Interactive Visualization
of Remote Sensing Data

Interaktive Visualisierung
von Fernerkundungsdaten

Vom Department Elektrotechnik und Informatik
der Naturwissenschaftlich-Technischen Fakultit
der Universitadt Siegen

zur Erlangung des akademischen Grades
Doktor der Ingenieurwissenschaften (Dr.-Ing.)

genehmigte Dissertation

von
Martin Lambers

1. Gutachter: Prof. Dr. Andreas Kolb
2. Gutachter: Dr. Karol Myszkowski
Vorsitzender: Prof. Dr. Roland Wismiiller

Tag der miindlichen Priifung: 1. Juli 2011

Gedruckt auf alterungsbestiandigem holz- und sdurefreiem Papier.

Abstract

Remote Sensing is an important tool for the analysis and interpretation of
a wide range of global and regional conditions and processes on the earth.
Airborne and spaceborne Remote Sensing systems produce a rapidly
growing number of data sets, and improvements in sensor technology re-
sult in continuously increasing spatial and spectral resolutions of these
data sets.

To visualize Remote Sensing data for analysis and interpretation pur-
poses, sensor data from various sources has to be processed and combined
to produce geometry and color information. Since the details contained in
multimodal high-resolution data sets cannot be preserved in a single static
image, interactive visualization techniques are required.

A system for interactive visualization of Remote Sensing data allows to
choose and adjust data processing and data fusion methods interactively.
This enables the user to bring out the data details that are relevant for the
current aims and objectives, and thus to gain better insight into the data.

Interactive visualization of Remote Sensing data is a challenging prob-
lem:

* Remote Sensing data sets are generally very large due to their high
resolution and area coverage, and visualization tasks often need to
combine multiple data sets. An interactive visualization system must
be able to efficiently handle large amounts of diverse input data,
and at the same time provide data processing capabilities that allow
interactive adjustments.

* To produce geometry and color information from sensor data, spe-
cialized processing methods are required for different sensor sys-
tems. These specialized methods must allow interactive and intuitive
adjustments.

* The dynamically generated geometry and color information result-
ing from interactive data processing and fusion must be rendered
efficiently and accurately.

This dissertation proposes methods to address these challenges. A
framework is presented that handles data management, processing, and
fusion. Specialized interactive sensor data processing methods are exam-
ined based on the example of images generated by Synthetic Aperture
Radar systems. Efficient geometry refinement methods are presented that
are suitable for rendering dynamically generated data with guaranteed
error bounds.

iii

Zusammenfassung

Fernerkundung ist ein wichtiges Werkzeug fiir die Analyse und Interpre-
tation einer Vielzahl von globalen und lokalen Zustdnden und Prozessen
auf der Erde. Flugzeug- und satellitengestiitzte Fernerkundungssysteme
produzieren eine schnell wachsende Zahl an Datensitzen, und Fortschrit-
te im Bereich der Sensortechnik fithren zu immer hoheren raumlichen und
spektralen Auflosungen dieser Datensétze.

Fiir die Visualisierung von Fernerkundungsdaten miissen Sensorda-
ten aus verschiedenen Quellen verarbeitet und kombiniert werden, um
Geometrie- und Farbinformation zu produzieren. Da der Detailreichtum
multimodaler, hochaufgeloster Datensdtze nicht in einem einzigen stati-
schen Bild wiedergegeben werden kann, sind interaktive Visualisierungs-
techniken erforderlich.

Ein System zur interaktiven Visualisierung von Fernerkundungsdaten
erlaubt es, Methoden fiir die Datenverarbeitung und Datenfusion interak-
tiv auszuwiéhlen und zu justieren. Dies ermoglicht es dem Benutzer, die
fiir die aktuelle Fragestellung relevanten Details sichtbar zu machen, und
so ein besseres Verstdandnis der Daten zu erlangen.

Interaktive Visualisierung von Fernerkundungsdaten ist eine Heraus-
forderung;:

¢ Fernerkundungsdatensitze sind aufgrund ihrer hohen Auflosung
und Flachenabdeckung sehr grofs, und Visualisierungsaufgaben er-
fordern hédufig die Kombination mehrerer verschiedener Datensitze.
Ein interaktives Visualisierungssystem muss daher grofife Mengen
vielfaltiger Eingabedaten effizient verwalten konnen, und gleichzei-
tig Datenverarbeitungskapazitdten bereit halten, die interaktives Ein-
greifen ermoglichen.

