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Abstract

B-meson decays are a good probe for testing
the flavour sector of the standard model of par-
ticle physics. The standard model describes at
present all experimental data satisfactorily, al-
though some “tensions” exist, i.e. two to three
sigma deviations from the predictions, in par-
ticular in B decays. The arguments against
the standard model are thus purely theoretical.
These tensions between experimental data and
theoretical predictions provide an extension of
the standard model by new physics contribu-
tions. Within the flavour sector main theoret-
ical uncertainties are related to the hadronic
matrix elements. For exclusive semileptonic
NB ! D.�/` N� decays QCD sum rule tech-

niques, which are suitable for studying had-
ronic matrix elements, however, with substan-
tial, but estimable hadronic uncertainties, are
used. The exploration of new physics effects
in B-meson decays is done in an twofold way.
In exclusive semileptonic NB ! D.�/` N� de-
cays the effect of additional right-handed vec-
tor as well as left- and right-handed scalar and
tensor hadronic current structures in the de-
cay rates and the form factors are studied at
the non-recoil point. As a second approach
one used, the non-leptonic B0s ! J= � and
B0 ! J= KS;L decays. Discussing CP -
violating effects in the time-dependent decay
amplitudes by considering new physics phase
in the B0 � NB0 mixing phase.

Zusammenfassung

Die Zerfälle derB-Mesonen eignen sich beson-
ders gut den Flavour Bereich des Standard-
models der Teilchenphysik zu testen. Obwohl
gewisse Spannungen, d.h. Abweichungen von
zwei bis drei Standardabweichungen zwischen
theoretischen Vorhersagen und experimentellen
Daten, insbesondere inB Zerfällen, existieren,
können bisher gewonnen experimentelle Daten
durch das Standardmodell erklärt werden. Ar-
gumente einer Erweiterung des Standardmo-
dels durch Beiträge neuer Physik sind deshalb
von rein theoretischer Natur. Im Flavour Be-
reich sind die größten theoretischen Unsicher-
heiten mit der Bestimmung der hadronischen
Matrixelemente verbunden. Zur Untersuchung
dieser Matrixelemente im Allgemeinen und hier
insbesondere in exklusiven semileptonischen
NB ! D.�/` N� Zerfällen sind QCD Summen-

regel Methoden hervorragend geeignet, da sich
die Größenordnung hadronischer Unsicherhei-
ten abschätzen läßt. Die Suche nach Beiträgen
neuer Physik inB-Mesonen zerfällen wird auf
zweierlei Art und Weise durchgeführt. Zum
einen in NB ! D.�/` N� Zerfällen, indem rechts-
händige vektorielle, sowie skalare und tenso-
rielle rechts- und linkshändige hadronische Strö-
me zugelassen werden. Die Beiträge neuer
Physik in den Zerfallsraten und Formfaktoren
werden am kinematischen Punkt maximalen
Impulsübertrages diskutiert. Desweiteren wer-
den Hinweise auf Beiträge neuer Physik in den
nicht leptonischen ZerfällenB0s ! J= � und
B0 ! J= KS;L untersucht, indem in der
B0 � NB0 Mischungsphase eine neue Physik
Phase berücksichtig wird, welche zu CP ver-
letzenden Effekten in den zeitabhängigen Zer-
fallsamplituden führt.
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1
Introduction

The aesthetic beauty of Leonardo da Vinci’s Mona Lisa (Musée du Louvre, Paris) or
Michelangelo’s David (Galleriea dell’ Accademia, Florence, Italy) is not so much a
question of colour, painting or material from that they are made, it is a question of
symmetry: since ancient times, humans tried to mimic nature (® K�¢š−) in art, archi-
tecture and science. Greek philosophers observed nature and found a proportionality
realised in nature objects which they called sectio divina or “golden ratio”, first geo-
metrically defined by Euclide. A line with total length .mCM/ is divided such that
the ratio of the major .M/ and the minor .m/ line elements is equal to the ratio of the
total length and the major one, mCM

M
D M

m
D .1Cp5/=2 [1, 2]. This is well-know,

e.g. in solid-state physics well-known, because it is associated with the icosahedral
.Ih/ group, containing the symmetries of the icosahedron and dodecahedron [3]. Sym-
metry relations, particularly the golden ratio, influence arts until this day; in Fig. 1.1
four examples of the realisation of the golden ratio are shown. The example depicted
in Fig. 1.1 (d) from the Swiss architect Le Corbusier is most impressive: He combined
the golden ratio with the Fibonacci series in a modulor system as a scale representing
the “human measurement”. Famous buildings representing this system are the “Unité
d’Habitation” at Marseille (France) or the National Museum of Western Art at Tokyo
(Japan) [4].

The assumption of a geometrical basis of nature has inspired scientists developing
more or less successful models for processes realised in nature, e.g. Kepler’s Platonic
model of the Solar system. In modern physics symmetries in a generalized sense are
of particular importance; here a symmetry arises in nature, whenever a change in the
variables of system the leaves the ”essential physics“, described by the action of the
system, unchanged [5]. For field theories, in particular for quantum field theory, the
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1. Introduction

(a) Ranunculus (b) Parthenon, Greece (c) Albrecht Dür-
rer, “Madonna with
Music-Making Angels”

(d) Human

Figure 1.1.: Examples of the golden ratio; (a)–(c): realised in nature, and used in the art of
the ancient world and the middle ages [2], and (d) in modern architecture [4].

Noether theorem [6] provides a general framework, which correlates a conservation
law with a continuous symmetry transformation under which the Lagrangian of the
system is invariant in form [7].

This has been central for the development of what is nowadays known as the standard
model (SM) of particle physics [8–11]: one major step has been the insight, that the
distinct symmetries space reflection (parity), charge conjugation and time reversal are
each respected by the strong and electromagnetic interaction, but not by the the weak
one. Furthermore, most importantly, only their combination based on symmetry prin-
ciples described by a GSM D SU(3)C ˝ SU(2)L ˝ U(1)Y gauge group. Quarks and
leptons are reside in representations of this gauge group, e.g. with respect to SU(3)C
the quarks in triplets and the leptons in singlets. The interactions are mediated by the
corresponding gauge bosons. The gauge symmetry GSM must be spontaneously bro-
ken, because neither mass terms for the gauge bosons nor for the leptons and quarks are
gauge invariant. Within the standard model this is realised by the Higgs-mechanism
[12–15]. Note that also this concept of symmetry-breaking is not restricted to physics,
it is well-known, e.g. in biology [16].

On the one hand the standard model is experimentally well-tested, e.g. the electroweak
theory as a quantum field theory at the level of 1% or better. On the other hand,
obviously, the gravitational interaction is not included. Furthermore, explanations are
needed for the origin of the particle masses and the baryon asymmetry of the universe,
therefore the standard model is not a fundamental theory. Expecting results from the
experiments ATLAS [17], CMS [18] and LHCb [19] at the LHC (CERN) a lot of
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unanswered questions should be solved [20–22].

Extensions of the standard model are required, for which the term new physics (NP)
is used in the literature. A systematic classification of new physics contributions in
B-meson and D-meson decays is presented, e.g. in Ref. [23]. If one uses the concept
of low-effective Hamiltonians, new physics may enter through the Wilson coefficients
of the standard model operators that can receive new contributions through diagrams
involving new heavy internal particles. These particles can be ”integrated out“ as
the W boson and top quark in the standard model. Another way is that new physics
enhance the operator basis, fQig ! fQSM

i ;QNP
i g. Operators which are not present or

strongly suppressed in the standard model may become important [24, 25].

The work presented here is dedicated to such extensions of the standard model quark
flavour sector. The term flavour is used in order to describe the several copies of the
same gauge group representations present in the standard model, namely for up-type
and down-type quarks, charged leptons, and neutrinos. Flavour physics itself describes
the non-trivial spectrum and interactions of this sector, and refers to the weak and
Yukawa interactions [26, 27].

One prediction of the standard model flavour sector is a single CP -violating parame-
ter, when ignoring an additional flavour diagonal CP -violating parameter, the strong
CP phase, which is negligible, as experimental data constrain it to be smaller than
O.10�10/. CP -violating effects can be studied within B-meson decay channels in
various ways. The amount of high precision data from the B-factories, BABAR at
SLAC and Belle at KEK, established that the observed flavour and CP violation in
nature is mainly driven by the Cabbibo-Kobayashi-Maskawa [28, 29] description [27].
This can be further tested by allowing new physics contributions to various clean ob-
servables which are calculated precisely within the standard model. However, those
new physics contributions to these theoretically clean processes can not be bigger than
O.30%/ of the standard model contributions [30, 31].

In order to study new physics effects it is essential to understand the flavour sector of
the standard model. The main theoretical uncertainties are related to the strong inter-
action, i.e. to hadronic uncertainties. They can be studied by using non-perturbative
methods such as QCD sum rule techniques or lattice QCD.

Following the above presented possibilities how new physics contributions can enter
the effective Hamiltonians, there are two main strategies studying new physics effects:
One can either build an explicit new physics model, which specifies the new matter
fields and symmetries beyond the standard model one, or analyse the new physics

3



1. Introduction

effects by using a generic effective-theory approach or by integrating out the new heavy
fields [26]. The first strategy is more predictive then the second one, but more model
dependent. The second strategy can be used e.g. for exclusive semileptonic B-meson
decays. Integrating out the new degrees of freedom, the standard model Lagrangian
can be treated as the renormalizable part of a more general local Lagrangian,

ˇeff D ˇSM C
∑ 1

�
.D�4/
NP

C
.D/
i Q

.D/
i ;

where Ci are the Wilson coefficients and the operators with dimension D > 4 are
suppressed by inverse powers of an effective new physics scale �NP > MW . Exten-
sions of the standard model can be studied in a limited number of coefficients of the
higher-dimensional operators. For nonleptonic B-meson transitions one can use CP -
violating effects in order to search for relations or correlations that hold in the standard
model but could be spoiled by new physic effects.
This thesis is organized as following. In Chap. 1 the standard model of particle physics
is reviewed by having a closer look at the CP -violating effects in B0 � NB0 mixing.
The theory of B-meson decays is discussed in Chap. 2, introducing heavy-quark ef-
fective theory as the working tool for the investigation of B-meson decay channels. In
Chap. 4 exclusive semileptonic NB ! D.�/ decays are analysed by using QCD sum
rule techniques. However, QCD sum rules are not suitable for searching new physics
effects. This is done for exclusive semileptonic NB ! D.�/ transitions in Chap. 5 by
taking an helicity-violating right-handed hadronic current into account. As a second
approach in Chap. 6 new physics contributions in non-leptonic b ! s decays are ex-
plored by analysing the CP -violating effects in the B0s ! J= � and B0 ! J= K

time-dependent decay amplitudes. Finally, some concluding remarks are presented in
Chap. 7.
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2
Fundamentals

The fundamental framework of modern particle physics is the standard model of el-
ementary particles (SM). It provides lot of facets which could not discussed here.
Hence, this chapter is restricted on the basic facts of the standard model which are
relevant for this work. Moreover, notations are introduced needed for the forthcoming
chapters.

Exhaustively discussion about the standard model and related topics can be found in
many textbooks, e.g. Refs.[5, 7, 32–34], or review articles, e.g. Refs. [20–22, 26, 35].

This chapter is organized in the following way: In Sec. 2.1 the standard model is
briefly reviewed. In Sec. 2.1.1 the spinor representations of the leptons an quarks is
introduced. The standard symmetry group GSM D SU(3)C ˝ SU(2)L˝U(1)Y , includ-
ing the electroweak theory, the quantum chromodynamics (QCD) and the concept of
spontaneous symmetry breaking is subject of Sec. 2.1.2. One part of the general renor-
malizable standard model Lagrangian are Yukawa interactions which are the source of
all flavour physics. They are generally flavour dependent and CP violating. In Sec.
2.2 the CP violation within the standard model and especially in the B � NB-mixing is
discussed.

2.1. Standard Model

The standard model of elementary particles [8–11] describes the interaction of the
fundamental particles: leptons and quarks. There are three families of leptons and
quarks which could independently represented by complex 2 component Weyl spinor
fields. The families can be arranged in a SU(2) doublet of left-handed Weyl spinors,

5



2. Fundamentals

 L 2
(

1
2
; 0
)
,

L D
[
�i

ei

]
L

D
[[
�e

e

]
L

;

[
��

�

]
L

;

[
��

�

]
LŸ

leptons

]
;

qL D
[
ui

d i

]
L

D
[ [

u

d

]
L

;

[
c

s

]
L

;

[
t

b

]
L�

quarks

]
;

(2.1)

and an SU(2) singlet of right-handed Weyl spinors,  R 2
(
0; 1

2

)
,

R D
eiR D ŒeR; �R; �R��iR D Œ�eR; ��R; ��R�

and qR D
uiR D ŒuR; cR; tR� ;d iR D ŒdR; sR; bR�

: (2.2)

Independent from handedness, the leptons can be placed into SU(3) singlets, and
quarks into SU(3) triplets. Parity is not conserved from SU(2), because this group
is chiral, but the non-chiral group SU(3) conserves parity. The vector boson gauge
fields arise from the standard symmetry U(1)Y ˝SU(2)L˝SU(3)C , which is a internal
symmetry. Lepton and quark fields interact with each other via this 1 C 3 C 8 D 12

gauge fields. In the following the spinor representations for leptons and quarks are
discussed in more detail.

2.1.1. Spinor Representations

The observable physical space consists of one time and three space dimensions. Lorentz
transformations in this space can be described by the Clifford algebras Cl3 ' Mat.2;C/,
Cl.3; 1/ ' Mat.4;R/ and Cl.1; 3/ ' Mat.2;H/. In the latter, the entries of the real
algebra of 2� 2-matrices Mat.1;H/ are quaternions. As mentioned before, the leptons
and quarks are represented as Weyl spinors, but in physics the Dirac spinors are pre-
ferred. Chiral symmetry linked the two representations. Introductions into spinor rep-
resentation can be found in any quantum mechanical book, see, e.g., Refs. [32, 33, 36].
In the following some fundamentals about spinor representations are presented.
The Lorentz transformations form the Lorentz group

O.3; 1/ D f� 2 Mat.4;R/j���T D �g ;

where � is a matrix, satisfying det� D ˙1, and ��� D diag.1;�1;�1;�1/ is the
usual Minkowski matrix. The positive determinant belongs to the special Lorentz

6



2.1. Standard Model

group SO.3; 1/ D O.3; 1/ \ SL.4;R/. The Lorentz transformations can be described
within the Clifford algebras Cl3, Cl.3; 1/ and Cl.1; 3/. Especially the Clifford alge-
bra Cl.1; 3/ is generated as a real algebra by the Dirac 
 -matrices 
i , i D 0; 1; 2; 3,
making this algebra particularly interesting in physics.
The matrix � can be written as

� D exp
{
� i
2
!��J

��

}
; (2.3)

where !�� is an asymmetric matrix corresponding to the six generators of the group,
labelled as J �� , with a pair of antisymmetric Lorentz indices. The associated Lie
algebra so.1; 3/ is represented by the commutator of these generators,

ŒJ ��; J ˛ˇ � D i
(
��˛J �ˇ � ��ˇJ �˛ � ��ˇJ �˛ C ��ˇJ �˛

)
: (2.4)

Splitting the generators J �� into generators of rotations, J i D 1
2
�ijkJ

jk and boosts,
K i D J i0, the Lorentz group (2.4) becomes

ŒJ i ; J j � D i�ijkJ k ; ŒJ i ; K i � D i�ijkKk ; ŒK i ; Kj � D �i�ijkJ k : (2.5)

Using the definitions � i D 1
2
"ijk!jk and �i D !i0 the Lorentz transformation takes

the simple form

� D expf�i� � J C i� �Kg : (2.6)

The first relation in (2.5) represents the Lie algebras of SU(2) and SO.3/. They are
indistinguishable at the level of infinitesimal transformations. However, they differ at
a global level, i.e. far from the identity. A rotation by 2� in SO.3/ is the same as
the identity. Contrastingly the group SU(2) is periodic only under rotations by 4� .
Therefore considering SU(2) one includes the solution of (2.5) with half-integer spin,
while for SO.3/ one only used representations with integer spin. For SU(2) the spinoral
representation is given by

J i D � i

2
: (2.7)

Here � i are the Pauli spin matrices,

�1 D
[
0 1

1 0

]
; �2 D

[
0 �i
i 0

]
; �3 D

[
1 0

0 �1

]
; (2.8)

7



2. Fundamentals

which satisfy the commutations and anticommutations rules

Œ�i ; �j � D 2i"ijk�k ; f�i ; �j g D 2ıij12 ; (2.9)

where 12 is the 2 � 2 unity matrix. The Pauli matrices generate the real algebra
Mat.2;C/, being the matrix image of the Clifford algebra Cl3. Using the Clifford
algebra Cl3 ofR3 the universal covering group for the rotation group SO.3/ ofR3 can
be constructed. The rotation of a vector Ex 2 R3 is given by Ex0 D s Exs�1, where s is an
element of the spin group spin.3/. In the matrix formulation provided by the Pauli spin
matrices, the spin group spin.3/ has an isomorphic image, the special unitary group

SU(2) D fs 2 Mat.2;C/js�s D 12; det s D 1g : (2.10)

Every element in SO.3/ can be represented by a matrix in SU(2) [37–39].
Combining the generators of rotations J and of boosts K in a chiral way, J˙ D
1
2
.J ˙ iK /, Lorentz algebra can be represented by two half-integers .jC; j�/ have

dimension .2j� C 1/.2jC C 1/. Using this the states have all possible spin values j
in integer steps between jjC � j�j and jC C j�. The representation for the left- and
right-handed Weyl spiors are .1

2
; 0/ and .0; 1

2
/, respectively, and their transformation

law under Lorentz transformations using Eq. (2.6) and (2.7) is given by

 L 7�!  0L � �L L D exp
{
.�i� � �/ � �

2

}
 L ; (2.11)

 R 7�!  0R � �R R D exp
{
.�i� C �/ � �

2

}
 R : (2.12)

In the chiral basis the Dirac field is defined as

	 �
[
 L

 R

]
: (2.13)

The Pauli matrices (2.8) generate a basis for the four dimensional space-time, satisfy-
ing the commutator relation

f
�; 
�g D 2��� ; (2.14)

where the Dirac 
 -matrices in the chiral representation can be written as


0 D 
0 D
[
12 0

0 �12

]
; 
k D �
k D

[
0 ��k
�k 0

]
for k D 1; 2; 3 : (2.15)

In Table 2.1 the 16 dimensional basis elements of this space are collected. The quadratic

8



2.1. Standard Model

form, associated with this algebra is

X D x�
� � =x ; (2.16)

and by squaring

X2 D .x0/2 � .x1/2 � .x2/2 � .x3/2 ; (2.17)

preserving the Minkowski norm of spacetime. Furthermore, one defines the pseu-
doscalar matrix 
5 � i
0
1
2
3 and the idempotent chiral projectors

PL=R � 1

2
.14 � 
5/ : (2.18)

Multiplication from the left with the chiral projectors a pair of Weyl spinors is pro-
jected from each Dirac spinor,

 L D PL	 ; and  R D PR	 : (2.19)

In terms of the 16 matrices, the general fermion bilinear is a combination of

N	� 	 ; � 2 f1; 
�; 
5; 
5
�; ���g ; (2.20)

where N	 D 	 �
0 and ��� D i
2
Œ
�; 
��. Due to their properties under Lorentz trans-

formations the � ’s are scalar, vector, pseudoscalar, pseudovector and tensor operators,
respectively. In terms of Dirac spinors, the Dirac equation is given by(

i =@ �m)	 D 0 ; (2.21)

from which the Dirac-Lagrangian is read off as

ˇD D N	
(
i =@ �m)	 : (2.22)

Table 2.1.: The basis elements for the 16 dimensional space C4.

14 Scalar

i .i D 0; 1; 2; 3/ Vectors

1
0, 
2
0, 
3
0, 
1
2, 
2
3, 
3
1 Bivectors

0
1
2, 
0
2
3, 
0
3
1, 
1
2
3 Trivectors

0
1
2
3 ; Pseudoscalar

9



2. Fundamentals

Setting the mass term equal to zero the action yields the internal global symmetry

 L 7�!  0L D ei�L L ;  R 7�!  0R D ei�R R ; (2.23)

where the spinors are rotated by two independent angles �L and �R. This transfor-
mation belongs to the U(1) ˝ U(1) symmetry group. There are two special trans-
formations, the first one is the vector U(1) for �L D �R D ˛, and the other one
is the chiral transformation or axial U(1) for �L D ��R, 	 7�! 	 0 D ei˛	 and
	 7�! 	 0 D eiˇ


5

	 , with the conserved vector current j�V D N	
�	 and the con-
served axial current j�A D N	
�
5	 , respectively. Note that the axial current is a
pseudovector. When the mass term couples to 	R and 	L the Eq. (2.23) is a symmetry
relation only for �L D �R. The axial U(1) is broken by the mass term, but the vector
U(1) is preserved.

2.1.2. Standard Symmetry Group

The standard model of elementary particles based on the standard symmetry group
SU(3)C˝SU(2)L˝U(1)Y , where the electroweak part of the theory is described by the
SU(2)L ˝ U(1)Y symmetry group and the gauge field theory that describes the strong
interaction of coloured quarks and gluons is represented by the SU(3)C symmetry
group. Both theories are so-called Young-Mills Theories [40].
Every special unitary group SU.N / has N 2 � 1 generators T a, which are hermitian
and satisfy TrŒT a� D 0. The Lie algebra is given by the commutator relations

ŒT a; T b� D if abcT c ; (2.24)

where f abc are the structure constants of the SU.N /, which are antisymmetric and
real. The generators T a can be written as a direct sum of a irreducible representations
r . In this representation the trace of the product of two generators is TrŒT ar T

b
r � D Dab,

where the matrix Dab is positive definite if the generator matrices are Hermitian. The
Young-Mills Lagrangian in the representation r is given by

ˇYM D i N	˛=@	˛ �m N	˛	˛ C gAa� N	˛
�.T ar /˛ˇ	ˇ �
1

4
.F a��/

2 ; (2.25)

or more compact

ˇYM D N	
(
i =D �m)	 � 1

2
Tr
[
F��F

��
]
; (2.26)

10



2.1. Standard Model

where ˛ D 1; : : : ; dim.r/ and F�� D F a��T a is the field strength defined as

F a�� D @�Aa� � @�Aa� C gf abcAb�Ac� ; (2.27)

with the non-abelian gauge fields A�.x/ D Aa�.x/T
a and the scalar factor g. The

covariant derivative on the field 	 is

D�	 D
(
@� � igAa�T ar

)
	 : (2.28)

Quantum Electrodynamics

The interaction between charged spin-1
2
-particles and photons is described by quantum

electrodynamics (QED), based on the U(1)em gauge group, which has one generator,
hence, there is one associated gauge field A�, which is the physical photon. The QED
is described in a lot of textbooks, e.g. [7, 32, 33], here only the relations to the gauge
symmetry groups are briefly noted. The Lagrangian (2.26) for QED is given by

ˇQED D N	.i =D �m/	 � 1
4
F��F

�� ; (2.29)

where D� D @� � ieA� is the covariant derivative (2.28), F�� D @�A� � @�A� is the
field strength, m is the fermion mass, and the scaling factor g is given by the electron
charge e. The Lagrangian ˇQED is invariant under the local U(1) gauge transforma-
tions, where the spinors and fields transform like 	.x/ 7�! 	.x/0 D eie˛.x/	.x/

and A�.x/ 7�! A0�.x/ D A�.x/ � @�˛.x/, respectively. The existence of a local
symmetry implies the existence of a global U(1) symmetry, with a constant parame-
ter ˛, one finds for the spinors: 	.x/ 7�! 	.x/0 D eie˛	.x/, and for the fields:
A�.x/ 7�! A0�.x/ D A�.x/. The associated Noether current is N	
�	 , and the
U(1) charge is conserved by the electromagnetic interaction. QED is invariant un-
der charge C and parity P transformations, also under time reversal T , therefore the
CPT -theorem1 is fulfilled.

Electroweak Theory

The SU(2)L˝U(1)Y part of the standard symmetry represents the electroweak theory.
From U(1) there is one gauge field B�, and from SU(2) three gauge fields Wa

�, a D
1; 2; 3. Using the spinor representation of the Pauli matrices (2.8) the generators of the

1The CPT -theorem states that one cannot build a Lorentz-invariant quantum field theory with a Her-
mitian Hamiltonian that violates CPT [32].

11



2. Fundamentals

SU(2) are given by �a D �a

2
. The Yang-Mills Lagrangian (2.26) for the SU(2)L˝U(1)Y

reads

ˇSU(2)˝U(1) D ˇgauge Cˇfermion Cˇ˚ CˇYuk ; (2.30)

where the Lagrangian of the gauge part is combined by the four gauge fields,

ˇgauge D �1
4

Wa
��W

�� a � 1
4

Ba��B
�� a ; (2.31)

where the field strength tensors follow from Eq. (2.27),

B�� D @�B� � @�B� ; (2.32)

Wa
�� D @�Wa

� � @�Wa
� � g�abcWb

�Wc
� ; (2.33)

where g is the SU(2) gauge coupling. Moreover, the U(1) gauge field B is associated
with the weak hypercharge Y D Q C T 3, where Q and T 3 are the electric charge
operator and the third component of the weak SU(2) [35], respectively. Hence, the
covariant derivative takes the form

D� D @� � igWa
�

�a

2
� ig0YB� ; (2.34)

with g0 as the U(1) gauge coupling. The three massive vector bosons are

W˙� D
1p
2

(
W1
� � iW2

�

)
; Z0� D

1√
g2 C g02

(
gW3

� � g0B�
)

(2.35)

and vector field, orthogonal to Z0�, remains massless

A� D 1√
g2 C g02

(
g0A3� C gB�

)
: (2.36)

Using the Weyl spinor representations (2.19) the Lagrangian for the fermions is

ˇfermion D N L.i =D/ L C N R.i =D/ R ; (2.37)

where the covariant derivative is given by Eq. (2.34). Due to different quantum num-
bers the fermion fields are associated with different covariant derivatives.
The gauge invariance does not allow mass terms in the Lagrangian for gauge bosons
or for chiral fermions, it must be broken spontaneously. Within the standard model
this symmetry breaking this is described by the Higgs-mechanism [12–15]. The La-
grangian is modified such that it is still invariant under the same SU(2)˝ U(1) gauge

12



2.1. Standard Model

symmetry, but the lowest energy (vacuum) state is not. Introducing a complex Higgs

scalar˚ �
[
�C

�0

]
, which is a SU(2)L doublet of scalar fields with U(1) charge Y� D 1,

a real mass parameter �2 < 0, and a self coupling constant �, the scalar Lagrangian
can be written as

ˇ� D .D�˚/�.D�˚/C �2.˚�˚/ � �
4
.˚�˚/2 : (2.38)

The additional couplings for the fermions are called Yukawa couplings. With respect
to the representations (2.1) and (2.2), they are given by

ˇYuk D ��ijlep
NLi˚ejR � �iju NqiL Q̊ujR � �ijd NqiL˚d jR C h.c. ; (2.39)

where Q̊ D i�2�
� D

[
�0�

���
]

, and the term NqL Q̊ transforms like a SU(2) singlet,

which generates masses for up and down quarks with a single Higgs doublet. The
Yukawa matrices Ylep, Yu and Yd are general, not necessarily symmetric or Hermitian,
complex-valued matrices [32]. The various flavours of quarks and leptons are labelled
by the indices i and j . In absence of right-handed neutrinos, �iR � 0, one can not
write Yukawa interactions for the neutrinos [41]. If �2 < 0 the Higgs potential has a
non-vanishing vacuum expectation value (VEV),

h0j˚0j0i D 1p
2

[
0

v

]
; (2.40)

where v D
√

�2

�
: Therefore the generators of SU(2)L ˝ U(1)Y are spontaneously

broken. However, the vacuum carries no electric charge, so the U(1)em is not broken.
Thus, the electroweak SU(2)L ˝ U(1)Y group is spontaneously broken to the U(1)em.
The physical spectrum is given by

˚.x/ D exp
{
i� � �
v

}[
0

.v CH/ =p2

]
; (2.41)

where H is one physical Higgs boson and �.x/ is a unphysical field. The masses to
weak gauge bosons W ˙ and Z0 as well as to the fermions are generated at the same
time by the Higgs mechanism. The flavour changing processes and the CP violation
which are related to the Yukawa couplings are discussed in Sec. 2.2.1.
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2. Fundamentals

Table 2.2.: The eight Gell-Mann matrices, which generates the SU(2) gauge group, [42], their
construction is similar to the Pauli spin matrices Eq. (2.8).

�1 D

0 1 0

1 0 0

0 0 0

 �2 D

0 �i 0

i 0 0

0 0 0

 �3 D

1 0 0

0 �1 0

0 0 0

 �4 D

0 0 1

0 0 0

1 0 0


�5 D

0 0 �i
0 0 i

0 0 0

�6 D
0 0 0

0 0 1

0 1 0

 �7 D

0 0 0

0 0 �i
0 i 0

 �8 D 1
p
3

1 0 0

0 1 0

0 0 �2



Quantum Chromodynamics

The last symmetry group of the standard model is the colour-SU(3) gauge group,
which describes the colour symmetry of the strong interactions. The associated Lie
group su.3/ which has 8 generators T a D 1

2
�a, where the �i matrices can be rep-

resented by the Gell-Mann matrices, collected in Table 2.2. The matrices �a satisfy
the commutator relation Œ�a; �b� D 2ifabc�

c , and they are normalised by the condi-
tion TrŒ�a�b� D 2ıab. Using the Young-Mills Lagrangian (2.26) the QCD Lagragian
becomes

ˇQCD D
F∑
rD1

N	ri
(
i =D

i

j �mrıij
)
	 jr �

1

2
TrŒGa��G

�� a� ; (2.42)

where the quark fields are represented by an colour triplet 	if , with the colour indices
i; j.D 1; 2; 3 or red, blue, green) and the flavour indices r D 1; 2; : : : F . For the field
strength tensor (2.27) of the colour octet gauge bosons one gets

Ga�� D @�Ga� � @�Ga� � igsf abcGb�Gc� ; (2.43)

with G� D 1
2
Ga��

a and the covariant derviative

Di
�j D

(
D�

)
ij
D @�ıij C igsGa�T aij : (2.44)

The 8 gauge bosons are the massless gluons carrying the colour. However, they can not
distinguish between the flavour of the quarks. If the quarks pattern bounding states for
small quark masses mr then the quark vector is part of fundamental representation of
the unitarity U.F /, and the corresponding bounding states are covered by a multiplet
of irreducibel representations of U.F /. These bounding states are the baryons and
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2.1. Standard Model

Table 2.3.: Flavour quantum numbers for leptons, quarks and the Higgs doublet, where T is
the weak isospin, T 3 is the third component of the weak isospin, Y is the hyper-
charge and Q the electric charge.

