1ks) = (27)* 6 <k1 tky — pr) M (k1 s — pipa...) - (2.99)

(2.98)

Here we additionally used that the S-matrix can be written as

S =1 +iT, (2.100)
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2.4. The S-matrix and the optical theorem

where the 1 reflects the part of the operator belonging to the probability that the particle does
not interact, while the ¢T" reflects the interaction part of the S-matrix. In the following we will
ignore the 1 -part of the S-matrix, since we are not interested in the trivial case of forward
scattering, where no interaction takes place. For the case of forward scattering equation [2.99
simplifies to

(p1pa ... |iT|kiks) = (27)* iM (kiko — kiks), (2.101)

where we have defined the invariant matrix element M. The probability for the initial state
|padp) to scatter and become the final state |p1p2...) of n particles is given by

dBpy 1
P(AB —12.. H / / ﬁ |out<p1p2---’¢A¢B>in|2a (2102)

where we used that the momenta of the final particles lie in the small region d3p; ...d%p,.
Furthermore, we used the normalization . In the following we will assume a single target
(A) and many incident particles (B) with different impact parameters b. Thus the number of
scattering events is given by

N=>"7P :/denBP(b), (2.103)

where we sum over all incident particles i. Here we additionally introduced the particle number
density np of the incident particles B which describes the number of particles per unit area
within the plane defined by the impact parameters b. Here we assume that the number density
np is constant over the range of the interaction. Therefore it can be taken out of the integral
contained in N providing us with the cross section

N N

e i /dP(b) (2.104)

Combining everything the formula for the differential cross section turns out to be

oo dPpy 1 ) d3k ot k1 Bk; ¢t (k1)
do = — | [ a% i
7 le(%)?’ 2Ey / 11 / /(277)3 V2E; (2.105)

i=A,B

X elb‘(kB_kB) (out<{pf} ’ {kz}>zn) (out({pf} ’ {Ez}>m) : 5
where we have used k4 and kp as dummy integration variables in the second half of the squared

amplitude. The d?b integral can be performed to give a factor (27)20?) (k5 — k). Additionally
using (12.101)) to replace the matrix elements by M leads us to

(ot (P} i Din) = iM({k} = (oD 0@ (3 ki = > Py) (2.106)
(out{ PR in)* = —iM({i} = (o) E@m 6@ (3 ki = > Py) - (2.107)

The delta function in the second relation can be used together with (5(2)(l<:L — k) to perform
all of the k integrals in . Of the six integrals only those over k2 5 and k are nontrivial.
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2. The standard model of particle physics

We find
/ AFARES (Fa+ K — S 03 ) 6 (Ba+ Bp — S By)
- [arsa <\/l<:§1 o+ R+ - ZEf>

1 1
Fa  Ep

] ] (2.108)
Fy=pi -k,

 |va —vB]

The integrations deliver the constraints k% + k% = Zp';“; and E4 + Ep = Y Ey coming from
the z integral above as well as Ej = k:j and l%ﬁ = kﬁ implied by the other four integrals.
|lva — vp| denotes the relative velocity of the particles. As the initial wave packets are localized
in momentum space and centered on p, and pg, we can evaluate all factors that are smooth
functions of k4 and kp at p4 and pp and pull them out of the integral. Besides the delta
functions nearly all quantities including E4, Eg, |[va —vp| and M can be treated this way. Thus
we obtain the expression

d? 2
do — H Py 1 ) [M(pa,ps — {pr})|

f (27)3 Ef | 2E42FEglva — vp|

% dgﬂ dgﬂw (k) ||o5(ks)|?(2 26@) (fn 4+ kn —

[ o | Gpleatintiontin)ens® (ka s ks = $o).

Up to now this formula does not include any inputs resulting of the properties of a real detector.
All detectors have a finite resolution. Even if one would consider an ideal detector, we would
have to use a certain binning to prevent the detector from always giving a flat distributionﬂ
Thus detectors sum incoherently over momentum bites of finite size. Normally the measurement
of the final-state momentum in not of such high quality that it can resolve the small variation
of the momentum that results from the momentum spread of the initial wave packets ¢4 and
¢p. In this case even the momentum vector k4 + kp inside the delta function can be well
approximated by its central value ps + pg. With this approximation we can perform the
integrals over k4 and kg using the normalization condition . Finally we get the relation

(2.109)

1 d3p, 1
1= 3EaEalor—oal |1 anp &, | M@aps = o) PEr)6Y (pa+ 25 = Yops)

(2.110)
between the differential cross section and the invariant matrix element M. In this work we are
interested in differential decay rates rather than cross sections. To obtain a differential decay
rate we cannot simply set the number of particles in the initial state to one, as it would make
no sense to regard an unstable particle for T" — +oo. However, it is possible to connect the
differential cross section of a forward scattering to a decay rate by the LSZ Formula. Since
the construction of the LSZ formula is beyond the scope of this work, we will just present the
formula

d3
= o I ek | MEa = )P0 (pa-Yer) . 211D

3This would of course happen since it is very unlikely to get exactly the same energy for two particles twice, if
one has to consider the full spectrum of real numbers, not to mention a distribution of particles at all.

26



2.4. The S-matrix and the optical theorem

for the differential decay rate here. A more detailed description of the LLSZ formalism and the
derivation of the differential decay rate can be found in chapter 7 of [9]. The optical theorem
is a straightforward consequence of the unitarity

Stg = ¢iH2T o—iH2T _ | (2.112)

of the S-matrix. The combination of the equations (2.100)) and (2.112)) leads to the relation

—z’(T—TT> — 7T, (2.113)

Taking the matrix element between the initial state |k1k2) on both sides of this equation and
inserting a complete set of intermediate states

Z%H/&%Q)mmwm (2.114)
n i=1 v

on its right-hand side we obtain

— i (bl lhaka) — (kb T i) = 3 [ Aol T Do TR Rs), (215
f

where [ dIT; denotes the phase space of the intermediate states f. Under usage of the definition
(2.101)) of the invariant matrix element this can be rewritten to

—i (M(krky — kiks) — M*(kiks — kiks))

= Z/dHfM*({pf} — k1k2)M(k‘1k2 — {pf}) % 6(4) klk2 _ pr (2-116)
f !

Since, for the case of forward scattering, no new particles can be created, we can set k; = p;.
The left hand side is obviously the imaginary part of the invariant matrix element, while the
right hand side is proportional to the total cross section. Introducing the energy FE., and
momentum pe,, of either particle in the center-of-mass frame we obtain the relation

Im M (ki1ke — k1k2) = 2 Ecp Dem 0tot(k1k2 — anything), (2.117)

which is called the optical theorem. It relates the forward scattering amplitude to the total
cross section for production of all final states.
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3. Effective field theories

3.1. What are effective field theories?

While describing a physical system we normally focus on the degrees of freedom which are
relevant at the distance scales under considerations. As an example imagine the description of
the solar system by classical mechanics. Instead of calculating all inertia tensors for all objects
and considering every small satellite of every planet the planets are usually approximated by
point masses and every item that is to small to matter is ignored. In this way the planets
orbits can be calculated with relative ease, as all the uninteresting degrees of freedom that
needlessly complicate the calculations do not have to be handeled. Going one step further
the calculations could even be performed in a general relativistic context or, even worse, by
quantum mechanical considerations. In this way classical mechanics are indeed an effective
theory for quantum mechanics (when A — 0) and general relativity (when ¢ — 00).

In particle physics the way of constructing an effective field theory [41] 42} [43] [44] depends on
distance or energy scales. Analog to the picture of the solar system we can observe the nucleus
of an atom. Even if we know that the nuclei are composed of a rather complicated structure
of quarks and additional virtual particles the appropriate degrees of freedom in nuclear physics
are those of the nucleons, while the quark structure becomes relevant only at much smaller
distances or higher energies respectively. To construct an effective field theory in elementary
particle physics, we always need disparate mass scales, where some of the degrees of freedom
become relevant only at much larger energy scales. As an example we can take a heavy particle
which cannot be created at an energy scale smaller than its mass. For the decays of bottom
quarks which are analyzed in this work, this means that for example a top quark is a heavy
degree of freedom that can be neglected since the top mass is larger than the energy scale of
the decay process. This is of course also valid for the other heavy degrees of freedom which
appear in the standard model at much higher scales (e.g. the weak bosons at O(100 GeV)) as
the scale of the b quark which is of order my ~ 5GeV. Consequently the Lagrangian for the
description of the b-decay does not have to contain these degrees of freedom. Commonly the
fact that it is possible to create a Lagrange density for low energy scales which does not contain
degrees of freedom needed for higher energy scales only, is ensured by the decoupling theorem
proved by Appelquist and Carazzone [45]. This theorem declares that the heavy degrees of
freedom decouple at energy scales much lower than their mass with very few exceptions. In
this case decoupling means that any effect of these degrees of freedom is (up to logarithmic
contributions) suppressed by inverse powers of the heavy scale.

So, how can we construct an effective field theory for decays at quark level? The starting
point is, as discussed above, the presence of a large scale A which usually presents the mass of
a heavy particle. In the case of weak interactions of hadrons this scale is usually given by the
mass My of the weak charged boson. The decay is described by a transition matrix element
from an initial state |i) and a final state |f) in a theory containing the full set of degrees of
freedom. If the states involve only energies below the heavy scale A, we can introduce a local
effective Hamiltonian, since all effects of interactions above the scale A appear local in the
typical scales of the states |i) and |f). The matrix element of the local effective Hamiltonian
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3.2. Renormalization of effective theories

can be written as a series [46]

iralih = 3 C8) 71040 (3.1)

of matrix elements of local operators (f|Ox|i)|s and the coefficients Cx(A). The local operators
contain the long distance contributions at scales below A, while the coefficients contain the
short distance contributions above A. This seems natural as the light degrees of freedom are
still fully contained in the Hamiltonian, while the heavy degrees of freedom are not contained
explicitly in the theory any more. This means that the heavy degrees of freedom are hidden in
the coefficients Cj(A) which are of course only valid at the scale A. However, we will see later
that the coefficients can be rescaled to fit calculations at other scales, but of course only up to
a point where additional degrees of freedom appear. The calculation of the operators is usually
performed by a procedure called matching. This can be done by calculating the amplitude

= (f|Heg i) to the same order in a, as the matrix elements (f|Og|i) of the operators. The
coefficients Ck(A) can then be obtained by comparison. Since the sum in general runs
over an infinite set of operators, it is only useful if we can truncate the sum. However, for
practical reasons it may be appropriate to just leave the operators coefficients uncalculated and
use them as input parameters to the effective theory. In this way the parameters have to be
extracted from experiment.

Since the effective Hamiltonian is a density it has the mass dimension 4. This also means
that every term in has to be of dimension 4. Because of the fact that long and short
distances factorize, the short distance coefficients Cx(A) do not depend on the long distance
scale. Therefore the mass dimension of these terms depends only on powers of the large scale
A. In order to simplify the power counting of powers in 1/A it is convenient to factor out the
appropriate powers of 1/A and make the coefficient dimensionless. Thus the effective Hamilton
density can be written as

(f[Hesli) Z Akz% (FlOkli)| (3.2)

where k denotes the dimension. For a fixed dimension k£ we have to take into account that more
than one operator can contribute. Hence we still have to sum over j which runs from 0 to the
number of operators for a certain dimension k. Considering naive dimensional arguments only,
we find that the coefficients ¢, ; are dimensionless and therefore cannot depend on A. However,
since in a renormalizable theory the coupling constant, although dimensionless, depends on a
dimensional quantity, namely the scale of the observed process, the constants also depend on
the scale A. In this work we will use the expansion of the effective Hamiltonian in multiple
ways. In chapter 4] we will use it to extend the standard model by new operators to perform
a test on the standard model currents. Additionally we use it to expand the charged weak
propagator with which we are confronted in this section in terms of local operators which are
much easier to handle. The third part where we use the expansion is described in chapter |5] in
which we describe the decay of a bottom quark to a charm quark within the background field
of a B meson. In this case the expansion describes the nonperturbative interactions with the
other constituents contained in the meson.

3.2. Renormalization of effective theories

In this section we will describe how to renormalize an effective field theory. The starting point
is the relation (3.2]) which shows the expansion of the effective Hamilton density for a certain
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3. Effective field theories

energy scale A which separates the short distance parts in the Wilson coefficients ¢, ; from the
long distance parts contained in the matrix elements (f |Ok]|z) The whole expansion would
be extremely unpractical if we had to perform it for every value of A on its own. Fortunately
there is the possibility to rescale the expansion to another energy scale p, at least in the region
where we are not confronted with new degrees of freedom which appear at higher scales in the
full theory. The scale parameter p is arbitrary, but always smaller than the original heavy scale
A where a new degree of freedom appears. Hence for our new scale y < A all contributions to
a matrix element above p can be called short-distance pieces, while anything below u belongs
to the long-distance part. Applying the same arguments for the new scale u ads for A before,
equation becomes

(fHerli) Z N chw (A/1)(£1O1i > (3.3)

where again the dimensionless coefficients ¢y j(A/u) contain the short-distance contributions
and the matrix elements (f|Oy ;]i)|, contain the long-distance contributions. Note that these
quantities now both depend on the scale parameter pu. This implies that we can move con-
tributions from the matrix element to the coefficients and vice versa by changing the scale u.
The renormalizability of the dimension 4 part of the effective theory ensures that no power
corrections of order 1/u can appear. However, since we have introduced an arbitrary scale
which we can change as desired for our calculations, the physical quantity (f|Heg|i) may not
depend on it. This leads us to the renormalization group equations which describe the behav-
ior of the effective theory under renormalization. Besides the fact that the change of the scale
from p to p’ shifts parts from the matrix elements to the operators or the other way round, it
also induces a mixing between the operators. This means that the contribution of one matrix
element Oy, ; turns under the change of the scale from p to p/ into a sum of contributions from
all the matrix elements which have the same quantum numbers as the original operator. For
a description of this behavior the starting point is the derivative of the matrix element of the
effective Hamiltonian by the scale u

d
0= g (f Ml (3.4)

which has to vanish, as this matrix element must be p independent. Now we can use (3.3)) to
expand the matrix element in . Since the relations we will obtain are valid seperately for
each order of the 1/A expansion we can omit the sum over those orderings in the following.
The fact that mixing occurs only with operators of the same mass dimension is again caused
by dimensional regularization [34], B5]. Thus operators with the same mass dimension form a
basis closed under renormalization. The expansion of gives

)] e

"

d A

0=>" [(Mdﬂck(A/M)) (f1Okli)
k

Because of mixing the operator O ; turns into a linear combination of operators of the same

mass dimension

T en(A/n) (aimém

I

f|0k!

Zm ){(£10;1i) (3.6)

m

for an infinitesimal change in log p. The matrix 'y(u) is called the anomalous-dimension matrix
which describes the mixing of the operators in dependence of the scale u. Inserting this into
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3.2. Renormalization of effective theories

equation (3.5)) we get
d
0=>" i or(A i) (f|Okld)
k

= 3 (sugeaarm) (104

-y Y [akj i %TJ} cj<A/u><f\ék|i>
kK J H

+ chk A/ )i () f1O;1i)

I

E ZZ% (A/ 1)k (1) (F1Ox 8} (3.7)

I

I

Since the operators O; form a basis for a fixed scale u, none of the operators may be written as
a linear combination of the others when a certain value of y is chosen. Hence (3.7)) is equivalent
to the set of equations

> [5@ u(i + 'Yij(u)] cj(A/n) =0 (3.8)
J

for the coefficients. Although the anomalous dimension matrix is in a naive point of view a
dimensionless quantity and therefore should not depend on the mass scale p, in a renormal-
izable theory there is a hidden scale given by the scale dependence of the coupling constant.
This implies that for observable quantities a change in the scale may be compensated by an
appropriate change in the masses and coupling constants of the theory. In the following we shall
consider the case of massless QCD which means that we will consider only the renormalization
group flow induced by strong interactions. In this case only the strong coupling constant ag
changes with scale, while the running of the other coupling constants with scale is disregarded.
In the following we will rewrite all our quantities in terms of o, to be able to perform a per-
turbative expansion in powers of this quantity. The anomalous dimension depends on the scale
exclusively through the strong coupling:

Yij (1) = yij(as(p)). (3.9)

For the Wilson coefficients the case is a bit different, since they also have a direct dependence
on the scale [14]:

¢i(A1) = ¢(Ap os(p1). (3.10)

The only quantity which still has to be rewritten in terms of the strong coupling is the total
derivative by the scale. Therefore we introduce the beta function

o) = -0 (3.11)

which describes the change of the coupling constant with the scale. Using this we can rewrite
the total derivative to

d 0 0
M@ = N@ﬁ(%) + 0. (3.12)
All in all (3.8]) takes the form
> 16 Qﬁ(a)ju—a + i (as)| ¢j(A/p,as) =0 (3.13)
ij Ma'u s dars Vij (s j M, as) =U. .

%
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3. Effective field theories

The original idea was to move the effects above the scale A into the short-distance coefficients
¢;. These coefficients are determined by a matching calculation which means that the effective
theory is compared with the full theory at the scale A. The initial condition for the coefficients’
renormalization group flow is therefore given at u = A, or in other words ¢;(A/p =1, ay). For
any practical application it is suitable to compute the coefficients ¢; as well as the beta function
in perturbation theory as a series in ags. The expansion of the coefficients, the anomalous
dimension and the beta function gives us

(AN p=1a5) = Zaz(") (Z—;)n (3.14)

Blas) = as Y A" (Z—;)nﬂ (3.15)
n=0
vij(as) = Zvi(;) (Z—;)nﬂ . (3.16)
n=0

Here we have taken into account that the first nonvanishing terms are of second order for the
beta function and usually of first order for the anomalous dimension. Its origin has already
been discussed in section 2.3 It reads

Bo = §(33 —2ny), (3.17)

where n; denotes the number of active flavors which means the number of quarks with masses
below the scale . Taking the perturbative expansion as an input for the renormalization group
equations, the coefficients ¢; may be computed at the lower scale ;1 < A. From this we get the
expansion

4r ar
Y e )
+ b@('gg) (%)3 ln32 + 5532) (%)3 lnzﬁ + b§31) (%)3 lnt + s (3.18)

where the superscripts of the coefficients b; denote the power of ag and the power of the
logarithm In(A /) respectively. For the special case of A = pu all the logarithms vanish and we

obtain bgno) = agn). As the perturbative expansion of the renormalization group functions g and

7i; are known, we can resum the columns of using the renormalization group equations. For

the first nonvanishing terms (9 and *y((.]), the solution of the renormalization group equations

7
contains all orders of az. The resummatjion is done over all contributions with coefficients b?ﬁi),
i.e. all contributions where the power of the logarithm is equal to the power of az. This is called
leading logarithmic approximation. For the case where only a single operator of dimension k
appears, and therefore no mixing occurs, we can solve the renormalization group equations to

obtain

(1))@

(0)
(A A)) =0 (Z82) 7 3.19
Cl( //’Lvas( )) 7 as(u) ( )
In this case the matching has to be considered only at tree level which implies that only the
coefficient 5°? is needed.

)
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3.2. Renormalization of effective theories

To be able to perform a renormalization of the effective theory we additionally have to
regard it from the point of QCD radiative corrections which we have already discussed in
section Therefore we will again start from the expansion . In addition to the normal
renormalization constants which we obtain from the standard QCD radiative corrections
we need an additional multiplicative operator renormalization

0 = 7,0, (3.20)

to eliminate divergencies which are introduced by the effective theory. Again we have marked
the unrenormalized quantities with the superscript 0. Installing additionally the renormaliza-
tion of the quark fields we obtain

~(0 _92 A~

0 = 7270 . (3.21)

7

Viewing the renormalization in a sightly different, but equivalent way, we can define the renor-
malization of the Wilson coefficients which would provide us with

o = z50 . (3.22)
Regarding the renormalization of one coefficient-operator pair we obtain
CV0,(¢0) = 7275,C;0; = C;0; + (2275, — 6,5)C;0i . (3.23)

This means that the effective Hamiltonian [3.3|can be rewritten in terms renormalized couplings
and fields (CZOZ) and some additional counterterms. The argument ¢(°) in the first term of the
upper equation indicates that the interaction term O; is composed of bare fields. Calculating
the amplitude using the Hamiltonian including the renormalization of the coefficients [3.23
we obtain the finite renormalized result

Z325C;(f10ili)© = C;(f104li) . (3.24)
Comparing with (3.21]) we find
Z5 = 75" (3.25)

Thus the renormalization of operators is equivalent to the renormalization of the coupling
constants. Like the anomalous dimension which we have introduced for the mass matrices in
equation we define the anomalous dimension introduced by the operator renormalization
by

d
=7 Z 3.26
v i) (3.26)
which again reflects the fact that the unrenormalized Wilson coefficients C©) = Z,C are

p-independent. Using (3.25) we find the renormalization group equation

d
dIn(p)

The solution of this equation can be written in terms of a u-evolution matrix U as

C(p) =" (as)C(w) - (3.27)

C (1) = U(p, Myy) C(Myy) (3.28)

At this point we should mention that the py-dependence of the couplings C' completely van-
ishes if we completely neglect QCD loop corrections. This means that the anomalous scaling
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3. Effective field theories

behavior for the dimensionless coefficients is a genuine quantum effect which distinguishes the
quantum theory from classical theories. This is the reason, why the factor v is called anomalous
scale dimension (Compare (3.26|) to an n-dimensional p-dependent term p™ which behaves like

dl?lu u™ = nu™). For further purposes we define

(f1011)©) = Z2Z(f|Oli) = Zar(f]Ol3) (3.29)

as the renormalization constant for the Green functions (f|O|i).

In the M S (M S) scheme the renormalization constants are chosen in a way that the pure pole
divergencies 1/e¥ (D = 4 — 2¢) are subtracted (plus the Euler constant vz and the term In(4r)
which accompany the divergences, for the MS scheme). Since finite parts are not subtracted
we can expand Z in powers of 1/e as follows:

1
k=1

™M

Using the definition (2.79)) of the beta function we can derive the useful relation [47]

07 07Z1(gs
(9s) = —292 31(2 9:) _ g, alo(ég ) (3.31)
S S

Similar to (3.30)) we can expand the renormalization constants for the quark fields Z; and the
greens functions Zgp:

1
Zq =1+ Z E?Zq,k(gs) (3.32)
k=1
1
Zap =1+ FZcrk(gs)- (3.33)
k=1

The renormalization constant Zgg can be obtained immediately form the calculation of the
unrenormalized Green functions (3.29). To be able to compute v(g) we still need Z;(gs).
Combining the upper relations (3.29)) - (3.33)), we obtain

Z1=2Z41+ Zgra (3.34)

For next to leading order the renormalization constant for the Green functions reads

Qg 2
Zaor1 = b14 +by— . (3.35)

Using the well known expression (2.87)) as well as the relations (3.31)), (3.34) and [3.35(we finally
obtain the one-loop and two-loop anomalous dimension matrices

A =~ 22a16, + (b)) (3.36)
7)) = — 202285 + (b2)y5]. (3.37)

These equations may be used as a receipt to extract the anomalous dimensions from the diver-
gent parts of the unrenormalized Green functions.
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3.3. Heavy quark effective theory

3.3. Heavy quark effective theory

In this section we will shortly review the heavy quark effective theory (HQET) which describes
decays of heavy quarks confined in the background field of a hadron with light spectator quarks.
Here we will concentrate on the aspects of the HQET which are of importance for the further
chapters, while a good review of it is given in [I5]. As a starting point we shall remind that
the Lagrange density of the electroweak interaction describes only the decays of separate
quarks rather than the one of hadrons. This arises from the fact that the quarks also underly
the strong interaction. Because of this, the quarks couple to a complicated cloud of quarks,
antiquarks and gluons in the hadron. All in all it would be very difficult to perform calculations
in full QCD alongside the weak interactions with the full set of degrees of freedom. At the
moment there is no known way to calculate such a system from first principles, at least not in
a perturbative way. Therefore we will perform the calculations within an effective theory. As
we already mentioned in section in QCD the antiscreening mechanism dominates. Thus
the effective coupling constant which reads

127
o (A%) = (33— 2n/) In(A% /A2 p) (3:38)

at one-loop level, decreases at large scales A and the strong interactions therefore become weak
at short distances. We used ny to mark the number of flavors and introduced the scale param-
eter Aqcp ~ 0.2 GeV which separates the regions of large and small coupling. A sufficiently
large quark mass mg allows us to perform a perturbative expansion in as(mé) because of the
asymptotic freedom. Therefore it is natural to divide the quarks into two classes. When the
mass of a quark mg is much larger than the scale Aqcp, it is called a heavy quark. Thus we
classify u, d and s as light quarks and ¢, b and ¢ as heavy quarks. The HQET is normally
used to describe the decay of charm or bottom quarks in the context of a hadron since their
masses are high enough. Of course the decay of top quarkscould also be described with it, but
since the top quark normally decays before the process of hadronization occurs, it is perfectly
described by the partonic decay contained in the electroweak Lagrangian. From mg > Aqcp
we can also conclude that the Compton wavelength g is much smaller than the length scale
Ryaa ~ 1/Aqep ~ 1fm which determines the typical size of a hadron. As the soft gluons
which couple to the background field, can only resolve distances much larger than \g, the light
degrees of freedom are therefore blind to the flavor and spin orientation of the heavy quark.
They are affected only by the color field which extends over large distances because of con-
finement. Considering the rest frame of the heavy quark, only the electric color field has in
fact to be considered, as relativistic effects like color magnetism vanish for mg — oo. Thus
also the heavy quark spin decouples from from the interactions, as it participates only through
such relativistic effects. In addition to that, the heavy quark mass becomes irrelevant. The
reason for that is the fact that the hadron and the heavy quark contained by it have the same
velocity in the limit mg — oo. Thus in the hadron’s rest frame the heavy quark is at rest,
too. The description of the wave function of the background field follows from a solution of
the field equations of QCD, where a static triplet color source at the heavy quark’s location
has been assumed as a boundary condition. This boundary condition is - since it is static -
independent of mg, and so is the solution for the configuration of the light degrees of freedom.
As all degrees of freedom except for the color decouple in the mg — oo limit it actually does
not matter which heavy quark is actually contained in the hadron. This fact is called “heavy
quark symmetry”.
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3. Effective field theories

The heavy quark symmetry is an approximate symmetry, since the heavy quark mass is actu-
ally not infinite. Therefore corrections of the order Aqcp/mg arise. The condition mg > Aqcep
is necessary and sufficient for a system containing a heavy quark to be close to the symmetry
limit. This condition is complementary to the condition for the chiral symmetry which arises
in the opposite limit mg < Aqcp of small quark masses. However, there is a huge difference
between the sources of the heavy quark and the chiral symmetry. While the chiral symmetry
is a symmetry of the QCD Lagrangian in the limit of vanishing quark masses, the heavy quark
symmetry is not even an approximate symmetry of the Lagrangian, but rather a good approx-
imation to QCD in a certain kinematic region. It is realized only in systems in which a single
heavy quark interacts by the exchange of soft gluons, and is therefore much less general than
the chiral symmetry. While the heavy quark is static in the heavy quark limit Aqcp/mg — 0,
the corrections of order Aqcp/m¢q describe small fluctuations of the heavy quark around its
mass shell. In the following we will show how these corrections are implemented into the theory
by a small residual momentum describing the motion of the heavy quark inside of the hadron
due to its interactions.

The starting point for our considerations is the QCD Lagrangian for heavy quarks

ﬁh = 7L (Zm - mh) h, (339)

where h denotes a heavy quark singlet. We will now describe how the interactions with the
background field are contained in this Lagrange density. Since the interactions of the heavy
quark with the background field are small in comparison to the heavy quark mass my it is
nearly on-shell and therefore moves in good approximation with hadron’s velocity v. Hence we
can split the heavy quark momentum pj up into two parts

ph = mpot 4k, (3.40)

where mpv* describes the motion of the heavy quark with the hadron, while the momentum
k* is the residual momentum mentioned above describing the movement of the heavy quark
inside the hadron. The velocity of the hadron satisfies

v=PH. vt =1, v > 0, (3.41)

mpg

where py and mpy are the hadrons momentum and velocity respectively. This means that the
residual momentum is a measure for the off-shellness of the heavy quark and therefore also for
the interactions with the background field. Note that this is a quite naive description. Later
on it will turn out that we often have to see k as an operator rather than a velocity. As we are
not interested in the movement of the hadron, but rather the movement of the heavy quark in
the background field of the hadron, we will redefine the field A by the transformation

hy = ™M UTh, (3.42)
The phase factor €™ V® just removes the momentum mj, v, but leaves the residual momentum
k untouched. The result is a field h, which only depends on the long distance modes with
momenta of order Aqcp because of the small binding effects of k. Therefore all derivatives
acting on h, are of order Aqcp respectively. Another common step for HQET is the definition
of the projectors
1y

P.
+ 9 )

(3.43)
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3.3. Heavy quark effective theory

which projects the fields on their “large” and “small” components

hi =emnvTpip (3.44)
h, =emnvTpop, (3.45)

v

Note that the large and small components are marked by the superscripts + and — instead of
the ordinary big and small h to avoid confusion with other quantities. Of course these projectors
fulfill P} = Py and Py Pz = 0. In the restframe of the B-meson, where v = (1,0,0,0) is valid,
h,, corresponds to the upper and h, to the lower components to the h quarks Dirac spinor. In
this case h; represents a static color source of the heavy quark. In the following we will see
that the antiquark modes h; will appear only in higher order corrections. All in all the original
heavy quark field looks like

h=e MV (B4 b)) (3.46)

To describe antiquarks as a static color source in a hadron the corresponding relations are
hf = emnvepop (3.47)
hy =™ vEpEh, (3.48)

where just the projection operators are exchanged. The corresponding original quark field then
looks like 3 ‘ 3 5 '
j = imo v (hj + h;) = e (p 4 bt (3.49)

Thus only the sign in the velocity transformation and the role of h;} and h; have been inter-
changed. In the following we will concentrate on heavy quarks rather than heavy antiquarks.
Anyway, the calculations are exactly the same and can be retained by v — —v and h, < h.
Using the redefinition on the Lagrange density for the heavy quark we obtain

Ly = (hf +hy) [i) —mp(1 —9)] (b +hy). (3.50)

Since every consideration up to now has been done with the movement of the heavy quark
inside the meson moving with velocity v, it is reasonable to split up the covariant derivatives
into a longitudinal and transversal component to v:

y 1
D,=v,(v-D)+ Di, Dj = (g — vuvu) DY, {JD 9} =0. (3.51)

If we additionally consider the relations
P v,Py =v,P. and P_v,Py = (v, —vup)Pys (3.52)
we obtain
Ly = hf(iv- D)ht 4 hy (—iv - D — 2mp)hy, + hyiIp | b+ htiID | by (3.53)

for the heavy quark Lagrangian. From this we can immediately extract that h;” describes
massless degrees of freedom, while i describes a state with mass 2my, which is just the energy
needed to create a quark-antiquark pair. Thus the h, correspond to higher order corrections
of h,. This can be explicitly seen if we use the classical equations of motion to eliminate the
h, in the heavy quark Lagrangian. At first we solve

0
Ohy

= (—iv-D —2my)h, +ilp h; =0 (3.54)
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to h, and get the dependence

1
h, = —————ilp h} .
Y w-D+2my iDLh; (3.55)

of the small and large components. Using this in expression (3.53)) we obtain

1
Ly, = h(iv-D)ht 4+ hilp | -

S I 3.56
w-D—l—thleL v ( )

This expression is still exact, but it is not local anymore. The nonlocality is based on the
operator 1/(2my, + iv - D) which describes the propagator of a quark antiquark pair. Without
the Compton wavelength 2my in the denominator of the propagator the inverse derivatives
could be ascribed to local delta functions and their derivatives by Fourier transformation.
Thus it seems obvious to perform an expansion according to the derivatives iv - D, to present
the propagator as a series of local operators. The initial quark fields therefore take the form

~ 1
— —zva~x 1 - . +
no) = e 1 ()i o
(3.57)
imon. 1 1\, N
=e QYT 114+ —DP +(=— ) (—mivD)D, +...| b,
2mg 2mg
while the Lagrange density looks like
- - 1
— Bt (iuD) T + : +
L =h} (iwD)ht +hlil) | <2mQ+ivD> i) b
. L \2 (3.58)
= hl (ivD) hf + %BJ (i) b + <2mQ> hi (iD)) (—ivD) (ip ) by + ... .