* Um Geometrie- und Farbinformation zu erzeugen, sind fiir verschie-
dene Sensorsysteme jeweils spezialisierte Datenverarbeitungsmetho-
den notig. Diese Methoden miissen interaktives und intuitives Jus-
tieren erlauben.

* Die dynamisch generierte Geometrie- und Farbinformation aus den
interaktiven Datenverarbeitungs- und Datenfusionsprozessen muss
effizient und prézise zur Anzeige gebracht werden.

Diese Dissertation schldgt Methoden vor, diesen Herausforderungen
zu begegnen. Es wird ein System vorgestellt, das Datenverwaltung, Daten-
verabeitung und Datenfusion tibernimmt. Spezialisierte interaktive Verar-
beitungsmethoden fiir Sensordaten werden am Beispiel von Bildern aus
Radarsystemen mit synthetischer Apertur untersucht. Schliefslich werden

\%

Vi Zusammenfassung

effiziente Geometrieverfeinerungsmethoden vorgestellt, die zur Anzeige
dynamischer Daten geeignet sind und dabei Fehlerobergrenzen garantie-
ren konnen.

Contents

Abstract
Zusammenfassung

Introduction

Visualization of Remote Sensing Data
Problem Statement
Contribution Lo
Chapter Overview

Visualization Framework

1.1 Overview
1.2 Data Hierarchy and Management
121 RelatedWork
1.2.2 Restricted Quadtree
1.2.3 Sensor Data Representation
124 Data Storage and Management
125 Summary 0 ..
126 FutureWork
1.3 GPU-Based Data Processing
131 Background
132 RelatedWork
1.3.3 Processing Pipeline
134 Summary
14 Level of Detail and Rendering
141 RelatedWork
142 LevelOfDetail
143 MeshCreation
144 Rendering
1.4.5 Distributed and Parallel Rendering
146 Summary
1.5 Visual Assistance Tools

vii

Ol = W N =

NCIEN IR |

viii

Contents

151 Related Work
152 Lenses
153 Detectors.
154 Summary
16 Results,

Synthetic Aperture Radar Image Visualization

21 Overview
22 DynamicRange
221 Introduction
222 RelatedWork
223 Commonly Used Methods
224 Tone Mapping Operators
225 Local Methods for SAR Images
22,6 Implementation.
227 Results,
23 Speckle o
231 Introduction
232 RelatedWork
2.3.3 Interactive Speckle Reduction
234 Results,
2.4 Point Target Analysis
241 Introduction
242 RelatedWork
2.4.3 Interactive Point Target Analysis
244 Results,
25 Summary Lo

Dynamic Terrain Rendering

31 Overview
32 RelatedWork
3.3 DataStructures
331 Hierarchy
332 Mesh
3.3.3 Edge Mark Arrays
34 Refinement.
3.4.1 Edge Split Criteria
3.4.2 Bottom Up Refinement
3.43 Top Down Refinement
3.5 Implementation Notes
36 Results

37 Summary.

Contents ix
Conclusion 101
Summary 101
Future Work 102
Bibliography 103

Introduction

Remote Sensing can be defined as the acquisition of information on some
properties of a phenomenon or object by a recording device not in phys-
ical contact with the features under surveillance. This is a very broad
definition; in common usage, the term usually refers to the acquisition of
information about the earth’s land surface, oceans, and atmosphere, by
the use of sensing devices located at some distance from the observed tar-
get [Shol0, Cam08]. Most often, sensing devices sample electromagnetic
radiation and are located on platforms such as aircrafts, satellites, ships,
vehicles, or stationary facilities.

Remote Sensing is essential for the understanding of global intercon-
nected processes, and thus takes a key role in observation, analysis, and
planning tasks in important areas such as environment and ecosystems,
food and agriculture, resources and trade.

Remote Sensing technologies are applied to a very broad range of prob-
lems. Examples include measuring ice shelf thickness, monitoring use of
agricultural areas, locating sites of archaeological interest, estimating sea
water temperature, or guiding emergency response teams, to name just
a few. With this vast variety of applications comes a vast variety of spe-
cialized sensors. Examples include Light Detection And Ranging (LIDAR)
sensors for distance measurements, radiometers for multispectral imaging,
and weather surveillance radar systems.