Field T T 3 Y Q[
�e

e

]
L

[
��

�

]
L

[
��

�

]
L

1
2

1
2 -1

2

0
-1
2

-1
eR �R �R 0 0 -1 -1[
u

d

]
L

[
c

s

]
L

[
t

b

]
L

1
2

1
2 1

6

2
3

-1
2

-1
3

uR cR tR 0 0 2
3

2
3

dR sR bR 0 0 -1
3

-1
3[

�C

�0

]
1
2

1
2 1

2

1
-1
2

0

the mesons. Their fundamental representations are F � F � F and F � F � tensor
products, respectively.
The quark masses break the U.F /-symmetry of the QCD Lagrangian. The mass dif-
ferences between hadrons within a special multiplet are predictable by perturbative
methods. The flavour quantum numbers for the leptons and quarks are collected in
Table 2.3.

Cabbibo-Kobayashi-Maskawa Matrix

The mass term in (2.39) for leptons and quarks after spontaneous symmetry breaking
is described by

ˇM D Gijlep
NLiejR �Giju NqiLujR �Gijd NqiLd jR C h:c: ; (2.45)

where the 6 � 6 mass eigenstate matrices Glep;u;d could be diagonalized by unitary
matrices VL and VR such that VLGlep;u;dV

�
R D G diag, where G diag is diagonal and real.

The interaction of the W -bosons to fermions is

ˇW˙ D
gp
2

J
�C
W WC� C h.c. ; (2.46)

where the weak current is given by

J
�C
W D N�iL
�V ijlepe

j
L C NuiL
�V ijCKMd

j
L ; (2.47)
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2. Fundamentals

where VCKM D V
u�
L V dL is the 3 � 3 unitary Cabbibo-Kobayashi-Maskawa (CKM)

matrix [28, 29],

VCKM D

Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

 ; (2.48)

and Vlep D V
��
L V eL the leptonic mixing matrix. For processes for which the neutrino

masses are negligible one sets Vlep D 1.
The 3�3 CKM matrix depends on three real angles and one complex phase. Due to the
non-diagonal structure of the CKM matrix theW ˙ gauge bosons couple quark states of
different generations. This is in the standard model the only source of flavour changing
interactions, because for the neutral currents the flavour changing processes also sup-
pressed at tree level by the Glashow-Iliopoulos-Maiani (GIM) mechanism [11], which
is discussed in more detail elsewhere, see, e.g., Refs. [7, 32, 34]
Some absolute values of CKM entries can be measured directly, namely by tree level
processes. The latest values published by the particle data group (PDG) [43] are listed
in Table 2.4. Two parametrizations of the CKM matrix have become standard: The
first parametrization is given by

V D

 c12c13 s12c13 s13e
�iı

�s13c23 � c12s23s13eiı c12c23 � s12s23s13eiı s23c13

s12s23 � c12c23s13eiı �c12s23 � s12c23s13eiı c23c13

 ; (2.49)

Table 2.4.: CKM matrix entries from the particle data group [43].

VCKM description of the process value
PDG

update

jVud j superallowed nuclear, neutron and
pion decays

0:97425.22/ 2009

jVusj semileptonic kaon and hyperon decays 0:2246˙ 0:0012 2009
jVcbj semileptonic inclusive and exclusive

B-decays
0:0406˙ 0:0013 2010

jVubj 0:00389˙ 0:00044 2010
jVcsj semileptonic D decays 1:04˙ 0:06 2008
jVtd=Vtsj ratio of B ! �
 and K�
 rates 0:21˙ 0:04 2008
jVtbj top-loop contributions to � .Z ! b Nb/ 0:77C0:18�0:24 2008
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=

<

N�C i N�

Ru Rt

1

˛

ˇ


Figure 2.1: The unitarity triangle in the
complex plane (Wolfenstein
parametrization) arising from
the condition VudV

�
ub
C

VcdV
�
cb
C VtdV �tb D 0.

where sij D sin �ij , cij D cos �ij , and ı is the KM [29] phase responsible for the
CP -violating phenomena in flavour-changing processes within the standard model.
The CP -violating effects are discussed in more detail in Sec. 2.1.2. The second one is
the Wolfenstein parametrization [44–46], using the experimentally measured hierarchy
s13 � s23 � s12 � 1, where

s12 � jVusj√
jVud j2 C jVusj2

D � ; s23 � A�2 D �
∣∣∣∣VcbVus

∣∣∣∣ ;
s13e

iı � V �ub D A�3.�C i�/ D
A�3. N� � i N�/

p
1 � A2�4p

1 � �2Œ1 � A2�4. N� � i N�/� ;
(2.50)

preserving the phase-convention-independence of the expression N� C i N� D �VudV �ub
VcdV

�
cb

.
Writing the CKM matrix in terms of �, A, N�, and N� it is unitary to all orders in �. Using
N� D �.1 � �2=2C : : : / the CKM matrix up to order �4 can be written as

VCKM D

 1 � �2=2 � A�3.� � i�/
�� 1 � �2=2 A�2

A�3.1 � � � i�/ �A�2 1

CO.�4/ : (2.51)

The unitarity of the CKM matrix is expressed in the relations∑
i

VijV
�
ik D ıjk ; (2.52)∑

j

VijV
�
kj D ıik ; (2.53)

which can be represented as a unitarity triangle (UT) in the complex N� � N�-plane de-
picted in Fig. 2.1. The sides of the unitary triangle are given by

Ru D
∣∣∣∣VudV �ubVcdV

�
cb

∣∣∣∣ D√ N�2 C N�2 ; Rt D
∣∣∣∣VtdV �tbVcdV

�
cb

∣∣∣∣ D√.1 � N�/2 C N�2 ; (2.54)
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Figure 2.2.: Latest results for the CKM triangle from the CKMfitter (left panel) and the UT-
fitter (right panel) group.

and the three angels are

˛ D arg
[
� VtdV

�
tb

VudV
�
ub

]
; ˇ D arg

[
�VcdV

�
cb

VtdV
�
tb

]
; 
 D arg

[
�VudV

�
ub

VcdV
�
cb

]
; (2.55)

where 
 � ı in the standard parametrization as explained above. By global fits
the CKM matrix elements are determined very precisely. These non-trivial tests of
the CKM mechanism use all available measurements and theory predictions for the
hadronic matrix elements, and impose the standard model constraints. The latest re-
sults from CKMfitter [46] and UTfit [47] are presented in Fig. 2.2. The fit methods
are different UTfit use a Bayesian approach [47], whereas CKMfitter use frequentist
statistics [46, 48]. In Chap. 6 the CKMfitter methods are used for the new physics
predictions.

Borders of the Standard Model

The standard model as described above is an GSM D SU(3) ˝ SU(2) ˝ U(1) gauge
symmetry with the associated Lie algebra gSM D su.3/C˚su.2/T˚u.1/Y , where Y ,
T and C are the internal symmetries hypercharge, isospin and colour, respectively. It
describes the elementary particles and forces approximately correct and it is well tested
by experiments. However, there are some unanswered questions [20, 35], discussed in
the following.
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2.1. Standard Model

First of all gravitational forces is not implemented in the standard model. General
relativity is not a quantum field theory. By now, there is no satisfying theory, how to
generate a quantum theory from general relativity. Kaluza-Klein [49] and supergravity
[50] theories are possible solutions, see, e.g. Ref. [35] and the references therein, but a
stain clings on them, because they are not renormalizable. However, if the background
is smooth-enough, the gravitational field can be quantised consistently [51, 52]. In the
low-energy limit, general relativity can considered as an effective field theory, where
renormalization is no longer an issue [53, 54].
Another problem is with the standard gauge group itself, called the gauge problem:
Within the standard model there is no satisfying explanation for the three different
gauge couplings. Moreover, there is no reason only the electroweak part is chiral, and
the charged is quantised as multiples of e

3
. Explanations by superstring theories or by

an existence of magnetic monopoles are not satisfyingly yet.
As discussed above the masses of W , Z and the fermions are generated by the Higgs
field, but for a consistent model, the mass of Higgs boson should not be too different
from the W mass. Within the standard model there is no natural order of magnitude
of the Higgs mass mH . For a long time, the experimental lower limit was set up from
LEP [55], mH & 114:4 GeV at the 95% confidence level.
However, in a recent paper [56] CDF and DØ Collaborations at the Tevatron reported
a newly excluded range for the Higgs boson mass around 2mW . In nature there are
two fundamental energy scales, the electroweak scale �W � 103 GeV and the Plack
scale �Planck D

p
GN � 1018 GeV. At the Planck scale gravity becomes as strong as

the gauge interactions [57]. In a unified scenario of strong, weak, and electromagnetic
interaction, a natural scale is the unification scale �GUT � 1015 � 1016 GeV. The
tree-level (bare) Higgs mass receives quadratically-divergent corrections from loop-
diagrams, particularly from the top loop. Hence, bare Higgs masse becomes, m2H D
.mH /

2
bareCm2H .�2/, where� is a reference scale and must be of order� � O.1 TeV/,

due to the well tested light Higgs mass by precision tests. In Fig. 2.3 the so-called blue
band plot is depicted, where the blue band represents an estimate of the theoretical
uncertainty due to missing higher order corrections The vertical band shows the 95%
confidence level exclusion limit on the Higgs mass from the direct searches at LEP-II
(up to 114 GeV) and the Tevatron (160 to 170 GeV) [55].
The discrepancy between the fundamental scales and the reference scale is called the
hierachy problem [58, 59].
Further problems, which could not discussed at all, are the strong CP problem, the
mechanism for small neutrino masses and the structure of dark energy and matter,
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Figure 2.3: 2009 blue band plot as explained
in the text.

which are discussed in more detail, e.g. in Refs. [35, 50, 55, 58].

2.2. CP Violation and B-Physics

In nature there are some fundamental symmetries, e.g. the space reflection or the
time reversal. In quantum mechanics as well as in classical mechanics one finds from
the invariance of the Lagrangians under these symmetry transformations conservation
laws of the considered physical system. In quantum mechanics a special symmetry
is the charge conjugation, and all quantum mechanical equations are invariant un-
der the combination of charge conjugation, space reflection and time reversal called
CPT -theorem. However, in some special particle systems the combination of charge
conjugation and space reflection is violated, this is called the CP violation.

In 1977 the b quark was experimentally verified by the discovery of the � resonances
at Fermilab. One year later the DASP II and PLUTO collaborations verified, that the
� resonances are bound states of b and Nb. The resonances decay into B-mesons, e.g.
� .4S/ ! B0 NB0 or � .4S/ ! BCB�, which are bound states of an heavy Nb and a
lighter quark q 2 fu; d; s; cg forming BC, B0, Bs or Bc and the charged conjugate
states, respectively [60, 61]. In this section CP -violating effects are studied in Bq-
meson systems, (q 2 fd; sg), and it is organized as follows. In the first part CP
violation in the standard model is briefly reviewed, and the CP -violating effects in
B0 � NB0 mixing are studied in the second part of this section.
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2.2.1. CP Violation

In physics and especially in particle physics, symmetries play a key rôle, because with
continuous symmetry a conservation law is associated. In the following the space
reflection (parity) P W Er 7�! �Er , time reversal T W t 7�! �t and charge conjugation
C W particle 7�! antiparticle and their application to B-physics are discussed. Within
the standard model the three discrete symmetries are all conserved under the strong and
electromagnetic interactions. Weak interaction preserves only the CPT symmetry; P ,
C , and T are violated separately. CP violation was first observed in the weak decay
of the neutral kaon in 1964 [62] and in the B-meson system in 2001 by the B-factories
BABAR at SLAC [63] and Belle at KEK [64].
The theory of CP violation has become textbook material and is discussed in more
detail elsewhere, e.g. Refs. [65–68]. Here some aspects of CP violation are shortly
reviewed. The action of the P , C and T operations on a Dirac spinor are given by

P	.t; Er/P�1 D 
0	.t;�Er/ ; C	.t; Er/C �1 D i
0
2 N	.t; Er/T ;
T	.t; Er/T �1 D 
1
3	.�t; Er/ ;

(2.56)

and for the vector bosons associated with the SU(2)L˝U(1)Y electroweak theory (2.46)
are

W˙� .t; Er/
CP7�! ��.�/W�� .t;�Er/ ;

Z0�.t; Er/
CP7�! ��.�/Z�.t;�Er/ ;

A�.t; Er/ CP7�! ��.�/A�.t;�Er/ ;

(2.57)

where the CP -eigenvalues are given by

�.�/ D
C1 ; � D 0 ;
�1 ; � D 1; 2; 3 :

(2.58)

Using (2.56) and (2.57) together with the current transformations collected in Table
2.5 one gets

NuL
�VCKMdLWC� C NdLV �CKM

�uLW��

CP7�! NdLV T
CKM


�uLW�� C NuL
�V �CKMdLWC� ; (2.59)

hence the CP transformation of the CKM matrix is given by VCKM
CP7�! V �CKM. The

transformation (2.59) yields that in the standard model the charged current is a source
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for CP violation, due to fact that the CKM matrix is complex. The neutral current
terms are CP invariant, hence, flavour changing neutral currents are forbidden in the
standard model and the GIM mechanism is a direct consequence of the unitary mass-
diagonalization matrices, together with the hypothesis of universal weak coupling [67].
For observable CP -violating effects further conditions are necessary summarised as
[69–71]

.m2t �m2c/.m2t �m2u/.m2c �m2u/.m2b�m2s /.m2b�m2d /.m2s �m2d /�JCP ¤ 0 ; (2.60)

where

JCP D j=fVi˛VjˇV �iˇV �j˛gj .i ¤ j; ˛ ¤ ˇ/ : (2.61)

If any quarks of the same charge had the same mass in (2.60), the CP -violating phase
of the CKM matrix could be transformed away by an unitary transformation of the
quark fields. The Jarlskog parameter (2.61) measures the strength of the CP violation
in the standard model, independent from the chosen quark-field parametrization. Using
the parametrization (2.49) one gets for the Jarlskog parameter

JCP D s12s13s23c12c23c213 sin ı13 : (2.62)

The measurement of the CKM parameters implies a value for JCP of O.10�5/, there-
fore in the standard model, the CP -violating effects could not be easily seen. In the
next subsection the way how CP violation could be detected in the B0� NB0 system is
discussed.

2.2.2. B0 � NB0 Mixing and CP Violation

As mentioned in the previous subsection the observation of CP -violating effects in
the standard model is very hard. In this subsection the CP violation in the neutral

Table 2.5.: Operations P , C and T for the various quantities appear in the standard model
gauge Lagrangian, [68].

Transformation of Current �
N	i� 	j under scalar pseudoscalar vector axial-vector

P N	i	j �i N	i
5	j �.�/ N	i
�	j ��.�/ N	i
�
5	j
C N	j	i i N	j
5	i � N	j
�	i N	j
�
5	i
CP N	j	i �i N	j
5	i ��.�/ N	j
�	i ��.�/ N	j
�
5	i
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2.2. CP Violation and B Physics

B-meson systems is shortly reviewed. The general formalism and the application to
the neutral B-systems is discussed by several authors, see, e.g., Refs. [72–77] and the
references within. Here some basic facts and notations which are useful for the next
chapter are noted down.
The B0q � NB0q mixing is induced at lowest order through the box-diagrams shown in
Fig. 2.4. The neutral B0-meson and its antiparticle NB0 yield a state vector, given by∣∣ q.t/ 〉 D a.t/ ∣∣B0q 〉C b.t/ ∣∣ NB0q 〉 ; (2.63)

whose time evolution is written as

i
@

@t
�.t/ D H�.t/ ; �.t/ D

(
a.t/

b.t/

)
; H D

[
M � i

2
�

]
(2.64)

where the Wigner-Weisskopf approximation [78] is used. Here M and � are 2 � 2
matrices, with M D M �, � D � �. Due to guarantee the CPT invariance, one used
the special form

M D
(
M

.q/
0 M

.q/
12

M
�.q/
12 M

.q/
0

)
; � D

(
�
.q/
0 �

.q/
12

�
�.q/
12 �

.q/
0

)
; (2.65)

for the matrices. The mass eigenstates2 are∣∣∣B.q/L

〉
D .1C "/ ∣∣jB0q 〉C .1 � "/ ∣∣ NB0q 〉√

2.1C j"j2/ � p ∣∣B0q 〉C q ∣∣ NB0q 〉 ;∣∣∣B.q/H

〉
D .1C "/ ∣∣B0q 〉 � .1 � "/ ∣∣ NB0q 〉√

2.1C j"j2/ � p ∣∣B0q 〉 � q ∣∣ NB0q 〉 ; (2.66)

where

p

q
D 1C "
1 � " D

√√√√ M
.q/
12 � i

2
�
.q/
12

M
�.q/
12 � i

2
�
�.q/
12

: (2.67)

2subscript L and H refer to “light” and “heavy”

u; c; tB0q
NB0qu; c; t

q b

b q

W

W

u; c; t

B0q
NB0q

u; c; t

q b

b q

W W

Figure 2.4.: Standard model box diagrams contributing to the B0q � NB0q mixing (q 2 fd; sg).
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Starting with an initially pure
∣∣B0q .t D 0/ 〉 � ∣∣B0q 〉 or

∣∣ NB0q .t D 0/ 〉 � ∣∣ NB0q 〉 state the
time evolution is given by∣∣B0q .t/ 〉 D f .q/C .t/

∣∣B0q 〉C q

p
f .q/� .t/

∣∣ NB0q 〉 ;∣∣ NB0q .t/ 〉 D p

q
f .q/� .t/

∣∣B0q 〉C q

p
f
.q/
C .t/

∣∣ NB0q 〉 : (2.68)

Here the functions f .q/˙ are

f
.q/
˙ .t/ D 1

2

[
exp

{
�i t

(
M

.q/
L �

i�
.q/
L

2

)}
˙ exp

{
�i t

(
M

.q/
H �

i�
.q/
H

2

)}]
:

(2.69)

For later use, one introduces the following definitions for the differences of mass and
width

�Mq �M .q/
L �M .q/

H D 2jM .q/
12 j > 0 ; (2.70)

��q � � .q/
H � � .q/

L D 4<fM .q/
12 �

�.q/
12 g

�Mq

; (2.71)

while the average decay width is

�q � �
.q/
H C � .q/

L

2
D � .q/

0 : (2.72)

The deviation of the quantity jp=qj from one describes the CP -violating effects in the
B0q � NB0q oscillations [75, 77]. The strength of the oscillations is given by the mixing
parameter xq D �Mq

�q
. AnotherCP violation parameter is the measureable asymmetry

A
.q/
SL .t/ D

� . NB0q .t/! `C�`X/ � � .B0q .t/! `� N�`X/
� . NB0q .t/! `C�`X/C � .B0q .t/! `� N�`X/

D 1 � jq=pj4q
1C jq=pj4q

: (2.73)

The present ranges for the quantities (2.70) and (2.71), as well as for the CP -violating
quantities xq and A

.q/
SL can be found in Ref. [79].

Finally, the Bq-decays (q 2 fd; sg) into pure CP eigenstates are considered. If a pure
B0q and a pure NB0q both decay into a nonleptonic final CP eigenstate jf i,

CP jf i D �f jf i ; (2.74)
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2.2. CP Violation and B Physics

then the time evolution for these decays is given by [77, 80, 81]

jAf .t/j2 D jNf j
2

2

{
R
f
L e
��

.q/
L t CRfHe��

.q/
H t

C 2e��qt[AfD cos.�Mqt /C AfM sin.�Mqt /
]}
; (2.75)

j NAf .t/j2 D jNf j
2

2

{
R
f
L e
��

.q/
L t CRfHe��

.q/
H t

� 2e��qt[AfD cos.�Mqt /C AfM sin.�Mqt /
]}
; (2.76)

and the unevolved decay amplitudes can be written as

Af D Nf
[
1 � bf ei�eCi


] � Nf z ; (2.77)
NAf D Nf

[
1 � bf ei�e�i


] � �fNf Nz ; (2.78)

where

R
f
L �

1

2

[jzj2 C jNzj2 C 2�f< (e�i�qz� Nz)]
D .1C �f cos�q/ � 2bf cos �Œcos 
 C �f cos.�q C 
/�
C b2f Œ1C �f .cos�q C 2
/� ; (2.79)

R
f
H �

1

2

[jzj2 C jNzj2 � 2�f< (e�i�qz� Nz)]
D .1 � �f cos�q/ � 2bf cos �Œcos 
 � �f cos.�q C 
/�
C b2f Œ1 � �f .cos�q C 2
/� ; (2.80)

A
f
D �

1

2

(jzj2 � jNzj2) D 2bf sin � sin 
 ; (2.81)

A
f
M � ��f =

(
e�i�qz� Nz)

D �f Œsin�q � 2bf cos � sin.�q C 
/C bf x2 sin.�q C 2
/� : (2.82)

Here jNf j2 is the overall normalisation, 
 denotes the UT angle (2.55), and �q the
B0q � NB0q mixing phase,

�q � 2 arg.V �tqVtb/ D
2ˇ .q D d/ ;
�2ı
 .q D s/ ;

(2.83)

where 2ı
 � 0:03 in the standard model, because of a Cabibbo-suppression of O.j�j2/.
Note that the subscripts “D” and “M” refer to direct and mixing-induced CP -violating
effects, respectively. The quantities Eqs. (2.79)–(2.82) satisfy the relation

.A
f
D/

2 C .AfM /2 D RfLRfH : (2.84)
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For the discussion of the CP -violating effects in the Bq systems, it is useful to define
the time-dependent CP asymmetry

ACP .t If / � jAf .t/j
2 � j NAf j2

jAf .t/j2 C j NAf j2

D 2e��qt
[

A
dir;f
CP cos.�Mqt /CA

mix;f
CP sin.�Mqt /

e��
.q/
H t C e�� .q/L CA

f
��q

.e��
.q/
H t � e�� .q/L t/

]
(2.85)

with the observables

A
dir;f
CP �

AD

Nf
D 2bf sin � sin 


Nf
; (2.86)

A
mix;f
CP � AM

Nf
D C�f

Nf

[
sin� � 2bf cos � sin.�q C 
/C b2f sin.�q C 2
/

]
;

(2.87)

A
f
��q
� R

f
H �RfL
2Nf

D ��f
Nf

[
cos�q � 2bf cos � cos.�q C 
/C b2f cos.�q C 2
/

]
; (2.88)

and the abbreviation

Nf � 1

2

(
R
f
H CRfL

)
D 1 � 2bf cos � cos 
 C b2 : (2.89)

The direct Adir
CP , mixing-induced Amix

CP and the observable A��q are not independent
from each other, they satisfy the relation

.Adir
CP /

2 C .Amix
CP /

2 C .A��q/
2 D 1 : (2.90)

The index q was suppressed in the above formulae, because the time evolution of all
kinds of neutral B-decays into final CP eigenstates are described by them. Finding
physics beyond the standard model - new physics (NP) - is a major aim in modern
elementary particle physics. In Chap. 6 the CP -violating asymmetries are used to find
hints for it in the B0s � NB0s and B0d � NB0d mixing.
CP violation within the standard model is well understood, and provides suitable tools
searching for new physics effects in CP -violating processes. In the next chapter the
theory ofB-meson decays are studied in more detail by using effective theory methods.
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B-Meson Decays

B-meson decays play a key rôle in flavour physics, because a lot of fundamental prob-
lems of particle physics can be studied or even solved by understanding these decays
more precisely. As mentioned at the end of the previous chapter, the B-mesons are
build up of a heavy Nb quark and a light q 2 fu; d; s; cg quark or in charged conjugate
case by b and a light Nq 2 f Nu; Nd; Ns; Ncg. Weak decays of B-mesons are distinguished in
leptonic, semileptonic and non-leptonic transitions.
The chapter is organized as follows: In Sec. 3.1 non-leptonic B-meson decays are
studied in an framework of an effective field theory, where the effective weak Hamil-
tonian for such decays is introduced. which is used in Sec. 3.2 for studying hadronic
matrix elements. This brief review of B-meson decays is closed by discussing the
heavy-quark effective theory (HQET) in Sec. 3.3, an effective field theory, providing
symmetry relations and applications for a sophisticated study of NB ! D.�/ transitions
presented in the forthcoming chapters.

3.1. Effective Field Theory

Effective field theories have become powerful and fruitful tools in several fields of
particle physics, dealing with widely-separated energy scales. They can be classified
by their behaviour of the transition from the fundamental to the effective level. For
instance within the weak decays of the B-mesons there are three energy scales. The
first one is the weak energy scale, given by the mass of theW -boson,MW � 100 GeV.
Since the energy scale of the process is the one of the decaying meson, the second
energy scale is the mass of the B-meson, mB � 5 GeV, and the third energy scale
comes from the meson itself, because the meson is a bound state of quarks, hence, the

27



3. B-Meson Decays

strong interaction energy scale is taken into account,�QCD � 0:2� 1 GeV. The search
for physics beyond the standard model enforced another energy scale,�NP > few TeV,
with the consequence that the standard model as an effective field theory break down.
For the B-meson decays, the four energy scales are widely separated from each other,

�QCD � mB �MW ; �NP : (3.1)

In order to construct the weak effective Hamiltonian the operator-product expansion
formalism is introduced in Sec. 3.1.1, and in Sec. 3.1.2 the concept of renormalization-
group improved theory is presented. The weak effective Hamiltonian is finally dis-
cussed in Sec. 3.1.2.

3.1.1. Operator-Product Expansion

The weak effective Hamiltonian can be constructed using the operator-product ex-
pansion (OPE) [82]. An introduction into the OPE formalism can be found in many
textbooks, e.g. Refs. [5, 32, 34], or lecture notes [83, 84]. The presentation in this
section follows Ref. [85].

The generic form of the weak Hamiltonian is given by

Heff D GFp
2

∑
i

V iCKMCi.�/Qi ; (3.2)

where Qi are the local operators, which are relevant for the process, V iCKM are the
Cabbibo-Kobayashi-Maskawa (CKM) factors and Ci are the Wilson coefficients, de-
scribing the strength with which a given operator enters the Hamiltonian. Note that
the coupling constants Ci.�/ depend on a scale �, which can be chosen arbitrarily, but
by a given decay amplitude it serves to separate the physics contributions into short-
distance ones at scales higher than � and long-distance ones at scales lower than �.
The Wilson coefficients Ci include the top quark and contributions from other heavy
particles. Within the standard model this can be seen by evaluating the box and pen-
guin diagrams with full W -, Z- and top, and, if extensions of the standard model
are considered, new particles, exchanges and properly including short distance QCD
effects, which govern the �-dependence.

A formal approach is given by the path path integral formalism. The Lagrangian den-
sity containing the W -boson field and its interaction with charged currents can be
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written as1

ˇW D �1
2

(
@�WC� � @�WC�

)
.@�W�� � @�W��/CM 2

WWC�W�� CˇW˙ ; (3.3)

where the Lagrangian ˇW˙ is defined by Eq. (2.46) including the interaction with the
quark fields. Without an overall normalising factor, the generating functional for the
Green functions is

ZW �
∫
ŒdWC�ŒdW�� exp

{
i

∫
d 4x ˇW

}
: (3.4)

Integrating out the W fields in this functional one gets the non-local action functional
for the quark fields

�cc D �g
2

8

∫
d 4x d 4y J�� .x/ �

�� JC� .y/ ; (3.5)

with the W propagator ��� . Performing an expansion of this action in powers of
1=M 2

W to all orders is equivalent to the full theory and leads to a series of local inter-
action operators. Up to O.1=M 2

4 / the W propagator can be written as

��� � g��

M 2
W

ı.4/.x � y/C O

(
1

M 4
W

)
; (3.6)

inserting this into (3.5), the W -boson is removed as an explicit dynamical degree of
freedom and one can read off the effective charged current interaction Lagrangian as

ˇeff D �GFp
2
V �ijVi 0j 0

( Nd jLuiL)( Nui 0Ld j 0L )µ �GFp
2
V �ijVi 0j 0 Q

ij i 0j 0

2 ; (3.7)

with the four-quark operator Q2. It is worthy of remark that this local four-fermion in-
teraction terms are a modern version of the classical Fermi theory of weak interaction.

Short Distance QCD Effects

Now the strong interactions among the quarks have to be taken into account. Thanks
to the asymptotic freedom of QCD, the short distance QCD corrections to weak de-
cays can be calculated in the renormalisation-group (RG) improved perturbation the-
ory. The weak effective Hamiltonian (3.2) is defined in such a way, that the hadronic
amplitude takes the form

A.i ! f / D hf jHeffjii D GFp
2

∑
i

Ci.�/ hf jQi.�/jii : (3.8)

1see Sec. 2.1.2 and 2.1.2 for more details
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Both, the Wilson coefficients Ci.�/ and the matrix elements hQi.�/i depend on the
arbitrary scale �, but the full amplitude can not depend on it. Therefore the �-
dependence of the Wilson coefficients have to cancel that one of the matrix elements.
This problem can be solved by an factorization into a high- and low-energy part, or
more precisely, by running the value of the scale �, such that the coefficients Ci.�/

contain the short distance effects above � and the matrix elements hQi.�/i the long
distance non-perturbative contributions below �. In order to get the Wilson coeffi-
cients, one used the matching between the full and the effective theory: calculating
the QCD corrections in the full theory, i.e. with the W exchange, and in the effective
theory, where theW is integrated out, and expressed the QCD-corrected transition am-
plitude in terms of QCD-corrected matrix elements and Wilson coefficients. Including
the QCD corrections the interaction (3.7) is generalized to

Heff � C1.�/C1.�/Q
ij i 0j 0

1 C C2.�/Q
ij i 0j 0

2 ; (3.9)

where a second current-current operator

Q
ij i 0j 0

1 D
( Nd jL;auiL;b)( Nui 0L;bd j 0L;a) (3.10)

appeared through operator mixing: The renormalization of the operator Q2 is depicted
in Fig. 3.1; in the first line of this figure the divergences of the full theory cancel. Dur-
ing this renormalization process enforced by non-factorizable QCD corrections new
divergences appear canceled by counterterms for Q1 and Q2 being a consequence of
the operator mixing. For operators with dimension greater than four, not all diver-
gences can be canceled, and an additional operator renormalization has to be per-
formed. Due to this mixing, the operator Q2 involves counterterms proportional to Q1

and vice versa, and their scale dependence is correlated. By an explicit calculation
[83, 85] the Wilson coefficients are

C1 D �3 ˛s
4�

ln
(
M 2
W

�2

)
CO.˛2s / ; C2 D 1C 3

N

˛s

4�
ln
(
M 2
W

�2

)
CO.˛2s / ; (3.11)

Q2 D Q2 C C C C : : :

C ıQ2 C ıQ1 C � � � D . Ndu/V�A. Nu0d 0/V�A at s D ��2

Figure 3.1.: Renormalization of the local operator Q2 as explained in the text, [86].
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Table 3.1.: Operators for the non-leptonic B decays. For the electroweak penguin operators
eq0 denote the electrical quark charges.

