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Abstract

The VUV Free Electron Laser FLASH operates in soft X-ray range and produces high-intensive pulse
trains with few tens femtoseconds duration. The transversely fully coherent beam will open new
experiments in solid state physics which can not be studied with present radiation sources.

The study of the time dependent response of the multilayer to the X-ray pulse can provide
insights into the process of interaction of highly intense FEL radiation with matter. To test the influence
of electron excitation on the optical properties of boron carbide, the refractive index of B4C was measured
near B K-edge by energy-resolved photon-in-photon-out method probing a Bragg reflection from
periodical multilayers. The measured data clearly show that the variation of the fine structure of the K-
absorption edges due to the chemical nature of the absorber element.

The knowledge obtained from experiments with continuous radiation was used to design the
respective experiments with pulse from the FEL. In my thesis, it is proposed that the geometrical setup,
where  the  incident  pulse  arrives  from the  FEL under  the  angle  close  to  the  1st  order  ML Bragg  peak,
provides the most valuable information. Preliminary simulation considering form factors of neutral and
ionized boron showed that due to ionization, pronounced changes in the reflectivity curve are expected.
The proposed scheme can be the powerful tool to study the various processes within the electronic sub-
system of the FEL pulse interaction with matter. This type of investigations gives a deep understanding of
the nature of the electronic excitation and the recombination at the femtosecond scale.

Der VUV Freie-Elektronenlaser FLASH arbeitet im weichen Rönbtgenbereich und produziert
Wellenpulse mit zum Teil weniger als 10 Femtosekunden Dauer. Der transversal vollständig kohärente
Strahl eröffnet neue Experimente in der Festkörperphysik, die mit bis dato verfügbaren Strahlungsquellen
nicht durchgeführt werden konnten.

Die Untersuchung der zeitabhängigen Antwort eines Multilayers auf einen Röntgenpuls gibt
Aufschluss über die Interaktion der sehr intensiven FEL Strahlung mit der Materie. Dazu wurde der
Brechungsindex von B4C in der Nähe der K-Absorptionskante von Bor  mit Hilfe einer
energieaufgelösten photon-in-photon-out Methode gemessen. Dabei wurde die Braggbeugung eines
periodischen Multilayers ausnutzt, um den Einfluss der Elektronenanregung auf die optischen
Eigenschaften von B4C zu untersuchen. Die gemessenen Daten zeigen eine klare Variation der
Feinstruktur der K-Absorptionskante, die die unterschiedlichen chemischen Eigenschaften des
Absorberelements Bor in verschiedenen Multlayern wiederspigelt.

 Das Wissen aus dem Experiment mit kontinuierlicher Strahlung wurde genutzt, um   ein
entsprechendes Experiment mit dem FEL-Pulsen zu konzipieren. In meiner Arbeit schlage ich einen
geometrischen Setup vor, bei welchem der einfallende Puls des FEL unter einem festen Winkel in der
Nähe des Braggpeaks erster Ordnung des gekrümmten Multilayers einfällt, und die gestreute Intensität
des gesamten Braggpeaks gleichzeitig gemessen werden kann.  Vorläufige Simulationen, die
Formfaktoren von neutralem und ionisiertem Bor berücksichtigen, zeigen, dass durch Ionisation klare
Änderungen in der Reflektivitätskurve erwartet werden können. Das vorgeschlagene Schema kann ein
kraftvolles Instrument sein, um verschiedene Prozesse innerhalb des elektronischen sub-Systems der
Interaktion des FEL-Pulses mit Materie zu studieren. Diese Art von Untersuchung liefert ein tiefes
Verständnis der Natur der elektronischen Anregung und der Rekombination auf der Femtosekundenskala.
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Motivation
In  2014 the  first  light  from European  X-ray  Free  Electron  Laser  (XFEL)  will  be  available  for

experiments. Right now the Linac Coherent Light Source (LCLS) at Stanford Linear Accelerator

Center (SLAC), Stanford, USA has produced first light and has reached saturation at a

wavelength of 1.5 Å. The advances in radiation characteristics, such as an extremely high power

density of 1012 X-ray photons per pulse, a transversely fully coherent beam and a pulse duration

of about 100 femtoseconds, open a new field for experiments on fs- time scale such as

multiphoton processes in atoms, molecules and solids and the energy transfer between electrons

and lattice which cannot be studied with present X-ray sources.

At femtosecond timescale, the main process of interaction consists of the massive

excitation of electrons from the ground state into various excited states or vacuum. At the same

time scale, the various recombination processes take place as well.  On the other hand, the

electron-phonon interaction takes place on the picosecond time scale and has no importance for

the interpretation of scattering process. Therefore, the femtosecond FEL radiation mainly

interacts with the fixed lattice (frozen atomic positions) and the scattering process is dominated

by the time dependent population of electronic states which cannot be described in terms of

current theories of X-ray diffraction.

Although recent experiments at VUV-FEL FLASH have demonstrated the feasibility of

FELs for such kind of experiments, the major problems with the interpretation or theoretic

prediction are unsolved or at least untouched. From first experiments with the FLASH one

knows that direct illumination of a crystalline solid with a FEL pulse results in complete

destruction of the material. On the other hand, there are interesting scientific questions in solid

state physics and crystallography which can be elucidated by fs-diffraction only: for example,

the investigation of the detailed temporal structure of the electron-phonon interaction in solids

and the study of charge density of excited electronic states with short life time.

As long as the hard X-ray FEL sources are not available such type of interactions can be

studied  using  quasi  1D  crystals,  i.e.  short  period  multilayers  (MLs)  at  VUV-FEL.  Multilayers

structures made for the use in the wavelength range near boron K-edge (~188eV) are of great

interest  for  X-ray  fluorescence  analysis  of  boron  content  doped  semiconductors  for  plasma

diagnostics, astronomy and lithography. Moreover, MLs composed by a metal and a low Z

element like boron are used as optical elements in both the soft X-ray range as well as at higher

photon energies on 3rd generation synchrotron beamlines. This also holds for application at FELs

like  FLASH.  The  shape  and  total  scattering  power  of  the  fundamental  Bragg  reflection  of  the

ML are determined by the numbers of periods and the differences in the optical refraction
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indexes of the composed layer materials. For these Me/B4C multilayers structures, the different ionic

states of boron can be effectively observed by reflectivity measurements close to the K-edge.

The  aim  of  my  thesis  is  the  experimental  and  theoretical  analysis  of  X-ray  diffraction

patterns arising due to the interaction process of fs- FEL pulses with a crystalline matter, and the

design of an experimental scheme for the FLASH experiment to test the general interaction

phenomena of ultra short and high intense FEL pulses with solid matter using periodical

multilayers structures.

The first part of the manuscript (Chapter 1) describes the main types of high-intensity

sources  of  X-ray  radiation.  Based  on  the  theory  of  X-ray  FEL,  the  temporal  and  special

properties of FEL radiation are described in Chapter 2. Using the obtained expressions we can

modulate the incident single FEL pulse for simulation in following chapters. The theory of

interaction of short pulses with a medium is developed in Chapter 3. Because of the limited

information about the scattering properties of multilayers during the interaction with the short

and intense pulses, at the first stage we probed the scattering properties of MLs using continuous

VUV radiation. The different approaches of X-ray reflectivity from the multilayers are described

in Chapter 4. For our investigations we used the multilayers containing two light elements such

as boron and carbon. The structural and optical properties of boron carbide (B4C) are presented

in Chapter 5. To test the influence of electron excitation on the optical properties, the scattering

properties of thin multilayers are studied using the continuous soft X-ray radiation at BESSY and

presented in Chapter 6. Here we show that the energy-resolved reflectivity experiment to

determine the degree of electronic excitations by scanning energy near the boron and carbon K-

edges. Based on this knowledge, in Chapter 7 I propose the approach which enables to study the

interaction of the FEL pulses with a periodical multilayer. The approach for the possible

experimental realization of space-time transformation; the reconstruction of the energy

distribution of the incident pulse; the influence of high intensity and the expected modifications

of optical parameters and the reflectivity under the influence of electron excitation, are

described. Finally,  the  scheme  at  FLASH  experiments  with  multilayers  to  analyze  the  effects

which are linked with the high intensity of FEL radiation is proposed.
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Chapter 1

Introduction

The use of electromagnetic waves to study physical phenomena of crystalline matter and

structure to properties-relations dates back to the beginning of the 20th century. There were a lot

of achievements along the way, from atomic spectroscopy to X-ray crystallography. The various

investigations required ever more brilliant sources to investigate the framework and

underpinnings of the complex processes at the molecular and atomic levels on ultra short time

scales. Currently, there is an intense drive to realize a radiation source capable to produce high

peak  power  X-ray  photons  with  the  Angstrom  wavelengths  and  pulses  as  short  as  tens  of

femtoseconds.

The range of photon energies comprised between 30 eV and 600 eV correspond to the

wavelengths extending from about 2 nm to 40 nm is well-known as extreme ultraviolet

(EUV)/soft X-rays or XUV radiation. This region is dominated by a large number of atomic

resonances, leading to strong absorption of radiation and the wavelengths in soft x-ray range are

too large to make it applicable for X-ray diffraction at natural crystal.

1.1 Synchrotron radiation sources

Synchrotron radiation spans over a wide spectral range, which runs continuously from the

infrared to the hard X-rays, and the achieved intensity and brilliance (density of photons in phase

space) are indeed high. This is particularly interesting for X-ray spectroscopy, because there is

no other traditional source, which offers the same spectral properties. Polarization (linear in the

plane of the electron orbit and circular above and below this plane) and temporal structure (due

to the fact that the beam is not continuous but bunched) are two additional characteristics of the

radiation emitted by electrons circulating within the storage ring. Furthermore the small

diameters  of  the  electron  beam  leads  to  a  very  small  source  size  of  the  X-ray  beam  and  the

divergence of the emitted light.

According to the classical theory of electrodynamics, when a particle with an electric

charge is accelerated, it emits electromagnetic wave [1]. Synchrotron radiation is generated when

the relativistic electrons (or positrons) are accelerated in a magnetic field. In the storage ring of a

synchrotron radiation facility, when charged particles are moving at relativistic velocities, this

emission is quite particular. The radiation is concentrated in a narrow cone along the tangential

direction to the particle trajectory. There are three types of magnetic structures commonly used

to produce synchrotron radiation: bending magnets, undulators and wigglers.
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When electrons are accelerated parallel to the direction of their motion, the radiation

power is negligible. But the acceleration is perpendicular to the direction of motion in bending

magnets can lead to a huge radiation power. Thus a bending magnet is a source of synchrotron

radiation. The emitted power at a given bending radius depends on the parameter γ=E/(mc2) to

the power of four. Due to low mass, only electrons (or positrons) are used for the production of

synchrotron radiation, at typically γ=104. The emission is strongly peaked in the forward

direction, i.e. tangential to the orbit (see Fig.1.1) with opening angle of the order γ-1 (see [2] for

details). However, this single-electron emission angle must be convoluted with the angular

distribution of electrons within one bunch. The first generation of synchrotron radiation sources

consisted of machines built for particle physics experiments and the emission from the bending

magnets was used in the so-called “parasitic mode”.

Fig. 1.1 Schematic of the three magnetic structures: bending magnet, wiggler, and undulator emission used for
synchrotron light generation.

Historically,  synchrotron  radiation  was  observed  as  a  loss  of  energy  in  the  electron

storage  rings.  Logically,  the  first  synchrotron  radiation  sources  for  general  scientific  use  were

simple parasitic beam ports utilizing otherwise lost radiation at existing storage rings. Over the

time, the sources have been constructed for a dedicated use as synchrotron radiation facilities

(second generation facilities),  for example,  the 380 MeV SOR ring at  the University of Tokyo

that was started operation in the mid-1970. In general case these types of synchrotron sources

have a large number of beam lines and experimental stations, where the photons are delivered

from the bending magnets and serve many users simultaneous. In the second generation, special

magnetic structures, called wigglers and undulates, were inserted into the storage ring. The

generic name for both types is “insertion device” and both consist of alternatively poled magnets

in a periodic array with a given period λu (the undulator wavelength).

Usually, scientists never have enough photons for their experiments and an asked for

more intense beam. Wigglers are a neat way to increase the intensity of synchrotron radiation by
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lining up the series of bending magnets which enhances the intensity simply by the number of

magnet poles. The generated spectrum is that of a corresponding bending magnet. In order to add

up the intensity of individual emission cones, the dipoles are arranged with alternating polarity

so that the electrons are essentially move straight except for small “wiggles” where the radiation

is emitted. The emission cones overlap and the intensity adds up. The advantage of a wiggler is

that it emits intense radiation over a wide spectral range, very much like a bending magnet. At

the same time, this is its major disadvantage because a lot of scientific experiments usually need

only a very narrow range of wavelengths and therefore most of the wiggler radiation power

remains unused leading to unwanted heat production within the optical devices.

Most modern machines preferentially use so-called undulators instead of wigglers.

Undulators are the most powerful generators of synchrotron radiation at storage rings. Like

wigglers, they consist of periodic arrangements of the dipole magnets generating an alternating

static relatively weak magnetic field which deflects the electron beam sinusoidally. The weak

magnetic fields cause the amplitude of this undulation to be small. Hence, the resultant radiation

cone is narrow. In combination with a tightly confined electron beam, this leads to the radiation

with small angular divergence and a relatively narrow spectral width, properties that we

generally associate with the coherence properties of lasers.

The newest synchrotron facilities (3rd generation facilities) are composed of many

straight sections (see Fig. 1.2) specially optimized to produce high brightness undulator and

wiggler radiation. The lattice structures and the design philosophy of 3rd-generation X-ray

sources were those introduced by Green and Chasman [3]. The use of the sufficiently high

electron energy allows the undulator to deliver high brightness radiation at wavelengths at less

than 1Å. In order to take all advantages of undulator's features, the third generation of

synchrotron light  sources  (since  the  90's  and  still  operational)  was  designed  with  the  long

dedicated straight sections to incorporate these devices. Specific care was taken to optimize the

synchrotron magnetic lattice in order to increase the brightness.

The production of high-energy photons is provided by machines with quite high electron

beam  energies  as  the  ESRF  (Grenoble),  APS  (Argonne)  and  SPring-8  (Japan).  Sources  are

optimized to provide lower photon energies wavelengths at VUV-range to operate at electron-

beam  energies  of  several  GeV.  This  is,  for  example,  in  the  case  of  Elettra  (Trieste),  ALS

(Berkeley) and BESSY II (Berlin). Most third-generation sources fall into two broad categories:

(i)  few  GeV  rings  with  100  to  200  meters  circumference  designed  primarily  for  the  spectral

region below about 2 keV (VUV and soft X-rays) and (ii) 6-8 GeV rings with a circumference of

800-1500 meters, designed primarily for the harder X-rays, above about 2 keV.
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Fig. 1.2 Layout of the 1.5-GeV Advanced Light Source at Lawrence Berkeley National Laboratory, a low-
energy, 3rd generation synchrotron radiation source.

The race to develop a new generation of synchrotron radiation sources with vastly

enhanced performance has already begun, even as the third-generation facilities enter their

prime, which takes us past the present into the future; namely, to the fourth generation [4-6]. The

candidate with the best scientific case for a fourth-generation source is the hard X-ray

(wavelength less than 1Å) FEL based on a very long undulator in a high-energy electron linear

accelerator. Such a device would have a peak brightness many orders of magnitude beyond that

of the third- generation sources, as well as the pulse lengths of 100 fs or shorter, and it will be

fully coherent. Research and development on the many technical challenges that must be

overcome are well under way at many laboratories around the world.

In the United States, effort is centering on the multi-institutional "Linac Coherent Light

Source" (LCLS) project to use 15-GeV electrons from the SLAC linac as a source for a 1.5-Å

FEL, which will lay the foundation for the later sub-angstrom X-ray FEL. In Europe, together

with  international  partners,  DESY is  constructing  a  European  XFEL facility.  Electrons  will  be

accelerated to energy of 17.5 GeV by a 2.1 km long superconducting linear accelerator. The

European XFEL will provide radiation at 1.0-Å (12.4 keV) light.

1.2 Free Electron Lasers

In the middle of the 1970s Jonh Madey and his colleagues constructed the first FEL

operating in the infrared wavelength range [7]. An externally applied electromagnetic wave

which propagates parallel to the electrons will be amplified and, finally, the laser-like radiation
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will be produced. Since the electrons are not bounded to any medium, Madey called such a

device free-electron laser (FEL).  As  already  mentioned  above  for  synchrotron  sources,  FEL

converts the kinetic energy of the relativistic electron beam into electromagnetic radiation [8-10].

When the electrons interact with the undulator field, their trajectories altered accordingly, and

photons  are  emitted  at  a  specific  wavelength.  The  wavelength  is  defined  by  the  energy  of  the

electron beam and the physical parameters of the undulator:

2

2 1
2 2

u Kl
l

g
æ ö

= +ç ÷
è ø

 . (1.1)

Here, λ is the radiated wavelength; λu is the period of the undulator magnetic field, and K is the

normalized magnetic deflection strength. This equation is strictly valid for the emission along the

axis of undulator. If we observe the emission at an angle θ slightly off-axis, the wavelength

charges with respect to the on-axis value.

There are a number of advantages that the FEL possesses compared to that of traditional

lasers and other radiation sources. The radiated wavelength λ is a function of the electron beam

energy. Hence, the FEL is a tunable source of radiation whereas the molecular lasers can emit

only coherently at the specific wavelengths, which depend on the excitation levels. Indeed, the

FEL is able to operate in the X-ray region of the electromagnetic spectrum. Also, since the

source of the FEL is the electron beam in a vacuum, the FEL can operate at high power with no

damage to the lasing medium in contrast to the traditional molecular lasers, where the maximum

power is limited to the damage threshold of the medium [8-10].

The emission per period is broadband, however, since the electrons emit periodically over

a long time interval, certain frequencies are enhanced through period-to-period interference

effects.  The  wavelength  of  the  enhanced  radiation  depends  on  the  electron  energy  and  the

parameters  of  the  employed  magnetic  structure.  As  the  electrons  travel  collinearly  with  an

electromagnetic wave, a component of the electron velocity is in the direction along the

transverse  electric  field  of  the  wave,  which  allows  energy  to  exchange.  As  the  energy  is

transferred from the electrons to the wave, the radiation field is amplified and the electrons are

slowed  down.  The  distribution  of  electron  energy  as  a  function  of  longitudinal  position  in  the

bunch is also modulated by the interaction of an electron with the radiation. As a result, the

electrons tend to physically group into bunches, separated by the radiation wavelength. The

radiation is greatly enhanced further by this process, which is called microbunching.  In  case

when all the electrons are coherently emitting in phase, the maximal bunching is achieved and

the FEL reaches saturation. At this point the energy gain of the field is not significantly enhanced

by additional modulation. The closed loop process (oscillation, field enhancement, modulation)
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is the basic operating mechanism of the free electron laser. The converse scenario is also a field

under active study; if the energy is transferred from the electromagnetic wave to the electrons,

the electrons are accelerated in a device referred to as the inverse free electron laser [11].

The X-ray FEL will not only extend the today’s light sources by increasing the brilliance

of radiation (Fig.1.3). Its sub-picosecond light pulses of very narrow bandwidth will enable

scientists to perform experiments which have never been possible before. For example, the

diffraction patterns of single molecules can be produced with a single light pulse from the X-ray

FEL. This is of special interest in biology where molecules can often only be crystallized on a very

small scale or even not at all. To study the dynamical processes on an atomic scale, up to 4000 light

pulses with an rms length of 80 fs each can be produced within a bunch train 800 µs long. The

radiation wavelength will be tunable in the range of 0.1 - 6 nm.

Fig. 1.3 The peak brilliance of the FELs will surpass today’s synchrotron radiation sources by several orders of
magnitude over a wide range of photon energies. (taken from [12])

The European X-ray FEL includes a photo-injector which produces electron bunches with a

charge of 1nC. It will be located at DESY in Hamburg. The linac accelerates the electrons to

energies up to 20 GeV. The experimental hall will be located about 3.3 km to the north-west of

the DESY. In 2014 the first radiation is expected to be delivered for the experiments [12]. The X-

ray FEL will not only extend today’s light sources by increasing the brilliance of the radiation.



14

The FEL in Hamburg (FLASH) at DESY is a FEL based on the SASE principle and can

deliver a very intense light in the wavelength range from 6.5 to 47 nm in the first harmonic [13-

14]. Installation of further accelerating modules has been done to achieve higher electron

energies and thereby achieve even shorter wavelengths as 6.5 nm in the first harmonic, providing

a uniquely intense, short-pulsed radiation. Peak and average brilliance of this new FEL user

facility exceeds both modern synchrotron facilities and laser plasma sources by many orders of

magnitude. The soft X-ray output possesses unprecedented flux of about 1013 photons per pulse

with durations of 10–50 fs, and hence, combined with appropriate focusing optics, the peak

irradiance levels of more than 1016 Wcm−2 can be achieved [15].

Since the first experiments in 2005, the soft X-ray FEL FLASH has reached the status of

routine operation. The stability and reliability of the FEL have been significantly increased and

FLASH recently achieved a world record peak and average coherent power at a wavelength of

13.7 nm in the fundamental [14]. The corresponding fifth harmonic wavelength (~2.7 nm) at

power levels of about 0.03% is shorter than for any radiation produced so far by plasma-based

X-ray lasers at a comparable levels of intensity and lies well within the ‘water window’, where

the biological systems can be imaged and analyzed in vitro. Table 1.1 summarizes the

performance of FLASH.

Table 1.1. Performance of FLASH.

Parameter of FLASH

Wavelength range fundamental 6.9–47 nm
Higher harmonics

3rd ~2.3 nm
5rd ~1.4 nm

Pulse energy average 10–50µJ
Peak power several GW
Pulse duration (full-width at half-maximum FWHM) 10–50 fs
Spectral width (FWHM) 0.5–1%
Spot size at the undulator exit (FWHM) ~160µm
Angular divergence (FWHM) 90±10µrad
Peak brilliance (photons s−1mrad−2mm−2 per 0.1%bw) 1029–1030

The FLASH experimental hall is presently equipped with five experimental stations (Fig.

1.4). A variety of experiments in basic and applied research of multiple scientific fields, from life

science, chemistry to physics are scheduled including pump-probe experiments. The

experimental stations at the beamlines BL1, BL2 and BL3 utilize the direct FEL pulses. When

entering the experimental hall, the FEL beam has a width of about 3 - 5 mm. To focus the beam,

BL1 is equipped with a toroidal mirror, while the ellipsoidal mirrors are used at BL2 and BL3.

Most users need highly focused and extremely bright FEL pulses, for example, for experiments
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in plasma physics, cluster science, and materials research. The mirrors at BL1 and BL2 focus the

beam down to spots of approximately 100 μm and 20 μm, respectively. At BL3 the beam can be

focused down to a spot of 20 μm as well. However, this beam can also be used unfocused for

experiments that do not require a high density of photon, or by research groups who prefer to

install  their  own  focusing  optics.  In  the  latter  case,  the  spot  size  in  the  range  of  1  -  2  μm  is

reachable with back-reflecting multilayer mirrors.

Fig.1.4 Schematic view of the FLASH experimental hall (from web-site www.desy.de)

The FLASH photon pulses have an inherent bandwidth of approximately 1 percent, but

for many experiments, the monochromatic radiation is needed, for example, to study the

excitation processes in molecules or atoms, and in some pump-and-probe experiments. Thus, a

high-resolution  plane  grating  monochromator  has  been  developed  to  serve  the  beamlines  PG1

and  PG2  with  FEL  pulses  of  a  narrower  bandwidth.  When  the  FEL  beam  hits  the  grating,  a
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selected wavelength passes through and proceeds to one of these beamlines, while optionally the

0th order including the higher harmonics is deflected to a special diagnostic port. The

monochromator is tunable; by moving the grating and the plane mirror by remote control,

different wavelengths can be picked out of the approximately 1-percent FEL bandwidth. An

energy range from 20 eV to 1000 eV is covered. The spot size at PG2 is presently about 100 μm

x 200 μm depending on the wavelength and monochromator settings.