Thus we have an expansion where every higher order is suppressed by 1/m, in comparison with
its predecessor. The best results for the expansion in m;, > Aqcp obviously can be obtained for
myp, — oo which is called the heavy quark limit. In this limit only the first term of the expansion
survives. As it is completely mass independent two further symmetries which are not present
in QCD show up in this limit. These are the heavy-flavor symmetry which implies the flavor
independence of quark-gluon interactions, and the heavy-flavor spin symmetry which indicates
that both spin degrees of freedom couple to the gluons in the same way leading to a symmetry
of the Lagrangian under the rotations of the heavy-quark spin. However, the discussion of these
symmetries is beyond the scope of this work, especially since the higher orders of the expansion
break them. Rather we shall show considerations to the dependence of the heavy quark mass
and the meson mass up to order 1/my,. Therefore we have to rewrite the second order terms
of the expansion by the relation

hyilp Lilp L hy =hyiDYiDY vy hy
|
:hjZD'liZDJV_ 5 ({’Y}M F)/l/} + [PY,LM 7u]> hj
TR | )
=h}iD'iD" 3 (gw, — ZJW) hit (3.59)
=h} [(iD|)* —io,, iDYiD" k)] hf
_p [(im)? n gowaﬂ he,
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3.3. Heavy quark effective theory

where G = —ig[iD,,,iD,]/2 is the QCD field strength tensor that we have already defined in
section Note that we can replace the iD// in the second term by the standard covariant
derivatives i D* since h;fo,,v"h" = 0. Using in and neglecting the higher order terms
gives us the Lagrange density

1

— Bt (; +
L =h} (ivD)h) + S

hi(iD1)2hE + jﬁﬁjawaﬂthf (3.60)
The first term of the 1/my, corrections can be interpreted as the kinetic energy of the heavy
quark with respect to the rest frame of the hadron. Since it explicitly contains the quark
mass it breaks the flavor symmetry of the heavy quarks contained in the lowest order of the
expansion. The second term is the chromomagnetic moment of the heavy quark. Besides its
explicit mass dependence it also depends on the quark spin and therefore breaks the heavy-
quark spin symmetry as well as the heavy-quark flavor symmetry. In the following we will
discuss the expectation values of the terms contained in (3.60)). Therefore we have, of course,
to introduce the HQET states at first. In QCD a hadronic state is usually normalized by

(H(p')|H(p)) = 2Ep (21)°6° (p — D) (3.61)

The relativistic energy Ep = 4/|p|? + m%{ thereby implements the Lorentz invariance which is

sacrificed in HQET since one explicitly uses the rest frame of the hadron. In the heavy-quark
limit we additionally encounter the problem of infinite normalization caused by the no longer
finite relativistic energy E,, = mg vg. This problem is solved by eliminating the hadron mass
from the normalization. Thus we get

(Hy (K')|Hy(k)) = 200 6,0 0 (k — k') (3.62)

for the heavy quark, where vg is the zeroth component of the hadrons velocity v. As we perform
our calculations in the rest frame of the hadron we consider only the changes in the residual
momentum k, while the velocity v is removed from our considerations. Thus only the residual
momentum remains in the delta distribution. To ensure that only hadron states in one rest
frame appear we added an additional d,s,. Altogether the normalization of the HQET differs
from the normalization of the standard QCD mainly in a factor \/my:

[H(p)) = Vi [[Hu(K)) + O (1/mq) | (3.63)

Now the states obviously have a different mass dimension which has to be compensated some-
how. Therefore we take a look at the Dirac spinors of the full QCD which fulfill the condition

i (p, s') Yuu (P, §) = 2pudss (3.64)
while the ones of HQET obey
@ (v,s") yuu (v, s) = 20,005 (3.65)

respectively. We immediately see that the Dirac spinors also differ from the ones of full QCD
by a factor of \/mp:
u(p,s) =v/mgu(v,s). (3.66)

This compensates the different masses of the states. Having defined the normalization of the
HQET states, we can now continue with the derivation of a relation between the hadron masses
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and the quark masses. The hadron mass in the HQET is given by A = mpy — my, as the heavy
quark mass and kinetic energy have been subtracted from all energies in the field redefinition
. At order my, all hadrons containing a certain heavy quark h are degenerate and have
the same mass my. The mass differences are induced by the terms proportional to 1/my,
contained in which introduce the dependence on the spin and the heavy quark mass to
the Lagrangian. Thus we can derive the formula

3pz + dup
6my

from (3.60|) describing the dependence of the meson mass and the heavy-quark mass. Here we
introduced the nonperturbative HQET parameters

1

myg = mp + /_\ + (367)

A= — S(H,|hf (D) hf|H,) (3.68)
H,\ht(iD | )2ht|H,
mpy
3(H,|h}o,,iD*iDVh|H,
dy p2 = (| “2mH ) (3.70)

whose values have to be extracted from experiment. A contains the static energy of the heavy-
quark field as well as the light degrees of freedom. The factor 1/2 arrises from the normalization
introduced above. The dependence on the heavy quark mass enters by the parameter 2, while
the parameter M2G additionally introduces the spin dependence to the Lagrangian. This spin
dependence is described by the factor dg = (Sp - S;), where S} and S; are the spins of the
heavy quark and the light degrees of freedom respectively. They have been introduced as the
chromomagnetic operator is not invariant under spin transformations. Using the total spin of
the meson J = S}, + S}, we can express the product of the spins by

Sh-Si =< (J*—S; —S7) (3.71)

N

with
JP=j(G+1), Si=s,(s4+1) and SI=s(s;+1). (3.72)
From the quark mass and the nonperturbative parameters we obtain the masses of the B-meson
(JP =07) and the B*-meson (J¥ = 17) up to the order 1/my:
Ha — 1

= A4 TG 3.73
mp =mp+ A+ 9m ( )

3uz + g

* ]\
mpg mp + + 6mb

(3.74)

The parameters of HQET cannot be calculated from first principles, but have to be extracted by
experiment. Anyhow, the parameters can be determined by model independent measurements.
As an example we can easily calculate the parameter Ay when considering the mass difference

. _ 2

mp —mp S (3.75)

of B and B*. Replacing the b-quark mass by 2m; ~ m}; + mp obtained from the lowest order
in the expansion we get

* * * 4
(mp + mp)(mp —mp) =~ (mp)* —mp = gﬂé, (3.76)
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which we can solve to

12~ . (3.77)
Thus we obtain
2~ 0.37 GeV? (3.78)
using the values mp = 5279.0 & 0.5 MeV and m}; = 5325.0 &+ 0.6 MeV from [g].

3.4. Heavy quark expansion for inclusive decays

In this work we will deal with the inclusive decay B — X, e 7. Inclusive decays of heavy hadrons
can also be described using effective field theory methods [48] 49, 50, 51, 52], 53], 54, 55, (6] 57].
The method is set up in close analogy to deep inelastic scattering and relies on the operator
product expansion [46]. The assumptions for the heavy quark expansion are the same as we
have made for the heavy quark effective theory which has been discussed in the last section.
However, we will not have to split the heavy quark up into small and large components. The
starting point is the effective Hamilton density

Heg = Rh (3.79)

for a transition in which the flavor changes by one unit. It contains a heavy quark field h and
other field operators (e.g. light quarks, photons or leptons) included in R. The inclusive decay
rate for a heavy hadron H containing the quark h can be related to a forward matrix element
by the optical theorem. Summing over all final states |X) the inclusive decay rate is given by

T oc Yy (2m) 6% (Pp — Px)|(X [Hext | H (v))”
X

— [ da(d(0) Ly e Hen O) H ) (3.80)
—21tm [ dt (1) Ty Har O H ).
Like for HQET we will perform a field redefinition
h, = €™M U Th (3.81)

to use that my, > Aqcp and retain just the residual momentum £ inside the effective Hamil-
tonian. This leads to

Poc2t [ dboe ™ S (H )T H O] H W), (3.82)

where HY; = R h,. The remaining matrix element does not involve large momenta of the order
of the heavy quark mass any more which means that the short distance expansion becomes
useful if the mass my, is large compared to the scale A of the matrix element. If this is the case,
it makes sense to perform an operator product expansion which has the general form

[atee i @pa =3 (5 CoslOnat.  G53)

2m
n=0 h
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3. Effective field theories

Here the On(u) denote operators of dimension n, with their matrix elements renormalized at
the scale u, and C,(p) are the corresponding Wilson coefficients. Taking again the forward
matrix element of this we obtain

Mnm;)(?;%) Corss (1) (H (0)| O3 H(0). (3.84)

Note that we have used the states |H(v)) of the full theory rather than the ones of the HQET
which we defined in the last section. Thus still does not contain the full expansion
in inverse powers of the heavy mass. However, since it has been found that it is in fact
advantageous to omit the HQET expansion and treat the matrix elements as phenomenological
parameters [58], we will not install the further HQET expansion here. This, of course, leads to
different normalizations and different definition of parameters. Since the parameters we define
will still contain the full states it can be shown that the operators of lower orders contain parts
of the operators of higher orders in the definition of the HQET. We will approach this subject
in a further section, where we will analyze the physical meaning of the parameters we define
for the inclusive B — X e, decay.

The next step is to define the normalization. Therefore we will consider the lowest order terms
in the operator product expansion. These are obviously terms of dimension 3. Considering
Lorentz invariance and parity we get only the structures ﬁvyﬁhv and hy hy. As the heavy quark
states h,, differ from the full QCD h operators only by the phase redefinition, the operators turn
out to be the same as in full QCD. Thus we have the relations vaﬁhv = ﬁyéh and hy hy, = hh
between the effective and the full QCD operators. Furthermore, the two operators differ from
each other only in terms of order 1/m?:

By hy = VP By + 27}1,2}“’ (iD)? — (ivD)? + %O—,WGW he + O (1/m3), (3.85)
where G, is the gluon field strength. As we have already implied in the upper equation the
operator ﬁvyﬁhv is proportional to the current hy*h which is even normalized in full QCD. Thus
the matrix elements of the dimension 3 contributions are known. The standard normalization
is then given by

(H(v)|hyphy|H(v)) = 2my, (3.86)

where mpy is the mass of the heavy hadron.
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4. The semileptonic process B — X,l 7

Figure 4.1.: Feynman diagrams for the B-meson decay (left) and the corresponding decay of a
free b-quark (right) with extended vertices (marked as boxes)

The enormous amount of data which has recently been produced by the B factories as well
as the perspectives of future experiments concerning b quarks together with reliable theoretical
methods will allow us to perform precision tests of the standard model. Besides the precise
determination of the standard model parameters V,;, and V., which are known to a relative
precision of roughly 2% and 10% [59], this gives us the opportunity to look for possible effects
beyond the standard model. The sensitivity to such “new physics” effects is expected to be
largest in channels which do not have a big standard model contribution. In particular the loop
induced flavor changing neutral currents such as b — s transitions which are suppressed by the
GIM mechanism [60], are expected to be a good place to search for “new physics”. The analysis
which we will perform here, is well known in the context of leptonic p and 7 decays and is
usually expressed as values or limits for the so-called “Michel parameters” [61], [62]. This means
that we will modify the vertex for quarks and W-Bosons of the standard model by additional
contributions from right-handed vector couplings as well as left and right-handed scalar and
tensor couplings. Thus in a fit we could test the contributions from the new couplings, deriving
upper bounds or even find a value for them. All this shall be done for inclusive B — X.e™ U,
decays, whose tree-level Feynman diagrams are presented in fig. (left). The square at the
b-W ~-c-vertex denotes the nonstandard contributions for this vertex. The leptonic part is
left completely untouched, since it has already been discussed separately within the p and
7 decays [8]. There is an extensive literature on possible non-standard model contributions
to semileptonic B decays [63], 64, [65, 66, 67]. In contrast to these analyses, our analysis is
completely model independent. However, we neglect the lepton masses and hence our analysis
would need to be extended to include discussions like e.g. on charged Higgs contributions as in
[64, [65], [67]. Furthermore, we consider different observables (i.e. the moments of the spectra)
which have become available only recently through the precise data of the B factories. In this
way we expect a much better sensitivity to nonstandard contributions. Experimental limits on
nonstandard contributions come from various sources. Besides the already mentioned limits
on the leptonic vertex, the neutrino data yields limits on right-handed admixtures, such that
the data in the leptonic sector indicates that a right-handed admixture is well below 1% [§].
Limits on a right-handed contribution can also be inferred from high-energy processes [§]. The
global analysis of the LEP data does not give any indication for a right-handed admixture
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4. The semileptonic process B — X .11

which would show up in inconsistencies in the determination of the weak mixing angle. From
the electroweak fit one obtains a mass limit for a right-handed W~ boson of My, > 715 GeV
which yields a limit for a right-handed admixture in the charged currents of cg < 1.3%. Finally
we can consider the data on the exclusive decay B — D™ ¢ 7, to obtain limits on a right-handed
contribution, as it has been done in [63]. This gives a limit of (14 — 18)% on the right-handed
admixture which is not as stringent as the ones mentioned above, but refers only to the specific
transition b — c.

During the calculation of the inclusive semileptonic B — X.e~ 7, transition we of course
encounter the problem that the decaying b quark is confined in the B meson. The decay of the b
quark (see fig. therefore underlies interactions with the additional content of the B meson.
The HQE [51], [49] 52, 53] which has already been discussed in section has become a very
reliable tool to describe such effects in decays of heavy quarks, in particular for semileptonic
decays. According to our considerations in section the HQE yields an expansion of the total

rate which reads ) ) )
_ (0,0 0,2 0,3
r=r0@4 —p0» 4 —p03 4 —

my, my, my,

where the second index of the rate I denotes the order of the HQE, while the first index marks
the order of the QCD radiative corrections which we will discuss later. Note that there are no
nonperturbative corrections of order 1/m;. The reasons for that will become clear during the
calculations performed within this chapter. The I'(®%) all contain a certain amount of nontrivial
parameters which have to be extracted form experiment. Usually the kinetic energy parameter
tr and the chromomagnetic moment pg at order 1/ mg and the Darwin term pp as well as the
spin orbit term prg at order 1/ mg’are used as independent parameters. Here we will introduce
another set of parameters due to practical reasons, but we shall provide a conversion from our
parameters to the standard ones.

Within the HQE the order of the moments is related to the order in the 1/my expansion
[68, 69]. For example, the moments ((m;, — 2F;)™) for the case of charmless semi-leptonic
B decays are determined by the contributions of the order 1/mj. Thus in order to exploit
precise measurements of the lepton energy spectrum, like for example measurements of higher
moments, it is mandatory to perform the theoretical calculation up to a sufficient order in the
1/my, expansion.

There are two different mass schemes for the HQE, namely the kinetic scheme and the 1.5
scheme. In this dissertation we will stick to the kinetic scheme. The alternative 1.5 scheme
[56, [57] yields similar precision.

Besides the HQE we are also confronted with QCD radiative corrections. This means that
we additionally have to consider the expansion in a which reads

r4 ¢ (4.1)

o o? al
[ =100 4 Z5p@0) 4 Zsp(20) L ZspB,0) 4 (4.2)
T w2 3 ’
where the first index of I' marks the order in the oy expansion. The current state of the art
features the O(a?) corrections for the partonic rate [70] and the 1/mj results at tree level [71].
Furthermore, also the combined corrections of HQE and QCD radiative corrections should be
calculated, such that we obtain the expansion
r 100 L %spao . Lo | % pap (4.3)
- m2 e
These combined corrections of order a; concerning the QCD corrections and order 1 /mg for
the HQE have been calculated lately for the kinetic energy parameter p, [72].
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4.1. Effective interactions for anomalous quark-couplings

In this chapter we will present a summary and deeper explanation of the publications [18], 17,
19]. Besides the calculation of the differential and total decay rates including Michel parameters,
we will present the calculation of the nonperturbative corrections up to order 1/ mzl in a new
systematic way which retains the ordering of the operators. This prevents us from calculating
one- or even more-gluon matrix elements which normally have to be calculated to retain the
ordering. Furthermore, we will discuss the calculation of radiative corrections for the Michel
parameter analysis and include a discussion of the approaches and problems of the combined
corrections in as and 1/my. Among the radiative corrections we will also include a section about
reparametrization invariance which provides an easier way of the calculation of the one-loop
correction to 1/m? for p, than presented in [72].

4.1. Effective interactions for anomalous quark-couplings

As a starting point we will consider the extension of the standard model by the Michel parameter
analysis. The terms which we calculate within this analysis explicitly contain the standard
model terms so that all further calculations which we perform will also apply to the pure
standard model. In this way one can retain e.g. the standard model 1/ m‘b1 corrections from the
results without the extensions in case the new physics contributions are of no interest. In the
course of the extensions by the Michel parameters we will retain the particle content of the
standard model as well as all its other properties apart from the weak interaction vertex. The
analysis will furthermore be done in a systematic way to ensure that we have control of the size
of the additional terms. Redeeming these requirements is a bit tricky, since the standard model
is the most generic renormalizable theory which reflects the observed SU(3)c® SU(2),®@U(1)y
and the observed particle spectrum. However, it is still possible to extend the standard model in
a model independent way without introducing new particles by going to higher mass dimensions
in the Lagrange density. The dimension of the action

S = / dz L (4.4)

is always zero in natural dimensions. The mass dimension —4 of d*z therefore has to be
compensated by a Lagrangian £ of dimension 4. If we reconsider the Lagrange densities of the
standard model which have been introduced in the last sections, we obtain the dimensions

dim [g] = g dim[iD,] =1, dim[® =1 and dim[Bu]=dim[Wa]=2  (45)

for the various components contained in them. This directly leads us to the problem that we
cannot introduce terms of higher orders in the Lagrangian without violating the dimension of
the action. This problem is solved by the introduction of a Lagrange density £ from which
we assume that it describes the interactions correctly. Even if the exact form of this Lagrange
density is unknown we know its expansion

L
A

1

L=Lyp+ Az

Lsp+ —=Lép+ ..., (4.6)
in the parameter A of dimension 1 which and represents the scale at which we suspect new
phenomena. Note that we have not mentioned how the Lagrangian £ looks. We just intro-
duced it to get a series of effective Lagrange densities, where the Lagrangian £4p with four

dimensions obviously has to be the standard model Lagrangian we know to be consistent with
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4. The semileptonic process B — X .11

the experimental data that has already been taken. In this sense the standard model Lagrange
density presents an effective theory of a higher-level theory which we do not know at the time.
The terms of higher dimensions than 4 are suppressed by orders of 1/A and therefore small.
Thus it will be sufficient to analyze the lowest nonvanishing correction to the standard model.
Additionally we will retain the SU(3)c ® SU(2)r, ® U(1)y symmetry of the original standard
model Lagrangian. Furthermore, we are interested only in operators which contain two quark
fields, since these are the terms which are needed to describe the considered B — X, 7, ¢ decay.
As we construct the higher order Lagrange densities before spontaneous symmetry breaking,
the operators contained in the specific orders can be classified by the helicity of the two quark
fields. Hence we define the term Oxy to denote an operator with the quark helicities X and Y.
Further operators with other configurations of quark fields can be taken from [73]. An equiv-
alent list of operators can be found in [74] which however uses a different notation in terms of
a custodial symmetry. The task is now to parametrize the lowest nonvanishing operators and
compare the results with the experiment to observe whether corrections to the standard model
in this sense are necessary. However, it turns out that it is impossible to parametrize terms of
dimension 5 which are consistent with the SU(2), ® U(1)y symmetryﬂ Therefore the terms
which have to be considered are

1 i 1 i 1 i
ﬁ:ﬁSM+PZO<L>L+pZO(L§%+pZOQR. (4.7)

Note that the operators O always contain both possibilities of the quark helicities with
the left-handed initial and final state. While arranging the operators we additionally have to
consider the equations of motion

, i i @t i
(iP)QY, = ®lygdy + @ yu uy (4.8)
. i =7 3
(iP)up =@ v} QL (4.9)
(iD)dy = @'y} Q) (4.10)
(D,WH) = —g, <<I>‘f D'+ > Qi QL + Y Iy l@) (4.11)

=i .o lam i o 2. 1-
0,B" = —g1 (2 D Uy —erer + 6 > QQL+ FurY uR — 3dRV“dR>
5 5
(4.12)

from the electroweak Lagrangian which connect the covariant derivatives of the left-handed dou-
blets to combinations of right-handed singlets and Higgs doublets. Thus we have to consider
only the terms, where no derivatives act on the external state fields to get a set of independent
operators. Our dimension six operators require two fermions and three other powers of momen-
tum. Since all vectors have hypercharge zero and all fermion fields have different hypercharge,
the fermions are always a field and its conjugate. Therefore we have to provide a Dirac matrix
Yu, as the operators have a defined chirality. The gauge fields can be either introduced by three
covariant derivatives on the fermions or one covariant derivative and one field strength. In this
case we will choose to use the second alternative, since this will alleviate the further calcula-
tions. Furthermore, we can omit dual field strengths, since for fermions of defined chirality one

!This is of course only true if we use the standard model quark fields exclusively. Using Majorana neutrinos (or
newly introduced fields with properties differing from the standard model) the creation dimension 5 operators
would indeed be possible.
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4.1. Effective interactions for anomalous quark-couplings

has the identity

Fn, D,y g =+ (iFW’YuDu - ;UuqulD> YR (4.13)
The remaining independent operators are:
o) =3 Q1. W"D,Q} (4.14)
i
0} =3 Qi wB"D,Q; (4.15)
i
0, = wpy, B* Dyug (4.16)
0%} = dpy,B" D, dr (4.17)

The next class of operators which we will consider consists of fermions and scalars. Again we
have to implement three powers of momentum, this time by Higgs fields or covariant derivatives.
Since the covariant derivatives have to act on a gauge invariant quantity and no field is a
singlet it is not possible to create combinations containing two derivatives. Operators with one
derivative must contain a Dirac matrix to be a Lorentz scalar. Thus we would obtain operators
of the form (Z]'yuq)au(tff{)) which however can be rewritten into other operators by partial
integration and the equations of motion. Thus we are left with two operators

0% =" QL(@'®)®u}; + hc. (4.18)
i
0% =" QL(@'®)@ di; + huc. (4.19)
i
containing no derivatives. Note that we also used ®'® = —&ng; because of (12)? = 1. Therefore

we do not get any further combinations of ® and ®. The next class of operators contains
fermions, scalars and vectors. We can either have one or two scalars. Let us consider the latter
alternative first. We get the following list of operators

0P =3 (@D, ®)(Q11"Q}) (4.20)
oy} = > (@'1iD,®)(Q; 7' Q}) (4.21)
Ofth = (®1iD,®)(wry"ur) (4.22)
Olth = (®1iD,®)(dpy"dr) (4.23)
Olgh = (®TiD,®)(ry"dr) (4.24)

Combinations where the covariant derivative acts on one of the quark fields can be eliminated
by the equations of motion. Because of the hypercharge assignments the last operator is the
only operator containing two ® instead of ® and ®'. Now we will regard the operators with
one scalar. Here we are confronted with three possibilities for the covariant derivatives: The
two derivatives both act on the scalar, one acts on the scalar while the other acts on one
fermion or both derivatives act on the fermions. Let us first consider the case where both
derivatives act on the scalar. We have two alternatives to contract the derivatives, namely
(DuD,®)(Yg,u) and (D, D, ®)(10,,1). ¥ and ¢ denote the fermion fields which are allowed
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4. The semileptonic process B — X .11

by the SU(2) ® U(1) invariance. The first one does not need to be considered because of the
equations of motion. The second one is equivalent to the operator @(zﬁaij)F w, Where F),,, is
the field strength corresponding to the quarks. For the operators in which the derivatives act on
one fermion and on one scalar we get the two possibilities (D, ®)(¢)D*4)) and (D, ®)(po™ D,1))
plus analog terms in which the derivative acts on the 1. However, it can be shown that the
second alternative is equivalent to the first one alongside a term without vectors by the use of
the equations of motion. The last case we have to discuss is the one with two derivatives acting
on the fermions. We observe three possible combinations as the derivatives can both act on
either the v or the v or one acts on the ¥ and one on the 9 respectively. If they both act on
one fermion we can use the relation

P = D,D,g" —iD,D,o"" (4.25)

to show that the corresponding operator is equivalent to an operator with a field strength.
For the mixed case the general form ®D,¥(ag"” + bo"”)D,¥ reduces by means of partial
integration to operators we have already discussed. We end up with the following list of
operators with fermions scalars and vectors:

0% =3 (@ iD, uf)iD" & + h.c. (4.26)
oP) — ZZ:(QZ iD,uly)iD" ® + h.c. (4.27)
o) = i(QiL iD, diy)iD" & + h.c. (4.28)
o) = i(@} iD, diy)iD" & + h.c. (4.29)
o) = i:(QiLJWW’“”’u%) ® +h.c. (4.30)
o) — i(Q;auyBﬂvuiR) & +h.c. (4.31)
o0 — i(QiLaWWWd"R) ® +h.c. (4.32)
oY) = i(QiLawBWdiR) & + h.c. (4.33)

i
In the following considerations we only want to consider the parts of the operators which we
need for our calculation of the B — X, I, e decays. Thus only the contributions

Q:@, Q:@, g=¢ and ¢=0> (4.34)
survive. Additionally we still have to perform spontaneous symmetry breaking. Therefore we

have to set
o= <v /?/Q) and @ = (”/ 8@) , (4.35)

since we are again not interested in quark-Higgs-couplings. Considering again equation ([2.18)
as well as equation (2.27)) we get

_ ig2 (O W
Du@_mu@Jrﬁ(WM ;e (4.36)
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for the covariant derivative of the Higgs field which contains just the expressions for the charged
current we are interested in. Using (4.35)) we end up with

D,® = %WI (”/(;/i) and D,® = %W; (v/?@> : (4.37)

At this point we will not discuss how the covariant derivative acts on the fermion fields, since we
want to retain them in our current. Thus we will just use the relations to evaluate
the operators for the case of B — X, 7, e decays. Since we like to couple the hadronic current
to the ordinary leptonic current of the standard model

92 _ -
Jl,,u, = El/e W PLe (438)
we have to sandwich the operators between the states (¢ W ™| and |b). Thus we can eliminate
all operators which do not contain a W,". This causes the operators (4.18) and (4.19) to vanish.

From the operators (4.20H4.24) only the term

’U2

5 . _
OE%}ZZZQZECW;’YNPL[) (439)
survives which is a new right-handed vector current. The other operators vanish because of non
matching quark or Higgs fields. Regarding the equations (4.2614.29)) we obtain the nonvanishing

operators

o) =2 92\% EW,S PrD,b (4.40)
o) =2ig, %EBM Wi Prb (4.41)
ol — 2292% eW, PrDyb (4.42)
o) = 2ig, \% ¢D, W, Prb (4.43)

which describe a left- and a right-handed scalar current. Using (2.27) we can rewrite the WH¥

fields in (4.3044.33)) to
Wi = V277 0,W, —0,WH) +..., (4.44)

where the dots represent terms containing multiple W+, W~ and the parts to the field strength
describing the neutral weak current which vanish in our case. The operators which contain the
field strength B*" vanish for the same reason. Performing a partial integration and using the
antisymmetry of the o#” to rewrite to 2¢/2 770, W,F, we obtain the left- and right-handed
tensor operators

O(ng)% =2g2v (E 5# lojad W; Prb+col” WJ O, Pr b) (4.45)
o) — 24,0 (E 9,0 W PLb+eo W, 8, Py b) (4.46)

This concludes our list of operators, since the operators vanish as they contain
neutral current parts only and vanishes because of . The Lagrange density for the
hadronic part can now be obtained by simply summing up the operators by means of
and multiplying with the leptonic current which has been inherited unchanged from the
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4. The semileptonic process B — X .11

standard model. Here we notice that the Lagrange density still contains a W boson propagator.
As this propagator contains degrees of freedom higher than the scale of the B — X, e U, decay,
we will consider it in an effective field theory content. Thus we take the full propagator

PY(0,z) =T [Wy ()W, (0)] = qg_]\;w (gxu - (q;l_; Evﬁiﬁ”ie)) ; (4.47)

where ¢ = pp — p. denotes the momentum of the leptonic system and therefore the propagators
momentum. The time ordered product is in this case only written pro forma, since the terms
are already time ordered because of 2o > 0. As we have (p, —p.)? < mg < M‘%V we can expand
the denominator in powers of 1/MZ,. This gives us

Lo _ Ly (4.48)
T ST ) .

where we can safely neglect the terms in the brackets as the expansion converges very rapidly
because of (my/My)? ~ 0.003. This leads us to the propagator

W . 9xv
in Feynman gauge (£ = 1). Thus the effective theory gives a local four-fermion vertex located

at the space time point . The effective Hamilton density can now be calculated by the relation
‘H = —iL. Using additionally the definition

Gr 9%
— = = 4.50
V2 8M3, (4.50)
of the Fermi constant, we obtain the Hamilton density
4GV,
Hep = ﬂc Jnu It (4.51)
with the extended hadronic current
- — — .H - .H
Jhyp = cr Y Prb+ cr ¢y, Prb+ g1 ¢iD,Prb+ gr ¢iD,Prb (4.52)
+dy, 10¥(¢iou Prb) + dg 0" (Cio, Prb)
and the leptonic current
J'=ey'Ppue. (4.53)

The coefficient ¢y, in front of the standard model term has to be of the order ¢y, & 1 (as we know
that it describes the phenomenology correctly up to the current accuracy of the experiments),
while cg o v?/A? and 9r/R X v/A? as well as dr/r v/A%. Thus the right-handed vector
current is suppressed by a factor of v2/A? and the scalar and tensor currents even by a factor of
v/A2. Therefore we do not expect the corrections to the standard model to be very large. The
major contribution of new terms will surely come from the right-handed vector admixture, since
v2/A? > (vmy) /A%, where the m; has been added to be consistent with the units. However,
since we have additional constants whose order of magnitudes we do not know, it is reasonable
to perform the calculation for all additional terms in the current.
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4.2. Kinematics

The aim of the following sections is to calculate the total decay rate as well as moments of the
hadronic and leptonic energies. The form and impact of those moments will be discussed at
a later stage and it will be straight forward to implement their calculation later on. Thus we
consider the generic formula for the total inclusive decay rate of the B-meson in its rest system

X 5 ot (1L 25k ) st - )

X. spins
leptons

- Z 2 2mp (/ G p)e 22) </ (d;;y?’ 2;) Mimz = pespo )T o

spins
leptons

X (27[')4(54 (pB — (pe +p1/ +ch)) )

which has already been discussed in section Here we encounter a sum over all final states
X, containing a c-quark which can be created by the decay. This means that the phase space
is implicitly contained in the sum. As we are considering an inclusive decay, we only have to
integrate over the phase space of the leptons as the integration over the hadron X, is contained
in the sum over the various X.. The kinematics of the leptonic phase space integration are
given by the delta function 6* (pp — (pe + pu + px.)). To simplify ([4.54), we have to examine
the matrix element M. Therefore we need the Hamilton density

4GFVy
%

which has been introduced in the last subsection. Using this Hamiltonian the square of the
absolute value of the matrix element takes the form

Hesg = —=—Jnpud]' (4.55)

IM(B — Xee 7)|* = [(Xe e ve[He| B)|
— 8GE|Vap|? |(Xee 0el T T B)
= 8GH|Val? (Xl Jnul B) (e~ el 1110)
= 8G3 Vs 2 (BIJ] | X)Xl Il BY(OL I €™ e (e el JF10).

(4.56)

The matrix element has been splitt into a hadronic and a leptonic part in the last step. Those
parts can be regarded separately which appreciably simplifies the following calculations. Thus
it is convenient to define a leptonic tensor

L = 3" (01" e” 7e) (e~ zel Iy |0) (4.57)
spins
leptons
and a hadronic tensor
1 _ _
Wi = 5o D (B X (Xel T B)@2m)*0 (0B = pe = po = px.)- - (458)

Xe

Using those two tensors the decay rate takes the form

dp, 1 dp, 1
— 2 2 e v m
r 167w GF “/cb| (/ (27‘(’)3 2E€> </ ( ) 2E > LLNVL (459)
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The next step is to eliminate all trivial integrations from . As we are considering a three
body decay, we need three variables for the description of the kinematics. Thus it is convenient
to calculate the triple differential decay rate in the first instance. As variables we choose the
energy of the electron E, = |p,|, the neutrino energy E, = |p,| and the invariant mass of the
leptonic system ¢2, where ¢ = p. + p,. To keep things as easy as possible, we won’t extract the
integrals belonging to this quantities by hand, but just add the delta functions

) (Ee - ’pe‘) ) d (EV - ’pu‘) and 0 (q2 - (pe +pl/)2) . (460)
Inserting this into (4.59)) we get the triple differential rate
dr 2GE [V 3, 13 2 2
= d°p . d°p W, L* 6§ (Ee — |p.|) 6 (Ey — |p,]) 0 (¢° — (pe +10)7) -
TEAE e [ P W 6 (B~ p) 8 (B~ 2,)3 (0 = (e + )
(4.61)
To evaluate this, it is convenient to use spherical coordinates
d3p, = |p.|?d|p,| d¢. d cos b,
p. = |p.["d|p.|d¢ (4.62)

d*p, = |p,|*d|p,| d¢, d cos b,

for the phase space integrations of the leptons. Nothing depends on the direction of the neutrino,
and integrating over it gives a factor of 4. The z axis for the electron can be chosen to be
aligned with the neutrino direction. Integrating over the electron azimuthal angle gives a factor
of 2. Consequently the lepton phase space is

d*p. d’p, = 8°|p.|*|p,|* d|p.| d|p,| d cos¥, (4.63)

where 6 = 0, is the angle between the electron and neutrino directions. To be able to perform
the integrations we also have to rewrite the delta function concerning ¢>. As the lepton masses
relative to the masses of the quarks which can occur in the B meson, we will calculate the
phase space in the massless limit of the leptons. Therefore we get p? = 0 and p? = 0 which is
equal to |p.|? = E? and |p,|?> = E2. Thus the square of the electron and neutrino momentum

in the delta function can be evaluated as follows:

(pe +pu)2 = pz +p3 +2pe - pu
=2FE.E, —2|p, | |p.| cosf (4.64)
=2E.E,(1 — cos?)