Current-Current Operators
Q
ij
1 D .Niajb/V�A.Nibba/V�A Q

ij
2 D .Niaja/V�A.Nibbb/V�A

QCD Penguin Operators EW Penguin Operators
Q
j
3 D . Njaba/V�A

∑
q0. Nq0bq0b/V�A Q

j
7 D 3

2
. Njaba/V�A

∑
q0 eq0. Nq0bq0b/VCA

Q
j
4 D . Njabb/V�A

∑
q0. Nq0bq0a/V�A Q

j
8 D 3

2
. Njabb/V�A

∑
q0 eq0. Nq0bq0a/VCA

Q
j
5 D . Njaba/V�A

∑
q0. Nq0bq0b/VCA Q

j
9 D 3

2
. Njaba/V�A

∑
q0 eq0. Nq0bq0b/V�A

Q
j
6 D . Njabb/V�A

∑
q0. Nq0bq0a/VCA Q

j
10 D 3

2
. Njabb/V�A

∑
q0 eq0. Nq0bq0a/V�A

where the Ci.�/ contain terms of ln.MW =�/, which become large for � D O.mb/.
Moreover, the operator mixing is responsible for the fact, that the renormalization
constant becomes a 2 � 2 matrix,

Q
.0/
i D ZijQj : (3.12)

For non-leptonic B decays contributions from tree and penguin topologies appear.
Hence, the operator basis is much larger than in the simple example (3.9). From the
unitary of the CKM triangle (2.52) one gets

V �ujVub C V �cjVcb C V �tjVtb D 0 .j 2 fd; sg/ ; (3.13)

integrating out the top quark and the W -boson, the effective Hamiltonian can be writ-
ten as [24]

Heff �
∑
iDu;c

V �ijVib

[
2∑
kD1

Ck.�/Q
ij

k C
10∑
kD3

Ck.�/Q
j

k

]
; (3.14)

with the quark-flavour label i D fu; cg. The operators Q
ij

k can be divided in three
classes: current-current, QCD penguin and electroweak (EW) penguin operators which
are listed in Table 3.1. If the renormalization scale is � D O.mb/, the Wilson coeffi-
cients for the current-current operators will be C1.�/ D O.10�1/, C2.�/ D O.1/, and
those of the penguin operators O.10�2/ [85].
In the case of a not “heavy" top quark, the contributions from the EW penguins could
be neglected in comparison to that one of the QCD penguins. Interesting EW penguin
effects could be expected since the Wilson Coefficient C9 increased strongly with the
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top quark mass mt , and the impact of such EW penguin effects can be studied in
several B decay channels, e.g. B ! K� which are affected significantly or B ! ��

and Bs ! �0� which are even dominated by EW penguin topologies [87, 88].
For all B decays caused by the same quark-level transition, applied by the low-energy
effective Hamiltonians discussed here, the differences between the various exclusive
modes arise from the hadronic matrix elements of the relevant four-quark operators
for a given decay class. Before the factorization of the hadronic matrix elements is
discussed in more detail, the renormalization-group improved perturbation theory is
briefly reviewed in the next subsection.

3.1.2. Renormalization-Group improved Perturbation Theory

As discussed before, in order to get the amplitudes of weak decays, at first, the ampli-
tude in the full theory at a suitable - in principle high - scale for the present problem
have to be calculated. The calculation yields the operators at this scale, hence, one is
able to write down the relevant OPE. In the next step the operators have to be renor-
malized and the anomalous dimensions have to be evaluated, therefore by matching
the full theory into the effective theory, the Wilson coefficients can be found, and no
divergences would appear. Logarithms of the form ln.M 2

W =�
2
W / are canceled by that

ones of the form ln.�2W =s/ in the matrix elements hQi.�/i, and the � dependence
disappear. In order to calculate the matrix elements, done at a low scale, the � scale
has to run down from the high scale MW to the lower scale mb. Since the high and
low energy scale in general are widely separated, M � �, powers of ˛s ln.M=�/
rather than powers of ˛s come into account, and these large logarithms have to be re-
summed to all orders by solving renormalization-group equations [83]. Generally this
problem is handled by the renormalization-group improved perturbation theory which
is shortly discussed in this subsection. An exhaustive discussion can be found in Refs.
[83–85, 89].
Treating ˛s ln.M=�/ as an O.1/ parameter and ˛s � 1 in the following. From order
to order, starting with the leading order (LO), next-to-leading order (NLO) and so on,
one has to sum up terms of the Wilson coefficients,

˛ns

[
ln
(
M

�

)]n
(LO) ; ˛ns

[
ln
(
M

�

)]n�1
(NLO) ; : : : (3.15)

This resummation can be done by using the renormalization-group. For the present
problem, the operators fQi.�/g, i D 1; 2; : : : ; n, perform a basis which closes under
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3.1. Effective Field Theory

renormalization. The scale � itself is unphysical and the physical amplitudes are scale
independent implying

d

d ln�

n∑
iD1

Ci.�/ hQi.�/i D 0 : (3.16)

Expanding the logarithmic derivative of the operator matrix elements in terms of the
same basis operators,

d

d ln�
hQi.�/i � �

n∑
jD1


ij .�/hQi.�/i ; (3.17)

with the ”anomalous dimensions“ 
 . Using Eqs. (3.16) and (3.17) and keeping in
mind that the operators are linearly independent, the renormalization-group equation
can be written as

d

d ln�
Ci.�/ �

n∑
iD1

Ci.�/
ij .�/ D 0 : (3.18)

Because of 
.�/ D 
.˛s.�//, the variables from ln� to ˛s.�/ changed and one ends
up with

d

d˛s.�/
EC.�/ D 
T .˛s.�//

ˇ .˛s.�//
EC.�/ ; (3.19)

where ˇ D d˛s.�/=d ln� is the QCD ˇ-function. A simple example is given in the
case of a single Wilson coefficient, i.e. no mixing is present. One gets by expanding
all terms to leading order


.˛s/ D 
0 ˛s
4�
CO.˛s/ ; ˇ.˛s/ D �2˛s

[
ˇ0
˛s

4�
CO.˛2s /

]
;

C.MW / D 1CO.˛s/ :
(3.20)

Performing the calculation one finds for the Wilson coefficients [83]

C.MW / D 1C
1∑
nD1

cn

(
˛s.MW /

4�

)n
; (3.21)

yielding the structure of Eq. (3.15). For the operators Q1;2, which are discussed in the
previous subsection, at first order in ˛s the anomalous dimension is given by [85]


.˛s/ D ˛s

4�

(
� 6
N

6

6 � 6
N

)
: (3.22)

With this preparation one is able to construct the weak effective Hamiltonian.
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3. B-Meson Decays

3.1.3. Weak Effective Hamiltonian

With the essential elements discussed in the previous parts, the standard model weak
effective Hamiltonian (3.14) for j�Bj D 1, �C D �U D 0 transitions can be written
as [88]

Heff D Heff.�B D �1/CHeff.�B D �1/� ; (3.23)

where

Heff.�B D �1/ D GFp
2

[∑
iDu;c

V �iqVib

{
2∑
kD1

Q
iq
k Ck.�/C

10∑
kD3

Q
q
kCk.�/

}]
;

(3.24)

with the renormalization scale � D O.mb/, and the flavour labels q 2 fd; sg are
associated with b ! d and b ! s transitions, respectively. The four-quark operators
Q
iq
k in (3.24) are listed in Table 3.1. Going beyond the leading logarithm, one finds

for the renormalization scheme independent Wilson coefficients at the scale � DMW

[87],

C1.�/ D O.˛s.�//CO.˛/ ; C2.�/ D 1CO.˛s.�//CO.˛/ ; (3.25)

C3.�/ D �˛s.�/
4�

[
E.xt/

6
� ˛

˛s.�/

4B.xt/C 4C.xt/
3 sin2 �W

C 1

9
log
(
�2

M 2
W

)
� 5

27

]
; (3.26)

C4.�/ D �C5.�/ D C6.�/ D ˛s

4�

[
E.xt/

2
C 1

3
log
(
mu2

M 2
W

)
� 5
9

]
; (3.27)

C7.�/ D ˛

6�

[
4C.xt/CD.xt/C 4

9
ln
(
�2

M 2
W

)
� 20
27

]
(3.28)

C8.�/ D C10.�/ D 0 ; (3.29)

C9.�/ D ˛

6�

[
4C.xt/CD.xt/C 10B.xt/ � 4C.xt/

sin2 �W

C 4

9
ln
(
�2

M 2
W

)
� 20
27

]
; (3.30)

where xt D m2t
M2
W

and the Inami-Lim functions are [90]

B.x/ D 1

4

[
x

1 � x C
x log x
.x � 1/2

]
; (3.31)
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3.2. Hadronic Matrix Element

C.x/ D x

8

[
x � 6
x � 1 C

3x C 2
.x � 1/2 log x

]
(3.32)

D.x/ D �4
9

log x � 19x
3 � 25x2

36.x � 1/3 C
x2.5x2 � 2x � 6/
18.x � 1/4 log x ; (3.33)

E.x/ D �2
3

log x C x.18 � 11x � x2/
12.1 � x/3 C x2.15x � 16x C 4x2/

6.1 � x/4 log x : (3.34)

Since the calculation is performed at the scale � D MW , with full W and Z prop-
agators and internal top-quark exchanges, the functions (3.31)–(3.34) represent the
contributions of box diagrams, Z penguins, photon penguins and gluon penguins, re-
spectively [91]. The coefficients (3.25)–(3.30) depend on the top quark mass. For
larges values of the top-quark, the magnitude of the electroweak penguin coefficient
C9.mb/ becomes comparable to the coefficients of the QCD penguin operators Q3

and Q5. In penguin-induced B-meson decays through the operator Q9 large elec-
troweak penguin effects and a significant top quark mass dependence could arise, e.g.
in B� ! K�˚ transition. However, the electroweak penguin effects are very small
for the decay B� ! �� NK0�, for comprehensive discussions of this topic see Refs.
[84, 85, 87, 88].

Classification of the Decays

The non-leptonic decays of the B-mesons can be classified by their decay topolo-
gies: the decays are mediated by the transition b ! q1 Nq2d.s/, q1; q2 2 fu; d; c; sg at
quark level. As discussed, one can distinguish between two topologies of decays, tree-
diagram-like and penguin topologies. In Fig. 3.2 the leading order Feynman diagrams
for non-leptonic B decays are shown.
The final states can be classified by their flavour content as following: if q1 ¤ q2 2
fu; cg only tree diagrams, whereas if q1 D q2 2 fu; cg tree and penguin diagrams
are contributing, and the contribution in the case q1 D q2 2 fd; sg will come from
penguin diagrams.
In the next part of this section, the matrix elements which appear in Eq. (3.8) will be
discussed in more detail.

3.2. Hadronic Matrix Element

As discussed in Sec. 3.1.1 the effective weak Hamiltonian contain coefficients of the
local operators Qi which are renormalized by the strong-interaction corrections. Us-
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b u; c

Nu; Nc

d .s/

W

(a) tree-level

b d .s/

G
Nq

q D u; c; d; s

u; c; t

W

(b) QCD penguins

b d .s/

Z, 

Nq

q

u; c; t

W

b d .s/

Z, 


Nq

q

u; c; t

W

(c) electroweak penguins

Figure 3.2.: Leading order Feynman diagrams for non-leptonic B decays [24].

ing the concept of OPE the short and long distance physics can be factorized; the
Wilson coefficients contain the short distance effects, depending on the large scalemb,
whereas the long distance physics is contained by the matrix elements of the operators.
Within this work, B ! D decays are issues at stake, the factorization of the B ! D

form factor leads to the Isgur-Wise function, which is a non-perturbative object, see.
Sec. 3.3.2 for details.

The non-leptonic decay amplitudes are characterized by a two-meson final state, and
factorization scheme has to reflect this physical property. Since working in the heavy-
quark limit, these final states can be divided in a ”light“ meson and a ”heavy“ meson
state. In the first case the mass remains finite, whereas in the second case the mass
scales with mb. However, the ratio m=mb stays fixed [92, 93]. In this limit, the charm
and the spectator quark form the final heavy mesons without difficulty, because if the
charm quark is relatively heavy, its velocity will not be large. On the other hand,
the light quark pair formed by the weak interaction vertex will be energetic and in a
colour-singlet mode, leaving the interaction region without a strong interaction. This
is Bjorken’s colour transparency argument [94]. The described physical picture leads
to an naïve factorization of the matrix element for the weak decays NB ! M1M2,
schematically written as [95–99]

hM1M2j. Nq1q2/. Nq3b/j NBi fact����! hM2j. Nq1q2/j0ihM1j. Nq3b/j NBi � fM2 � F NB!M1 ;
(3.35)
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3.2. Hadronic Matrix Element

with the decay constant fM2 and the form factor F NB!M1 . This factorization provides
in many cases correct order of magnitude of branching fractions, but it cannot pre-
dict e.g. direct CP asymmetries because of the assumption of no strong rescattering.
Scale as well as renormalization scheme dependence is absent in the matrix element,
because it is expressed in terms of observables. In order to solve these disadvantages
the naïve factorization is superseded by QCD factorization [93, 100–102], providing a
formalism to calculate the amplitudes at a leading order of a�QCD=mb expansion. For
the decay NB ! M1M2, where M1 is either a heavy or a light meson and M2 is light,
in QCD factorization the transition amplitude is given by

A. NB !M1M2/ D “naïve factorization” � Œ1CO.˛s/CO.�QCD=mb/� : (3.36)

The O.˛s/ terms are systematically accessible, whereas the main limitation originates
from the O.�QCD=mB/ terms [24], and the transition matrix of an operator Qi in the
weak effective Hamiltonian is in the case of M1 and M2 are both light,

hM1M2jQi j NBi D
∑
j

F
NB!M1
j .m22/

∫ 1

0

du T Iij .u/˚M2.u/C .M1 $M2/

C
∫ 1

0

d� du dv T IIi .�; u; v/˚B.�/˚M1.v/˚M2.u/ ; (3.37)

and for M1 is heavy and M2 is light,

hM1M2jQi j NBi D
∑
j

F
NB!M1
j .m22/

∫ 1

0

du T Iij .u/˚M2.u/ : (3.38)

Here T iij .u/ and T IIi .�; u; v/ are perturbatively calculable hard-scattering functions,

F
NB!M1;2
j is the NB ! M1;2 form factor, and ˚X.u/ is the light-cone distribution am-

plitude (LCDA) for the quark-antiquark Fock state of meson X . Finally, � , u and v
are longitudinal momentum fractions. Note that the Eqs. (3.37) and (3.38) hold true to
leading order in�QCD=mb, but to all orders at ˛s. In Fig. 3.3 a graphical interpretation
of these equations is depicted. Calculations of the hard-scattering kernels at NLO can
be found in [93, 101, 102], and at NNLO in [103–109]. The kernel T Ii starts at O.˛0s /,
and T IIi at O.˛1s /. At higher orders in ˛s, T Ii contains “non-factorizable” corrections
from hard gluon exchange or light-quark loops. T IIi contains hard “nonfactorizable”
interactions involving the spectator quark.
In Fig. 3.4 the relevant contributions to these kernels at next-to-leading order are
shown. For the B-meson transitions governed by Eq. (3.37) where the spectator quark
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B

M1

Fj

T Iij

˚M2

M2

C ˚B T IIi

˚M2

˚M1

M2

M1

B

Figure 3.3.: Graphical representation of the factorization formulae (3.37) and (3.38), [93].

can only go to one of the light final-state mesons, the second form-factor term on the
right side of Eq. (3.37) - second process in Fig. 3.3 - is power-suppressed. For the de-
cays NB !M1M2, whereM1 is heavy andM2 is light, described by Eq. (3.37), a sim-
plification can achieved since the spectator quark goes to the heavy meson. The second
term accounting for hard interactions with the spectator quark, is power-suppressed in
the heavy-quark limit. Whereas if the spectator quark goes to the light meson factor-
ization does not hold because the heavy meson is neither fast nor small. However, such
amplitudes are power-suppressed in the heavy-quark limit [93].
QCD factorization is a powerful tool for the description of non-leptonic B transi-
tions. However, the QCDF is from phenomenologically nature: in the transition am-

(a) “Non-factorizable“ vertex corrections.

(b) Left panel: Diagram with a ”penguin” contrac-
tion. Right panel: contribution from the chromody-
namic dipol operator in the weak effective Hamilto-
nian.

(c) “Non-factorizable“ spectator interactions.

Figure 3.4.: O.˛s/ corrections to the kernels T Ii - subfigures (a) and (b) - and T IIi - subfigure
(c) [93] as explained in the text.
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3.2. Hadronic Matrix Element

plitudes non-perturbative quantities appear, which are simpler than the hadronic ma-
trix elements. These quantities are either related to universal properties of a single
mesons state, or describe the B !M1M2 transition matrix element of a local current,
parametrized by a form factor. The quantities can be depicted from experimental data
or by other theoretical techniques like lattice QCD or QCD sum rules. However, com-
putation of the matrix element in lattice QCD, form factors and light-cone distribution
amplitudes is very difficult and containing significant systematic errors at present. In
Chap. 4 the QCD sum rule approach for B ! D.�/ transitions is presented. Further
details about QCD factorization in B transitions can be found in [93, 101, 102]. In
order to discuss the B ! D transitions in more detail, the non-perturbative parame-
ters, light-cone distribution amplitudes (Sec. 3.2.1) and form factors (Sec. 3.2.2), are
presented in the following part of this section.

3.2.1. Light-Cone Distribution Amplitudes

The light-cone distribution amplitudes appearing in the factorization formulae (3.37)
and (3.38) are studied in this section in more detail. The definition of the LCDA’s are
defined as the ones in Refs. [110, 111]. Here only leading two particle twist (twist-2)
and the twist-3 LCDA’s are represented. Following Refs. [111, 112], the twist-2 and
-3 light-cone distribution amplitudes for the pseudoscalar .P / mesons are

〈
P
(
p0
) ∣∣ Nq.y/
�
5q0.y/∣∣ 0〉 ∣∣.x�y/2D0 D �ifPp0�

1∫
0

du ei. Nup
0�xCup0�y/˚P .u; �/ ;

〈
P
(
p0
) ∣∣ Nq.y/i
5q0.x/∣∣ 0〉 ∣∣.x�y/2D0 D fP�P

1∫
0

du ei. Nup
0�xCup0�y/

p̊.u; �/ ;

〈
P
(
p0
) ∣∣ Nq.y/���
5q0.x/∣∣ 0〉 ∣∣.x�y/2D0

D ifP�P
(
p0�z� � p0�z�

) 1∫
0

du ei. Nup
0�xCup0�y/˚.u;�/

6
; (3.39)

with Nu � 1�u, z � y � x, �p D m2P=.mqCmq0/, fP is the decay constant, and � is
the renormalization scale of the light-cone operator. The leading-twist light-cone dis-
tribution amplitude is˚P .u; �/, conventionally expanded in Gegenbauer polynomials,

˚P .u; �/ D 6u Nu
[
1C

1∑
nD1

˛Pn .�/C
3=2
n .u � Nu/

]
; (3.40)
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3. B-Meson Decays

where ˛Pn .�/ are the Gegenbauer moments and C .3=2/n are the Gegenbauer polynomi-
als; for a derivation of these equations, see, e.g. Ref. [113]. The coefficients ˛Pn .�/
are multiplicatively renormalizable. Neglecting three-particle contributions, the twist-
3 two-particle amplitudes are

p̊.u/ D 1 ; ˚ 0�.u/

6
D Nu � u ; ˚�.u/

6
D u Nu : (3.41)

All distribution amplitudes (3.39) are normalized to 1, and can be combined to

〈
P
(
p0
) ∣∣ Nq˛.y/q0ı.x/∣∣ 0〉 D ifP4

1∫
0

du ei. Nup
0�xCup0�y/

{
=p
0
5˚P .u; �/

� �P
5
(

p̊.u; �/ � ���p0�z�˚�.u; �/
6

)}
ı˛

:

(3.42)

The asymptotic distribution amplitude is defined as the limit, in which renormalization
scale is sent to infinity, one finds

�X.u; �/
�!1D 6u Nu ; X 2 fP; p; �g : (3.43)

For light vector mesons .V / one has to regard the polarization tensor, being separated
in longitudinal .k/ and transverse .?/ projections [114],

"�k� �
"� � z
P 0 � z

(
P 0� �

m2V
P 0 � z z�

)
; "�?� D "�� � "�k� ; (3.44)

Here P 0 is the meson momentum with P 02 D m2V . With the light-like vector p0� D
P 0��m2V z�=.2P 0 � z/ the twist-2 and -3 chiral-even light-cone distribution amplitudes
are〈

V.P 0; "�/
∣∣ Nq.y/
�q0.x/∣∣0〉

D �ifVmV
1∫
0

du ei. Nup
0�xCup0�y/

{
p0�
"� � z
p0 � z ˚k.u; �/C "

�
?�g

.v/
? .u; �/

}
;

〈
V.P 0; "�/

∣∣ Nq.y/
�
5q0.x/∣∣0〉
D ifVmV �����"��p0�z�

1∫
0

du ei. Nup
0�xCup0�y/g

.a/
? .u; �/

4
; (3.45)
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with the vector meson decay constant fV . The chiral-odd light-cone distribution am-
plitudes are given by

〈
V.P 0; "�/

∣∣ Nq.y/���q0.x/∣∣0〉 D �f? 1∫
0

du ei. Nup
0�xCup0�y/

�
{(
"�?�p

0
� � "�?�p0�

)
˚?.u; �/C m2V "

� � z
.p0 � z/2

(
p0�z� � p0�z�

)
h
.t/

k
.u; �/

}
;

〈
V.P 0; "�/

∣∣ Nq.y/q0.x/∣∣0〉 D �f?m2V "� � z 1∫
0

du ei. Nup
0�xCup0�y/

h
.s/

k
.u; �/

2
; (3.46)

where f? is the - scale-dependent - transverse decay constant [114]. As in the case of
the pseudoscalar mesons one combined (3.45) and (3.46), yielding〈

V.P 0; "�/
∣∣ Nq˛.y/q0ı.x/∣∣0〉
D� i

4

1∫
0

du ei. Nup
0�xCup0�y/

{
fVmV

(
p0�
"� � z
p0 � z ˚k.u; �/C ="

�

?g
.v/
? .u; �/

C �����"��p0�z�
�
5g
.a/
? .u; �/

4

)
C f?

(
="�?=p

0˚?.u; �/

� i m
2
V " � z

.p0 � z/2���p
0�z�h

.t/

k
.u; �/ � im2V "� � z

h
.s/

k
.u; �/

2

)}
ı˛

: (3.47)

Finally, by the Wandzura-Wilczek-type relations the twist-3 distribution amplitudes
are related to the twist-2 ones [114], for the chiral-even amplitudes these relations are

g
.v/
? .u; �/ D

1

2

 u∫
0

dv
˚k.u; �/

Nv C
1∫
u

dv
˚k.u; �/

v

C : : : ;
g
.a/
? .u; �/ D 2

 Nu u∫
0

dv
˚k.u; �/

Nv C
1∫
u

dv
˚k.u; �/

v

C : : : ;
(3.48)

and the chiral-odd ones are

h
.t/

k
.u; �/ D .2u � 1/

 u∫
0

dv
˚?.u; �/

Nv �
1∫
u

dv
˚?.u; �/

v

C : : : ;
h
.s/

k
.u; �/ D 2

 Nu u∫
0

dv
˚?.u; �/

Nv C u
1∫
u

dv
˚?.v; �/

v

C : : : :
(3.49)
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Formally the twist-3 light-cone distribution amplitudes contribute at O.1=mb/.
In non-leptonic B decays the light-cone distribution amplitudes arise in the calcula-
tion of the hadronic matrix elements in QCDF. The quark and antiquark pair of the
outgoing (light) meson with momentum p0 have the assigned momenta up0 and Nup0,
respectively. Calculation of the on-shell amplitude in momentum space one finds a
term of the form

Nu˛a
(
up0
)
� .u; : : : /˛ˇ;ab;:::vˇb

( Nup0) : (3.50)

For pseudoscalar and, with modifications, for vector mesons, this term between the
vacuum and mesons state has to be replaced by

ifP

4NC

1∫
0

du ˚P .u/.=p
0
5/ˇ˛� .u; : : : /˛ˇ;aa;::: ; (3.51)

where NC refers to the numbers of colours, and it is a manifestation of factorization,
requiring a strict separation of short- and long-distance distributions [86, 93].
More aspects about light-cone distribution amplitudes can be found in the literature,
see, e.g. Refs. [111, 114]. Here the light-cone distribution amplitudes of B-mesons
are discussed in more detail. The third term of the factorization formula (3.37) is
the hard spectator interaction term, only within this term, the B-mesons light-cone
distribution amplitude appears. The spectator quark in the B-meson is not energetic
in the B-meson rest frame, its assigned momentum l is of order �QCD. At O.˛s/ the
hard spectator interaction amplitude depends only on p0 � l at leading order in 1=mb,
where p0 is the momentum of the light meson, picking up the the spectator quark.
The B-meson is described at leading-power in 1=mb by two scalar wave functions
[115]. In the case of negligible transverse momentum l? of the spectator quarks, one
finds for the most general decomposition of the B-meson leading-power light-cone
distribution amplitude,

h0j Nq˛.z/Œ: : : �bˇ .0/j NBd .p/i
∣∣
zCDz?D0

D � ifB
4
Œ.=p Cmb/
5�ˇ


1∫
0

d� e�i�pCz�
[
˚B1.�/C =n�˚B2.�/

]

˛
:

(3.52)

Here n�˙ D .1; 0; 0;�1/ are the two light-cone vectors with the properties n2˙ D 0 and
nC �n� D 2, and the subscripts .C;�;?/ refer to the light-cone decomposition of any
vector a� such that a� D 1

2
.aCn

�
� C a�n�C/ C a�?, where a˙ D a � n˙. The matrix
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element has to be gauge invariant, therefore the exponential has to be path-ordered,
this is denoted by the dots in Eq. (3.52). In a hard spectator scattering interaction
at leading order the hard spectator scattering contribution depends only on the light-
cone distribution amplitude ˚B1 . This dependence can be expressed by the hadronic
parameter �B D O.�QCD/, which is defined as [100]

1∫
0

d�
˚B.�/

�
� mB

�B
: (3.53)

As mentioned before in the QCD sum rule approach light-cone distribution amplitudes
play an important rôle. The discussion of all aspects of B-meson light-cone distribu-
tion amplitudes is beyond the scope of this work. Here, only the ones for B ! D.�/

transitions are relevant, presented in App. A. For an exhaustive discussion of B-meson
light-cone distribution amplitudes see, e.g., Refs. [93, 100, 101, 116].

3.2.2. Form Factors

In this section the definitions for the decay constants and form factors, which appear
in the factorization formulae (3.37) and (3.38), are given.
For pseudoscalar mesons (P ) with 4-momentum p0 the decay constant fP is defined
as 〈

P
(
p0
) ∣∣ Nq
�
5∣∣ 0〉 � �ifPp0� ; (3.54)

and for vector mesons (V ), the longitudinal .f kV / and transverse .f ?V / decay constants
are〈

V
(
p0; "�

) ∣∣ Nq
�q0∣∣ 0〉 �� if kVmV "�� ; (3.55)〈
V
(
p0; "�

) ∣∣ Nq���q0∣∣ 0〉�� if ?V (p0�"�� � p0�"��) ; (3.56)

respectively. Using the identity @�. Nq
�
5q0/ D i.mq C mq0/ Nq
5q0, derived by ap-
plying the Dirac equation (2.21) for the quark fields, one finds for the pseudoscalar
current〈

P
(
p0
) ∣∣ Nq
5q0∣∣ 0〉 D ifPm

2
P

mq Cmq0 : (3.57)

The scalar matrix element is hV .p0; "�/ j Nqq0j0i � 0, because it depends only on p0 �"�,
with respect to Eq. (3.44). The origin of the form factors is the decomposition of the
matrix elements

hM (
p0
) j Nq� bj NB.p/i ; (3.58)
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with M 2 fP; V g and � can be any irreducible Dirac matrix2. For NB ! P decays
the form factors are defined by the following Lorentz decompositions of bilinear quark
(2.20) current matrix elements [112, 117]

〈
P
(
p0
) j Nq
�bj NB.p/〉 DF NB!PC

(
q2
) [(

p C p0)� � m2B �m2P
q2

q�
]

C F NB!P0

(
q2
) m2B �m2P

q2
q� ; (3.59)

with the momentum transfer q� D .p � p0/�. The F NB!PC .q2/ term vanish when it
is contracted with the momentum transfer. As before, using the Dirac equation (2.21)
one gets the identity @�. Nq
�b/ D i.mq �mb/ Nqb, implying for the scalar current

〈
P
(
p0
) j Nqbj NB.p/〉 D F NB!P0

(
q2
) m2B �m2P
mb �mq

: (3.60)

The pole at q2 D 0 is spurious, because it is eliminated by the coincidenceF NB!PC .0/ �
F
NB!P
0 .0/ of the form factors.

For the NB ! V transitions the form factors for the vector and axial vector current are
defined as

〈
V
(
p0; "�

)∣∣ Nq
�b∣∣ NB.p/〉 � 2iF
NB!V
0

mB CmV �
��˛ˇ"��p

0
˛pˇ ; (3.61)〈

V
(
p0; "�

)∣∣ Nq
�
5b∣∣ NB.p/〉
�2mVF NB!V0

(
q2
) "� � q
q2

q� C .mB CmV /F NB!V1

(
q2
) [
"�� � "

� � q
q2

q�
]

� F NB!V2

(
q2
) "� � q
mB CmV

[
p� C p0� � m

2
B �m2V
q2

q�
]
; (3.62)

respectively, where the sign convention �0123 D �1 is used. Here, the form factors are
noted in the general form F

NB!M
j , because of the universality of the Lorentz decom-

positions. In Sec. 3.3.2, where the B ! D.�/ decays are discussed in more detail, the
common notation in literature for the form factors is used. In this work, the focus lies
on the NB ! M transitions, for completeness, the B ! V V transitions are discussed,
e.g., in Refs. [118–120].
For further studies of weak decay form factors one needs some implications from the
heavy-quark effective theory, which is recapitulated in the next section.