The  Linac  Coherent  Light  Source  (LCLS)  is  a  SASE  1.5-15Å  XFEL  facility  under

construction at SLAC [16], and is now available to the first user experiments. The injector, linac,

and new bunch compressors were commissioned in 2007 and 2008, establishing the necessary

electron beam brightness at 14 GeV. The final phase of commissioning, including the FEL

undulator and the long transport line from the linac, began in November 2008, with first 1.5-A

FEL light and the saturation observed in mid-April 2009. The LCLS has produced the first FEL

light and saturation at a wavelength of 1.5 Å with a 3.3-m gain length and up to 1.1 mJ in the X-

ray pulse (0.8x1012 photons/pulse). Table 1.2 summarizes the performance of LCLS facility.

Table 1.2. LCLS: FEL parameters

Wavelength 15 1.5 Å

FEL parameter 8.5 4.2 10-4

Cooperation length 282 57 nm
Peak saturation power 4 8 GW
Average saturation power 0.23 0.23 W
Coherent photons/pulse 10.6 1.1 1012

Peak photon flux 31 5.8 1024 Ph/s
Peak brightness* 0.28 15 1032

Average brightness* 0.16 4.5 1022

Instantaneous photon ΔE/E 0.07 0.03 %
Beam radius, rms. 49 36 μm
Beam divergence, rms. 2.4 0.33 μrad
Pulse duration, rms, 70 70 fs
Pulse repetition rate 120 120 Hz
Single spike duration 1 fs
Number of spikes ~200
Spike line width 3x10-4

*Ph./s/mm2/mrad2/.1%bw

In summary, the most of the X-ray FELs facilities have been developed or are in an

advanced stage of development. These sources can produce coherent X-ray pulses with 10-100-

fs temporal duration, the peak brilliance of which exceeds the existing synchrotron radiation

facilities by 10 orders of magnitude. These high peak power X-rays will open the door to

completely new scientific applications, such as structural studies on single molecules, nanoscale

dynamics in condensed matter, femtochemistry and others.
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Chapter 2

FEL radiation properties

In this chapter the temporal and spatial properties of the FEL radiation will be introduced. It

starts with the description of the properties of the FLASH facility. The main aspects of the theory

of FEL and the important issues will be discussed in detail. The radiation from the FEL has the

spontaneous nature, and based on the Rice’s theory [17]. In the case when the coherence time is

smaller  compared  to  the  electron  bunch  distribution,  the  results  of  the  FEL  theory  can  be

generalized in simple expressions.

In the second part of the chapter the first experimental data from FLASH will be

presented. These results show good agreement with the theory and will be employed to modulate

the incident single FEL pulses for our simulation in the following sections.

2.1. Statistical analysis of the chaotic optical field from a SASE FEL

The electron acceleration devices such as FELs utilize the distributed interaction between the

electron beam and electromagnetic radiation. The random electron distribution in the beam of

electron due to its corpuscular nature causes fluctuations in current density, identified as the shot

noise in the beam current [18, 19]. The shot noise current is characterized by a ‘‘white’’ power

spectrum whose density is proportional to the average electron flux of the beam. The

electromagnetic fields are excited by each electron add incoherently, resulting in spontaneous

emission noise in the radiation. If the electron beam is modulated, the fields excited by electrons

become correlated, and coherent summation of radiation fields from individual particles occurs.

In case where all electrons radiate in phase with each other, the generated radiation becomes

coherent.

Electrons passing through a magnetic undulator emit a partially coherent radiation, which

is  called  the  undulator  synchrotron  radiation  [20].  In  the  classical  analysis  [8,  9,  20],  each

wiggling electron is a point source, which can be treated as a moving radiating dipole. An

individual electron moving in an undulator emits a wave packet of electromagnetic radiation

which is in synchronism with the electron velocity. If the continuous electron beam advances

through a periodic field of a wiggler,  the radiation fields radiated by electrons,  which enter the

undulator at random, add up incoherently. Since the radiation process takes place in the absence

of externally applied electromagnetic radiation, it is termed spontaneous emission. A number of

approaches were employed for the analysis the FEL spontaneous emission [21, 22]. In the high-

gain FELs, utilizing sufficiently long undulators, the spontaneous emission radiation excited in

the first part of the undulator is amplified along the reminder of the interaction region [9, 10].
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The FLASH is a single-pass FEL lasing in the soft X-ray regime based on a 1GeV

superconducting linear accelerator and described in detail in [21, 22] and references therein. A

photoinjector generates very high-quality electron bunch trains that are accelerated to relativistic

energies of up to 1GeV and produce soft X-ray radiation during a single pass through a 30m long

undulator. The generation of soft X-ray FEL radiation is based on the so-called self-amplied

spontaneous emission (SASE) process.

As described above, in the undulator the electron bunches undergo a sinusoidal motion

and emit synchrotron radiation. The radiation moves faster than the electron bunch and interacts

with electrons further up leading to a charge density modulation within the bunch with a period

corresponding to the fundamental in the wavelength spectrum of undulator. This well-defined

periodicity in the emitting bunch enhances the power and coherence of the radiation field

exponentially, whereas the electron and the resulting photon bunch travel once through a long

undulator without the need for a resonator.

Since  the  exponential  amplification  process  in  the  SASE  FEL  starts  from  spontaneous

emission (shot noise) in the electron bunch, the SASE FEL radiation itself is of stochastic nature,

meaning that the individual radiation pulses differ in their intensity, temporal structure and

spectral distribution. Therefore, the exploitation of the unique properties of the FEL radiation

requires the suitable pulse-resolved diagnostic tools. Furthermore, the online determination of

the important photon beam parameters, such as intensity, spectral distribution and temporal

structure, are mandatory for most user experiments. This requires diagnostics tools that operate

in parallel to the user experiments and in a non-destructive way.

The gain in the FEL is based on the constructive growth of instability in the electron

beam when it is propagating down a stream of undulators. The microbunching instability grows

as a result of the interaction between the electron beam and electromagnetic wave it emits as it

traverses the magnetic field of the undulator. The instability modulates the electron density on

the scale of the radiation wavelength resulting in coherent radiation. Provided that the instability

is strong enough, the radiation grows exponentially before reaching saturation. The wavelength

of the FEL is determined by the resonance frequency (similar Eq. 1.1):
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Here, γ is the relativistic factor of the beam, and λu and K are the undulator period and field

strength parameter, respectively. For 1 Å operation, with λu =3.3cm and K=3.1, the relativistic

parameter γ ~30 000, corresponding to a beam energy of 15 GeV, accessible to modern

accelerators.
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As it  was  noted,  the  the  SASE FEL starts  up  from the  shot  noise  in  the  electron  beam.

The temporal behaviour of the system is that of a narrowband amplifier with a broad-band

Poisson seed. Before saturation the output is a Gaussian random process and the radiated field is

chaotic, quasi-monochromatic, polarized light. Near saturation, the transverse behaviour of the

output is dominated by an intense, single spatial mode. Ignoring the transverse dependence, the

radiated electric field can be expressed in the form

( ), ( , ) exp( )r rE z t A z t ik r i tw= - , (2.2)

where z represents  the  location  along  the  undulator  at  which  the  SASE  is  observed  and t

represents the temporal position in the radiation pulse.

The amplification process in the FEL amplifier passes two stages: linear and nonlinear.

The linear stage lasts over significant fraction of the undulator length, and the main target for

XFEL optimization is the field gain length. In the case of a cold electron beam with a long, flat-

top electron bunch profile, the SASE field before saturation is the superposition of many

electromagnetic wave packets emitted from randomly distributed, individual electrons. The

spectrum  of  SASE  FEL  radiation  has  a  Gaussian  shape,  and  within  the  classical,  one-

dimensional theory [18-20, 22-26], the slowly varying envelope can be approximated [23] by
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where Ne is the total number of electrons in the bunch, A0(z) contains the exponential growth

factor, tj is the random arrival time of the jth electron at the undulator entrance, vg is the group

velocity of each wave packet, ( )1/ 3 ws s=  is the characteristic wave packet width and

3 3 /r p uk zws w r=  is rms SASE bandwidth, and ρp the FEL Pierce parameter.

The field amplitude Eq. (2.3) is expressed as a sum of independent random terms. Rice

[27] has developed the comprehensive method to analyze such sums using the central limit

theorem (CLT).  In  probability  theory,  the  CLT states  the  conditions  under  which  the  sum of  a

sufficiently large number of independent random variables, each with finite mean and variance,

will be approximately normally distributed [28]. The CLT also requires the random variables to

be identically distributed, unless certain conditions are met. The CLT also justifies the

approximation of large-sample statistics to the normal distribution in controlled experiments.

Initially,  the  Rice’s  work  has  been  motivated  by  the  study  of  shot  noise  in  electrical

circuits  -  a  type  of electronic noise that  occurs  when  the  finite  number  of  particles  that  carry

energy is small enough to give rise to detectable statistical fluctuations in the measurement. At
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present, his approach has important applications in statistical optics [29] and, in particular, in the

description  of  the  chaotic  output  of  the  SASE  FEL.  In  result,  the  statistical  description  of  the

spikes at the output can be presented such in the frequency- and in the time-domain. The output

intensity as a function of time exhibits spiking [22, 26], and the width of the intensity peaks is

characterized by the coherence time Tcoh. The spectral intensity also exhibits spikes, and the

width of the spectral peaks is inversely proportional to the electron bunch duration Tb. At a fixed

position z along the undulator, the energy in a single SASE pulse is

( ) ( ) 2

0

,
bT

W z E z t dtµ ò , (2.4)

where Tb is the duration of an electron bunch having uniform average density. For z fixed, the

pulse can be separated into M statistically independent time intervals of width Tcoh. The energy

fluctuation within a single coherent region is 100%, but the fluctuation of the energy in the entire

pulse is reduced and given by [23, 25]
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Here, the parameter M can be interpreted as the average number of degrees of freedom (or

modes) in the radiation pulse, and σw is the SASE gain bandwidth. Radiation of the SASE FEL

operating in the linear regime is Gaussian random process, so probability distribution of the

energy in the radiation pulse is gamma-distribution [13,14,18,19]. The radiation energy per pulse

pw(W) should fluctuate according to a Gamma distribution
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provided the FEL gain process is in the regime of exponential growth [31]. The parameter M

cannot be less than unity. When M tends to the unity, the gamma probability density function

tends to the negative exponential distribution. For large values of M this distribution tends to a

Gaussian distribution.

2.1.1. Analysis of the radiation properties in the frequency domain

For many practical application of the SASE FEL radiation, a monochromator has to be installed

at the FEL amplifier exit with the transmission function Hm(ω). Thus, the Fourier harmonic of

the electromagnetic field Ē at the undulator exit and the Fourier harmonic of the input current Ī

are connected by the relation
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( ) ( ) ( ) ( )m AE H H Iw w w w= , (2.7)

where HA is the spectral Green’s function of the FEL amplifier. For a narrow-band

monochromator (with resolution better than the typical width of the spike in the spectrum), the

energy in the radiation pulse, W, after the monochromator is proportional to |Ē(ω)|2.   So,  this

energy fluctuates from pulse to pulse in accordance with the negative exponential probability

distribution. It is worth mentioning that such a distribution is a feature of completely chaotic

polarized radiation. The spectral interval of coherence can be defined as

( ) ( )
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where the first-order spectral correlation function g1(t)  is
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The value of the spectral coherence for case of a rectangular bunch with duration T is given by

2 .c T
pwD = (2.10)

Let the monochromator function Hm(ω) be  symmetric  with  respect  to  the  FEL  resonance

frequency ω0. Two case of the monochromator line profile can be considered: a Gaussian and a

rectangular profile. The rectangular line of the monochromator is given by (ω >0)
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and the Gaussian line of the monochromator is defined as
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The normalized dispersion of the energy distribution is calculated as follows
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When the monochromator linewidth is much large than the interval of the spectral coherence and

much less than the FEL amplifier bandwidth, the dispersion is inversely proportional to the

monochromator linewidth
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for the rectangular and the Gaussian monochromator line, respectively. When the

monochromator linewidth is much larger than the bandwidth of the FEL amplifier, the energy

fluctuations are defined by the bandwidth of the FEL amplifier

( )
2 .E

AT
ps s; (2.15)

2.1.2. Analysis of the radiation properties in the time domain

When the coherence time Tcoh is small than the duration of an electron bunch Tb, the coherence

time can be expressed in terms of the first-order time correlation function g(t) according to

( )
2

1 ,cohT g t dt= ò (2.16)

where the first-order time correlation function g1(t)  is
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and A(t) is the amplitude of electromagnetic field defined in Eq. 2.2. Using an approximation for

the field correlation function g1(t)
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When the SASE FEL operates in the high-gain linear regime, the explicit expression for the

coherence time can be re-written as

.cohT
w

p
s

= (2.19)

Summarizing, in the case when the coherence time is small compared to the electron bunch

distribution, the results of the free electron laser theory [19, 23, 24-26] are simplified and can be

generalized as follows [26]:



23

number of modes 2 tM ws s@

average temporal spike separation 2t
w

p
s

D @

average temporal spike width 1
2

t
w

d
s

@

coherence time
cohT

w

p
s

@

number of modes 2 t

coh

M
T

ps
@

average frequency spike separation 2

t

p
w

s
D @

average frequency spike width 1
2 t

dw
s

@

range of frequency coherence 1
2 t

dw
s

@

number of modes 2

coh

M wps
@

W

The SASE FEL is a filtered chaotic light source, possessing high intensity and relatively

long coherence length. It was found that the SASE pulse energy is described by a gamma-

distribution.  This  type  of  measurement  is  an  example  of  the  conventional  photon  counting

statistics.  The  time-  and  frequency-domain  results  present  a  new class  of  experimental  data  on

the behaviour of the SASE chaotic optical field. The analysis of random noise are presented in

[22, 30] provides a good initial description of new experiments [13, 14]. It remains as a

challenge for future theoretical work to include the effect of the dependence of gain on the local

electron density and, in particular, to determine the temporal duration of the output radiation

pulse as a function of the electron bunch length.

2.2. First experimental results of an X-ray free-electron laser

2.2.1. Operation of a VUV FEL at 32 nm wavelength

The properties of FEL radiation [22] have been calculated for 30 nm wavelength with the three-

dimensional, time-dependent simulation code FAST [30], predicting an average energy in the

radiation pulse of up to 100 µJ for a bunch charge of 1 nC. Figure 2.1 shows the measured

energies of many successive radiation pulses [13]. A large fluctuation is seen which is to be

expected  since  in  a  SASE  FEL  the  gain  process  starts  from  shot  noise.  Theoretically,  the
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radiation pulse energy should fluctuate according to a gamma distribution (Eq. 2.6) provided the

FEL gain process is in the regime of exponential growth.

Fig. 2.1 Measured FEL-pulse energies for many successive pulses [13]: measured probability distribution of the
radiation energy (histogram). The solid curve represents the Gamma distribution of equation (2.6) for M =4.1 which
is calculated from the variance of pulse energy fluctuations. This is the expected distribution of a high-gain FEL
operating in the exponential regime, with M being the total number of optical modes in the pulse.

It defines the number of optical modes in the radiation pulse and provides a relationship

between the average number of spikes in the single-pulse wavelength spectra and the fluctuations

of the pulse energy. The measured histogram in Figure 2.1 fits nicely the gamma distribution

(Eq.  (2.6))  with M =4.1. The statistical analysis can not distinguish between transverse and

longitudinal modes. Since the high degree of transverse coherence has already been concluded

from the observed angular divergence, the transverse mode number should be less than two.

Consequently, we expect three to four longitudinal modes. According to statistical analysis and

numerical simulation, this implies that, on average, two wave packages (or spikes) should be

present in the time profile of each FEL radiation pulse.

While the ultra-short pulse duration has up to now precluded a direct measurement of the

temporal structure of the FEL pulses, the single-pulse wavelength spectra are accessible and may

be used to estimate the radiation pulse duration. A set of different spectra is presented in Figure

2.2. They were taken with a grating spectrometer equipped with an intensified CCD camera. The

FWHM pulse duration is obtained from the typical width Δω of the spikes in the single-pulse

spectra using the relation τrad=2π/(Δω) fs.  With  average  radiation  pulse  energy  of  10 µJ, this

correspond to an average power of 0.4 GW within the FEL pulse and approximate 1 GW inside

the spikes. The average number of such spikes within the bandwidth of the FEL scales with the

number of longitudinal modes.
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Fig. 2.2 Different single-shot wavelength spectra of FEL radiation pulses measured at the VUV-FEL operating
in the exponential regime (from work of R. Treusch, M.Kuhlmann (DESY News, 2005)). The different shots are
shown with different shapes. Note that the number of spikes in the spectrum is in average equal to the number of
spikes (coherent wave packets) in the time domain.

The FWHM pulse duration of radiation pulses at the VUV-FEL in [13] has been

determined at 25 fs in three entirely independent ways: (i) spectral analysis of a spiky structure

of single-pulse wavelength spectra (i.e., see Fig. 2.2); (ii)  statistical  analysis  of  pulse-to-pulse

intensity fluctuations; (iii) time-domain measurement of the longitudinal electron bunch profile

corroborates the existing of such a short, leading spike. It is in qualitative agreement with the

results of numerical beam dynamics simulation and the subsequent numerical simulation of the

FEL process.

2.2.2. Operation of a VUV FEL at 13.7 nm wavelength

In the next step, the measurement and characterization of the properties of the FEL radiation at a

wavelength of 13.7 nm will be introduced. The average energy of pulse at this wavelength was

about  70  µJ  [14].  The  spatial  profile  of  the  FEL  radiation  was  detected  on  a  Ce:YAG  screen

located 23.5m downstream of the undulator exit. The spot size is 2.1 mm (FWHM), which

corresponds to an angular divergence of 90+10 µrad (FWHM). The radiation mode in the far-

field is nearly axial symmetric.

The average FLASH pulse energy versus undulator length for the case of exponential

growth can be seen in Fig. 2.3. The radiation energy was measured with a microchannel-plate-



26

(MCP-) based detector, which was operated with a 5-mm diameter aperture and was located

18.5m from the undulator. The interaction length in the undulator (and hence amplification) was

changed by means of a transverse kick of the electron-beam trajectory between the undulator

modules, which is strong enough to stop the FEL amplification process downstream of the orbit

kick. With the FEL interaction suppressed along the whole length of the undulator chain, the

residual spontaneous emission from the full undulator length and also the full electron bunch was

measured. The FEL interaction was switched on gradually along the undulator, and the energy in

the radiation pulse grew steadily. The measurement gives an estimate for the coherence time τc =

4.2±0.5 fs. In this case, using the gamma-distribution (Eq. 2.6) and the value of M=1.9 (the

average number of ‘degrees of freedom’ or ‘modes’ in the radiation pulse) and an estimate for

the coherence time 4.2±0.5 fs, the radiation pulse length at the end of the regime of exponential

growth of about 8+1 fs.

Fig. 2.3 Measured FEL-pulse energies for many successive pulses [14] measured probability distribution of the
radiation energy (histogram). The solid curve represents the gamma distribution of equation (2.6) for M= 1.9 which
is calculated from the variance of pulse energy fluctuations. This is the expected distribution of a high-gain FEL
operating in the exponential regime, with M  being the total number of optical modes in the pulse.

Also, it was obtaining [14], that the FLASH has produced unprecedented powers for

EUV radiation at a fundamental wavelength of 13.7 nm, and harmonics with wavelengths as low

as 2.75 nm (that is, in the range of a soft X-ray FEL). The experimental measurements show that

FLASH operates now at its ultimate performance level, with a peak brilliance of (6±3)·1029,

(2±1) ·1028 and (2±1) ·1027 photons per (s mrad2mm2 0.1% bandwidth) at 13.7, 4.6 and 2.75 nm,

respectively. At the 5th harmonic wavelength, FLASH is already approaching the wavelength
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range  of  the  European  XFEL  and  LCLS,  but  with  lower  brilliance.  However,  it  is  still  higher

than the peak brilliance of the third-generation SR sources by few orders of magnitude.

2.2.3. Operation of a VUV FEL at 6.5 nm wavelength

In the autumn of 2007, the FLASH has been upgraded by installation of a 6th superconducting

accelerator module to reach the electron energy of 1 GeV. User operation is regularly running at

wavelengths down to 7 nm [31, 32]. Radiation pulse energies exceeding 40 μJ have been

observed. Also the 2nd, 3rd, and 5th harmonics have been seen, and applied by users [31]. Figure

2.4  shows  the  spectrum  of  the  SASE  radiation  peaking  at  6.5  nm  [32].  In  these  works,  the

preliminary  analysis  of  the  pulse  length  for  observed  wavelengths  was  carried  out,  and  it  was

between 5 and 15 fs (FWHM).

Fig. 2.4 Spectrum of the SASE FEL radiation peaking at 6.5 nm generated at FLASH [32]

In summary, the radiation from the SASE FEL operating in the linear regime possesses the

typical properties of completely chaotic polarized light. Shot noise in the electron beam is a

Gaussian random process; the FEL amplifier, operating in the linear regime, can be considered

as a linear filter, which does not change statistics. As a result, the radiation is also a Gaussian

random process. In this case, the probability distribution of the instantaneous radiation power

should be the negative exponential distribution (the notion of instantaneous power refers to a

certain moment of time and a point in space, considered over an ensemble of pulses). Also, the

finite-time integrals of the instantaneous power (energy in the radiation pulse) and the integrated

spectral density (measured after the monochromator) should fluctuate in accordance with the

gamma distribution (Eq. 2.6). The parameter M can be interpreted as the average number of

“degrees of freedom” or “modes” in the radiation pulse. Fluctuations reach a maximum value at

the end of the linear regime.
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When approaching a saturation point, the statistical properties of the radiation change

drastically on a scale of one field gain length. One useful property of the non-linear regime is the

reduction of the radiation energy fluctuations by approximately two times relative to the linear

regime. Sensitivity of the radiation pulse energy with respect to jitters of machine parameters is

reduced as well. Radiation power in the non-linear regime continues to grow due to the growth

of  sidebands  in  the  non-linear  media.  As  a  result,  there  is  a  broadening  of  the  spectrum.  The

spectral brightness and the degree of transverse coherence reduce as well. Maximum brightness

of the radiation occurs at the undulator length of about ten field gain lengths.
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Chapter 3

The present theory of the interaction soft X-ray radiation with medium

In this chapter we briefly reviewed some fundamentals of X-ray interaction with matter, since

they will be used later in chapter 7 to carry out the theoretical and experimental analysis of the

X-ray diffraction patterns arising due to the interaction process of fs- FEL pulses with periodical

multilayers. It starts with a discussion of the refractive index of the materials for X-rays. In the

second part of this chapter, the basic formalism of the interaction of ultra short pulses with the

media is demonstrated by linear optics reflection theory (LORT).

3.1. X-ray interactions and wave equations

X-rays are electromagnetic radiation and their propagation can be described by the Maxwell

equations (similarly to the visible optics [1]):
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where E
r

 is the electric field vector, H
r

 is the magnetic field vector, D
r

 is the electric

displacement, B
r

 is the magnetic density or magnetic induction, J
r

 is the current density, p is the

charge density, ε0 is the permittivity (dielectric constant) of free space, and μ0 is the magnetic

permeability. In free space (vacuum), the constitutive relations take the form
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These equations can be combined to form a vector wave equation describing the propagation of

electromagnetic waves. The mathematical description covers electromagnetic phenomena

extending from very long wavelength, to radiowaves, microwaves, infrared, visible, ultraviolet,

and x-rays and beyond. The vector wave equation can be obtained from Maxwell’s equation by

taking Ñ´  (Eq.3.1) and using the vector identity ( ) ( ) 2A A AÑ´ Ñ ´ = Ñ Ñ × - Ñ  to obtain

( ) BE
t

æ ö¶
Ñ´ Ñ ´ = Ñ ´ -ç ÷¶è ø

r
r

. (3.3)

After calculation, the vector wave equation can be written:
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. (3.4)

Eq. 3.4 is the key equation in the considering radiation, scattering and refractive index in

situations including free and bound electrons, single atoms and the various distributions of

atoms, for example, in our case, the multilayer structures. Here the topic of interest is the X-ray

scattering by multi-electron atoms near an absorption edge.