As the integration is performed over cosf we have to use the formula

LR ,g,(lxi),a(x —a) owith  g@) =0, ¢(z)£0 (4.65)
from [75] to rewrite the delta function. We get
5 (¢* = 2E.E,(1 — cos)) = ! J (0089 — (1 — ¢ )) (4.66)
2E. L, 2E.E,
Using all this in we end up with
ar- 2G5 2

Ve pe|*|P, v
)8 d|p.|d|p,|dcos —5——W,, LV

dg?dE.dE, (2 E2E?2

, (4.67)

S (B~ p) 8 (5, = 8 (cost— (1= 7).
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4.3. Calculation of the hadronic tensor

which simplifies to
dr _ 2GEH |Val
d¢g?dE.dE,  (27)3

W L (4.68)

after evaluating the integrations. Since the leptonic tensor has, in contrast to the hadronic one,
not been extended in section the calculation is straight forward. We just need the fermion
spin sums

Z u(pe)u(pe) = 2156 +me and Z v(py)v(py) = PV - My. (4.69)

spins spins

Remember that we chose the massless limit for the leptonic phase space. Therefore the masses
in the upper equation vanish. Using the standard model leptonic current current Jl” =ev*Pr U,
from section [2.1| we get

L = 37 {0l e me) e mel I [0)

spins
leptons

= > (pe) Y PLo(py)v(pu) 7" Proupe)

spins
leptons

= Tr{pe’Y“PLpV’yVPL}

=2 (p’é pY + Pl pl 4 " pepy — i€ pe pae,x> :

(4.70)

The calculation of the hadronic tensor will be far more complicated, as it contains the inter-
actions of the b quark with the background field as well as the extended current which
has been introduced in section At this point we will confine ourselves to decompose it into
Lorentz scalar structure functions according to

W;u/ = _g,LLl/Wl + 'U,uUVW2 - ifyuaﬁvaqﬁw?) + qMQVW4 + (Q,uvu + quV) Ws, (4'71)

where the scalar structure functions W; are only functions of the Lorentz invariant quantities

q®> and v - ¢. Using (4.71)) together with (4.70) and (4.68) we obtain

&L 4AGL |V
d¢?dE.dE,  (27)3

2
I:Wl q2 + W2 <2EeEV - q2> + W3 q2 (Ee — El,) . (472)

Note that the structure functions W, and W5 do not contribute to the decay rate. This comes
from the massless limit in the leptonic sector which implies go L*® = qﬁLaﬂ =0.

4.3. Calculation of the hadronic tensor

The next step consists of calculating the hadronic tensor which is obviously the last missing
piece for the calculation of the triple differential decay rate. The calculation of the hadronic
tensor is obviously not as easy as the calculation of the leptonic one, as the hadronic tensor
incorporates the existence of a gluonic background field. In section [3]we have already discussed
how to approach systems like that and we will perform the calculation utilizing the heavy quark
expansion which has been discussed in the subsection [3.4] Thus we first have to observe how
the optical theorem works in the case of inclusive B — X, e 7. decays.
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4. The semileptonic process B — X .11

W= W=

b b

Figure 4.2.: Feynman diagram for the time-ordered product on quark-level

4.3.1. The optical theorem for B-decays

The aim is to describe the hadronic tensor W), which has been introduced in section by a
forward scattering amplitude to be able to use the method given in subsection Therefore
we will at first consider the matrix element

i _

T = _QmB /d4a: efiqz<B’T[J;£”u(m)c]h7y(0)]’B> (4.73)

of the time ordered product concerning the arbitrary current Jj , at the space time points x
and 0 which describes the forward scattering amplitude of a B-meson. In our case the current
Jp,u is given by the extended hadronic current (4.52). Using the definition of the time ordered
product

Tlp(x)d(y)] = O(2° — y")p(2)¢(y) + O(y° — 2°)d(y)p(x) (4.74)
we obtaln

—1

Ty / dize " ((B\J,ju(a;)Jh,y(O)|B>9(a;0) + <B]Jh,y(O)J27u(x)\B>9(—xo)) . (4.75)

- 2mp

In the following we will introduce intermediate states between the two currents to rewrite
the scattering amplitude T}, into the hadronic tensor W), according to the optical theorem.
At first, we therefore have to introduce intermediate states between the currents Jj ,(0) and
Jhu(x). Hence we have two time orderings with two different intermediate states. Since
Jh(0) = ¢(0)[',b(0) contains a creator for a b-quark and an annihilator for a c-quark (and
vice versa for the antiquarks of course), while the conjugated current J,];’ u(@) = &(@)lb(z)
contains an annihilator for a b-quark and a creator for the c-quark respectively, the combination
J,]:, (@) Jh,,(0) contains a single ¢ quark and is therefore marked with X, while the other one
contains an anti-¢c quark and two b quarks and will be marked with Xgz. Obviously the
intermediate state X. is the one we need for our decay. We will later see that the other
combination is eliminated by the phase space. Introducing the intermediate states,
turns into

T = —1 /d4$e—iqx(Z(B‘J;E“u(;):)|XC><XC|Jh7,,(O)’B>9(ZUo)

e (4.76)

+ Z<B!Jh,u(0)!chb>(chlefL,u(w)!BW(—wo))-
X

cbb
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4.3. Calculation of the hadronic tensor

Here the matrix elements between the B meson and the intermediate states are still at two
different space time points x and 0. The translation invariance allows us to rewrite this by

2mp

Ty = — / d4z<ze—i<q—PB+ch>z< ByJ,t,u(O)|XC>(Xc|Jh,V(O)]B>0(x0)

Xe (4.77)
+ Y ei(qpXCbberB)m(B‘Jh,u(O)|chb><chb‘J}t,ﬂ(0)|B>9(_$O)> :
Xabb
Additionally we use the definition of the theta function
S p— s (4.78)
2mi w+ie '
to the time ordered product this to the form
i _
SR Uy W E R BT (0)|Xe) (Xl 1, (0)]B)
a 4mmp < w + 1€
s Z o om0 (- 1 (O Xeon) (X 1, (0)| B\
w + 1€
cbb
(4.79)
To perform the integration we also need the definition
y) =27 / dz e (4.80)
of the delta function. Using this on (4.79)) we obtain
- _
e / (B} (0)|X) (X I (0)| B)
T, = o( —b ) ’
= Z (w+q" —b% +pX.)d(q + px.) o+ ic
(BT, (0)| Xeon) { Xeaw| I}, (0)| B)
0 0 ) S
—i—Zé(w—q + Patp — P)O(q — Pevp) ot ic >
Xebb
(4.81)

The delta functions now present a relation between between w and the phase space. The
integration gives

(B|J} ,(0)|Xe) (Xl h (0)| B)

Ty = 21)38
" ; 2mp(mp — Ex, — q° + ie) (2m)dla +px.)

oo (4.82)
(B|Jh(0)| Xebw) (Xeww |y, ,(0)| B)

B Z 2mp(Ex,, —mp — q¢° — ic)
cbb

(27)*5(q — Px,,,),

where we additionally used that we are in the B-meson rest frame (p§ = mp) and the Oth
components of the momenta of the hadronic states can be written by their energies (pg(c = Ix,
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4. The semileptonic process B — X .11

and pg(Ebb = Ex,,,). As the final states X. and Xz can contain different values of energies,

the denominators of (4.82) do not create poles but cuts along the real axis of the complex ¢°
plain. The cuts can be found in the regions

—o0 < ¢® <mp— Exmin =mp — /mi(gnin + |q?| (4.83)
Exmin —mp = /M +|¢*] —mp < ¢° < o0 (4.84)
c cbb

for the case of Xzy. For the kinematics of our decay B — X, e v, these cuts are widely separated
for all values of ¢ which justifies the use of Cauchy’s integral formula (4.223]). Using the optical

theorem (4.220)) we can rewrite (4.82]) to

for the case of X, and

1 1 - _
— T =5 ;<Buh,u<o>\Xc><Xcuh,u<o>rB>6<pB ~q-px.)
L ) ) (4.85)
— 5 > (Bl (O Xeww)(Xewl ], (0| B)S (P15 + 4 — PX)-
s Xebp 7

If we consider the kinematics pp = ¢ + px = pp + g > px of our decay we immediately see
that the delta distribution of the second term always vanishes. We end up with the identity

1

™

1 _ _

0 T = 5 S (BT} O X0) (Xel o 01 B)S (05 — 0 = px.) = Wine  (4.36)
mp X ’

The time ordered product can now be decomposed into scalar structure function

T/w = _g;le + U/ﬂ}uT2 - iem,nw"v’\Tg + quql/Tél + (UuQV + 'UVQ,u)T5- (4'87)

in the same way we already have done for the hadronic tensor W,,. The scalar structure
functions T; are then just dependent on the total lepton energy v - ¢ and the leptonic invariant
mass ¢2. Furthermore, we can use the linearity of the imaginary part formation to use (4.86)
for the separate structure functions. Therefore we obtain the relation

1
— _ImT; = W, (4.88)
which of course has to be applied on the left-hand cut only.

4.3.2. Operator product expansion

Using the results from above we can now rewrite the triple differential decay rate (4.68) to

ar  _ Gilval?
d¢?dE.dE,  4mpm

L Im T, (4.89)

which relates it to the time ordered product. Since only the time ordered product depends
on hadronic quantities and therefore contains all interactions with the background field, we
separate it for our considerations regarding the operator product expansion. Thus we can take

T, = / d*z e (B(p)|T[b(x)T},c(x)e(0)T,b(0)]|B(p)) , (4.90)
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4.3. Calculation of the hadronic tensor

as a starting point, where

.H .H
Chu=cr Y Pr+cr YuPr+ g1 1D, P+ gr iD, Pr (4.91)
+dy, i?V(EiU#VPL) +dp i?l/(iUleR) R

is the Dirac structure of the extended hadronic current which has been introduced in section
u To be able to do the operator product expansion , we have to rewrite the time ordered
product a bit. Since we like to describe a B-meson of momentum pp = mpv containing a single
heavy b-quark, it is reasonable to describe the momentum of the b-quark inside the meson by

Py = mpv + k, (4.92)

where my v is the momentum coming from the motion of the B-meson and k is the residual
momentum which derives from the motion of the b-quark inside the meson due to the interac-
tions with the mesons background field as we have introduced in section [3.3} Thus we know it
makes sense to perform the field redefinition

b(z) = e~V b (2), (4.93)

to separate the momentum my, v from the residual momentum k& which describes the interactions
with the mesons background field we are interested in. Additionally we will use Wick’s theorem
to rewrite the time ordered product into normal ordering;:

—
t

r

T, = / dtg emimpv—a) (<B| tb ()T () E(0) T by (0): | B) + (B| tby(2)Tc(2)E(0)T, by (0): | B)

+ (Bl by ()T, c(2)e(0)T by (0): | B) + (B :by(2)T,c(2)e(0)T by (0): |B>)-
(4.94)

The only combination which survives is the one containing the contraction of only the c-quark
fields, since all the other combinations vanish because of the external states. Now we rewrite
the contraction of the c-quark fields into the c-quark propagator

d4 ; : —iDeT
iSC—/ Pe 1 _ (4.95)
(2m)* p, —me + i€

and obtain

—i(mpv—q—pc)-z |/ R|7 d4pc ie et B3
Tu,,:/d4a:e (myv—g—pe) <B|bv($)FL (/ (27T)4}7j — +i€> [, b,(0)|B)
:<B|/d4x/

From now on we will not mark the normal ordering any more, since the residual operators are
already given in normal ordering. The next step is to rewrite the b,(z) fields into momentum
space. This gives us

. (4.96)
HWFV by(0)|B).

d*p. . _
@ p)4 ie~Hmpv—a=pe)wp (P
m

_ d*p . At ., = 1 - _
_ 4 ¢ —i(mpv—q—pc)-x ik-x T
T, =(B| /d x/ @m) ie / (27_‘_)46 bv(k)FﬂF e +Z,€I’,, b,(0)|B).
(4.97)
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4. The semileptonic process B — X .11

Only the exponential functions are still dependent on x and thus we can write

4 = ) ~
|/ de b (kf) Mp T:L +2 b |B /d4$e Z(mb’U q+k) pc);t
.
_ d4 = i0* ((myv — q + k) — pe - _
=(B| / i d4pcbv(k)I‘L ( b ot ic )FybU(O)IB) (4.98)
c C
~ i - _
I, b,(0)|B),

“mbgé q+k—me+ie

where we used the definition (4.80)) of the delta distribution in the second step and integrated
over p. in the last step. From this equation we can extract the c-quark propagator

1 _ 1
myp—d+k—me @+ Kk—me

i Sper = (4.99)
describing the motion of a c-quark in the background field of the B meson. Here we introduced
the quantity () = mpp — ¢ as a shortcut for further considerations. The residual momentum
is because of k ~ Aqcp < myp small, so it is reasonable to expand the propagator in k. A
calculation to the order 1/mj' requires to expand this expression to n*® order in k according to

1 1 1 1 1 1

iSBGF:q@—mc_@—mck@—mc+@—mck@—mck@—mc+'“ (4.100)

Therefore we used the identity

L1 1,1
A+B A A A+B

(4.101)
recursively up to the desired order. Introducing the quantity Ag = Q? — m?2 + ic we get
iS5r = 3o (@ = me) + 15(@ ~ mK@ —me)
— 5 (@ = m K@ — K@ —me) (1102)
0
(@~ mIK@ ~ mK@ — mK@ — me) +
0

Inserting this into we can transform this into the momentum space of the strong decay by
evaluating the remaining integral over k. Using

4
/(;l;l(kuk,,...

we obtain

~—
S
—

4 ~ _
k) = / (;’;4 e (ko JBR)| = (840, JB(0)  (4.108)

1SBQF fx(@ me) + Alg(@ —me)P(@ — me)
— Kg(@ - mc)é?(@ - mc)a(@ - mC) (4'104)
+ Alé(@ — m)H@ = m)H@ — m)HP —me) +

58



4.3. Calculation of the hadronic tensor

At this point we note that we have to replace all partial derivatives by covariant ones to ensure
gauge covariance. Thus we end up with

T, = (BIb(O)T} (Alowz M)+ 33(@ ~ miD(@ - m)
- 5@~ m)iD@ — m)iD@ — m.)
0

+ Alg(@ —me)iD(@Q — me)iD(Q — me)ilD(@ —me) + . .. ) I,b,(0)|B),
(4.105)

which is obviously built up of local expressions. A crucial aspect of this kind of expansion is
that it keeps track of the ordering of the covariant derivatives. This is astonishing at first sight,
as we have dealt with momenta k in the first place which actually commute in momentum
space, and transformed this quantity into a partial derivative in position space which is also
a commutative quantity. But since all those quantities are contracted with noncommutative
Dirac matrices we get the right ordering after the introduction of the A, fields of the covariant
derivatives iD,, = i0, + gsA, by chance. This shows that a description of the interactions
in a background field by a residual momentum which is not seen as an operator from the
beginning, is a rather naive sight. However, in this case it works due to the ordering by the
Dirac matrices and even prevents us from calculating one- or even more-gluon matrix elements
(which is normally done in this case to retrieve the ordering).

4.3.3. Calculation of the forward matrix elements

The remaining task is to evaluate the forward matrix elements of operators of the form

boa(iDy,) .. (iDp, )by s, (4.106)

where b, (b,) carries the spinor index a (3). Note that we omit to write the dependence of ,
since we have x = 0 for both fields. The field b, is still the full QCD field, but redefined by a
phase factor

b(x) = e VT, (2) (4.107)

to remove the large piece of the b-quark momentum according to (4.93). The argument of the
fields will be suppressed in the following to improve the readability. To be able to work with
this definition we first have to analyze the impact of this redefinition on the Dirac equation of
motion. Therefore we start using the covariant derivative on both sides of . This gives
us

iDyb =i(0, + igA,)b
=1i(0,e” V) by +ieT VT (Db, ) — gAuby

P PR , (4.108)
=myv,bye” YT 4T (23” + ng#)bv
= iMpUT (mbvu + iDp,)bU ,
which can be used to rewrite the Dirac equation to
4 1
0= (i) — mp)b= e ™ (my(p — 1) + iIP)by, = ¥by = by — Hupbv (4.109)
b
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4. The semileptonic process B — X .11

Additionally applying the definition of the projectors Py = (1 & %)/2 on the large and small
components of a Dirac spinor (which have already been discussed in section |3.3)), this equation
can also be written in the form

1.
bev = Tq’nbllpbv . (4110)
Using that the product of the projectors P, and P_ vanishes we additionally obtain
1
0=P. P b, = P+2—UD = P.ilpb, = 0. (4.111)
my,

from this. Furthermore, we can analyze

0= (iID +myp) (i) — mp)b
iDil) — mi)b

o . . (4.112)
=e "V ((myg 4 D) (muyp + i 1D) — m%)bv
=e "V (2my(ivD) + iIPilp) by,
which can be solved to )
wD)b, = ——— (i1D)?b,. 4.113
((D)b, =~ —(iD) (1113)
Thus all in all the field satisfies the useful relations
1
b, = b, — —1iIpb, 4.114
. il (4114)
1
P b, = ———iIDb, + b, (4.115)
me
1
P_b, = —1iIDb, 4.11
b mezlﬁb (4.116)
1
iwD)b, = ———iIDiIpb, 4.117
(ivD) zmbz]D ilp ( )

As mentioned in section the heavy quark expansion will yield only matrix elements of local
operators. However, these matrix elements still contain a nontrivial mass dependence which
will be discussed in the following. The evaluation of the matrix elements is performed in a
new recursive way. This means that the starting point is always the matrix element of the
highest dimension which contains the maximal number of derivatives. These matrix elements
can be treated in the static limit mj, — oo from section [3.3| which implies that we can neglect
all contributions of 1/my, relative to these matrix elements as they belong to higher orders in
the operator product expansion. Thus we will at first consider the static limit of the forward
matrix element of the highest dimensional operator which has the form [76]

<B(p)|bv,a(iDu1) - (iDun)bv,ﬂB(p» = <Bv‘hv,a(iDu1) . (iDun)hv,B’Bv> + O(l/mb)
= 160414“1#2...;4” + SAB/;\wz---un (4118)

where sy = Py(—i0,,)P; is the generalization of the Pauli matrices to the case v # (1,0,0,0)
and |B,) is the static limit of the B meson state |B(p)). Like in section [3.3| the quantities P
denote the projectors Py = (1 £¢)/2. The tensor structures A and B have to be related to a
minimal set of fundamental matrix elements. To calculate the spin independent parameters the
matrix element (B|by,(iDy, )....(1D,, )by| B) has to be contracted in all possible ways with combi-
nations of the metric tensor g, ,, and the four velocity v,. For the spin dependent parameters we
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4.3. Calculation of the hadronic tensor

have to consider the all contractions of the matrix element (B|b,(iDy,) ... (iDy, )(—io¢)by| B)
in an analogous way. Note that this leads to the same contractions as for the matrix elements
of order n + 2. The number of matrix elements can be reduced by the fact that we only
have to consider the static matrix elements, since the other contributions are described by the
nonperturbative parameters of higher orders because of . Thus all combinations
(Blby(iDy,) . .. (ivD)by|B) and (B|by(ivD)....(i Dy, )by|B) vanish, as becomes ivDb, = 0
for the static case. In addition to that, we have to keep the antisymmetry of the (—io,¢) in
mind. According to Py (—ic"") Py = ie*P v, s all contractions with the vector vy, vanish. Of
course also the full contractions of the (—io,¢) with the metric tensor disappear. This results
in a further reduction of the number of contractions for the spin dependent case. All of our
non perturbative operators have to be taken between forward matrix elements. From the OPE
it is understood that the derivatives can act on both sides, since the momentum state is the
same. So we can show that some of the nonperturbative matrix elements are actually related
by the time transformation

(A1]0]As) = T({A41]0]A3)) = (41]0|Az)* = (42|01 A1) . (4.119)

From this we get an additional reduction of the matrix elements, starting at dimension 7.
The remaining fundamental matrix elements describe all the structures we retain after the
evaluation of the traces. Reconsidering equation we see that in the static the HQE
contains the same quantities as the HQET, leading to the same fundamental matrix elements.
However, the definitions of these matrix elements will differ in HQE and HQET for the lower
dimensions, since we get further terms of in HQET which do not appear in the HQE.
As the fundamental matrix elements have to be extracted from experiment, it will make no
difference how we choose to define the matrix elements, as they do not have to be calculated
from first principles. Thus we find that it makes no sense to perform an expansion of the b,
fields in the sense of .

Once the tensors A and B for the matrix elements of the highest order in the 1/m;, expansion
have been calculated, we proceed to the matrix elements of dimension n — 1. Now we have to
take into account all possible Dirac structures, as the lowest order 1/m; corrections for this
case are now of the same order as the higher order. So we get

(B(p)|bv,a(iDy,)....(1 Dy, )bu,5| B(p) ZP uluz “Hn—1 (4.120)

where T are the complete set of the sixteen Dirac matrices. The calculation of the spin in-
dependent and spin dependent matrix elements works nearly in the same manner as in the
static case, beside the fact that the relations (4.93H4.117) now connect different orders of
the 1/my; expansion instead of eliminating the combinations (B|b,(iDy,)...(ivD)b,|B) and
(B|by(ivD)....(iDy, )by|B). Thus we may now express the tensor coefficients A®) in terms of
the basic parameters of the order 1/m;~ 1 and the ones of the order 1 /my . This prescription
defines a way to recursively compute the relevant matrix elements of the 1/m; expansion up to
order 1/mj at tree level, starting from the operator of the highest dimension. Thus the leading
matrix element of dimension 3 will then be expressed by this recursive method as a series in
1/my involving all the basic parameters up to this order.
The number of independent parameters can be calculated by the formula

(3]

g 2
ZQng 1) (n—Qng (4.121)

Ng=
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4. The semileptonic process B — X .11

for the spin independent terms and

[31-1

ol = 3 ng -0, 2 ) (P10) (4.122)

ng=1

for the spin dependent terms. Here the brackets denote the binomial coefficient

(Z) - (nn]l;)lkl - (4.123)

For both cases n is again the number of covariant derivatives which have to be contracted with
either v, or one index of g,,. ny denotes the number of g, used for the contraction. Thus the
number of v, is determined by n — 2n, since each g,,, contains two indices. We sum over all
possible numbers of ng4, where we start by 1 (as the case of only v, is excluded by the equations
of motion) and sum up to [n/2] denoting the integer part of n/2 which is the maximum number
of g, we can get. The first part of the sum represents the number of different orderings of
the indices which can occur for ng contractions with g,,. As an example we can take the case
ng = 2, where we can have three orderings, namely ¢, 9p0, 9uo9vp and g,,9.5. To calculate the
number of possible contractions begin with a separation of the g, into their indices. Denoting
with every g a position in the matrix element which is contracted with one side of a g, we
write

999 . . .99 (4.124)

containing 2n, entries of g. Contracting one pair of g’s we get for example

4qg...g...g (4.125)

For this first contraction we had 2n, — 1 possibilities to link two of the g’s, since we always
have to subtract one possibility, as we first have to choose one g to contract with another and
then one g which is contracted to the chosen g. For the next contraction we obviously have
2ng — 3 possibilities of contraction left. All in all we get the double factorial of (2n, — 1).
Note that this formula respects that the g,, are indistinguishable as well as their symmetric
structure. The second part of gives the possibilities to distribute the v, between the
various contractions of g,,. The v’s are indistinguishable, while the gaps between the g’s are
distinguishable. The number of different distributions is the given by the binomial coefficient

<k +i - 1) , (4.126)

where k denotes the number of v’s while j denotes the number of gaps between the g’s. Using
Jj = ng — 1 for the number of gaps and k = n —n, for the number of v’s we obtain the binomial
given in . The situation is nearly the same for , since the o, behaves equal to
the g,,. The only difference is that it can be distinguished from the g,,. Therefore we set
ng — ng — 1 and allocate the two indices of the o0, between the g’s as we did for the v’s.
This time we have to consider additionally the position outside the ¢’s, thus we have to rise
the number of places by two for the o,,’s indices (of course not for the v’s). Furthermore, the
number of v’s is now described by n —n, — 2, as we have to take into account the indices of the
0, which also reduce the v’s numbers. Note that the formulae do not contain
reduction of the parameters due to the time invariance . Up to now we have not found
a way to easily implement this into the formula.
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4.3. Calculation of the hadronic tensor

5 6 7 8

Derivatives 4
4 7 24 60 216
5
9

Spin dependent
Spin independent

Total

11 48 150 624
18 72 210 840

[NCRN I B \)
N | — | W

Table 4.1.: Number of parameters for different numbers of covariant derivatives.

Besides the number of independent parameters we can explicitly calculate how the parameters
look by a PyTHON script. This script calculates the contractions by setting up all possible
contractions and eliminating entries which are the same by e.g. time invariance by comparison.
Since this script of course also retains the correct number of parameters we can extract that
for high n their number is reduced by time invariance by about a factor of 2. Even though
the script uses hashes for comparison and therefore should go less than quadratic in time with
increasing n, it will start to get slow at about n = 9. The calculation time could possibly
be decreased with other algorithms or using a faster programming language like ¢ or fortran.
However, since we like to perform our calculations up to n = 4, this script should be sufficient
for our needs. Table shows the number of parameters for the different numbers of covariant
derivatives as obtained from the PYTHON script. Here we immediately see, that calculations
for operators of higher dimensions than 7, or 4 covariant derivatives respectively, will make no
sense, since the number of constants becomes much to high — at least if no way is found to
calculate or resum the constants.

In the following we explicitly perform the recursive calculation up to order 1/ m;‘;. For each
dimension of the expansion we get a set of nonperturbative parameters which can be calculated
by the PYTHON script.

Dimension 7

For the matrix elements of order 1/mj in the expansion we get matrix elements of dimension 7
which contain 4 covariant derivatives. According to (4.118]) the general structure of the forward
matrix element is given by

=7 . . . . = 1 4 s
(Bulbue(iD,)(iDg)(iDA) (iDg)buy | Bo) = A 5Py + AS 5 s P (—i0®) Py (4.127)

Note that the states still carry spinor indices. Thus we can multiply any desired Dirac matrices
into the matrix element. In the following we will observe the structure of the A®. These
quantities can only depend on v, and g,, as the right hand side of does not contain
any Dirac structure by definition. The most common structure for the spin independent term
turns out to be

AS}M = a1 g" + b0 ¢?7 + 10’ P + dijot g7 + ervduP gt (4.128)
+ frvrvP g7 + g1oP g7 + v P + i1 gP g7 + 197 g7, '
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4. The semileptonic process B — X .11

while we can write

4
A s = @1 (9‘” 99" — g**g’ g’”) +by (g‘”j 977 — g"* g g7" )

+ey g)\,B p6gcrcx . gkagp(SgUﬁ) 4+ d4 (géﬂgpaga)\ o g6agpﬁga>\)

(4%
+ey (g)\ﬁgpoaga5 _ g)\agpﬁg(76> + f4 <g)\5gpaga/6 o g/\égpﬁgaa)

U(Sv)\gpagcrﬁ . UE,U)\gpﬁgoa> + h4 (,Uévag)\ﬁgpa - Uévog)\agpﬁ)

(4.129)
+ g4

+iy (,U)\,Uagéﬁgpa _ U)\,Uagzsagpﬁ) + j4 (,Uévpg)\,@gaa _ U&,Upg)\ozgaﬁ)
+ kg (,U)\vpgzsﬁgaa o ,U)\vpgﬁagoﬁ> + 1y (,Up,vagéb’g)\a . ,Upvag&ag)\ﬁ)

for the spin dependent term. Under consideration of (4.114H4.117)) in the static limit and (4.119)

we obtain

2mp s1 = (B(p)|byiD,(iwD)*iD’by| B(p)) (4.130)
2mp s2 = (B(p)|byiD,(iD)*Db,| B(p)) (4.131)
2mp 53 = (B(p)|bu((iD)?)*by| B(p)) (4.132)
2mp s4 = (B(p)|byiD,iD,iD"iD"b,|B(p)) (4.133)
2mp s5 = (B(p)[byiD,iD,(iD)*(~io™ )b, B(p)) (4.134)
2mp s¢ = (B(p)|byiD,(iD)* D, (—ic"")b,|B(p)) (4.135)
2mp s7 = (B(p)|byiD,,(ivD)*iD,(—ioc"")b,| B(p)) (4.136)
2mp ss = (B(p)|byiD,iD,iD,iD"(—ic"")b,| B(p)) (4.137)
2mp s9 = (B(p)|byiD,iD,iD"iD,(—ic"")b,| B(p)) (4.138)

as a list of independent parameters. To calculate the coefficients in and we use
the orthogonality of the Dirac matrices. Therefore we multiply both sides of with the
corresponding coefficient and express the left hand side by the independent parameters (4.130
. This gives us a set of equations which we can solve according to the constants in (4.128
and (4.129). Note that the structures which contain v, or vs vanish because of the equations of
moti since we analyze the static limit of the forward matrix element. Using the
results in , we obtain the trace formulae. The calculation has been performed within a
MATHEMATICA notebook. We do not display the result for the trace formula here, as it is far
too lengthy. However, it is given in the appendix [C]

Besides the structure of the parameters and their number, we are also interested in their
physical meaning. Therefore we have to rewrite the parameters (4.13074.138)) in terms of the
electric field E, the magnetic field B and the momentum p of the external state for the spin
independent terms. For the spin dependent terms we also have the spin vector s = (71, 72, 72)
containing the Pauli matrices 7;. Additionally we will encounter the covariant derivative iV
which denotes the derivative with respect to the QCD fields. Remember that the dimensions
of the quantities dim[v] = dim[p] = dim[V] = 1, dim[E] = dim[B] = 2 and dim[b,] = 3/2
as already discussed in section B3] When we set up the list of physical quantities, we have
to remember that we are dealing with noncommutative quantities. Thus combinations as for
example E x E do not vanish. For dimension 7 we can therefore set up the 9 independent
parameters
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4.3. Calculation of the hadronic tensor

2mpmi = (p*)? (4.139) 2mpms = s- (E x E) (4.143)
2mp m2 E? (4.140) 2mpmg = s - (B x B) (4.144)
2mpms = B? (4.141) 2mpmit = p*(s - B) (4.145)
2mpmi =p- (iV x B) (4.142) 2mpmg = (s xp)-(px B)  (4.146)

2mpmg = (s x iV) - (iV x B) (4.147)

The next step consists of expressing the parameters which have been used through-
out the calculation in the MATHEMATICA notebook by the parameters . Therefore
we will make use of a covariant form of the Maxwell equations. In classical electrodynamics
the Maxwell equations take the form

1
9, F™ = j¥ and aﬂpaﬁieumﬂ =0. (4.148)

Here we have defined the field strength tensor F},, in such a way that

1 ~
El‘ = FOi and Bz = §€iijjk = FO'L' (Ej = EijkBk)y (4149)
where
~ 1
Fop = 5apuF". (4.150)

denotes the dual field strength tensor. Likewise we can define analog equations for the non-
commutative case of QCD. We get

1 ~
[D,,G"] =3 and [D,,G"] ieaﬂwz 7", (4.151)

where we introduced the additional current j¥. The commutators have been used to ensure
that the derivatives act only on the field strength tensors, and not on any outer states. From
directly follows the Bianchi identity which we can use to show that j” must vanish for
the case of QCD:

iD,,, [iDq,iDg]| + [iDy, [iDg,iD,]] + [iDg, [iD,,,iDs]] = 0
= ([iDl“ [iDOé7iDﬂ]] [ZDOH [Ii‘DﬁviDMH + [iD,Ba [iDuaiDa]]) e,uaﬁu =0
= 3[iD,, [iDy,iDg]] P =0 (4.152)

1
g 1Dy [iDa i €7 = (D, Gy ] 5™ = 0.
S

Thus we obtain
1
[D,,G"] =3 and [D,,G"] ieaﬂ“” =0 (4.153)

as QCD Maxwell equations. Therefore we have again a set of homogeneous and inhomoge-
neous equations - just like in classical electrodynamics. Furthermore, we shall make use of the
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4. The semileptonic process B — X .11

conventions

iD, = i0,, + gs Ay (4.154)
[1Dy,iDy] = i9sGpy (4.155)
Gu = A, — 0, A, —igs [Au, Al (4.156)

Gop = %ea,BWG“” (4.157)

Py (—ic" )Py = ieFy, 55 (4.158)
" = gt —oto”. (4.159)

The last identity defines a projector on the spacial components which we will use to rewrite
the contractions with g, in (]m-lm[) into a form which is more appropriate for the repre-
sentation 44.139H4.147i. The relation (4.158) connects the vector of Pauli matrices s to the o,
contained in the spin dependent terms for the case of a static matrix element. At this point we
should remark that all parameters are defined in the static limit. Therefore this relation is also
valid for the lower dimensional operators which are calculated in the following sections. Before
we are able to rewrite the parameters into the representation , we
have to provide (4.13944.147)) in terms of ¢D, Gy, 0., and II,,. Using the conventions given
above, we get

1, _
2myzmi = 2 (Blb, iDyiDyiDxiDs by| B) (HPUW‘s I 4 HP5H“) (4.160)
1 __ _
2mpmy = —— (B|by [iD,,iDg] [iDy,iDs] by| B) TP v v (4.161)
9s
1 - _
2mpms = — 5. (Blbw [iD,,iDy] [iDy,iDs] by| B) IIPAT17° (4.162)
S
1 __ _
ompmi = —(Blb, [iDp, [iDJ,z’DAHiD(g by| B) TIPM17° (4.163)
igs
1 __ _
4 L . . . . o apT1Bs, o, A
- . v 9 g Y (e v .
2mpmg 5 (Blby [iD,,iDg] [iDy,iDs | ( — ioag) by|B) I 07w (4.164)
ig3
1 - _ _
2mpmi = ~—5 (Blby [iDy,iDy) [iDa,iDs] ( = iap) bl B) (M7 — 120117070 )
igs
(4.165)
1, _
2mpms = ——(B|by [iD,,iDy]iDyiDs( — icag) by| B) I TI*II77 (4.166)
gs
1 __ _
2mpmg = ——(B|by, [iD,,iD,|iDy iDs( — icag) by|B) TP I*PTIP (4.167)
9s
1, _
2mpmg = —(B|b, [z’Dp, [iDg, [iDy, iD(g]H (—ioag) by|B) IPPIIMTI?? (4.168)
S
where the [,] denote the commutators between the operators. By rewriting the projection

operators 11, back to g, — v,v, and contracting we find the operators (4.13944.147)) given in
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4.3. Calculation of the hadronic tensor

terms of (4.130{4.138]). Solving to (4.13074.138|) we obtain

s1= f%mg (4.169)
1 g2 2 g2 g
Sg = gm‘f — ?Sm% — 33 mj + ?Smﬁ (4.170)
53 =m] (4.171)
1 gs ig
Sq = gm‘f + ?m% + ?Smi (4.172)
55 = —g—;m‘% (4.173)
56 = ig2ma — g—; ms — 2g, mg — %mé (4.174)
s7 =1ig2ms (4.175)
sg = —ig2mi —igZmg — %m4 - g—;mg (4.176)
59 = —%m‘% — gsma — g;mg (4.177)
However, all the calculations have been done in terms of s1,...,s9 which simplifies the calcu-

lations considerably. The physical interpretation has been introduced only for convenience and
makes more sense when we continue with the dimensions 6 and 5, where we compare the stan-
dard parameters p2, ué, p?]j and p%s from the literature with our newly introduced parameters
Wi, p2, p1 and po which follow our notation conventions. In other words: Besides the intuition
which fields are contained in the parameters listed in - we do not get any benefit
from rewriting the parameters - not even for experimental reasons in a fit, but we have shown
that we should indeed have 9 parameters, since we have parameters as in - which
can exist only due to the noncommutativity of the E and B fields.