2see Sec. 2.1.1 for details.
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3.3. Heavy-Quark Effective Theory

An essential ingredients for the understanding of weak decay form factors is the heavy-
quark effective theory. In this section the basic formalism, and its application for
B ! M , M 2 fP; V g, decays is reviewed. Heavy-quark effective theory itself is a
kind of an effective field theory. The basic idea is, that in hadronic systems containing
a single heavy-quarkQ with massmQ � �QCD, additional symmetries appear, which
are not present in the full QCD Lagrangian (2.42). This heavy quark is at leading ap-
proximation considered as a static source of the gluon field with a typical size of order
��1QCD. HQET provide techniques to include 1=m corrections systematically in per-
turbation theory, and the additional symmetries can be used to obtain relations among
heavy hadron form factors, but such simplified problems are unsolvable in QCD. Lat-
tice simulations or sum rule approaches have to be used to obtain quantitative results.

The heavy-quark effective theory is a well-established theory [121–127]. For further
reading, there are many reviews [92, 128, 129], lecture notes [130–132], and textbook
material [34, 89, 133, 134], about heavy-quark effective theory and heavy-quark sym-
metries available.

3.3.1. Heavy-Quark Symmetry

The additional symmetries which appear, and not present in full QCD, are the heavy-
flavour symmetry (HFS), and in the heavy-quark limit, m ! 1, the spin symmetry.
Generally, in the full as well as in the effective theory, the infrared or long distance
behaviour is the same [128].

Within the standard model the quark contribution to the QCD Lagrangian (2.42) can
be separated into two pieces; one from the light quarks q 2 fu; d; sg and one from the
heavy quarks Q 2 fc; b; tg, where every part is associated with a distinct symmetry.
The light-quark sector has an approximate SU(3)L˝SU(3)R chiral symmetry which is
spontaneously broken to the usual vector SU(3). The eight (pseudo)Goldstone bosons,
pions, kaons, and �, reflect this breaking of the chiral symmetry, because their masses
are generated by the current quark masses. Figure 3.5 presents diagrammatically the
quark flavour symmetry in the standard model. Note that the Lorentz invariance and
the presence of chiral symmetry of full QCD ensuring that no mass renormalization
can occur in the massless limit. For discussion about the chiral symmetry and heavy-
quark symmetries, see, e.g. Refs. [136–138]

In lowest order the heavy quark can be treated as a static source of colour - or strong in-
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teraction - localized at the origin, and, since the light degrees of freedom are concerned,
the interaction is independent ofmQ, formQ � �QCD. This is the heavy-flavour sym-
metry, which is an approximative symmetry, with the corresponding heavy-flavour
group SU(Nhf)hf, where Nhf is the number of heavy flavours. For example, the NB and
D mesons, where the bottom and charm quarks are the heavy ones, they can be related
by an b $ c heavy-flavour SU(2) symmetry even thoughmb andmc are very different,
because the heavy-quark masses are not present in the static Lagrangian.

Considering an heavy-light QCD bound state, the interactions of the light degrees of
freedom with the heavy quarks depend on the heavy quark’s four-velocity v�. The
effective theory is formulated that the mass of the heavy quark is taken to infinity in
such a way that its four-velocity v� is fixed.

Following Ref. [124] the heavy quark fieldQ (Dirac spinor), could be transformed into
hv.x/ D eimQv�xQ.x/, and the field hv.x/ is constrained to satisfy =vhv.x/ D hv.x/.
The QCD Lagrangian (2.42) becomes ˇv D Nhv.x/i =Dhv.x/, where the covariant
derivative is given by Eq. (2.44). By using the positive-energy projection operator
PC D .1C=v/=2, defined by P˙ D .1˙=v/=2, P 2

˙ D P˙, and P˙P� D 0, the effective
Lagrangian becomes

ˇeff D Nhv iv �D hv : (3.63)

QCD

interactions
SU(6)L ˝ SU(6)R ˝ U(1)

SU(3)L ˝ SU(3)R ˝ U(1) SU(3)UL ˝ SU(3)DL ˝ SU(3)UR ˝ SU(3)DR ˝ U(1)

mQDfc;b;tg 
 and Z

SU(2)DL ˝ SU(2)DR ˝ U(1)

U.1/ SU(3)L ˝ SU(3)UR ˝ SU(3)DR ˝ U(1)

mqDfu;d;sg W

Figure 3.5.: Quark flavour symmetry: the symmetry group of the QCD interactions acting on
six massless quarks is broken by the heavy-quark masses mQ and separately by
the 
 and Z, with an common subgroup, [135].
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In an heavy-light QCD bound state the heavy quarks carry most of momentum and
energy, being split into an large part mQv and a residual part k D O.�QCD/,

pQ D mQv C k D mQ
(
v C k

mQ

)
: (3.64)

In momentum space the derivative acting on hv produces the residual momentum k,
because the heavy part .mQv/ canceled out. All Green’s functions in the full theory are
produced at leading order in 1=mQ and ˛s.mQ/ by the effective Lagrangian. However,
since the quark fieldQ contains a componentHv satisfying =vHv D �Hv, correspond-
ing to the ”small“ components of the full spinor Q, the effective Lagrangian is only
an approximation of the corresponding part of the QCD Lagrangian (2.42), and leads
to corrections of O.1=mQ/ to the effective Lagrangian. Note that hv .Hv/ annihilates
(creates) a heavy quark with velocity v; and in the case of an on-shell heavy quark, the
field Hv is absent.

The second symmetry appearing in the limit mQ � �QCD is the spin symmetry. If
the effective Lagrangian (3.63) contains no Dirac 
 -matrices, heavy quark interactions
with gluons leave its spin unchanged, and an SU(2) symmetry group exists under which
the effective Lagrangian is invariant. In Hilbert space, the generators of the spin SU(3)

can be chosen as S k D 
5
0
k, using the chiral representation of the Dirac 
 -matrices
(2.15). Working in a general frame, with three unit vectors "�i , "2i D �1, which are
orthogonal to v�, one introduces a triplet of quark (antiquark) spin operators SC.v; "/
(S�.v; "/), which satisfy the commutator relations,

[
S˙.v; "/; h˙v

] D
 
5=v="h

C
v

�
5=v="�h�v
;
[
S˙.v; "/; h�v

] D 0 ; (3.65)

and SC.v; "/ and S�.v; "/ commute with each other, these are the usual SU(2) ˝
SU(2) commutation relations. Here, the field hCv (h�v ) annihilates (creates) heavy quark
(antiquark) states, and the relation to hv is given by h˙v D P˙hv. Splitting the field hv
into the new fields h˙v , the heavy part of the QCD Lagrangian (3.63) can be written as

ˇv D NhCv iv �D hCv C Nh�v iv �D h�v ; (3.66)

where the mass of the heavy quark does not appear explicitly, hence, it is invariant
under rotations in the flavour space.
For Nhf heavy quarks the spin symmetries can be extended to a SU(2Nhf)˝ SU(2Nhf)

symmetry, this is the heavy-quark spin-flavour symmetry [92, 121, 122, 124].
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The spin symmetry acts on a heavy-light mesons with mass M such that the mass is
of order of that of the heavy quark, M D mQŒ1C O.�QCD/�. The system is moving
with an ”infinite“ momentum P � D Mv�, and the present heavy-quark states in the
wavefunction originate from the v� part of the theory. By the operators SC.v; "/ the
symmetry is generated, and all hadron states appear in multiplets of spin SU(2). Note
that the spin operators SC.v; "/ do not commute with the total angular momentum,
generally they connect states of different spins [129].
Applications of heavy quark symmetry are exhaustively discussed in the literature; e.g.
generally Refs. [139, 140], for mesons Refs. [126, 141] and for baryons Refs. [142,
143]. Spectroscopic implications of the heavy-quark spin symmetry are discussed,
e.g., in Refs. [92, 144]. In the next subsection hadronic matrix elements and form
factors resulting naturally by the heavy-quark symmetries are reported.

3.3.2. Transition Matrix Elements and Covariant Trace Formalism

Setting up the heavy-quark symmetry approach, the transition matrix elements and the
covariant trace formalism can be introduced. It is out of the scope of this work to give
a general deduction of the hadronic matrix elements, this can be found, e.g., in Ref.
[140]. Here, the focus lies on the ones for B ! D.�/ decays, which are defined by〈

D
(
p0
) ∣∣V�∣∣ NB.p0 C q/〉

� 2p0�f CBD.q2/C q�
[
f CBD

(
q2
)C f �BD (q2)] ; (3.67)〈

D�
(
p0; "

) ∣∣.V � A/�∣∣ NB.p0 C q/〉
� �i"��

(
mB Cm�D

)
ABD

�

1

(
q2
)C i (2p0 C q)

�
."�q/

ABD
�

2 .q2/

mB Cm�D
C iq� ."�q/ 2m

�
D

q2

[
ABD

�

3

(
q2
) � ABD�0

(
q2
)]

C �����"��q�p0� 2V
BD�.q2/

mB Cm�D
; (3.68)

where V� D Nc
�b and A� D Nc
�
5b are the vector and axial vector currents, re-
spectively, and the Lorentz scalar form factors are functions of the momentum transfer
squared q2 D .p � p0/2. Some of the form factors are in the heavy-quark limit not
independent from each other. Instead of q2 it is common to use the variable w, being
defined as

w � v � v0 D m2B Cm2D.�/ � q2
2mBmD.�/

; (3.69)
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where v� D .p0 C q/�=mB and v0� D p0�=mD.�/ are the four-velocities of B and
D.�/. Heavy-quark effective theory provide methods to find relations between the
form factors at maximum momentum transfer squared, q2 D q2max D .mB �mD.�//2.
At this kinematic point, the D.�/ meson is not able to recoil in the rest frame of the
decaying B-meson, and it is called ”zero-recoil“.
By using the covariant trace formalism, formulated in Refs. [126, 142, 145] and gen-
eralized to excited states in Ref. [140] the relations between the form factors could be
calculated in an elegant manner. The main idea is to use the covariant tensor represen-
tation of the states with definite transformation properties under the Lorentz group and
the heavy-quark spin-flavour symmetry.
The heavy quark in the meson can be represented by the spinor uQ.v; s/, satisfying
=vuQ.v; s/ D uQ.v; s/. In the following only the case jP D 1

2

� is discussed, for
a discussion with higher spins see Ref. [140]. Quarks and antiquarks have opposite
intrinsic parity, and the corresponding physical states are ground-state pseudoscalar
(J P D 0�) and vector (J P D 1�) mesons. Under Lorentz transformation the light
degrees of freedom as a whole transform as an antiquark moving with velocity v.
The antiquark is described by a antifermion spinor Nv Nq.v; s0/ D v

�
Nq

0, Nv Nq.v; s0/=v D

�Nv Nq.v; s0/, representing the light degrees of freedom with j D 1
2
. The two spinors can

be combined representing the ground-state mesons wave function, 	 D uQ Nv Nq, which
transforms under a connected Lorentz transformation � as 	 7�! D.�/	D�1.�/,
whereas under a heavy-quark spin rotation Q� as 	 7�! D. Q�/	 . Working in a rest
frame, where the quantization axis is the 3-direction and the spinor rest frame basis is

u
.r/
Q D

�r0
0

, and v
.r/
Nq D

 0

0

�r

, with �1 D (1
0

)
, and �2 D (0

1

)
, the pseudoscalar

state in the rest frame becomes

P.v/ D 1p
2

(
u
.1/
Q Nv.1/Nq C u

.2/
Q Nv.2/Nq

)
D � 1p

2

1C 
0
2


5 ; (3.70)

and for the three vector states,

V ."C/ D u
.1/
Q v

.2/
Nq D

1p
2

1C 
0
2

="C ; (3.71)

V ."�/ D u
.2/
Q v

.1/
Nq D

1p
2

1C 
0
2

="� ; (3.72)

V ."3/ D 1p
2

(
u
.1/
Q v

.1/
Nq C u

.2/
Q v

.2/
Nq

)
D 1p

2

1C 
0
2

="3 ; (3.73)
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where the two transverse polarisation vectors "˙ and the longitudinal polarization vec-
tor "3 are defined as

"
�
˙ D

1

2
.0; 1;˙i; 0/ ; "

�
3 D .0; 0; 0; 1/ : (3.74)

In the rest frame the matrix representation of the components ˙ i of the general spin
operator ˙ is ˙ k D 1

2

5


0
k , and acts on the meson wave function as ˙ k	 D
Œ˙ k; 	 �. Using this representation, the pseudoscalar meson has spin zero, and the
vector mesons (3.71), (3.72), and (3.73), have spin 1, �1, and 0, respectively. The
heavy-quark spinor operators S k have the same matrix representation as ˙ , however,
acting only on the heavy-quark spinor 	 , S k	 D Sk	 , one gets

S3P D 1

2
V."3/ ; S3V."3/ D 1

2
P ; S3V."˙/ D ˙1

2
V."˙/ : (3.75)

By replacing 
0 with =v the tensor wave functions (3.70)–(3.73) can be generalized
in a Lorentz covariant way. Note that the polarization vector of a vector meson with
velocity v0 satisfies " � v0 D 0 and " � "� D �1, as well as∑

pol:

D "�"�� D v0�v0� � g�� : (3.76)

It is convenient to introduce a combined meson wave functional M.v/ that represents
P.v/ and V.v; "/ by

M.v/ D pmMPC

�
5 pseudoscalar meson,

=" vector meson ;
(3.77)

satisfying =vM.v/ D M.v/, as expected. The amplitude for transition between two
heavy mesons, e.g. NB ! D.�/, must be proportional to M0.v0/�M.v/, which is a
Dirac matrix with two indices representing the light degrees of freedom. In order to
ensure the SU(2) invariance these indices must contract those of a matrix � . This
matrix contains all long-distance dynamics, and heavy-quark symmetry implies that
it is independent from spins and masses of the heavy quarks as well as of the Dirac
structure of the current. However, it is a function of the mesons velocity and of the
renormalization scale �. Because of Lorentz covariance and parity � transform as a
scalar with even parity. A decomposition could be chosen as

�.v; v0; �/ D �1 C�2=v C�3=v0 C�4=v=v0 ; (3.78)
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where �i.w D v �v0; �/ are Lorentz scalar functions. The hadronic matrix element can
be written as〈

M0.v0/
∣∣∣h.c/v0 � h.b/v ∣∣∣M.v/

〉
D Tr

{
�.w;�/ NM0.v0/�M.v/

}
; (3.79)

where NM D 
0M�
0. The combination �.w;�/ � �1 � �2 � �3 C �4 under the
trace has the same effect as � , therefore [126]〈

M0.v0/
∣∣∣h.c/v0 � h.b/v ∣∣∣M.v/

〉
� ��.w;�/Tr

{ NM0.v0/�M.v/
}
: (3.80)

In the heavy-quark limit the form factors in Eqs. (3.67) and (3.68) reduce to a univer-
sal single form factor �.w;�/, coincides with the Isgur-Wise function [121, 122, 146,
147]. It is, from a group theoretical point of view, a reduced matrix element, being
universal for the whole spin-flavour symmetry multiplet. According to the Wigner-
Eckhard theorem [148, 149] the trace in (3.80) is the Clebsch-Gordon coefficient bee-
ing determined by the current operator and the states of the multiplet [128]. By using
flavour symmetry one finds that the current between B-meson states is given by Eq.
(3.80), and since the current � D 
0 generates this symmetry, the normalization con-
dition for the Isgur-Wise function is given by

�.w D 1/ � 1 : (3.81)

The behaviour of the Isgur-Wise function near maximum recoil and zero-recoil is in-
vestigated with respect to NB ! D.�/ transitions in Chap. 4 and 5, respectively.
Note finally that for non-zero angular momentum the calculation of the covariant
representation similar to (3.70)–(3.73) is straightforward by using the properties of
spin.nC 1

2
/ Rarita-Schwinger tensor spinors [150]; for details of this calculation see

Ref. [140].
For exclusive NB ! D.�/` N� decays, heavy-quark symmetry provides relations between
the form factors parametrizing these decays; treating charm and top quark as heavy
static quarks, a single heavy form factor describe these decays, which allows a model-
independent determination of the CKM matrix element Vcb, which is shown in Sec.
3.3.4. In order to refine the theoretical understanding of the heavy-quark symmetry in
the next subsection the renormalization effects at next-to-leading order as well as the
first-order power corrections in perturbation theory are discussed.

3.3.3. Renormalization and Power Counting

The Isgur-Wise function �.w;�/ as defined above depends on the mesons velocity as
well as on the renormalization scale �. The �-dependence is necessary in order to
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cancel the scale dependence of the Wilson coefficients, multiplying the renormalized
current operators in the short distance expansion. An exhaustively discussion of of
matching an renormalization for the flavour-changing vector V� D Nq
�Q and axial
vector A� D Nq
�
5Q currents can be found in Ref. [92].
In QCD the vector current V� D NQj
�Qi is a partly conserved current, and renormal-
ization is obsolete [151], and hence the matrix elements are free of ultraviolet diver-
gences. However, in the matrix element large logarithms of the type log.m2Q=�

2/ can
appear which diverge in the heavy-quark limit, and the vector current requires renor-
malization [152, 153]. In the heavy-quark limit the matrix elements are �-dependent
separating the regions of short- and long-distance physics. The short-distance correc-
tion can be perturbatively calculated since �QCD � � � mQ, because the effective
coupling in region between � and mQ is small. As discussed in Sec. 3.1.1 the matrix
element can be expanded as hV �ij iQCD D Cj i.�/hV �ji .�/iHQET C O.1=mQ/C O.˛s/.
An explicit calculation for the Wilson coefficient Ccb of the vector current V � D Nc
�b
yields [126, 154]

Ccb.�/ D
(
˛s.mb/

˛s.mc/

) 6
25
(
˛s.mc/

˛s.�/

) 8.wr.w/�1/
27

; (3.82)

with

r.w/ D log.w C
p
w2 � 1/p

w2 � 1 : (3.83)

For the axial current A� the result is identically. The �-dependence of the Wil-
son coefficients has to be canceled against that one of the Isgur-Wise function. A
renormalization-group invariant Isgur-Wise function can be defined as

�ren.w/ D �.w;�/Ccb.�/ ; (3.84)

which comply with the normalization condition �ren.1/ D 1 at zero-recoil.

Renormalization-group corrections as discussed above are effects at leading order in
the 1=mQ expansion. The formalism of 1=mQ expansion has become textbook mate-
rial and can be found, e.g. in Refs. [89, 133, 134]. The basic idea is to take the ”small”
components Hv into account and parametrize them like the ”large“ components hv,
therefore the quark field Q can be written as Q D eimQv�xŒhv CHv�. Defining a de-
composition of the covariant derivative into a ”longitudinal“ and a ”transverse“ part,

D� D v� .v �D/CD?� ; D?� D
(
g�� � v�v�

)
D� ;

{
=D
?
; =v
}
D 0 ; (3.85)
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the QCD Lagrangian (2.42) for heavy quarks takes the form

ˇQ D i Nhv iv �Dhv � NHv.iv �D C 2mQ/Hv C Nhv i =D?Hv C NHv i =D
?
hv : (3.86)

In this Lagrangian the heavy degrees of freedom are represented by the fieldHv. They
can be eliminated by using the QCD equations of motion, and one gets

Hv D 1

iv �D C 2mQ � i�
i =D
?
hv ; (3.87)

reflecting that the small component field Hv D O.1=mQ/, whose corresponding ef-
fective Lagrangian reads

ˇeff D Nhv iv �D hv C Nhv i =D? 1

iv �D C 2mQ � i�
i =D
?
hv : (3.88)

This non-local effective Lagrangian is the correct generalization of (3.63) for large
but finite heavy-quark masses. Here, for the deduction of the effective Lagrangian a
”classical“ way by using the equations of motion is used. A more sophisticated way
can be found in Ref. [155]. The Lagrangian can be derived by using the generating
functional of QCD Green’s function containing the heavy-quark fields.
An expansion of the effective Lagrangian at order �QCD=mQ yields [123, 127]

ˇeff D Nhv iv �D hvC 1

2mQ
Nhv
(
iD?

)2
hvC g

4mQ
Nhv�˛ˇG˛ˇhvCO

(
1

m2Q

)
; (3.89)

where G˛ˇ is the gluon field strength tensor (2.43). At order 1=mQ two new operator
appear, identified in the rest frame as

Qkin D 1

2mQ
Nhv
(
iD?

)2
hv �! � 1

2mQ
Nhv .iD/2 hv ;

Qmag D g

4mQ
Nhv�˛ˇG˛ˇhv �! � g

mQ
NhvS �Bchv ;

where S k D 1
2

5


0
k is the spin operator, and B ic D �ijkGjk are the components of
the colour-magnetic gluon field. The first operator Qkin is the gauge covariant exten-
sion of the kinetic energy, which arise from the off-shell residual motion of the heavy
quark. The interaction of the heavy-quark with the gluon field is described by the sec-
ond operator Qmag; it is a nonabelian analog of the Pauli term, and a relativistic effect
scaling like 1=mQ. This is the origin of the heavy-quark spin symmetry.
Higher order power corrections to b ! c transitions and its impact for B decays have
been studied by several authors in the last years, see., e.g., Refs. [156, 157] and the
references therein.
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3.3.4. Semi-leptonic Decay Rates

Closing this chapter about fundamentals of B-meson decays, the impact of the form
factors defined in Eqs. (3.67) and (3.68) for NB ! M decay rates, and, in particular,
for the semileptonic NB ! D.�/` N�, decay rates are discussed. In exclusive NB ! D�` N�
transitions the decay rates can be characterized by four variables, three angles and the
momentum transfer squared q2. The kinematics of these decays is well analysed within
the standard model [158, 159], and the B-factories provide high precision data for
analysis, used in the chapters 4–6 for comparison with theoretical predictions. Here,
the derivation of the decay rates for the exclusive processes NB !M` N�,M 2 fD;D�g,
for light leptons, ` 2 fe; �g, is briefly reviewed. For light leptons, a vanishing lepton
mass m` D 0, can be assumed. In the rest frame of the NB-meson, the decay rate is
defined by

d� . NB !M` N�/ D 1

2mB

∣∣A ( NB !M` N�)∣∣2 d˘3 ; (3.90)

with

d˘3 D .2�/4ı.4/
(
p � .p` C p N�/ � p0

)∏
f

d 4pf

.2�/32Ef
; (3.91)

where f 2 fM; `; N�g denotes the final states momenta, and the amplitude is given by

A
( NB !M` N�) D GFp

2
VQqL

�W� ; (3.92)

with the CKM matrix element VQq, corresponding to the Q ! q transitions. The
quark-level diagram is depicted in Fig. 3.6 (a). The virtual W -boson carries the four-
momentum q D p` C p N� . In the standard model framework the leptonic current and
the hadronic matrix element are given by

L� D Ǹ
�.1 � 
5/� ; W � D 〈M (
p0
) ∣∣J�had.0/

∣∣ NB.p/〉 ; (3.93)

respectively. As discussed above, the matrix element of the hadronic current is con-
structed from Lorentz-invariant form factors. Using J

�
had D V � � A�, one achieved

the form factors defined in Eqs. (3.67) and (3.68). For NB ! D.�/ transitions the form
factors become

hD.p0/j Nc
�bj NB.p/ip
mBmD

D.v C v0/�hC.w/C .v � v0/�h�.w/ ; (3.94)
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NB
M

N�`
`

Q

q

W VQq

(a) Quark-level diagram for the weak de-
cay of a heavy quark Q into a lighter
quark q and a virtual W , which decays
into a lepton its corresponding neutrino.

W

�

`

N�

B
D��

�V

D

�s

(b) Definition of the decay angles � , �V , and �, for the
NB0 ! D�CŒ! D0�C�` N� decay, mediated by a weak vir-

tual intermediate vector boson W [160].

Figure 3.6.: Semileptonic weak decay of a B-meson.

hD�.p0; "/j Nc
�bj NB.p/ip
mBmD

D���˛ˇ"��v˛v0ˇhV .w/ ; (3.95)

hD�.p0; "/j Nc
�
5bj NB.p/ip
mBmD

Di"��.1C w/hA1.w/

� i [hA2.w/v� C hA3.w/v0�] ."� � v/ ; (3.96)

From a direct calculation, done in Ref. [159], the decay rate for the first transition,
NB ! D` N�, depends on the form factors hC.w/ and h�.w/, and is given by

d� . NB ! D` N�/
dw

D G0.w/jVcbj2w � 1
w C 1.1C r/

2

∣∣∣∣hC.w/ � 1 � r1C r h�.w/
∣∣∣∣2 ; (3.97)

with

r.�/ � mD.�/

mB
; (3.98)

and

G
.�/
0 .w/ � G2Fm

5
B

48�3
r3.�/

p
w2 � 1.w C 1/2 : (3.99)

For the variable w there are two boundaries in the semileptonic region, maximum
recoil q2 D 0 and zero-recoil q2 D .mB �mD.�//2 corresponding to wmax ' 1:589 or
w�max ' 1:503, and w D 1, respectively.
For the second decay, NB ! D�` N�, it is convenient to introduce invariant helicity
amplitudes H˙.w/ and H0.w/, corresponding to the transverse and longitudinal po-
larizations. In the B-meson rest frame theD�-meson and the virtualW -boson go back
to back and they are forced to have the same helicity. For this decay, the definition of
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3. B-Meson Decays

the angles are shown in Fig. 3.6 (b), where the angle � is defined as the angle between
theD�-meson and the lepton in the rest frame of the virtualW -boson. The differential
decay rate can be expressed in terms of the helicity functions3 and is given by

d� . NB ! D�` N�/
dw

D G�0 .w/.1 � r�/2 jVcbj2 jhA1.w/j2
∑
iD˙;0

jHi.w/j2 ; (3.100)

where the helicity functions are

jH˙.w/j2 D r2� � 2wr� C 1
.1 � r�/2

(
1�

√
w � 1
w C 1R1.w/

)2
;

jH0.w//
2 D

[
1C w � 1

1 � r�
(
1 �R2.w/

)]2
;

(3.101)

with the ratios

R1 D
[
1 � q2

.mB CmD�/2
]
V.q2/

A1.q2/
D hV .w/

hA1.w/
; (3.102)

R2 D
[
1 � q2

.mB CmD�/2
]
A2.q

2/

A1.q2/
D hA3.w/C r�hA2.w/

hA1.w/
: (3.103)

At zero-recoil the helicity functions are normalized to unity, jHi.1/j2 D 1, and at max-
imum recoil only virtual W -bosons with longitudinal polarization contribute, hence,
the transverse polarisation functions vanish, jH˙.wmax/j2 D 0.
Using Luke’s theorem [161] in the limit v D v0 there are no terms of order 1=mQ in
the hadronic matrix elements (3.67) and (3.68). A power correction up to second order
of the form factors hC and hA1 yields

hC.1/ D �V CO.1=m2Q/ ; hA1.1/ D �A C .1=m2Q/ ; (3.104)

these are the only two form factors protected by Luke’s theorem, whereas the other
ones are multiplied with kinematical factors which vanish for w D 1. The 1=mQ
corrections for the form factors h�, hV , hA2 , and hA3 do not vanish at zero-recoil, and
the kinematical suppression of these form factors do not bar a contribution to the decay
rate. In the NB ! D` N� transition the angular momentum is conserved, therefore, in
order to match the helicity of the lepton pair the two pseudoscalar mesons have to be
in a relative p-wave configuration. In the decay rate (3.97) a factor .w2 � 1/ appears,

3Note that in Refs. [158, 159] the helicity functions are functions of the momentum transfer squared
q2,whereas here the Hi are considered as functions of w.
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because the amplitude in the B-meson rest frame is proportional to the four-velocity
of theD-meson. Form factors which are kinematically suppressed can now contribute,
which is reflected by the proportionality

d� . NB !M` N�/
dw

� .w2 � 1/3=2
∣∣∣∣hC.w/ � 1 � r1C r h�.w/

∣∣∣∣2 ; (3.105)

of the decay rate (3.97). The form factor hC as well as h� contribute to the decay
rate, and consequently the decay rate receives corrections of O.1=mQ/ at zero-recoil.
The situation is rather different for the NB ! D�` N� decay, because the D�-meson has
spin one, the decay can proceed in an s-wave configuration, and there is no helicity
suppression near zero-recoil [162], where the decay rate (3.100) becomes proportional
to
p
w2 � 1jhA1j2, because this is the only form factor protected by Luke’s theorem.

Hence, this decay is suitable for a precision measurement of the CKM element Vcb,
[92], explicitly, at w D 1, the decay rate becomes

lim
w!1

1p
w2 � 1

d� . NB ! D�` N�/
dw

D G2Fm
5
B

4�3
.1 � r�/2r3� jVcbj2jhA1.1/j2 ; (3.106)

where the 1=mQ expansion of hA1.1/ is given by Eq. (3.104), and the latest result from
lattice QCD [163, 164] is given by

hA1.1/ D 0:9077˙ 0:0051˙ 0:0158 ; (3.107)

where the systematic errors are added in quadrature. The presented decay rates are
achieved within the standard model by a left-handed hadronic current. In Chap. 5 the
search for new physics effects is performed by allowing an additional helicity violating
right-handed hadronic current. Furthermore, scalar and tensor currents are taken into
account. The exclusive semileptonic NB ! D.�/` N� decay rates are then more sensitive
on wrong helicity admixtures than the ones from inclusive decays.

After this briefly review of B-meson decays in the next chapters some applications are
presented. For an investigation of the hadronic matrix elements in Chap. 4 the QCD
sum rules for NB ! D.�/ form factors are presented. B-meson decays are a suitable
source for exploring new physics effects in different ways. In Chap. 5 such effects
are studied in exclusive semileptonic B-meson decays by taking a helicity violating
right-handed hadronic current into account. New physics effects as a sources for new
CP violation are studied in B0 � NB0 mixing in Chap. 6.
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B-Decays with QCD Sum Rules

QCD sum rules have become a quite powerfull tool for the calculation of hadron phe-
nomenology. The method itself was developed by Shifman, Vainshtein and Zakharov
(SVZ) [165] in 1979. As studied in Sec. 3.1.1, with the operator-product expansion
short- and long-distance quark-gluon interactions can be seperated. The general idea
of SVZ is to devolve this procedure to correlators of certain currents at small euclidean
distances. Non-perturbative corrections are related to a non-trivial vacuum structure
and are included into an vacuum expectation value of local quark-gluon operators.
Sum rules can therefore be obtained by using dispersion relations relating current cor-
relators to spectral densities. Due to quark-hadron duality, the spectral densities can
be interpreted in terms of physical intermediate states [92]. However, quark-hadron
duality and the approximations in the operator-product expansion of the correlator
functions are responsible for the limited applicability of QCD sum rules and their pre-
dictions have to be treated carefully. In this chapter a short aspect of QCD sum rules
within the investigation of exclusive NB ! D.�/` N� decays is described. For a compre-
hensive presentation of the QCD sum rule approach see, e.g., Refs. [116, 166, 167]
and the references therein.