From  the  vector  wave  equation  (Eq.  3.4),  in  the  case  of  the  propagation  of  transverse

waves inside the multilayer structure, the Ñ ρ term does not contribute, nor does the longitudinal

component of J
r

. Thus, for the transverse electromagnetic waves in the form exp[−i(ωt−k·r],

propagating in the vector k-direction, only the field components transverse to k need  to  be

considered, so the transverse wave equation is

( ) ( )2
2 2

2
0

,1, T
T

J r t
c E r t

t te
æ ö¶æ ö¶

- Ñ = - ç ÷ç ÷¶ ¶è ø è ø
. (3.5)

For the special case of forward scattering, the positions of the electrons within the atom (∆k ·

∆rs) are irrelevant, as are the positions of the atoms themselves. The contributing current density

is then

( ) ( )0 , ,a s s
s

J r t en g v r t= - å , (3.6)

where na is the average number density of atoms, and ∑sgs =  Z. The oscillating electron

velocities

( ) ( )
( )

2 2

,1,
s

E r tev r t
m tiw w gw

¶
=

¶- +
(3.7)

are driven by the incident field E such that the contributing current density is

( ) ( )
( )

0 2 2

,
, a s

s s

E r ten gJ r t
m tiw w gw

¶
=

¶- +
å , (3.8)

where gs are the oscillator strengths, which are integers in semi-classical model that indicate the

number of electrons associated with a given resonance frequency ωs. In the quantum mechanic

description, these oscillator strengths arise naturally as non-integer transition probabilities

between stationary states. The sum of gs is equal to the total number of electrons Z. Substituting

this into the transverse wave equation (Eq. 3.5), one obtains



31

( ) ( )
( )22

2 2
2 22 2

0

,
, a s

T
s s

E r ten gc E r t
t m tie w w gw

¶æ ö¶
- Ñ =ç ÷¶ ¶- +è ø

å . (3.9)

Combining terms with similar operators

( ) ( )
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written in the standard form of the wave equation as

( ) ( )
2 2

2
2 2      , 0T

c E r t
t n w

ì ü¶ï ï- Ñ =í ý¶ï ïî þ
. (3.11)

The frequency dependent index of refraction n(ω) is identified as

( ) ( )
1/2

2 2
0

    1 a s
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en gn
m i

w
e w w gw

ì üï ïº -í ý
- +ï ïî þ
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For soft X-ray radiation, the term ω2 is very large compared to the quantity e2na/ε0m, so that to a

high degree of accuracy, the index of refraction can be written as

( ) ( )2 2
0

1    1
2

a s

s s

en gn
m i

w
e w w gw

º -
- +

å . (3.13)

The refractive index can then be re-written as

( ) ( ) ( )
2

0 0
1 2    1

2
a en rn f ifl

w w w
p

é ùº - -ë û (3.14)

where re is  the  classical  electron  radius,  f1  and  f2  are  real  and  imaginary  parts  of  the  atomic

scattering factor, which can be written as

( ) ( ) ( )
2

0 0 0
1 2 2 2

s

s s

gf f if
i

w
w w w

w w gw
= - =

- +å . (3.15)

In X-ray diffraction the refractive index is written in the simplified form

( )    1n iw d b= - + (3.16)

where

( )

( )
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. (3.17)
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Thus,  the  complex  refractive  index  containing  the  atomic  form factors,  which  may obtain  as  a

result  of  relativistic  quantum  theory  of  dispersion  Kramers-Kronig  relations  (see Appendix A),

can be calculated or determined by measurements.

The absorption coefficient β links with the linear absorption coefficient α as

4pba
l

= . (3.18)

The refractive index at soft X-ray range deviates only by a small amount from unity, and

the expression n=1-δ-ib is  a  standard  notation.  Typical  values  are δ~10-5 and b~10-6. The

transmitted intensity I through a layer of material with thickness x is related to the incident

intensity I0 according to the inverse exponential  power law that is  usually referred to as Beer–

Lambert law:

( )0 expI I ax= - . (3.19)

3.2. Linear-optics reflection theory

In the last decade, much interest has been developed in the study of the propagation of ultra short

pulses in the resonant or non-resonant medium [33-38]. In this section we discussed the general

aspects of the theory of the reflection of short pulses in linear optics known as the linear-optics

reflection theory [33-34].  Let’s  start  with  the  well-known  equation  for  the  reflection  of  a

monochromatic beam of light falling on a linear dielectric medium. If the incidents beam EI has

frequency ω, then the reflected beam has the same frequency; the amplitude is given by

( )R IE J Ew= (3.20)

where J(ω) is the  response function of the system. For finite wave packets EI(ct-z) and ER(ct+z)

with a spear of frequencies, Eq. (3.20) are generalized by integration over all frequencies:

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1/2

1/2

2 exp
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R R
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E E i d

J E i d

t p w wt w

p w w wt w

+¥
-

+ +
-¥

+¥
-

-
-¥

= - =

= -

ò

ò
(3.21)

where τ±=ct±z and EI(ω) and ER(ω) are now the Fourier transforms (Appendix B) of the

incoming and outgoing pulses EI(τ-) and ER(τ+), defined by

( ) ( ) ( ) ( )1/22 expE E i dw p t wt t
+¥

-

-¥

= ò . (3.22)

Unfortunately integral (3.21) cannot be solved analytical, because the response function, in

general, is a complicated function of ω, except in the trivial monochromatic case. On other side,
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we can solve this equation numerically using the calculated and/or the experimental obtained

response function of our object.

The general relation between the electric field of incoming pulse EI(t) and ER(t) after

interaction with the system is given by

( ) ( )
0

, ( )R IE t J t E t dt t t
+¥

+ + += -ò . (3.23)

Here E+
I(t) and E+

R(t) are the complex analytical signals assigned to the positive frequency part

of the temporal Fourier-transform (Eq. 3.21). The functions E-
I(t) , E-

R(t)  and J- (τ,t) assigned to

the negative frequency part are the complex conjugate quantities of the functions involved in Eq.

3.23. Now we can demonstrate two limited cases: (i) ultra-short pulse with δ-function temporal

profile and (ii) usual monochromatic beam.

If the electric field of incident pulse E+
I(t) is specified by the Dirac δ-function-like A·δ(t-

t0), from Eq. 3.23 we obtain

( ) ( )0 ,RE t J t t t A+ += - (3.24)

where A is the amplitude of incident pulse. Eq. 3.23 suggests a function with two variables J(τ,t)

which is to be called the time-dependent pulse response function (PRF) of the system.

If monochromatic light with amplitude A·exp(iωt) is incident on the system, Eq. 3.24

takes on the form

( ) ( ) ( ), expRE t J t A i tw w+ += % (3.25)

where ( ),J tw+%  is the Fourier transform

( ) ( ) ( )
0

, , expJ t J t i dw t wt t
+¥

+ +
-= -ò% (3.26)

( ),J tw+%  is called the time-dependent frequency response function (FRF) of the system.

In the special case of a stationary system, which means that J(τ,t) and ( ),J tw+% are independent

from the temporal variable t, Eq. (3.25) transforms to Eq. (3.20) and describes a monochromatic

wave.

In principle, it is possible to determine the response functions of the generally non-

stationary  system  in  two  ways:  (i) the system is irradiated by monochromatic light with

frequency ω and the reflected signal is measured as a function of t and ω; (ii) sending δ-pulses at

various times t0 onto the system, the electric field of scattering signal is measured as a function

of t and t0..



34

As shown in Fig. 3.1, the measured reflectivity of a Si/C multilayer during the low-intensity

FLASH pulse is in agreement with that measured with synchrotron radiation, if the flux is

substantially below the damage [39, 40].

Fig. 3.1 Low-fluence reflectivity as a function of the off-normal angle of
incidence measured at FLASH. Overlaid is the data measured at the synchrotron
[39, 40].

Thus, in the case of low-intensive ultra short FEL pulse, the FRF function demonstrates the time-

independent behavior and can be pre-determinate by the synchrotron radiation. The increase of

flux  above  the  critical  value  (in  this  case,  0.1J/cm2 [39]),  lead  to  an  increase  of  the  role  of

different excitation processes inside materials and the FRF function will change during the

interaction (Fig. 3.2).

Fig. 3.2 Reectivity as a function of the off-normal angle of incidence θ at higher
uences [39]

The change of maximum reflectivity for a larger range of fluence is shown in Fig. 3.3 The

reflectivity of the Si/C multilayer decreases somewhat with increasing fluence. The calculations



35

in [39] show that the opacity of silicon increases with temperature due to enhanced two-photon

absorption, leading to a reduced penetration length of the light into the multilayer and a reduced

reflectivity. It was obtain that the reflectivity drop by a factor of about 0.5 at the end of the pulse.

The pulse-averaged reflectivity drops by a factor of 0.2 only, as indicated in Fig. 3.3.

Fig. 3.3 Reflectivity of Si/C multilayer over angles between 44 and 47 degrees as a
function of pulse fluence measured at FLASH for 32 nm wavelength [39].

In this work [39], the authors measured the fluence dependent damage of the multilayer by

numerical simulations in terms of a hot dense plasma model. Since the sample enters in the state

of warm-dense matter (WDM), which is generally not very well understood, the physical models

originally developed for hot dense plasmas needed to be extended into the WDM regime.

The standing-wave intensity distribution inside the multilayer structure could be

calculated using standard methods for continuous radiation based on the Fresnel equations (see,

Chapter  4).  These  time-independent  models  are  applicable  as  long  as  the  time  for  the  light  to

propagate a few attenuation lengths (~2 fs) is much shorter than the pulse length (~25 fs). Hau-

Riege S.P. et. al. [39] applied multiplicative correction factors to the opacities based on the XSN

opacity model—an average-ion screened-hydrogen model [41]. The correction factors were

calculated from the ratio of the XSN opacity at a given temperature and density relative to the

XSN opacity at room-temperature and solid density. The index of refraction was obtained from

the opacities using the Kramers-Kronig dispersion formula.
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From this paper one can conclude, that in case of low-intensive FEL pulses, the scattering

properties of periodical multilayer are similar to the case of continuous radiation. On other the

side, in case of the high-intensive FEL pulse, the scattering properties of periodical multilayer

are time-dependent functions and depend on the parameters of incident pulse, such as the

temporal and spectral structures, and the fluence. This behavior cannot be described in terms of

existing theories.

3.2.1. The time-dependent power spectrum

The spectral and temporal properties of a non-stationary light signal are adequately described by

the time-dependent power spectrum (TDS) which was first introduced by Page [42].

Alternatively, the Wigner distribution function is used to represent the propagation of light in

media [38, 43].

The time-dependent power spectrum is related to the time-dependent correlation function

R(t,t-τ) by

( ) ( ) ( )
0

, , exp . .B t R t t i d c cw t wt t
+¥

= - - +ò (3.27)

where c.c. is complex conjugate and R(t,t-τ) is given by

( ), ( ) ( )R t t E t E tt t+ -- = - . (3.28)

The brackets indicate an ensemble average. Because B(ω,t) is  an  even  function,  the  “+”  or  “-“

symbol of B(ω,t) is omitted. From B(ω,t) we can derive the intensity I(t) and the time-dependent

energy spectrum S(ω,t) by integration
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Starting from Eq. 3.23, after interaction with the system, BR(ω,t) is found to be

( ) ( ) ( ) ( ), / 2 ' ' ', ', , ', '
t

R BB t d dt J t t t B tw p w w w w w
+¥

-¥ -¥

= - -ò ò (3.30)
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In the general case of a full non-stationary system, it must be described by the TDS response

function ( )', ', ,BJ t t tw w w- -  + c.c., which is a function of four variables. In the general case,

this function can not be determined experimentally if, instead of the field strength amplitude,

only the TDS in connection with a detector can be measured. For instance, applying a δ-function

at time t0, Eq. 3.30 leads to

( ) ( ) ( ) ( ) 2
0 0

0

, , , exp . .RB t J t t t J t t t i A d c cw t t wt t
¥

+ -= - - - - - +ò (3.32)

In the case of a monochromatic wave, BR(ω,t) is

( ) ( ) ( ) ( )( ) 2
0 0 0

0

, , , exp . .RB t J t J t i A d c cw w w t w w t t
¥

+ -= - - - +ò % % (3.33)

Nevertheless, if both the TDS and the PRF or the FRF are “quasi-stationary” (these functions

must not change during a time interval of the order of the greater correlation length of the

functions) [36, 37], the Eq. 3.30 takes on the simple form

( ) ( ) ( )2
, , ,RB t J t B tw w w+= % (3.34)

The function

( ) ( ) 2
, , ,t J tJ w w+= % (3.35)

describes the time- and frequency-dependent reflectivity (or transmittance) under quasi-

stationary conditions.

3.2.2. Bandwidth limited Gaussian-shaped pulse

In this section we deal with an example that is important for spectroscopy with ultra short-time

pulse. A single pulse with analytical signal of the following form

( ) ( )2
0 0( ) exp / expAE t A t T i tw- é ù= - -ë û (3.36)

In this case, the TDS and the correlation function R can be calculated numerically from Eqs. 3.27

and 3.28, respectively. In Fig. 3.4 the time-dependent spectrum B(ω,t) is  shown  as  a  two-

dimensional function of time and energy. It can be seen that for t>tmax, negative values of B(ω,t)

are possible (dark blue fields on Fig. 3.4) and the maximum of the function is shifted to t=TA/π

(in our case ~2fs).
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Time-dependent power spectrum (TDS)
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Fig. 3.4 The time-dependent spectrum of the a Gaussian bandwidth-limited pulse

In the second example, a train of two spikes with Gaussian profile was investigated. Both spikes

have the same central frequency and are separated in time by 10 fs. In this case the TDS profile

for 1st peak doesn’t  change, but the profile of the TDS function of 2nd peak charges due to the

interaction from side of 1st spike (Fig. 3.5). If the distance between the peaks becomes large, the

two independent profiles of the TDS function with temporal shift will be obtained where such of

is similar to Fig. 3.4.

 In the last example of the two spikes with the slightly different central frequencies and a

small temporal shift is considered. This situation corresponds to a FLASH pulse which consists

of  few sub-pulses  (“spikes”)  with  slightly  different  frequencies.  In  this  case,  the  TDS function

shows a more featured profile (Fig. 3.6). The TDS function consists of two peaks (1 and 2 in Fig

3.6) with respect to two incident Gaussian spikes, and the profiles of both peaks are similar to

profile  of  single  spike  (Fig.  3.4).  Additionally  there  are  special  areas  close  to  these  peaks  (red

and blue spots on Fig. 3.5) describing the interaction between these pulses.
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Time-dependent power spectrum (TDS)
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Fig. 3.5 The time-dependent spectrum of the combination of two Gaussian pulses with

equal central frequency.
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Fig.3.6 The time-dependent spectrum of the combination of two Gaussian pulses with
different central frequencies.
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3.3. Ultrafast processes

The extremely high photon densities of FEL radiation modify the scattering properties

drastically, down to complete destruction [15, 40]. Significant changes may take place also

during the pulse propagation. The FEL pulse is diffracted in an alternating media, due to the

action  of  FEL  radiation  itself.  Therefore,  the  situation  can  be  described  as  an intrinsic pump-

probe experiment since the same pulse serves as the pump and probe simultaneously.

Some understanding of the processes under investigation can be gained from fs- optical

laser pump – fs X-ray probe experiments. Such experiments were performed intensively during

last decade and provided unique information about atomic dynamic on natural atomic time scale

[44, 45]. In work [45], the authors used the correlated and synchronized FEL pulses with

separate optical lasers, to obtain the changes of the optical reflectivity in GaAs induced by

femtosecond X-ray excitation

It is expected that induced by a FEL pulse a large number of core electrons become

excited from the electronic ground state into excited states or vacuum. This instantaneous

redistribution changes the optical properties of the material during the interaction with the FEL

pulse due to the change of the (elastic) atomic form factors and (inelastic) X-ray absorption. A

time depended X-ray atomic form factor within single and multiple electronic excitations

followed by description of a highly ionized crystalline matter state within few femtoseconds are

necessary  to  consider  as  well.  At  the  same  time,  several  kinds  of  fast  electronic  redistribution

processes, such as Auger recombination and photoelectron excitations will appear within a time

scale similar to the length of the FEL pulse. These processes will change the scattering behaviour

of the matter without the change of the atomic sub-structure and will play an important role for

description of FEL intensities below or close to the threshold of matter destruction.

3.3.1 Single atom scattering properties
In contrast to the optical range of wavelength, the energy of X-ray photon is high enough to

perform one-photon ionization process producing ions in the core-hole state. The excited ions

relax via Auger  decay  within  tens  of  fs,  the  time  comparable  to  the  FEL  pulse  duration.  The

scattering properties of the atom depend on its state, which can be calculated on the basis of

perturbation theory utilizing the corresponding cross-sections. The reason to use the perturbation

theory is a minimization of the ponderomotive energy [46], which is inversely proportional to the

square  of  the  radiation  frequency.  The  perturbation  theory  can  be  applied  in  the  form  of  rate

equations connecting the occupancies of atomic states under interest, the transition rates being

dependent on the external field intensity and corresponding cross-sections [15, 47, and 48]. This

approach described successfully the observed highly ionized states of the atom of xenon [46],
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and on its basis several problems concerning FEL radiation were considered theoretically [47,

49].

3.3.2 Optical properties of solids
The interaction of the FEL pulse with solids is a complicated phenomenon [39, 51, 52]. The

absorption of X-ray field takes place mainly due to bound-free (photoionization) and free-free

transitions. At high fluencies almost all atoms become ionized with a core hole [50], and the

photoelectrons together with valence electron form plasma with temperature up to tens of eV.

The excited hollow ions recombine mainly via Auger process during time comparable with the

pulse length, the yielding electrons with energies up to hundred of eV, leading the solid in the

extreme regime of warm dense matter (WDM). After approximately a picosecond time, the

electrons and ions start to thermalise. The opacities during the pulse propagation were calculated

in [51, 39] based on plasma approach, the consequences of the calculation were in agreement

with  the  experimental  data.  In  [50]  it  was  shown  on  the  example  of  aluminum  under  92.5  eV

irradiation that for high fluencies, the saturable absorption takes place. After the electron is

ejected from the L shell, the L edge is increased due to reduced screening and the absorption

coefficient is heavily reduced. The theoretical calculations based on this scenario provided

excellent agreement with the experiment.

In a series of works [53, 54], the problem of intense x-ray pulse propagation in the

amorphous and periodic media was considered on the basis of two-level atom concept adopted

from quantum optics and radiofrequency spin transitions [55, 56]. In this approach, the atom is

considered to have two discrete levels with known transverse and longitudinal lifetimes and is

described by the Bloch equations for the density matrix; the field is treated classically. The

resultant so-called Maxwell-Bloch system of equations can be integrated analytically in some

cases. In particular, the soliton-like solution is obtained for the Laue diffraction [53], Green

function is found for small-area pulse propagation in a homogeneous media and self-induced

transparency is predicted [54]. The application of such approach is strongly restricted to

frequencies  close  to  the  transition  to  a  discrete  energy  state,  but  in  the  X-ray  domain  the

transitions to continuum take place, as a rule, and the two-level atom concept hardly can be

generalized to deal with this case except for some exotic phenomena like resonant Auger effect

[57]. In contrast to the optical properties (transmission and absorption) the behavior of coherent

properties, leading to the Bragg diffraction, has not been considered and needs further

investigations.
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Chapter 4

Different approaches of X-ray reflection from multilayers

In last Chapter, I have demonstrated that the scattering properties of multilayer expected for low-

intensive FLASH pulses can be compared with the ML reflectivity obtained with continuous

radiation. Both can be described by the traditional methods. In this Chapter, several approaches

of the calculation of reflectivity from the multilayer structures will be presented.  All methods

are based on the electromagnetic theory and Maxwell’s equations, and present the solution of the

wave equation.

By these methods one can solve these equations for different problems: for example, the

calculation of reflectivity of MLs (Parratt recursive method,  slowly varying amplitude

approximation), the reconstruction of the electron profile of ML (transfer matrix and the

eigenwave methods)  and  the  interaction  of  time-dependent  incident  radiation  with  ML  (FDTD

method). In the latter case, the problem is partly discussed in the previous Chapter. All these

methods are widely applied in practice and demonstrate good agreement with experiment using

the continuous synchrotron radiation.

In the second part of this Chapter, a specific type of the multilayer structure will be

described. Special attention will be paid on sliced multilayer grating structures (SMG), which

combine the properties of a usual periodical multilayer with a grating structure. This structure

has a high dispersion and light diffraction efficiency.

4.1. Reflectivity properties of the periodical multilayer X-ray mirrors

The reflection of the incident radiation at the boundary of two optically inhomogeneous media is

the most widely used effect in optics. Various polarizers, focusing lenses, the interference

instruments  and  coatings  are  applied  in  different  field  of  science  [58].  One  of  the  widely  used

optical elements is the periodical multilayers. A ML (Fig. 4.1) is a stack of layers of (at least)

two alternating materials of which one material has a low refractive index (high δ, dark layers)

and the other material has a high refractive index (low δ, white layers).

From Fig. 4.1, the basic principles are evident: at each interface between the two

materials a (small) part of the incoming radiation with wave vector ki is reflected in direction of

wave vector ks and the remaining part is transmitted. At the first interface (vacuum/ surface)

internal reflection occurs. This is due to the fact that the refractive indices for X-rays of nearly

all materials are below unity, which is in contrast to visible light. At the next interface (high δ/

low δ) external reflection occurs. This also adds an additional phase shift of 180º to the reflected



43

radiation. By carefully the layer thicknesses selection of all the reflected radiation will add up in

phase.

Fig. 4.1. Diffraction from a multilayer structure.

This is accomplished when the thickness d of  each  period  (the  combination  of  two  layers)

satisfies the Bragg equation:

2 sineffm dnl q= (4.1)

where m is integer number representing the Bragg order.

From  the  Bragg  equation  it  is  also  evident  that  a  ML  is  a  dispersive  element:  each

wavelength is reflected at one particular angle only, for each Bragg order. However, this assumes

an infinite number of periods, which is practically not feasible. As consequence of the limited

number of periods, a specific wavelength is reflected within the small angular range Δθ.

Therefore, each mirror can be characterized using its reflectivity R and the angular selectivity θ/

Δθ. Alternatively, one might also select a fixed angle, and look at the wavelength range Δλ

reflected at this angle. Then it can be expressed as a wavelength selectivity λ/Δλ. The reflectivity

of a multilayer structure can be calculated using several theoretical models.

We will consider the structure of the multilayer composed on N repetitions of a single

bilayer of thickness d formed from one layer of material A followed by another material B, as

shown in Fig. 4.1. The layers are assumed be infinity perpendicular to the positive z axis.  No

assumption is made about the crystallographic detailed structure of A and B, so that the formulas

are equal for both amorphous and crystalline materials: only matters of electron density contrast

between the materials A and B.

4.1.1. Parratt recursive method

Let a plane monochromatic wave of X-rays be incident on the multilayer from vacuum (θ is the

grazing angle, λ is the wavelength in vacuum) and has a wave vector k in the plane (x,  z) with

positive kx and kz components  (see  Fig.  4.2).  At  the  boundaries  the  plane  wave  is  refracted  and

reflected. As a result two plane waves exit in each layer, a refracted and a reflected one. These

waves have just the same kx components of the wave vector in all the layers but the kz components
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have opposite signs in the two waves and, moreover, they differ from one layer to another. Thus,

the vector of electric field in the layer with number j has the form:

( ) ( )( , , ) ( , ) exp expi z r z
j j j j jE x z t E x t E ik z E ik zé ù= + -ë û (4.2)

where E(x,t)=exp(ikxx-iωt), Ei
n and Er

n are the amplitudes of refracted and reflected waves for

the jth layer (Fig. 4.2).

Each of them is the solution of the Maxwell’s equations in a homogeneous medium with

the refractive index nj=1-δj+iβj. This equation determines the value of kz as:

: ( ) ( ) ( )2 2 22 2 2 2 2 21 2 2z
j j x j j x z j jk n k k i k k k k i kd b d b= - = - + - @ - + (4.3)

where k=ω/c=2π/λ is wave vector in vacuum. As follows from Eq. 4.3., kz differs in various

layers due to values of refractive index nj.

Fig. 4.2. Schematic of a multilayer which here is a stack of bilayer.