A particularly versatile imaging sensor technology is Synthetic Aper-
ture Radar (SAR). SAR systems record information about the electric field
backscattered from an actively illuminated target area. This information
is then transformed into a reflectivity map, the SAR image, using a spe-
cial image formation process. SAR systems are independent of daylight
and weather conditions, achieve high spatial resolutions, and provide rich
information about the target scene. These properties make SAR systems
indispensable for many Remote Sensing tasks.

With the growing importance of Remote Sensing, more and more data
sets are produced, and at the same time advancements in sensor technol-
ogy continue to increase their spatial and spectral resolutions. Making

1

2 Introduction

these vast and fast growing amounts of sensor data accessible for analysis
and interpretation requires visualization techniques.

Visualization of Remote Sensing Data

Remote Sensing data sets usually take the form of two-dimensional maps
that cover a target area on the earth’s land or ocean surface. This is true not
only for data sets that provide information directly tied to the surface, such
as optical image data sets or elevation models, but also for data sets whose
samples can be meaningfully associated with locations on the surface, such
as measurements about vegetation, information from ground penetrating
radar systems, or atmospheric measurements for defined heights.

Many sensor data maps can be visualized by transforming them to
two-dimensional images for display. Usually, different maps of a region
form different layers in a visualization system, and the user can switch
between layers or combine layers into a single view. Additional non-map
layers can provide meta information such as area and place names, bor-
ders, or the location of roads or buildings.

A map that contains elevation data for surface locations is called a Dig-
ital Elevation Model (DEM). The elevation measures the distance between
a surface point and the corresponding point on an underlying model of
a planet, most often an ellipsoid. In the presence of one or more DEMs,
a visualization system can render a three-dimensional view of the tar-
get scene. In this case, the elevation maps and accompanying image
layers form terrain data, and terrain rendering methods are used to ap-
ply the image layers as textures to the geometry defined by the elevation
maps.

Traditionally, the transformation of sensor data maps to textures and
geometry takes place in an offline preprocessing step before the actual
visualization. The visualization system then assumes that input geometry
and textures are static. This allows significant optimizations and speedups
in the rendering component. This approach is also used in the terrain
rendering component of popular commercial applications such as Google
Earth or NASA Worldwind. As a result, the only interaction available
to the user during visualization is navigation through static data, and in
some cases switching between different layers. The transformation process
that created texture and geometry cannot be influenced anymore.

Problem Statement 3

Problem Statement

The transformation of sensor data maps to textures and geometry gener-
ally depends on the transformation method and its parameters, and often
is impossible without information loss. Additionally, there is no single
“best” set of methods and parameters for a given data set. Instead, meth-
ods and parameters need to be chosen and adjusted to fit the needs of the
current visualization task.

For these reasons, producing one static texture and geometry set for
visualization is not enough. Instead, the user must be able to interactively
influence the transformation process by choosing algorithms and setting
parameters so that a deeper understanding of the data can be gained, and
the features of interest for the task at hand can be identified and exposed
more reliably.

This integration of the transformation process into the interactive visu-
alization system poses three main challenges:

1. Large amounts of Remote Sensing data must be managed and pro-
cessed fast enough for interactive use. The user must instantly get
visual feedback on changes to the transformation process.

2. Specialized methods to transform sensor data to geometry and tex-
tures for visualization are required for different sensor technologies.
These methods must be optimized for intuitive interactive use.

3. The dynamically generated terrain data (geometry and textures) has
to be rendered accurately and fast.

In this dissertation, techniques and algorithms to address these chal-
lenges are proposed and combined into a framework for interactive visu-
alization of Remote Sensing data.

To meet the large demand for computational power, todays program-
mable Graphics Processing Units (GPUs) are used not only for rendering,
but also for general data processing tasks. Their highly parallel archi-
tecture is ideally suited for sensor data processing requirements. Addi-
tionally, since GPUs have become mass market articles, their price/perfor-
mance ratio is very attractive.

The process of transforming sensor data to textures and geometry for
visualization is highly specific to the sensor technology and its properties.
This dissertation focusses on the transformation of SAR reflectivity maps,
both because of the importance of SAR for Remote Sensing, and because
SAR reflectivity maps are a prime example for the challenges involved in
the visualization of Remote Sensing data.

4 Introduction

Contribution

The contributions of this dissertation to the field of interactive visualiza-
tion of Remote Sensing data are threefold:

1. A visualization framework, including
* A combined data hierarchy and distributed data management

using multiple cache levels.

¢ A GPU-based processing pipeline for hierarchically organized
sensor data.