Dimension 6

For the order 1/mj we have to introduce new matrix elements of dimension 6 containing 3
derivatives. The calculation for the trace formula of dimension 6 goes along the same lines as
the dimension 7 one to a large extent. Again we start with a common formula for the matrix
element which matches dimension 6 and has therefore 3 derivatives. The difference to the
dimension 7 calculation is given by the fact that we cannot use the static limit any more. Thus

we have to use (4.120f) rather than (4.118]) and obtain

(B(p)[bu,e(iD,) (iDa)(iD2)bug | B(p)) =Ap + ATh 4% + ATL 75 (4.178)

+ A;‘})m 5(—i0%) + A;f)m.

As for dimension 7 we can now set up the A® in their most common form. For the scalar
structure we obtain

e

poX alv’\gW + blgp)‘v" + clvpg‘”\ + djvoPo?, (4.179)
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4. The semileptonic process B — X .11

while the vector structure looks like

4O

poda a2g)\agpa + ngp)\gUa + C2gpagg)\ + d21)a1)/\gpg

+ 62,0agp>\va + fQ’UAganU +g2vavpgo)\ (4180)

A

+ hov P g7 + i9vP g 07 + v PO,

For the axial vector structure we encounter an additional subtlety. The term i€ ;07" 5 is not
independent of the other possibilities since the relation

1€poreY V5 = FENTRY PP — GONRYRYT — GeOPTEY YN NPTy (4.181)

shows its linear dependence. Thus we end up with the relation

3 . . . .
14;(7))@,_}/01,)/5 = ag ZGa)\aH,UH,Up _ bg ’LEO‘)\'OH'UH’UU — 3 ZeapO'K,UHUA + d3 ZE)\panvnva (4182)

as a description for the axial vector structure. However, the description of the tensor current
is again straight forward. We obtain

Ao = aa (vAg’“g"ﬁ — vAgpﬂg"a) + by (vagmgm — 07 g g )
+ e (v”gw g7 — v g gP ) +da <vﬁ 9g" — g™ g”")
+ e (vﬁ g7 g7 — v g ) + f1 (vﬁ g7 — v g?? g‘”) (4.183)
+ g4 (vﬂv)‘v”gpa - vav/\vgg’)ﬁ> + hy (vﬁv)‘vpg‘m — vav)‘vpggﬁ>
+ iyg (U’@v"v"gm - vo‘v”vagm) .

The only structure that is left is the pseudoscalar structure. There is only one combination
possible, namely

A®) = g 1€ poArV" (4.184)

Like for dimension 7 we use (4.114{4.117)) as well as (4.119)), but this time of course not in the

static limit. We find that some of the matrix elements therefore can be expressed by s1, ..., Sg
and end up with

2mp p1 = (B(p)[b,(iD,)(ivD)(iD")b,| B(p)) (4.185)

2mp ps = (B(p)[b,(iD,)(ivD)(iD,) (ic" )b, | B(p)) (4.186)

(4.187)

defining our remaining parameters. The calculation of the indices goes along the same lines as
the calculation performed for dimension 7. The only difference is that the terms which contain
a contraction of the outer indices with v, do not vanish any more, but can be rewritten to a
matrix element of higher dimension by the equation of motion (4.114H4.117)). Here we clearly
see, why we have started our calculation with dimension 7, since these matrix elements can
be derived with the trace formulae we have calculated before. Again we will not present the
lengthy results here but refer to appendix [C]

Like for dimension 7 we can now go on and reveal the physical meaning of (4.185)) and (4.186)).
This time the operators are the already known operators pp and prg (see e.g. [54]) which can
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4.3. Calculation of the hadronic tensor

be expressed in terms of (4.154{4.159) by

1 i
2mp p} = 55, (BB [iDp, [iDU,iD,\H by| B) TP v” (4.188)
1

2mp prg = S (Bby[iDp, 1D, |iDx( — icag) by| B) TI*PTIFA7 . (4.189)

The physical interpretation then reads

1
2mpp? = —5 V- E+0(1/m, g5) (4.190)
2mpptg = —s-(p x B) + O(1/my, gs) . (4.191)

The higher order corrections arise from the fact that the matrix element is not static any more.
Thus the normalization of the matrix element is now given by

(B|byby|B) = 2mp (4.192)

_ _ 1
(Blowbol BY =1 —5 (n2 — i) + ..., (4.193)

G )
2mb

instead of (B|b,b,|B) = 1. Replacing the IT,, in (4.190) and (4.191) by the relation (4.159),
contracting and solving to p; and po provides the dependencies
9 4 4

My — 9s'ny (4.194)

— 3

—ggm% — 2g§m§ + 6ig§m‘51 + 4ig§m§ — gsm‘% — 6g$TrL§31

p2=—gspis — - (4.195)

between p1, p2, pp and prs.

Dimension 5

The calculation of the matrix elements of order 1/ mg in the expansion is completely analog to
the one of order 1 /mg’ Like for dimension 6, the parametrization for dimension 5 is done in

terms of (4.120]) which gives

(B(p)|bu,e(iDy)(iDg )by g B(p)) = AL + A, A2+ AD 155+ AW (—ic®) + AG)ys. (4.196)

The derivation of the A® is absolutely analog to the calculation of the dimension 6 terms.
Again we have to set up the generic structures of the terms at first. Using g,, and v,, there
are only two possible terms to set up the scalar structure which turns out to be

A,(D%,) = 19ps + b1V,Vs. (4.197)

The vector structure has an additional index and therefore a more extensive structure. The
according coefficient can be parametrized by

Aff,)a = a29poVa + b2Gpa + €395aVp + d2vpVsV0, (4.198)
while for the pseudotensor structure we obtain only the single term
AB) = a3i€prant”. (4.199)

poa T
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4. The semileptonic process B — X .11

(4)

For the parametrization of A poa
This gives us the result

5 we directly respect the antisymmetry of the indices a and .

AE}?&,@ =ay (g”o‘g(’ﬁ — gpﬁgm> + by (vﬁv"g”o‘ — vo‘v"gpﬁ> +cy (vﬂv"gm — v“v"g”ﬂ) . (4.200)
There is no possibility to form a pseudoscalar quantity with two indices. Therefore we have
AP = 0. (4.201)
Considering dimension 5 matrix elements with two covariant derivatives we obtain

2mp 1 = (B(p)|b,(iD)2b,| B(p)) (4.202)
2mp 2 = (B(p)|B(iD,)(iD,) (~ic" b, | B(p)). (4.203)

as new parameters. The calculation of the trace formula is now completely analog to the one
of dimension 6 and the result is again given in appendix [C}

Like in the previous sections we will shortly discuss the physical meaning of the parameters
here. As in the case of p; and py the physical interpretations are well known. These read
according to [54]

2mp p2 = —(B|by iD,iD, b,|B) TI*” (4.204)
Omp pk = 2; (B|by [iD,,iD,] (= icas) by| B) TP | (4.205)
S

which is equivalent to

2mpps = p° + O(1/my, gs) (4.206)

2mpul, = —%s - B+ O(1/my, gs). (4.207)

Again we have higher order corrections due to the non static matrix element. The same
procedure as in the earlier sections gives us

g = — 2 — —2mj + gim3 + 2g7m3 — 6igims — digmg + 2gsm3 + 6gsmyg

4.208
o (4.208)

—4m} — 3g2m3 — 4g>m3 + 2igsm] + 6ig>m3 — 12g,mg — 3gsm
24mb

o 2 9s 3
M2 = — 1gsptg + omy P
(4.209)

Dimension 4

The next step is the calculation of the matrix elements of order 1/my. Thus we have a dimension
4 matrix element with a single covariant derivative. The only contraction which is possible is
given by the contraction with a single v,. Thus we have only a matrix element of the form

(B(p)[bu(ivD)by| B(p)) (4.210)

which can be related to parameters of dimension 5 by (4.117). Thus we do not get any new
parameters below dimension 5. Anyway, the calculation of the dimension 4 trace formula
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4.3. Calculation of the hadronic tensor

proceeds along the same lines as for the higher dimensions. The most common form of the
trace formula is given by

(B(p)|bue(iDp)by gl B(p)) = AL + AR 4 AR5 + AL (—io®%) + AD)ys,  (4.211)

where we have again used equation (4.120). Going along the same lines as before we obtain
the nonvanishing parametrizations

AW = ay v, (4.212)
AR = a2 gpa + b2 vpta (4.213)
ALy = a3(gpavs + gppva)- (4.214)

The other coefficients turn out to be zero, since there are not enough indices to parametrize
them. For the results please refer to appendix [C] again.

Dimension 3

The 0*" order in the 1/m;, expansion does not contain any covariant derivatives. Thus we cannot
construct any new parameters. The parametrization of the trace formula can be written in the
simple form

(B(p)|bo,g boy| B(p)) = AD + AP, (4.215)

as there are not enough indices for the other structures. As parametrizations we obtain
AW = g (4.216)
AR = gy 0, (4.217)

This dimension corresponds to the parton model of the free quark. Thus we have to take the
normalization

(B(p)[bo#bo| B(p)) = 2mp (4.218)

into account which gives us the result for the parts in the calculation which cannot be expressed
by our parameters.

4.3.4. Calculation of the hadronic tensor

Finally, the time ordered product is obtained from the trace formula

Tpo = (B(p)|bu T} iS5 To bu| B(p))
1 1 1 ~ g .
—Z + 10 ! bl
Tr{F @_mF £ } —i—ZTI“{ e mcymw_mcf‘gf()}A;(“)

1 1 1 f(i i\2
+ZTT{ Y 5 1@_mc,yu2@_mcpap()}j4£”“)2+...

where the tree level expansion of the background-field propagator automatically yields
the correct ordering of the covariant derivatives induced by the Dirac structure. The ordering
of the covariant derivatives in the quantities Afff,)“,“{ obeys the ordering of the Ve tO deliver
consistent results. As discussed above, this prevents us from calculating one or even more gluon

matrix elements which is normally done to retrieve the ordering.
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4. The semileptonic process B — X .11

The remaining task is to rewrite this result for the time-ordered product into a result for the
hadronic tensor. As we have already discussed in section (4.3.1) those two quantities can be
related by the optical theorem. As a result we could extract the formula

1
Wi =——ImT; (4.219)

at the end of this section. The only imaginary parts which can be found throughout the 7} are
contained in the n'® power of the denominators Ag = Q% — m? +ie which are generated by the
expansion [4.105] of the time ordered product. The imaginary part of these objects is given by
the identity

1 1\"™ (=1

where §(%) (Q? — m?) denotes the n' ' derivative to the delta distribution concerning the argu-
ment. For the derivation of this relation we will define Q? = —x and a = —m? to get a more
streamlined notation. Multiplying the left side of equation it with a test function f(z)
and integrating leads to

+oo
1 1 ! !
__ Im N d
- /f(a:) a_x_He)nJrl Comi /f (a—a:—l—z’e)"“ (a—x—iE)”+1) )

+00 400
_ f(x) f(2)
o 2mi / (a—x—kie)”“dx_ / (a—x—ie)”“dx

\— OO —0o0

(4.221)

The difference which remains after the second step, is called “discontinuity across the cut”. In
this case the cut is degenerated to a pole. This can now be rewritten to

+oo
1 1 _ 1 f(x) 1 f(z)
I / f(x)lm(a — x +ie)n ! do= omi (a — z + ie)ntl do = 27i / (a—z— ie)"‘*‘ldx

—00 +oo
1 f(x)
SR S £ CO R
2mi | (a — x)ntl “

(4.222)

where interchanged the integral limits of the second integral in the first step and used in the
second step that the integrals cancel each other besides the complex curve integral around the
pole. Using Cauchy’s integral formula

F () = n % ((ff))nﬂdg (4.223)

27i
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4.4. Calculation of the total decay rate and hadronic and leptonic energy moments

we obtain
—i_yoof(x)lm(a . Jlr T ae = _% (a f(;))nﬂdx - (_%H f (z f(j))”“ dr
_( nl!> £ (a) / F(2)M5(a — z)dz
" (a — x)dz.

(4.224)

In the second step we have extracted the factor (—1)"*! out of the (n + 1) power of the
propagator to reproduce the right sign for Cauchy’s integral formulae which has been used
in the second step. In the third step we rewrite the resolution function f((a) back to an
integration of f() (z) over x alongside the delta distribution. In the last step we performed
n partial integrations. Removing the integral and the test function we obtain the equation
. All these calculations have been done within the MATHEMATICA notebook. For the
calculation of the traces we additionally used an interface for the computer algebra system
FORM written in PERL, since the calculation within FEYNCALC would have taken too much
time. The source code can be obtained from the author.

4.4. Calculation of the total decay rate and hadronic and leptonic
energy moments

In this section we will calculate the total decay rate as well as the hadronic and leptonic
energy moments. The calculation of the moments is done since they play a crucial role in
the determination of the parameters m., m; and V. Additionally exhaustive data has been
collected which can be used to determine the Michel parameters ¢y, cgr, 91, gr, dr, and dg that
we have introduced to present a way to test the weak standard model current. We will start our
considerations with the Calculation of the triple differential decay rate. The results for the W; of
the last section alongside (4 and the introduction of the charged lepton energy E, = E /M,
the leptonic invariant mass ¢° = ¢/ mb and the rescaled total lepton energy v- ¢ =wv-q/my as
independent variables give us the triple differential decay rate in terms of the scalar functions
Wi

43T 4 Fmbyvb\ < R q2> 1—m2+42
e 0(20.6_28_ T 5<n>(vnc>
=) 0 (6°) q = 5p q 5

dg2d(v - §) dE; e )
o~ o~ ~ ~ 42 —~(n ~
><<W1(">(12+W2(")<v.(;El— f—q4>+W§)(j2(El—v-(j)>.
(4.225)

Note that we have explicitly installed the theta functions (q?) and 0(4E.E;, — ¢*) which
have been rewritten to be functions of ¢2, v - § and Ej respectively. Furthermore, from now
on the quantities marked with a head are always the dimensionless variant of the quantity.
The W; denote the coefficients of W, according to the derivatives of the delta distributions
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4. The semileptonic process B — X .11

5 ((myv—q)?—m?) induced by the optical theorem in the last section which are now displayed
explicitly. Those delta functions have been rewritten by the useful equation
d"(ax) 1 d"(z)

= 4.226
d(ax)  a™a| dz ( )

to match the new variables. In addition to that all coefficients arising by the change of the
notation to the new variables have been absorbed into the W;. As we have already stated, we
are interested in the calculation of the hadronic and leptonic energy moments in addition to
the calculation of the total decay rate. The charged lepton energy moments are simply given

by

1 o o, dl
Ln = w55 / B E7 (4.227)
Ecut

where the T'(©9) in the normalization denotes the partonic total decay rate

G2 V. 2m5
10 — Flg;”igb (1 — 8&m?2 — 1212 In(n2) + 8mf — mf). (4.228)
Additionally we have included a cut E.y on the charged lepton energy E‘l as such a cut has to
be used in the experimental analysis. To define the hadronic energy moments we first have to
introduce the hadronic energy and invariant mass

Evaa=v-(pp—q)=mp—v-q

(4.229)
Miaa = (P8 — @)> =mp — 2mpv - q+ ¢,

where mp and pg = mpwv are the mass and the momentum of the B meson and ¢ is the
momentum of the leptonic system. Since our calculation are completely performed in partonic
quantities and the conversion of the partonic to the leptonic quantities is well known it makes
sense to expand the B meson mass as

1 + g

4.230
oy (4.230)

mp =my+ A+

Thus it is possible to relate the hadronic variables in (4.229) to the partonic ones

" E rt . (Pb - Q)
Eoart = —222 = 1 j
part myg my v-9
Mpart (pb - Q)2 2 (4231)
Mpart = — 5~ = > — =1-2v-4+¢",
par m; m;

where py, is the b quark momentum which we have defined in the earlier sections. The moments
in the partonic invariant mass and the partonic energy are then given by

1 - . 43T
Hijj=—— [ dE; [ dm?, dE — (1h? ' EY
1] 1(0,0) . / ! / Mpart part d Epart dmpart aE (mpart ) part
cut
2 d°T

dE/ (v-¢)dG*——=2(1 —2v- G+3q—m 1—v-q
E/ l dg2d(v- ) dE; 2 o) y

cut

(4.232)
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4.4. Calculation of the total decay rate and hadronic and leptonic energy moments

where we have rewritten the variables of the integration in terms of the variables v - ¢ and
G* by using ([4.231)). The additional factor of 2 comes from the slater determinant. As the
integration over the leptonic energy is the last one we will perform, the calculation of the
leptonic and hadronic moments is completely analog to the one of the differential rate up to
a factor of 2El (1—-2v-G+¢*—m?) (1 —v-q) which obviously is one for n, j, i = 0 and
therefore retrieves the total rate for this case. Thus we only have to install an additional theta
distribution (E; — Ecyt) in the last integration. Therefore we define

d°r a°r
A2 d(v-9)dE  dg2d(v-§) dE;

2El (1—-2v-4G+¢>—m>)'A—v-§) (4.233)
as a short hand notation for the rate including the quantities for partonic and leptonic moments.

4.4.1. Calculation to the double differential decay rate

For the calculation of the double differential decay rate we have decided to integrate over the
rescaled total lepton energy v-g at first. Since we do not know how to integrate over a differential
delta distribution, we first have to rewrite the integral by partial integration. Therefore we
decompose the triple differential rate into parts according to the number of derivatives acting
on the delta function:

P(n) 1 — 2 ~2 . ~2
/ Z A s <@ G- m+q> 0(3)0 <2v G2 - L ) d(v-G).
dqszl 2 dg2d(v-q) dE, 2 2E;

(4.234)
The superscript n at the triple differential decay rates just denotes the coefficient of the n'®
derivative of the delta function (not to be confused with the n*® derivative of the triple differen-
tial decay rate itself). Note that the partial integrations also act on the theta functions which
limit the phase space. This will lead to new delta distributions and their derivatives which
have to be considered in further integrations. Without those terms we would obtain 1/7m2*
divergencies for the limit /. — 0 in the total rate. Furthermore, we have to remember that
the derivative of the delta function is done with respect to its argument. Thus we will rewrite

it by
d"o(g(y)) _ ( dy d\"
dg™(y) _<dg(y)dy> o). (4.235)

with an arbitrary function g(y). However, in this case we will not run into any difficulties since
we can identify

1—pn 2 A2
y=v-q and gly)=0-q-— L (4.236)
which implies
d d
) o, L b (4.237)
dy dg(y)
Thus we just have the relation
1—m?+¢° d" 1—m? +¢°
s (6.6 c = Slo-6— ¢ 4.238
(- g \" T 4259

and do not have to worry about additional terms coming from the conversion of the delta
function. In the following lines we will perform the integrations separately for each number of
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4. The semileptonic process B — X .11

derivatives n of the delta function, starting with n = 0. For the Oth derivative of the delta
distribution (the delta distribution itself) we just have to perform the integration by the usual
replacement rules. Therefore we get

ar© dr© 1 — 1?2 + ¢ s
A5(0)<@.A_C>9A20(2v'A—2E— A>dv“
/ 5 g 5 (@) q 1 5 (v-q)

d@2dE;, ) d@2d(v-g I
—o0
dr© 26 — 1 .
- ﬁ 0(@2)9 ZA qu — 2El + 1 — mg .
dg?d(v- q)dE; G121 4?)/2 2F,
(4.239)
To improve the readability we will use the shortcut
~ 2El - ]. ~2 ~ ~ 92
5 _ —9F, +1—m 4.240
Yo q l c ( )

for the argument of the second theta distribution after the replacement in the further calcula-
tions. Encountering the first derivative of the delta distribution we have to partially integrate
once. This gives us

a7 4o 12+ g2 g
_ / S | ¢)) <@.q_c+q> 8(3%)0 (20@_2&_ 1 >d(v~d)
dG2dE; dg2d(v - §) dE; 2 28,
d dar®m dr®
5dg?d(v - q)dE; dg?d(v - §)dE; bd=(1rn2442)/2

(4.241)

Analogously we have to perform two partial integrations for the terms containing the second
derivative of the delta function. We get

e) i @ 1 2 4 2 X -2
d /d)dEl(;(Q) (@.q_mc+q)9(@2)9<2U.q_2El_;)d(v.@

dPdE, ) d@d(v-q 2 ,
42 dr® d dr®
ds* dg2d(v - §)dEy ds dg*d(v - q)dE;

e
PN S P
dg2d(v - §)dE,

o-4=(1-m2+3?)/2
(4.242)

In the same sense we can calculate the term containing three derivatives of the delta function:

dre dare 1 —m2 4+ §? s ¢
A5(3)<@.A_C>9A29<20-A—2E— A>dv'A

d2dE,  J a@dw-q z
d? dare® A q2 dr® )
T\ T A aczaie. var VT 2q82 am2d(n . ma i
d¢?d(v - ¢)dE, 52 dg?d(v - §)dE;
d  dr® dre)
P C g e P o)
ds dg2d(v - §)dE, dg?d(v - §)dE; o412 442)/2
(4.243)
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4.4. Calculation of the total decay rate and hadronic and leptonic energy moments

For the fourth derivative of the delta function we get

r@ 7 @ 1— 2 + ¢ -
d S /dA5(4) (@-Q—W)G(QQ)O <2U.q_2EZ_
dg>dEy;  J d¢*d(v-q)dE 2

4 @ 3 o 2 @
N R T (IR S
ds* dg2d(v - §)dE, ds® dg2d(v - §)dE; ds? dg2d(v - §)dE;

T T
+4id—A5” 3 d—A ///( )
ds dg2d(v - q)dE; dg*d(v - ¢)dE)

0-G=(1—1m2+4G2)/2
(4.244)

in an analog way. Resumming the single terms (4.23974.244)) we finally obtain the double

differential decay rate
4

T T
dr => i (4.245)
d@2dE; = d@rdE,

The result is again very lengthy and therefore will not be displayed here, but can be obtained
by the author in form of a MATHEMATICA notebook.

4.4.2. Calculation to the differential decay rate

To obtain the charged-lepton energy spectrum rate we have to integrate over the invariant mass
G of the leptonic system. Again we will decompose the double differential rate, but this time
according to the derivatives of §(2). This gives us

/ Z (§%)0D (2)d¢?, (4.246)
dEl dqszl

where #()(2) denotes the i*® derivative of the theta distribution according to the argument 2.
The reader shall be warned not to confuse the decomposition given in with the one
given in (4.245). While contains arbitrary combinations for the derivatives 6() (%) of
the theta distribution, the equation is newly decomposed according to the numbers of
derivatives acting on 0(Z). Again the derivatives acting on the theta distribution have to be
rewritten to derivatives by ¢2 to be able to perform the partial integrations. Therefore we will
again use the formula . For the current case this leads to

5 (z) =5 2]5,751@2 — 2B, +1 —m?
25

o, " 2k,
- == s (2 - =L _(1—2E,—m?) |.
28, — 1 1-2E

The derivatives of the delta distribution are still acting on its argument. With this in mind we
recall the formula (4.235)) and identify

(4.247)

) ) 2F —
y=q and g(y) =@ — — (128 —m?). (4.248)
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4. The semileptonic process B — X .11

which leads to the result
d d
doly) _, L Ay _, (4.249)
dy dg(y)
as seen in the last section. Thus we can rewrite the derivative regarding the argument of the
delta function into a derivative by ¢? without obtaining any further terms and end up with

N n+1 ~
R 2F, dr R 2F, A
s (2) = — | 2 — 5% - (1 —2E,—m?) . 4.250
(2) <2El_1> TtaR <q 1—2El( I :) ( )

Now we are ready to integrate the various terms of the decomposition separately like we did
in the last section. The term proportional to the Oth derivative of the theta distribution, and
thus to the theta function itself, does not contain any delta functions. Thus we just have to
perform the integration

o) oL (1-28-2) .
dr dr
—= / ——dg*. (4.251)
dFE; dg2dE;

The first derivative of the theta distribution confronts us with a delta distribution again. How-
ever, as there are no derivatives acting on this delta distribution, we can just integrate the term
using the normal replacement rules for delta distributions. Thus we obtain

)T 4t
drt / dr® o ¢
dE,

~ ] ag2dE,
= (4.252)
arm

=———0(¢)
dg2dE;

o 2B A_AZ'
q‘iTjﬁi(l 2E;—1h32)

For the case, where two derivatives act on the theta function, we find one delta distribution.
Therefore we have to perform one partial integration and end up with

a7 oare
= [ St
dE; 4G2dE,

— N B (4.253)
d dar® are

= =0 — ———=6(%)
d¢* dg2dF, d§2dE;

Performing two partial integrations we get

62: 2Elh
1-2E;

(1—-2E;—m2)

are) 7df(3) Y
dE;

Az  dre d dr®e dre
= —5—-0 52 +2— —5(62 + 5 (62
<d(q2)2dq2dEl (@) d§* dg2dE, @ (@)

@=L (1-2F,—m2)

1-2E;
(4.254)
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4.4. Calculation of the total decay rate and hadronic and leptonic energy moments

as a result for the fourth term. Finally, we conclude our calculations with three partial inte-
grations for the last term

T4 T 47
a” / T 5(32)5(2)d

dFE, dg2dE,
@ dare 42 dar@
=\ — N3 1017 6(q2) -3 N2 149 1~ 5(A2) (4255)
d(q ) dq2dEl d(q ) dq2dEl
@) @)
(w0 | I
q° dg=dE; dg*dE; =2k (1-2E—rn2)

The total differential rate is again the sum

df g~ dr
dE, ‘= dE

(4.256)

of all the terms calculated above. The rather lengthy result is displayed in appendix

4.4.3. Calculation of the total rate

Last but not least we will present the calculation of the total decay rate. Like in the sections
before we can decompose the differential rate according to the number derivatives acting on
the theta distributions contained in it. The result looks like

~ 4 ~ n A
dar _ dFE ) o [ 2E:
dE, = dE

—(1-2E,—m?) |, 4.257
1—2Ez( ! )) (4.257)

where the superscript of the theta distribution again denotes the n'" derivative while the
superscript of the differential rate denotes just the coefficient of the according theta distribution.
The argument of the theta distribution automatically delivers the right phase space region, since
we have ) )

2E’A(1f2El—m§)20 e 0<B<iZMe (4.258)

1—2F, 2

To be able to perform a partial integration of the delta distributions like in the last sections,
we first have to rewrite them into derivations according to E,. This time this step will be a bit
more tricky than in the last sections, since the argument of the delta distribution is not already

solved to Ej. Therefore we will consider the common case

5™ (gy)) = dgi?yﬁ(g(y))

d" 1
= 3 2= g Y % (4:259)

1 d\" 1
- (g’(y)dy> Z g Y

at first, where g(y) is an arbitrary function with ¢’(y) # 0. For our case we obviously have

. 2F .
g(E) L(1-2E —m?). (4.260)

1 -2F
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4. The semileptonic process B — X .11

This function has two roots, namely El(l) =0 and EF) = (1 —m?2)/2. Thus we can show by

. 8E? —8F; —2m2+2

"NE) = — 4.261
g9 (E1) 025 (4.261)
~ 2
= } = 2 — and } == me (4'262)
g (BN 1 g (EPh 1

that is valid. Up to this point we still have not introduced the lepton-energy cut Ecut
at low energies which we wanted to install because of experimental reasons. The only thing
we have to do is to multiply everything by the theta distribution G(El — Ecut). As all terms
containing two different delta functions vanish, we do not have to worry about the derivatives of
this distribution because of the partial integrations and just get the lower boundary FE oy for our
integrals. This results in the elimination of all parts containing the delta function ¢§ (El — El(l)).
If we like to retain the evaluation for the uncut case, we only have to set Feyt = 0. Using
to rewrite and integrating partially over E like in the last sections we finally
get the parts

N o .

r® = / ddFA dE; (4.263)
Ecut :
207 2 Al
Z / T 72 dB 5(E "dE; (4.264)
=1 Ecut
27 T\ .

re -3 / 4 L2 AU 55— B)aE, (4.265)

i=1 dE; ¢'(Ey) 1 —mz dE

2 7 (i 3 T(2) ~ . ~
-y / d_ (g5 2 AU 5(E - EV)aE,
4 dB \ g'(B) ) 1—m2 dE,

Ecut

1 dr® g
+Z/ 1fm2 (dEQ( "(E l))2 Ak )5(El E, )dEz, (4.266)

which have been calculated a MATHEMATICA notebook like the triple, double and single differ-
ential rates. The total rate is the sum

4
r=>y"10 (4.267)
i=0
of these terms. Again we do not display the results here, but refer to appendix

4.5. Radiative corrections
The calculation of the QCD radiative corrections to the inclusive B — X, e 7, decay is already

well known for the standard model current. It has been performed in [77, [70} [78] and the results
for the semileptonic moments in the kinetic scheme have been given in [55]. However, since these
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4.5. Radiative corrections

PP
-

Figure 4.3.: Virtual corrections

results contain only the standard model currents, we have to recalculate the radiative corrections
for the non standard currents up to order a;. While doing this, we will also recalculate the
radiative corrections for the standard model currents to be able to compare our results with
[77, 70, 78] and [55]. Thus we have to evaluate the Feynman diagrams shown in fig.
and The real and virtual corrections are both divergent in the infrared region. These
divergencies can be regularized by the introduction of a gluon mass which drops out, when the
contributions from the real and virtual corrections are summed up. Additionally, the wave-
function renormalization of the b and c fields has to be taken into account.