Maxwell's equation determines the wave vector only but not the wave amplitudes. They

are determined by boundary conditions. In case of s-polarization the amplitudes Ei
n and Er

n have

only  a y-component perpendicular to the scattering plane. The layers below will be numbered

from the bottom of the structure to the top in the direction of the reflected wave (Fig. 4.2). The

conditions of continuity for the electric and magnetic fields at the boundary between the layers

with numbers 1 and 2 can be written as

2 2 1 1
2 2 2 2 1 1 1 1

2 2 1 1
2 2 2 2 2 1 1 1 1 1
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è ø è ø è ø è øî þ î þ

  (4.4)
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where dj are the thickness of the j-th layer, and the amplitudes in each layer are determined for

the middle line of the layer. If the amplitudes Ei
2 and Er

1 are known, the amplitudes Ei
1 and Er

2

can be derived. The solution of this problem can be written in the form
(1)

2 22 2 21 1
(2)

1 12 2 11 1

r i r

i i r

E r E t E
E t E r E

= +

= +
(4.5)
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The wave propagation in the substrate (j=0) can also be presented in such a form by setting d0=0

and Er
0 =0. It is means that in the substrate there are only inward-propagating waves. Now this

approach should be expanded to any layer to obtain the recurrence relations:

( ) ( )
( ) ( ) ( )

1 1 1 1 1 1

1 1 1 1 1 1 1

0

exp exp

exp exp

0

i r i z r z
j j j j j j j j

z i r z i z r z
j j j j j j j j j j

r

E E E ik d E ik d

k E E k E ik d E ik d

E

- - - - - -

- - - - - - -

ì + = - +
ï
ï é ù- = - -í ë û
ï

=ïî

(4.7)

The recurrence relations describe completely the process of the electromagnetic wave reflection

and transmission from multilayer structures. The relations (4.7) can be expressed using the

reflection and transmission factors rj and tj:

r
j

j i
j

E
r

E
= ; 1

i
j

j i
j

E
t

E
-= (4.8)

The recursive relations for rj and tj are derived directly from (4.7) and (4.8)
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The quantities rF
j and tF

j in (4.9) are the amplitudes of the reflection and transmission factors at

the j-th interface defined by the Fresnel formulas:

1
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j z z
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j z z
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. (4.10)

If the structure consists of one layer, the Eq. (4.9) transform into the well-known expressions for

the single-film reflectivity and transmittance [2, 58]. In the case of π-polarization radiation it is

convenient to consider the magnetic field instead of the electric one.

The recurrence procedure (4.9) starts from the substrate side (j=0), the values of r0 and t0

at the interfaces are calculated consecutively, and the reflectivity R and transmissivity T for the

entire multilayer are, evidently, equal to

2

2 0

0

Re
sin

N

z

N z

R r

kT t
k q

ì =
ï
í ì ü

= í ýï
î þî

(4.11)

Thus, Eqs. 4.9-4.11 allow solve numerically the problem of reflection of an electromagnetic

wave from an arbitrary multilayer structure (including non-periodic structures) for any

wavelength λ of the incident radiation and any incident angle θ.

4.1.2. Transfer matrix method

The transfer-matrix method (TMM) is a method used in optics to analyze the propagation of the

electromagnetic field through a stratified layered medium. This is, for example, relevant for the

design of anti-reflective coatings and dielectric mirrors. For structures not consisting of discrete

layers (e.g. diffuse boundaries) exact solutions cannot be calculated and the structures have to be

approximated by a series of small layers having sharp boundaries. A good approximation might

require more then one hundred layers per period, which makes the calculation much complex

time consuming. In this case, the TMM [58], a variant on the recursive method, has proven to be

much easier to use, because it takes full advantage of the periodic structure of a multilayer.

The reflection of light from a single interface between two media is described by the

Fresnel equations. The TMM is based on the fact that, according to Maxwell's equations, there

are simple continuity conditions for the electric field across the boundaries from one medium to

the next one. If the field is known at the beginning of the layer, the field at the end of the layer

can be derived from a simple matrix operation. Then a stack of layers can be represented as a
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system matrix, which is the product of a individual layer matrices. The final step of the method

involves converting the system matrix back into the reflection and transmission coefficients.

Eqs. 4.7 constitute a linear transformation of discrete variables, i.e., the amplitudes Ei
j

and Er
j may be rewritten in the form of an equivalent matrix expression:
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Here Sj is a 2x2 transfer matrix with det S=1 and aj is a scalar
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By consecutively application of expression (4.12), the relation between the amplitudes of

incident wave reflected from the multilayer and the wave that travel into substance are

0

0 0 0

i iN N
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j jr
j jN
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E = =
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Õ Õ . (4.14)

In terms of the elements of the transfer matrix S (see Eq. 4.13) and using Eq. 4.14, the

reflectivity and transmittivity can be written in the following form:
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11

sR
s

= , ( ) 1

0 02
11

1 Re z zT k k
s

-
= . (4.15)

Eqs. 4.13-4.15 are completely equivalent to the Eqs. 4.9-4.11. The TMM is a very useful

algorithm and appropriate for reflectivity and transmission calculations of any multilayer

structures. This method is applicable for either real or complex refractive index and can handle a

large number of layers in a multilayer structure. In addition, these layers can be ordered in

arbitrary manner and there is no requirement that they should be periodic. Even if they are

periodic, the repetition unit must not be composed of two layers only, but of any number of

layers. There is also no restriction on the thickness of any layer. The thickness and the refractive

index of each layer can be defined independently. This makes the TMM most suitable for

modelling structures formed by different periodic multilayers stacked together, even if they are

not fully periodic. This approach can handle structures having a high index contrast between
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their two composite materials. This makes the TMM suitable for modelling multilayer structures,

which usually have a high index contrast between their composite materials.

The TMM has also some drawbacks. For example, it assumes that a plane perpendicular

to the direction of propagation is infinite, meaning that each layer in a multilayer structure

extends infinitely in both directions. Of course, this is unrealistic, so the layers of the sample

have to be sufficiently wide to avoid errors from this assumption. The TMM calculates the field

throughout the structure by propagating it from one layer to the other by matrix relations. The

resolution depends greatly on the computational speed. A mathematical expression is missing

that can relate the field between multiple layers, which would reduce the mathematical

calculations required and, consequently, the computational time.

Another drawback of the TMM is that it is limited to continuous wave propagation and

can not handle pulse propagation. To model pulses, the TMM must be combined with the Fourier

Transform. Therefore, modelling of a pulse structure of incident beam requires other techniques

such as the Finite Difference Time Domain (FDTD) method.

4.1.3. Finite Difference Time Domain method

The FDTD method is a popular technique for modelling problems of electrodynamics (see, for

example, [59-61]). In general, this approach belongs to the class of grid-based differential time-

domain numerical modelling methods and describes the interaction of different electromagnetic

waves (such as a monochromatic plane wave or ultra-short pulse) with a frequency-dependent

layered media. The time-dependent Maxwell's equations (in partial differential form) are

discretized using the standard central-difference approximations to the space and time partial

derivatives:
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For simulation in one-dimensional free space case, the time is specified by the superscripts, i.e.,

“n” actually means a time t=Δt·n.  The  term  “n+1”  means  one  step  later  in  time.  The  terms  in

parentheses represent a distance, i.e., “k” actually means the distance z= Δx·k. The approach

assumes that the E and H fields are interleaved in both space and time. For the H field are use

the arguments “k+1/2” and “k-1/2” to indicate that the H field values are located between the E

field values. Similarly, the “n+1/2” or “n-1/2” superscript indicates that it occurs slightly after or

before n, respectively.

Eq. (4.16) can be rearranged by an iterative algorithm



49

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1/2 1/2 1

0

1 1/2 1/2

0

1/ 2 1/ 2

1/ 2 1/ 2 1 .

n n n n
x x y y

n n n n
y y x x

tE k E k H k H k
x

tH k H k E k E k
x

e

m

+ - +

+ + +

D é ù= - × + - -ë ûD

D é ù+ = + - × + -ë ûD

(4.17)

Notice that the calculations are interleaved in both space and time. In Eq. (4.17), for example, the

new value of Ex is calculated from the previous of Ex and the most recent values of Hy. This is

the fundamental paradigm of the FDTD method.

Now we can examine more complex case – the distribution EM wave inside the

frequency-dependent materials. For example, many materials show a strong frequency-

dependence of optical properties in soft X-ray range. Now we can write the Maxwell equations

in more general form
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where D is the electric flux density. Notice that Eq. 4.18 is written in the frequency domain. The

next step is to transform these equations and the frequency-dependent dielectrical constant of

medium into the time domain using (i) inverse Fourier transform (inverse task of Eq 2.3) (ii) in

case of complex form of dielectric constant, the Z-transform (a discrete equivalent of the Laplace

transform, see Appendix C). About the first case, we can use the analogous approach described

in  the  previous  chapter,  but  transform  to  time  domain.  In  second  case,  we  transform  into  a

complex frequency-domain (Z-domain). For example, we have the problem of calculating E in a

resonant media described by Debye model:
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We use the Z-domain to avoid problems with the convolution integrals in the time domain:
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Other equations from Eq. 4.18 also should be transformed into the Z domain, and finally, we can

describe the distribution of EM wave inside frequency-depend medium. Various types of

frequency-depend media were described in literature (for example, [60]).

The basic FDTD space grid and time-stepping algorithm was developed by Kane Yee

(1966) [62]. Since about 1990, FDTD techniques have emerged as a computational model for
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many scientific and engineering problems dealing with the interactions of EM wave with various

structures. Current FDTD modelling applications range from near-DC (ultralow-frequency

geophysics involving the entire Earth-ionosphere waveguide) through microwaves (radar

signature technology, antennas, wireless communications devices, digital interconnects,

biomedical imaging/treatment) to visible and VUV range (photonic crystals, nanoplasmonics,

solitons, and biophotonics). But, there is a limit of the simulation due to the interconnection

relation of time- with space meshes, well-known as the Courant–Friedrichs–Lewy (CFL)

condition:

,c t C
x

× D
£

D
(4.21)

where the constant C depends on the particular equation to be solved and not on Δt and Δx, and c

is speed of light. From CFL condition (Eq. 4.21), for case the interaction of FLASH pulse with

layered structures (the duration of pulse is ~10 fs, and the size of ML is ~100 nm), the mesh size

Δx is chosen ~Å and the time step, Δt must be few as. In result, the FDTD method can be applied

to describe the interaction of fs pulses with nm-objects in 1D or 2D space, if we have

information about time- and frequency dependent reflectivity of these objects.

4.1.4. Slowly varying amplitude approximation (SVA)

The propagation of incident plane wave in multilayer structure is based by the coupled-

wave equations, derived from Maxwell’s equations. The coupled-wave equations describing

optical parametric amplification are usually solved in the slowly varying amplitude (SVA)

approximation, in which the second-order derivatives of the amplitudes are ignored and the

effects at the exit face of the medium are not considered.

In order to determine the EM wave within the ML and the reflectivity and transmittance,

one should solve a wave equation which, in the case of s-polarization, has the form

( )
2

2 2
2

( ) ( ) sin ( ) 0d E z k z E z
dz

e j+ - = , (4.22)

where k=ω/c=2π/λ is the wave numbers in vacuum; ε(z)=1 at z<0; ε(z) is permittivity and  ε (z)=

εsub at z>L, where εsub is permittivity of the substrate; L is thickness of multilayer structure and is

equal Nd; N is the numbers periods of multilayer, d is the thickness of a period and φ is incident

angle. The behaviour of permittivity ε(z) at 0≤z≤L is shown in Fig. 4.3.
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 Fig. 4.3. A two-component periodical multilayer mirror with N periods. d and Γ are period and thickness ratio
of multilayer, respectively.

In this approach the permittivity ε(z) expands into a Fourier series. Expansion of the function ε(z)

into solely cosine terms implies that the function is even, i.e., one assumes that at the multilayer

surface there is a material layer of half thickness compared to that in bulk as  shown  in Fig.  4.3.
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where ε0=Γε1+(1-Γ)ε2 is the permittivity averaged over the period.

In general case, where the function ε(z) contains  sine   and  cosine  terms   the  reflected  and

transmitted waves are changed by an additional phase shift amplitudes. However, the intensity of

the reflection and transmission remain unchanged.

The  wave  field  inside  the  multilayer  can  be  presented  in  the  form (the  case  of  the  two

strong waves)

( ) ( )0( ) ( )exp / ( )exp /mE z f z i jz d f z i jz dp p= + - , 0≤z≤L. (4.24)

The wave equation (4.22) can be rewritten to coupled equations using the Eqs. (4.23) and (4.24),

for the amplitudes of electromagnetic waves f0 and fm as
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where ΔF(z) represents the sum of rapidly oscillating functions with periods d/l (l=1,2,..). In the

case of resonant interaction of the incident wave with the multilayer, the amplitudes f0,m are

slowly oscillating functions, and the second derivatives in the Eq. (4.25) can be ignored. Also,

the rapidly oscillating term ΔF(z) on the right-side of these equations may be discarded

(formally, these equations  may be averaged over the period). Eq. (4.25) is rewritten using this

approximation as
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The boundary conditions are

0 (0) 1
( ) 0m

f
f L

=ì
í =î

(4.27)

The first condition of the Eq. (4.28) means that a wave with amplitude of unity incident on the

multilayer; and a second condition shows that there is a reflected wave in the substrate

propagating inward only. The reflectivity and transmittance are expressed in terms of solution of

Eqs. (4.26) and (4.27) as
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mR f
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The Eqs. (4.26) with boundary conditions Eq. (4.27) are a set of first-order differential equations

with constant coefficients and can be solved by a conventional methods (see, Finite Element

Method) [63, 64]. This approach is a numerical technique for finding approximate solutions of

partial differential equations (PDE) as well as of integral equations. The solution approach is

based  either  on  eliminating  the  differential  equation  completely  (steady  state  problems),  or

rendering the PDE into an approximating system of ordinary differential equations, which are

then numerically integrated using standard techniques such as Euler's method, Runge-Kutta, etc

[65].

4.1.5. Analytical method by eigenwaves

One of the methods of the calculation of the X-ray reflection and diffraction from periodical

multilayers is based on the possibility to express the Bloch eigenwaves of one-dimensional

periodical infinite ML through the solutions of X-ray scattering problem within the single basic

element composing the ML period [66]. For ML with a limited number of periods, these Bloch

eigenwaves can further be used along with the boundary conditions for the whole layer stack.

This result can be presented by an analytical expression for the EM field and integral reflection

coefficient at any point of the sample, without the need to address the recurrent equations. This

approach was named as a ‘‘method of eigenwaves’’

(MEW). This approach develops the TMM expressing the total reflection coefficient in

analytical form, and reduces the calculation time in comparison with the direct solution of

Parratt’s recursive equations.
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In the work of I.  D. Feranchuk et al [66] the analytical  solution for the reflectivity of a

ML was proposed, which is the analytical solution of the recursive Parratt’s equations (see, Eqs.

4.9-4.11). However, the computer time required for these both simulations are essentially

different, especially when the number of multilayer periods is large. The numerical solution of

the Parratt’s equations involves ≈ 4N+1 operations, which increases the simulation time

exponentially. On the other side, the time to calculate reflectivity using the MEW approach

increases as a power law with increasing N. This advantage of MEW is even more pronounced

for the experimental data fitting routines, which requires simulation of the X-ray reflectivity

many times during the trial-and-error procedure.

This method also delivers the analytical expression for wave fields in all layers of the ML

without  solving  of  recurrent  equations.  This  is  essential  in  the  cases  when the  wave  fields  are

used to calculate the matrix elements of perturbation operator. For example, these wave fields

can be used for simulation of diffusely scattered X-ray intensity by means of the distorted-wave

Born approximation.

4.2. Approach for sliced multilayer gratings

One of the important applications of modern X-ray optics is X-ray spectroscopy, which requires

spectral optical elements with high dispersion and high diffracting efficiency. In spite of the

obvious progress in technology, the holographic and multilayer coated gratings are still

restricted. One of the perspective multilayer structures, containing the properties of the grating

and the periodical multilayer is the sliced multilayer grating (SMG) (Fig. 4.4), also known as a

lamellar multilayer amplitude grating (LMAG), which can be fabricated by cutting the multilayer

structures by a certain angle, as the solution of this problem [67-70].

From multilayers the SMG inherit the high diffraction efficiency in the resonant order

and very short periods lead to a high angular dispersion. These remarkable dispersion properties

of  the  SMG allow the  development  of  compact  spectrometers  and  polarimeters,  which  may be

useful in plasma spectroscopy, astrophysics, material science and biology. These structures can

be fabricated by polishing the MLs at an angle a  (sliced angle). This has the additional

advantage that the surface grating appears in addition to the strong Bragg reflection. Whereas the

Bragg reflection probes the bulk scattering of the ML, the grating peaks are created by scattering

at the surface relief.
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Fig 4.4. The scheme of a SMG, where α is slicing angle, D is grating period.

Any  SMG  obey  the  same  general  principles  as  usual  grating.  To  determine  the  angles  of

diffraction orders, the usual grating equation [70, 71] can be used

(sin sin )nD nj j l- = ,     n=0,±1, ±2,…, (4.29)

where λ is wavelength, φ is an incident angle to normal, φn are  diffraction  angles,  and D is

grating period. However, the SMG can be considered from different points of view. Since, the

SMG is based on multilayer coatings one can expect that the maximum of diffraction efficiency

should appear, when the resonant Bragg condition is satisfied. In terms of SMG (Fig. 4.4) it can

be written as

2 cos( )d mj a l- = ,   m=0,±1, ±2,…, (4.30)

where d is the multilayer period and α is sliced angle. The beam specularly reflected from the

layers has evidently the angle (“blaze condition”)

.mj a j a+ = - . (4.31)

In  the  work  of  A.  Sammar et. al. [67], it was shown, that the scattering intensity of the these

structures in so-called kinematical theory can be written as
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with,

( )2 sin sinx n
pq j j
l

= - (4.33)

and for the reflection case
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( )2 cos cos .z n
pq j j
l

= + (4.34)

NSMG is the number of bilayers in the stack, and Ng the number of illuminated grating periods.

If a multilayer consists from two materials: material A with dielectric constant εA and

thickness dA, and material B with dielectric constant εB and thickness dB:
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where γ is the ratio of the thicknesses.

By combining Eqs. (4.29) and (4.30), it yields the Bragg condition for the SMG [67]:
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For the accurate calculation of the diffraction pattern, and in particular for the diffraction

efficiencies, the wave equation in SMG can be solved in the SVA approximation described

above for usual periodical structures. The numerical solution in the multi-wave approximation

was described in the work of R.M. Fechtchenko et. al. [69].  On  the  other  hand,  the  theory  of

reflection  and  transmission  of  the  SMGs  in  an  approximation  of  two  strong  waves  was

considered in [70]. As a result, the amplitudes of reflected waves into the zero and mth orders

can be obtained if the diffracted wave of the mth order was neglected that propagates into a

multilayer
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where

( )2
2

01 sin ( ).m
m zd

lk j= - - + Î (4.38)

In soft X-ray range, the dielectric constants can be described as 1+ 1Î  and 1+ 2Î , then each

values may be expanded in a Fourier series, which inside SMG are:
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when
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The theoretical and first experimental results [70-72] have shown that SMG can be used to

construct the X-ray spectrometers with high dispersion and diffraction efficiency. In spite of

relatively narrow spectral band SMG can be useful when one need to resolve many spectral lines

crowded in a narrow spectral range. Such structures can be applied in a wide wavelength range.

Summarize, the application of multilayer structures for the construction of different

components of the X-ray optical device has become more and more frequent. For  the X-ray

optics,  these structures consist  of  alternating  layers  of high and  low atomic  number

elements. There are different methods to calculate the various properties of such structures: the

reflectivity and transmittance of MLs, the reconstruction of the electron profile, the interaction of

time-dependent incident radiation with ML. These approaches are widely applied in practice and

demonstrate good agreement with experiment using the continuous synchrotron radiation.
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Chapter 5
Optical properties of boron carbide

 Since, the changes in the optical properties of the material in the process of interaction with the

high intensity ultra short FEL pulse easier to detect in the light elements, the boron carbide is a

promising candidate for our investigations in the soft X-ray range. Boron carbide is the

hexagonal phase of the composition B15-xCx, better known as the B4C (other names: tetrabor or

black diamond). This material contains two low Z-elements (boron (Z=5) and carbon (Z=6)).

In this Chapter, the optical properties of boron carbide material inside the periodical

multilayer structure will be analyzed near the K-edges using the obtained experimental data for

the continuous X-ray radiation.

5.1. Boron carbide

In the past 20 years, the B4C films with thicknesses ranging from a fraction of a nanometer to

several nanometers have been put into practice as the constituent layers and the interface barrier

layers  in  reflective  multilayer  optics  working  at  photon  energies  from a  few tens  of  eV in  the

EUV region to hundreds of keV in the hard X-ray region. Such optical devices are used in

various fields of physics, such as solar physics, synchrotron radiation, EUV lithography, and the

X-ray  astronomy.  The  use  of  single-layer  B4C  films  as  reflective  elements  in  the  EUV  region

was first explored by Blumenstock et al. [73]. The B4C is a perspective candidate to use in the

manufacture of X-ray mirrors of the FEL facilities in range of less 2keV.

Boron carbide crystals are the phases of variable compositions, therefore, its properties

depend on many respects on the component ratio. There are several known polymorphs of boron

carbide. The tetragonal (B50C2,  B50C, B48C3,  B51C, and B49C3) and orthorhombic (B8C) phases

are metastable and are of no practical interest [74, 75]. The most stable and, therefore, widely

used boron carbide polymorph is a hexagonal phase of composition B15-xCx,  better  known  as

B4C at x = 3.

The chemical composition of the icosahedron and the linear group has been debated for many

years. In earlier studies [76] the structure of boron carbide led to the proposal that carbon-rich

compositions of the material are composed of B12 icosahedra linked together with C-C-C chains.

Therefore, boron carbide crystals were assigned the composition B12C3 (or B4C).  An experimental

determination of the atomic structure of B4C is still lacking due to (i) neutron diffraction cannot

distinguish B from C because their scattering lengths are too close; (ii) X-ray diffraction has allowed

the identification of a C-B-C chain, but the location of the remaining C atom in the B11C icosahedron

remains unsettled because the X-ray form factors of boron and carbon atoms are also too close.
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Later, nuclear magnetic resonance (NMR) measurements showed that the linear group

contains one or two boron atoms; i.e., its composition is B-B-C or C-B-C [77]. In this case, the

carbon atoms should be incorporated in the icosahedra, and their composition can change from B11C to

B10C2 [78, 79] (Fig. 5.1). Thus, the change in the structure of boron carbide crystals is accompanied by

the substitution of carbon for boron in both linear chains and the icosahedra.

Although the stoichiometric compound is nominally B4C, the boron to carbon ratio can

vary over a broad range by partial substitution of B by C atoms both in the C-B-C chains and in

the  icosahedra.  From  the  viewpoint  of  electronic  structure  (Fig.  5.2),  boron  carbide  is  a  semi-

conductor with a gap dependent on the boron to carbon stoichiometry that can be modified

continuously from ~0.8 eV (carbon-rich) to ~2 eV (boron-rich) [80, 81]. In the work [82] the

authors shown that the two compounds B12(CBC) and B11C(CBC) with a C-B-C intericosahedral

chain are more stable. Other B12-based compounds have also attracted considerable interest

because of their unique combination of structures and properties. The full structural formula of

boron carbide is (B12)x(B11C)1−x(CBC)m(CBB)n(CCC)o(B□B)p (□-vacancy; m+n+o+p = 1; for

B4.3C, o, p = 0) [82, 83].

Fig.5.1 Atomic structure of boron carbide. The boron atoms (green circles) are the equatorial sites. The atoms
(blue circles) are the polar sites, bonded to neighboring icosahedra. The orange atoms (large circles) form the chain.
In B12C3 the atoms in the chain are C-B-C and the icosahedra are B11C with the carbon placed in a polar site.
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Fig. 5.2 Electron structure of boron carbide. Calculated energy bands of (a) hypothetical B12(CBC) and (b)
hypothetical B11C(CBC) [81]. The zero of energy is at the top of the VB, and the dotted line shows the Fermi level.

The band structure calculations on boron carbide are based on the assumption of

idealized structures for well-defined chemical compositions. That means that the specific

hypothetical arrangement of atoms in a well-defined unit cell is occasionally assumed. However,

the real structure consists of a statistical arrangement of differently structured elementary cells.