The plan of the chapter is following. In the first section the basic formalism is briefly
reviewed by discussing the correlation function, construction of light-cone sum rules,
and the impact of heavy-quark effective theory on the B ! D� form factors. Section
4.2 presents a numerical analysis of the achieved form factor sum rules, and the fit
results are compared with recent experimental data. In Sec. 4.3 the results of this
chapter are summarized.
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4.1. QCD Sum Rule Formalism

In order to study the application of QCD sum rules on exclusive NB ! D.�/` N� tran-
sitions, the basic concepts behind light-cone sum rules are set up. The presented in-
troduction follows Refs. [167–169], and the explicit relations for the NB ! D.�/` N�
decays are taken from Ref. [170].

Light-cone sum rules can be interpreted as an hybrid of the original method developed
by Shifman, Vainshtein and Zakharov with methods from hard exclusive decays. The
SVZ sum rules start with a vacuum-to-vacuum correlation function, whereas, in the
light-cone sum rule approach the correlation function is a time-ordered (T -)product of
two quark currents sandwiched between vacuum and an on-shell state [171], where it
can be a light hadron or a photon. In Refs. [92, 172] the SVZ approach is discussed
in the heavy-quark symmetry framework. Light-cone sum rules can be used for reli-
able calculations of heavy-to-light transition form factors in QCD. Hadronic input in
semileptonic B ! M`�`, B ! M` Ǹ, M 2 fP; V g, and radiative B ! V
 decays is
parametrized by the B !M form factors with pseudoscalar P D �;K;D and vector
V D �;K�;D� particles, while the same form factors fix factorizable amplitudes in
non-leptonic charmless B decays.

4.1.1. Correlation Function

For NB ! D.�/` N� transitions a special designed correlation function for the two quark
currents sandwiched between the vacuum and the on-shell NB-meson state is used, writ-
ten as [168]

F
.B/

ab .p
0; q/ D i

∫
d 4x eip

0�x
〈
O jT f Nq2.x/�aq1.x/; Nq1.0/�bb.0/gj NB.p/

〉
; (4.1)

where Nq1�bb is one of the light-heavy transition currents and Nq2�aq1 is the interpo-
lating current for a pseudoscalar or a vector meson, where the valence quarks q1;2 de-
termine the flavour content. For the NB ! D.�/` N� transitions the current �a D mci
5

(�a D 
�) interpolates the pseudoscalar (vector) D- (D�-)meson, hence, the correla-
tion function (4.1) becomes

F .B/a� .p
0; q/

D i
∫
d 4x eip

0�x
〈
O
∣∣T { Nd.x/�ac.x/; Nc.0/
�.1 � 
5/b.0/}∣∣ NB.p/〉 : (4.2)
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4. B-Decays and QCD Sum Rules

Note that in the isospin-symmetry limit NBd ! D.�/C decays are equivalent to NBu !
D.�/0. In order to construct light-cone sum rules, one has to ensure that the operator-
product expansion is applicable for the correlation functions (4.1) and (4.2). The argu-
mentation for the proof of the general correlation function (4.1), which is given in Ref.
[169], can be carried over to the correlation function (4.2), where instead of the virtual
light quark now the charm-quark propagates in the correlation function. Working in
the B-meson rest frame, where its momentum p D pB is defined by Eq. (3.64), and,
in first approximation,mB D mbC N� (k0 � N�), the b- and c-quark fields are redefined
by their effective fields, b.x/ D hv.x/e�imbv�xCO.1=mb/ and h0v.x/ D c.x/e�imcv�x,
respectively. The external four-momenta are redefined: p0 D mcvC Qp, q0 D �mcvCQq,
where the parts proportional to the four-velocity v are separated: q D .mb�mc/vC Qq,
and QqC Qp D k. These redefinitions do not imply that the heavy-quark effective-theory
is used for the virtual c-quark field, on the contrary it is done to decouple the c-quark
mass scale. Using relativistic normalization of states, jB.p/i D jBvi, and applying
heavy-quark effective theory the correlation function (4.2) becomes at leading order,
F .b/a� .p

0; q/ D QF .Bv/a� .p0; Qq/C O.1=mb/. Inserting the redefinitions one ends up with
the correlation function in the heavy-quark limit

QF . Qp; Qq/ D i
∫
d 4x ei Qp�x

〈
0
∣∣T { Nd.x/�ah0v.x/; Nh0v
�.1 � 
5/hv.0/}∣∣ NBv〉 : (4.3)

This correlation function depends neither explicitly on the b-quark nor on the c-quark
mass and furthermore, it contains only scales associated with either effective or light-
quark degrees of freedom. Since both rescaled four-momenta are assumed to be space-
like and sufficiently large - P 2; j Qqj2 � �2QCD;

N�2 - and furthermore, the difference
between the virtualities is also assumed to be large - � D 2 Qp�k

P 2
� j Qqj2�P 2

P 2
� 1 -

the region of small x2 � 1=P 2 dominates in the integral in Eq. (4.3). Large P 2

and � � 1 ensure the validity of light-cone operator-product expansion, because the
external momenta squared p02 and q2 are far below the hadronic thresholds in the
currents Nd�ac and Nc
�.1 � 
5/b, respectively.
Note that the operator-product expansion can only be used far from the zero-recoil
point: In the rest frame, where Qp0 D �P 2=2 N�, the initial external momenta are

q2 D .mb �mc/2 � �.1C �/.mb �mc/P
2

N� � P
2.1C �/ ;

p2 D m2c � �mc
P 2

N� � P
2 :

(4.4)

Here the first relation becomes at the zero-recoil q2 D .mB �mD.�//2 � .mb �mc/2.
As an important consequence of this statement, the light-cone sum rule can be applied
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4.1. QCD Sum Rule Formalism

only at the maximum recoil, q2 � 0. The solution of the second relation at q2 D 0

yields P 2 � N�.mb�mc/� m2b, however, in this case, the components of the external
momenta are of order of the heavy mass scale.

In the second equation of (4.4) a scale � � P 2= N�� N�;�QCD is present, being large
in terms of �QCD, but generally independent of the heavy quark mass. An interval
� mc� in the charm meson channel shifted the external momentum squared p2 below
the threshold m2

D.�/
� m2c . A quite similar situation can be found by the derivation of

light-cone sum rules for B ! � form factors with pion distribution amplitudes, see,
e.g., Refs. [173, 174].

Because of the light-cone dominance of the correlation function the quark field q1 and
q2 can be contracted and the free propagator Sq1.x; 0/ D �ih0jT fq1.x/q1.0/gj0i can
be used. Here, one is interested in the leading-order contributions of two- and three
particle B-meson distribution amplitudes, depicted in Fig. 4.1 (left and middle panel).
Near the light-cone, including the gluon part [175], the c-quark propagator yields

Sc.x; 0/ D
∫

d 4p0

.2�/4
e�ip

0�x

�
 =p

0 Cmc
p02 �m2c

C
1∫
0

d˛ G��.˛x/

[
˛x�
�

p02 �m2c
� .=p

0 Cmc/���
2.p02 �m2c/2

] : (4.5)

O.˛s/ radiative corrections, caused by hard-gluon exchanges between the quark-antiquark
lines, Fig. 4.1 (right panel), are neglected. The correlation functions and their impli-
cations on the light-cone sum rules are studied in the next subsection.

q1

q2

b

p0

q

BBB

Figure 4.1.: Contributions of two-particle (left panel) and three-particle (middle panel) B-
meson DA’s to the correlation function. In the case of NB ! D.�/, q1 (q2) is the
c(d )-quark. Right panel: one of O.˛s/ diagrams.
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4.1.2. Light-Cone Sum Rule

As discussed above the correlation functions for NB ! D.�/ transitions satisfy condi-
tions for an operator-product expansion. Therefore light-cone sum rules can be con-
structed. Following the standard procedure [165]; the OPE-result for the correlation
function has to be matched to the hadronic representation via quark-hadron duality and
a Borel transformation has to be performed.
Using the hadronic dispersion relation the general correlation function (4.1) as well as
the modified one (4.3) can be related to the form factors in the channel of the charmed
meson, one gets

F .B/a� D
h0j Nd�acjD.�/.p0/ihD.�/.p0/j Nc
�.1 � 
5/bj NB.p0 C q/i

m2
D.�/
� p2

C excited and continuum states ; (4.6)

where the D.�/-meson pole are explicitly shown. The decay constants on the r.h.s of
(4.6) are given by〈

0
∣∣ Ndmci
5c∣∣D (p0)〉 D m2DfD ; 〈

0
∣∣ Nd
�c∣∣D� (p0; ")〉 D "�m�Df �D ; (4.7)

and the hadronic matrix elements for NB ! D.�/ are noted in Eqs. (3.67) and (3.68).
Now, in order to achieve a sum rule for each form factor or combination of form
factors, the correlation function has to be equated to the hadronic representation, where
from independent Lorentz structures the sum rules can be read off. In the correlation
function for the B ! D form factors the coefficients at p0� and q� are taken to obtain
the sum rules for the form factors f CBD and f CBD C f �BD, respectively. In the case
of B ! D� the kinematical structures �����q�p0� , g�� and p0�q� are taken for the
form factors V BD

�

, ABD
�

1 and ABD
�

2 , respectively. For the combined form factor
ABD

�

3 �ABD�0 , one multiplies the invariant amplitude with q�p0� and subtracts the sum
rule for ABD

�

2 , where the relation 2m�DA
BD�

3 .q2/ D .mBCmBD�/ABD�1 .q2/� .mB �
mBD�/A

BD�

2 .q2/ is taken into account.

A central rôle in the calculation of these kind of light-cone sum rules play theB-meson
distribution amplitudes. General aspects about distribution amplitudes are discussed in
Sec. 3.2.1. The two- and three-particle B-meson distribution amplitudes are presented
in App. A as well as sum rules for NB ! D.�/ form factors. It is beyond the scope
of this work to discuss all details of the light-cone distribution amplitudes, exhaustive
discussions about their properties and model-dependence can be found, e.g., in Refs.
[115, 116, 168, 176].
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4.1.3. Implications from Heavy-Quark Effective Theory

B-meson distribution amplitudes are usually defined in the framework of heavy-quark
effective theory. Comparing the NB ! D.�/ form factors, Eqs. (3.94)–(3.96), with the
ones given in Eqs. (3.67) and (3.68) one finds the following relations,

h˙.w/ D 1

2
p
r

[
.1˙ r/f CBD

(
q2
)C .1� r/f �BD (q2)] ; (4.8)

hV .w/ D 2
p
r�

1C r�V
BD�

(
q2
)
; (4.9)

hA1.w/ D
1C r�p
r�.1C w/

ABD
�

1

(
q2
)
; (4.10)

r�hA2.w/C hA3.w/ D
2
p
r�

1C r�A
BD�

2

(
q2
)
; (4.11)

r�hA2.w/ � hA3.w/ D
4r�
p
r�ŒA

BD�

3 .q2/ � ABD�0 .q2/

1C r2� � 2r�w
(4.12)

where r.�/ is defined as in Eq. (3.98). Note that the hi form factors represent linear
combinations of the initial form factors, and for their definitions no heavy-quark limit
is involved. The form factors, which are derived from the sum rules, have to obey the
heavy-quark symmetry relations in the heavy-quark limit, mc; mb.mB/ ! 1. For
this consistency check, some redefinitions have to be performed which are described
in Sec. 4.2.3. In the heavy-quark limit, the form factors hC.w/, hV .w/, hA1.w/, and
hA3.w/, reduce to the universal Isgur-Wise function, whereas the form factors h�.w/
and hA2.w/ vanish; the sum rule for the Isgur-Wise function at tree-level is given by

�.w/ D
ˇ0=w∫
0

d� exp
{ N� � �w

�

}[
1

2w
�B� .�/C

(
1C 1

2w

)
�BC.�/

]
: (4.13)

Note that there is a difference of O.1=mc/ corrections between the form factors hi.w/
obtained from sum rules with finite mc and mb and the ones in the heavy-quark limit.
Three-particle distributions are suppressed with at least one power of the heavy-quark
mass and give no contribution to (4.13). The sum rule (4.13) relates the Isgur-Wise
function to the B-meson distribution amplitudes only near the maximum recoil, in the
region, where the light-cone expansion of the initial sum rules are reliable.
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4.2. Numerical Analysis

Within this section the B-meson distribution amplitudes and the form factor sum rules
for exclusive semileptonic NB ! D.�/` N� transitions are analysed numerically follow-
ing [170]. The explicit expression for the DA’s and the LCSR are collected in App. A.
For the B-meson distribution amplitudes the numerical values for the input parameters
are listed in Table 4.1. They are the the same as the ones used in Ref. [169]. The decay
constant fB and the inverse moment �B , whose evolution is neglected, are taken from
two-point sum rules with O.˛s/ accuracy. Three-particle distribution amplitudes are
characterized by the parameter �2E D 3

2
�2B .

The masses of the mesons are same as in Ref. [43]. Note that for the charm-quark the
MS mass is used because, since it is highly virtual in the correlation function, the MS
mass scheme is in general a natural choice. For the decay constants of the charmed
mesons fD and fD� the intervals from two-point sum rules are used [178–182].

The Borel mass squared M 2 in light-cone sum rules for charmed mesons lies in the
range 3 � 6 GeV2 while the effective threshold is fixed at sD

.�/

0 D 6:0.8:0/ GeV2. In
this range for the Borel mass the light-cone sum rules are stable and the contributions
of the three-particle distribution amplitudes are numerically suppressed. Note that the
Borel mass M originates from the Borel transformation of the dispersion relation and
the threshold sD

.�/

0 from the quark-hadron duality approximation; for details, see. Refs.
[116, 167].

Predictions from light-cone sum rules can only be trusted near the maximum recoil
w.�/max .q

2 D 0/, where the light-cone operator-expansion is applicable, as explained
in Sec. 4.1.2. Furthermore, the upper limits !0.q2; sD

.�/

0 / in the sum rule integrals
are small, hence, the influence of the B-meson distribution amplitudes at large w -
especially from the “radiative tail” [183] which is not taken into account - on the sum
rules is weak. The behaviour of the sum rules is mainly affected by the inverse moment
�B .

Table 4.1.: Input parameters for the numerical analysis.

Parameter Ref. Parameter Ref.
mB D 5:279 GeV [43] fB D 180˙ 30 MeV [169]
mD D 1:869 GeV [43] fD D 200˙ 20 MeV
mD� D 2:01 GeV [43] fD� D 270˙ 30 MeV
Nmc. Nmc/ D 1:25˙ 20 MeV [43] �B.1 GeV/ D 460˙ 110 MeV [177]
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In the following subsections the exclusive semileptonic NB ! D` N� and NB ! D�` N�
decays are numerically analysed explicitly. The predictions are compared with the
latest experimental data.

4.2.1. Semileptonic NB ! D�` N� Decay

The exclusive semileptonic B ! D� decay is suitable for the calculation of the CKM
matrix element jVcbj, because at zero-recoil w D 1, the differential decay rate (3.106)
depends besides a kinematical factor only on the CKM matrix element jVcbj and the
form factor hA1.1/. In the whole semileptonic region, 1 < w < w�max, the differential
decay rate (3.100) can be written in the form

d� . NB ! D�` N�/
dw

D G�0 .w/.1 � r�/2g.w/ jVcbj2 jF .w/j2 ; (4.14)

where

jF .w/j2 � jhA1j
2

g.w/

∑
iD˙;0

jHi.w/j2 ; (4.15)

and g.w/ D 1 C 4w.1 � 2wr� C r2�/=Œ.1 C w/.1 � r�/2�. The helicity functions
Hi.w/, given by Eqs. (3.101), depend on the form factor ratios R1.w/ and R2.w/
defined by Eqs. (3.102) and (3.103), respectively. For phenomenological studies one
uses a parametrization suggested by Caprini, Lellouch and Neubert (CLN) [184] which
has the form of power expansions in the variable z D

p
wC1�

p
2

p
wC1C

p
2
,

hA1.w/DhA1.1/
[
1 � 8�2�z C

(
53�2� � 15

)
z2 � (231�2� � 91) z3] ; (4.16)

R1.w/ DR1.1/ � 0:12.w � 1/C 0:05.w � 1/2 ; (4.17)

R2.w/ DR2.1/C 0:11.w � 1/ � 0:06.w � 1/2 : (4.18)

The functions are fitted using data from BABAR [185], Belle [186], and the rescaled
ones by the Heavy Flavor Averaging Group (HFAG) [79]. For jVcbj the latest exclusive
value [43]

jVcbj D .38:7˙ 1:1/ � 10�3 ; (4.19)

is taken into account during the fit. In Table 4.2 the fit parameters and the results for
hA1.w/ at the kinematical point w D w�max are presented. For these fits the rescaled
values from HFAG for jVcbjF .1/ and the slope parameter �2� are used. Note that
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4. B-Decays and QCD Sum Rules

Table 4.2.: Parameters and results for the hA1.w/ fits at w D 1 and w D w�max.

HFAG [79]
Parameter BABAR (global) Belle Average
jVcbjF .1/ 35:7˙ 0:2˙ 1:2 34:3˙ 0:2˙ 1:0 36:04˙ 0:52
�2� 1:20˙ 0:02˙ 0:07 1:29˙ 0:04˙ 0:03 1:24˙ 0:04
total correlation 0.73 0.14 0.23
hA1.1/ 0:92˙ 0:04 0:89˙ 0:04 0:93˙ 0:03
hA1.w

�
max/ 0:54˙ 0:08 0:49˙ 0:05 0:53˙ 0:02

they are different from the ones published by BABAR [185] and Belle [186], because
the values from the experiments are rescaled to common R1 D 1:410 ˙ 0:049 and
R2 D 0:844˙ 0:027 by the HFAG.
The results for F .1/ D hA1.1/ are consistent with the most recent result obtained
in unquenched lattice QCD, hA1.1/ D 0:921 ˙ 0:013 ˙ 0:020 [187]. Statistical and
systematical errors are added in quadrature and the total correlations are taken into
account. Note that for the fits only the global BABAR, Belle, and the HFAG average
for jVcbjF .1/ and �2� are applied. Using the sum rule for ABD

�

1 .q2 D 0/ and relation
(4.10) one gets[

hA1.w
�
max/
]

LCSR D 0:65˙ 0:12˙ Œ0:11�fB ˙ Œ0:07�fD� ; (4.20)

where the errors are estimated by varying mc , �B , and the Borel parameter M . The
sum rule prediction (4.20) is somewhat larger than the extracted form factors from
experimental data, but still consistent within uncertainties, depicted in Fig. 4.2 (a).
For the slope parameter �2� one obtains comparing the sum rule predictions at w D 1:3
and w�max with the CLN-parametrization[

�2�
]

LCSR D 0:81˙ 0:22 : (4.21)

The form factor ratios R1.w/ and R2.w/ from the combination of sum rules are given
by[

R1.w
�
max/
]

LCSR D 1:32˙ 0:04 ;
[
R2.w

�
max/
]

LCSR D 0:91˙ 0:17 : (4.22)

For the fits to the experimental data the reported ratios from BABAR [188] and Belle
[189] as well as the HFAG average are used. The fit results are collected in Table

66



4.2. Numerical Analysis

Table 4.3.: Parameters and fit results for R1.w/ and R2.w/ at the kinematical points w D 1

and w D w�max.

Parameter BABAR [188] Belle [189] HFAG [79]
R1.1/ 1:429˙ 0:061˙ 0:044 1:401˙ 0:034˙ 0:018 1:410˙ 0:049
R2.1/ 0:827˙ 0:038˙ 0:022 0:864˙ 0:024˙ 0:008 0:844˙ 0:027
R1.w

�
max/ 1:38˙ 0:22 1:35˙ 0:13 1:36˙ 0:05

R2.w
�
max/ 0:87˙ 0:15 0:90˙ 0:09 0:88˙ 0:03

4.3, and compared with the ligh-cone sum rule prediction shown in Fig. 4.2 (b). Note
that possible correlations are neglected for the fits. The sum rule ratios are in good
agreement with the experimental data.

4.2.2. Semileptonic NB ! D` N� Decay

The decay rate (3.97) for the semileptonic NB ! D`�` can be written in the form

d� . NB ! D` N�/
dw

D G0.w/w � 1
w C 1.1C r/

2 jVcbj2 jG .w/j2 ; (4.23)

with the combination of the form factors hC.w/ and h�.w/ within a single function

G .w/ D hC.w/ � 1 � r
1C r h�.w/ : (4.24)

(a) hA1.w
�
max/ fit results (b) R1.w�max/ and R2.w�max/ fit results

Figure 4.2.: Comparison of the NB ! D� fit results at the kinematical point w D w�max using
the CLN parametrizations (4.16)–(4.18).
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4. B-Decays and QCD Sum Rules

Table 4.4.: Parameters and fit results for G .1/ and G .wmax/ as explained in the text.

HFAG [79]
Parameter BABAR (tagged) BABAR (global) Average
jVcbjG .1/ 42:3˙ 1:90˙ 1:0 43:1˙ 0:8˙ 2:1 42:3˙ 1:90˙ 1:0
�2 1:20˙ 0:09˙ 0:04 1:20˙ 0:04˙ 0:06 1:18˙ 0:04˙ 0:04
total correlation 0.7 0.63 0.88
G .1/ 1:09˙ 0:06 1:11˙ 0:07 1:09˙ 0:05
G .wmax/ 0:59˙ 0:05 0:60˙ 0:05 0:59˙ 0:04

For this function the CLN-parametrization [184] is given by

G .w/ D G .1/
[
1 � 8�2z C (51�2 � 10) z2 � (252�2 � 84) z3] : (4.25)

The fit results for the kinematical points w D 1, w D wmax, and the latest value for
exclusive jVcbj (4.19), based on the BABAR data and the HFAG average for jVcbjG .1/
and the slope parameter �2 are presented in Table 4.4. Using the sum rules for f CBD.0/
and Œf CBD.0/C f �BD.0/�, relation (4.8) and the CLN-parametrization (4.25) one gets

ŒG .wmax/�LCSR D 0:61˙ 0:11˙ Œ0:10�fB ˙ Œ0:07�fD ; (4.26)[
�2
]

LCSR D 1:15˙ 0:15 ; (4.27)

which are in reasonable agreement with the experimental fits, shown in Fig. 4.3. Here,
instead of the reported data from BABAR[190, 191] the rescaled ones from HFAG are
used and again possible correlations are neglected.

Figure 4.3: Comparison of G .wmax/

fit results using the CLN
parametrization (4.25).
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4.2. Numerical Analysis

4.2.3. Heavy-Quark Symmetry Limit

In the heavy-quark symmetry limit the form factors hC.w/, hV .w/, and hA1.w/, and
hA3.w/ become a single function �.w/, the Isgur-Wise function, whereas the form
factors h�.w/ and hA2.w/ vanish. For the Isgur-Wise function the limiting sum rule
is given by Eq. (4.13). In order to compare the sum rule predictions with the heavy-
quark symmetry relations one has to rescale the masses and decay constants of heavy
mesons,

mB D mQ C N� ; mD.�/ D �mQ C N� ; (4.28)

fB D
Ofp
mQ

; fD.�/ D
Ofp
�mQ

; (4.29)

furthermore, the threshold and Borel parameter have to be redefined.

sD
.�/

0 D .�mQ/2 C 2 �mQ ˇ0 ; M 2 D 2 �mQ ; (4.30)

with the ratio � D mc=mb, and mb ! mQ. Using these rescalings and redefini-
tions, and the same input parameters as for the finite-mass sum rules, one gets for
the Isgur-Wise function at maximum recoil, �.wmax/ D 0:72, which is of the same
order as the three-point sum rule predictions [92]. With finite charm-quark mass nei-
ther hC.wmax/ D 0:56, nor hA1.w

�
max/ confirmed the heavy-quark symmetry relations

at maximum recoil. However the evolution of the form factor hA1.w/ from its cen-
tral value (4.20) at finite mc to the heavy quark limit depicted in Fig. 4.4 shows
that light-cone sum rule for hA1.w

�
max/ tends to �.w�max/ D 0:73 for mc D �mQ at

mQ ! 1. Note that R1;2.wmax/ ¤ 1 determines the symmetry violation for the
remaining B ! D� form factors.

Figure 4.4: Form factor hA1.w
�
max/ depen-

dence on the charm-quark mass
mc (solid). Heavy-quark limit
(dashed), at central values of the
input parameters, at maximum re-
coil w�max [170].

69



4. B-Decays and QCD Sum Rules

4.3. Conclusions

The new light-cone sum rules implementing B-meson distribution amplitudes, devel-
oped by Khodjamirian et al. [169] are used at finite charm-quark mass to obtain sum
rules for the form factors of exclusive semileptonic NB ! D.�/` N� transitions. However
the predictions can be trusted only at large recoils w � wmax because light-cone sum
rules are only valid in this kinematic regime. Obtaining the sum rules at the finite c-
quark mass allows to investigate the deviations from heavy-quark effective theory. The
quark-hadron duality in the charmed meson channel used here is better understood and
presumably introduces smaller systematic uncertainty than the duality ansatz in dou-
ble dispersion relations used for three-point sum rules. Moreover, the achieved sum
rules and the ones in Ref. [169] can be combined in order to calculate the ratios of
B ! �; � and B ! D.�/ form factors, employing the same approach and input to
extract the ratio jVubj=jVcbj.
The accuracy of the investigation could be improved by a better knowledge of the B-
meson distribution amplitudes, decay constants, and calculating gluon radiative cor-
rections to the correlation function, including the renormalization of the B-meson dis-
tribution amplitudes.

QCD light-cone sum rule predictions are restricted to the kinematical region of large-
recoil, together with limiting factors discussed above, they are not suitable for search of
new physics effects in exclusive NB ! D.�/ decays. The form factors presented so far
have been calculated using a standard-model-like .V �A/ left-handed hadronic current
structure. In the next chapter an investigation of NB ! D.�/ transitions are discussed
by taking a helicity violating right-handed hadronic current into account. However, in
this exploration the kinematical region is restricted near zero-recoil w ! 1.
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New Physics in B ! D.�/` N�` Decays

Within the previous chapters exclusive NB ! D.�/ transitions are studied standard-
model-like. The hadronic current J

�
had is treated as a combination of vector (V� D 
�)

and axial vector (A� D 
�
5) currents, reflecting the .V �A/ charged current structure
in weak interaction physics. Parity violation is implemented in the standard model by
associating left- and right-handed leptons and quarks (2.1) with different weak quan-
tum numbers, but there is a lack of knowledge about the underlying symmetry break-
ing mechanism in weak interactions with respect to parity transformations. However,
measurements in the leptonic sector confirm parity violation, e.g. by the measure-
ment of the Michel parameters of muon decay. Limits on right-handed admixture
in weak b ! c transitions are recently tested by analysing BABAR data: exclusive
NB ! D.�/` N� decays are much more sensitive on helicity violating admixtures than

inclusive decays [192]. However, in the hadronic sector uncertainties present in the
hadronic matrix elements of the quark currents restrict the extraction of different he-
licity structures in the charged current.

As discussed in Sec. 2.1.1, the Dirac 
 -matrices are assigned with the Clifford alge-
bra Cl.1; 3/ of the Minkowski space-time. Combinations of the 16 dimensional basis
elements of these algebra, represented by the 
 -matrices, 1, 
5, ��� , and ���
5 can
physically interpreted as scalar .S/, pseudoscalar .P /, tensor .T / and pseudotensor
.PT / current, respectively. From these currents additional hadronic matrix elements
can be constructed. In Ref. [193] the behaviour of these form factors in the heavy-
quark symmetry limit is studied.

Here the NB ! D.�/ decay amplitudes are investigated by implementing right-handed
admixture in the hadronic current analogously as presented in [194]. The used NB !
D.�/` N� kinematic variables are defined in Chap. 3.

71



5. New Physics in B ! D.�/` N�` Decays

The outline of this chapter is as follows: In the first part of this chapter the exclusive
semileptonic NB ! D.�/` N� hadronic form factors and decay rates including helicity
violating parameters are discussed. Furthermore, the QCD short-distance radiative
corrections for the additional Dirac structures in the hadronic currents are numerically
analysed. Finally, bounds on right-handed admixtures are presented by using recent
data for NB ! D.�/ decays from the B-factories published by the Heavy Flavor Aver-
aging Group (HFAG).

5.1. Form Factors and Decay Rates

For an analysis of the helicity violating admixture in exclusive semileptonic NB !
D.�/ transitions the hadronic current is modified and lead to differential decay rates
containing helicity violating coefficients, reflecting the right-handed admixture.
First, the form factors parametrizing the scalar, pseudoscalar, tensor and pseudotensor
current hadronic matrix elements - usually suppressed in the standard model - are
discussed by applying heavy-quark effective theory. With these additional form factors
and the right-handed admixture in the hadronic current the NB ! D.�/` N� decay rates
are calculated.

5.1.1. Scalar, Pseudo-Scalar, Tensor and Pseudo-Tensor Form

Factors

For the vector and the axial vector current the form factors for b ! c transition matrix
elements are given by Eqs. (3.94)–(3.94). The decomposition of the matrix elements
(3.58), where � D 1; 
5; ���; ���
5 are the scalar, pseudoscalar, tensor and pseu-
dotensor current, respectively, yield〈

D .p0/ j Ncbj NB.p/〉p
mBmD

D hS.w/ ; (5.1)〈
D .p0/

∣∣ Nc���b∣∣ NB.p/〉p
mBmD

D i.v0�v� � v0�v�/ hT .w/ ; (5.2)〈
D� .p0; "/ j Nc
5bj NB.p/

〉
p
mBmD�

D ."� � v/ hP .w/ ; (5.3)〈
D� .p0; "/

∣∣ Nc���b∣∣ NB.p/〉p
mBmD�

D ����˛ˇ
[
"�˛
(
v C v0)ˇ hTC.w/

C "�ˇ (v0 � v)˛ hT�.w/C v0˛vˇ ."� � v/ hT 0.w/� ; (5.4)
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〈
D� .p0; "/

∣∣ Nc���
5b∣∣ NB.p/〉p
mBmD�

D (v�"�� � v�"��) hPT1.w/
C (v0�"�� � v0�"0�) hPT1.w/C ." � v/ (v�v0� � v�v0�) hPT3.w/ : (5.5)

Associating the bottom and charm flavour with an SU.4/, the heavy-quark spin-flavour
symmetry is SU.4/˝ SU.4/. In this symmetry limit the form factors become a single
scalar function,

hS.w/

1C w D hT .w/ D hP .w/ D hTC.w/ D hPT1.w/ D hPT2.w/ D �.w/ ; (5.6)

where the function �.w/ is normalized at zero-recoil, �.1/ D 1. The form factors
hT�.w/ and hT 0.w/ vanish in this symmetry limit. Applying the Ademollo-Gatto the-
orem1 [195] one finds that the form factors (5.6) get second-order power corrections

hS.1/ D 2
[
1CO

(
k2=m2Q

)]
; hP .1/ D 1CO

(p
k2=mQ

)
;

hT .1/ D 1CO
(p

k2=mQ

)
; hTC.1/ D 1CO

(
k2=m2Q

)
;

whereas the power corrections of the form factors hT�.1/ and hT 0.1/ are of orderp
k2=mQ. Here, k� is the scale of soft-gluon momenta, not integrated out in the

effective Lagrangian [193].
With these set of hadronic form factors the NB ! D.�/ decay rates are calculated, done
in the next subsection involving a helicity violating right-handed hadronic current.