The total amplitude consists of the sum of the standard model contribution and the one of
the newly introduced operators of higher mass dimension. Since the new-physics contributions
are of order 1/A? we shall include only the interference terms of the standard model with these
contributions, neglecting the squares of the new-physics terms are already of order 1/A*. Thus
we compute

|
ar = —((ce176|H§f11\c/[|b><ceﬂe|7'[eff]b>* + (e Do He|b) (c e 7 HEM [b)* )dqsps (4.268)

2my,

where d¢pg is the corresponding phase space (PS) element and

AGFV,
HEY = =T ey, PLb) (7" Prre) (4.269)

V2

AG RV,
Mot = — = T (7" Prve) (4.270)

V2

are the effective Hamiltonians of the standard model and the new physics contributions (as
introduced in section [4.1)) respectively, and

Jh# =cr E’)/MPLb + CRr E'YuPRb + 9L E’L'<D—/IPLZ) + 9Rr EZ'(D—/:PRb (4.271)
+dj, iaV(EiO'M,,PLb) +dg ’iay(éio‘w/PRb)

denotes again the extended hadronic current. From this current we can read off the relevant
Feynman rules for the new-physics operators at tree level. At this point we shall note that
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4. The semileptonic process B — X .11

the scalar current (i.e. the terms that are proportional to the constants g7, and gg) introduces
new boson-gluon-quark-quark vertices in order to maintain QCD gauge invariance. These are
shown in the lower section of fig. [£.3] and on the right hand side of [4.4]

In the following we will perform a renormalization group analysis to rewrite the parameters
¢L,CR, 9L, 9R,dr, and dgr from the high scale A, where they were calculated, to a lower scale,
where the actual experiments take place.

e e e

Ve Ve Ve

C Cc C
b b b

Figure 4.4.: Real corrections

4.5.1. Renormalization group analysis

Up to this point our calculations have been done only for a certain fixed scale A. To be able to
perform QCD radiative corrections, we have to perform a renormalization group analysis as it
has been discussed in the sections [3.2] and to see how our parameters cr, cgr, 91, gr, dr, and
dg change with the scale in our integrations. Due to current conservation (in the massless case)
the left- and right-handed currents do not have an anomalous dimension and hence the parts
of our effective Lagrange density proportional to c¢;, and cr are not renormalized. However,
the scalar and tensor contributions have anomalous dimensions. This means that we have to
normalize then at some high scale A (e.g. the scale of the gauge bosons) and run them down
to the scale of the bottom quark. Thus we have to calculate the anomalous dimension matrix,
as it has been discussed in section . The whole calculation has been performed within a
MATHEMATICA notebook which can be obtained by the author. Starting from equation
we have

d _
0= dlnu(ceye\'Hefﬂb). (4.272)

Using the current [4.271] the matrix element reads

4Gr Ve

(ceve|Heg|b) = 3

((ce De| [ (67, P-b) (7" P-ve) + cr(€7,Pyb) (@7 P-ve.)] |b)
(4.273)

+C-<ceﬁe\0\b>)
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after the OPE. Here we have defined

I (0D uP-b)(e7"P-ve)
JR (¢iD ,Pyb)(evy"P_ve)
dr, (10¥(ciopu P-b))(ey" P_ve)
C- Cf,i o - (i@”(éfduyp+b)2(é YHP_ve) , (4.974)
cy (mp v P-b)(ev*P_v.)
o (e Py D) (7 Pv,)
e (me ey P-b)(ev*P_v.)
CR° (mecyuPyb) (e P_ve)

where the operators O are of dimension seven. Notice that the left- and right-handed vector
currents are not integrated into the vector O of the operators in but are rather written
separately, since they do not have an anomalous dimension. Despite this fact the reader may
have noticed that we have introduced four additional operators marked by the coefficients
c?b,cgb,czlc,cgc which look very similar to the left- and right-handed vector currents but
feature an additional m. or m; mass. These operators appear during the calculation of the
off-diagonal elements of the anomalous dimension matrix for the scalar and tensor currents
and are therefore purely mixing induced. This means that these operators are evanescent at
the original scale A, while they mix into the scalar and tensor currents for the lower scale pu.
This behavior cannot be fixed by redefining the constants completely to have the same mass
dimension, as the operators occur with both masses m. and my. This would indeed make the
anomalous dimension matrix look smaller, but at the price of having mass terms included into
it. Thus we decided to leave these terms in a separate position. For the calculation of the
anomalous-dimension matrix of these dimension 7 operators we can now use the standard way
introduced in section Therefore we define the anomalous-dimension matrix « by

ac
dny ) (1) C, (4.275)

to renormalize the Wilson coefficients rather than the operators. Remember therefore that the
renormalization constants of the coefficients Z7; form the inverse matrix of the renormalization
constants of the operators Z;; = (ij)*l. The anomalous dimension 7 is then computed from
the divergencies of the renormalization constants using

d
=z 1 7Z 4.276
gl A2’ (4.276)
which ends up in the relation
7 = —2[2a18;5 + (b1)y5] (4.277)

in one-loop order, as shown in section [3.2 Here a; marks again the constant arising from the
first divergent term in the 1/e-expansion of the mass renormalization, while the constants b; are
introduced by the divergencies at 1/e order in the expansion of the renormalization constants
of the Green functions. Thus the entries of the anomalous dimension matrix can be read off
directly from the one-loop calculation of the divergent terms resulting from the self-energy and
vertex diagrams shown in fig. which are sub-diagrams of and under consideration
of the mass renormalization terms for the diagonal terms. The calculation of the anomalous
dimension has been performed within the MATHEMATICAnotebook. In this notebook we have
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TEST e

Figure 4.5.: Feynman diagrams for self energies and vertex corrections

calculated the one-loop diagrams for the self energies and for the vertex corrections for each
part of the current concerning the newly introduced scalar and tensor vertices as well as the
standard model vector vertex. From this we obtain

0 0 O

205 (1)
3

Hu) = (4.278)

W oo oo oo

SO W W oo =Oo
W oo WwWwmeE OO
(e oloNoll =l
SO OO = O OO
O OO Wo o oo
OO W o oo oo
W oo o oo oo

0

Note that the anomalous-dimension matrix is given in transposed form because of the definition
(3.8). The renormalization group equation (3.8) for the wilson coefficients now reads

(4 #7700 ) Cd/m =0 (1.279)
where we can replace the derivative with respect to In p with
dlj(u) =20 Ofr dis ’ (4.280)
which results form the one-loop order of . Thus we end up with
(—Qﬁoag ) €/ =0, (1281)
47 dog

whose solution represents the resummation of the first row of Since the entries for scalar
currents within the anomalous dimension matrix vanish (and therefore the coefficients for the
scalar parts are constant regarding the scale), and the scalar currents are the only currents
which are mixed into other ones, the solution to this differential equation turns out to be quite
simple, as the resulting equations can be solved separately instead of having to solve a set
of coupled differential equation. A natural starting point is therefore the calculation of the
running of the coefficients to the scalar currents. For those currents shows up as

o? d
_ s — 4.
2ﬁ047T dasgL(Oés(M)) 0 (4.282)
dgr
=0 4.283
dog ’ ( )

where we have indicated the u dependence of the strong coupling in the first step. This can be
solved easily by integration to give

gr(p) = K, (4.284)
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where K is an arbitrary constant. This constant can be determined by using the fact that for the
scale ;1 = A we have to retain the results which we have actually calculated at this scale. Thus
we immediately see that K = gr(A). The calculation for the right-handed current proceeds
completely analog to the steps as described above. Proceeding with the tensor currents we find

that equation (4.281]) becomes

o? 20 (11)
— 26— ——d; = = (d 4.2
ﬁ047r doyg L 3T (dr +91) (4.285)

for the left-handed tensor current. This inhomogeneous differential equation of first order is
solved in two steps. The first one consists of finding the general solution of the homogeneous
part of and the second part of constructing a partial solution for the inhomogeneous
equation by varying the constants. The homogeneous equation

36, dd
4 da,

=dy (4.286)
can be solved by separation of the variables. This results in

4
dL = Kas 30 5 (4287)

where we have introduced an arbitrary constant K again. The next step consists of the variation
of this constant. Inserting the upper equation with K = K(as) into (4.285) results in

dK 3050 —3;*,0 -1
= — P 4.2
dayg 4 gLo (4.288)

The solution is again obtained by integration. It reads

4
K=—grai + K. (4.289)

The insertion of this equation into provides us with

4

dr () = Kras ™ — gr(u). (4.290)

Again we have to adjust Kj so that our initial condition dr(u) = dr(A) is fulfilled for the
4

4 4
scale 4t = A. Thus K; has to contain dy,(A) as well as az(A)3%0 to cancel ag(p) 3% at p= A
and gr,(u) to cancel the last term of the upper equation at y = A. Taking into account that
gr.(p) = gr(A) we obtain

(0 = (o) + ) (250) ™ - ) (4.291)

as a result for the running of d;. The calculation of the corresponding running of dg is
completely analog to the calculation above, and we obtain the same result with the subscript
R instead of L. Since the calculations of the additional constants do not differ much from each

other, we will present only one example. The renormalization group equation of ¢} reads
2
a; d 2005 (1)
— 2By —cf = =222 () . 4.292
6047Td045 5 T ( L +9R) ( )
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Its solution equation is similar to that of (4.285)). We obtain
_4
e () = Kraw ™ — gi(A). (4.293)

The only difference to the calculation performed above stems from the initial conditions

(M) = 0= s (A), (4.294)

which occur as the matching of the left- and right-handed currents is performed by fixing the
coefficients ¢y, and cg and all additional contributions are induced only by the renormalization
4

group running. Thus the constant K; may contain only a factor to cancel oy ™ at p = A and
gr(A). In the end we find
(A)
« 0
(1) = gr(A . ~1 4.295
(1) = g >((as(u)) ) (1.205)
Consolidating all our results we end up with
CL/R(M) = CL/R(A) (4.296)
9r/r(1) = gr/r(A) (4.297)
(A)\ 5%
Qs 0
o) = (gm8) + i) (200 ™ = g1ymia) (4.298)
(A)) %
m Qg 0
cr /(1) = gr/L(A) ((a . ) - 1) (4.299)

(i) = grm(A) P (4.300)
b / s (1)

as scale dependent parameters. These equations may be re-expanded using the one-loop ex-
pression for the strong coupling constant and obtain the logarithmic terms of the one-loop
calculation. Nevertheless, the complete one-loop calculation we have performed additionally
yields non-logarithmic terms. Except for the vector and axial vector currents these contributions
depend on the renormalization scheme. In order to fix this dependence on the renormalization
scheme we would have to include the renormalization group running at two loops. However,
the two-loop calculation of the michel parameter analysis is beyond the scope of this work.
Here we use the M S scheme and fix the scale to be ju = my which is the relevant scale of the
decay processes we analyze. Nonetheless it also has advantages to keep the non-logarithmic
terms. Since they lead to kinematic effects like e.g. a bremsstrahlung spectrum for the hadronic
invariant mass, they give rise to a distortion of the spectra and therefore also to the moments.
In particular the partonic mass moments ((M2 — m?2)") with n > 0 will start at order as.

4.5.2. Mass Scheme

The calculation of the process is usually set up using the pole scheme for the masses of the
particles. However, it bears problems since the pole mass is known as not being a well-defined
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mass, when it is used in calculations resulting in abnormally large radiative corrections. Be-
cause of that reason an appropriately defined short distance mass is better suited for the OPE
calculation of an inclusive semileptonic rate [79]. In the present analysis we will therefore use
the kinetic mass scheme, where the mass is defined by a nonrelativistic sum rule for the kinetic
energy [58]. At one-loop level the kinetic mass is related to the pole mass by

2
) 4« 7 H
king, y_ ppole || _ =Qs [(Kf  7f 4.301
mq " (ug) = myg [ 37 (mb+2m§)] ’ ( :

where py is a factorization scale for removing contributions below from the mass definition.
As 1GeV is the typical energy release in the process we choose to set py to this value in
the following. This low renormalization scale is in fact the reason why the MS scheme is
inappropriate for our purposes. However, the ratio m2 = m?2/ mg is rather stable under the
choice of schemes. Therefore the choice of the mass scheme affects the decay rates only through
their mg’ dependence. Within this order equation gives us the ratio

mgole N s
(mgin(l GeV)) ~ 14 2.0899 - (4.302)
of the masses expressed in the pole mass scheme and the kinetic mass scheme respectively. From
the calculation in the standard model we find that the O(as) corrections of the relation between
the kinetic and the pole mass compensate the radiative corrections to the rates computed in
the pole mass scheme to a large extent, leaving only small QCD radiative corrections. It turns
out that this is also the case for our calculation including the anomalous couplings.

4.5.3. Combined corrections and reparametrization invariance

Up to this point we have calculated the radiative QCD corrections up to order o, as well as
the nonperturbative corrections up to order 1/ mzl. What is still missing is a description of the
combined corrections to order o /mi. In section we have discussed how to perform an
operator product expansion in a new systematic way. Within this calculation we have defined
the residual momentum k, which describes the motion of the heavy b quark in the background
field of a meson of velocity v. This has lead to the expansion

iSnor =3 (@~ mo) + A1%<@ — mKQ@ — m.)
- 2@ - mOK@ - mK@ ~ m) (4.303)
0
+ Alé@ — Mm@~ Mm@~ mK@ —me) + ...

where () = myp — ¢ and Ay = Q? — m?2 + ie which prevented us form calculating one- or
even more-gluon matrix elements, since the ordering of the residual momentum was retained.
However, as we have seen, this ordering is retained only due to the fact that every k, comes
with a non-commutating Dirac matrix y*. Everything works fine up to the point, where a
gluon propagator is needed for loop corrections. This propagator is of the form

i(sab
q® + i€

q"q”
(—mw+(l—®q2+k>, (4.304)
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where g denotes the gluon momentum and £ denotes the gauge parameter. The expansion
of this propagator obviously leads to problems, since the momenta are not contracted to the
noncommutative Dirac matrices. Therefore we do not get the right ordering of the residual
momentum for free as for the quark propagator and thus gluon matrix elements would have to be
included. All in all the description of the heavy quark’s motion inside the hadron by a residual
momentum is to naive to deliver the right results for calculations beyond tree level. However, the
ordering could possibly be fixed by introducing a noncommutative residual momentum operator
instead of the naive residual momentum to retain the right ordering. Another problem arises,
as we do not know how the residual momentum behaves, when getting in contact with a gluon
loop. Naively there are three possibilities how the residual momentum could be split up: The
residual momentum stays completely in the quark line, the residual momentum flows completely
through the gluon or the residual momentum is split up. The first two cases are definitely not
right since they obviously would not reproduce the right gluon matrix elements. For the first
case the gluons coupling to the gluon loop are completely absent and for the second case the
higher order 1/my corrections which we have found for the tree-level diagram, are completely
absent. Thus the question arises how to split the residual momentum up into two parts which
would strengthen one contribution and weaken another. An idea for that would be to think
of the residual momentum to be created by the background field of the meson for all contents
of the diagram which underly the strong interaction. Thus all components of the diagram
would contain their own residual momentum. Note that this would only work if the corrections
due to the residual momentum were small compared to the momentum of the corresponding
component. However, none of the above mentioned methods has been tested and it is not clear
if they retain the right one gluon matrix elements.

Thus only the symmetric matrix elements which do not include gluon matrix elements can be
calculated at present. A calculation of the one-loop as corrections for y2 has been performed in
[72]. However, here we will present a much simpler and more elegant way of calculating these
corrections using reparametrization invariance. The starting point is again the total decay rate

3
=g 11 /(2733% [M(my — {ps})*(2m)*s* (pb—pr). (4.305)

me f=c,e,v
Additionally we define

F(O,O)iG%chsz? ) ith 52) = (1 — 82 — 1273 In 2 + 8/mb — md 4.306
_Wf(mc) wit f(mc)_( —omg — 12m,Inmg + mc_mc)7 ( )

which is the well known tree-level parton result [80]. The normalization factor 1/my in equation
results from 1/F} in the rest system of the b-Quark, where we have p, = myv which
means that we have not installed the residual momentum k describing the movement of the
quark inside of the hadron yet. This residual momentum is acquired by the transformation

mpyv — mpv + k (4.307)

to the rest system of the B meson. In this system we have v® = (1,0), and thus the transfor-

mation reads
1 1 1 1

— = s
2my, 2(myvo + ko) 2mp 1 + %

(4.308)
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where the second fraction is the time-dilatation factor induced by the transformation. Expand-
ing this time-dilatation factor up to the second order we obtain

1 -k - k)?
v,k:1_L+(” 2) o (4.309)

The matrix elements of the residual momentum have already been calculated in section [4.3.3
Considering only the z2 dependent part which is symmetric and thus independent of the gluon
matrix elements, they read

2

2
(kY) = Qi;bva and (ko‘kﬁ> = —%’r(go‘ﬁ — vo"uﬁ). (4.310)

Note that the trace formulae for the ,u%; dependent part indeed look the same. Thus one
could think that the technique of reparametrization invariance also works for the ué dependent
part. However, the differences between the p2 and the ,uQG dependent parts arise at another
point, namely the expansion of the c-propagator in the background field. While the
expansion gives the same structure f(m?2) for the partonic rate and the 2 dependent terms, the
gluon matrix elements contained in the ,u,2G dependent terms trigger results with a completely
different structure. Therefore the linear ansatz from above does not work properly for M2G and
the corresponding terms have to be removed from the trace formulae to avoid the calculation of
meaningless MQG dependent terms in the rate. The quadratic term of vanishes because
of v = 1 and we get

1 =
- 4.311
14 ok 2m? ( )

my
This means that the decay rate just is shifted by the factor 1 — u2/ 2m§ and we obtain the
result

2
2mb

2

[T (1 — M= ) (4.312)
for any decay rate I' - even for order af terms. However, as stated above this method has
one major flaw. The averaging does not retain the ordering of the covariant derivatives
and therefore does not reproduce the one and more gluon-matrix elements correctly. There-
fore we only obtain the corrections which are symmetric as they do not contain gluon-matrix
elements. Nevertheless, since we do not have any better results from more sophisticated theo-
retical descriptions, we will shortly discuss the impact of these corrections on the moments of

the lepton-energy spectrum. First we shall remember the definition
L= rlo / dEgE?;EFE (4.313)

Ecut

of the lepton-energy moments normalized to factor

G| Ve *my
19273

The time dilatation of the dI" retains the same factor as we have already calculated for I'. The

reparametrization of the lepton energy FEy is calculated by

k- 2
Er=v-pr— (mpv+k) pr= (Eg—l—pZ> — Ey (1+ M”2> . (4.315)
mp 2mjy

Ty = (4.314)

For n = 1 this factor cancels with the time-dilatation factor 1 — p2/2m? of dI'. Therefore the
1/m? correction for L; vanishes.
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4.6. Discussions and conclusions

In this chapter we have introduced new contributions to the quark-quark-boson vertex of the
inclusive semileptonic decay B — X.e~ U, within an effective field approach. These new
contributions consist of a right-handed vector current as well as right- and left-handed scalar
and tensor currents. For these contributions we have calculated the radiative corrections up to
order as and the nonperturbative corrections up to order 1/ mé. From this we have calculated
the triple, double and single differential rates as well as the total decay rate. The calculation
for the nonperturbative corrections has been performed completely analytical and the results
for the differential rate and the total decay rates are given in appendix [D] However, the results
for the triple and double differential rate have not been shown, since they are much too lengthy.
In contrast to that, the results for the radiative corrections have been performed completely
numerical, and are presented in the tables at the end of this section. These tables also include
the results of the calculation of the moments for the nonperturbative corrections for the new
contributions up to order 1/ mg. Although these contributions have been calculated completely
analytical up to order 1/ mg, we will not present the results in this work due to the same reason
for which we do not show the triple and double differential rates. Furthermore, we have shown
how to calculate combined 1/m;, and a; corrections - at least for the scope of the constant pq
and one-loop corrections - and discussed the difficulties of our new method of calculating the
1/my, corrections when combined with radiative corrections.

In order to have a qualitative discussion of the results all results are presented in the tables
44 and for various moments with and without an energy cut for the charged
lepton energy FEj at 1 GeV,as it has been introduced in section [4.4] The entries of the tables
contain the coefficients corresponding to the expansion

L, = C%L%CLCL) + CLCRL%CLCR) + CLdLL%CLdL) + chRL%CLdR) + chLLgLCLQL) + CLQRL,(ngR)

(4.316)
Hij :C%Hz(j{JLCL) + CLCRHi(]-CLCR) + CLdLHi(jCLdL) + chRHi(]{:LdR) + CLQLH,‘(;L‘(}L) + CLQRH,(;LQR)
(4.317)

of the various moments. All of the coefficients above have an expansion in ag and 1/m;, and
therefore read

2 2
I (cie2) :lecwz;mg,ocg) i %L;cwz;mﬁ,ag) 4 Hg L;cwz;mg,ag) - %L;qcmmg,oci) g

n my 3m§ ™
(4.318)
.m0 o0 2 200 w2 200 o 1m0 ol
Hi(jC]_CQ) :H£;1c2,mb,as) n %Hi(]gcz,mw%) n 3722 ngj1cz,mbyas) NI ?stgglcz,mb,as) ..
b b

(4.319)

where we have only shown the terms which we have included in the tables. Note that the
one-loop calculation of the moments yield results of the (schematic) form

A2 N
Ly = LBo™(y) [1 +anin <2> + bﬁ“as] (4.320)
s mb T

90



4.6. Discussions and conclusions

for the leptonic moments and a similar form for the hadronic moments. The non-logarithmic
contribution b, depends on the chosen scheme. Therefore the first part

Qg A2
1+ ap—21In <2> (4.321)

s mb

of is replaced by the renormalization-group-improved results given by the relations
- ({300,

Within the tables - we have chosen the scales to be A = My and u = my to be
sure to have a high scale that is safely apart from the low scale of the b decay which naturally
manifests itself at the energy scale mg,.

Table [£.2] contains the results for the leptonic moments normalized to the total leptonic rate
at tree-level for the whole lepton energy spectrum and for a cut of 1 GeV on the lepton
energy. We find that the radiative corrections to the scalar and tensor currents are sizable, i.e.
the ag/m coefficients are large. Since the sign is opposed to the tree-level rate, a substantial
reduction of the tree-level result is expected.

The various hadronic moments which have been calculated with and without a cut of 1 GeV
are contained in the tables and respectively. For the moments of the hadronic energy
without the hadronic mass moments (i = 0, j arbitrary) we find similar results as for the
leptonic moments. Again we obtain large coefficients heavily reducing the tree-level results.

The tables andshow the summed tree level and « /7 coefficients for the three different
scales u = 2.3GeV,4.6 GeV,9.2 GeV, when calculated without Ej cuts. Since the full next-to-
leading order expressions have not yet been calculated, the expressions for the scalar and tensor
couplings are not available up to now. The resulting residual scale dependence can then be
estimated by calculating the results for some points u = my/2, my, 2m;, around our designated
scale u = my which corresponds to the scales given above for m; = 4.6 GeV in the kinetic
scheme. The scale dependence of c% and crpcg turns out to be weak and originates from yet
unknown NNLO effects. Because of the large a; dependence the scale dependence of the tensor
couplings is sizable, while it is huge for the scalar couplings, since the tree contribution is
almost cancelled by the radiative correction. It seems not very likely that a NLO calculation
will improve this situation. Thus it seems as if we will not have a good sensitivity to the tensor
couplings and practically no sensitivity to the scalar couplings.

Comparing the radiative corrections to the nonperturbative ones we find that because of
as/T R g/ mg the nonperturbative corrections are of similar importance as the perturbative
ones. Within the leptonic moments both corrections are small compared to the tree-level
contributions. However, for the hadronic moments with ¢ > 0 the tree-level contributions vanish
at the partonic level as the tree-level partonic rate is proportional to the mass shell delta function
6(30 — p). Thus for these moments the leading order contributions are of order oy or 1/mj
respectively. This also implies that their dependence on the scale is given by the dependence
of as. Since the radiative corrections are small in this region, the nonperturbative corrections
become dominant for this case. These nonperturbative corrections contain derivatives of the
mass shell delta function §(89 — p), where at leading order in 1/my the maximum number of
derivatives is two. Because of this the first and second i moments are of order 1/m?; higher
moments with ¢ > 2 will only have contributions of order 1/mj or higher.

The precision of the standard model contributions is the main limiting factor of the sensitivity
to a possible new physics contribution. Current analyses usually use up to second moments
in both, the leptonic energy and invariant mass squared. Thus the highest masses included in
the standard model analyses are approximately sensitive to terms of order 1/ mg. The size of
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these terms alongside the size of the a? corrections may serve as a conservative estimate to the
uncertainties of the standard model calculation which determines the sensitivity to a possible
new-physics contribution. Anyway, future experiments may be sensitive to deliver data that can
be fitted with even higher moments of ¢ and thus higher order 1/m;, corrections to the moments
could be needed. The calculation has been performed up to order 1/m; and is (even if those
results are not shown in the tables) available from the author. The extension to higher order
corrections is straightforward and can be implemented into the corresponding MATHEMATICA
notebook if needed.
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n c2 CLCR cLgr CLIR crdr crdr

_ 0] 10000 —0.6685 02212 05400 03315 —0.6597

S 1| 03072 —0.2092 00613 01372  0.0977 —0.2307

£ 2| 01030 -0.0708 0.0188 00388  0.0314 —0.0845

3| 00365 —00252  0.0062 00118  0.0107 —0.0319

% .. . 0]-05000 0.3342 —0.0017 01703 —0.1652  0.3288

.5 % 1| 00000 00000 00000 0.0000 0.0000  0.0000

5§ of 8 2| 0088 —00590  0.0365 0.1146  0.0261 —0.0702

5 F 3| 00730 —0.0503 0.0210 0.0575  0.0214 —0.0637

S W 0]-19449 49934  1.0232 15624 -2.1536  3.7106

E% 1]-09625 18578 03253  0.6011 —0.7986  1.5873

S S 2| 04495 07237 0.1124  0.2427 —0.3081  0.6840

31 -0.2052 02902  0.0410 0.1008 —0.1220  0.2966

& 0] 03125 08009 —2.6592 —88212 —2.1497  4.3637

S 1| 00908 02284 —0.7171 —2.3141 —0.5594  1.4880

& 21 00276 0.0739 —0.2174 —0.6843 —0.1660  0.5394

g 3 00085 00260 —0.0711 —0.2189 —0.0538  0.2039

_ 0] 08148 —05617 01621 0358 02631 —0.6161

S 1| 02776 —0.1919  0.0520 01089  0.0867 —0.2232

2| 00979 —0.0678 0.0172  0.0340  0.0296 —0.0831

3| 00356 —0.0246  0.0059 0.0109  0.0104 —0.0317

_ % ... 0]-04504 03225 0.0433 03440 —0.1479  0.3631

3 £% 1] 00087 —0.0021 0.0564  0.2247  0.0031  0.0059

=8 m\ik 8 2| 00874 —0.0594 0.0377 0.1194  0.0267 —0.0691

= 3| 00733 —0.0504 0.0213 00583  0.0215 —0.0635
—

A W 0] -21029  4.6903  0.8592 14595 -2.0451  3.7102

5 E% 1]-09883 18078 02989 05845 —0.7805 15871

S S 2| 04540 07149 0.1078  0.2398 —0.3049  0.6840

3| —0.2060 0288  0.0401  0.1003 —0.1214  0.2966

& 0] 02640 05740 —1.8506 —5.9374 —1.3992  3.9213

3 1| 00828 01930 —0.5920 —1.8692 —0.4440  1.4126

& 21 00262 00679 —0.1964 —0.6098 —0.1467  0.5260

g 3| 0.0083 00249 —0.0674 —0.2058 —0.0504  0.2014

Table 4.2.: Tree level and «a, /7 coefficients of the leptonic moments without Fj cuts and with a
cut £; >1GeV. Note that we have redefined dp,yr = mpdr r and gr/r = mB gr/R
with mp = 5.279 GeV in order to tabulate dimensionless quantities.
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i ] c? CLCR crLgr CLIR crdr crdr
0 0 1.0000 —0.6685 0.2212 0.5400 0.3315 —0.6597
g 0 1 0.4220 —0.2500 0.0961 0.2556 0.1217 —0.2559
f‘g 0 2 0.1832 —0.0964 0.0429 0.1219 0.0461 —0.1021
~ 0 3 0.0815 —0.0383 0.0196 0.0586 0.0180 —0.0418
1>0 g 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0 0 | —0.5000 0.3342 —0.0017 0.1703 —0.1652 0.3288
0 1| —0.5000 0.3342 —0.100 —0.2229 —0.1652 0.3288
. 0 2 | —0.2902 0.1836 —0.0773 —0.2119 —0.0899 0.1840
?5’ &‘G;J 0 3 | —0.1382 0.0837 —0.0448 —0.1348 —0.0406 0.0853
i‘.) NL; 1 0| —0.5780 0.4185 —0.2038 —0.5937 —0.2091 0.4025
é g 1 1| —0.1584 0.1172 —0.0695 —0.2158 —0.0585 0.1129
‘lef 1 2 | —0.0283 0.0280 —0.0217 -0.0718 —0.0143 0.0258
2 0 0.1609 —0.0728 0.0386 0.1159 0.0337 —0.0809
2 1 0.0735 —0.0302 0.0180 0.0561 0.0138 —0.0343
3 0 0.0000 0.0000 0.0000 0.0000 0.0000 —0.0000
0 0] —1.9449 4.9934 1.0232 1.5624 —2.1536 3.7106
. 0 1| —0.3850 1.2777 0.4097 0.4782 —0.5223 0.9700
af;) 0 2 | —0.0302 0.2833 0.1576 0.1391 —-0.1109 0.2254
Ni 0 3 0.0298 0.0342 0.0578 0.0350 —0.0146 0.0347
E 1 0 0.3143 —0.6395 —0.1100 —0.2167 0.2027 —0.4360
5 1 1 0.1195 —0.2561 —0.0529 —0.0925 0.0744 —0.1709
1 2 0.0466 —0.1059 —0.0254 —0.0405 0.0282 —0.0689
1>1 3 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0 0 0.3128 0.8007 —2.6592 —8.8212 —2.1497 4.3637
0 1 0.1631 0.3441 —1.2391 —4.1901 —0.8839 1.8575
0 2 0.0910 0.1477 —0.5850 —2.0067 —0.3694 0.8017
&E 0 3 0.0526 0.0632 —0.2793 —0.9681 —0.1568 0.3505
8 1 0 0.0901 —0.0363 0.0028 0.0176 0.0032 —0.0095
& 1 1 0.0470 —0.0178 0.0014 0.0093 0.0015 —0.0046
s 1 2 0.0251 —0.0090 0.0007 0.0050 0.0007 —0.0023
2 0 0.0091 —0.0033 0.0001 0.0015 0.0002 —0.0008
2 1 0.0053 —0.0019 0.0000 0.0009 0.0001 —0.0004
3 0 0.0018 —0.0006 0.0000 0.0003 0.0000 —0.0001

Table 4.3.: Tree level and as/7 coefficients of the hadronic moments without E; cuts. The
partonic tree-level moments for ¢ > 1 are all zero. Note that we have redefined
dp/r =mpdy/g and gr/r = mp gy g with mp = 5.279 GeV in order to tabulate
dimensionless quantities.
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i ] 3 CLCR crgr CLIR crdr, crdr
0 0 0.8148 —0.5617 0.1621 0.3586 0.2631 —0.6161
g 0 1 0.3341 —0.2037 0.0682 0.1676 0.0922 —0.2365
g 0 2 0.1411 —-0.0761 0.0295 0.0789 0.0332 —0.0933
& 0 3 0.0612 —0.0293 0.0131 0.0375 0.0123 —0.0378
1>0 g 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0 0 | —0.4504 0.3225 0.0433 0.3440 —0.1479 0.3631
0 1| —0.4505 0.2921 —0.0597 —-0.0843 —0.1329 0.3332
. 0 2|1 —0.2673 0.1561 —0.0532 —0.1300 —0.0695 0.1841
E—’ aﬂg 0 3| —0.1337 0.0706 —0.0327 —0.0935 —0.0308 0.0859
i.) NUQ 1 0 | —0.5424 0.3590 —0.1687 —0.4845 —0.1685 0.3887
éﬁ E 1 1| —0.1639 0.1022 —0.0598 —0.1852 —0.0478 0.1115
Nil: 1 2 | —0.0417 0.0262 —0.0204 —-0.0678 —0.0126 0.0273
2 0 0.1203 —0.0547 0.0258 0.0742 0.0223 —0.0729
2 1 0.0538 —0.0221 0.0118 0.0355 0.0087 —0.0306
3 0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0 0] —2.1029 4.6903 0.8592 1.4595 —2.0451 3.7102
. 0 1| —0.4609 1.2205 0.3461 0.4476 —0.5005 0.9855
H;g 0 2 | —0.0660 0.2921 0.1348 0.1332 —0.1119 0.2391
NQ; 0 3 0.0131 0.0538 0.0507 0.0363 —0.0194 0.0439
E 1 0 0.3074 —0.5095 —0.0803 —0.1804 0.1654 —0.4093
P 1 1 0.1171 —-0.1971 —-0.0381 —0.0751 0.0583 —0.1590
1 2 0.0458 —0.0789 —0.0180 —0.0321 0.0211 —0.0635
1>1 3 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0 0 0.2642 0.5739 —1.8506 —5.9373 —1.3992 3.9213
0 1 0.1216 0.2462 —0.8449 —2.7806 —0.5529 1.6572
0 2 0.0608 0.1057 —0.3919 —-1.3149 —0.2221 0.7103
&E 0 3 0.0323 0.0455 —0.1842 —0.6272 —0.0907 0.3086
3 1 0 0.0576 —0.0231 0.0018 0.0101 0.0018 —0.0079
& 1 1 0.0288 —0.0108 0.0009 0.0052 0.0008 —0.0038
s 1 2 0.0147 —0.0052 0.0004 0.0027 0.0004 —0.0018
2 0 0.0046 —0.0016 0.0001 0.0007 0.0001 —0.0006
2 1 0.0026 —0.0009 0.0000 0.0004 0.0000 —0.0003
3 0 0.0007 —0.0002 0.0000 0.0001 0.0000 —0.0001

Table 4.4.: Tree level and «s/7 coefficients of the hadronic moments with a cut E;>1GeV.
The partonic tree-level moments for ¢ > 1 are all zero. Note that we have redefined
dr/r =mpdy g and gr,/r = mp gr/g With mp = 5.279 GeV in order to tabulate
dimensionless quantities.
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p nl| cLcr  crgr crgr  crdrn  crdr
. 0| 1.0253 —0.6037 0.0042 —-0.1916 0.1533 —0.2983
é’ 1] 0.3145 —-0.1907 0.0028 —0.0552 0.0512 —-0.1074
2 2 1 0.1052 —-0.0648 0.0011 -0.0182 0.0176 —0.0397
3 10.0372 —0.0231 0.0004 —-0.0065 0.0062 —0.0150
> 0| 1.0208 —0.6151 0.0441 —-0.0474 0.1883 —0.3692
é)" 1] 0.3132 —-0.1940 0.0135 -0.0169 0.0604 —0.1317
: 2 1 0.1048 —0.0658 0.0043 —0.0068 0.0204 —0.0485
3100371 —-0.0234 0.0015 —0.0028 0.0071 —0.0184
. 010177 —-0.6231 0.0715 0.0752 0.2146 —0.4223
(5") 103123 —-0.1963 0.0208 0.0164 0.0674 —0.1499
a2 10.1046 —0.0666 0.0065 0.0034 0.0225 —0.0552
< 3 1 0.0370 —0.0237 0.0022 0.0005 0.0078 —0.0209

Table 4.5.: Summed up tree level and «a /7 coefficients of the leptonic moments without Ej cuts
for p = 2.3,4.6 and 9.2 GeV.

poi j| CLCR crLgrL ctgr  crdr  crdr
- 0 0] 1.02563 —-0.6037 0.0042 —0.1916 0.1533 —0.2983
8 0 1104352 -0.2222 —-0.0051 —0.0914 0.0486 —0.1024
2 0 2101906 -—-0.0845 —0.0049 —0.0440 0.0156 —0.0360
0 31]0.087 -0.0331 —-0.0033 —-0.0214 0.0050 —0.0129
> 0 0] 1.0208 -0.6151 0.0441 —-0.0474 0.1883 —0.3692
8 0 110.4329 -0.2271 0.0136 —0.0234 0.0628 —0.1322
: 0 21 0.1892 —-0.0866 0.0040 —0.0117 0.0215 —0.0487
0 3] 0.080 —0.0340 0.0010 —0.0059 0.0075 —0.0185
> 0 0| 1.0177 -0.6231 0.0715 0.0752 0.2146 —0.4223
8 0 1104312 -0.2305 0.0269 0.0335 0.0734 —0.1545
g 0 210.1883 —0.0880 0.0104 0.0151  0.0258 —0.0582
0 3] 0.0845 —0.0347 0.0041 0.0069 0.0093 —0.0226

Table 4.6.: Summed up tree level and «g /7 coefficients of the non-zero-tree-level hadronic mo-
ments without Ej cuts for p = 2.3,4.6 and 9.2 GeV.
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5. Lepton flavor violating 7-decays

T~ - - 0~ &
Y/ T - - Elf
o+ o+

Figure 5.1.: Feynman diagrams for the radiative 7-decay (left) and the effective four fermion
vertices from higher mass dimensions (right)

Within this chapter we will discuss lepton flavor violating 7-decays which provide a different
approach to test the weak current of the standard model in a model independent way. On
the one hand the minimal extension of the standard model including neutrino oscillations
indeed predicts lepton flavor violation (LFV) for the charged leptons, though at a complete
unobservable level. On the other hand many extensions of the standard model predict lepton
flavor violation at much higher rates which may in some cases even be in conflict with existing
experimental boundaries (see [8] or [81] for a recent summary of B-Factory results). With the
upcoming experiments [82] this boundary will be pushed further, unless a discovery will be
made. Considering especially the LHC it will be possible to detect LF'V decays of a 7 lepton,
especially into channels with three leptons, where 7= — pu~ p~ ™t will be one of the cleanest
signatures [83] [84].