In  any  case,  their  individual  concentration  is  too  high  to  allow  the  assumption  of  a  small

perturbation of one of them. For example, in the least-disturbed structure at the carbon-rich limit

of  the  homogeneity  range  there  are  100  %  B11C icosahedra and 82% C-B-C and 18% C-B-B

chains. The composition B13C2, which has often been assumed to be an ideal boron carbide, is in

reality the mostly distorted structure in the whole homogeneity range and contains about 60%

B11C icosahedra, 40% B12 icosahedra, 64% C-B-C chains, 18% C-B-B chains and 18% chain-

less cells [83].

5.1.1. Structural properties

It is commonly accepted [80-85], that its structure consists of 12-atom icosahedral units

placed at the vertices of a rhombohedral  unit  cell  and  a  linear  chain  of  three  atoms  along  the

crystallographic c axis. Boron carbide crystals are covalent bounded like diamond, graphite, and

boron simple crystals. The structure of hexagonal boron carbide most closely resembles that of

α-boron (hexagonal modification) [86, 87]. The α-boron structure is described as a somewhat
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distorted cubic close packing of B12 icosahedra linked by six covalent B–B bonds (1.71Å) and

six electron-decient three-center B–B bonds (2.03Å) [86, 88, 89] (Fig. 5.1).

If the B–B bonds in the icosahedra are longer (1.72–1.84Å), the B12 icosahedron  is  a

conventional structural unit of boron crystals. Upon the formation of boron carbide, the close

packing of B12 icosahedra persists. An additional C-B-C group occupies octahedral cavities

between the icosahedra, forming new covalent bonds between the carbon atoms of the C-B-C

group and the boron atoms of the icosahedra. The introduction of the C-B-C group into the α-

boron  structure  induces  substantial  deformation  of  the  icosahedron,  the  α-axis  of  the  unit  cell

increases from 4.91 to 5.60Å and the c-axis decreases from 12.57 to 12.10Å [79, 81]. Due to

internal bonding constraints, no more than two carbon atoms present in any icosahedron. In the

B11C(CBC), one C atom occupies the vertex position of the  icosahedron and externally bonds to

the B atom from another icosahedron. The unit cell volume increases from 262 to 330Å [90], and

the density increases from 2.47 to 2.57 g/cm3. Boron carbide can be described as a layered

structure: the distance between the layers of icosahedra in B13C2 is  4.03Å.  The  centres  of

icosahedra in the layer are at a distance of 5.58Å, and the centres of the polyhedra from the

neighboring layers are 5.16Å apart. The energy of the three centre B–B bonds is lower than the

energies of B–B and B–C bonds, which are substituted in the process of formation of boron

carbide crystal [83, 91]. This fact is responsible for the higher stability of boron carbide crystals

as compared with α-boron crystals.

In general, the most stoichiometric structure of boron carbide is supposed to be

B11C(CBC).  This  means,  that  there  is  a  carbon  atom  forming  a  B11C cluster with an unknown

hybridization and two carbon atoms with a sp3-like hybridization at the extreme of a linear chain.

There are 11 boron atoms forming an icosahedron and one boron atom in the centre of the linear

chain, presumably with an sp2-like hybridization.

5.1.2. Energy-level diagrams for establishing the K-shell binding energy

Atomic and ionic boron have the valence electronic configuration 2s2p1 and 1s22s22p2,

respectively. The energy levels of the ground states for neutral atoms BI (2P0) and ions BII (1S1/2)

and BIII (2S1/2) and excitated state of ion BII (3P0) are shown on Fig 5.3. Also the energy levels

of the ground states for neutral atoms CI (3P0) and ions CII (2P0) and CIII (1S1/2) and excited state

of ion CII (4P0) and CIII (3P0).
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Fig. 5.3 Energy-level diagrams for atomic boron (left) and carbon (right) [92]

The electrons  occupy atomic  orbitals  of  different  energy  levels,  such  as 1s, 2s, 2p, etc.

These orbitals represent the probability distribution for finding an electron anywhere around the

atom. But in our investigation, we deal with the molecular structure of boron carbide. Molecular

orbital theory posits the notion that the electrons in the molecules likewise exist in different

orbitals that give the probability of finding the electron at particular points around the molecule.

Let's consider the bonding in homonuclear diatomic molecule of boron - molecule of the formula

B2.

Before the diagram for B2 will be drawn, we must first find the in-phase and out-of-phase

overlap combinations for boron's atomic orbitals. Then, we rank them in order of increasing

energy. Each boron atom has one 2s and three 2p valence orbitals. Due to the great difference in

energy between the 2s and 2p orbitals, we can ignore the overlap of these orbitals with each

other.  All  orbitals  composed  primarily  of  the 2s orbitals will be lower in energy than those

comprised of the 2p orbitals. Fig 5.4 shows the process of creating molecular orbitals for diboron

by combining the orbitals of atomic boron. For any atom with an atomic number greater than

seven, the p bond is less stable and higher in energy than the s bond formed by the two end-on

overlapping p orbitals.

The three dumbbell-shaped p-orbitals have equal energy and are oriented mutually

perpendicular (or orthogonal). The p-orbitals oriented in the x-direction (px) can overlap end-on

forming a molecular bonding (symmetrical) σ-orbital and an antibonding σ*-orbital. In contrast

to the σ 1s MO's, the σ 2p has some non-bonding electron density at either side of the nuclei and

the σ * 2p has some electron density between the nuclei.
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Fig. 5.4 The molecular orbitals of diboron (from web-site http://www.sparknotes.com)

The other two p-orbitals py and pz can overlap side-on. The resulting bonding orbital has its

electron density in the shape of two sausages above and below the plane of the molecule. The

orbital is not symmetrical around the molecular axis and is therefore a π-orbital. The antibonding

π* orbital (also asymmetrical) has four lobes pointing away from the nuclei. Both py and  pz

orbitals form a pair of π-orbitals equal in energy (degenerate) and can be higher or lower than

that of the σ-orbital (Fig. 5.5.)

Fig. 5.5 Orbital expected (left) and actual (right) diagrams for diboron



63

In B2 the 1s and 2s electrons do not participate in bonding but the single electrons in the

2p orbitals occupy the 2πpy and the 2πpx MO's resulting in bond order 1. Because the electrons

have equal energy (they are degenerate) B2 is a diradical and since the spins are parallel the

compound is paramagnetic. The bonding orbitals of B2 molecule  are  lower  in  energy  than  the

atomic orbitals from which it is composed. On the other side, the antibonding orbitals are higher

in energy (unstable) than the atomic orbitals from which it is composed.

5.2 Near edge X-ray absorption

When the X-rays hit a sample, the oscillating electric field of the electromagnetic radiation

interacts with the electrons bound in an atom. Either the radiation will be scattered by these

electrons or absorbed and excite the electrons.

A narrow parallel monochromatic x-ray beam of intensity I0 passing through a sample of

thickness x (Fig. 5.6) will get a reduced intensity I according to the expression:

( )0ln /I I xm= (5.1)

where μ is the linear absorption coefficient, which depends on the types of atoms and the density

ρ of the material.

Fig. 5.6 Diagram of Beer–Lambert absorption of a beam of light as it travels through a sample of thickness x

At certain energies, where the absorption increases drastically and gives rise to an absorption

edge.  Each  of  such  edges  occur  when  the  energy  of  the  incident  photons  is  just  sufficient  to

cause excitation of a core electron of the absorbing atom into a continuum state, i.e. to produce a

photoelectron. Thus, the energies of the absorbed radiation at these edges correspond to the

binding energies of the electrons in the K, L, M, etc, shells of the absorbing elements. The

absorption edges are labelled in the order of increasing energy, K, LI,  LII,  LIII,  MI,….,

corresponding to the excitation of an electron from the 1s (
2
S.),  2s (

2
S.), 2p (

2
P.),  2p (

2
P3/2), 3s

(
2
S.), … orbitals (states), respectively.
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An X-ray absorption spectrum is generally divided into 4 sections: 1) pre-edge (E < E0);

2) X-ray absorption near edge structure (XANES), where the energy of the incident x-ray beam

is  E  =  E0 ± 10 eV; 3) near edge X-ray absorption fine structure (NEXAFS),  in  the  region

between 10 eV up to 50 eV above the edge; and 4) extended x-ray absorption fine structure

(EXAFS), which starts approximately from 50 eV and continues up to 1000 eV above the edge.

The minor features in the pre-edge region are usually due to the electron transitions from

the core level to the higher unfilled or half-filled orbitals (e.g, s → p, or p → d). In the XANES

region, transitions of core electrons to non-bound levels with close energy occur. Because of the

high probability of such transition, a sudden raise of absorption is observed. In NEXAFS, the

ejected photoelectrons have low kinetic energy (E-E0 is small) and experience strong multiple

scattering by the first and even higher coordinating shells. In the EXAFS region, the

photoelectrons have high kinetic energy (E-E0 is large), and single scattering by the nearest

neighbouring atoms normally dominates.

Due to the fact that the concentration of boron in boron carbide exceeds 80 percent, we

should pay attention to the experimental data of B4C near B K-edge (~189eV). The XANES

spectra of six different BxC1-x compounds are depicted in Fig. 5.7. The B(1s) core level

absorption edges are indicated together with the reference spectra of atomic boron, boron carbide

B4C and oxide boron B2O3. The carbon content in atomic percentage of each sample is shown on

the top of the spectrum. The B4C reference spectra (red line in Fig. 5.7) show no clear separation

between the π* and σ* regions, either in the B(1s) absorption edge. This feature reflects a

complex state of hybridization. The Boron K-edge starts at 189.0 eV and presents a narrow

fingerprint peak at 190.9 eV on top of a background assigned to π* states. The origin of this

transition is still unclear. Jimenez et al. [84, 94] suggested that this peak arises from the boron in

the icosahedra bonded to a C-B-C carbon atom or from boron in the chain itself.

Furthermore, three additional peaks were reported in that work at 191.7 eV assigned to B-

rich carbide, at 192.3 eV assigned to boron sub-oxide, and at 193.7 eV assigned to boron oxide.

If we focus now on the co-evaporated boron carbide compounds, up to five different peaks can

be distinguished in the B (1s- π*) region  of  the  XANES  spectra  linked  to  resonant  excitonic

states. These peaks have been labeled as B0-B4 and appear at photon energies of 189.7, 191.0,

191.8, 192.4, and 194.0 eV, respectively. By direct comparison with the spectra measured by

Jimenez et al.[84], it was observed that B1 and B4 coincide in energy with the B4C and B2O3 π*

states. While peaks В1, B3, and B4 appear in all the samples with different relative intensities, B2

is only detected for the sample with a 5 at. % of C, supporting the assignment done in for boron-
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rich boron carbides [93]. Only peak B0 does not correspond to any known BC-based reference

material.

Fig.5.7 B(1s) core level photoabsorption spectra of BxC1−x compounds. The curves are
labeled with the names of the reference compounds and the carbon at. % in each BxC1−x
sample. Up to ve different bonding environments are distinguished in the B(1s) edge
[93].

Therefore, peaks B0, В1, B3, and B4 have been attributed to B-C3, B-C2□, B-C□2, and B-□3

bonding environments in an sp2 boron carbide structure, respectively. The symbol “□” is used to

denote the C vacancy around the tricoordinated boron atom and a vacancy is decorated with

superficial oxygen contamination. Besides, the reported electron energy-loss spectrum of a BC3

film shows a very intense peak at 190.1 eV in the boron К edge, which is in agreement with the

assignment of peak B0. Additionally, the relative intensity of B0 is exactly maximum for the

sample with a BC3 composition.

The XANES results show that the icosahedral B4C-like structure remains as long as C

represents less than ~50% of the total atomic composition. For stoichiometries richer in C than

B, the structure tends to graphitize. These results are in agreement with the explanation given for

the resistivity experiments reported in [95]. Moreover, the B(1s) XANES spectra clearly prove
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that C is incorporated in the BxC1-x structure and not merely forming isolated graphite-like

domains. In fact, no elemental phase segregation has been detected for any of the samples

studied.

In the works of Jimenez et al [84, 94], the X-ray absorption spectra at the B K-edge (Fig.

5.8) from:  (a) a polycrystalline B4C-bulk sample,  (b)  a B4C powder,  (c) a non-stoichiometric

BxC (x>4) thin film grown by sputtering, (d) a BxC film grown by pulsed laser deposition, (e) an

amorphous boron powder and (f) a crystalline boron powder were obtained. Curve Fig 5.8a was

used as a reference for comparison purposes. The position of the absorption edge for

stoichiometric B4C is at 189eV and at 187 eV for boron and non-stoichiometric boron carbide.

Also, there are additional peaks in the non-stoichiometric and boron samples compared to the

B4C sample, which cannot be assigned to B2O3 contamination.

Fig.5.8 X-ray absorption spectra at the boron edge [84, 94] from: (a) B4C-bulk
sample, (b) B4C-powder, (c) BxC film grown by sputtering, (d) BxC film grown by
pulsed laser deposition, (e) amorphous B, and (f) crystalline B

The narrow edge peak (~192eV) is assigned to the transition of B(1s) electrons to the unoccupied

B(2p) states (π*), and a wide peak (195…208eV) to the transition of B 1s electrons to the

unoccupied  B  σ*  states  for  all  cases.  On  the  other  side,   the   absorption   spectrum   of   B4C
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sample  prepared  by magnetron  sputtering (Fig. 5.8c) is  very different  from that of

commercially  obtained powder sample (Fig. 5.8b),  which  indicates  a  possible  stoichiometric

change   during   the   sputtering   process.  In  general,  the  spectral  features  in  the  gas  phase  are

much sharper than in the solid state due to the influence of intericosahedral bonds in the solid.

Also, the additional peak can be obtained corresponding to bonding between the boron

icosahedra and the extreme carbon atom in the C-B-C chain or to bonding within the C-B-C

chain.  The  onset  of  absorption  from  the  B(1s) level shifts 2 eV depending on the icosahedra

containing or not a carbon atom.

5.3. Refractive index of boron carbide

One of the main works of the determination of the experimental refractive index of boron carbide

inside thin films is work of Soufli R. et. al. [96]. In this work the experimental determination of

the optical constants (refractive index) of DC-magnetron-sputtered boron carbide films in the

30–770 eV photon energy range is presented using the transmittance measurements (Fig 5.9).

Fig. 5.9 Experimental (blue) and Henke’s tabulated (red) optical constants δ (top)  and  β (bottom, log scale) for
sputtered boron carbide [96]. δ was calculated through the Kramers–Krönig relation, using a composite data set of β
values. The inset (top) shows an expanded plot of δ in the energy region around the boron K edge.
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Additionally, in this work, the density, composition, surface chemistry, and morphology of the

films were also investigated using Rutherford backscattering (RBS), X-ray photoelectron

spectroscopy (XPS), atomic force microscopy (AFM), scanning electron microscopy (SEM), and

EUV reflectance measurements.

Figure 5.9 reveals significant differences between the experimental data and the tabulated

values, especially and predictably in energy regions around the boron, carbon, and oxygen K

absorption edges. The experimental absorption coefficient of the B4C films in the region of the

boron K edge displays a prominent NEXAFS feature centered near 200 eV that is a factor of 2

higher than the values derived from the atomic data tables. The feature around 200 eV is in

qualitative agreement with the X-ray absorption spectra on the boron carbide films reported in

[84, 85, 94, 97] and could be assigned to the σ*-like states.

With the experimental data for optical constants of B4C films in the photon energy range

30-770eV, including NEXAFS structures in the energy regions around the boron, carbon and

oxygen K absorption edges [96], we have open questions concerning the behaviour of these

constants for the B4C material within the periodical multilayers.
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Chapter 6

Resonant soft X-ray reflectivity of multilayers based on B4C material

Multilayers composed by a metal and a low Z element like boron are used as optical elements in

both  the  soft  X-ray  spectral  range  [98,  99]  as  well  as  at  the  higher  photon  energies  on  the  3rd

generation synchrotron beamlines [100]. These also hold for application at Free-Electron lasers

like FLASH [39]. The shape and total scattering power of a fundamental Bragg reflection of a

ML are determined by the numbers of periods and the differences in the optical refraction

indexes of the composed layer materials. Various techniques are reported to measure the optical

properties of the material in the hard X-ray range, for instance, measurement of the integrated

intensities of diffraction peaks [101, 102], interferometry [103] or measurements of the totally

reflected intensities [104]. Although reflectometry measurements and also Faraday rotation

experiments have been carried out in the soft X-ray range as well [105, 106], only a few

measurements of the real part of the refractive index have been reported up to now because of

the lack of single crystals with the lattice in 100 nm range. The imaginary part β of refraction

index n=1-δ+iβ is determined by X-ray absorption measurement over a wide range of energies

[107-110]. Measurement of Total Electron Yield (TEY) suffers from the low penetration depth

limiting the number of probed layers within a ML. Since, the top layers may be oxidized true

“bulk” properties are not accessible. Another problem for the ML measurements is the strong re-

absorption effects [111-113].

One can determine the degree of electronic excitations by scanning energy through the

boron K-edge by energy-resolved reflectivity experiment at BESSY II. In this Chapter, the

energy-resolved photon-in-photon-out method [114-116] is used to measure the dispersion and

absorption of boron carbide separately by two independent methods in the soft X-ray range using

Bragg reflection from the B4C multilayer. This approach is an alternative to the commonly used

soft X-ray absorption and transmission measurements, and provides complete information about

the optical properties of the materials which compose the multilayer. Soft X-ray analysis of the

energy-dependence of the optical properties near the boron K-edge and its deviation from the

prediction made for free atoms [117, 118] provide information about the bonding state of the

boron atoms inside ML.

6.1. Mirror fabrication

For our investigations, the three types of periodical multilayers have been selected: Ru/B4C and

Mo/B4C, designed and fabricated at the ESRF Multilayer Laboratory and W/B4C, designed and

fabricated by the AXO Dresden GmbH by microwave assisted sputter deposition (for last
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sample, in nitrogen gas). Two separate sputter targets one of the metal and one of boron carbide

enable alternating film growth on up to 300 mm long on the super-polished Si substrates. The

thickness uniformity is ensured by linear motion of the sputter sources in front of the substrate.

The respective deposition rates were R(Me) = 0.09-0.11 nm/s and R(B4C) = 0.015-0.030 nm/s.

The thickness was controlled by numerical modeling combined with ex situ calibration coatings.

We analyzed the next periodical Mls: Ru/ B4C with 10, 17, 20, 60 and 63 periods, Mo/ B4C with

20 period and W/ B4C  with  10  period;  first  two  type  of  ML  with  a  d-spacing  of  5  nm  and  a

thickness ratio, γ, of about 0.4, the sample from AXO Dresden GmbH with a d-spacing of 4.5

nm and a thickness ratio, γ, of about 0.47.

6.2. Theoretical background

The energy-resolved photon-in-photon-out method was used to measure the dispersion and the

absorption coefficient of boron carbide separately by two independent methods in the soft X-ray

range using Bragg reflection from periodical multilayers.

Peak positions. It  is  obvious  that  the  effect  of  refraction  and  absorption  of  the  incident  X-ray

beam is much stronger in the soft X-ray range compared to the hard X-rays. Now let’s consider a

periodical multilayer as a homogeneous material with an average refractive index neff=1-

δeff+iβeff, where δeff is the dispersion, βeff is the absorption coefficient of the materials assumed to

be homogeneous over the whole sample volume. Due to refraction at the vacuum-sample

interface the average dispersion parameter δeff of the ML can be obtained from the deviation of

angular positions of the Bragg peak maximum compared to the prediction made for n=1. δeff can

be decomposed into the contributions δMe and δB4C of the individual layers both materials

according to their relative contribution g=dMe/(dMe+dB4C):

4 4

4

Me Me B C B C
eff

Me B C

d d
d d
d d

d
+

=
+

, (6.1)

where dMe and dB4C are thicknesses of the Me and B4C layers. Bragg reflection appears whenever

the wavelength λ (or energy E) and the incidence angle θ0 of the ML fulfils the Bragg equation

02 sin ,effm dnl q= (6.2)

where d=  dMe + dB4C is  the  ML  period.  Using  Snell’s  law,  we  obtain  the  first-order  refractive

corrected Bragg’s law

( ) 1/22
0 02 sin 1 2 / sin .effdl q d qé ù= -ë û (6.3)

Measuring the true angular position of the Bragg peak (m=1) for a given photon energy E at

q=qBragg, δeff can be derived by:
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where θ(E) is the measured Bragg angle outside the ML.  Equation (6.4) is the approximation,

because terms proportional to δ2 and β2 are omitted. Using the measured values of q  at given E

the resonant contribution δB4C can be determined by Eq. (6.4) using the structural parameters of

the investigated multilayer and the non-resonant contribution δMe from Henke´s table varying

linear in the measured energy range [118].

On the other hand, the increasing absorption at the B K-edge shortens the penetration of

the photons in the sample and reduces the number of planes capable of scattering in phase,

resulting in broader and weaker peaks. A further correction term should be introduced to account

for the effect of absorption on the Bragg peak position. Following the model of Rosenbluth and

Lee [119] one has
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To determine δ from Eqs (6.5) and (6.6) we have scaled the experimental absorption spectra to

the calculated values below and above K edge. Absorption correction is found to have little, but

not negligible, effect on δ for B4C.

Peak widths. The fit reflects the weighted average for the position of the reflection, even if there

are some slight deviations due to the peak shape. Note that a more precise fit can be obtained by

simulating the reflectivity spectra in the small-angle approximation or soft X-ray diffraction,

where absorption is severe. The reflectivity curves exhibit a significant broadening of the Bragg

peaks  when  the  photon  energy  is  set  at  and  beyond  the  K-edge,  because  the  absorption  is  the

function of energy. Since the refractive index neff is  a  complex  quantity, neff=1-δeff+iβeff, the

electric field amplitude of wave propagating in the medium is proportional to exp(ineffkr)  =

exp(i(1-δeff)kr)exp(-βeffkr) with |k|=2p/l Therefore the reflected intensity is proportional to

( ) ( )2 2exp 2 exp ,sc inc eff effI I R kD qb s@ - - (6.7)

where R is the Fresnel reflectivity and Deff= Neff d /sinq  is the effective absorption length scaled

with Neff as the effective  number of absorbing ML periods. The second exponential considers the

fact that the reflectivity is reduced also by the interface roughness, s,  within  the  ML.  By
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definition Deff is the thickness where the ratio Isc/IincR is decreased to 1/e. Subsequently Deff and

the absorption coefficient ßeff are related by

2 21 .
2eff

eff

qD
k

s
b

+
= (6.8)

In  the  kinematical  approximation,  the  peak  shape  of  a  ML  reflection  peak  is  described  by  the

Laue function with peak width Δq=2π/Deff.  Subsequently, the full width at half maximum

(FWHM) Dq of the Bragg peak is

2 2

2 4
1 eff

eff

kq
D q

p p b
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D = =
+

  , (6.9)

providing a linear relation to the effective absorption coefficient ßeff. βB4C is derived via

βeff=gβMe+(1- g)βB4C  taking into account the contribution of βMe [120].

Peak intensities. The structure factor for a periodical multilayer with a compositional modulation

profile c(x) (one-dimensional projection of the concentration along the growth direction) is given

by

( ) ( )1 1 2 2
0

( ) ( ) exp
d

F Q f n f n c x iQx dx= - ò   , (6.10)

where d,  F,  n and Q are  the  period  of  multilayer,  the  complex  X-ray  atomic  scattering  factor,

atom number density and the scattering vector, respectively. When the modulation profile is

ideally stepwise at interfaces (step model)

1

1 1 2

1      0
( )

0      d
x d

c x
x d d d

£ £ì
= í £ £ + =î
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where d1 and d2 are the individual layer thicknesses of 1 and 2 components, respectively. The

structure factor can be written as

( ) ( )
( )

2
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1 1 2 2 2

sin /
/
md d

F m f n f n
m d
p

p
= -   , (6.12)

Thus, the Bragg peak of mth order intensity is proportional to 2
1 1 2 2f n f n- .