5.1.2. New-Physics Decay Rates

Within the standard model the semileptonic NB ! D.�/ decay rates in Sec. 3.3.4
are deduced from the .V � A/ hadronic current structure. Effects from energy scales
higher than the standard model one can be included since the standard model itself is
considered as an effective field theory. If these effects act on a high scale �NP in this
framework, any effect from this scale will be suppressed by inverse powers of �NP.
Expanding the Lagrangian at the weak scale in inverse powers of �NP yields

ˇ D ˇ0 C 1

�NP
ˇ1 C 1

�2NP
ˇ2 C : : : ; (5.7)

1The Ademollo-Gatto theorem states in its original form that matrix elements of a charge operator can
deviate from their symmetry values only to second order in symmetry breaking. Luke’s theorem
[161] used in Sec. 3.3.4 is a renormalization-free reminiscent of it.
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5. New Physics in B ! D.�/` N�` Decays

where in leading order ˇ0 is the 4-dimensional standard model Lagrangian ˇSM. The
higher order (dimensional) Lagrangians have to be invariant under SU(2)L ˝ U(1)Y
symmetry. For quarks there is no 5-dimensional SU(2)L ˝ U(1)Y invariant operator,
therefore, in the expansion (5.7) the next-to-leading order involve only 6- or higher-
dimensional operators. Hence, the number of operators is limited and can be found,
e.g. in Ref. [196]. Including only operators up to dimension 6, and integrating out the
W -boson, the generalized hadronic b ! c current is given by [197]

Jhad;� DcL Nc 
�PL b C cR Nc 
�PR b C gL Nc i
$

D�

mb
PL b C gR Nc i

$

D�

mb
PR b

C dL
i@�

mb

( Nc i���PL b)C dR
i@�

mb

( Nc i���PR b) ; (5.8)

where PR (PL) denotes the projector of positive (negative) chiral duality (2.18), D� is
the QCD covariant derivative, the curly coefficients denote coupling constants for the

different Dirac structures, and the left-right derivative is defined as N 
$

@ D N .@ /�
.@ N / .

Gauge invariance for the scalar operator, entering as a derivative in the current, is

protected by the Nci
$

D�b operator structure. For the tensor contribution Nci���b the
only possible gauge invariant operator is i@�. Nci���b/ [157].

Considering the b quark with four-velocity v, as well as the c quark with four-velocity
v0 as heavy quarks, the associated heavy-quark fields are hbv and hcv0 , respectively. In
the heavy-quark limit the current (5.8) becomes

J
HQ
had;� DcL Nhcv0
�PLhbv C cR Nhcv0
�PRhbv C gLtC� Nhcv0PLhbv C gRtC� Nhcv0PRhbv

C dLt
�
�

( Nhcv0i���PLhbv)C dLt
�
�

( Nhcv0i���hbv) ; (5.9)

where t˙� D .mbv� ˙ mcv0�/. Using the leptonic tensor L�� D 2.p
�

` p
�
N� C p�` p�N� �

g��p` � p N� � i�˛�ˇ�p`˛p N�ˇ /, where the momenta of the lepton ` and its antineutrino
are p` and p N� , respectively, the decay rate could be derived in the standard way.

For NB ! D` N� transition the function jG .w/j2, Eq. (4.24), in the semileptonic decay
rate (4.23) with helicity violating contributions yields

∣∣G NP.w/
∣∣2 D [cC � mBdC (r2 � 2rw C 1) � 2mBrgC.w C 1/

1C r

]2 ∣∣∣ O�.w/∣∣∣2 ;
(5.10)
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where the notation c˙ D .cL ˙ cR/, d˙ D .dL ˙ dR/ and g˙ D .gL ˙ gR/ is used.
The helicity functions (3.101) for NB ! D�` N� decay with right-handed admixture are

jH?.w/j2 D
∣∣HNP
C .w/

∣∣2 C ∣∣HNP
� .w/

∣∣2
D 21 � 2wr� C r

2
�

.1 � r�/2
{
Œc� C d�mB.r� � 1/�2

C w � 1
w C 1ŒcC C dCmB.r� C 1/�

2

}
;∣∣Hk.w/∣∣2 D ∣∣HNP

0

∣∣2
D
[
c� � 2g�mBr�.w � 1/C d�mB.1 � 2r�w C r

2
�/

1 � r�

]2
:

(5.11)

In the enhanced current (5.8) the term proportional to cL contains the standard model
contribution. Setting c˙ � 1 in the Eqs. (5.10) and (5.11) one finds

∣∣G NP.w/
∣∣2 D ∣∣F NP.w/

∣∣2 D ∣∣∣ O�.w/∣∣∣2 ; (5.12)

which is consistent with the standard model prediction in the heavy-quark limit [198].
In this limit the hadronic factors coincides with the Isgur-Wise function �.w/. The
normalization of the function j O�.w/j is determined by Luke’s theorem up to second-
order power corrections, O�.1/ D 1CO.1=m2/.

The standard model is contained in the coefficient cL D 1 C O.�2VEV=�
2
NP/, where

�2VEV is the vacuum expectation value from spontaneous symmetry breaking. All other
coefficients are associated with new physics effects. Within an effective field approach
these coefficients are of second-order in �2VEV=�

2
NP. In particular, cR D O.�2VEV=�

2
NP/,

and all helicity changing contributions are expected additively suppressed by a small
Yukawa coupling [197, 199]. Neglecting d˙ and g˙ the authors of Ref. [192] claimed
for the ratio cR=cL for exclusive semileptonic b ! c transition 0:05C0:33�0:50 and for the
inclusive decay 0:01˙0:03. Hence, this could not explain the tension between jVcbjexcl

and jVcbjincl [43], however, new physics contributions are not excluded.

Calculating the decay rates with the hadronic form factors Eqs. (5.1)–(5.5), results
presented in App. B, the hadronic form factors are associated with the coupling con-
stants, c˙, d˙, and g˙, where the coefficients d˙ and g˙ assumed to be small, which
is used in Sec. 5.3 for an estimate on the ratio cC=c�.
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5. New Physics in B ! D.�/` N�` Decays

5.2. New Physics Contributions in Heavy-Quark

Symmetry

Allowing new physics contributions in the exclusive semileptonic NB ! D.�/` N� decay
rates additional coefficients are present which are discussed in the previous section.
The measured decay rates contain standard model as well as new physics contribu-
tions. From the experimental data the hadronic form factors jVcbjF .1/ and jVcbjG .1/
for B ! D and B ! D� transitions, respectively, are extracted by using the Caprini,
Lellouche and Neubert parametrizations [184] for them; these parametrizations are
discussed in Sec. 4.2. The parametrizations contain a slope parameter determining
the behaviour of the Isgur-Wise function near zero-recoil. New physics contributions
originated from the heavy-quark current (5.9) appear in this slope parameter. This is
subject of discussion in the first part of this section. Finally, the radiative corrections
including the Dirac structure for scalar, pseudoscalar, tensor, and pseudotensor appear-
ing in the enhanced hadronic current (5.8) are presented, and numerically analysed.

5.2.1. Slope Parameter

Experimentally measured NB ! D.�/` N� decay rates contain standard model as well as
possible new physics contributions. Following Ref. [200] the standard model contri-
butions are extracted from the decay rates. For simplification one defines, M.w/ D
jVcbj2jG .w/j2 and M �.w/ D jVcbj2jF .w/j2 for B ! D and B ! D� decays,
respectively. In the heavy quark limit, M.w/ and M �.w/ become simultaneously
jVcbj2j�.w/j2. At zero-recoil the Isgur-Wise function is normalized �.1/ D 1 and
the CKM-matrix element jVcbj can be extracted model independently. The behaviour
of the Isgur-Wise function close to zero-recoil is determined by the slope parameter
�2 > 0, defined by �.1/0 D ��2, where the expansion around zero-recoil is given by

�.w/ D �.1/ [1 � �2.w � 1/CO
(
.w � 1/2)] : (5.13)

In the standard model one finds for the slope

�2 D 1

2M.1/

@M.w/

@w

∣∣∣∣
wD1

D 1

2M �?.1/

@M �?.w/

@w

∣∣∣∣
wD1

D 1

2M �
k
.1/

@M �
k
.w/

@w

∣∣∣∣
wD1

D 1

2M �.1/

@M �.w/

@w

∣∣∣∣
wD1

;

(5.14)

where M �?.w/ and M �
k
.w/ refer to the the transverse (?) and longitudinal (k) mode

of the NB ! D�` N� decay, respectively. Since right-handed admixture is allowed, these

76



5.2. New Physics Contributions in Heavy-Quark Symmetry

relations do not hold. At zero-recoil one obtained from Eq. (5.10) and the helicity
functions Eqs. (5.11),

M.1/ D jVcbj2 j�.1/j2
[
c� � .1 � r/

2mBdC � 4mBrgC
1C r

]
; (5.15)

M �.1/ D jVcbj2 j�.1/j2 Œc� � .1 � r�/mBd��2 D 3

2
M �?.1/ D 3M �k ; (5.16)

and the slopes become in the symmetry limit,

�2HQL C �2NP D
�1

2jG NP
HQL.1/j2

@jG NP
HQL.w/j2
@w

∣∣∣∣
wD1

; .B ! D/ ;

�2HQL C �2�NP D
�1

2jF NP
HQL.1/j

@jF NP
HQL.w/j2
@w

∣∣∣∣
wD1

; .B ! D�/ ;

(5.17)

where the new physics containing slopes are given by

�2NP D
2rmB.dC C gC/

mBdC.r � 1/2 � .r C 1/cC � 4rmBgC ; (5.18)

�2�NP D
1

6

{
1 �

(
cC CmB.r� C 1/dC
c� CmB.r� � 1/d�

)2
C 4mBr�.d� � g�/
.r� � 1/Œc� CmB.r� � 1/mB �

}
: (5.19)

For the transverse and longitudinal decay modes the corresponding slopes are col-
lected in App. B. The presented formulae provide analysis methods for new physics
contributions, one of them is discussed in Sec. 5.3.

5.2.2. Radiative Corrections

Luke’s theorem protect some of the form factors at zero-recoil, however, from the
kinematic suppressed form factors at zero-recoil there are corrections of order 1=mQ
and radiative corrections which are neglected in the previous discussions. For the
.V �A/ standard-model-like current-structure the radiative corrections are well studied
and have become textbook material, see, e.g., Refs. [34, 85, 133, 201].
Radiative corrections for the scalar, pseudoscalar, tensor, and pseudotensor currents
are calculated and exhaustively discussed in Refs. [157, 200]. These corrections can
be calculated in QCD, using the dimensional regularization scheme [202]. For the
subtraction of divergences the modified minimal subtraction scheme MS [203] is used.
In this scheme the space-time is analytically continued to dimensionD D 4�2�, with
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5. New Physics in B ! D.�/` N�` Decays

infinitesimal �. Divergences are eliminated by renormalization of fields and parameters
in the QCD-Lagrangian (2.42), generally

Ga0� D
√
Z3G

a
� ; q0 D

√
Zqq ;

gs0 D Zggs�� ; mq0 D Zmmq ;
(5.20)

where the subscript “0” refers to unrenormalized (bare) quantities, Zi are the renor-
malization constants, Ga� is the gluon field, and � is an arbitrary mass scale, making
the QCD coupling constant gs dimensionless inD D 4� 2� dimensions. Inserting the
renormalized fields and parameters in the QCD-Lagrangian (2.42) the quark kinetic
term becomes ˇ D Nq.i =@�mq/qC .Zq � 1/ Nqi =@q� .ZqZm� 1/mq Nqq, q 2 fb; cg, for
b ! c transitions. The bare quantities are �-independent, hence, the renormalization
group equations are given by [204],

dgs.�/

d ln�
D ��g � g 1

Zg

dZg

d ln�
� ��gs C ˇ.gs/ ;

dmq.�/

d ln�
D � 1

Zm

dZm

d ln�
mq.�/ ;

(5.21)

where the first equation defines the ˇ function. Introducing the shorthand ˛s D
g2s =.4�/ one finds d˛s.�/=d ln� D �2ˇ0˛2s =.4�/ � 2ˇ1˛3s =.4�/2 with the coef-
ficients ˇ0 D .11NC � 2Nf /=3, ˇ1 D .34=3/N 2

C � .10=3/NCNf � 2CFNf , and
CF D .N 2

C � 1/=.2NC /, where NC and Nf are the numbers of colours and flavours,
respectively. At one-loop order the the quark self-energy part ˙ij .q/ is depicted in
Fig. 5.1. Adopting the on-shell renormalization condition for the determination of the
quark-field Zq,

@˙ij .q/

@=q

∣∣∣∣
=qDmq

D 0 ; (5.22)

yielding two conditions for the pole one finds for the renormalization constants

Zq D 1 � CF ˛s
4�

1

�
; Zm D 1 � 3CF ˛s

4�

1

�
; (5.23)

D C

Figure 5.1.: Contributions to the quark self-energy part in QCD at one-loop order. The last
term on the right-hand side represents the one-loop counter term.
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�

� �

pb pc

(a) One-loop diagrams for the renormalization of the different currents.

(b) Additional diagrams for the scalar and pseudoscalar vertex cor-
rection. Left-panel (right-panel): The gluon is absorbed form the
bottom (charm)-quark.

Figure 5.2.: Renormalization diagrams at one-loop order. Incoming bottom-quark with mo-
mentum pb D mbv and outgoing charm-quark with momentum pc D mcv have
the same velocity v.

where � is defined in the MS scheme. The correction of the wave function is defined
by Eq. (5.22). The calculation of the vertex corrections shown in Fig. 5.2 is straight-
forward. Since the current (5.8) is used, scalar, pseudoscalar, vector, axial vector, and
tensor operators, listed in Table 5.1, contribute to the vertex correction. In the case of
scalar and pseudoscalar currents at order ˛s a quark-quark-gluon-boson vertex from
the covariant derivative being of order gs appears, and hence this vertex is neglected at
tree-level. However, rendering the scalar and pseudoscalar one-loop corrections gauge
invariant the vertex is calculated up to order ˛s. Note that the vertex can be read off
from the Lagrangian gL=Rmb NcgsGa�T aPL=Rb and is given by gL=Rmbg��T aPL=R,
where the index � is the couplings to the W -boson in the leptonic current and the

Table 5.1.: Contribution to the vertex correction from the different operators.

Operator Vertex correction i�

QS D p
�

b
C p

�
c .mb Cmc/


� C
˛s
4�

CF .mbCmc/

�

2
(
m2
b
�m2c

) [
�3.m2

b
�m2c/
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�
� 3 log m

2
c
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b

mcmb

C

(
6 log

m2
b

�2
� 3 log m

2
c

�2
� 13

)
m2
b
�

(
6 log m

2
c

�2
� 3 log
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�2
� 13

)
m2c

]
QV D 
� 
� C ˛s

4�
CF 


�
[
�6� 3
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mb�mc

log mc
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QA D 
�
5 
�
5 C ˛s

4�
CF 


�
5
[
�8� 3

mbCmc
mb�mc

log mc
mb

]
QP D 
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˛s
4�

CF 

�
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[
3.mb�mc/

�
C

(
�3 log
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2
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�2
� 7

)
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]
QT D .pb� � pc�/.�i�

��/ 0
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5. New Physics in B ! D.�/` N�` Decays

index � is associated with the outgoing gluon.
The explicit calculations of the Feynman diagrams Fig. 5.2 at zero-recoil can be found
in Ref. [157] and should not be repeated here. Note that for the calculation the naïve
dimensional regularization scheme with anticommuting 
5 [205] is used. The vertex
corrections i� for the different operators are listed in Tab. 5.1. In the heavy-quark
limit at zero-recoil, the corrections �� to the form factors are computed from the finite
parts of the vertex corrections i� . For � 2 fS;P; V;A; T g, one finds for the short-
distance radiative corrections

�S D 1C ˛s

8�

CF

m2b �m2c

[
�3 log

m2c
m2b
mcmb C

(
6 log

m2b
�2
� 3 log

m2c
�2
� 13

)
m2b

�
(
�3 log

m2b
�2
C 6 log

m2c
�2
� 13

)
m2c

]
; (5.24)

�P D ˛s

4�

CF

2.mb Cmc/
[(
�3 log

m2b
�2
C 7
)
mb C

(
3 log

m2c
�2
� 7
)
mc

]
; (5.25)

�V D 1C CF ˛s
4�

[
�6 � 3mb Cmc

mb �mc log
mc

mb

]
; (5.26)

�A D 1C CF ˛s
4�

[
�8 � 3mb Cmc

mb �mc log
mc

mb

]
; (5.27)

�T D 0 : (5.28)

The vector (5.26) and axial-vector (5.27) corrections are in agreement with radiative
corrections calculated in the heavy-quark limit, e.g. presented in Ref. [133].
For a numerical analysis one used the quark masses mb D 4:8 GeV and mc D
1:44 GeV, and for the coefficient CF D 4

3
. The coupling constant in the MS renor-

malization scheme is taken at the renormalization scale at the geometric mean mass
� D pmbmc . Adopting ˛s.

p
mbmc/ D 0:24 [206], one finds for the vector and axial

vector short-distance radiative corrections at one-loop order

�V � 1:02 ; �A � 0:967 : (5.29)

The latest results from lattice QCD [163, 164] yield

G .1/ D 1:074˙ 0:018˙ 0:016 ; F .1/ D 0:9077˙ 0:0051˙ 0:0158 ; (5.30)

where for F .1/ the systematic errors are added in quadrature. Up-to two-loop order
the QCD corrections are given by �V D 1:022˙0:004 and �A D 0:960˙0:007 [207].
The uncertainty for �A at zero-recoil is dominated by the error in the 1=m2Q corrections
[92, 207, 208].
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The coefficient functions for scalar, pseudoscalar and tensor currents are analogously
defined as the ones for vector and axial-vector currents. In order to get dimensonless
factors �S and �T , the mb C mc and mb � mc structures are excluded, respectively.
Since the anomalous dimension does not vanish for scalar and pseudoscalar cases, one
used � D mb.mc/ and ˛s.mb.mc// D 0:22.0:30/ as an indicator for the error. From
the Eqs. (5.24) and (5.25) one gets �S � 1:03C0:06�0:04 and �P � 0:002C0:023�0:030 . The sign of
the corrections as well as the handedness of the scalar current can not be judged from
this analysis [200].

New physics contributions are discussed in this section originated from the right-
handed current structures (5.8). These contributions appear in the hadronic form fac-
tors describing the exclusive semileptonic NB ! D.�/` N� transitions. In the heavy-quark
limit these form factors become a solely function, the Isgur-Wise function, being de-
termined near zero-recoil by the slope parameter as discussed above. The form factors
G .w/ and F .w/ as well as the slopes are affected by new physics parameters. The
achieved formulae (5.10) and (5.11) for the form factors and the slopes (5.17) can be
used for analysing these new physics effects. Note that (5.17) present the contribu-
tions to the form factors separated into transversal and longitudinal NB ! D�` N� decay
modes. For those form factors which are not vanish at zero-recoil, due to Luke’s the-
orem, the leading corrections are of order 1=m2Q, while for the vanishing form factors
the corrections are in general linear in 1=mq, q 2 fb; cg. Beside these corrections
there are QCD short-distance radiative corrections. For the new Dirac structures ap-
pearing in the b ! c current (5.8) these corrections are calculated at zero-recoil by
using relations from heavy-quark effective theory [157, 200].

Information about the helicity violating right-handed admixtures are contained in the
functions G .w/ and F .w/.

The hi.w/ form factors seem to be more suitable for such an investigation, hence, in
the next section bounds on the right-handed admixtures are investigated by using the
these form factors.

5.3. Analysis of Right-handed Admixtures

The B-factories have collected high precision data for exclusive semileptonic NB !
D.�/` N� decays since a couple of years. The values for jVcbjF .1/ and jVcbjG .1/, and
the corresponding slope parameters at zero-recoil reported by them are rescaled on
common values for R1.1/ and R2.1/ as explained in Sec. 4.2 and listed by the HFAG
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5. New Physics in B ! D.�/` N�` Decays

[79]. The latest experimental results are depicted in Fig. 5.3. Using the hadronic cur-
rent (5.8) with right-handed current structures new physics contributions appear in the
form factors G .w/ and F .w/ for exclusive semileptonic NB ! D` N� and NB ! D�` N�
transitions, respectively. The form factors including such contributions are presented
in App. B. In the following bounds on right-handed admixture are extracted by re-
stricting on vector and axial-vector currents, and assuming the Caprini, Lellouch and
Neubert parametrization for the Isgur-Wise function.

Expanding G .w/ and F .w/ around the kinematic point w D 1 and comparing the
result with the parametrization of the Isgur-Wise function (5.13) one finds for the slope

�2 D �1
2j O�.1/j2

@j O�.w/j2
@w

∣∣∣∣
wD1

; (5.31)

where for the both form factors the common notation O�.w/ is used. The slope for
B ! D transition at the kinematical point w D 1 is given by

�2 D �h
0
C.1/ � 1�r

1Cr
h0�.1/

hC.1/ � 1�r
1Cr

h�.1/

HQL�! ��
0.1/

�.1/
; (5.32)

since the derivative h0�.1/ vanish in the symmetry limit. The slope �2 is independent
from left and right coefficients; hence, one sets �2 � �2SM. For B ! D� transitions the

2ρ
0 1 2

]
-3

| [
10

cb
 |V×

G
(1

) 

20

30

40

50

HFAG
End of 2009

ALEPHCLEO

BELLE
BABAR global fit

BABAR tagged
AVERAGE

 = 12χ ∆

/dof = 1.3/ 82χ

2ρ
0 0.5 1 1.5 2

]
-3

| [
10

cb
 |V×

F(
1)

 

30

35

40

45

HFAG
End of 2009

ALEPH

CLEO

OPAL
(part. reco.)

OPAL
(excl.)

DELPHI
(part. reco.)

BELLE

DELPHI (excl.)

BABAR (excl.)
BABAR (D*0)
BABAR (Global Fit)

AVERAGE

 = 12χ ∆

/dof = 38.7/23 (CL =   2 %)2χ

Figure 5.3.: Latest results for jVcbjG .1/ and jVcbjF .1/ from exclusive semileptonicB ! D

and B ! D� decays published by the HFAG.
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slope can be calculated by using Eqs. (B.4) and (B.5), and the standard model slope
can be separated from the new physics one. Therefore, the ratio cC=c� is given by(

cC

c�

)2
D 1 � 6�

2
� � �2
R21.1/

; (5.33)

which measures the strength of the right-handed admixture. Using the latest HFAG
averages for �2 and �2� one achieved as an estimate for the right-handed admixture
cC=c� D 0:90˙0:09, where correlations between the errors are not taken into account
and R1.1/ D 1:41 ˙ 0:049, which is used from HFAG for rescaling, as explained in
Sec. 4.2.
For zero-recoil the B ! D transition is dominated by the vector current, and the
B ! D� transition by the axial-vector current. In this limit one finds from Eqs. (B.2)
and (B.6), M.1/ D c2CjVcbj2jG .1/j2 and M �.1/ D c2�jF .1/j2, respectively.
Another constraint can directly derived from the experimental data. Assuming that the
experimental results, jVcbjG .1/ D .42:3˙ 1:48/ � 10�3 and jVcbjF .1/ D .36:04˙
0:52/ � 10�3 contain right-handed admixtures one finds for the ratio
cC

c�
D 0:99˙ 0:05 ; (5.34)

where for G .1/ and F .1/ the latest lattice QCD data (5.30) are used2. Both ratios are
in agreement with the standard model prediction .cC=c�/SM � 1.

5.4. Conclusions

Within the leptonic sector there are stringent limits on the non-standard contributions
from various sources, e.g. the measurement of the � and � decay parameters. The
admixture of right-handed contributions for charged leptons is below 1%. A mass
limit of right-handed W -bosons is given by electroweak fits, mWR > 715 GeV, which
yields a right-handed admixture in the charged currents of cR < 1:3% [43]. Non-
standard couplings in inclusive semileptonic NB ! Xc` N� transitions are studied, e.g.
in Refs.[192, 194, 197], using higher dimension operators. New physics effects in the
charged hadronic currents are originated from the dimension six operators, while the
leptonic current does not contains any right-handed admixtures.
Adopting the charged current (5.8) suggested in Ref. [197] additional hadronic form
factors, namely scalar, pseudoscalar, tensor, and pseudotensor ones, have to be re-
garded. In the heavy-quark limit the form factors reduce to the universal Isgur-Wise

2The errors of the lattice values are added in quadrature. Correlations between the values are neglected.
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function, normalized at zero-recoil �.1/ D 1. Its well-established parametrization
stems from Caprini, Lellouch and Neubert [184]. Using this parametrization, the be-
haviour of the Isgur-Wise function near zero-recoil is determined by the slope �2 (�2�)
for B ! D (B ! D�) transitions.
QCD short-distance radiative corrections as well as non-perturbative 1=m2Q correc-
tions are well studied for the standard-model-like .V � A/ hadronic current structure.
For the additional appearing Dirac structures in the hadronic current (5.8) the perturba-
tive QCD short-distance radiative corrections at one-loop order are calculated, which
lead to sizeable effects.
The received new physics contributions containing slopes and form factors at zero-
recoil are compared with precision data from the B-factories. As an bound for right-
handed admixtures one finds for the ratio cC=c� D 0:90 ˙ 0:09, and, taking lattice
QCD data into account, 0:99˙ 0:05. The results are in reasonable agreement with the
standard model prediction for this ratio .cC=c�/SM � 1.
However, the analysis does not exclude right-handed admixtures in exclusive semilep-
tonic NB ! D.�/ transitions. Due to the high precision data from the B-factories a
future more sophisticated analysis is expected to decrease the bounds for helicity vio-
lating admixture more precisely as the naïve numerical analysis, which has been done
in this chapter.
In the next chapter the search for new physics contributions in B-meson decays is
enhanced taking nonleptonic B-meson decays, explicitly B0s ! J= � and B0 !
J= KS;L decays, into account, where new physics contributions are manifested in
CP -violating effects in the time-dependent angular distribution of the corresponding
decay products.
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Symmetries and their breaking play an important rôle for the new physics search. For
semileptonic B-meson decays the heavy-quark spin symmetry is an adequate tool for
such search as discussed in Chap. 5. Furthermore these decays allow precise determi-
nations of the Cabbibo-Kobayashi-Maskawa (CKM) matrix elements jVcbj and jVubj,
while from nonleptonic decays such high precision could not achieved.

Precise measurements of the angles ˛, ˇ and 
 of the unitary angle (UT) are a main
task in particle physics. B-meson systems provide within the standard model (SM)
several suitable decay channels for precise predictions for CP violation [209] depicted
in Fig. 6.1 for some prominent decay channels which are differently sensitive to the
angles of the unitarity triangle.

In a recent paper [210] CP violation in nonleptonic B-decays are discussed using

˛



ˇ

B ! �� (isospin), B ! ��; B ! ��

B˙
u ! K˙D
Bd ! K�0D
B˙
c ! D˙

s D

)
only trees

B ! �K (penguins) Bd !  Ks .Bs !  � W  s � 0/
Bd ! �Ks (pure penguin)

Bd ! D.�/˙�� W 
 C 2ˇ

Bs ! D˙
s K

� W 
 C �s

�
only trees

Rb.b ! u; c` N�`/ Rt.B
0
q � NB0

q mixing/

�
Bd ! �C��

Bs ! KCK�

�

Figure 6.1.: Overview of prominent B-meson decays for exploring of CP violation [24].
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flavour symmetries, where for non-standard contributions in nonleptonic b ! s transi-
tions U-spin1 breaking is taken into account. Flavour symmetries and their application
to B-decays [211–216] as well as the extraction of CP -violating parameters by using
flavour-symmetry methods are discussed in the literature, see, e.g. Refs. [217–220].

This chapter is denoted to the CP -violating effects in the time-dependent angular dis-
tribution of the B0s ! J= Œ! `C`���Œ! KCK�� decay products, expected to be
small in the standard model. In B0s � NB0s mixing CP -violating new physics contri-
butions are assumed to be a preferred mechanism to accommodate a measurement of
nonvashing CP -asymmetries [221].

CP violation can also be studied inB0d� NB0d mixing, where the “golden modes“B0 !
J= KS;L are considered to be clean probes for this phenomenon [72–74, 222–224].
The exploration of CP -violating effects in B-meson decays is done by the CDF and
DØ Collaborations at Tevatron [225] and is a main target of the LHCb [19] experiment
at CERN.

The discussion presented here has been published in Refs. [226, 227]. In Sec. 6.1 the
B0s ! J= � analysis and the exploration of the impact of the penguin effects on the
measurement of �s is discussed, taking into account the strategy to include hadronic
penguin contributions by using the B0s ! J= NK�0 channel. These strategies are
converted to the golden modes B0 ! J= KS;L in Sec. 6.2. A detailed discussion of
the SU(3)-breaking effects and internal consistence checks offered by the observables
of B-meson decays into two vector mesons are presented in Sec. 6.3. Conclusions of
these discussions are given in Sec. 6.4.

6.1. B ! J= �

In order to explore CP -violating effects in Bs-meson decays the key channel is B0s !
J= �, which is the counterpart of the “gold-plated” decay B0d ! J= Ks, to measure
the angle ˇ in the unitary triangle [72–74].

In this section the CP -violating observables in the B0s ! J= � channel are stud-
ied, discussing CP violation in the angular distributions (Sec. 6.1.1) and in the decay
amplitude (Sec. 6.1.2), where the B0s ! J= NK�0 decay as a control channel is in-
troduced. The time-dependent observables are briefly reviewed in Sec. 6.1.3. These

1U-spin is an SU(2) subgroup of flavour SU(3), under which the pair of down- and strange-quarks is a
doublet, similar to .u; d/ in isospin.
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observables get an impact of penguin contributions (Sec. 6.1.4), which could be con-
trolled by hadronic parameter provided by the B0s ! J= NK�0 channel (Sec. 6.1.5).