There are many models which predict LEV 7-decays of the form 7 — £ ¢/ ¢" with £,0', 0" = e, u
185, |86, (87, [88, 89, [90], [01], 92, 93, 04], 95, (96, 97, ©8, 09, [100]. All these models will eventually
match onto a set of local four-fermion operators resulting in 7 — £/’ ¢" (see Fig. right)
or radiative operators, the latter mediating 7 — ¢~* — ({7 ¢~ with subsequent decay of
the (virtual) photon into a charged lepton pair(see Fig. left). Note that this subsequent
decay does not work for arbitrary decays of the form 7 — £/ ¢, since we assume charge
conservation at every vertex. Thus decays of the form 7 — e~ e~ u™ are forbidden for the
radiative decay, while they are allowed for the four fermion decay. In this dissertation we will
provide a model independent way to compare these models with experimental data. Therefore
we will use a bottom-up approach which allows us to consider all possible four-fermion and
radiative operators with arbitrary coupling constants. These coupling constants can then be
extracted by studying the decay distributions of the three leptons in the final state. In this work
we will exclusively use the particle content of the standard model which has the advantage that
we will be able to use our results for analyses, even if no additional particles will be found in
future experiments. Similar analysis for the supersymmetric field content have been published
by other groups (see e.g. [89) 87]).
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5. Lepton flavor violating T-decays

5.1. The effective interaction for = — (('("-decays

To be able to discuss lepton flavor violating 7-decays in a most generic way - without gener-
ating a specific model - we will create effective four fermion vertices in a bottom-up approach
using an effective field theory picture. This means we have to generate a Lagrange density
compatible with the observed SU(2);, x U(1)y gauge symmetry which incorporates the terms
of the standard model Lagrangian as these have shown to be valid up to energies which are
accessible now. The task is now to add terms to the standard model Lagrange density in a
structured way, while being as generic as possible. Therefore we expand our Lagrangian at a
high scale A, where we expect some “new physics”. We obtain

£=£4D+%E5D+% % %
which represents a series of operators with increasing mass dimension. The dimension of these
operators is then compensated by the dimension of the scale parameter A. Remember that
the Lagrange density of the standard model is of dimension 4. This means that the term L4p
is completely represented by the standard model, since all additional terms of dimension 4
which one could imagine are excluded by the past experiments. Before discussing how the
specific operators are set up, we first have to introduce a new notation which we will use
within the chapter. This notation is useful for the description of minimal flavor violation which
we will discuss in a later section. Therefore we group the left-handed leptons in an SU(2)p,
doublet, while the right-handed charged leptons (which are singlets under SU(2),) are put into
an incomplete doublet, as a reminiscent of the right-handed SU(2)g related to the custodial
symmetry. Writing also the Higgs boson in matrix form, we have

L:<VL>, R:<0>, H:1<”+h°+ixo V20 > (5.2)
lr lp V2 —V2¢_ v+ ho —ixo

For simplicity, we have suppressed the family indices which will be specified once we consider
a particular decay mode. The reader might note that the columns of the Higgs matrix are just
given by the Higgs doublet ® and its charge conjugate ® that have been introduced in section
Multiplying it with the right-handed doublet introduced above, we obtain just the same
terms as we had in the notation with right-handed singlets and the Higgs doublet from section
From these fields we will now construct effective four-fermion operators (for decays of the
form 7 — £¢'¢") and radiative operators with two fermions (for subsequent decays of the form
7 — 0y* — £0'") to describe the higher order effects contained in For the description of the
radiative operators we additionally need the field strengths B, and W}, with the corresponding
gauge couplings g and ¢’ which belong to the U(1)y and SU(2), respectively. To obtain the
mass dimensions of the fields which we will use, we point out that the action

Lep + L7p + Lsp+..., (5.1)

S = / e £, 9,0) (5.3)

is dimensionless in the units defined in section [I.3] Since four mass dimensions are integrated
out the d*z has the mass dimension —4. This has to be compensated by the mass dimension
of the Lagrangian which therefore has the mass dimension 4. Regarding the Lagrangian (B.46)
we find

dim [m:g, dim[D,] = dim[9,] = 1, dim[H] =1, dim[B,]=1 and dim[F,]=2
(5.4)
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5.1. The effective interaction for T — (0'{"-decays

as mass dimensions for its various contents. Since the charged lepton fields are of mass di-
mension 3/2 and the Higgs matrix is of dimension 1 it is obviously not possible to construct
a four-fermion vertex or a radiative operator of dimension 5. Note that it would indeed be
possible to construct operators of dimension 5 if we included right-handed neutrinos into our
calculation, since we could make use of charge conjugated neutrino fields v = C yovp, like we
did within the construction of the Majorana masses in section Since we desire to retain
charge conservation the only kind of four-fermion operators which we can produce in this way
is of the form 7= — e~ v; ¥, where one of the two neutrinos which are normally produced
by the standard model interaction, is replaced in such a way that the lepton flavor is violated.
However, there are at the moment no experiments which can resolve the neutrino flavor within
high energy physics. Thus we will not consider those operators here. Hence we get the first
new operators from the dimension 6 part of the Lagrange density:

dimension 6 leptonic: dimension 6 radiative:
01 = (LyuL)(Ly"L) Ry = ¢ (LHo, R)B" (5.9)
L%y, L)(LT*y"L) Ry = g(LT"Ho,,, R)WH* (5.10)

)
)
)
)

0 ~ o

(5
= ( (5
= (R1uR)(Ry"R) (5.

04 = (RyuR)(IN"L) (5
In this dimension we obtain only vector and pseudovector currents, since tensor and pseudoten-
sor currents would require an additional Higgs matrix insertion. Thus we find that we have
only three possible combinations of helicity structures, namely the cases where all fields are
left-handed or right-handed and a mixed case, where we have two parts of which one is left- and
one is right-handed. All other structures vanish due to the projectors. Beside the four-fermion
operators we are able to build up radiative operators which can be set up by combinations of
left- and right-handed spinors in combination with a tensor and a Higgs field. These are coupled
to the gauge fields of the U(1) and SU(2) respectively. Going on with the higher dimension
operators we note that we cannot create pure vector, scalar or tensor couplings, as the only
component we can add to get the right mass dimension is one Higgs matrix. This would not
give us the possibility to create fully contracted operators. For the dimension 8 part we obtain
the scalar and pseudoscalar as well as the tensor current, since we now have the opportunity to
insert another Higgs matrix. We cannot build up radiative operators as there is no possibility
to set up a two fermion operator of dimension 6 which can be fully contracted with the gauge
fields. Therefore we end up with the following list of dimension 8 operators:

dimension 8 leptonic: dimension 8 radiative:

P, = (LHR)(LHR) 5.11 S1 =g (LHH'Ho,,R)B" (5.17)
Py = (LT"HR)(LT"HR) 5.12 Sy = g(Lr*HH' Ho\ RYWH 0 (5.18)
Q1= (LHR)(RH'L) 5.13
Qo = (LT°HR)(RH'7°L) 5.14
Ty = (LHo,, R)(LH" R) 5.15

)
)
)
)
)
Ty = (L™*Ho,R)(LT*Ho"™ R)  (5.16)

(
(
(
(
(
(

Note that we have only listed operators that have tree-level contributions to leptonic 7-decays.
More operators which are bi-linear in the lepton fields operators and contribute at loop level
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5. Lepton flavor violating T-decays

can be found in [87,R9) T0T} T02]. Furthermore, we neglected operators of dimension 8 involving
additional covariant derivatives, since these become proportional to fermion masses when acting
on fermions and thus are suppressed by the small lepton Yukawa couplings. The most general
effective Hamiltonian at the electroweak scale is now obtained by summing over all operators,
multiplied by arbitrary coefficients for every flavor combination. For a particular physics sce-
nario these coefficients should be obtained by matching at the new physics scale A and evolving
down to the scale My, within the standard model as an effective theory manifesting in the
dimension 4 part of the Hamiltonian.

In the following we are interested in LFV decays of a 7 lepton into three charged leptons.
Therefore we have to construct the effective interaction at the scale of the 7 lepton by integrating
out the weak gauge boson mass. For the following analysis we will focus on 7~ decays, as the
decay distributions of the 7 decays are identical. We will therefore project on operators which
are nonzero when sandwiched between the final and initial conditions (£¢'¢"| and |77), where
¢,¢" and " are arbitrary combinations of the charged e® and u* leptons which obey the charge
conservation. Furthermore, we will consider only operators of dimension 6, as the dimension 8
contributions are expected to be small, since they are additionally suppressed by two powers of
the scale of new physics A. For four-fermion operators of dimension 6 we obtain the structures
(5.5H5.8]). Projecting on charged leptons only, we find that Oy becomes equivalent to O;. These
two operators both match onto a purely left-handed operator

DD _ (DL (Cryurr) (Cp " er)

e : (5.19)

where here and in the following the superscript of the couplings denotes the combinations
of chiralities involved and the subscript denotes the Dirac structure. In analogy to that the
operator Os corresponds to the purely right-handed interaction

7 ol gl
HURORE) _ (R)(RE) (ER%TR)\g r"lR) (5.20)

while we get a mixed term from the operator Oy

Loy, rr) (Ot e Cryutr) (O M
HEDER) _ g<VLL><RR>( i j)éR ) g<VRR><LL>( l j)X(QL L) (5.21)

The dimension 6 radiative operators contain charged as well as neutral currents. Since we like
to retain charge conservation and want to calculate decays into three charged leptons we are
only interested in the neutral-current component coupling to a charged lepton pair. Thus only
the third component of the SU(2); gauge field is maintained and we obtain
Ry — ¢'(LHo,, R)B" (5.22)
Ry — g(L™Ho,, RYWL (5.23)

as operators to consider for the neutral weak decay. As we are not interested in interactions
including the Higgs bosons here, we just can replace the Higgs matrix by its vacuum expectation

value
1 /1 0
H = \ﬁ <O 1) . (5.24)

Since the upper components of the spinors are set to 0 (as we neither like to implement right-
handed neutrinos nor want to have any neutrinos in our decay) the 72 in Ry just gives a negative
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5.1. The effective interaction for T — (0'{"-decays

sign. Thus we get

;;ng(éa“y73)13ﬂ” (5.25)

v
R -
2 — \/§

using the notation from above. The next step is to rewrite B*” and W4" into their interaction
basis. As already seen in section 2.1] we have

Ry —

g(ZUuVTR)W;V (526)

W3 = cos Oy Z,, + sin Oy Ay, (5.27)
B, =cosbw A, —sinbw 2, (5.28)

for the fields and the relation gsinfy = ¢’ cos Oy for the coupling constants. The gauge fields
re-expressed in the interaction basis now read

By, =cos by (0,4, — 0,A,) —sinbw (0,2, — 0, 2Z,) (5.29)
Wj’y =sinbw (0, Ay, — 0, AL) +cosbw (0uZ, — 0 Zy) + ..., (5.30)

where the dots mark terms with two field strengths which we do not need in the following as
they would vanish because of the initial and final conditions due to the additional external Zj
and v fields. Additionally using the antisymmetry of o, we find

Ry — 2" ¢'sin Ow (boTR)qu Ay — 2 g cos Ow (Lo ) q]! Z,, (5.31)

V2 V2

v - v
R2—>—27 COSG[/VEU!WTR A, —2—
\/§ g ( )QI«L v \/i
where ¢, and qf denote the momentum transfer to the leptons by the + and Zy bosons respec-
tively. This momentum transfer is proportional to the lepton masses, and thus this contribution
scales as 1/(yA?) where y is a Yukawa coupling of the leptons which would lead to an enhance-
ment unless an additional Yukawa coupling appears in the numerator as e.g. in minimal flavor
violation. A reordering of the operators (5.31]) and (5.32)) concerning the v and Zj fields leads

to

gsin ew(ZO'“VTR)qul,, (5.32)

R, =V2v (¢ sinby — gcosby) (bor) g, Ay (5.33)
Rz = —V2v (g sin Oy + ¢ cos QW) (ZO’“VTR) qul, . (5.34)

In the next step we will install the second part of the subsequent decay 7= — (7" —
(= (0'T¢'7). Therefore we require the parts

AP (L) and Z8 (v Pl | (5.35)
which describe the weak and electromagnetic decay in the second vertex. The propagators are
given by

. q"'q”
P,U«l/ = A#Ay = m <_g,ul/ + (1 - 50)q2 + ZG) (536)
for the photon and
1 qZ,,qu,u
P = 7.7, = — g + (1 — 5.37
uv 1% (qz)g _ M% + e < 9u + ( 50) (C]Z)2 _ &)M% + e ( )
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5. Lepton flavor violating T-decays

T > - 0~ &
o= T 0=
o+ Va3

Figure 5.2.: Feynman diagrams for the radiative operators before (left) and after (right) the
expansion of the W ~-propagator

in arbitrary gauge. For our purposes we will choose the Feynman gauge £y = 1. For the Zj
propagator we use (¢%)? < m2 < M% we can expand the denominator in powers of 1/M% like
we did in section This gives us

P! <1+ ¢ ) (5.38)
22 " M2 Mz ) .
where we can safely neglect the terms in the brackets as the expansion converges very rapidly
because of (m,/Mz)? =~ 0.0004. Thus we obtain

gt gt

P = d P{=—— 5.39
wv q% + ie an e M2 + ie (5:39)
for the propagators. Combining everything we obtain the radiative operators
rad 62 v qV (s,h) (7 : o !
HE = WA g 9oy (Cn(—iouw)Ts) (E4*0) (5.40)
h,s
for photon interactions and
2 v
rad,Z _ 9w U ¢ (s;,h) (7 . =
M = 5z g O ez ((=iow)n) (4" Pul) (5.41)
h,s

for the weak interactions, where the constants gfiiR) and gr(ﬁL) denote the two possible chirality

combinations. Taking into account the fact that |¢#| is of the order of the 7 mass, we find that
the operator containing the neutral weak current is suppressed relative to the leading ones by
the small Yukawa coupling of the 7 lepton. Therefore only the photonic contribution has to
be considered. As we can see in fig. the radiative decay contains only two different types
of particles, namely ¢ and ¢'. This is a result of the standard vertices which mediate a
decay of the photon into a particle and its antiparticle (and therefore conserve the flavor). This
leads to further constraints regarding the occurrence of radiative decays. First of all decays
into three different particles cannot be described in this way. For our case this does not matter
since for the standard model we only have three families, and thus only two types of particles,
in which the 7 can decay. Additionally we cannot obtain decays of the form 7 — ¢=¢~¢'* from
radiative decays. Since we do not wish to calculate such decays in the following, we do not
need to expand our considerations further. However, if one desires to include more particles in
the theory or to calculate decays of the form 7 — £~ ¢~ ¢t it is straightforward to extend the
vertex for the 7 decay with higher dimensional operators like the one for our b decay. Note that
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5.2. Constraints from minimal flavor violation

this would further increase the dimension of the operators. Thus the dimension would at least
be 12, as the dimension 6 radiative operators would have to be connected to their counterparts
in the vertex of the photon decay. Furthermore, note that for simplicity we have neglected
possible form factor effects for decays into virtual photons from long distance lepton or quark
loops. In the most general case, the 7 — ¢~* vertex could be parametrized as

e v _ sih oh "
A2 143 {gﬁad )(q2) (—iow) ¢ +m; fr(ad )(q2) (7,, T2 g[) } Ts (5.42)

h,s

where gr(j’dh)(O) = grad ) and fr(S h) (0) = 0, see, for instance [103].

Finally, we turn to the four-fermion operators with the chirality structure (RL)(RL) or
(LR)(LR). At tree-level they only receive contributions from the dimension 8 operators P o,
Q12 and T1o. Therefore, their matching coefficients are further suppressed by v2/A%. The
one-loop matching coefficients at the electroweak scale may also receive contributions from the
dimension 6 operators O1_4 and Rj_o, but in this case the required chirality ﬂips induce an
additional suppression by m% /v?. Ignoring contributions suppressed by v?/A? or mj 2 /v? reduces
the number of possible Dirac structures already to six in the case where the radiative operator
can contribute and to four in cases like 7= — p~p~e™, where the radiative contribution is

absent. The corresponding couplings

g€/LL)(LL), gg/RR)(RR)’ g(VLL)(RR) g(RR>(LL) (LR) (RL) (5.43)

3 Vv ) rad rad

are matrices in lepton flavor space. There are in total six different decay modes of the 7~ to
consider:

77 —e e et (5.44) T = pu et (5.47)
T =t (5.45) T — e et (5.48)
T —e eyt (5.46) T —e pput (5.49)

Notice that - contain two identical particles (e"e™ or p~p~) in the final state,
whereas ((5.48 - do not Moreover, only ((5.44} |5.45] |5.48] [5.49)) receive contributions from

the radlatlve operator (5.40) by

I A A Vi A (5.50)

5.2. Constraints from minimal flavor violation

Here we will discuss the constraints on the parameters appearing in the next section by min-
imal lepton flavor violation (MLFV). Therefore we will start discussing what minimal flavor
violation is. Our starting point shall be a theory without Yukawa couplings. The symmetry of
the quark sector of the standard model would be SU(3)g x SU(3)y x SU(3)p corresponding
to the individual rotations of the QiL, uiR and diR fields (the left-handed quark doublet ant two
right-handed quark singlets) for ¢ = 1,2,3. In models with minimal flavor violation this sym-
metry is broken by the two Yukawa couplings Ay and Ap. These couplings act as spurion fields
which induce the breaking of the symmetry by their transformation behavior. The transforma-
tion behavior is chosen such that the broken symmetry reflects the experimental observations.
The two couplings transform in two different ways: in the spurion sense Ay transforms as a
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5. Lepton flavor violating T-decays

(3,3,1), while Ap transforms as (1,1, 3), breaking the SU(3)y and SU(3)p respectively. Any
higher order operator in a minimal flavor violating model describing long distance remnants of
very short distance physics must be invariant under the full flavor symmetry group, when the
couplings Ay and Ap are taken to transform as spurions. In this work we will define a similar
structure of lepton flavor violation for the leptons. Therefore we will only consider the case
of a minimal field content, where we use the particles contained in the standard model exclu-
sively, in contrast to the extended field content (which is additionally discussed in e.g. [101]
and [102]), where new particles (e.g. right-handed neutrinos) are added to the calculations.
Thus we have three left-handed doublets LiL and three right-handed charged lepton singlets e%
which transform under the lepton flavor symmetry group

GLF = SU(3)L X SU(B)ER. (5.51)

The leptonic sector is also invariant under two U (1) symmetries which can be identified with the
total lepton number and the weak hypercharge. Within a model with this particle content the
neutrino mass matrix stems from left-handed Majorana mass terms. Therefore it transforms as
(6,1) under Gpp. Due to the SU(2)1 gauge symmetry, this mass term cannot be generated by
renormalizable interactions. Furthermore, the absence of right-handed neutrino fields requires
the breaking of the total lepton number. Additionally we assume that the breaking of the lepton
number U(1)1x takes place at a very high scale Apx and is independent from the breaking of
the lepton flavor symmetry Gpr. The Lagrange density for MLFV is given by

o . 1 o .
Larry = — Neh(HTL) — jgy (L' H)(H 121}, + h.c.
) (5.52)

— —v\Jehel — Tgf,jﬂgiui + h.c.,

LN
where we have performed spontaneous symmetry breaking in the last step. It contains the
two possible irreducible sources \;) and g,/ of lepton-flavor symmetry breaking which can be

expressed by

1
A o= ez diag(me, my, ms), (5.53)
v v
ALN .
9 = —F Viuns diag(my, , my,, my,) VgMNS (5.54)

in a flavor diagonal basis, where Vpying denotes again the PMNS matrix introduced in section
The matrix A ~ (3, 3) is induced by the standard model Yukawa couplings from the charged
leptons, while the matrix g, ~ (6, 1) stems from a lepton-number violating term of dimension 5
which has vanishing quantum numbers under the complete standard model gauge group. The
6 transformation behavior of g, stems from the transformation behavior 3 of the fields which
induces 3 x 3 = 3, + 65 according to the symmetric and antisymmetric part of the resulting
3 x 3 matrix. As only the symmetric terms survive in the structure of , we end up with
6. Because the transformation properties of the lepton fields under G are given by

LL—>VLLL and eR—>VReR, (5.55)
the Lagrangian (5.52)) is invariant under this symmetry, if the spurion fields transform as

e — VRAYV)  and g, — Vig V). (5.56)
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5.2. Constraints from minimal flavor violation

If the scale Ay, associated with lepton-number violation, is sufficiently large, the resulting
neutrino masses Mmua;j ~ v?/ALN are small, even if the spurion g, has generic entries of order
unity.

We are interested in 4-lepton processes, induced by operators with some flavor structure

L'ILiLf, L'RLiR, etc

To render these operators formally invariant under the flavor group, they have to be multiplied
by appropriate factors of A, and ¢,. In the following we will consider the minimal number
of spurion insertions only. This is justified as long as the spurion fields are characterized by
some small expansion parameter [I0T] 104} [105], e.g. if the neutrino mass differences Am? are
smaller than their average Am?2. Note that, unlike in the case of the quark CKM matrix, the
off-diagonal entries of the PMNS matrix are not always small.

Starting with the purely laft-handed case of L' L7 Lj Ly, we need at least two spurion inser-
tions. The possible flavor structures can be read off the reduction of the SU(3), tensor product
for g, and g,t. Creating a standard weight diagram we find

6@6=1+8+27. (5.57)

A more sophisticated derivation as well as a table for this and other tensor products can be
found in [106]. The flavor singlet term of corresponds to the trace

2

A A2 m
tr[g:ﬂg,,] = % (m?,1 + mi + m?,g) =3_LN v

. (5.58)

v

of the tensor product glgy, where we have introduced the shorthand notation m2 = m?,l +
mlz,2 + m?,3 in the second step. As the resulting quantity is a constant, it does not induce any
flavor transitions. The flavor octet term is obtained as

1 A?
A=AT = glg, - stilgle]) = —F UAmpUT, (5.59)
where we defined Am2 = diag[m?2 ,m2,, m2.] — mZ. Note that our definition of A differs from

the one in [I01], as we have chosen to remove the flavor singlet contributions from the diagonal
matrix elements. However, for flavor transitions the results should be the same, as the diagonal
matrix elements do not contribute to them. Using this definition, we clearly separate the
singlet and octet representations from each other and have everything expressed in terms of
Am? rather than encountering additional terms of m?. Using the standard conventions

m3 =m? + Am3, = m? + Am?, (5.60)
ms =m3 + Ami, = m? + Am?,, (5.61)

which we have already introduced in section we find in particular that

A?
LN 2
Al = O( i Am atm) (5.62)
whereas Aj, and Af are further suppressed by the neutrino mixing angle f13. It is to be stressed
that A does neither depend on the absolute neutrino mass scale m2, nor on potential Majo-

rana phases a2 in the PMNS matrix. The flavor structure of the corresponding invariant
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four-fermion operator reads (L* A L)(L* L). Therefore, the coefficients of specific flavor transi-
tions are given by the quadratic neutrino mass differences and PMNS elements. The operator
(L* A L)(R* R) is invariant under the flavor group by the same argument. It has been shown
in [I01] all possible flavor transitions induced by operators that are bilinear in the lepton fields
(which means that they contain admixtures of left- and right-handed fields) can be expressed
by combinations containing A. In particular, the flavor structure of the radiative operators
in and reads (L* AMNR) and (R*AAL). Note that the combination of a single
right handed ﬁeld with a left handed one requires the insertion of the Yukawa spurion A which
leads to an additional suppression factor my/v. Furthermore, note that purely right-handed
lepton-flavor violating decays require at least four spurion insertions, (R*R)(R*Ag'g AT R), and
are therefore strongly suppressed in MLFV.

Turning to the 27-plet combination of g, and gl, we introduce the corresponding represen-
tation in terms of the trace-less tensor

X 1
Gl = (9.)i (9)" = 75 (6F0% + dlo¥) (gT)
3 5 (0rala} + 300t + otahal + ogafal) A (5.63)

with le le le and ), G‘l = 0. Note that we have presented this tensor in the original
626 representat1on and not in the reduced 1+ 8 + 27 one. The first term of [5.63] contains the
singlet and octet representations which are removed by the second and third terms respectively
to obtain definition consistent to [5.09) where we have removed the flavor singlet term. The
dependence on the PMNS matrix is hidden in the (g, );; and (g};)* parts of the first term when
using the representation chosen above. The flavor structure of the corresponding invariant
four-lepton operator reads

GHL'L) LiLy . (5.64)
In contrast to A, the off-diagonal matrix elements of G depend on the absolute neutrino mass
scale m2 and the Majorana phases. As a consequence we find for the general case in which
the radiative operators do not dominate the 7 — 3¢ decay amplitudes that the purely leptonic
decay modes are not directly correlated with the radiative ones 7 — £v. Relatively simple
expressions for Gf} can be obtained in the limit of vanishing Majorana phases, where we also
apply the approximations sin® 615 ~ Amsol JAm2, < 1and 3 = 45°. For the normal neutrino
hierarchy (m,, ~ m,, < m,,), we obtain the leading coefficients as

A N Am?2
el ~ -9 WL~ —""atm .
Gt GHb v4 TR (5.65)

and sub-leading effects from

2 2 / 2
G ~ _ALN \/§ 012 A G ~ ALN A7natm _ 20 ATnsol
e ™ T e sinf13 Am?, ., " 5 Muy g — €082012 5 ,
V1,2

A2 /Am? . . Am?
G ~ UIZLN 2\/3“1 ( sin 613 \/ Am2,,, — sin 2612 4;‘?) ,

A2y VA 3cosd — Tisind Am?
GH =~ L4N ;natm ( o8 3 L5 sin @13 \/ Am2,,, + sin 2019 1 msol) . (5.66)

( V1,2

where we have used the PDG parameterization [8] of the CKM matrix. For the inverted
hierarchy (m,, ~ my, > m,,), we find

AAm

~ ~ tm
G, = —5GEk = 106Gy ~ — =LK =Tam (5.67)
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and the corresponding sub-leading terms

A Am 3cosd — 7isind

~ _ LN tm
Gii ~ U4 \/% sSin 913 5 5
Al A 5 A2y TA
GHE ~ — matm % sinb3, G4 ~ 4N matm ¢ sinf3. (5.68)

v4 92 TH ot 1002

The results given above can be used to express the coefficients in (5.19} [5.21} [5.40) by the
spurion fields, when we approach the effective vertices from a MLFV point of view. Explicitly
we find

gFHEIEED oo AL 4y GEY (5.69)
g‘(/LkLi)(RzRﬂ — yAFSL (5.70)
PUSSINNN. (5.71)
(RR)(RR)

for the dominating flavor coefficients, whereas the chiral structures corresponding to gy, ,

&RR)(LL) and gﬁa d) are suppressed by small lepton masses. The spurion combination Gf}

represents a new source of lepton flavor violation for the four-lepton operators compared to
the radiative transitions 7 — £+ which are induced completely by the spurion A. Hence the
coefficients to the radiative operators are completely driven by the difference of the squared
neutrino masses, while the flavor coefficients of purely left-handed four-lepton operators also
involve the absolute neutrino mass scale as well as the Majorana phases in minimal lepton flavor
violation scenarios. In particular, the decay modes 6|+ 5.47)) only receive contributions from
G7, and G4 because of the absence of the radlatlve operators

5.3. Dalitz-plot analysis

In the following we will present and discuss Dalitz plots for the various possibilities of lepton
flavor violating 7 decays which have been discussed in the last two sections. Thereby we will
focus on the two specific cases 7= — e~ pu~ pu™ which represents the decay into three different
particles, and 7= — pu~p~ ™t which represents the decay into just two different particles. The
other possibilities of decays can be sorted into one of the two classes and result in similar
results with equal Dalitz plots. The only change comes because of the different masses which
will provide different borders of the Dalitz plots. In the following subsection we will discuss
the kinematics of the three body decays we like to analyze and the corresponding structure of
the Dalitz plots.

5.3.1. Kinematics

All decays displayed in (5.4415.50) obey the same decay kinematics, since even the radiative
operator can be written as a four fermion interaction due to the choice of Feynman gauge. We
shall start our considerations with the partial decay rate

1
dl' = WIMF(?W)“d%(P;pl,pz, ooy Pn)s (5.72)
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5. Lepton flavor violating T-decays

of a mass into n bodies, where M denotes the Lorentz invariant matrix element which is in our
case given by (000" Heg|7™), and d®,, the n-body phase space which reads

n n dgp'
A®,(P;p1,p2s .- pn) =6 | P — ; — i .
(P;p1,p2 Pn) ( 2 p ) 21_[1 @r)52E; (5.73)
This simplifies to
3 3
1 d3p,
dr D | M) 5O (P = p1 — p2 — pa) (5.74)

~2M {1 (2m)%2E;

for the case of three body decays mediated by our effective four fermion vertices which we have
calculated in section At first we will rewrite the differential of p; to

d3p1
2F1

= d'p16(p} — m?) (5.75)

in order to eliminate the four dimensional delta function in This gives us

1 1 d’p,d’ps

ar = —
2M (27)5 2F, 2E;3

IMPP6((P —pa —ps)* —m7). (5.76)

The next step consists of rewriting the remaining differentials to spherical coordinates. This

gives us
dgpi . 1

2F; 2E;
where we have rewritten the d|p;| to dE; according to

E;
Ip;| = \/ Ef - m? = d|p;| = 27dEi (5.78)

E; — m?

)

;| 2d|p;] de; dcos 8; = |p;|dE; dg; deos 6; (5.77)

in the second step. Using this on (5.76)) we obtain

1 |MP?

~ 8M (2m)5

|p2 | |p3|dE2 dE3 dngdgbg dcos 92dCOS 923 5((P — P2 — p3)2 — m%) . (5.79)

Note that we have chosen the azimuthal angle 615 of po as an angle between p; and ps rather
than in dependence of the z-axis (like e.g. the angle ;). In a few lines we will see that this is
a natural choice, as it provides an easy integration of the delta function. Therefore we have to
reconsider the content of the remaining delta function:

(P —p2—p3)* —m] =M? = 2E; — 2B3 — (p2 + p3)* — m?
=M? —2E; — 2E3 —m3 —m3 —m3 — 2ps - p3 (5.80)
=M? — 2By — 2E3 — m? — m3 — m3 — 2F2E3 + 2|ps||p3| cos b3 .