From the works of Vinogradov & Zeldovich [120, 121], and Rosenbluth & Lee [119] the

ratio of intensity of the reflected beam to the intensity of the incident beam can be written as
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where, ψk is the phase shift of the wave through the kth layer, r is Fresnel reflection coefficient,

to first order in the unit decrement difference is

( ) ( )22sin
i

r P
d b

q
q

D + D
=   , (6.14)

Here P(θ) is a polarization factor equal to unity or cos2θ depending upon whether the incident

beam is s-polarized or p-polarized. The optical phase thickness ψ of the ML period is
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and
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Eqs. 6.13-6.16 are the exact dynamical formula valid to all orders of r. However, for most cases

of interest, accuracy to first order in r is sufficient. Note, that for N=1, Eq 6.13 reduces to the

exact reflection formula for two interference films [121].

For extremely weak reflection, or, as it is more often in the case in the soft X-ray region,

when absorption loss in a substrate is much greater than reflection loss at interface, then cos-1x ≈

ψ in Eq. 6.16. The intensity ration for an polarized beam become
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with ψR is ψI  the real and imaginary part of ψ (Eq. 5.16), respectively.

For extremely weak absorption, i.e., 2N ψI<<1, the behaviour of Eq. 6.17 is essentially

(sinN ψR/ sin ψR)2 ≈N2, the result easily can be obtained from the kinematical theory (see, Eq.

6.12). On the opposite extreme, 2N ψI>>1, Eq. 6.17 become Lorentzian and this result can be

derived from the Darwin-Prins equation.

In order to obtain similar equations for real crystal, Eq. 6.16 can be re-written as
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In this case, the ratio of intensity of the reflected beam to the intensity of the incident beam for N

periods is given by
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The amplitude reflectivity of a single period D+iB equals

( ) ( )11 2 sin /mD iB r m d dp+ = - -   , (6.19)

In order to show that Eq. 6.18 approaches the kinematical and dynamical theory for extreme

values of N, first considers the case of weak reflecting power per plane, i.e., x ≈ cos ψ. Eq. 6.18

under this approximation can be simplified to
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q y
y

= + -   , (6.20)

For case of negligible absorption, Eq. 6.20 is exactly the kinematical equation with usual the

(sinN ψ/ sin ψ)2  behaviour. When absorption cannot be ignored, the result can be rewritten in a

form  to  Eq.  6.17.  In  the  limit  as N approaches infinity, the intensity profile is Lorentzian in

nature.

Near the Bragg condition, 2dsinθ0=mλ, the phase can be written as ψ=mπ+ξ with

( ) ( )0sin sin sin
sin eff eff
kd ix q q q d b

q
é ù= - - +ë û   , (6.21)

Alternatively, Eq. 6.18 can be expressed, through simple algebraic manipulation, in the

following form that is more convenient for comparison with the Darwin-Prins equation:
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In the limit of large N, the term icot(Ncos-1x) approaches unity, hence Eq. 6.22 reduces to the

Darwin-Prins formula

( ) ( )
( )( )

2

0 1/222
/

D iB
I I

D iB
q

x x

- +
=

- - +
  , (6.23)
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6.3 Experimental results

Reflectivity measurements near the boron and carbon K-edge have been performed at the UHV
triple axis soft X-ray reflectometer at BESSY II (Fig. 6.1). For the energy selection, the grating
monochromator with 1228 lines/mm was used. The absolute energies were calibrated by
measuring  the  binding  energies  of  the  Au  4f7/2 and 4F5/2 levels every 16 hours at the
spectroscopy station located straight behind the reflectometer at the same monochromator. The
accuracy of energy setting at the reflectometers was as good as 0.1eV.

Fig. 6.1 Technical sketch of the UHV-triple axes configuration (from bessy.de)

6.3.1 Structural properties of multilayers

The multilayers were characterized at room temperature by X-ray reflectivity on a laboratory

reflectometer operating at the Cu Kα (1.54Å) line with subsequent modeling of X-ray reectivity

using the packages Parratt32 [122] and IMD [123]. For simplicity, it is possible to demonstrate

the Ru/B4C ML reflectivity curves only with 10 periods at a wavelengths λ=1.54Å (Fig. 6.2).

In the XRR simulation, it was assumed that the ML period is composed of two individual

layers with sharp interfaces, and therefore the thickness ratio, Γ is defined as Γ=d1/(d1+d2), where

d1 and d2 are the thicknesses of the first and second layer, respectively. In reality, the reflectivity

is more sensitive to the imperfection of the interface between the two materials, such as

roughness and intermixed area.
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Fig.6.2 Experimental (black line) and fitted (red and green lines) reflectivity curves for Ru/B4C multilayers with
10 periods at wavelengths λ=1.54Å , using tabulated and modified densities of materials.

The major deviations weren’t observed from the perfect periodicity or the appearance of

an  oxide  surface  layer  for  all  samples.  However,  for  the  short  period  MLs,  the  interlayer-

roughness (or the interdiffusion layer)  has  a  strong  influence  on  the  reflection  properties.  In

present case, the RMS roughness at the interfaces inside our MLs reaches from 10 to 18% of a

single  layer  thickness.  In  addition,  the  densities  of  the  composed  materials  depend  on  the

deposition parameters and can vary in a wide range. Generally, the density can be determined

from the angular position of the edge of total external reflection. As the critical angle for hard X-

rays is  very small,  the sensitivity to small  changes in the electron density is  small  as well.  For

example, the typical densities are taken from bulk material to be 12.3 g/cm3 for Ru  and 2.52

g/cm3 for B4C materials [124], corresponding to g=0.4 were sufficient to verify the experimental

data in the small angle range (respective fitting curves in Fig.6.2). However, the fit with reduced

densities as suggested by the soft X-ray measurements and previous measurements at similar

samples [125, 126] gave a tiny better agreement with experiment (see the respective curve and

insets in Fig.6.2), although the respective changes in critical angle are within the experimental

uncertainty. Calculated structural properties Ru/B4C multilayers are demonstrated at Table 6.1.
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Table 6.1. Calculated structural parameters of MLs deduced from GIXR measurements at 1.54Å (Cu Kα), Ia and IIa consider the
bulk densities of Ru and B4C, Ib and IIb refer to Ru and B4C densities reduced to 80% of bulk values.

Number of periods d, Å dRu, Å dB4C, Å γ=dRu/d  σRu,  Å  σB4C, Å ρ(Ru),
g/cm3

ρ(B4C),
g/cm3

10 49,7 20,0 29,7 0,40 3.0 3.1 12,3 2,52
10 49,7 23,7 26.0 0,48 1,7 5,3 10,4 2,40
17 49,8 21,4 25,8 0,43 3,5 3,0 12,3 2,52
20 47,0 22,0 25,0 0,47 2 2 12,3 2,52
60 46,3 22,3 24,0 0,48 5,6 6,7 12,3 2,52
63 48,5 19,4 29,1 0,40 1.8 5.7 12,3 2,52
63 48,4 21,7 26,7 0,45 0,1 0,4 10,4 2,40

Fig 6.3 shows the measured and fitted W/B4C ML reflectivity curves with 10 periods. This

sample has the roughnesses between the various layers about 0.3nm, and a d-spacing of 4.5 nm

and a thickness ratio, γ, of 0.47.

Fig.6.3 Experimental (red line) and fitted (green line) reflectivity curves for W/B4C multilayers with 10 periods
at wavelengths λ=1.54Å.

6.3.2. Results of soft X-ray measurements

The reflection curves (the angle of incidence, Q,  equals  to  the  angle  of  exit)  were  recorded  in

wide angular ranger for various energies. Far from the boron K-edge, the subsequent curves were

recorded in energy steps of 1 eV, but closer to the edge in steps of 0.25 eV. The recorded

intensities were normalized to the incident beam intensities to get the reflection curves. For seek

of comparison, the angular values are transformed to the q-scale given by q = cEsinQ, where E

is the photon energy in keV,  Q the reflection angle and c= 1.015 10-3(Å eV)-1. Due to the large

wavelength, the use of the 1st order Bragg peak of the ML is accessible only.
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6.3.2.1. Boron K-edge

Fig.6.4 shows the measured reflectivity curves of MLs as a function of E (around the B

K-edge) and the wave vector q (around the 1st Bragg peak).  At energies lower then the boron K-

edge (~188eV), the peak profile doesn’t shows strong modifications due to the weak absorption,

and the peak intensity increases with increasing photon energy. Beyond the edge, the intensity

decays and the peak profile begins to show strong oscillations due to the high absorption. Fig.

6.4  shows the  three  different  behaviour  of  reflectivity:  (i)  the  low-absorption  ML with  a  small

number of periods (Ru/B4C  MLs  with  10  and  17  periods);  (ii)  the  low-absorption  ML  with  a

large number of periods (Ru/B4C MLs with 60 and 63 periods) and (iii) the high-absorption ML

with a small number of periods (W/B4C with 10 periods).

All the measured surfaces demonstrate few important features: (i) the maximum intensity

at 188eV (B K-edge), (ii) the secondary narrow peak near 194 eV due to the π*-transition and

(iii) the wide peak peak in 195–210 eV energy range due to  the σ*-transition (it is clearly shown

for the low-periodical MLs). The antibonding orbitals are higher in energy (unstable) than the

atomic orbitals from which it is composed (see, Fig. 5.5 for B2). In additional, the Mo/B4C ML

has a set of weak peaks in a broad energy range during the interaction of atoms of boron with

molybdenum at the surface layers. Even at room temperature, the deposited boron atoms

penetrate into the neighbouring layers of molybdenum, thus changing its electronic structure, as

shown by the dramatic transformation of the surface plasmon mode.

The B–Mo adsorbate system formed on the surface of ML is not stable at room

temperature. It is dominated by the strong tendency of the boron atoms to diffuse into the bulk of

the metal. The Auger uptake curve of the KLL boron line (~179 eV) cannot be unambiguously

drawn due  to  its  strong  intersection  with  the  Mo MNV signal  at  188  eV.  The  fact,  that  in  this

case, the shift of the B Auger line was not observed, is due at least to two reasons: (i) upon B–

Mo chemical bond formation the B 1s and 2sp levels may shift simultaneously by about the same

values,  so  the  B KLL Auger  transition  energy  does  not  change  and  (ii) the B KLL Auger line

strongly intersects with the Mo MNV line, thus masking any possible changes of individual

Auger lines.

On the other hand, the reflectivity W/B4C ML shows a smooth profile, and the peak

position slightly shifts near the B K-edge due to the high absorption of tungsten. In this case, the

accuracy of the real part of refractive index will fall, and the absorption increases. (Fig. 6.4

bottom). In contrast with W/B4C ML, the Ru/B4C MLs consist of both low-absorption materials,

and strongly sensitive to changes in the refractive index of boron carbide.  In the case of a small

number of period (Fig. 6.4 top), the refractive index can be determined by the described

kinematical approach.
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Fig.6.4 The reflectivity’s surface of the Ru/B4C multilayers with 10 periods (top) and 60 periods (middle), and
W/B4C ML with 10 period (bottom) via a function of incident energy (in eV) and the wavevector qz (in Å-1).
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The reflectance of Ru/B4C MLs with periods 10, 17, 20, 60 and 63 periods at 1st Bragg

peak are shown on Fig. 6.5, as function of the photon energy near B K-edge. All curves

demonstrate two strong peaks corresponding Boron K-edge (188eV) and decreasing absorption

in range between π*- (194eV) and σ*- transitions (195–210 eV).
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Fig. 6.5 The reflectance at the 1st Bragg peak as function of the photon energy E for different Ru/B4C multilayers.

Fig. 6.6 shows the energy dependence of the angular position of 1st Bragg peak for these

multilayers. To compare the obtained data, the all curves were subtracted on the respected value

at 175 eV. The measured data demonstrated similar behaviour below the B Kedge and in range

of π*-transition (<194eV), although some curves had additional details, such as a peak near

185eV of the Ru/B4C ML with 20 period, the weak peaks near 183 eV of the Ru/B4C ML with

10 period. Below 195eV, the 10 periods ML has additional extremes due to the influence of the

surface. The 20 periods of Ru/B4C ML demonstrates a very weak scattering signal after 195eV

(range of the σ*- transition). At 60 and 63 periods MLs begin to play the role of multiply

scattering of soft X-rays.

As mentioned earlier, the width of 1st Bragg peak can help to determine the absorption of

B4C material inside the multilayers. The behaviour of the FWHM of 1st Bragg peak near the B

K-edge for various Ru/B4C MLs is shown in Fig. 6.7. This parameter demonstrate the similar

key details in a manner, as obtained for intensity (Fig. 6.5) and angular position (Fig. 6.6): the

increasing at the B-Kedge (188eV), and the peaks at the π*- and σ*-transitions ranges.
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Fig. 6.6 The angular position of the 1st Bragg peak as function of the photon energy E for different Ru/B4C
multilayers.
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Fig. 6.7 The FWHM of 1s Bragg peak near B K-edge for the different Ru/B4C multilayers.
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There are also differences between the 10 and 60 (63) period Ru/B4C MLs: (i) for the low period

ML case, there is a weak peak near 188eV (atomic boron K-edge) and a strong peak at 190 eV

(molecular boron K-edge), in the other case, the large period MLs have only a peak at 189eV

(influence of the surface layers is negligible); (ii) the low period MLs demonstrate the separated

peaks near 193eV during the π*-transition, and a wide peak from 196 to 210eV during the σ *-

transition, whereas, the large period MLs showed the atomic-like behaviour during  the multi-

scattering of soft X-ray inside MLs and the influence of the surface layers is negligible. The

FWHM of the 20 periods ML didn’t be determined above 194eV in consequence of the weak

scattering signal from this ML. Thus, the increase of the number of ML layers leads to a smooth

function of the absorption without the additional features caused by surface effects.

To demonstrate the influence of the neighbouring metal layers and environment in the

manufacturing process on the optical properties B4C inside the MLs, we show the behaviour of

various parameters, such as the intensity and the angular position at the 1st Bragg peak (Figs. 6.8

and 6.9, respectively), and the FWHM of 1s Bragg peak (Fig. 6.10) near B K-edge for the

Ru/B4C and W/B4C MLs with 10 periods.
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Fig. 6.8. The reflectance at the 1st Bragg peak as function of the photon energy E for different Ru/B4C and W/B4C

MLs with 10 periods.
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Fig. 6.10 The FWHM of 1s Bragg peak near B K-edge for the W/B4C and Ru/B4C MLs with 10 periods

Both MLs contain the atomic boron, and we obtained the corresponded peak at ~188 eV (Fig.

6.10). The maximum of reflectivity and minimum of the angular position of the 1st Bragg peak

for the W/B4C ML shift by of about 1eV to upper energies, relative to the these parameters for

the Ru/B4C  ML  (Figs.  6.8-6.9).   In  addition,  in  the  case  of  the  Ru/B4C ML, we received
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additional peaks (A1 and A2 in Fig. 6.10), corresponding to oxygen. On the other hand, the

W/B4C ML were fabricated using N2 gas,  and  the  layers  may  contain  nitrogen.  The  peak

corresponding to the π*- transition of B4C inside W/B4C ML, is more obvious, and the energy

shift is about 3 eV to the lower energies (Fig. 6.10). In this sample, the influence of oxygen is

minimal (see, Fig. 5.7) due to the use of the N2 gas in process of fabrication and the top layer is

tungsten. It should be noted, that the replacement of oxygen into nitrogen can lead to the

formation of B-N bonds.

The optical properties of boron carbide inside Ru/B4C MLs we can determinate using the

approach described in § 5.3.2. It is expected, that the density of the components of ML will differ

from the bulk density. For example, the density of the lanthanum films in the La/B4C multilayer

corresponds to 5.0 g/cm3 (dLa ≈ 25Å) [127] and 5.5 g/cm3 (dLa ≈ 30Å) [128] which is less than

the bulk density to be ρbulk=6.17 g/cm3. On the other hand, the density of the boron carbide films

can vary between 1.8 g/cm3 and 2.57 g/cm3, depending on the chemical composition as B15-xCx

and the film thickness (ρbulk=2.0...2.52 g/cm3). R. Soufli et al. [96] used the atomic composition

of 74% of boron, 20% of carbon, and 6% of oxygen for the density of 2.28 g/cm3 to describe the

optical properties of boron carbide inside the films with thicknesses from 50 to 100 nm. This

means  that  the  reflectivity and  the  other  optical  parameters of  a  ML strongly depend on the

material   density  which is related to the use of the respective deposition  technique. Also,  the

metallurgical transitions at the Ru-B4C  and  B4C-Ru interfaces  can  result  in  different  values  of

interlayer-roughness evaluated from the hard and soft X-ray measurements.

Using the tabulated Henke’s data for applied metals [118], the calculated β-values of B4C

for the various MLs are displayed in Fig.6.11. The most remarkable difference between the

samples is that the onset of the increase in β for the low periods sample is shifted by about 2-3

eV to higher energies compared to the expectations made by Henke´s table. In fact, the K-edge is

separated on the weak peak near 188 eV (atomic boron) and the shifted K edge of molecular

boron (B-C, B-B and B-O bonds). Also, the values of π*-transition peak decreases with

increasing number of ML period.

Above 190eV the scattering signal from the large period MLs is very weak (decreasing

about two orders of magnitude) (Fig.6.4 middle,  and  Fig.  6.5).  This  means  that  the  scattering

signals are the measure of the first few tens of ML periods only. In this case, the absorption

length is less than the thickness of the large period MLs. As a consequence, the rocking curves

become very narrow and less intense, and the error in this range is larger then those determined

at energies below the K-edge.



85

175 180 185 190 195 200 205 210 215
0,0000

0,0025

0,0050

0,0075

0,0100

0,0125

0,0150

0,0175

b B
4C

Energy (eV)

 Henke's tabulated data
 [Ru/B4C]10

 [Ru/B4C]17

 [Ru/B4C]20

 [Ru/B4C]60

 thin film (Soufli et al)

Fig. 6.11 Near-edge absorption spectra at the boron K-edge of B4C calculated from the experimental diffraction
spectra of Ru/B4C ML for various fixed energies, and obtain from Henke’s tabulated data (black line). To compare
with obtained data,   the values for B4C thin film from work [96] also are present.

The additional peaks found for the 10 period ML can be explained: the K emission line of free

atom of boron is found at 183eV, two different peaks centered at 188eV and 189.5eV are related

to the B(1s) peaks of pure boron atoms, B-B and B–C bonds of boron carbide. Two small peaks

for B(1s) observed at 192.7 eV and 195.5 eV could be associated with B–O and B=O bonds due

to the presence of physisorbed oxygen at the surface and inside the first layers of our sample.

Finally, a narrow edge peak ~194 eV, assigned to the transition of B 1s electrons to the

unoccupied B 2p states (π*- transition), and a wide peak of 198-210 eV to the transition of B 1s

electrons to the unoccupied B 2p σ* states (σ *- transition) for B4C.

The results demonstrate good agreement with experimental data of other authors. For

example, in [129] the absorption spectra display the different functional behaviour above Boron

K-edge measured in transmission and by detecting the photocurrent in the reflection due to the

high surface sensitivity of the photocurrent measurements.

If the ML period is known, for example, from the experimental data for the hard X-rays

(table 6.1), δeff follow from Eqs. (6.5 or 6.6-6.7), using the measured values of the wave vector q

and energy E (see Fig. 6.6). The resonant δB4C value can be determined by Eq. (6.5) using the

structural parameters of the investigated ML and the non-resonant δ value for Ru. Since, δRu

varies linearly in the measured energy range it can be taken from the Henke’s tables [118].

Fig. 6.12 shows the energy dependence of the δB4C, determined from experimental data

given  in  Fig.6.6.  To  fit  with  the  tabulated  data  for  B4C, our values were rescaled at the two
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extreme energies far below (~170eV) and above (>220eV) the K-edge. The best data fitting for

δB4C are obtained if the densities of both multilayer materials (ruthenium and boron carbide) are

reduced to a value of 80% compared to bulk density.
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Fig.6.12 Refractive index δ=1-n for B4C inside Ru/B4C MLs with various periods (circles) and obtained from
the measured data. The black lines are  shown  the  tabulated  δ values  for  B4C from Henke’s tables [118]. The
obtained δB4C (red line) for the magnetron-sputtered boron carbide thin films by transmittance measurements from
work’s R. Soufli et. al.[96]

As for βB4C(E), comparing the tabulated data for the elemental boron with the experiment

the minimum of δB4C(E) is shifted by 1.2 eV to higher energies (from 187,8eV to 189eV). This

shift is larger than the experimental uncertainty of 0.2eV. Assuming stoichiometric B4C, this

minimum is associated with the electron transition from B 1s state into the unoccupied B 2p π*

states. This transition energy can slight vary for the non-stoichiometric B4C, especially boron-

depleted boron carbide, or for boron oxides [96, 97]. In the case of the 10 periods Ru/B4C ML

there are additional local minima within the energy range between 183eV to 188eV probably

originated by elemental boron (183eV is the transition from K- to L-shells; ~187,8eV is the

binding energy for pure boron). Additional features have been found close to 204 eV (maximum)

and 210 eV (minimum) resulting from the transition of B 1s electrons into the unoccupied B 2p

σ* states. These features are not visible for the large period samples. Also during the strong

absorption in the range σ*-transition range (195...210eV) and multiply scattering, it is necessary

to include the corrections on strong absorption effects for a large number ML (see Eqs. 6.5-6.6).

6.3.2.2. Carbon K-edge

In an analysis of the boron K-edge, we have found that in contrast to the oxygen Ru/B4C MLs,

the W/B4C ML containing nitrogen due to the fabrication in N2 gas. There is a question about the
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interaction of carbon atoms with boron, and oxygen/nitrogen inside the B4C material of ML.  To

answer this question, we can analyse the experimental data of these MLs near the carbon K-edge.

Fig. 6.13 shows the maximums of measured reflectivity curves of Ru/B4C and W/B4C

MLs with 10 periods as a function of E (around the C K-edge) at the 1st Bragg peak.  At energies

lower  then  C  K-edge  (~284eV)  the  peak  profile  doesn’t  show  the  strong  modifications  due  to

weak absorption and the peak intensity increase with increasing the photon energy. In this range

the contrast between Ru and B4C is very small and the Ru/B4C ML has weak reflectivity

maximum (<0.15%). On the other side, the maximum reflectivity of W/B4C ML is near 3%. In

the both cases, the MLs demonstrate the similar features: the the π*-transition at 285 eV and a

broad σ*-transition centred at 290 eV.
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6.3.2.1. Nitrogen K-edge

We found the optical  properties of the B4C material inside the W/B4C ML are changed

near the boron K-edge due to the formation of the B-N bond. Now we can investigate this

sample near the nitrogen K-edge. Fig. 6.14 shows the maximum of reflectivity of the W/B4C ML

with 10 periods as a function of E around the N K-edge at the 1st Bragg peak. The measured data

demonstrated behaviour similar for B and C Kedges (see Figs 6.4 and 6.13): there is a π*-
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(~401eV) and σ*-transitions (~405eV), but also it was obtaining the change at about 397 eV,

attributed to N-B bonds. The maximum reflectivity of W/B4C ML is near 4%.
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Fig.6.14 The maximum of reflectivity of the W/B4C:N2 ML with 10 periods near Nitrogen K-edge via a
function of incident energy E.

In summary, the optical properties of boron carbide inside of Me/B4C multilayers have been

derived by an energy-resolved photon-in-photon-out method using Bragg reflection. In contrast

to the hard X-ray measurements providing the mean values of the optical parameters only, the

soft X-ray reflectivity can give detailed information for MLs with thickness up to several tens of

nanometers. In addition, measurements close to the resonance edges probe the chemical state of

the respective constituent accompanied with a high sensitivity of changes close to the sample

surface. Our measurements clearly show that the fine structure of K-absorption edge changed

due to the chemical nature of the absorber element.

The penetration depth of the MLs is strongly reduced beyond the B K-edge and reaches a

few tens nanometers only. In this energy range we can use the kinematical approximation as long

as the total thickness of the ML is small. In the case of the kinematic approximation d and b can

be derived independently from each other. In our case, this approach is valid for the low-period

Ru/B4C MLs. For thicker samples, the multiple scattering effects within the ML become

important, requiring a full dynamical theory, like Parratt’s recursive method. In the dynamical

case the derivations of d and b are no more strictly independent, because one has to know d in

order to find b from Dq.