6.1.1. Structure of Angular Distribution

B0s ! J= Œ! `C`���Œ! KCK�� decay mediated by the quark transition b !
Nsc Nc is the key channel for this investigation. In the final state there are two vector
mesons, leading to an admixture of CP -odd and CP -even eigenstates. These can
be disentangled by using the angular distribution of the decay products. To this aim
linear polarization states of vector mesons are introduced, which are longitudinal (0)
or transverse to the direction of motion. The transverse polarization states may be
parallel (k) or perpendicular (?) to one another [228]. Generally, the time-dependent
angular distributions can be written as [229]

f .�;˚;	 I t / D
∑
k

g.k/ .�;˚;	/ b.k/.t/ ; (6.1)

Nf .�;˚;	 I t / D
∑
k

NO.k/.t/ Ng.k/ ( N�; N̊ ; N	) ; (6.2)

for B0s ! J= � and its CP conjugate decay NB0s ! J= �, respectively. Here
g.k/.�;˚;	/ describes the decay kinematics, and the time-dependent coefficients
b.k/.t/ are jAf 2f0;k;?g.t/j2, <fA�0.t/Ak.t/g, and =fAf 2f0;kgA?.t/g, with linear po-
larization amplitudes Af D h.J= �/f jHeffjB0s .t/i, where Heff is the low-energy ef-
fective Hamiltonian. Note that A?.t/ describes a CP -odd final-state configuration,
and A0.t/ and A?.t/ correspond to CP -even final-state ones. Assuming for both de-
cays the meson content of the J= � state to be the same, the decay kinematics are
described by the same angles � � N�, ˚ � N̊ and 	 � N	 . Hence, the effects
of CP transformations relating B0s ! .J= �/f to NB0s ! .J= �/f are taken into
through CP eigenvalues of the final state configuration .J= �/f , then the functions
g.k/ .�;˚;	/ and Ng.k/ ( N�; N̊ ; N	) in Eqs. (6.1) and (6.2) are equal. The explicit forms
of these quantities are presented in Ref. [229].

6.1.2. Decay Amplitudes

As discussed in Sec. 3.1.3, colour-suppressed tree-diagram-like and penguin topolo-
gies contribute to theB0s ! J= � decay within the standard model, which is depicted
in Fig. 6.2. The decay amplitude for a given final-state configuration f 2 f0; k;?g
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Figure 6.2.: B0s ! J= � (left panel) and B0s ! J= NK�0 (right panel) decay topologies in
the standard model.

can be written as

A
(
B0s ! .J= �/f

) D �.s/c [A.c/fT C A.c/fP

]
C �.s/u A.u/fP C �.s/t A.t/fP ; (6.3)

where the �.s/j � VjsV
�
jb are CKM factors, while A.c/fT and A.j /fP denote CP -con-

serving strong amplitudes related to tree-diagram-like and penguin topologies (with
internal j 2 fu; c; tg quarks), respectively. These amplitudes can be expressed in
terms of linear combinations of perturbatively calculable Wilson coefficient functions
and non-perturbative hadronic matrix elements of the corresponding four-quark oper-
ators using the appropriate low-energy effective Hamiltonian. The �.s/t factor can be
eliminated by the CKM unitarity relation (2.52), one gets

A
(
B0s ! .J= �/f

) D (1 � �2
2

)
Af
[
1C �af ei�f ei


]
; (6.4)

where

Af � �2A
[
A
.c/f
T C A.c/fP � A.t/fP

]
; (6.5)

and

af e
i�f � Rb

[
A
.u/f
P � A.t/fP

A
.c/f
T C A.c/fP � A.t/fP

]
(6.6)
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Table 6.1.: CKM parameter used in Ref. [226, 227] and latest values from CKMfitter reported
at ICHEP 2010.

Parameter Refs. [226, 227] CKMfitter [46]
� D jVusj 0:22521˙ 0:00083 0:22543˙ 0:00077
A D jVcbj=�2 0:809˙ 0:026 0:812C0:013�0:027

are CP -conserving hadronic parameters, while � � jVusj, A D jVcbj=�2, Rb D
.1��2=2/jVubj=.�jVcbj/ and � D �2=.1��2/ are CKM parameters [43], see Sec. 2.1.2
for details. For the following discussions the values from Ref. [226, 227] are used,
explicitly � D 0:22521 ˙ 0:00083, A D 0:809 ˙ 0:026, Rb D 0:423C0:015�0:022 ˙ 0:029
and � D 0:053. Note that the values for � and A have slightly changed as shown in
Table 6.1. This, however, does not change the presented analysis crucial. Considering
CP -conjugate processes the UT angle 
 flips its sign,

A
( NB0s ! .J= �/f

) D �f (1 � �2
2

)
Af
[
1C �af ei�f e�i


]
; (6.7)

where �f is the CP eigenvalue of the final-state configuration .J= �/f defined in Eq.
(2.74).

For the control channel B0s ! J= NK�0, originated in Nb ! Ndc Nc transitions the CKM
factors are different. The decay amplitude for this channel becomes

A
(
B0s ! J= . NK�0/f

) D �A0f

[
1 � a0f ei�

0
f ei


]
; (6.8)

where A0f and a0f e
i� 0
f are the counterparts of (6.5) and (6.6), respectively. This channel

offers a sensitive probe for the parameter a0f e
i�f , because this parameter does not

enter (6.8) in a doubly Cabibbo-suppressed way as af ei�f does in (6.4). Applying
SU(3) flavour symmetry of strong interactions and assuming, that penguin annihilation
.PA/ and exchange .E/ topologies2, contributing to B0s ! .J= �/f but without
counterpart in B0s ! J= NK�0, can be neglected, one obtains jAf j D jA0f j as well as
af D a0f and �f D � 0f . The uncertainties associated with procedure are discussed in
Sec. 6.3.

2These topologies can be explored with the help of B0d ! .J= �/f transitions, which amplitudes are
proportional to .PACE/f . The Belle Collaboration recently reported an upper limit 9:4�10�7 for
the branching ratio at the 90% confidence level for this decay channel [230].
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6.1.3. Time-dependent Observables

ForB0q� NB0q mixing (q 2 fd; sg) the time-dependent observables in the standard model
are presented in Sec. 2.2.2, setting bf D ��af in the following. Neglecting the doubly
Cabbibo-suppressed part, one defines � Œf; t � � ∣∣Af .t/∣∣2 C ∣∣ NAf .t/∣∣2, where jAf .t/j2
and j NAf .t/j2 are given by the Eqs. (2.75) and (2.76), respectively, and finds

� Œf; t � D 2jNf j2
[(
1C �f cos�s

)
e��

.s/
L t C (1 � �f cos�s

)
e��

.s/
H t
]
; (6.9)∣∣Af .t/∣∣2 � ∣∣ NAf .t/∣∣2 D 2�f jNf j2e��st sin .�Mst / ; (6.10)

where �s is the CP -violating B0s � NB0s mixing phase (2.83), and Nf � .1��2=2/Af .
The CP -violating rate difference (6.10) required “tagging” whether initially - i. e. at
the time t D 0 - a B0s or NB0s meson is present. For the extraction of the phase �s one
uses the ratio of this “tagged” and “untagged” rate (6.9), where the overall normaliza-
tion jNf j cancels. The time-dependence of the other observables is discussed, e.g. in
Ref. [231].
In the standard model the phase �s is fixed in terms of the Wolfenstein parame-
ters; latest CKM fits [47] yield �SM

s D �2�2� D �.0:0366 ˙ 0:0015/. However,
new physics effects could enhance this value. B0s � NB0s mixing is a strongly sup-
pressed flavour-changing neutral-current process in the standard model, it is on the
other side a sensitive probe for new physics effects in the TeV regime. Since new
particles contribute, the off-diagonal elements of the mixing matrix is modified as
M s
12 DM s;SM

12 .1C �sei�s/, where �s measures the relative strength of the new physics
contributions and �s is the new physics phase [24, 221]. The Bs mixing parameters
then read

�Ms � �M SM
s

∣∣1C �sei�s ∣∣ ; (6.11)

�s � �SM
s C �NP

s D �2�2�C arg
(
1C �sei�s

)
: (6.12)

The phase �s and the ratio �s � �Ms=�M
SM
s can be depicted as contours in the

�s � �s plane, setting the parameter space for new physics contributions to B0s � NB0s
mixing [221]. For �Ms one finds from the experiments

�Ms D
.18:56˙ 0:87/ps�1 .DØ Collaboration [232]/ ;

.17:77˙ 0:10˙ 0:07/ps�1 .CDF Collaboration [233]/ :
(6.13)

In order to determine the parameter �s from these measurements, the standard model
value of �Ms is required, involving a hadronic parameter f 2Bs OBBs being determined
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by means of lattice QCD techniques and introduces the corresponding uncertainties in
the analysis. Using �M SM

s D 20:3.3:0/.0:8/ ps�1 from the HPQCD Collaboration
[234, 235] one finds �s D 0:88 ˙ 0:13, where the errors have been naïvely added in
quadrature. Data from CDF and DØ Collaborations [236] for �s, listed by the Heavy
Flavor Averaging Group (HFAG) [79] yield a twofold solution,

�s D
(�44C17�21)ı _ (�135C21�17)ı : (6.14)

Following Ref. [221] the �s � �s plane is depicted in Fig. 6.3 (left panel). The overlap
of the �Ms (central hill-like region) and �s (two branches) constraints result in the
two shaded allowed regions. These results are under the condition that the doubly
Cabbibo-suppressed parameters af ei�f , describing the penguin to tree contributions,
can be neglected. However, expecting precise data from LHCb the standard model
effects must be controlled.

6.1.4. Penguin Contributions

In order to search for new physics effects, the standard model contributions must be
well understood. The “untagged” observables RfL and RfH are defined in Sec. 2.2.2 in
the Eqs. (2.79) and (2.80), respectively. At the time t D 0, Eq. (6.9) becomes

� Œf; t D 0� D 2 ∣∣Nf ∣∣2 [1C 2�af cos �f cos 
 C �2a2f
]
: (6.15)

Figure 6.3.: Left panel: �s � �s plane of the new physcis parameters for B0s � NB0s mixing.
Right panel: Impact of the penguin parameter af on the mixing-induced CP -
asymmetry �f OAfM for �f D 180ı, 
 D 65ı, and af D 0:5; 1; 5, with a dashed,
solid and dotted line, respectively, as a function of the B0s � NB0s mixing angle
cos�s [227].
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6. New Physics in b ! s Decays

Furthermore, the CP -violating observables are given by the Eqs. (2.86)–(2.88). In
Fig. 6.3 (right panel) the impact of the penguin parameter af is illustrated. The CP -
conserving parameter af ei�f is defined in such a way that �f D 180ı in the standard
model. Penguin effects for this strong phase are maximal in the mixing-induced CP -
asymmetry A

mix;f
CP since only cos �f enters. However, the direct CP -asymmetries

A
dir;f
CP vanish, because they are proportional to sin �f .

The value for the penguin parameter af is unknown, but one can estimate some bounds;
e.g. for �s � �44ı, as in (6.14), af is in the (unrealistic) range 2:5 � 5. However,
there are large uncertainties in af , hence, values as large as 0:5�1 can not be excluded.
Since the phase �s is assumed to be small, these hadronic standard model contributions
lead to a significant uncertainty in B0s � NB0s mixing phase extraction [227].
This effect can be explored by using the mixing- and direct-induced CP -asymmetries.
From Eqs. (2.86) and (2.87) one finds

�fA
mix;f
CP√

1 � .Adir;f
CP /2

D sin
(
�s C��fs

)
; (6.16)

where

sin��fs D
2�af cos �f sin 
 C �2a2f sin 2


Nf

√
1 � .Adir;f

CP /2
;

cos��fs D
1C 2�af cos �f cos 
 C �2a2f cos 2


Nf

√
1 � .Adir;f

CP /2
:

(6.17)

Note that the shift ��fs of the B0s � NB0s mixing phase is independent from the value
of �s itself. In the left panel of Fig. 6.4 the dependence of ��fs , and in the right panel
the dependence of the direct CP -asymmetries A

dir;f
CP , on the parameter af for various

values of �f are depicted. For a penguin contribution af � 0:4 the shift ��fs is of the
same size as �SM

s and a value of af � 1 induces a shift of order �5ı. Furthermore the
direct CP -asymmetries are in the range of �0:05 . A

dir;f
CP . C0:005 for af . 1 and

values of j�f � 180j as large as 40ı. In the next subsection a controlling mechanism
of the penguin effects by means of the angular distributions of the B0s ! J= Œ!
`C`�� NK�0Œ! �CK�� and its CP conjugate is discussed.

6.1.5. Controlling the Observables

As a control channel for the penguin effects the flavour-specific decay B0s ! J= Œ!
`C`�� NK�0Œ! �CK�� and its CP conjugate can be used. In the time-dependent angu-
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Figure 6.4.: Dependence of��fs (left panel) and A
dir;f
CP (right panel) on af for various values

of �f [227].

lar distributions there are no CP -violating effects between mixing and decay. Hence,
the AfM observables (2.82) have no counterpart and they are independent from the
B0s � NB0s mixing phase. The penguin parameter a0f and the the strong phase � 0f are de-
termined by the untagged observables, as well as by direct CP asymmetries. In App.
C the time-dependent observables are listed.
For discussing the untagged case one introduces the relation

Hf � 1

�

∣∣∣∣∣AfA0f

∣∣∣∣∣
2
� Œf; t D 0�0
� Œf; t D 0� D

1 � 2a0f cos � 0f cos 
 C a02f
1C 2�af cos �f cos 
 C �2a2f

; (6.18)

with � Œf; t D 0�0 being the B0s ! J= NK�0 counterpart of (6.9). Using the SU(3)

flavour symmetry to obtain jAf j D jA0f j, Hf can be extracted from untagged observ-
ables. Furthermore the SU(3) flavour-symmetry provides

af D a0f ; �f D � 0f ; (6.19)

hence, defining UHf � 1C�Hf
1��2Hf

cos � 0f cos 
 and VHf � .1 � Hf /=.1 � �2Hf /, the
penguin parameter a0f is determined as a function of � 0f ,

a0f D UHf ˙
√
U 2
Hf
� VHf : (6.20)

The SU(3) flavour-symmetry assumption jAf j D jA0f j leads to the main uncertainty
of Hf . The impact of (6.19) can be neglected because of the � terms present in Eq.
(6.18).
At the time t D 0 the direct direct CP asymmetry A

dir;f 0

CP D .2a0f sin � 0f sin 
/=.1 �
2a0f cos � 0f cos 
 C a02f / is of the same form as (2.85). Using the replacements UHf !
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U
A

dir;f 0
CP

� cos � 0f cos 
 C .sin � 0f sin 
/=Adir;f
CP and VHf ! V

A
dir;f 0
CP

� 1, af can be
determined as a function of � 0f in analogy to (6.20). Theoretical uncertainties are
related to the SU(3)-breaking effects as discussed above and studied in more detail in
Sec. 6.3.

6.2. The Golden Modes B0! J= KS ;L

The B-decay channel B ! J= K is the so-called “golden mode”, because the decay
amplitude A. NB ! J= NK/ is dominated by a single weak phase. Hence, the time-
dependent CP -asymmetry in this decay is completely determined by the B0 � NB0
mixing amplitude, involving the CKM angle ˇ [72–74]. In the weak effective Hamil-
tonian (3.24) the effects from terms proportional to VubV �us are small, because of the
Cabbibo-suppression of jVubV �usj with respect to jVcbV �csj, where the ratio becomes,
jVubV �usj=jVcbV �csj � �2 � 1, and penguin suppression: first of all the current-current
operators Q

.u/
1;2 do not contain charm quarks, hence, the hadronic matrix elements

hJ= KjQ.u/
1;2jBi are suppressed. Secondly the Wilson coefficients of the loop-induced

penguin operators can be neglected compared to the tree ones. Finally the ones from
electroweak penguin operators are even smaller.
Analogously to the previous section in Sec. 6.2.1 the time-dependent CP -asymmetries
in the golden modes B0 ! J= KS;L are explored, introducing NB0 ! J= �0 as the
control channel for these decays. In Sec. 6.2.2 the strategy of the extraction of the new
physics contributions is discussed.

6.2.1. Observables in B ! J= K Decays

The CP violation in the B0d � NB0q system is discussed in Sec. 2.2.2, and the discus-
sion of the CP observables for B0 ! J= K0 follow the lines given in the previous
section. The time-dependent rate asymmetries (2.85) can be written as ACP .t If / D
C.f / cos.�Md t /�S.f / sin.�Md t /, whereC.f / and S.f / are the direct and mixing-
inducedCP violation, respectively. In the standard model, neglecting doubly Cabbibo-
suppressed contributions, one gets

C.J= KS;L/ � 0 ; S.J= KS;L/ � ��S;L sin 2ˇ ; (6.21)

where the CP eigenvalue �S (�L/ is �1 .C1/ [72–74, 222–224]. Assuming these
correlations are correct, the latest values obtained from the measured S.J= KS;L/
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from BABAR[237] and Belle [238], averaged by the HFAG [79] yield .sin 2ˇ/J= K0 D
0:655˙ 0:0244. Note that in the following 2ˇ D �d is used.
Analogously to B0s ! J= � the decay amplitude for B0 ! J= KS;L is given by Eq.
(6.4), where Af and af ei� are defined as in Eqs. (6.5) and (6.6), respectively. Using
the replacements �fA

mix;f
CP ! ��S;LS.J= KS;L/ and A

dir;f
CP ! �C.J= KS;L/, the

Eq. (6.16) reads

��S;LS.J= KS;L/√
1 � C.J= KS;L/2

D sin .�d C��d / : (6.22)

The latest, over the final states J= KS and J= KL averaged value for the direct CP
violation yields C.J= K0/ D �0:003 ˙ 0:020 [79]. Hence, the deviation of the
denominator in (6.22) from one can be neglected.

Following the strategy of the previous section, one introduces the SU.3/ counterpart
of B0d ! J= K0. As Bs ! J= NK0 is not measured so far, one uses NB0 ! J= �0.
The two decays are related to each other via SU(3) in the approximation that isospin
symmetry holds and the emission-annihilation parameter EA2 can be neglected. This
can be checked by using the B ! ND0� decay proceeding only via this diagram [239],
which is done in Ref. [240]. In the standard model, the amplitude for the NB0 !
J= �0 decay can be written as

A
( NB0 ! J= �0

) D 1p
2
�A0

[
1 � a0ei� 0ei


]
; (6.23)

where the factor
p
2 refers to the �0 wavefunction. Recent measurements from BABAR

[241] and Belle [242] yield the averages [79]

C.J= �0/ D �0:10˙ 0:13 ; S.J= �0/ D �0:93˙ 0:15 : (6.24)

The penguin parameter a0 can again be determined as a function of � 0. The counterpart
of (6.20) is given by

a0 D UO ˙
√
U 2

O � VO ; O 2 fC; Sg ; (6.25)

with

UC � cos � 0 C sin � 0 sin 

C.J= �0/

; VC � 1 ;

US �
[

sin.�d C 
/C S.J= �0/ cos 

sin.�d C 2
/C S.J= �0/

]
cos � 0 ;

VS D sin�d C S.J= �0/
sin.�d C 2
/C S.J= �0/

:

(6.26)
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The hadronic parameters a0 and � 0 are fixed in the standard model by the intersection
of the C.J= �0/ and S.J= �0/ contours; in order to have a constraint in the a0 � � 0
plane from S.J= �0/, S.J= K0/ has to be taken into account in order to fix the
new physics phase. Another constraint is given by C.J= K0/, being of the form
(6.25) with the replacements a0 ! �a and � 0 ! 180ı C � . Note that since the
expressions (6.25) and (6.26) follow from the standard model structure of the NB0 !
J= �0 transition, they are exactly valid.
As argued before penguin annihilation and exchange topologies, contributing to NB0 !
J= �0 but without counterpart in B0d ! J= K0 and expected to be small, are ne-
glected. In the SU(3) symmetry limit, one obtains (6.19). Using these relations to-
gether with Eq. (6.22) the shift ��d can be determined from the data. The relations
(6.19) are associated with SU(3)-breaking corrections, because of non-factorizable ef-
fects. The impact of SU(3)-breaking effects on the shift ��d is discussed in Sec.
6.3.3.

From the CP -averaged branching ratios there is another constraint. The counterpart
of the observable (6.18) becomes

H � 2

�

[
BR. NB0 ! J= �0/

BR.B0d ! J= K0/

] ∣∣∣∣A

A0

∣∣∣∣2 ˚J= K0˚J= �0

D 1 � 2a0 cos � 0 C a02
1C 2�a cos � cos 
 C �2a2 ; (6.27)

with the phase-space factors ˚J= P � ˚.MJ= =MB0;MP=MB0/, P 2 fK0; �0g
[81]. H is extracted from data, assuming that the SU(3)-breaking corrections to jA=A0j
are factorizable, i. e. given by the ratio of two form factors, evaluated at q2 D M 2

J= .
Using QCD light-cone sum rules methods [173], the latest results for the form factors
at q2 D 0 yield f CB!K.0/=f

C
B!�.0/ D 1:38C0:11�0:11 [174, 243]. Using a naïve Becirevic-

Kaidalov (BK) parametrization [244], the extrapolation to q2 D M 2
J= is given by

fC.q
2/ D f C.0/

[
M 2
BM

2
�

.M 2
� � q2/.M 2

B � ˛q2/
]
; (6.28)

where M 2
� denotes the mass of the ground state vector meson in the relevant channel,

and the contribution of the hadronic continuum for q2 > M 2
� is modeled by the pole

at M 2=˛. Using B ! � lattice data, the BK parameter ˛ has been fitted to be ˛� D
0:53˙0:006. However, the value ˛ for theB ! K form factor is unknown. Assuming
the main SU(3)-breaking effect is due to the shift of the continuous part of the spectral
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Table 6.2.: Branching fractions of neutralB-modes in units of 10�4 and results forH defined
by (6.27).

Refs. [227] HFAG 2010 [79]
BR.B0d ! J= K0/ 8:63˙ 0:35 8:63˙ 0:35
BR. NB0 ! J= �0/ 0:20˙ 0:02 0:174˙ 0:015
H 1:53˙ 0:16BR ˙ 0:27FF 1:33˙ 0:13BR ˙ 0:24FF

function from B ! � to the B ! K threshold, one gets ˛K D 0:49 ˙ 0:05, and
further the extrapolation to q2 D M 2

J= yield f CB!K.M
2
J= /=f

C
B!�.M

2
J= / D 1:34˙

0:12. Using the values for the branching fractions reported by the HFAG [79] one can
calculate (6.27). The value reported in Ref. [227] for H changed slightly, because the
ones for NB0 ! J= �0 changed; the values for (6.27) are listed in Table 6.2, where
the errors induced by the branching ratios and the form-factor ratio are separated.
Following Ref. [81], the Eq. (6.19) provides a probe for SU(3)-breaking effects, which
can be expressed as

C.J= K0/ D ��HC.J= �0/ : (6.29)

However, the values ofH in Tab. 6.2 yieldC.J= K0/ D 0:01˙0:01, being consistent
with the latest value for C.J= K0/, but too small for a sophisticated test.
Using Eq. (6.25) with O D H , one finds

UH D
(
1C �H
1 � �2H

)
cos � 0 cos 
 ; VH D 1 �H

1 � �2H ; (6.30)

determining the parameter a0 as a function of the strong angle � 0. In this case one has
to deal with SU(3)-breaking effects, entering implicitly through the determination of
H .

6.2.2. New Physics Contributions

Assuming that new physics effects in the B0 � NB0 mixing phase �d provide CP -
violating, one defined the mixing phase as

�d D 2ˇ C �NP
d ; (6.31)

where �NP
d is the new physics component. Neglecting a new physics impact on the

B0 ! J= K0 amplitude, the relations (6.31) remain valid, with the replacement
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Figure 6.5.: Left panel: constraints in the N� � N� plane at 1� and 2� ranges; right panel: 1�
ranges in the � 0 � a0 plane [227]. The fit procedure is exhaustively discussed in
Ref. [240].

2ˇ ! �d . Including data for CP violation in B0 ! J= K� decays [79], the UT
angle ˇ can be fixed unambiguously. In Fig. 6.5 (left panel) the situation in the N� �
N� plane is depicted created with the CKMFITTER software [48], where generalized
Wolfenstein parameters are used [44, 45], and the circle coming from the UT side
Rb. From the fit the “true” value of ˇ can be determined through Rb and tree-level
extractions of 
 ; one gets ˇtrue D .24:9C1:0�1:5 ˙ 1:9/ı, which is independent of the error
of the UT angle 
 for a central value around 65ı, and yields

.�d /J= K0 � 2ˇtrue D �
(
8:7C2:6�3:6 ˙ 3:8

)ı
: (6.32)

Using the observables defined in the previous subsection, new physics contribution
can be extracted from a fit to recent data. In Fig. 6.5 (right panel) the fit in the
� 0 � a0 plane with 1� ranges are shown. As expected from Eq. (6.22) S.J= �0/
is � 0 2 Œ90ı; 270ı�. Furthermore, S.J= K0/ fixes the new physics phase essentially
to .�d /J= K0 � 2ˇtrue, as here new physics is an O.1/ effect, while the additional stan-
dard model contribution is suppressed by �. The negative central value of the direct
CP asymmetry C.J= �0/ prefers � 0 > 180ı, and its intersection with the H band
falls into the S.J= �0; J= K0/ as well as in the C.J= KS;L/ region, which yields
a0 2 Œ0:15; 0:67� and � 0 2 Œ174ı; 213ı� at the 1� level. These four constraints give
finally an unambiguous solution for these parameters [227].
The corresponding fit in the � � ��d plane is depicted in Fig. 6.6 (left panel) with
the help of Eqs. (6.17) and (6.19). The resulting shift ��d is negative; the global
fit yields ��d 2 Œ�3:9ı;�0:8ı�, affected by the constraints from H and C.J= �0/,
corresponding to �d D .42:4C3:4�1:7 /

ı. Hence, the negative sign of the standard model
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6.2. The Golden Modes B0 ! J= KS;L

Table 6.3.: Fit results for the two scenarios discussed in the text.

Scenario S.J= �0/ ��d a0 � 0

(a) �0:98˙ 0:03 Œ�3:1ı;�1:8ı� � 0:42 � 191ı
(b) �0:85˙ 0:03 Œ�1:2ı;�0:8ı� � 0:18 � 201ı

correction ��d softens tension in the fit of the UT. The range for �NP
d from the fit is

given by �13:8ı � �d � 1:1ı, including the standard model value �NP
d D 0ı.

Expecting high precision data from LHCb or a future Super-B factory which will
constrain the hadronic parameters, two benchmark scenarios are discussed, shown in
Fig. 6.6 (right panel), assuming a reduction of the experimental uncertainties of the
CP asymmetries of B0d ! J= K0 by a factor of 2, and errors of the branching
ratios and 
 that are five times smaller. Both scenarios agree with C.J= �0/ D
�0:10˙ 0:03, but differ in S.J= �0/. The fit results for the two scenarios are listed
in Table 6.3. In the high-S scenario (a) the range for ��d is determined from lower
value of S andH , assumingH D 1:53˙0:03˙0:27. In contrast in the low-S scenario
(b) the range is determined by S and C alone, whilstH would only be used to rule out
the second solution.

Figure 6.6.: Left panel: ��d for the constraints shown in right panel in Fig. 6.5. Right panel:
Fit for a future benchmark scenarios, as discussed in the text [227].
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6. New Physics in b ! s Decays

6.3. SU(3) Breaking Effects

Theoretical uncertainties are originated in SU(3) breaking effects in (6.19) and A D
A0. In order to distinguish standard model effects from new physics ones, the under-
standing of SU(3) breaking is essential. In the following section the SU(3) breaking
effects in the considered decays is discussed in more detail.
In Sec. 6.3.1 the ! � � mixing is discussed preparing the use of QCD sum rule
predictions for the B ! NK�0 form factors in Sec. 6.3.2 for the SU(3)-breaking effects
to the ratio jA=A0j. The SU(3) breaking to (6.19) is studied in Sec. 6.3.3 by introducing
a breaking factor � . Finally, in Sec. 6.3.4 some internal consistence checks of SU(3)

symmetry in B-decays are presented.
For investigations of new physics effects in nonleptonic b ! s transitions by using
U-spin breaking see Refs. [210, 240].

6.3.1. ! � � Mixing

In the case ofB0s ! J= � transitions one deals with vector meson final states. The �-
meson �-meson state is in good approximation an s Ns state, and hence a superposition
of SU(3) eigenstates.
The SU(3) nonet contains three neutral, nonstrange states. Assuming isospin as a good
symmetry, one of these states is the �-meson with the quark decomposition �0 D .u Nu�
d Nd/=p2, and the other two states are isosinglets, explicitly �0 D .u NuCd NdCs Ns/=p3,
being an SU(3) singlet, and �8 D .u Nu C d Nd � 2s Ns/=4, which belongs to the SU(3)

octet. Since isospin is assumed to be unbroken, the amplitudes for processes involving
the members of the octet are related to one another, while the singlet remains separate.

However, as mentioned before, the physical � state is in good approximation a pure
s Ns state. Hence, it can be considered as a superposition of the singlet �0 and the octet
�8. The isoscalar !-meson decomposed as ! D .u NuC d Nd/=p2 is the corresponding
orthogonal state. Following the discussion in Ref. [245], the mixing between ! and �
is negligibly small and hence these are the (strong) mass eigenstates.
SU(3) symmetry is applied as follows: one assumes the matrix elements of � D s Ns are
related to the corresponding matrix elements of members of the octet, i. e. that the form
factors of the B0s ! � decay are the same as the ones for the B0s ! NK�0 transition.
Note that this assumption goes beyond SU(3)-symmetry-assumptions since octet and
singlet components are related to each other. Due to a lack of detailed information on
the quality of such an assumption one relies e.g. on QCD sum rule estimates, indicating

100



6.3. SU(3) Breaking Effects

that the strong dynamics in the � D .s Ns/SD1 state are very similar to NK�0 D .d Ns/SD1,
see. Sec. 6.3.2. Note that penguin annihilation and exchange topologies are neglected,
an assumption which can be probed through the B0d ! J= � decay.