If we additionally take into account the relation d(azx) = 1/]ald(z) we obtain

S((P—p2—p3)>—mi) = (cos Ba3 — cos633) , (5.81)

—)
2|Z’2HP3|
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where we have consolidated all parts not including cos f15 in the constant cos #),. Inserting this
into (5.79) and performing the corresponding integration we find
1 1
" 16M (27)°
Of course it is important to make sure that all contents of M have to be replaced correctly
while integrating over the delta functions. The remaining angles are the three Euler angles
which determine the orientation of the final system relative to the initial particle. These can
be integrated out, if we average over the spin states of the decaying particle. We obtain
1 1
8M (2m)3

|IM|2dEy dE3 dgodps deos B . (5.82)

dl' =

|IM|?dE, dE3, (5.83)

where | M| denotes the spin averaged matrix element. Introducing a more common notation
we define the new parameters p;; = p; + p; which lead to the invariant masses m?j = p?j per
two particles. These variables are not independent, since we get

miy + mis +mis = M2 +m? +m3 +m2, (5.84)
if we sum up all possibilities. In the following we will choose to express E; and Es by m%Q and

mgg respectively. Using the total momentum conservation P = p; + ps + p2 we can rewrite the
invariant masses m?2, and m3; to

m3s =(p2 +p3)* = (P — p1)* = M? + m? — 2B, (5.85)
miy =(p1 +p2)® = (P — p3)® = M* + mj3 — 2E3, (5.86)

where Fy and FE3 are the energies of the second and third particle in the rest frame of M.
Taking into account that P? = M2, P = (M,0), p; = (E;, p;) and p? = m;, we find

By =— = 7 (5.87)
P.-p M? +mi —m?

By = M3 = 2]\34 12 (5.88)

and thus 1 )
dE, = —mdm§3 and  dF3= —mdnﬁQ (5.89)

Substituting this into ([5.83)) we find
1 1

|M|2dm3, dm3, (5.90)

I =
32M3 (27)3

which is the standard form for the Dalitz plot. For a given value of m?, the range of m3, is
determined by its values, when p, is parallel or antiparallel to ps:

(o = (55 + B3 = (/37 = g = [B? =3 5.91)

and

(mgg)min = (E; + E§)2 - <\/E§2 - m% + \/E§2 - m§> . (592)

Here B = (m3y —m3 +m3)/(2mi2) and E} = (M? —m3, —m3)/(2m12) are the energies of the
particles 2 and 3 in the m1s rest frame. The scatter plot in m?%, and m3; is called a Dalitz plot.
If | M|? is constant, the kinematically allowed region of the plot will be uniformly populated
with even events. Therefore a nonuniformity in the plot gives immediate information about

M.
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Figure 5.3.: Dalitz plot for A>T (left) and d>TF D (vight) in 7= — pp=pt.

5.3.2. Thedecay 7 — p pu pt

At first we will give a detailed analysis of the decay 7~ — p~p~u™ which is probably the
most prominent channel to be looked for at the LHC. Therefore we shall examine the Dalitz
distributions for the different chirality structures LLLL and LLRR of the dimension 6 effective
Hamiltonian in terms of the variables

m2_=miy = (p- +0,-)° mi_=mi=, +p.+), (5.93)
and mi; = m2 + 3mi -m?_ — mi_. We will make use of (approximate) helicity conserva-

tion which implies that many of the interference terms between the operators with different
chiralities are suppressed by powers of m,, and therefore can be ignored to first approximation.

In the following we will perform a subsequent calculation of all operators with the different
helicity structures and . Therefore we will start with the simplest case, namely
where all four fermions are left-handed. The decay amplitude is then determined by Hg}L)(LL)
providing us with the decay distribution

LyL7Y(L,LH
d2F§,LL)(LL) _ |g‘(, wL)(Ly )|2 (mg _ mi)2 - (2m%2 _ mz . 3mi)2 o)
dm%3 dm%2 A4 256 73 m3 '

which is shown in Fig. |5.3| (left). The events are equally distributed along mi,, while there
is a rather flat maximum at m2 _ = m?, ~ m2/2. The case with all particles right-handed is

completely analogous and yields the same distribution with

LL)(LL RR)(RR
gy D) — g{fOER), (5.95)
(RR)(RR) . . .
Remember that gy, is expected to be strongly suppressed within MLFV scenarios.

Next we will consider the operator HgfoL)(RR) in 1) For a left-handed 7-lepton we obtain
the Dalitz distribution

LL)(RR L,L™)(R,R*
QA B DR 2 — )2 — dm? (m2 + m2 — mi,)
dmi,dm?, At 51273 m3

2 2 242 2 2 212 (5'96)
(2mi3 —m7 — 3m:)* + (2m3g — m3 — 3my,)

1024 73 m3 ’
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rad

Figure 5.4.: Dalitz plot for d*T in7T —pup .

shown in Fig. [5.3| (right). In this case the events are distributed around a flat maximum at
mi_ ~ m?2/2 and m? _ ~ 0. Again, the case of a right-handed 7 yields the same distribution.
As pointed out above, the interference terms between and are suppressed by

This exhausts the list of possible four-fermion operators. Now we will consider the contribu-
tion from the radiative operator . As a result we obtain the Dalitz distribution

Lgf) _ 2 ygfaLéLRT)F v mi (m3 - mi)2 1 n 1 mi(mi — 3m%mi + Qmﬁ)
dmi,dm?, em A4 128 w3 m32 mis  mis 128 3 m2, m3, m3

(mis 4+ m3s)(miy + miz +m3s — 6mi(mi +m2))  2mi, — 37”3
256 73 m33 m3, m3 12873 m3 |’
(5.97)

for a right-handed 7 lepton which is plotted in Fig.[5.4l This time the events are concentrated
at low values of m3; or m?, resulting from the photon pole. Again, the decay distribution of
the left-handed 7 is calculated in complete analogy to that.

Finally, we have to determine the contribution arising from the interference terms between
the radiative operators and four-fermion operators. To be more exact we should mention that
we only have to analyze the cases where only the chirality of the 7 lepton has to be flipped. The
interference term between the four-fermion operator and the radiative operator
reads

LL)(LL LuL7)(LuL”) %(L.R™
dQI‘me)( ) . QURe[gﬁ, L)Ly )g:asd“ )] mi, — 3mi mi(mz — mi)(m%g +m33)
dmZ,dm?, o A? 64 73 m2 128 73 m2 m2, m3, ’
(5.98)
while the interference term between ((5.21)) and ([5.40) results in
d2rr(fii)(RR) 20 Re[ggLuLT)(RuR“) g;‘g“RT)]
—_— = (. m
dm3,dm?3, ¢ At (5.99)
N m2 —mi, —3mi  mp(m? —m)(mi; +m3;)
256 73 m2 256 73 m2 m3, m3, ’
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Figure 5.5.: Dalitz plot for |d21“ffi£)(LL)| (left) and |d2F£rﬁ£)(RR)] (right) in 77 — p~p~put.

which are shown in Fig. In both cases the photon pole at m%?) =0or m%3 = 0 is suppressed
by the small muon mass, while the remaining terms increase (decrease) monotonically with

m?,. Combining the results (5.94} [5.96] [5.97] [5.98] [5.99) and integrating over the phase space,
we obtain

T[r~ — pp pt] _ 1 2(g\f (LL)(LL) 242 |g§/RR)(RR)|2 +lg LL)(RR)‘Q ‘gg/RR)(LL)P
Llr= — p vy G2 A* 8
a2 v? m2 11 LR) 2 (RL) 2
em T 1
) () e

S o 0 G55 1)

for the total decay width (normalized to the standard model decay ™ — 7, v neclecting the
muon mass). This result is consistent with the formula quoted, for instance, in [89].

5.3.3. The decay 7~ — e put

The lepton violating 7 decays into three different charged leptons will not deliver a signature
as clean as 7 — p~p~ v, but however we will discuss the for completeness considering the
example 77 — e~ put. Again, we will give the results in terms of the invariant masses

m2_=miy = (pe- +p,- )", mi_=mi= (0, +pu)°, (5.101)
and m?; = m2 + Qmi —m?2_ —m?%_, where we set the electron mass to zero. Note that the

photon pole from 7= — e~ y* — e~ u™ is still regulated by the muon mass.

Starting again with the purely left-handed term in the effective Hamiltonian (5.19)), we obtain
the Dalitz distribution

Qr{EDED(LLDEE) 2t (92, — 2 — 2m2)?

dm23 dm?, At 51273 m3 ’

(5.102)

which coincides, apart from the region of the phase space boundaries, with (5.94) up to cor-
rections of order mz /m2 and a statistical factor. Hence the corresponding Dalitz plot looks
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Figure 5.6.: Dalitz plots for the two contributions to d2F§/ JBR) 5y 7= e uwpt. The

term proportional to |g€/LeLT)(RMRM)|2
LT)(RER#)|2

is displayed on the left side while the term
proportional to | gg,L a is shown on the right side

almost identical to Fig. m (left). Like in the last section there is no need to calculate the
purely right-handed term, since it gives the analog result.

From HgfoL)(RR) in 1) we obtain for the case of a left-handed 7-lepton
dzfgL)(RR) _ |9€/ ELT)(R“RM)P m2 — (2m2; —m?2 — 2mi)2
dm3sdm?, A4 512 w3 m3
A (L, L7)(ReRHM) (5.103)
Ll 2 (m2 —2m2)? — (2m3; — m2 — 2m32)?

A4 512 w3 m3

There is barely a need to mention that the structure for the right-handed 7 is similar to that.
The results are shown in Fig. The events are distributed around m%_ +m?2_ ~ m2/2 or
mi_ ~ m?2 /2, respectively. For equal coupling constants in we recover the 7 — 3u case
in (again up to mass corrections and a statistical factor).

For the radiative decay operators, we obtain

LR LeRT 4 4 4
d2FEad ) _ 2 |g§ad )‘21)2 mi (m35 —m3)*  miy+mis — 2my, m2 — m%3
dmisdm2, " At 64 73 m3 m3, 128 w3 m3 m3, 1283 m3 |’
(5.104)
and the corresponding Dalitz plot is shown in Fig: In this case the photon pole extends
the events at low values of m2 _ = m3;.

Last but not least we have to calculate the interference terms to complete our analysis. We
obtain

T 20 Relgy " g G Ty — 2m3 . (5.105)
—a 5 = .
dmi,dm?, o A4 12873m2  12873m3, |’
and
LL)(RR LeL7)(Ry,RH LR
arip . 2 v Re[glle " nf) grLe BTy T2 om?2 L (5.106)
dm2,dm?, o A? 12873m2  12873mi, '
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Figure 5.8.: Dalitz plot for |d2F$£)(LL)| (left) and |d2F£rﬁ£)(RR)| (right) in 77 — e~ put.
The corresponding Dalitz plots are shown in Fig.

5.4. Discussion and conclusions

Since many new physics models allow dramatic extensions to the tiny standard model effects
in the sector of lepton flavor violating decays, there is the opportunity to falsify the standard
model - or setting further constraints to the new physics models - by measuring such decays at
future experiments. As we have chosen a model independent approach the results calculated
above will be helpful in both cases. Especially the different structure of the Dalitz plots for the
four fermion vertices which show a rather uniform behavior, and the radiative contributions
which are concentrated at small values of mi, = (pg+ + pg—)? will help to decide between new
physics models with different sources of lepton flavor violation - even on the basis of rather few
events - since these models give rather different predictions of the relative size of radiative and
four fermion vertices.

As an example for models which show a completely different behavior in preferring either the
radiative of four-fermion contributions we shall compare the case of supersymmetric extension to
the standard model with the case little Higgs models. For supersymmetric models the photon-
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dipole operator which is induced by penguin diagrams usually dominates over the four-lepton
operators. This leads to correlations like

I(t—31) Qem m2 11 _3
~ In——-—|=0(1 1
T(r —wy) ~ 3n <n m2 4 o107 (5.107)

as presented in [89]. In this case we would expect Dalitz distributions as shown in fig. It has
been pointed out in [93] and [95] that Higgs mediated 7 — p transitions may lead to different

results tan 3 and the off-diagonal slepton mass-matrix element d3, are large. For example the
author of [93] and [95] finds

I(r — Lup) < 3+ 5dpy

rr=m = a6 00D (5.108)

in the decoupling limit (cos(8 — a) = 0, m 0 > M), where g, = mﬁu/m? From an experi-
mental point of view, this will lead to a more elaborate analysis, since generally the interplay
of all contributions to the Dalitz distributions shown in fig. - have to be allowed. For
the case to little Higgs models with T-parity (LHT) [98] 99, [100] we face a completely different
situation. Here the Zy and box-diagram contributions dominate over the radiative operators
[100] which is essentially induced by the constructive (destructive) interference term between
the individual heavy gauge boson contributions. For a mass scale of the LHT mirror fermions
of about 1TeV one finds

I'(r — 3p)

(T — )
depending on the parameter values of the LHT. In this case we would expect rates for lep-
ton flavor violating decays which are already close to the present bounds. Furthermore, the
dominance of the four-fermion operator suggests rather flat Dalitz distributions for 7 — 3u as

illustrated in fig.

—0(1), (5.109)
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A. Mathematics

A.1. Distributions

Distributions are defined as generalized functions [75]. This means we have a linear and con-
tinuos map from a room of test functions f(z) to the room of real numbers. The test functions
have to be continuos and differentiable as often as required. We often make use of the Heaviside
theta distribution #(z) and the Dirac delta distribution é(x). Both distributions are defined
by an integral over a regular test function. Note that these distributions do not make any
sense if they are not defined according to a specific integral. However, in this dissertation we
often encounter differential rates that contain theta of delta distributions without including the
corresponding integral. This does not lead to any problems, since the differential rates do not
have any physical meaning, until they are integrated to show the actual decay rate.

The Dirac delta distribution is defined by the relation

b
f(xo) for a<zo<b

/dmé(m—xo)f(x) - { . o= (A1)

a

where a and b are arbitrary real numbers obeying a < b. This means it has to vanish for all
values where x # x¢ and go to infinity at £ = zy such that

/ dzo(z —xo) =1, (A.2)

which means nothing else, than that the area beneath the delta function is always normalized
to 1. The derivative of the delta function is defined by the partial integration

+00 +oo
/ a6/ (2 — o) f(z) = — / 4z 6(z — z0) f'(x) = —f'(z0) . (A3)

The n'® derivative of the delta function is then obviously given by performing n partial inte-

grations
“+o0o

[ 4w e = a0) £(0) = (<171 a0), (A.4)

The delta distribution with an argument g(x) can be rewritten to a set of delta distributions
with arguments x — x; by the Relation

1
5(g(x)) = %5(x - xzj), (A.5)
2 )
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where ¢'(x) denotes the derivative of the delta functions argument and the summation is per-
formed over all single roots x; of g(z). Another useful relation is
d"é 1 d"
(a2) _ (=) o)

d(az)®  |ala® dam

which helps in many cases to simplify equations containing a delta function considerably. A
special representation of the delta function is given by the Fourier transformation. Using the
definition from above we find

/ Az e = (2m)861l (k). (A7)

Note that 6™ (k) now denotes the &-dimensional delta function which should not be confused
with the n'® derivative defined above.

The Heaviside theta distribution is defined by

0 z<0
O(x) = {1 £>0 (A.8)
such that the delta distribution is its derivative
L) = o) (A.9)
e = . .

It can be used to define the limits of an integration. For example we can write

“+o0o “+oo
/ dz f(z) = / dz 0(z) f(x). (A.10)

This is important if the integral contains derivatives of a delta distribution, as in this case the
theta distribution has to be derived alongside the function f(x) while one performs the partial
integrations to remove the derivatives from the delta distribution.

A.2. Lie groups and representations

In this chapter we will give a short review of Lie groups. It shall not be a complete introduc-
tion to group theory but rather a summary of definitions we need for the following sections.
Some notes about group theory can be found in many books about quantum field theory or
the standard model [9, 12]. However, a more complete introduction to group theory from a
physicists point of view is given in [13].

The starting point of our considerations is obviously the definition of a group. A group is a

[T

(not empty) set G = {g}, for which we define a composition “o” with the following attributes:
e Completion: g1,99 € G —g10g2 € G
e Associative law: g1 o (g2 0 g3) = (g1 © g2) © g3

e An identity element e with g oe = g = € o g exists.

1 1

e It exists exactly one inverse element g~! for each g with gog™' =e=g"loyg
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The conjunctions of Lie groups additionally have a analytical structure given by

g(e) 0 g(Bs) = g(filau, 3i)) (A.11)

with analytical functions f; in every variable. Up to now the definitions we have given are
very general. In physics it is often useful to regard groups in a certain representation. A
representation is a map D: G — GL(V) such that D(g;g;) = D(g:)D(g;) for all g;, g; € G, where
V is an N dimensional linear vector space called representation space. Note that the dimension
N of this vector space has generally nothing to do with the dimension of the group dim G, since
groups can be represented in different ways using vector spaces of different dimensions. The
group’s properties are now described by the general linear transformations

Tr; — Mij(a)xj (A.IQ)

in the representation space, where i,j = 1,..., N. M is a N x N nonsingular (det M # 0) and
linear (M (ax+by) = a Mx+b Mx) matrix. By means of the additional characteristics of those
matrices one can classify the groups. The first class is the class of orthogonal groups marked
with O. These groups have to fulfill MTM = M M” = 1. Analog to this U marks unitary
groups with MTM = M MT = 1. The last class of groups which we will will introduce here is
the class of special groups S which means that all group elements have to fulfill dim M = 1. In
this work we will mainly be encountered with groups of the structures SU and U.

Having categorized the properties of the groups representations we will now go on and talk
about the objects which are transformed by a groups. Objects which have well defined trans-
formation properties concerning a special group are called tensors. Depending on the represen-
tation of the group under which these objects transform one distinguishes:

Scalars are tensors of 0" rank. They transform by s — s which means that D(g) = 1 for all
group elements g contained in G and therefore s’ = D(g) = s. This representation is called the
trivial representation of the group.

Vectors are tensors of first rank. These objects transform like v; — D;;(g)v; under the group
G. Dj;(g) is the defining representation of the group since all other representation can be
constructed from its matrices. It is often called the fundamental representation of the group.

Tensors of higher rank n then transform by ¢;;. ., = D;ir(9)D;j1(g) - - - Dpnr(g) tirjr.. ns,which can
be rewritten to t, — Dyg(g)ts by merging the indices i...n to a set of indices a. Dqyg(g) is
then a higher dimensional representation of G. Thus it is possible to consider the transforma-
tion behavior of a 3 x 3 matrix by its elements o = 1...9 instead by the matrix elements M;;.
Here ¢,7 = 1...3 denotes the location where the elements are placed in the matrix. For tensors
of second rank the representation is called the adjoint representation.

For the classification of groups it is most common to use the dimension of the fundamental
representation. The dimension of the group which corresponds to the number of independent
parameters can then be concluded from the fundamental representations dimension and its ad-
ditional properties. For example we have the SU(N) which is of dimension dim SU(N) = N2—1
since its complex matrices are unitary and we have additionally the det M = 1. All in all the
number with which we classify the group should not be confused with the number of its free pa-
rameters. In the following we will observe how the transformations of Lie groups are described
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A.2. Lie groups and representations

using generators. Therefore we consider a group G = {g(a,)} with continuos parameters a
numbered by @ = 1...n, where n = dim G. Remembering that we have an identity element
9(0) = 1 we can taylor expand the other group elements in the defining representation around
1 for infinitesimal parameters o, and obtain

gla) =1+ia,Q"* + O(a?), (A.13)
where the quantities
_199(a)
Qa - ; 80/1 (A14)

are called the generators of the group. The factor i is introduced as a convention and makes
the generators of unitary representations of ¢ hermitian. In a further step one can use the
analytical structure for infinitesimal a and 3. A taylor expansion in both parameters
gives the commutation relation

Q% Qb] = ifachc, where a,b,c € {1,...,dimG}, (A.15)

where the fo¢ are the structure constants of the group. A Lie group is, in addition to this
commutation relation, characterized by the Jacobi identity

[Q°,Q", Q7+ 110", Q. Q" + [[Q°,Q",Q") = 0

abe pcde ace e ade pbce (A16)
& fabepede g pace pdve | pade ghee _

If feb¢ = 0 is valid for all a, b and ¢ the group is called abelian. After these definitions we can fi-
nally introduce finite transformations in an exponential representation. Using g(a) = 14+ia®Q,
with infinitesimal a® we get a finite transformation by composition of n infinitesimal transfor-
mations. Thus we get a new parameter 8¢ = n a® which describes the finite transformations.
Therefore we get

g(f) = lim (1 +Z'(1Qa> — £0Qa (A.17)

n—oo

as an exponential representation of our transformation. To get a certain representation of the
group D(Q,) = T, has to be used in all equations above, where the T% are N x N matrices
describing the transformations of tensors in an N dimensional vector space.

The algebra of the symmetry group SU(N) has a representation by N x N matrices which
is called the fundamental representation of the SU(N). In this work we need two examples
which we will introduce in the following.

The Pauli matrices are the generators of the fundamental representation of the SU(2). Thus
we have N2 — 1 = 3 two dimensional matrices. They read

01 0 —2 1 0
o1 = <1 0) g9 = <Z 0 > 03 — (0 _1) (A18)
All three matrices are constructed such that their traces vanish:
Tr(og) =0 (A.19)

As commutators and anticommutators we find

[0a,0p] - = 2i€ape0c (a,b,c=1,2,3) (A.20)
[aa,ab]+ :25ab'1 (a,b: 1,2,3) (A.Ql)
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The Gell-Mann matrices are the generators of the fundamental representation of the SU(3).
For N = 3 we obtain N? — 1 = 8 of them. Thus we get the 8 matrices

010 0 — 0 1 0 O
)\1 - 1 0 0 )\2 == 7 0 0 )\3 == 0 -1 0
000 0 0 O 0 0 O
0 01 0 0 —2 000
M=10 0 0 =100 0 =10 0 1 (A.22)
100 t 0 0 010
00 O 1 10 O
Ar=10 0 —g d=—7=101 0
0 ¢« O V3 0 0 -2

of dimension 3. Like the Pauli matrices the Gell-Mann matrices are traceless, while the trace
of two matrices is nonzero only for two equal matrices:

Tr(A) =0  (a=1,...,8) (A.23)
Tr(ade) = 26 (a,b=1,....8). (A.24)

Like for the Pauli matrices we find nontrivial commutation relations which take the form
P\aa)\b]— = Qifabc )\C (a,b,c = 1,... ,8) (A.25)
4
[)\a, >\b]+ = géabl + 2 dgpee (a, b,e=1,... ,8) . (A.26)

Furthermore, we find the completeness relation
a a 2
Aij Akl = —§5z‘j5m + 20410k - (A.27)

Table presents the nonvanishing coefficients of fup. and dgpe.

abc  fape abc  dgpe  abc dybe
123 1 118 1/v/3 355 1/2
147 1/2 146 1/2 366 -1/2
156 -1/2 157 1/2 377 -1/2

246 1/2 228 1/V/3 448 —1/(2V3)
257 1/2 247 -1/2 558 —1/(2V/3)
345 1/2 256  1/2 668 —1/(2V3)
367 -1/2 338 1/v/3 778 —1/(2V/3)
458 /3/2 334 1/2 888 —1//3
678 /3/2

Table A.1.: Nonvanishing f,». and dgp. coefficients
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B. Basics of relativistic quantum field theory

B.1. Free quantized fields

The quantum mechanical state of a free massive particle shall be given by |m, p, j, j3), where
m denotes the particles mass, p the momentum (which is connected to the energy E, of the
particle by ) and j the spin with the third component j3. The normalization of these
states is then given by

<m7p7j7j3|map/7j/7jé> = 2Ep(27r)36(p - p/)éjgjé . (B]')

These free one particle one particle states are connected to the vacuum |0) (the relativistically
invariant ground state which is normalized to (0|0) = 1) by creation operators a}g (p) and
annihilation operators aj,(p). Acting on the vacuum these operators yield

aj,0) =0 and  al,|0) =|m,p,j.js) (B.2)
While the annihilation operator acting on |m, p, j, j3) gives

Multi-particle states can be created by repeated application of a;r-3 on the vacuum. Those
multi-particle states are symmetric under the exchange of identical bosons, while they are
antisymmetric under the exchange of identical fermions. This results in the commutation
relations

[al, (p), al, (#)] = [as(p), aj (p)] = 0 (B.4)
[ajs (p), aly ()] = 2E,(2m)°5(p — P')jq (B.5)

for the annihilation and creation operators for the bosons and the anticommutation relations

{a}, (), al, (1)} = {az; (p), azy (p)} = 0 (B.6)
{ajs(p), aly (1)} = 2B,(2m)°5(p — p)8,4 (B.7)

for the fermions respectively. The annihilation and creation operators of antiparticles shall be
denoted by b;s (p) and bj,(p) in the following. The propagation of free particles in space time
is described by the Klein-Gordon equation for scalar and vector fields and the Dirac equation
for spinor fields acting on free quantized fields.

Spin 0
Scalar fields can be described by the Klein-Gordon equation

(070, + m*)(x) =0 (B.8)
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B. Basics of relativistic quantum field theory

The fields fulfilling this equation read

Z / 27) 2, E ax(p) e +al (p) e”p'x] : (B.9)

and obey, according to (B.4)) and (B.5]), the commutation relations

(@), ()] = [p(2)!, ()] =0 (B.10)
(@), ¥ (a")] = iA(x —a',m), (B.11)
where A(z,m) is the Pauli-Jordan-Schwinger function
ia.m) = [ D 507 — m?) sn(e?) v (B.12)
(2m)?
with
sgn(po) = {i igi ig z 8 (B.13)
Spin 1
For the case of neutral free vector fields the Klein-Gordon Equation is changed to
(O guv + 0u0y) Ay(x) + m*Ap(z) = 0 (B.14)

with the free field connected to the annihilation and creation operators by the Fourier trans-
formation

Z / 27T 3 2E (p) Eu(pa )\) e~ + aT)\(p) 6;(}?, )\) €+ip'$] ) (B.15)

We note that this description contains the annihilation operator for particles and the creation
operator for antiparticles. In this way antiparticles are described by exchanging 1 (z) and the
conjugate field ¢(x)t. The polarization vectors €.(p, A) describe the polarization of the bosonic
field. These vectors obey the relations

e(p, ) - € (p, N) = =0\ (B.16)
. k,k,
S e Vel A) = - <g,w - ;;12) , (B.17)
A
where A, \' = 1,2,3. The commutator between two fields is therefore
00y
[Au(z), Ap(0)]- = — ( g + 2 Az, m). (B.18)

For charged vector fields one has to replace (B.15)) by
Z/ 273 2E ax(p) €u(p, A) €77+ B\ (p) € (p, N) 7P| (B.19)

where the operators ay(p) and by(p) separately treat the particles and antiparticles. These
operators separately fulfill the commutation relations (B.4iB.5)). Additionally they commute:

[ax(p), bA(P)] = [ax(p), b} (p)] = [a} (p), bA(P)] = [a} (), b} (p)] = 0. (B.20)
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Spin 1/2
For spinor fields we have to consider the Dirac equation
4
> (19 50 — mbag)ios(x) = 0 (B.21)
B=1

including the Dirac matrices 7, which fulfill the anticommutation relation

{’YM?’YV} = 2g/uw (B22)

Again we have used ay(p) and by(p) to describe charged particles. In this case the field can be
expressed by

3 . .
0ole) = s 2 S 5o )5, D) W ] (B

where the uq(p,j3) and vy (p, j3) are the four component Dirac spinors. These spinors are
normalized by

ot

Zﬁa(p7jé)va(p7j3) = _2m6]3,]§ (B25)

(67

for massive particles. For massless particles one usually replaces the mass m by the energy E
of the particle. Furthermore, they obey

> Ba(p, j5)ua(p,js) = 0=t (p, j5)va(p, js) - (B.26)
(0% «
Their polarization sums are given by
> ualp, 33)ts(p, js) = (P + m)agp (B.27)
J3
Z Uoz(pyjii)'l_)ﬁ(pa Jj3) = (? - m)aﬁ (B'28)
J3
As a short-hand notation for products of four vectors with Dirac matrices we define the Feynman
dagger f = k,~v”. Thus we obtain the anticommutation relations

{%(fb‘), 77Z10/} = {&a(fp)aia/} =0 (B.QQ)
{Va(@), Yo} = (iVh 0y + Mbae )il (z — 2/, m), (B.30)

which involve the conjugate Dirac field 1), = wgfygﬁ.

B.2. Gauge symmetry and interaction terms

The theories which we will describe in the next sections are invariant under local phase trans-
formations. Let us consider a system of fermion fields ¢ which shall be the solution of the Dirac
equation of a massless particle i@ = 0. A phase transformation is now given by

d(x) — e Dy(a) (B.31)
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where a(x) is a space time dependent phase. Such local mappings are called gauge transfor-
mations. Let us now consider the transformation of the Lagrange density for the fermions

P
W ()P (x) — ip(2)P(x) + ip(2)y"P(x) - ua(w). (B.32)

The Lagrange density is therefore not invariant under local gauge transformations, since the
term J,a(x) does not necessarily vanish. In order to define a gauge invariant Lagrangian we
have to introduce the gauge covariant derivative D,, which transforms as

Dy(z) — e @D (B.33)

under the local phase transformations. In the following lines we will show, how to set up these
local phase transformations by using the formalism described in the last chapter. Therefore
we take a (in general non-abelian) group G of dimension n with the group parameters a®
(a =1,...,n). In an r dimensional representation the generators are given by r x r matrices
T% (a =1,...,n). These generators have to obey the Lie algebra . Using the structure
for finite transformations, the gauge transformation can be written as

P =U(a)y with Ula) = e t@al®, (B.34)
A covariant derivative can now be constructed in terms of gauge fields Bf} (a = 1,...,n) as
Dy = (O + igTuB)1. (B.35)

Recalling the transformation behavior

(D) = U(a)(Dyt)), (B.36)

from (B.31) we find that the invariance of (D) demands the transformation behavior
B, = U(a)B,U (o) + éauU(a) U Ya) (B.37)

for the gauge fields. Therefore the gauge field itself must have a kinetic contribution to the
Lagrangian. This is written in terms of a field strength tensor Fj,, which is defined as the
commutator

[D,uaDu]w = igF;w% (B38)

of the covariant derivatives. This can be rewritten in terms of the gauge fields to
Fu = 0,B, — 0,B,, +ig[By, B,]. (B.39)
The equations and provide the transformation property
Fl, =U(a)Fu,U(a)™ (B.40)

of the field strength. Therefore the field strength tensor is in general not gauge invariant (one
exception is the abelian case).
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B.3. Lagrange densities

Relativistic equations of motion for the fields can be obtained from an invariant Lagrange
density £(1),0,1)) which is sometimes called Lagrangian. Using Hamilton’s principle

5/ d'z L(1,0,¢) =0 (B.41)

we obtain the Fuler-Lagrange equations of motion

o _, oL
oy O(0u)

Combining these definitions with the results from the last section we finally find a generic gauge
invariant Lagrangian:

= 0. (B.42)

L= _%MFWFW) + (Dyuo)* DFe + ip B, (B.43)

where ¢ and ¢ are distinct multiplets of scalar and spin 1/2 fields. Note that this generic
Lagrangian contains only the gauge fields. This means non-gauge interactions as well as mass
terms have not been implemented. The trace in acts in the space of the groups rep-
resentation (not in the space of the Dirac matrices). For the specific calculations in our case
it is convenient to rewrite to a notation with individual fields rather than the matrix
notation given above. Therefore we start observing the trace

1
Te(T°T?) = 55‘”’ with a,b=1,...,n. (B.44)

Rather than describing the transformation properties of the matrix Fj,,, we will describe the
transformation properties of the components Fy, (a=1,... k). At this point we should remind
that we talked about the transformation of tensors of n' rank in the last section. While the
¢ and 1 fields transform as scalars and vectors, the field strength tensor F),, transforms as a
tensor of second rank. This means the scalar quantities transform in the trivial representation
of the group G, while the vector and tensor quantities transform in the fundamental and adjoint
representation respectively. Thus in common we have k # n. Multiplying equation with
T° from the right side we get

FS, = 0,By — 0,B% — g¢™B4BY with a,b,e=1,...,k, (B.45)

where we have used the Lie algebra (A.15]) to eliminate the commutator. The Lagrangian can
then be rewritten to

1 —
E = _5 #”Fﬁy + (D#m¢m)T(Du)ln¢n + Zwlmljwj . (B46)

In later notations we will often suppress the indices a,l, m,n,7 and j to get a more streamlined
notation. Of course one still has to sum over these indices then.
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C. General matrix elements in terms of basic

parameters

In the following we will present a list of the general matrix elements which we have calculated
up to dimension 7 in section We will present these matrix elements in terms of the
dimensionless parameters [i1, fi2, p1, p2 and §1, ..., 89 which will improve the readability of the
formulae in contrast to the dimensionful parameters which we have used in section The

dimensionless parameters are defined as i, = g/ mg, Pz = P/ mg and §, = s5/ mg.