The results for Ru/B4C and W/B4C MLs with 10 periods show the similar key features in

the optical properties of the B4C layers,  such as (i) the atomic boron K-edge (~188eV), (ii) the

π*- and σ*-transitions of boron, and (iii) the π*- and σ*-transitions of carbon. The W/B4C ML,
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fabricated using N2 gas,  show the additional details at about 397 eV, attributed to N-B bonds,

the π*-  and σ*-transitions of nitrogen, and the absorption peak of the π*-transition of boron

shifts  by  2  eV  to  the  lower  energies  compared  to  the  Ru/B4C  ML.  In  turn,  the  results  for  the

Ru/B4C  ML  demonstrate  the  existence  of  certain  amount  of  oxidized  boron  probably  in  the

layers close to the surface.

In all chemical bonds the electronic charge density near the boron atom is reduced due to

the higher electronegativity of the bonding partner’s, as carbon, oxygen or nitrogen. The B 1s

peak is shifted from ~188eV for the B-B bond to higher binding energies: with carbon (~189eV)

and nitrogen (~191eV) as neighbour and to much higher energies with oxygen (~194eV)  as

neighbour. This shift to higher energies doesn’t present in the large numbers ML samples. Here

δ(E) and β(E) are very close to the values of Henke’s table predicted for elemental boron.

Therefore we can conclude that the majority of boron and carbon are not bonded to stochiometric

B4C. The films may be decomposed into metallic boron (seen at 188eV), oxide boron and the

different  compositions  of  boron  carbide,  such  as  the  icosahedra  B11C  (or  B12) with different

bridges C-B-C, C-B-B and C-C-C.

The measurements clearly show the fine structure of K-absorption edges changed due to

the  chemical  nature  of  the  absorber  element.  The  effect  is  seen  in  both  parameters  of  the

refraction index, d and b but more pronounced in the absorption spectra.  The evaluated energy

dependencies of dB4C and bB4C show Kramers –Kronig relation comparing features in Figs. 6.11

and 6.12. So the maximum found in dB4C at about 205eV is related to a plateau in bB4C. On the

other hand, the feature at 193eV in bB4C is accompanied by a slope in dB4C. The relations are not

so obvious in other energy ranges mainly caused by different sensitivities of both measurements.
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Chapter 7

Reflection of soft X-ray FEL pulses by periodical multilayers

FLASH operates in the soft X-ray regime and the radiation from the FEL has the spontaneous

nature, and can be described by the FEL theory. P. Hau-Riege et. al [39, 40] have shown that on

the fs- timescale, the reflectivity of the multilayer excited by the FLASH pulses can be described

by conventional approaches, as well as for continuous radiation. In the case of low intensive

FLASH pulse, we can directly use the LORT (Chapter 3) with a frequency response function of

ML calculated by one of the theoretical approaches (Chapter 4) or/and using the measured data

for the continuous synchrotron radiation (Chapter 6). Effect of high-intensity of the FEL pulse

leads to a time-dependent frequency response functions of the ML, and strongly complicate of

the simulation because of the limited information about the processes in the matter during the

interaction of the FEL pulse with ML.

The study of the time dependent response of the ML to the X-ray pulse can provide

insights into the process of interaction of a highly intense FEL radiation with matter. Using an

appropriate geometrical setup of the experiment, the time structure of the reflected pulse can be

transformed into the spatial coordinates of the position-sensitive detector [131, 132].

7.1. Basic formalism

The approach, of describing of the time-space transformation of the incident pulse train

of FEL at 6.4 nm, was introduced in [131]. Based on the LORT [33, 34] described in §3.2, the

time-dependent interaction of an fs-FEL pulse with the interfaces inside the ML can be

described. In the case of FEL radiation, the incident pulse consists of a train composed by ultra

short sub-pulses. FLASH, for example, generates the FEL pulses with 20...50 fs pulse length and

duration of sub-pulses of about 2-3 fs at an average wavelength of 6.4nm [31, 32].  The numbers

of spikes in the spectrum is in average equal to the numbers of spikes (coherent wave packets) in

the time domain [26]. Using this information, single incident pulse can be simulated by a

combination of several Gaussian functions with various random-generated parameters. Coherent

radiation with energies between 160...240 eV and 0.5...1.0% bandwidth (FWHM) as provided by

FLASH [31, 32] has been considered.

This energy range requires the scattering object with lattice parameters in the range of a

few nanometres, as provided by a periodical ML structure.  ML response to the incident pulse

train can be evaluated by the following steps: first, each incident sub-pulse (‘spike’) in time

range is described by a Gaussian function, and subsequently, a pulse train by a combination of

several Gaussian functions
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where σm is the standard deviation, τm is the mean value, ωm is frequency and km is amplitude

for m-th Gaussian function. Next, the time structure of an incident pulse train is spectrally

decomposed using Fourier transforms:
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Finally, within the spectral range of emission each Fourier component of the incident pulse

amplitude is multiplied with the complex reflection amplitude of the ML followed by inverse

Fourier transformation in order to find the time response of reflected pulses
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In this energy range, the ML structures prepared by repetitions of thin layers of two

different materials are well suited. Typical MLs for soft X-rays consist of a periodic stacking of a

high-refracting (Mo, Ni, Cr, Fe, V) and low-refracting materials (C, Si, B4C). By various

combinations of these materials, one can tune the optical properties of the respective optical

element  in  terms  of  transmission,  absorption  and  reflection.  The  shape  and  the  total  scattering

power at fundamental Bragg reflections are influenced by the number of stacked bi-layers [58,

120, 121]. In 200 eV range, the ML reflectivity is low for a few reasons. First, the optical

constants  for  this  wavelength  are  very  similar  (see  Table  7.1)  and  the  combination  of  the  two

materials does not provide a large scattering contrast. Secondly, the absorption coefficient is

large for most materials. Both peculiarities limit the effective penetration depth into the ML.

Thirdly, in order to tune the 1st  order Bragg peak of the ML to  a scattering angle 2Q why the bi-

layer period must be smaller then 10nm. Under these circumstances, the interface roughness of a

few atomic layers can significantly reduce the reflectivity (Debye-Waller factor).

Usually, the combinations of the high-refracting and low-refracting materials are well

suited as the MLs for a defined wavelength in the soft X-ray range. These MLs are optimized for

high reflectivity and are widely used in X-ray optics. However, we applied other criteria to select

the ML components. In order to generate larger penetration depth into the ML, both materials

must be with minimal absorption in the energy range of application. The following table 7.1 and,

particularly, the β-values, we selected two perspective materials - Ru and La for application at

194 eV. Results for La/C and La/B4C MLs were already shown in [131, 132]. Using MLs with

exceptional low absorption, the interaction length of the incident pulse with the ML is long and
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after transformation into the spatial coordinates, the incident pulse can be visible at a spatially

resolved detector. In particular, this scheme will be useful to probe a deviation from the

reflectivity which is expected, when the energy density of the FEL pulse exceeds a certain level.

Table 7.1 Correction to refraction index (n=1-d+ib) for different

materials at 193,75 eV with increasing absorption coefficient.

Element/Compound d b
C 0.0079 0.00063
La 0.0138 0.00097
Sc 0.0065 0.00232
Nb 0.0084 0.00252
Mo 0.0113 0.00278
Ru 0.0167 0.00378
RhRu 0.0170 0.00393
Y 0.0016 0.00541
V 0.0159 0.00579
Cr 0.0197 0.00761
Si 0.0077 0.00838
B4C 0.0028 0.00855
B 0.0010 0.00996
Fe 0.0222 0.01165
Ni 0.0237 0.01694
W 0.0152 0.01903

Fig. 7.1 shows the general setup of a reflectivity experiment. An incident FEL pulse hits the ML

at a fixed incidence angle Θ and penetrated into the material. Because the pulse becomes

partially reflected at each interface ones after another, the detected signal is stretched by a length,

which equals the penetration depth into the material. This stretching effect can be optimized by

the  optical  properties  of  the  ML.  For  geometric  reasons  we  prefer  a  scattering  geometry  with

scattering angle of 90° at first scattering maximum of the ML. However, the degree of stretching

can be increased by using an oblique scattering geometry, where the ML is cut by an angle α (see

§4.2).

7.2. Numerical simulation of fs-pulse responses from multilayers

Now we consider two different types of MLs: (i) both low-absorption materials La and C and (ii)

Ni and C as materials with high scattering contrast. La and Ni have the difference absorption

proprieties in this energy range. For l=6.4 nm (193,75eV) the ML period has to be d=4.62, that

the first order diffraction maximum is appearing at 2Q =90°.
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Fig. 7.1 Experimental set-up for time-space transformation of incident fs-pulses. The incident pulse is stretched
accordingly to the absorption length of radiation.  The spatially varying reflectivity of the ML is measured with the
changes of intensity along the detector coordinate X.

The variations of the reflectivity spectra for both types of MLs are shown in Fig.7.2 as a function

of the number of periods. The calculation has been performed by Parratt´s recursive formalism (§

4.1.1) considering a thickness ratio of 0.5 and a continuous, strictly parallel VUV radiation. Due

to  high  absorption  of  Ni-layers,  the  reflectivity  curves  of  the  Ni/C  MLs  saturate  after  a

penetration of about 40 periods at a maximum reflectivity of about 18 percent and don’t show

any internal structure.

Fig. 7.2 Calculated reflectivity of MLs as a function of energy and number of bi-layers. High-absorbing Ni/C, left
and low-absorbing La/C, right.
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On the other hand, the La/C ML intensity increases with the number of periods reaching a

maximum of about 40 percent for the MLs with more then 120 periods. In addition, the thickness

oscillations decrease with increasing number of periods. The energy width of central maximum

has a width of about 6 eV for Ni/C and about 1.5 eV for La/C ML at large numbers of bi-layers.

First, we consider the ML response to a Gaussian pulse of  2 fs duration (single spike of a

FEL pulse) for La/C and Ni/C MLs as a function of the number of periods, N at a fixed incidence

angle of θ = 45°. The low- and high-absorbing ML responses are shown in Fig.7.3. As in Fig.7.2,

there are the essential differences in the response of these MLs seen (Fig.7.3b,c). When the

initial pulse strikes the ML with different numbers of periods, the response quite fast N=40 for

the high absorbing Ni/C MLs. Due to nearly complete absorption of the pulse within the first few

layers, the duration of the reflected pulse is approximately the same as the initial one (fig.7.3a,b).

Fig. 7.3 Incident single pulse (a) and time-responses from various periodical Ni/C(b) and La/C (c,d) MLs. The
duration of incident single Gaussian pulse is 2fs and the energies are 193,75eV (b,c), 191 eV (d).

In contrast to this the reflected pulse is expanded up to 2fs compared to the initial pulse

for the low-absorbing La/C MLs. The pulse expansion increases with the number of periods,

reaching certain saturation at N=120 for La/C ML. Maximum reflectivity of about 28% is

reached at N≈100 (fig.7.3c). In all three cases shown in Fig. 7.3, the energy of the incident pulses

coincides with the maximum of the 1st ML Bragg peak of the reflection curve at given angle of

incidence. Changing the scattering angle or/and the energy of incident pulse, Ei, differs by DE=

Ei-Emax from the energy of the central  maximum of reflectivity,  Emax. Fig.7.3d shows the time-
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dependent response of the La/C ML for DE ≈ 3 eV. Now, the reflectivity of La/C ML is reduced

(to a few percents) but reveals a certain variation of the intensity as a function of N, which is not

visible for Ni/C ML. This asymmetry increases for increasing  DE (not shown). Moreover, for

the longer pulses (4 fs and more) one finds an oscillatory behaviour of reflection intensity as a

function of N (see later). These features can be explained by the fine structure of the scattering

curves as schematically shown in Fig. 7.4.

By changing Ei relative to Emax one  can  excite  different  spectra:  from the  continuous  to

the oscillating features vs N. The ML response to a pulse is an integration of the scattering curve

within a certain energy window. If DE ≈ 0,   i.e. Ei ≈ 193,75eV as in present example (Fig.7.4c),

the scattering phases between different interfaces is always constructive and the response is a

smooth function for increasing N (see Fig. 7.4a). If energy shift DE  is  larger  then  the  energy

width of the total reflection curve (Fig. 7.4d) the phase shift might be constructive at certain N

but destructive for another N+DN. This oscillatory behaviour of scattering as a function of N is

shown in Fig. 7.4b. Such effect can be used to identify the energy offset of the incident pulse

with respect to the central reflection maximum fixed by a certain geometric setup.

Fig. 7.4 The transition of energy spectra from continuous to oscillatory depending on energy shift DE; (a) without
energy shift DE  =  0,  (b) energy shift DE  ≈ 3  eV.  The  energy  relation  between  the  incident  pulse  train  and  the
reflection curve is shown in (c) and (d).

For simulation of an incident FEL pulse, every pulse is composed by several sub-pulses

with duration of 2-3fs. Considering the SASE principle each of these sub-pulses (spikes) is

statistically spaced to each other and described by Gaussian-functions with varying amplitude.
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Additionally the spikes differ in energy within a certain energy window of about 2 eV as

expected for FEL radiation. Using this approach one can change the shape of any incident pulse

train by the change of spikes parameters such as the amplitude, frequency, location and duration

of the Gaussian-shaped sub-pulses as shown in Fig.7.5a. The results of numerical calculation for

the both MLs are illustrated in Fig. 7.5b-d. Since the mean energy of the incident pulse train

coincides  with  the  energy  of  maximum  reflectivity  of  the  ML  the  diffraction  curves  for  both

ML´s show a mirror-like behaviour of the incident pulse structure where each sub-pulse is

expanded (see Fig.s 7.3b and c).

Fig. 7.5 Incident multiple pulse (a) and responses from periodical Ni/C (b) and La/C (c,d) MLs with different
numbers of bi-layers. The incident pulses are described the combination of single-Gaussian function with different
parameters: frequency, amplitudes, locations and durations in the time range (a). The responses from La/C ML with
the energy shift of the incident pulse train of 3 eV (d)

Such behaviour was observed for Ni/C and La/C MLs shown on Fig. 7.5b,  c,

respectively. The response of La/C ML becomes changed if the mean energy of the pulse train

differs by DE from the energy of reflection maximum. Fig. 7.5d shows the situation for the

energy shift ∆E=3 eV. In contrast to Fig.7.5c, an oscillatory behaviour of the response functions

of Fig.7.5d is found in the time and the energy domain. The corresponding pictures in energy

domain is shown in Fig. 7.4a,b. For different sub-pulses one finds a different response. One

should mention that such redistribution of the response function can be achieved either by
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detuning  of  energy  or  the  incident  angle  or  by  changing  the  structural  parameters  of  the  ML.

Therefore a careful structural analysis of the ML is mandatory before the FEL experiment

The results of numerical calculation for the Nb/C ML´s are shown in Fig. 7.6. Since the

mean energy of the incident pulse train coincides with the energy of maximum reflectivity of the

ML the diffraction curves show a mirror like behaviour of the incident pulse structure (see Fig.

7.6a)  but  after  reflection  each  sub-pulse  is  slightly  expanded  as  shown  in  Fig.  7.6a.  The

responses of the ML become changed if the mean energy of the pulse train differs by DE from

the energy of reflection maximum. To simulate this behaviour we have changed the incident

angle from 45.0° to 45.5° which corresponds to the situation of an energy shift of  DE=2.5 eV

(see Fig.7.6b). An oscillatory behaviour of the response functions is found in the time and the

energy domain. Moreover, the structure of the response differs for the various sub-pulses.

Fig. 7.6 Responses  of  a  periodical  Nb/C  ML  (bottom  maps)  to  an  incident  pulse  train.  The  incident  pulses  are
described by the combination of single Gaussian functions with different parameters (top profiles). The responses of
the ML for DE=0 (a) and DE= 2 eV with respect to the central pulse of the train (b).

Fig.7.7 shows the time-dependent response of the La/B4C ML for two different cases: (i) Bragg

case (DE ≈ 0 eV) and (ii) (DE ≈ 6 eV). By changing Einc relative to Emax one can excite different

response functions varying from continuous to oscillating behaviour where the maximum or

minimum appears at different positions N within  the  ML.   If DE  ≈ 0,    i.e.  Einc ≈ 180 eV, as

shown in Fig. 7.7 (left), the scattering phases between different interfaces are always

constructive and the response is a smooth function for increasing N. Otherwise, when DE is

larger then the energy width of the total reflection curve (see Fig.7.4) the phase shift might be

constructive at certain Ni but destructive for another Ni+DN.  This  oscillatory  behaviour  of
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scattering as a function of N is shown in Fig.7.7 (right). An oscillatory behaviour of the response

functions is found in the time and the energy domain. Moreover, the structure of the response

differs for the various sub-pulses.
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Fig. 7.7 Responses of a periodical La/B4C ML (maps) to an incident pulse train. The incident pulses are described
by the combination of single Gaussian functions with different parameters (profiles). The responses of the ML for
∆E=0 (left) and ∆E=6 eV with respect to the central pulse of the train (right).

7.3. Space-time transformation

A reasonable scenario of such a scattering experiment consists in the projection of the time-

dependent response of the ML to the incident FEL pulse into the spatial coordinate which can be

measured by the position-sensitive detector. Due to the pulse structure of the incident X-rays the

whole ML response is not detected at the same time. As the incident pulse reaches the first bi-

layer interface it provides a strong scattering signal towards the detector. On its passage through

the ML the pulse becomes interacting with more and more bi-layers which modifies the intensity

and the shape of the scattering signal in a fashion as shown in Fig.7.1. In this sense the vertical

coordinate of figures 7.2 – 7.7 (the number of periods) can be transformed into a spatial

coordinate seen by the detector.

Due to fs time-structure of irradiation all sub-pulses will coincide on the detector.

However, using a scattering geometry where the mean energy of incident pulse is slightly

detuned from the maximum of the reflectivity of the first order Bragg reflection the oscillatory

behaviour can be maintained even after a overlapping of the all sub-pulses. This is shown in Fig.

7.8 for the case of low-absorbing (La/C) and high-absorbing (Ni/C) MLs. The spatial coordinate,

x, reflects the evolution of the scattered signal as function of the increasing number of interfaces,
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N, of the ML.  The oscillatory behaviour is preserved for the low-absorbing ML and varies as a

function of the detuning energy. In contrast, there is no such dependence in high-absorption case.

It caused by the fact that the absorption length for radiation at a wavelength 6.4 nm is about 1.7

µm for La/C but only 0,1 µm for Ni/C. At the same time, the geometric length of a 2 fs pulse is

0,6 µm corresponding to N=134 periods of the ML.

Fig. 7.8 Spatial variation of the reflected intensity for La/C and Ni/C ML as a function of the detuning energy Emax-
∆E. The energy of central maximum reflection Emax is 193,75 eV.

Considering a ML with N = 400, for example, the interaction length within the ML and

subsequently the length of the diffraction spot in the detector plane, xM, is 2,5 µm. This length

can be stretched in space by use of a ML where the surface has a sliced angle a with respect to

the multilayer normal. If the incident pulse hits the ML interfaces at a scattering angle Q » 45° a

grazing incident angle with respect to the ML surface of Q-a will enlarge the effective size of

the reflected beam by 1/sin(Q-a). An additional enlargement of xM can be achieved by oblique

setting  of  the  detector  with  respect  to  the  reflected  beam by  an  angle b of the detector normal

with respect to the reflected beam.

To exploit the effect of La/C film the number of ML periods should be very large (N >

1000). SMG structures (§4.2) are well suited for this task and give rise to surface gratings in

addition to the strong Bragg reflection. Whereas the Bragg reflection probes the bulk scattering

of the ML the grating peaks is created by scattering at the surface relief. The latter ones can be

used as independent probe for the energy of the sub-pulses without the interaction with the bulk

of ML.
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For these structures, the energy width of the diffraction pattern increases for increasing

the sliced angle α and using grazing incidence geometry. The evolution of diffraction efficiency

as a function of α and Θ (both parameters are coupling for resonance case) for La/C with d= 4.7

nm and thickness ratio of 0.5 is shown in Fig. 7.9.

Fig. 7.9 Calculated diffraction efficiency as a function of wavelength, incident and slicing angles. Cases 1 and 2
correspond to relatively small and large slicing angle and reveal different broadening of the diffraction efficiency
curves.

As shown on right hand of Fig.7.9 the FWHM of the diffraction maximum increases by a factor

sin( ) / sin( )q a q a+ -  increasing the sliced angle Θ and the energy position of scattering

maximum is shifted to the lower wavelength accompanied by a reduction of total scattering

power  as  known  from  x-ray  dynamical  theory.  For  comparison  shown  at  Θ =0  the  FWHM  is

increased by a factor of 1.32 and 2.38 for the cases 1 and 2 in Fig.7.9, respectively.

For ML period d = 4.7 nm and a = 35° (and grazing angle is 10°) (case 2 on Fig. 7.9) the

effective grating spacing D = d/sina = 8.2 nm which gives the 1st order grating peak at Qm = 10°.

However, due to the finite length of the incident sub-pulse (duration is 50 fs) the number of

illuminated grating periods is large (here about 1600) resulting in a narrow grating peak

Therefore measurement of angular position and angular width of the grating peak is an

independent and precise probe of the energy and the energy spread of the incident pulse.

7.4. Reconstruction of fs-pulses from spatially resolved ML response

Due to the SASE principle, the structure of a FEL pulse cannot be exactly predicted. Moreover,

every pulse differs from each other. Therefore, there is a need for direct measurement of each
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pulse. Exploiting the time-space-transformation of the incident pulse and using a scattering

geometry where the mean energy of incident pulse train is slightly detuned from the energy of

maximum reflectivity at 1st order ML Bragg peak, the spatially resolved scattering signal

becomes a measure of the energy and pulse structure of the incident pulse train.

As shown in Figs.7.2-7.7 the particular response of a sub-pulse depends on its detuning

energy  with  respect  to  the  energy  of  maximum reflectivity  of  the  ML.  This  peculiarity  can  be

used as a probe of the pulse structure in the VUV-FEL experiments. Considering the detection

scheme shown in Fig.7.1, the ordinate of Figs 7.2-7.7 (number of periods, N) becomes a the

spatial coordinate, X,  and  the  abscissa  of  Figs  7.2-7.7  is  the  time-integrated  intensity  after  the

pulse interaction. Moreover, for certain DE this time-integrated signal maintains the oscillatory

behaviour as in the time resolved mode.

Fig.7.10 shows the scenario of these subsequent test pulses and the respective spatially

resolved signal at the detector after reflection from the low-absorption ML as a function of

detuning energy DE. The ML responses for both sets of test pulses with different detuning DE are

clearly different. The visibility of oscillation is the best close to the energy of 1st order diffraction

maximum of ML where the contrast is high (Fig. 7.10, top curves). This peculiarity seems to be

essential for the pulse reconstruction and the possible detector images of the pulses 1 and 2 are

shown on the Fig. 7.1.

Fig. 7.10 The response function at the detector to different incident pulse trains after time integration of the
time-resolved reflectivity pattern recorded at detuning energy of DE= 3 eV (top) and 5 eV (bottom) with respect to
Emax. .
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A certain DE one can be define by particular setting of the incident angle, Q, being different to

the angle Qmax which corresponds to the 1st order reflection maximum. Considering this, an

incident pulse with an unknown energy distribution of the intensity interacts with the low-

absorbing ML. As a result, we obtain a intensity distribution as a function of two parameters: the

incidence angle Q and detector coordinate X, where the last one is directly proportional to the

numbers of periods, N. Subsequently, the function g(N, Q) is the integrated intensity of the FEL

pulse after reflection from the ML and can be measured by the detector. This function depends

on the reflection properties of the ML, R(N,Q,E), which, in turn, is a function of N, incident

angle Q and the energy of the incident radiation, E. Function R(N,Q,E) is connected with the

unknown energy distribution of the incident pulse f(E) via the Fredholm integral equations of the

first kind:

),()(),,( Q=×Qò NgdEEfENR (7.4)

This integral equation can be solved under the assumption that the kernel is a stepwise smooth

function and has positive values in the range [Emin=E-∆E; Emax=E+∆E], where ∆E is small

(0.5...1.0% bandwidth (FWHM) of the incident pulses energy). The Fredholm integral equations

of the first kind play an important role in many problems like antenna design, astrometry,

computer tomography, image restoration. Methods for solution of such kind of equations are

described by Baker et al.[133] and Tikhonov.et al [134].  Eq.  7.4  can  be  transformed  into  a

matrix problem simplified by A•x=b. Therefore Fredholm integral equations can be expressed by

( , , ) ( ) ( , ) ( , , ),j i fix j
j
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where wj is a weight factor of each component f(Ei).