6.3.2. SU(3)-Breaking in the Exctraction of Hf

For nonleptonic decays it is very difficult to get a reliable estimate of the SU(3) break-
ing effects. From the corresponding processes with pseudoscalar final states it is
known that the decays with J= in the final state are dominated by non-factorizable
contributions; in the considered decays the factorization of the penguin contributions is
not clear. However, considering Bs ! ��; �K;KK decays, sizable non-factorizable
effects are encountered, whereas the data do not indicate large SU(3)-breaking effects
[246]. In particular, a calculation of the relevant form-factor ratio by means of QCD
sum rule techniques [247] for the counterpart of the Hf quantities for B0s ! KCK�,
B0d ! �C�� system yields good agreement with the current data that would be
spoiled by large non-factorizable, SU(3)-breaking effects. This empirical behaviour
is in the following used for an estimate of the SU(3)-breaking effects for the extrac-
tion of the Hf from the data by using the QCD sum rule form factor predictions for
Bs ! NK�0.
For the SU(3)-breaking corrections to the amplitude ratio jAf =A0f j, one applied the
formulae presented in Ref. [229]. At the time t D 0 the linear polarization amplitudes
of the B0s ! J= � channel is given by A0.0/ D �xa � .x2 � 1/b, Ak.0/ D

p
2a,

and A?.0/ D
√
2.x2 � 1/c, with x � pJ= � p�=.mJ= m�/. Neglecting the doubly

Cabbibo-suppressed penguin corrections, because one is interested in the overall am-
plitudes Af , the “factorized” contributions can be written as afact D GFp

2
�.s/c ŒC

eff
1 .�/C

C eff
5 .�/�A

eff
1 , bfact D GFp

2
�.s/c ŒC

eff
1 .�/ C C eff

5 .�/�B
eff
1 , and cfact D GFp

2
�.s/c ŒC

eff
1 .�/ C

C eff
5 .�/�C

eff
1 , with the effective Wilson coefficients C eff

i .�/. The relations between
the form factors ABs�1;2 .q

2) and V Bs�.q2/ of the quark-current matrix elements of the
Bs ! � decay, q denoting the momentum transferred by the quark current, and the
“factorized” contributions are given by

Afac
1 D �fJ= mJ= 

(
mBs Cm�

)
A
Bs�
1

(
m2J= 

)
;

B fac
1 D 2

fJ= m
2
J= m�

mBs Cm�
A
Bs�
2

(
m2J= 

)
;

C fac
1 D 2

fJ= m
2
J= m�

mBs Cm�
V Bs�

(
m2J= 

)
:

(6.33)
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6. New Physics in b ! s Decays

In the case of the B0s ! J= NK�0 channel, the corresponding Bs ! NK�0 decay
form factors are needed, and � has to replaced by NK�0 in the above formulae. These
form factors are analysed in Ref. [173]. Light-cone sum rules allow an estimate of
the values at q2 D 0. For the form factor values at q2 > 0, e.g. q2 D m2J= , they
are extrapolated by using the functional forms suggested in Ref. [173], assuming an
uncertainty of 15%, being an ad hoc assumption. The results are collected in Table 6.4
and yielding the SU(3)-breaking ratios

A
Bs NK

�.m2
J= 

/

1

A
Bs�
1 .m2J= /

D 0:78˙ 0:17 ; A
Bs NK

�.m2
J= 

/

2

A
Bs�
2 .m2J= /

D 0:84˙ 0:18 ;

V Bs
NK�.m2

J= 
/

V Bs�.m2J= /
D 0:76˙ 0:16

(6.34)

Using the linear polarization amplitudes, one gets∣∣∣∣A00A0

∣∣∣∣2 D 0:42˙ 0:27 ; ∣∣∣∣A0kAk

∣∣∣∣2 D 0:70˙ 0:29 ; ∣∣∣∣A0?A?

∣∣∣∣2 D 0:38˙ 0:16 ; (6.35)

allowing the extraction of theHf from the untagged rates with the help of (6.18). Note
that this discussion is analogous to the one in Sec. 6.2.1.

6.3.3. SU(3)-Breaking in a0f D af and � 0f D �f
The equality of af D a0f and �f D �f as noted in Eq. (6.19) is supported by SU(3)

flavour-symmetry of the strong interaction. However, sizable non-factorizable effects
could induce SU(3)-breaking corrections. In this subsection their impact on (6.19) is
discussed. Using the B0s ! J= NK�0 observables (see Sec. 6.1.5), a0f and � 0 can
extracted from the data. Their B0s ! J= � counterparts af and �f enter in Hf
in combination with the tiny parameter �, hence, this determination is unaffected by

Table 6.4.: Bs ! V form factors at q2 D m2
J= 

extrapolated from the results of Ref. [173]
and assuming an uncertainty of 15%.

V D � V D NK�
A
BsV
1 .m2J= / 0:42˙ 0:06 0:33˙ 0:05

A
BsV
2 .m2J= / 0:38˙ 0:06 0:32˙ 0:05

V BsV .m2J= / 0:82˙ 0:12 0:62˙ 0:09
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6.3. SU(3) Breaking Effects

corrections to (6.19). Consequently the main corrections enter through the value of
Hf by the SU(3)-breaking corrections to the amplitude ratios jAf =A0f j, as discussed
in Sec. 6.3.2.

Calculating the shifts ��fs and ��d the relations (6.19) are used. However, as dis-
cussed in the previous sections, sizable non-factorizable effect could induce SU(3)-
breaking corrections. But the relation tan�d from (6.17) is independent from direct
CP asymmetries and can be used as an inference for the SU(3)-breaking impact on
the determination of ��fs and ��d . Since one neglects terms O.�2/, the dependence
on a cos � is linearly, hence, corrections to a D a0 propagate linearly as well, while in
general SU(3)-breaking effects in the strong phase lead to an asymmetric uncertainty
for ��fs and ��d .
Moreover, the impact of SU(3)-breaking corrections could be explored in the analysis
of NB0 ! J= �0 data by introducing a symmetry-breaking factor � in the left-hand
side of (6.19), a D �a0, and uncorrelating the strong phases � and � 0 of the B0d !
J= K0 and NB0 ! J= �0 decays, respectively. Allowing for � 2 Œ0:5; 1:5� and
�; � 0 2 Œ90ı; 270ı� in the fit, and using a 50% increased error for the form-factor
ratio in view of non-factorizable contributions to jA=A0j, the global fit yields ��d 2
Œ�6:7ı; 0:0ı�, and �NP

d 2 Œ�14:9ı; 4:0ı�, determined now mostly by C.J= KS;L/ and
H [227]. In the case � D 1 and � D � 0 one finds ��d 2 Œ�3:9ı;�0:8ı�. A similar
situation is expected for ��fs [226]. Hence, even allowing such large SU(3)-breaking
corrections, the picture is not significantly changed. Note that these analysis include
doubly Cabbibo-suppressed standard model contributions, being crucial in order to
eventually detect or exclude such new physics effects.

6.3.4. Internal Consistency Checks of SU(3)

The B-meson decays into two vector mesons offer more observables, because of the
angular distribution of their decay products, than in the case of B ! PP or B ! PV

decays, where P and V denote generically pseudoscalar and vector mesons, respec-
tively. This comments supported internal consistence checks of the SU(3) flavour-
symmetry.

As a first consistence check, the different values of the B0s � NB0s mixing phase �s
originated from the three polarization states f 2 f0; k;?g, which should agree with
another are used. Hence, more quantitative tests of SU(3)-breaking can be performed.
The strategy of the consistence check is as follows. Choosing one of the three linear

103



6. New Physics in b ! s Decays

polarization states to extract �s from Eq. (6.22), taking the shift ��fs through the
penguin effects into account. Using the B0s ! J= � observables A

mix;f 0

CP and A
dir;f 0

CP

of the remaining two polarization states; knowing �s the corresponding shifts ��fs
can be extracted from (6.22), and the values of the ��fs can converted into contours
in the �f � af plane by using tan��fs from (6.17). Performing in Eq. (6.20) the
replacements

UHf ! U
��

f
s
�
(

sin 
 � cos 
 tan��fs
cos 2
 tan��fs � sin 2


)
cos �f ;

VHf ! V
��

f
s
� tan��fs

cos 2
 tan��fs � sin 2

;

(6.36)

as well as a0f ! �af . Additionally one replaced � 0f ! 180ıC�f and A
dir;f 0

CP ! A
dir;f
CP

in U
A

dir;f 0
CP

, hence, the direct CP -asymmetry in B0s ! J= � can be converted into a
contour in the �f � af plane as well. Note that these constructions are valid exactly.
In Fig. 6.7 this strategy is depicted by considering a simple numerical example. As-
suming 
 D 65ı and the hadronic parameters are given by af D 0:4 ˙ 0:1 and
�f D .220˙ 10/ı, yielding A

dir;f
CP D 0:025˙ 0:008 and ��fs D .�1:7˙ 0:5/ı. The

internal consistence check of SU(3) flavour-symmetry can then performed by using the
values of the hadronic B0s ! J= � hadronic parameters af and �f , comparing them
with the values of a0f and � 0f following from the B0s ! J= NK�0 strategy proposed in
Sec. 6.1.5.
Another consistence check is offered by the relation A

dir;f
CP D ��HfA

dir;f 0

CP , relying on
Eq. (6.19). Note that the practical usefulness of these consistence checks is restricted
depending on the values of the observables hopefully measured by LHCb or a future
Super-B factory.

Figure 6.7: Numerical example
for the extraction af
and �f from ��

f
s

and the direct CP -
asymmetry A

dir;f
CP , as

described in the text.
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6.4. Conclusions

TheCP -violating effects in the time-dependent angular distributions ofB0s ! J= Œ!
`C`���Œ! KCK�� are expected to be small in the standard model, limiting the theo-
retical accuracy of the benchmark for new physics search. Hadronic effects, which are
due to doubly Cabbibo-suppressed penguin contributions usually neglected could in-
duce mixing-induced CP -violating effects as large as O.�10%/ [227]. These penguin
contributions, which cannot be calculated reliably from QCD, have to be controlled,
hence, such CP -violating effects, being misinterpreted as CP -violating new physics
contributions to B0s � NB0s mixing.
For the analysis of the CP -violating effects in the golden B0 ! J= KS;L channel
by using analogically strategies as for B0s ! J= � final conclusion can not be done,
because of the large experimental errors. The performed analysis does not rule out
new physics effects in the amplitude as an explanation for the observed shift. In a
recent paper [248], it is argued that the sub-leading effects in the standard model being
O.10�3/. Following their line of argumentation, large standard model effects can be
excluded, and new physics contribution in the amplitude are sufficient to explain the
data and their behaviour under SU(3) transformations is standard-model-like [240].
The expected accuracy of LHCb and a possible future upgrade of this experiment en-
couraged controlling of the sub-leading effects in B0q � NB0q mixing, q 2 fs; dg, in order
to distinguish new physics contributions from standard model ones.
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7
Concluding Remarks

B-meson decays are quite suitable for testing the flavour sector of the standard model
in different ways. Here, exclusive semileptonic B-meson transitions are studied using
QCD sum rules techniques and symmetry relations provided by the heavy-quark ex-
pansion theory. New physics effects are explored in exclusive semileptonic as well as
in nonleptonic B-meson decays.

For exploring the hadron phenomenology, QCD sum rules have become a power-
ful tool. In Chap. 5 the light-cone sum rules have been used for the semileptonic
NB ! D.�/` N� transitions. The achieved results for the form factors are in agreement

with experimental data and results from lattice QCD calculations. However, their pre-
dictions have to be treated carefully, due to hadron duality and approximations in the
operator-product expansion of the correlator functions.

The exploration of the B ! D.�/ transitions with QCD sum rules is done in an
standard-model-like way, explicitly using the .V � A/ left-handed hadronic current
structure. However, this can be done only at the other end of the phase space com-
pared to the heavy-quark limit.

For leptonic currents the .V � A/ current structure is experimentally well-tested. For
hadronic currents the situation is less clear; constraints on right-handed admixtures
are strong, but they are not excluded. Moreover, beside the vector and axial vec-
tor currents the Dirac structure of space-time provide scalar, pseudoscalar, tensor and
pseudotensor currents, usually suppressed in the standard model. Taking right-handed
admixtures and these additional current structures into account, new physics contribu-
tions appear in the exclusive semileptonic NB ! D.�/` N� decay rates as discussed in
Chap. 6. At zero-recoil the non-vanishing form factors become a single function, the
Isgur-Wise function, in which these new physics contributions also appear. A com-
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mon parametrisation of the Isgur-Wise function is suggested by Caprini, Lellouch and
Neubert, wherein its behaviour is described by a slope parameter. Neglecting scalar,
pseudoscalar, tensor and pseudotensor contributions, the form factor as well as the
slope parameter predictions at zero-recoil compared with experimental data yield con-
straints on right-handed admixtures. The presented formulae make in the future more
sophisticated analysis of the experimental data possible.
In Chap. 6 the new physics search is extended to nonleptonicB-meson decays, namely
b ! s decays. An understanding of standard model contributions to such decays is
essential, because the hadronic matrix elements for such decays are poorly known.
There are two possibilities dealing with this problem. One can use amplitude relations
to eliminate the hadronic matrix elements, or interference effects between B0 � NB0
mixing and decay processes. Because such effects may induce mixing-induced CP
violation, and if the decay is governed by a single CKM amplitude the hadronic matrix
elements will be canceled in the corresponding CP asymmetries. The most important
example is the “golden mode” B0d ! J= KS .
New physics contributions are studied usingCP -violating effects in the time-dependent
decay amplitudes of B0s ! J= � decays, where the B0s � NB0s mixing phase �s is asso-
ciated with new physics contributions. Since SU(3) flavour symmetry is approximately
valid, one used the B0s ! J= NK�0 decay as an control channel. The hadronic effects
usually neglected in the standard model could induce mixing-induced CP -violating
effects as large as �10%. The strategies are converted to B ! J= K, explicitly the
B0d � NB0d mixing phase �d also influenced by a new physics phase, with B ! J= �0

as the flavour symmetry counterpart. The resulting new physics phase is compatible
with zero. Large penguin contributions are able to explain the data in both decays and
leading to shifts in sin 2ˇ up to a few percent. In a recent paper [248] it is argued that
this this too large for being a standard model effect. However, the presented analysis
confirms that a new physics contribution in the amplitude is sufficient to explain the
data and shifts in sin 2ˇ can be explained by standard model effects. Expecting preci-
sion data from the LHCb experiment encouraged further studies of sub-leading effects
in B0s � NB0s as well in B0d � NB0d mixing in order to distinguish between standard model
and new physics contributions in the data.
Moreover, there are good reasons that the experiments at the LHC, which have been
started taking first data in 2009, will stimulate flavour physics in the TeV energy
regime. The expected high precision data from LHCb or an future Super B-factory
hopefully provide answers to open questions within the standard model and especially
in the flavour physics sector.
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A
QCD Sum Rules for B ! D.�/`�`

In this appendix the results for the QCD sum rules for the NB ! D.�/` N� transitions
[170] dervied from the new light-cone sum rules [169] are presented.

A.1. B-Meson Distribution Amplitudes

For the two-particle B-meson distribution amplitudes are given by

〈
0
∣∣ Nq2˛.x/Œx; 0�h�ˇ ∣∣ NBv〉 D � ifBmB

4

1∫
0

d! e�i!v�x

�
[
.1C =v/

{
�BC.!/ �

�BC.!/ � �B� .!/
2v � x =x

}

5

]
ˇ˛

; (A.1)

where the distribution amplitudes �BC.!/ and �B� .!/ are normalized,
∫1
0
d! �B˙.!/ D

1, and the variable ! > 0 is the plus component of the spectator-quark momentum of
the B-meson.
The three-particle B-meson distribution amplitudes are defined as in Ref. [176],

〈
0
∣∣ Nq2˛.x/G��.u; x/h�ˇ ∣∣ NB0.v/〉 D ifBmB
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�
v � x
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YA.!I �/

}

5

]
ˇ˛

; (A.2)
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A. QCD Sum Rules for B ! D.�/`�`

where the path-ordered gauge factors are omitted, and the distribution amplitudes 	V ,
	A, XA, and YA, depend on the variables !; � > 0, which are the plus compoments of
th light-quark and gluon momenta in the B-meson, respectively.
For the numerical analysis one uses expontential models, for the two-particle distribu-
tion amplitudes [115],

�BC.!/ D
!

!20
e
� !
!0 ; !B� .!/ D

1

!0
e
� !
!0 ; (A.3)

where the inverse moment �B is defined as ��1B D
∫1
0

d!
!
�BC.!/ is equal to !0, as

well as for the three-particle distribution amplitudes [169],

	A.!; �/ D 	V .!; �/ D �2E
6!40

�2e�.!C�/=!0 ;

XA.!I �/ D �2E
6!40

�.2w � �/e�.!C�/=!0 ;

YA.!; �/ D � �
2
E

6!40
�.7!0 � 13! C 3�/e�.!C�/=!0 :

(A.4)

A.2. Form factors

In this section the sum rules for the NB ! D.�/ decays are presented, which are taken
from [170]. The form factors for the both decays, B ! D and B ! D� are listed
seperately. Whereas the contributions to the three-particle distribution amplitudes are
collected in Sec. A.2.3.

A.2.1. B ! D Decay

The sum rules for B ! D form factors are

f CBD
(
q2
)

DfBmBmc
2fDm

2
D

{∫ !0.q
2;sD0 /

0

d! exp
{�s.!; q2/Cm2D

M 2

}
�
[
mc.$ Cmc/
$2 Cm2c � q2

�B� .!/C .$ Cmc/
(
1

$
� mc

$2 Cm2c � q2
)
�BC.!/

�
(
1

$
C mc.$

2 C 2mc$ �m2c C q2/
.$2 Cm2c � q2/2

)
N̊ B
˙ .!/

]
C�f CBD

(
q2; sD0 ;M

2
)}

; (A.5)

f CBD
(
q2
)C f �BD (q2)
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D �fBmBmc
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where $ � mB � !,

N̊ B
˙ .!/ D

!∫
0

d�
(
�BC � �B� .�/

)
; (A.7)

and

s
(
!; q2

) D mB! C m2cmB � q2!
$

: (A.8)

In the charmed meson channel the threshold sD
.�/

0 transforms into the upper limit of
the !-integration,

!0

(
q2; sD

.�/

0

)
D
m2B � q2 C sD

.�/

0 �
√
4.m2c � sD.�/0 /m2B C .m2B � q2 C sD.�/0 /2

2mB
: (A.9)

In the sum rules (A.5) and (A.6), �f CBD and �f �BD denote the contributions of the
three-particle distributions amplitudes calculated form Fig. 4.1(middle panel), which
are listed in Sec. A.2.3.

A.2.2. B ! D� Decay

The form factors for the B ! D� transition can be reproduced from the sum rules for
the heavy-light B ! K� form factors in Ref. [169] by replacing ms ! mc ,

V BD
� (
q2
) D fBmB

2fD�mD�
.mB CmD�/

{ !0.q
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d! exp
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)
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� 2mc$(
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)2 N̊ B˙ .!/]C�V BD� (q2; sD�0 ;M 2
)}

; (A.10)
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(A.12)

and a new sum rule for the remaining combination NB ! D� form factors,
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; (A.13)

As before, n (A.10)-(A.13), �V BD
�

, �ABD
�

1 , �ABD
�

2 , �ABD
�

3�0 denote the contribu-
tions of the B-meson three-particle DA’s.

A.2.3. Contributions of three-particle DA’s to LCSR

For the three-particle distributions amplitudes to the light-cone sum rules, expresed in
a generic form, one find

�F
(
q2; sD

.�/

0 ;M 2
)
D

!0.q
2;sD

.�/

0 /=mB∫
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d� exp
{�s.�mB ; q2/Cm2D.�/

M 2

}
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where

�F D
{
�f CBD; �f

˙
BD;

�V BD
�

mB
;
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and the following notation is used,

�.�/ D
(
1C m2c � q2

N�2m2B

)�1
: (A.16)

The integrals over the three-particle DA’s multiplying the inverse powers of the Borel
parameter 1=M 2.n�1/ with n D 1; 2; 3 are defined as:

I .F /n .�/ D 1

N�n
�mB∫
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1∫
�mB�!
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(A.17)

where:

XA.!; �/ D
!∫
0

d� XA.�; �/ ; YA.!; �/ D
!∫
0

d� YA.�; �/ : (A.18)

The nonvanishing coefficients entering Eq. (A.17) are:

C
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mB N� ;

C
.f
C

BD ;	A/

2 D mB N�.4u � 1/C 3mc � 2m
2
c � q2
mB N�

.1 � u/ ;

C
.f
C

BD ;	V /

1 D 2.1 � u/
mB N�

;
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B
Exclusive Semi-leptonic B Decays with

New Physics

In the following the exclusive semileptonic NB ! D�` N� decay rates including new
physics contributions and taking scalar, tensor and pseudotensor currents into account
as explained in Chap. 5. The collected formulae are taken from [200].

B.1. Decay Rates with Full Form Factors

In Sec. 5.1.1 scalar-, pseudosclar- and tensor-current form factors in NB ! D.�/` N�
decay are presented. In the heavy-quark limit not all form factors disappear, some are
protected by Luke’s theorem [193]. In this section the decay rates for B ! D� and
B ! D� transitions are presented with these additional form factors.

B.1.1. NB ! D` N� Decay

Within the standard model, where a .V �A/ current structure is used, the semileptonic
decay rate is defined by Eq. (4.23). With the scalar and tensor hadronic form factors
the function jG .w/j becomes

jG NP.w/j2 Dc2C
[
hC.w/ � 1 � r

1C r h�.w/
]2

C r2 � 2rw C 1
.1C r/2

[
d 2Ch

2
T .w/ � 3

g2C
w2 � 1h

2
S.w/

]
: (B.1)

117



B. Exclusive Semi-leptonic B Decays with New Physics

In the heavy-quark limit the form factor h�.w/ vanish, whereas the other ones become
a single function. With respect to (5.6) one finds

jG NP
HQL.w/j2 D

{
c2C C

r2 � 2rw C 1
.1C r/2

[
d 2C � 3

w C 1
w � 1g

2
C

]}
j�.w/j2 ; (B.2)

where j�.w/j is the Isgur-Wise function. Neglecting the scalar and tensor form factors
the heavy-quark limit result is in agreement with the one presented in Ref. [198].

B.1.2. NB ! D�` N� Decay

For the semileptonic NB ! D�` N� decay the function F .w/ - Eq. (4.15) - becomes
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∣∣2 D c2�jhA1.w/j2
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∑
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∣∣2 ; (B.3)

where the helicity functions containing new physics contributions can be splitted into
a transverse decay mode
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; (B.4)
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and a longitudinal one,∣∣Hk.w/∣∣2 D ∣∣HNP
0 .w/

∣∣2
D
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: (B.5)

Here, R1.w/ and R2.w/ are defined as in Eq. (3.102) and (3.103), respectively. In the
heavy-quark limit, one find,
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∣∣∣2 D1C 1 � 2wr� C r2�

.1 � r�/2
[
d 2� C 2d 2C � 3.w � 1/g2�

c2�

]
:

(B.6)

Within the standard model the coefficients d˙ and g˙ are suppressed. The results are
in agreement with the standard model predictions.

B.2. Isgur-Wise function

The behaviour of the Isgur-Wise function near zero-recoil is determined by the slope
�2 > 0, �.1/0 D �2�2. As discussed in Chap. 5 the B ! D� transitions has
longitudinal and transverse decay modes. For the slope one finds in both decay modes
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with
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C
Time-dependent Angular Distributions

of B0s ! J= NK�0 and CP Conjugates

In this appendix the time-dependent angular distributions of B0s ! J= NK�0 and its
CP -conjugates are presented. Following Ref. [229], one introduced the following set
of trigonometric functions,

f1 D 2 cos2 .1 � sin2 � cos2 '/

f2 D sin2 .1 � sin2 � sin2 '/

f3 D sin2 sin2 �

f4 D sin2 sin 2� sin'

f5 D .1=
p
2/ sin 2 sin2 � sin 2'

f6 D .1=
p
2/ sin 2 sin 2� cos':

(C.1)

Using the notation Af � A.B0s ! .J= NK�0/f / for the unevolved amplitude in (6.8)
and NAf for its CP conjugate, one finds

d 3� ŒB0s .t/! J= .! `C`�/ NK�0.! �CK�/�

d cos � d' d cos 

D 9

64�
Œcosh.��st=2/C cos.�Mst /� e

��st
[
f1jA0j2 C f2jAkj2 C f3jA?j2

� f4=fA�kA?g C f5<f.A�0Akg C f6=f.A�0A?g
]

(C.2)

d 3� Œ NB0s .t/! J= .! `C`�/K�0.! ��KC/�

d cos � d' d cos 
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f1j NA0j2 C f2j NAkj2 C f3j NA?j2
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]

(C.3)
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d cos � d' d cos 

D 9

64�
Œcosh.��st=2/ � cos.�Mst /� e

��st
[
f1j NA0j2 C f2j NAkj2 C f3j NA?j2
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]

(C.4)

d 3� Œ NBs.t/! J= .! `C`�/ NK�0.! �CK�/�

d cos � d' d cos 

D 9

64�
Œcosh.��st=2/ � cos.�Mst /� e

��st
[
f1jA0j2 C f2jAkj2 C f3jA?j2

� f4=fA�kA?g C f5<fA�0Akg C f6=fA�0A?g
]
: (C.5)

In the case of ��s ! 0, one gets

cosh.��st=2/C cos.�Mst / ! 2 cos2.�Mst=2/ ; (C.6)

cosh.��st=2/ � cos.�Mst / ! 2 sin2.�Mst=2/ : (C.7)

Consequently, the expressions listed above reduce to those given in Ref. [229] for the
flavour-specific Bd ! J= Œ! `C`��K�Œ! K˙��� modes with the assumption of
jAf j D j NAf j.
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[243] D. Duplančić and B. Melić, “B , Bs ! K form factors: An update of light-cone
sum rule results,” Phys. Rev. D78 (2008) 054105, arXiv:0805.4170.

[244] D. Becirevic and A. B. Kaidalov, “Comment on the heavy! light form
factors,” Phys. Lett. B478 (2000) 417, arXiv:hep-ph/9904490.

[245] M. Gronau and J. L. Rosner, “B decays dominated by ! � � mixing,” Phys.
Lett. B666 (2008) 185, arXiv:0806.3584.

[246] R. Fleischer, “Bs;d ! ��; �K;KK: status and prospects,” Eur. Phys. J. C52
(2007) 267, arXiv:0705.1121.

[247] A. Khodjamirian et al., “Kaon distribution ampltiude from QCD sum rules,”
Phys. Rev. D70 (2004) 094002, arXiv:hep-ph/0407226.

[248] M. Gronau and J. L. Rosner, “Doubly CKM-suppressed corrections to CP
asymmetries in B0 ! J= K0,” Phys. Lett. B672 (2009) 349,
arXiv:0812.4796.

143

http://dx.doi.org/10.1103/PhysRevLett.98.031802
http://dx.doi.org/10.1103/PhysRevLett.98.031802
http://arxiv.org/abs/arXiv:hep-ex/0608039
http://dx.doi.org/10.1016/S0550-3213(99)00712-9
http://arxiv.org/abs/arXiv:hep-ph/9812392
http://dokumentix.ub.uni-siegen.de/opus/volltexte/2009/392/
http://dx.doi.org/10.1103/PhysRevLett.101.021801
http://arxiv.org/abs/arXiv:0804.0896
http://dx.doi.org/10.1103/PhysRevD.77.071101
http://dx.doi.org/10.1103/PhysRevD.77.071101
http://arxiv.org/abs/arXiv:0708.0304
http://dx.doi.org/10.1103/PhysRevD.78.054015
http://arxiv.org/abs/arXiv:0805.4170
http://dx.doi.org/10.1016/S0370-2693(00)00290-2
http://arxiv.org/abs/arXiv:hep-ph/9904490
http://dx.doi.org/10.1016/j.physletb.2008.07.016
http://dx.doi.org/10.1016/j.physletb.2008.07.016
http://arxiv.org/abs/arXiv:0806.3584
http://dx.doi.org/10.1140/epjc/s10052-007-0391-7
http://dx.doi.org/10.1140/epjc/s10052-007-0391-7
http://arxiv.org/abs/arXiv:0705.1121
http://dx.doi.org/10.1103/PhysRevD.70.094002
http://arxiv.org/abs/arXiv:hep-ph/0407226
http://dx.doi.org/10.1016/j.physletb.2009.01.049
http://arxiv.org/abs/arXiv:0812.4796

	Front page

	Abstract, Zusammenfassung 
	Contents
	Introduction
	Fundamentals
	Standard Model
	Spinor Representations
	Standard Symmetry Group

	CP Violation and B Physics
	 CP Violation
	B0-0 Mixing and CP Violation


	B-Meson Decays
	Effective Field Theory
	Operator-Product Expansion
	Renormalization-Group improved Perturbation Theory
	Weak Effective Hamiltonian

	Hadronic Matrix Element
	Light-Cone Distribution Amplitudes
	Form Factors

	Heavy-Quark Effective Theory
	Heavy-Quark Symmetry
	Transition Matrix Elements and Covariant Trace Formalism
	Renormalization and Power Counting
	Semi-leptonic Decay Rates


	B-Decays and QCD Sum Rules
	QCD Sum Rule Formalism
	Correlation Function
	Light-Cone Sum Rule
	Implications from Heavy-Quark Effective Theory

	Numerical Analysis
	Semileptonic  D Decay
	Semileptonic  D Decay
	Heavy-Quark Symmetry Limit

	Conclusions

	New Physics in B D()_ Decays
	 Form Factors and Decay Rates
	Scalar, Pseudo-Scalar, Tensor and Pseudo-Tensor Form Factors
	New-Physics Decay Rates

	New Physics Contributions in Heavy-Quark Symmetry
	Slope Parameter
	Radiative Corrections

	Analysis of Right-handed Admixtures
	Conclusions

	New Physics in bs Decays
	B J/
	Structure of Angular Distribution
	Decay Amplitudes
	Time-dependent Observables
	Penguin Contributions
	Controlling the Observables

	The Golden Modes B0J/K_S,L
	Observables in BJ/K Decays
	New Physics Contributions

	SU(3) Breaking Effects
	-  Mixing
	SU(3)-Breaking in the Exctraction of H_f
	SU(3)-Breaking in a_f'=a_f and _f'=_f
	Internal Consistency Checks of SU(3)

	Conclusions

	Concluding Remarks
	QCD Sum Rules for BD()_
	B-Meson Distribution Amplitudes
	Form factors
	B D
	B D
	Contributions of three-particle DA's to LCSR


	Exclusive Semi-leptonic B Decays with New Physics
	Decay Rates with Full Form Factors
	 D 
	 D

	Isgur-Wise function

	Time-dependent Angular Distributions of B0_sJ/0 and CP Conjugates
	References