C.1. Dimension 3

mp

1 (1 + fi2) + O(1/mp)

_ _ 1
(Blbyby| B) :imB('Y v +1)+

C.2. Dimension 4

_ _ mpm N N
(Blbw(iD,)bs| B) =257 (v (=57 - v = 3) + 29°) (ja + fi2)
mpm ~ A
+ g (07 = 40Py 0) (P + f2) + O(L/m)

C.3. Dimension 5

As a short hand notation we shall introduce
S = 894 83 — 84 + 255 + 56 — 253 + Sg
for this mass dimension.

mp mg

<B’Bv(iDp)(iDa)bv|B> = 48

[(v"v" —PY7) (S + 2 (a2 + p1 + p2)) — 29”7 (S — 4fi1)

(C.1)

(C.2)
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+ (7= )07 = (7P = 1)) (S + iz + 251 + )
+ 8070 (S — fin) = 20797 + 0777 (S = 281 + 87) — 2(p1 + o))
+ 2gP7 (2(§1 — 8y — g+ &) — S+ 4ﬂ1>
— 4vPe? <6§1 8y — 8+ 637 — 35+ 2 (f1 + p1 + /32))
+ 24y PV (§2 + 86+ 2 (f12 + p1 + p2) )}
(C.4)



C.4. Dimension 6

C.4. Dimension 6

(B

bu(iD,)(iDs)(iDx)bu| B)

3
mpm
N 540 b [10 (‘if’pa“A - if’”?f") (—81+ 82— 84+ 85 + 86 — 87 — 285 + S9)

+10 (—iaﬂﬁzﬂ + ia)‘ﬁv”) Vg 07 (681 — 285 + 83 + 84 — 285 + 637 + 285 — 89 + 2p2)
+ 10 (—iapﬁvg g% — iapﬁv/g g)“7> (=81 + 82 — 83 — S5 + 8¢ — §7)

+ 200”7 (8, + S7 4+ p2) — 20 i’ya’y5vgea)‘pv(§1 + §7 4 p2)

+ 10 i’ya’y5 (v)‘eapaﬂ — vpea/\aﬂ> vg <§1 — S9 4 84 — 85 — 56 + §7 + 253 — §9)
+ iy P NIV (—2085 + 2085 — 2089) + 400 MPv7 (83 4 85 — p1)

+ 8U)\UPUU¢(—6§1 + 89 + 683 + 84 + 655 + S — 657 + S5 — 5ﬁ1)

+ (Y0707 4+ A7) (2681 — 635 — 635 + 484 — 635 — 635 + 2637 + 4s)
+dy7 (g’\p - UW) (81 — 82 — 83+ 484 — 85 — 8¢ + 57 + 455)

+ 40 g™ (=51 + Bo + 83 — 484 + 85 + 86 — 57 — 48z + 10p1)

+ 0P$hg 7 (651 — 659 — 2683 + 454 — 2655 — 636 + 637 + 453)

— 2007g”7 (33 + 85) — 200° g™ (83 + 85 — 2p1)

+ 719”7 (=651 + 652 + 633 — 434 + 635 + 655 — 637 — 43g)

+ v g7 (65 — 2683 4 454 — 2685 — 63 + 637 + 433)

+4PgN (=651 + 632 + 633 — 454 + 635 + 685 — 637 — 483)

(C.5)
C.5. Dimension 7
(Blby(iD,)(iDy) (D)) (iDs)by| B) (C.6)
4
1
= m2B4gnb %ﬁ ( — 16'061))‘1)'01)0 (6§1 — 89 — 83 — §4) + 81)51)pg)‘a (4§1 — 489 + 83 + §4)
(C.7)
+8(¢°* g7 — vP17 g — 00 gP7) (81 — 5o + 453 — 8y) (C.8)
+ g% g (—48) + 489 — 83 — 54) + 8 7 g% (1481 — 439 + 33 + 34)
(C.9)
+ S(g‘sgg)‘p — g% M — v‘sv"gAp) (81 — 82 — 83 + 4§4)> (C.10)
+ 2(2@%%’ — PPN + ) + 2(—io?)g T (C.11)
+ (—io”) g™ + 7&(—2’0’)6)9)‘”) (285 — 386 + 387 + 233) (C.12)

—9 (2(—¢0P5) + (—io”)g + %(—iap‘s)) VM7 (285 — 386 + 837+ 285)  (C.13)

127



C. General matrix elements in terms of basic parameters
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4 (’y"v)‘ - »yw) PP (85 — 85 — 39) (C.14)

+ 2((2(—mpﬂ) + (—io” ) + 3&(—1‘0’”)) (vw - g‘”‘) (C.15)
+ (2(=i0™) + (—ia ) + p(—io™) ) (007 — g7) > (385 — 86 + 87 + o)

(C.16)

+ 2((2(—1050) + (=02 )p + ¢(—i050)) (V™0 — ) (C.17)

+ (2=i0™) + (—ic ) + g(—io™) ) (00 — ) (C.18)

+ 2(7%0 . ’y"va>¢g)‘p> (86 — 87 — 385 + 89) (C.19)

- 2((2(—10“) + (—ioc™)p + ¢(—7;a“)) (V0P — %) (C.20)

+2(7%0* — yAv”);ég&p) (255 — 233 + 339) (C.21)




D. Nonperturbative corrections to the
standard model and nonstandard currents

Here we will present the results from the nonperturbative corrections which have been calculated
in chapter [4 under usage of the general matrix elements shown in appendix [C] To improve the
readability of the outputs we will introduce the shortcuts p = 2 = m?2 /mg and y = 2El =
2E;/my, which are also consistent with the notation in our publication [I§]. Furthermore, we
used the dimensionless parameters fi1, fio, p1, p2 and 51, ..., 89, where fi, = uw/mg, Do = ,()gg/m‘b1
and §; = s,/ mé, like we have done in the last section. We will not present the full results of
the hadronic or leptonic energy moments introduced in section Numerical values for these
moments can be found in the tables presented in section As all currents except the left-
handed vector current are expected to be small because of the results from past experiments
we will only present the mixed terms of the newly introduced currents with this current. The
names of the subsections denote the current which is mixed with the standard model term.
“Right-handed vector current” means for example the mixed term of the right-handed and the
left-handed vector term.

D.1. The electron energy spectrum

For this section we have also introduced the shortcuts 6(z) and 6 () for the distributions,
where z = y(1 — y — p)/(1 — y) and the superscript (n) denotes again the n'® derivative of
the delta distribution. Since the full formula is much to long to be presented in one piece,
the differential rate has been split up into parts regarding the currents and order in the 1/my,
expansion. The complete electron spectrum can be obtained by

AU GhIVal?m} x~ 1 (dp)w (.1)
dy 19272 7 my \dy /., ; ’
where ¢ =1,...,4 and j = cr,cRr, 91,9R,dr,dr. This also gives the reader the opportunity to

have a separated view on the different current combinations, if only special combinations are
of interest.

D.1.1. Left-handed vector current

ary 0 0(x
(&), = 2o PR —uosn s 00) M 02
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ary 02
<dy) = <1Oy3 (4p* — 3p* — 1) + 10y° (y* — 5y + 10)
CLCL,

+4y° (p* — 3p* — 25) + 2y* (—10p” + 21p* + 25) >

3 xr
+(y2—2y—p+1)2(y+p—1)w>ﬂ1

+ <<(y+p— 1)((=5y* + 8y —3) p+5(y — 3)p> + (5y + 6)(y — 1)?)
2

+3p((y2+y—2)p+(y—3)(y—1)2+5p2)>?m>ﬂ2 (D.3)

(0.3)
(dr> :<< — 5> +y' (5 —p) = 25°(5 — 2p) + 2°(5 — 3p) —y(1 — p)(p +5)

Y/ epes
12py’é(x)
(y—1)8

+ <4y6 — 1495 + 2y*(6p + 5) + 13 (p® + 3p* — 5dp + 20) — 6(1 — p)?

+(1=p)%(p+ 1))

2/ 3 2 2 2°0(z) | ;
507 4397 — 18p +8) + 2y(1 = p)(=5p” — 20p+13) ) 31 5 | o

+ (( —y (p+ 1) +y°2p+7) =y’ (50" — p+21) + 3 (13p” + 35)

— 4 (p° + 99" + 15p 4 35) + y*(7T = 3p) (p + 1)(2p + 3)

436
—y(1 = p)(=p* + 220" + 24p +7) + (1 — p)*(11p° + 6p + 1)> (yy_ (SZ

+ <4y7 —30y° + 8y°(p + 27) — y*(—5p® + 5p° + 18p + 230)

+ 6y3(=5p3 + 5p2 + 4p + 50) — y2(—T5p% + T5p? + dp + 234)

2120

+4y(=21p° + 23p% — 3p + 25) — 6(1 — p)(9p* + 2p + 3)> S(Z_(f))ﬁ
+ <y7 — 57— p)+ T3 - p) — yt(p® — 20p + 35)

+4%(3p = 30p+35) —y*(1 - p)(3 = p)(p+7)

2026 () \ .
+y(1=p)*Bp+7) = (1—p)*(p+ 1)>3(y_§)g p1 (D.4)

oy = < <(2 —p)y° — (10 = 3p)(1 — p)y* + 2 (2p* — 25p + 10) y* — 2 (3p® — 41p + 10) 3/*
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2935 ()
(y—1)°
+ ( — 2y +2(12p + T)y* — 3 (=3p® — p? + 38p + 12) y* + (—45p° — 15p% + 210p + 44) *

y*0(x)
3(y —1)°
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'(z)
201 —p)2 (57p% +36p+ 17) y* | ————
+2(1—p)* (57p° +36p +17) y >15(y_1)8
+ <6y14 —6(9— p)y™® +4(54 — 13p)y"* — 4 (p* — 49p + 126) y'!

+4 (5p* — 105p + 189) y' — 4 (p* + 10p* — 140p + 189) ¢/°
+4(3p% +10p” — 119p + 126) y® — 4(1 — p) (—p”* —4p® —9p + 54) y/*

6”
+2(1 = p)? (7p* + 16p +27) y® — 2(1 — p)* (3p® + 4p + 3) y5> 15(y(iv)1)9> NGE
(D.9)
D.1.3. Left-handed scalar current
dF) 0.0 ,12920(x)
— =—(Y+p—1)"———Vpmy (D.10)
<dy cLgrL y—1
ary 02 240
(> =(3y3(1 —2p) —y* (49> = 18p+9) + 9y(1 — p)* — 3(1 — p)2> z (wg,\/ﬁmb fin
W) a (y—1)
1020 .
# (7620 - 200G 913002 ) P a0

ary ¥ 6 5, .4 3 2 2
(dy> = (y —6y° +y (15 —p) —4y°(5—p) +y (—p —6p+15)
CLgr

3 X
2= A3+ (1= P+ 1)) T
+ <12y4(2 —p) —y* (15p° — 86p + 96) + 2y° (27p* — 95p + 72)

2 X
— 2y (33p> — 85p +48) + 6(4 — 5p)(1 — p)) ?w> Py p1

4y°0(x)
(y—1)3

#2200 (P st +20- - 0)) S g (D12

dr 4
(dy> = < — 48y +192¢® — 48(5 — p)y" +48(1 — p)(5 — p)y°
crLgr
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D. Nonperturbative corrections to the standard model and nonstandard currents

—192(1 — p)*y* +48(1 — p)3y3> 5(5(_36)1)5

+ <8(10 —9p)y°® — 12 (7p* — 36p + 30) y° + 20 (15p> — 46p + 30) y*
0(x) .
—40(11 = 9p)(1 — p)y® + 120(1 — p)%y? | —~2—
0(11 = 9p)(1 = p)y” +120(1 — p)°y >5(y_ 1)4) 35
6(x)
(y — 1)
+ (4(10 —9p)y® — 2 (27p* — 102p + 70) y* + 8 (18p* — 43p + 20) y°

—12(5=9p)(1 — p)y2> M) /Py 89

+ << —8y" +32y° — 16(3 — p)y” + 32(1 — p)y* — 8(1 — p)2y3)

+ <<48y9 —1129% + 112py" + 115(1 — p)y® — 16(1 — p)(7p + 5)y® — 48(1 — p)y*

+16(1—p)*(3p+ 2)y3> 5(5(_””)1)5

+ < — 8(20 — 27p)y" + 4 (63p — 304p + 170) y° — 20 (45p* — 122p + 50) y*

+120 (9p* — 16p +5) y* — 120(1 — 3p)(1 — p)y2> %) Vpmy &7

+ << —8y” +32y° = 8(5— p)y" +8(1 = p)(5— p)y” — 32(1 — p)*y*
4(x)
](1 — 3,3\ Y\~
+8(1—p)%y )5(;,-1)5
+ <8(40 —27p)y® — 4 (78p* — 379p + 345) y° + 60 (19p° — 57p + 37) y/*
2 3 2 0(z) A

+ (( = 8y” +32° = 8(5 — p)y” +8(1 = p)(5— p)y’ — 32(1 - p)*y"

oS- )

+ ( —16(25 — 24p)y° + 4 (147p® — 656p + 510) y° — 120 (18p* — 51p + 31) y/*

0(x)
4 214 312007 -1 1—p)? | ——— 5
+ 40 (69p 8p+T73)y 0(7—10p)(1 — p)y ) 150y — 1)4>mb Sg

+ << — 32" + 176y° — 32(12 — p)y® +80(5 — p)y” — 32 (5 — p?) ¢°
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D.1. The electron energy spectrum

—16(3 = 7p)(1 = p)y° +32(1 — p)*(2 = p)y" — 16(1 — p)3y3> 5(;(_9”)1)6

+ (20(2 —3p)y” — 2 (21p* — 150p + 80) y° + 20 (9% — 29p + 12) y°

b(x)
—10(27p% = 50p + 16) y* +40(1 — 3p)(1 — p)y® | ————
(27p p+16) y* +40(1 — 3p)( p)y>15(y_1)5
+(—y12+8y”—4(7—p)y10+8(7—3p)y9

—2(3p” —30p+35)y° +8(7—3p)(1 — p)y” — 4(1 — p)*(T— p)y°

+8(1—p)y® — (1 - p)4y4> %) VP &3

+ <<8y10 — 64y” +8(27 — p)y® — 40(10 — p)y” + 8 (—p* — 10p + 55) y/°
— 16 (—3p* —5p+18) y° +8(1 — p) (—p* + 8p + 13) y/*

-8 20+ 20 ) 5

+ <80(4 —3p)y" — 4 (93p* — 475p + 410) ¢°

+ 60 (29p° — 90p + 56) y° — 80 (39p” — 90p + 43) y*
0(z)
40 (63p% — 115p + 44) y> — 60(6 — 13p)(1 — p)y? | ———~2—
+40 (63p p+44)y ( P)( p)y>15(y_1)5
+ < —y? 8y —4(T— p)y'® +8(7 - 3p)y’
—2(3p% — 30p+35) y® + 8(7 — 3p) (L — p)y”

—4(1 = )2 (7= p)y® +8(1 — p)?y® — (1 — p)4y4> %) Vpmp 82

+ <<8y10 — 24y —8(p + 3)y® +40(5 — p)y" — 8 (p* — 30p + 45) °

+8(39 — 11p)(1 — p)y® — 8(1 — p)*(17 — p)y* + 24(1 — p)3y3>

+ < —60(2 — 3p)y" +2 (1290 — 610p + 300) 3°

— 20 (60p* — 161p + 60) y° + 10 (213p* — 410p + 120) y*
46
—120 (14p> — 21p +5) v + 120(1 — 4p)(1 — p)y? | ————
(14p p+5)y° +120(1 — 4p)( p)y)15(y_1)5
+ (—y12+8y” — 47— p)y'® +8(7 - 3p)y°
—2(3p% — 30p +35) y® + 8(7 — 3p) (L — p)y”

—4(1=p)* (7= p)y° +8(1—p)*y° — (1 — p)4y4> 155}%) VP 84
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D. Nonperturbative corrections to the standard model and nonstandard currents

+ << — 48y + 304y° — 48(17 — p)y® + 240(5 — p)y” — 16 (=3p* — 30p + 65) ¢/°
+16 (—13p% — 30p + 33) y® — 16 (3p® — 17p* — 15p + 9) y*

+16(1 — p) (~9p* — 2p + 1) y3> 5(;(@1)6

+ ( —40(8 — 9p)y" + 4 (153p* — 700p + 440) ¢/°
— 40 (72p* — 203p + 96) y° + 20 (261p* — 560p + 208) y*

= 80(T = 189)(4 = 39)y° + 48001~ 3p)(1 = ) ) 15

+ <6y12 — A8y™M + 4(42 — p)y'® — 24(14 — p)y? + 4 (—p? — 15p + 105) ¢®

— 16 (—p* = 5p+21) y" + 4 (—p® — 6p? — 15p + 42) ¢/°

6/
—8(1—p) (0 +3p+6) y° +2(1 — p)2 (30° + 4p + 3) y4> 15(31(13)1)7) N
(D.13)
D.1.4. Right-handed scalar current
ar (0 ,12420(x)
il = (y+p—1) 2L D.14
(5), =-weo-1p2n, D.14)
ar 2 29%0(x)
— =321 —2p) —9* (4p*> — 18p+9) +9y(p —1)* -3 —12> 1
(), =020 =57 (467 ~150+9) 0wl 17 80~ ) D2 g m
2y%0
— <y2(2p —-3)+2y (P2 —4p + 3) —3(p— 1)2> (yy_ gl)‘g) my 1o (D.15)

dry ¥ 6 5, .4 3 2 2
— =\ ¥° = 6y° +y* (15— p) —4y*(5 — p) + y° (—p° — 6p + 15)

CLYR
8y35(w)
(y—1)°
+ ( — 12y*(1 = p) +y* (9p” — 58p + 48) — 2y* (15p* — 49p + 36)

“ (1= )43+ (- P+ )

+ 2y (15p% — 35p +24) — 6(1 — p)(2 — p)) 43429(@) p1

3y—1)*
dpy*0(z)

Tyo1p P (D-16)

+ <2y2 —y(d—p)+2(1- p))

dr (0,4) 4 2
<d> - ( —8y" +32y° —16(3 — p)y” +32(1 — p)y* —8(1 — p) y3> Y
Y/ cLgr (
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D.1. The electron energy spectrum

+(—4(2—9p)y5+2(15p2—54p+14)y4—8(9p2—14p+4)y3
0(x)
12(1 — 3p)(1 — p)y? 5
+12(1 = 3p)( p)y>3(y_1)3>mb89

+ << —32¢% +128¢% — 32(5 — p)y” +32(1 — p)(5 — p)y® — 128(1 — p)*y*

+32(1 — p)3y3> 5(586)1)5

- ( — 8(20 — 27p)y° + 4 (33p* — 224p + 150) y° — 60 (7p* — 22p + 14) y/*

+40(13 — 9p)(1 — p)y® — 120(1 — p)2y2> 15(2(“%)1)4> my 85

+ << — 48y” + 272y® — 16(40 — 3p)y” + 160(5 — p)y® — 16 (=3p* — 12p +35) ¢°

o()

+4a1—mwp+wm*—wu—wV@ﬂ+”f)ay—n5

+ (8(10 —27p)y" — 12 (21p? — 88p + 30) y° + 20 (45p* — 98p + 30) y*

0 R
—40 (27p? — 40p + 11) y* +120(1 — 3p)(1 — p)y2> 15@@1)4) my, 87

o(x
+ <<8y9 — 324" +8(5— p)y" —8(1—p)(5— p)y° +32(1 — p)*y* —8(1 — p)3y3> 5(3,(—)1)5
+ ( — 8(10 — 27p)y® + 4 (48p* — 229p + 75) y° — 60 (11p* — 25p + 7) y*

0(x)
2 2 13) y3 — 1—4p)(1—p)y? | —L— S
+ 20 (36p* — 55p + 13) y° — 60( p)(1—p)y > 150y — 1)4>mb S6

+(@f—wﬁ+&wmwﬂ@u—m®—mf+wa—m@kwu—m%ﬁaﬁﬂm

+ (32(5 —12p)y" — 4 (87p* — 416p + 150) y° + 120 (10p* — 23p + 7) y*

0(x R
— 40 (33p* — 52p + 13) y* + 120(1 — 4p)(1 — p)yz) 15@(_)1)4) my 88

+ <<8y10 — 24y —8(p + 3)y® +40(5 — p)y" — 8 (p* — 30p + 45) y°

0(x)
5(y—1)°
5

+ ( — 180py” + 2 (—81p? + 410p + 60) y® — 20 (=36 + T3p + 24) y

+8(39 — 11p)(1 — p)y® — 8(1 — p)*(17 — p)y* +24(1 — p)3y3>
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D. Nonperturbative corrections to the standard model and nonstandard currents

+10 (—117p* +130p + 72) y* — 120 (—=7p* +5p + 4) °

+120(1 — p)(2p + 1)y2> 15(2(3_7)1)5

+ < —y 4+ 8yt —4(7 - p)y' +8(7 — 3p)y” — 2 (3p* — 30p + 35) y®
+8(7=3p)(1 = p)y" —4(1 = p)*(T = p)y° +8(1 = p)*y’

-(1- p)4y4> %) my §4

+ << — 32y"% + 176y° — 32(12 — p)y® + 80(5 — p)y” — 32 (5 — p*) ¢°

—16(3 — 7p)(1 — p)y® +32(1 — p)*(2 — p)y* — 16(1 — P)393> 5(y —1)6

+ < —20(4 — 3p)y" +2 (9% — 150p + 160) y° — 20 (3p* — 25p + 24) y°

0()

10 (3p% — 34p + 32) y* — 80(1 — p)y° | ———~L—

+10 (3p” — 34p +32) y* — 80( p)y>15(y1)5

+ ( —y2 4+ 8yt — 47— p)y'® +8(7 - 3p)y® — 2 (3p* — 30p + 35) ¢
+8(7=3p) (1 — p)y" —4(1 — p)*(7— p)y® +8(1 — p)*y°

-(1- P)43/4) %) mp 83

+ ((Sylo — 649" +8(27 — p)y® — 40(10 — p)y” + 8 (—p* — 10p + 55) y°
—16 (—3p* —5p+18) y° +8(1L — p) (—p* + 8p + 13) ¢/*
4(x)
—8(1—p)2Bp+2)y° | —2—
(1=p)"Bp+2)y )5(y_1)6

+ < —40(1 — 6p)y” + 4 (57p* — 305p + 40) y°© — 60 (17p* — 42p + 4) y°

0(x)

+80 (219" = 33p +2) y' — 40 (30p* — 35p + 1) y* — 300(1 — p)py2> 15(y — 1)

+ < —y2 4+ 8yt — 4(7 — p)y'® +8(7 - 3p)y® — 2 (3p* — 30p + 35) ¢
+8(7=3p)(1 = p)y" —4(1 = p)*(7 = p)y° +8(1 — p)°¢”
d'(x)
— (1= 4 4 ~
(1=p)"y >15(y_ 1)7>mb32
+ << — 48y + 304y” — 48(17 — p)y® + 240(5 — p)y” — 16 (=3p* — 30p + 65) ¢/°

+16 (—13p% — 30p + 33) y° — 16 (3p° — 17p* — 15p + 9) y*
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D.1. The electron energy spectrum

+16(1 - p) (—9p° —2p + 1) @/3> 5@5(_90)1)6

+ (40(4 —9p)y” — 4 (117p* — 560p + 220) y° + 40 (54p* — 139p + 48) ¢/°
— 20 (189 — 340p + 104) y* + 80 (36p> — 51p + 14) y*

00390 ) 2

+ <6y12 — 48y™M + 4(42 — p)y'® — 24(14 — p)y” + 4 (—p? — 15p +105) ¢®

—16 (—p* —B5p+21) y" +4(—p® —6p° — 15p + 42) ¢°

—8(1—p) (p* +3p+6) y° +2(1 - p)* (30 +4p + 3) y4> (Sl(x))7>mb§1

15(y — 1
(D.17)
D.1.5. Left-handed tensor current
ar\ (0 46(x)
— =—(y-3) (y+p—1)7° D.18
(dy)chL (y=3)y (y+pr-1) (y_l)gﬁmb (D.18)
dar (0,2) 2120
<> =(y+p—1)" (59° — 10y°(p + 1) + y(40p + 17) — 12(5p + 1)) yi(wl\/ﬁmb fi2
dy crdy, 3(y _'1)
+ <<(y +p—1) (y (20p* — 63p — 20) — 40p® + 35p + 5)
2130
+y2(y+p—1) (5y° — 5y(p+4) —4p2+33p+30)>3(z_(f))5
24436
— (0 =3y +2) p+ (y—1* = )" 4(yy_ 1()?> VoM fin (D-19)

ar % 6 5 2 4 2 3
o = (¥ =260y’ + (p* =100+ 15) y* =4 (p* = 5p+5) y
crdy,

24935(x)
(y —1)°

+ <2y6 — 16y° + (=3p* — 6p +50) y* — (p* — 12p* — 30p + 80) v + 6(1 — p)?

+5(1=p)B=p)y* —2(1—=p)*(p+3)y+ (1 —p)*(p+ 1))

2 X
+5(1—p) (=p*+2p+14) y® — 2(1 — p)%(5p + 16)) ?w,> VP my 2

+ <<y8 —8(6 — p)y” +20y° — (=5p* + 3p +50) y° + 6 (—2p* — 2p + 15) y*

— (=p® — 18p* — 43p +106) y* + 2(1 — p) (—5p* + 14p + 38) *
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D. Nonperturbative corrections to the standard model and nonstandard currents

8y°0(x)
(y—1)7
+ <2y7 — 1245 + 2 (=3p* + 5p+21) y° — (5p° — 47p” + 48p + 94) ¢/*

—(1=p)* (=P +37p+30)y+ (1 —p)*(11p+ 5))

+6 (5p° — 26p? + 20p + 21) y* — (75p® — 273p> + 178p + 96) y*

4420
+2(1 — p) (—42p° +88p+19) y — 6(1 — p)*(9p + 1)) M
+ (—y8+8(4—p)y7— (p* —15p+28) y® + 8 (p* — 6p+7) y°

— (=p*+24p* = 85p + T0) y* +2(1 — p) (p* — 17p+28) ¢/*
—(1=p)? (=p*—p+28)y> +4(1 - p)(p+2)y

4o () .
fe— p— 4 —
=9+ 1) 325 ) Vo (D.20)
dr @
(dy> - <4y9 —16(4— p)y® +4(3p° —22p+67) y" — 8 (—p® — 29p + 64) ¢/°
chL

+4(6p° — 19p* — 90p + 127) y° — 8(1 — p) (—3p* — 5p + 32) y*

+4(1 = p)? (9% + 2p + 13) y3> (yéixiw

+ ( —52y" +2(=9p% — 10p + 44) y® — 2 (9p® — 48p* — 142p + 274) o°

+2 (450 — 105p% — 260p + 286) y* — 4 (45p — 60p* — 95p + 74) *

+12(1 = p) (-15p" = 2p +5) y2> 3(5(_96)1)5

+ ( — 4y +8(3 — p)y? —4(p* —12p+15) y® +16(5 — 2p)(1 — p)y”

—4(15 = 2p)(1 — p)*y® + 24(1 — p)°y” — 4(1 — p)4y4> 3(2/(_@1)7> Vo 8y

+ (( — 8y +8(22 — p)y'? — 16(62 — 19p)y” + 8 (17p* — 201p + 319) y®

— 24 (26p* — 130p + 145) y" + 8 (3p* + 72p* — 267p + 316) y°
— 16 (—4p® — 56p* + 39p + 51) y® — 8(1 — p) (26p” + 33p* — 180p + 1) y*

+16(1 — p)? (—8p* — 25p + 3) y3>
+ ( — 84y® + 4 (—27p* — 15p + 133) y" — 8 (13p" — 96p* — 35p + 204) y°
+12 (52p* — 195p% — T0p + 242) y° — 20 (78p" — 192p* — 78p + 149) y*

+20 (104p® — 150p* — T1p + 81) y* — 8(1 — p) (—120p° — p + 3) y2>
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D.1. The electron energy spectrum

+ < — 4y +8(5—pytt —4 (p2 —21p +42) yt0+8 (7p2 — 44p + 49) y°

—4(=3p" 4 66p* — 195p + 140) y® + 8(1 — p) (11p* — 62p + 63) y”
—4(5=3p)(1 — p)*(14 — p)y® + 8(11 — 5p) (1 — p)*y°
41— )3 p)y4> M) /Py 8

+ << — 8y™ —8(p+ 8)y™* +16(58 — 11p)y” — 8 (13p? — 189p + 446) y*

+ 48 (7p* — 85p + 140) y" — 8 (27p” + 18p* — 633p + 884) y°
+16 (4p® — 19p% — 189p + 264) y° — 8(1 — p) (—49p> + 48p* + T5p + 166) y*

d(x)

1—p)? 244 21) 3 | ——2
+8(1 — p)* (59p* + 40p + )y>5(y_1)7

+ <336y8 — 8 (—24p* — 45p + 241) y" + 12 (49p® — 333p® — 440p + 1242) °

— 8 (49p® — 165p% — 160p + 304) y° + 20 (147p — 327p* — 222p + 316) y*

0(x)
— 40 (98p% — 144p% — 65p + 75) y> + 120(1 — p) (5 — 17p%) y? | —————
( p p P+ )y+ ( P)( p)y 15(y — 1)6
+ < — 4y 4 8(5— p)ytt —4 (p2 —21p +42) yl0 4+ 8 (7/)2 — 44p + 49) y°

— 4 (=3p* 4+ 66p” — 195p + 140) y® + 8(1 — p) (11p* — 62p + 63) y*

—4(5=3p)(1 = p)?(14 — p)y° + 8(11 = 5p)(1 — )%y’

d'(x)
A1 = )3 — )t ) 2 2
(103 p)y)15(y_1)8>¢ﬁmb58

+ << — 48y™ + 24(19 — 2p)y'® — 16(132 — 29p)y° + 8 (7p* — 226p + 729) 3/°
—8(—22p* —535p + 1260) y" + 8 (28p” — 123p® — 862p + 1371) °
—8(1— p) (—=87p* +20p + 912) y° + 8(1 — p)* (21p* + 164p + 339) y*

—24(1 - p)3(13p + 18)y3> 5(;(?1)7

+ ( — 244y® + 4 (—27p* — 50p + 338) y" — 4 (21p® — 182p* — 240p + 758) ¢/°

+4 (126p — 525p — 390p + 856) y° — 20 (63p° — 168p” — 34p + 97) y/*
0(x)

40(1 — p) (—42p% +23p + 11) v® — 360(1 — p)%py? | ——2—
+40(1 — p) (—42p* +23p+ 11) y (1—p)°py 50y - 1

+ <16y12 —32(5—p)y't +8(2p* — 37p + 84) y'’ — 16 (90 — 73p + 98) ¢/°

+8 (—p + 72p% — 315p + 280) y® — 32(1 — p) (p* — 37Tp +63) y"
+8(1— p)2(4 — p)(dp +35)y° — 16(1 — p)*(5p + 22)y°
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D. Nonperturbative corrections to the standard model and nonstandard currents

+24(1 - p)(p+ 2)1/4) 158}%) VP 85

+ ((483/“ — 8(47 — 6p)y'” + 384(3 — p)y” — 8 (7p* — 146p + 209) ®

+ 8 (28p — 185p + 110) y” + 8 (—8p* — 17p* + 22p + 79) ¢/°
—8(3p® +107p* — 178p + 148) y° + 8(1 — p) (21p" + 103p* — 85p + 81) y*

—8(1— p)* (39p% — 15p + 16) y3> 5(5(_”5)1)7

+ (4y8 —4(—27p* — 10p +38) y" + 4 (21p® — 172p* — 80p + 198) ¢/°

— 4 (126p® — 465p> — 270p + 436) y° + 20 (63p — 138p*> — 98p + 97) y*

0(x)

— 40 (420> — 370> — 44p +27) > +120(1 — p) (=3p°> = 3p +2) ¢y | ———2—
(4207 = 379" = 4p +27) 4> + 12001 = ) (=37" = 3p +2) " ) 15 =g

+ (24y12 —8(25 — 6p)y* + 8 (3p* —43p +91) y'* — 8 (17p* — 134p + 189) y°

+8 (0 +43p% — 235p +245) y* — 8 (4p° + 63p% — 250p + 203) 7
+8(1 = p) (p* — 56p + 105) y® — 8(1 — p)? (5p® + 4p + 31) y°

+8(1—p)? (3p2 + 3p+4) y4> %)ﬁmbg?
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D.1.6. Right-handed tensor current
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+ (spylo 85— p)py® + 16(5 — 3p)py® — 16(1 — p)(5 — )y
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0(x)

— 20 (—40p> +67p + 8) y* +40(1 — p)(13p + 1)y® | ——2—
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+2(1—p)® (30 +4p+3) y® +4 (p* — 49p + 126) y*? _pdx)
15(y — 1)10 ) 071

(D.25)

D.2. The total decay rate

Like in the last section we will split up the total rate according to the Dirac structures of the
currents and the order in the 1/m; expansion. The complete total rate can be regained by the
sum

_ GHIVa*mi
o Z CU , (D.26)
where i =1,...,4 and j = ¢, CRr, 91, 9R, AL, dR
D.2.1. Left-handed vector current
r09 = — p* 4 8p* — 1297 log(p) — 8p + 1 (D.27)
02 _ 1 2 N
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2
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©04) _8 3 2 .
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D.2.2. Right-handed vector current
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D.2.3. Left-handed scalar current
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D.2.5. Left-handed tensor current
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