Eq. (7.4') in the matrix form can be numerically solved using the reliable functions. To

demonstrate the procedure we have used function g(N, Q) as a vector, consisting of 31 discrete

values, such as the CCD pixel values shown in Fig. 7.11a. The ML consists of 91 periods, which

disredized with step, DN=3. To test the reconstruction procedure we calculated the reflectivity of

the ML within a band pass of DE = ±1 eV and at Q = 41° for an initial pulse shown as a dotted

line in Fig.7.11b.  The  test  pulse  consists  of  five  spikes  with  the  different  energy  widths.

Reflectivity R(N,Q,E) is calculated in discrete steps of dE=0.004 eV as a function of the energy

and the numbers of periods for a fixed incident angle. Finally, the reconstructed pulse train is

shown as a smooth curve in Fig.7.11b.
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Fig. 7.11 Detector response function g(N,Q)  (left)  consisting  of  31  points;  the  test  pulse  (dotted line, right) and
reconstruction (smooth curve, right) using the detector response function g(N,Q).

From the Fig.7.11b we can conclude that the reconstruction of sub-peaks with a narrow

energy distribution is more difficult then for smooth ones. The resolution limit of sub-peaks is

about 0.1 eV and does not strongly depend on the numbers of the detector pixels (minimal

amount  is  about  few  tens)  and  the  numbers  of  ML  periods  (more  than  hundred).  In  addition,

there is only a small improvement of resolution increasing the contrast of the reflectivity

function.

The quality of reconstruction at different incidence angles Q, corresponding to different

energy offsets DE, are shown in Fig 7.12. Also we added a detector noise of 1% and a detector

threshold of (10-3). In this case, the pulse reconstruction approach is effective in a range of

detuning angles of few degrees, respectively DE= 0...10eV. In addition, it depends on detector

characteristics (accuracy of detection and dynamical range of detector).

Summarize, it was find that at least 30...50 points (CCD pixels) are necessary at least.

However, the energy resolution of the method is limited to about 0.1eV and narrow (£0.1eV) and

broader peaks can not be reconstructed simultaneously due to mathematical reasons.

Subsequently the quality of reconstruction cannot be increased by a higher number of CCD

pixels in data recording. Considering the penetration depth of the X-ray beam into the ML

material the lateral width of the detector signal is X= T/sinQ. = 2.5µm which is less then the size

of a CCD pixel. In work [131] authors have shown that this length can effective increased by

using a sliced ML structures. If the slicing angle is a, and the incident pulse hits the ML

interfaces at a grazing incident angle Q-a the effective lateral extension of the reflected beam

will be enlarged by a factor 1/sin(Q-a). An additional enlargement of X can be achieved by

oblique setting of the detector with respect to the reflected beam by an angle b of the detector
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normal  with  respect  to  the  reflected  beam.  For  Nb/C  ML  and  using Q-a ≈ 2°  and b ≈ 5° X

becomes enlarged to about 800 µm which gives more then 50 point at a CCD with pixel size of

25µm.  As  shown  in  [131]  the  intensity  decreases  and  the  energy  of  first  order  reflection  peak

increases for increasing the a. This variation will not change the general applicability of our

approach.

Fig. 7.12 Pulse reconstruction (map) of incident signal (top left profile) as a function of different incident angles
Q. The selected line scans (top, middle, bottom) correspond to  Q = 45°, 42°,40° . Maximum reflectivity appears at
Q=45°.

7.5. Processes of the ionization: influence of high intensity

Considering the available energy range of FLASH, the K-electron excitation processes and

Auger recombination are expected for low-Z elements such as boron and carbon atoms.

Properties of Me/B4C MLs in this energy range for continuous VUV radiation have been

described in Chapter 6. Boron K-edge is chosen due to its high sensitivity to the phase of the

virtual transition state interfering with the phase of the incident pulse. Close to the B K-edge the

real part of anomalous dispersion shows a sign reversal above and below the edge, and we expect

the major changes in reflectivity, depending on the intensity of the incident FEL pulses.

Using the time- space conversation of the experimental setup (Fig. 7.1), it will be able to

study under which experimental conditions major deviation from the our experimental data for

continuous synchrotron radiation in this energy range take place, and which corrections are

necessary to describe the processes. To describe the role of the ionization of atoms inside the
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ML, we can use the optical properties of ionic boron. These data can be applied for calculating

the scattering properties of MLs near K-edge by high-intensity FEL radiation.

7.5.1 Calculation of Anomalous Scattering for Ions and Atoms

Elastic  scattering of photons by  atoms, ions or molecules  is important  in  many  fields

such  as  crystallography,  plasma physics and astrophysics. In the range of high photon energy

(i.e., well above the K-shell threshold energy of the atom or ion), form factor (FF) or modified

form factor (MFF) approximations are widely used and at least moderately successful, in

estimating the scattering cross sections. For neutral atoms the anomalous scattering factors have

been calculated over a wide  range  of  photon  energy  for most  elements,  as  in  the work by

Cromer and Liberman  [135] and Henke et al. [118]. But for ions systematic studies are not yet

available. On the other side, Hartree-Fock (HF) wave functions for atoms and atomic ions may

be computed numerically by standard methods [136]. Roothaan-Hartree-Fock (RHF) wave

functions are algebraic approximations to HF wave functions in which the Roothaan procedure

[137-139] is used to expand the radial orbitals in a basis set of, say, Slater-type functions (STF's).

RHF wave functions are in great demand because they are more convenient than numerical HF

ones.  RHF wave  functions  for  the  atoms from He to  Xe were  tabulated  by  Clementi  & Roetti

[140-141] and Bunge et al. [142], and for heavy atoms by Delavega and Miguel [143].

The form factor f(q) for  a  spherically  symmetric  charge  number  density ρ(r) and  a

momentum transfer ħq is defined as
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Because the atom are describing in a single-electron model, the charge distribution p(r) may be

decompose and also the form factor f(q) into a sum of terms corresponding either to individual

electrons or to a particular sub-shell (all electrons of fixed principal quantum number n and total

angular momentum quantum number j) or a particular shell (all electrons of fixed n) (Appendix

D). The anomalous scattering factors g' and g" can be calculated, utilizing a dispersion relation

and the optical theorem, as
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Here σPE is the sum of sub-shell photo effect cross sections; fmn is the oscillator strength for the

transition from the occupied bound state, m to unoccupied state n and Emn the difference between

the binding energies of the two bound states m and n. The quantity σBPP is the sum of sub-shell

bound pair production cross sections, with the creation of an electron-positron pair in an ion with

a sub-shell vacancy with the electron filling that vacancy; it must be included in order to make

the principal value integration converge at high energies.

In work [144] Zhou et. al. proposed the simple computational schemes to calculate angle-

independent anomalous scattering factors for ions in the X-ray regime, utilizing sub-shell photo

effect cross sections of the neutral atom and dispersion integral. Eq. 7.6 can be re-written as:
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for inner shells:

( ) ( )
( )

( ) ( )

2 2 2
0 0

'
0 22 2 2 2 2

0 0 0

1 1 ln
2 2

m m
m

m m
m PE m m m

m

E E E Ea Eg E E E
mc r E E E E

s
p

ì üé ù+ D -æ ö ï ïê úæ öæ ö ë ûD » ´ D +í ýç ÷ç ÷ç ÷
è øè øè ø + D -ï ï

î þ

 (7.6b)

for outer and intermediate shells:
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Total  cross-section  for  atomic  (BI)  and  ionic  boron  (BII  and  BIII)  ground states  are  shown on

Fig. 7.13. In process of ionization, the K-edge will be shift to higher energy from 188eV to

235eV. For light elements, the shift of K-shell can be described next approximation [144]:
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where K
CE  is Coulombic binding energy and Zi is the degree of ionization.
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Fig. 7.13 Photoionization cross sections of atomic (BI) and ionic boron (BII and BIII) in ground states 2P0, 1S and
2S, respectively as a function of photon energy (from database “TIPTOPbase” http://cdsweb.u-strasbg.fr/topbase).

These  data  can  be  use  in  the  simulation  of  the  processes  of  interaction  fs  X-ray  pulses

with the multilayer including the process of ionization. On Fig. 7.14 are shown the calculated

optical properties of boron carbide, containing neutral atom or ion of boron.
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Fig. 7.14 Refractive index n=1-δ+iβ of B4C with atom (red line) and ion of boron (green line)
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7.5.2. Temporal evolution of the optical properties of boron carbide

The  scattering  behaviour  of  the  matter  will  change  without  any  change  of  the  crystal  lattice

during the interaction FEL pulse with matter. Figure 7.15 shows the time evolution of the opacity

as a function of B4C material depth for the incident energy of 210eV and a fluence of 200 J/cm2,

and Gaussian pulse with duration 15fs, which calculated Bergh et al in work [51] using non-

local thermodynamic equilibrium (NLTE) simulations of the heating of solids by femtosecond

VUV and X-ray lasers at different fluencies. This material contains from both low-Z elements,

and in process of the interaction their electron structure will be strong changed.

At this energy the photons are energetic enough to ionize the boron K shell directly, but

not the carbon K shell. The incident photons interact mainly with the core electrons in boron,

with photoionizations followed by fast impact ionization of the valence electrons of both boron

and carbon. The free electrons are heated to a temperature of about 40eV, which is too low to

significantly impact excitation or ionization of the K-shell electrons. Also, it was noted in work

of Bergh et al [51], that in the resonant region of the absorption spectrum, there will be line

contributions from bound-bound transitions in the plasma, further complicating the absorption

mechanisms, as well as a considerable broadening of the lines at solids.

Fig. 7.15 Temporal evolution of the opacity as a function of material depth for B4C [51]. The pulse has a
wavelength of 5.9 nm, a fluence of 200 J /cm2, and a pulse length of 15fs. The opacity decreases by almost a factor
of 4 due to the weak inverse bremsstrahlung.

7.6. Possible experimental setup of the experiment at FLASH
Preliminary simulations considering form factors of boron atoms and ions have shown that due

to ionization pronounced changes in the reflectivity curve are expected. Comparing neutral and

ionic boron both energy position and peak shape of 1st order Bragg peak of ML is changed.

Depending on degree of ionization the position of the B K-edge is shifting from ~188eV (for

atomic state) to ~235eV (for ionic state) (see Figs.7.13 and 7.14). Boron edge is chosen due to its
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high sensitivity to the phase of the virtual transition state interfering with the phase of the

incident pulse. Close to the B K-edge the real part of anomalous dispersion shows a sign reversal

below and above the edge. The present theory of anomalous dispersion is restricted to “free”

atoms and low excitation, it can be expect major changes in reflectivity as a function of incident

intensity, which can be effectively probed measuring the entire Bragg reflection curve.

In order to measure the reflectivity curve over a wide angular range using “single shot”

exposure the sample will be cylindrically bended multilayer and illuminated through a set of

parallel arranged guiding pinholes acting as a transmission grating (Fig. 7.16). The reflection

from the grating is used to determine the energy of the respective FEL pulse with high resolution

CCD (Detector 1).  The  diffracted  beams  will  be  absorbed  by  a  second  grating  with  same

parameters set behind the first one. Selected from one and the same incident pulse with intensity

below the threshold of damage each partial beam passed through the pinhole grating will hit the

multilayer under a different angle of incidence and subsequently reflect at different angular

positions.  Therefore,  the  broadening  of  reflection  curve  will  occur  with  expanded  range  of

different reflected angles. The latter ones allow a spatial separation of each of individual

scattering position on a pnCCD (Detector 2) which allows both spatial and energy resolution at

same time including the fluorescence radiation in background. Using ML with bending radius of

around ten of centimetres, the spatial separation of neighboured beam will fit with the pixel size

of pnCCD (256 × 256 sensitive pixels with 75 µm × 75 µm pixel size)

Fig.7.16 Experimental scheme to measure the ML reflectivity using single shot experiments. Second pinhole grating
will be use optionally as guiding grating to cut scattering figures from individual pinholes.

In order to study the effect of excitation and recombination at the ML, the incident pulse

energy will be tuned close to the B K-edge. The average angle of incidence, Q, of the FEL beam
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with respect to the ML normal is fixed in such a way that a certain angular range, DQ, is

simultaneously excited by several partial beams. The average angle Q  can easily changed to

cover different ranges within the reflection curve. Preliminary simulations considering form

factors of boron atoms and ions, have shown that the maximum changes in reflectivity curve due

to ionization are expected, if Q is close to the 1st order multilayer Bragg peak due to the shift of

B K-edge from ~188eV (for atomic state) to ~235eV (for ionic state) (see Fig.7.17). The

resolution of obtained peaks can be tuned by using ML with different numbers of periods.

Using a mean incidence angle of 32° the angular separation between reflected peaks from

initial B and almost ionized B+ is more then 1° (Fig. 7.17). Higher shifts are expected for higher

ionization states. The effect found for ML´s at ground state after chemical modifications is

expected to appear in similar manner after FEL induced ionization.

Fig. 7.17 The integrated intensities per single pulse for the multilayer with different degree of ionization vs the flux
and grazing angle of incident pulse (on set it is demonstrated a presumptive result from detector).

Due to depth dependent absorption excitation processes will be most effective close to the

surface but will decay in probability for deeper region within the ML. Using the time- space

conversation of the experimental setup, one will be able to measure major deviations from

experimental conditions compared to continuous synchrotron radiation in this energy range, and

which corrections are necessary to describe the processes under FEL conditions. Following

proposed experimental setup we will be able to measure the whole reflection curve close to the

1st order ML Bragg peak and to determine the optical properties of boron and carbon material

under condition of high intense fs- pulses of FLASH at energies close to K-edges.
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Summary

The VUV FEL FLASH operates in soft X-ray range and produces ultra short pulses with high

intensity. The radiation from FEL has spontaneous nature and can be described the Rice’s

theory. In case of pulse generation in the SASE regime the FEL will produce a pulse train from

ten to few hundreds fs duration at soft (e.g., FLASH) to hard X-ray range (European XFEL)

which is nearly fully coherent in the transverse direction. The transversely fully coherent beam

with pulse duration of a few femtoseconds will open new experiments in solid state physics

which can not be studied with present radiation sources.

Till now the interaction of intense, ultra short X-ray pulses with solids is not very well

understood. In particular there is no rigorous treatment of the response of crystalline matter to

highly intense fs- X-ray pulses. From first experiments with the FLASH one knows that direct

illumination of a crystalline solid with an FEL pulse results in complete destruction of the

material. On the other hand there are interesting scientific questions in solid state physics which

can be elucidated by fs-diffraction only, for example, the investigation of the time-structure of

electron-phonon interaction in solids.

The influence of electronic excitation to the X-ray scattering process is very important. In

particular, one has to know an intensity threshold which does not change the optical properties of

the matter and can be tolerated by the matter without major damage or fluence dependent

absorption.  In this work the scattering of X-ray radiation in soft X-ray range from MLs based on

B4C was analysed and the possible experimental scheme was proposed to study the interaction of

soft X-ray FEL pulses with a periodical multilayers. The boron-containing MLs made for the use

in the wavelength range near K-edge of boron (~188eV) are of great interest for X-ray

fluorescence analysis of boron doped semiconductors for plasma diagnostics, astronomy and

lithography. Moreover, these structures composed by metal and low Z elements like B4C or

carbon  are  wide-used  as  optical  elements  in  soft  X-ray  spectral  range.  This  also  holds  for

application at FELs like FLASH.

For a ML the effective penetration depth corresponds to a certain number of layers

probed by the incident radiation. In this thesis was shown that the shape of the reflection curve

will change during the time of propagation of the pulse through the ML structure due to the

interaction of the beam with an increasing number of periods. The study of the time dependent

response  of  the  ML  to  the  X-ray  pulse  can  provide  insights  into  the  process  of  interaction  of

highly intense FEL radiation with matter. There are various approaches as kinematic and

dynamical theory of X-ray diffraction, describing the scattering properties of MLs with a

continuous synchrotron radiation. These theories have been extended to describe of the
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interaction of short optical pulses with matter. However, these approaches can not be applied to

describe the interaction of short intense X-ray FEL pulse with multilayer, because they are based

on the consideration of constant optical properties during the interaction of X-ray photons with

the solids.

It is expected that during the propagation through the ML the FEL pulse exits many

electrons from the ground state of atom into a vacuum and excited states. At the same time, the

several recombination processes take place, such as Auger recombination. All these interaction

processes cannot be described by a time-constant atomic form factor. Therefore, the theory,

which considers the time evolution of electron population during the interaction of the FEL pulse

interactive with matters, is required. The experiments at FEL can help to reformulate the X-ray

scattering theory, and give additional information to propose various approaches in the

description of time-dependent optical properties.

To test the influence of electron excitation on the optical properties of boron carbide, the

dispersion  and  absorption  coefficient  of  B4C were measured near boron K-edge by energy-

resolved photon-in-photon-out method in the soft X-ray range probing a Bragg reflection from

periodical multilayers. The measured data clearly show that the variation of the fine structure of

the K-absorption edges due to the chemical nature of the absorber element. As in the NEXAFS a

higher ionic charge of the absorber atom results in a shift of the absorption edge towards higher

energies. In terms of the kinematic approximation d and b can be simply derived independently

from each other using an energy-resolved photon-in-photon-out method. For thicker samples

multiple scattering effects ML become important requiring a full dynamical theory. The samples

show similar key features as Kα line (~183eV), the K-edge of atomic boron (~188eV), π*- (~194

eV) and σ*-transitions (198...210eV) of the boron carbide. The obtained differences between the

samples we explain by the different chemical environment of boron. Also we obtain additional

information from similar measurements taken near the carbon and nitrogen K-edges.

The knowledge obtained from experiments with continuous radiation was used to design

the respective experiments with pulse from the FEL. The whole information about the scattering

process has to be obtained by single short (single pulse) experiments. In my thesis, it is proposed

that the geometrical setup, where the incident pulse arrives from the FEL under the angle close to

the 1st order ML Bragg peak, provides the most valuable information. Using MLs composed by

two different low-absorbing materials for this energy range, the evolution of the multilayer

response can be analyzed as a function of the penetration depth of the incident pulse due to the

finite  length  of  a  pulse.  The  evolution  of  ML  reflectivity  as  a  function  of  the  number  of

interfaces becomes visible, if the mean energy of the incident pulse differs by a small amount,

∆E, from the energy of maximum reflectivity at the 1st order Bragg peak.  Using ML as a
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monochromator for the following experiment such detuned scattering geometry can be an option

to tailor the reflection intensity. Here, the spatial extension of the reflected pulse at the detector

is the direct measure of the absorption length within the sample.

In this scheme, any effect of a modified interaction, due to nonlinear absorption or

electronic excitation, which would result in a reduction of the effective absorption length,

becomes directly measurable by such a scattering experiment. Various phenomena of excitation

may play an important role in process of the interaction of FEL radiation with the materials and

may charge the reflectivity and its time structure eventually.  Preliminary simulation considering

form factors of neutral and ionized boron showed that due to ionization, pronounced changes in

the reflectivity curve are expected. Comparing neutral and ionic boron, both energy position and

peak shape of 1st order Bragg peak of ML are changed.

In summary, the proposed scheme can be the powerful tool to study the various processes

within the electronic sub-system of the FEL pulse interaction with matter. This type of

investigations gives a deep understanding of the nature of the electronic excitation and the

recombination at the femtosecond scale.
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Appendix A
Kramers-Kronig relations

The Kramers–Kronig relations are mathematical properties, connecting the real and imaginary

parts of any complex function which is analytic in the upper half plane. These relations are often

used to relate the real and imaginary parts of response functions in physical systems because

causality implies the analyticity condition is satisfied, and conversely, analyticity implies

causality of the corresponding physical system. The relation is named in honour of Ralph Kronig

and Hendrik Anthony Kramers.

For a complex function χ(ω) = χ1(ω) + iχ2(ω) of the complex variable ω, analytic in the

upper half plane of ω and which vanishes faster than 1 / | ω | as w ® ¥ , the Kramers–Kronig

relations are given by

and

where P denotes the Cauchy principal value. We see that the real and imaginary parts of such a

function are not independent, so that the full function can be reconstructed given just one of its

parts.

An important example of the application of Kramers - Kronig relations in physics is an

expression of the dispersion relations in classical electrodynamics. In this case,

( ) ( ) ( )' ''ie w e w e w= +  - relative dielectric constant, ω - frequency.

and

The real and imaginary parts of permittivity, respectively, determine the refractive indices and

absorption of the medium, so these figures are not independent of each other.
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Appendix B

Fourier transforms

In mathematics, the Fourier transform (often abbreviated FT) is an operation that transforms one

complex-valued function of a real variable into another. In such applications as signal

processing, the domain of the original function is typically time and is accordingly called the

time domain. That of the new function is frequency, and so the Fourier transform is often called

the frequency domain representation of the original function. It describes which frequencies are

present in the original function.

There are several common conventions for defining the Fourier transform of an integrable

function ƒ: R → C:

( ) ( ) ( )ˆ exp 2f f x ix dxx p x
+¥

-¥

= -ò ,  for every real number ξ.

When the independent variable x represents time (with SI unit of seconds), the transform variable

ξ represents frequency (in hertz). Under suitable conditions, ƒ can be reconstructed from by the

inverse transform:

( ) ( ) ( )ˆ exp 2f x f ix dxx p x
+¥

-¥

= ò , for every real number x.
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Appendix C

Z-transform

In mathematics, the Z-transform converts a discrete time-domain signal, which is a sequence of

real or complex numbers, into a complex frequency-domain representation. The Z-transform,

like many integral transforms, can be defined as either a one-sided or two-sided transform.

Bilateral Z-transform

The bilateral or two-sided Z-transform of a discrete-time signal x[n] is the function X(z) defined

as

where n is an integer and z is, in general, a complex number:

where A is the magnitude of z, and φ is the complex argument (also referred to as angle or phase)

in radians.

Unilateral Z-transform

Alternatively, in cases where x[n] is defined only for n ≥ 0, the single-sided or unilateral Z-

transform is defined as

In signal processing, this definition is used when the signal is causal.

The inverse Z-transform is

where C is a counterclockwise closed path encircling the origin and entirely in the region of

convergence.
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Appendix D

Slater-type orbital expansions and expectation values boron

In the one electron theory, the following approximation is made for wave function in

general, Ψ:

( ) ( ) ( ) ( ) ( )1 2 3 1 1 2 2 3 3, , ,..., ...N N Nr r r r r r r ry y y y y y= =
r r r r r r r r

(D.1)

which is a separation ansatz and named “The Hartree Approximation”. Ψi(ri) are the one electron

wave functions, the orbital functions. In the frame of this approach the one electron functions are

( ) ( ) ( ),,j nl j l m
j

r C S r Y ry a= × ×å (D.2)

where l indicates the shell, Cj is the expansion coefficient for the j'th basis function, m  (magnetic

quantum number) represents the subspecies of the symmetry n; Y(r) and S(α, r) are the radial

and the angular part of the basis function,  respectively. These data was calculated and tabulated

for  different  elements  and  for  different  state  [145,  146].  For  example,  the  values  of  these

coefficients for atomic and ionic boron are present:

atomic state:

Snl(αj,r) Cjj

nlj aj 2s-electron 1s-electron

1 1s 4.445610 -0.194840 0.927050

2 1s 7.917960 -0.012540 0.077800

3 2s 0.867090 0.069410 0.000880

4 2s 1.219240 0.752340 -0.002000

5 2s 2.072640 0.318560 0.004330

6 2s 3.443320 -0.126420 0.002700

Snl(αj,r) Cjj

nlj aj 2p-electron

1 2p 0.874810 0.536220

2 2p 1.369920 0.403400

3 2p 2.322620 0.116530

4 2p 5.594810 0.008210
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Ionic state:

Snl(αj,r) Cjj

nlj aj 2s-electron 1s-electron

1 1s 4.429940 -0.202880 0.928010

2 1s 7.863360 -0.019420 0.080630

3 2s 1.592410 0.734900 0.003200

4 2s 4.010220 -0.092180 -0.000810

5 2s 1.250210 0.345270 -0.001980
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