¢ Distributed and parallel rendering for Virtual Reality and Pow-
erwall applications.

* Visual assistance tools to help the user in interacting with the
framework.

Parts of this work were presented at the IEEE International Geo-
science and Remote Sensing Symposium (IGARSS) [LKNKO07, LK08b,
LKO09, LK10b].

2. Interactive visualization operators to transform SAR reflectivity
maps into textures for display, in particular

* Novel GPU-based global and local dynamic range reduction op-
erators.
* GPU-based despeckling operators.
Large parts of this work were presented at IGARSS [LKNKO07] and
the European Conference on Synthetic Aperture Radar (EUSAR)

[LKO8a], and published in the IEEE Geoscience and Remote Sens-
ing Letters [LNKO8].

3. A novel technique for rendering dynamic terrain data with a guar-
anteed upper bound of the screen space error, using

* A novel data structure to efficiently store and manage triangle
mesh hierarchies.

¢ Bottom up and top down refinement methods for triangle mesh
hierarchies.

This work was published in the 3D Research Journal [LK10a].

Chapter Overview 5

Chapter Overview

The general GPU-based visualization framework is described in Chapter 1.
This framework provides the foundation for the interactive transforma-
tion of sensor data into geometry and textures, and for the subsequent
rendering of this dynamic terrain data. Chapter 2 presents specialized
visualization operators that transform SAR reflectivity maps to textures
for rendering. These operators exemplify the challenges associated with
the visualization of Remote Sensing data. Chapter 3 describes the data
structures and refinement methods necessary to render the dynamically
generated terrain data accurately. This dissertation concludes with a sum-
mary and outlook.

Chapter 1

Visualization Framework

1.1 Overview

A framework for interactive visualization of Remote Sensing data must
be able to handle large amounts of input data, process and combine this
data fast enough to allow interactive adjustments of processing and fusion
methods, and render the resulting dynamically generated terrain data ac-
curately. To achieve these goals, it is necessary to leverage the computa-
tional power of GPUs not only for rendering, but also for data processing
and fusion.

An overview of such a framework is given in Fig. 1.1. The input con-
sists of multiple hierarchically organized data sets containing georefer-
enced sensor data. Individual parts of these data sets are chosen depend-
ing on the current region of interest, and transferred to GPU memory.
On the GPU, elevation input data is transformed to elevation maps, and
image-like input data is transformed to color textures. These transforma-
tions are based on interactively adjustable processing methods tailored to
the specific sensor technology. To combine the various input data sets
into a single view, the resulting sets of elevation maps and textures are
fused into a single set of elevation maps and a single set of textures us-
ing interactively adjustable data fusion methods. The result of this step
is dynamically generated terrain data, consisting of an elevation map and
texture hierarchy. This dynamic terrain data is finally rendered.

To implement such a framework, the following challenges need to be
addressed:

e Data management. To be able to fuse multiple data sets for vari-
ous areas of the earth’s surface, a common data hierarchy must be
defined that allows to manage georeferenced input data in a single,
consistent representation. Since sensor data processing is performed

7

Chapter 1. Visualization Framework

User

Select
data sets

DEM 1

DEM 2

Orthophoto

SAR Image

Hierarchical
raw input data

Determine required subset
of data maps from hierarchy

‘Adjust
transfor-
matio

assistance

Transform
raw maps to
elevation maps

Adjust
fusion

— data flow
1
— control flow,

Navigate
>
—
9]
g
g =
-
52
©8
8 g
2 g
Y
g ©
e
()
o)
=

Transform
raw maps to
textures

Fuse into a Create and
single elevation refine
map set a mesh
Fuse into a
single texture Render —
set
GPU

Figure 1.1: Overview of the visualization framework.

1.2 Data Hierarchy and Management 9

interactively and not in a preprocessing step, the data management
component must be able to handle a wide range of sensor data types.
Problems of storing and transferring very large amounts of data ef-
ficiently without blocking the interactive user interface need to be
addressed.

* GPU-based data processing and fusion. The transformation of sensor
data to elevation maps and textures, as well as subsequent fusion of
multiple elevation map and texture sets, need to be performed on
the GPU to achieve the processing speed that is necessary to allow
interactive adjustments.

* Accurate rendering of dynamic terrain data. The dynamically gen-
erated elevation maps and textures need to be rendered efficiently.
In the context of Remote Sensing data visualization, reliable and ac-
curate rendering is important to avoid misinterpretation. Therefore,
the rendering methods must guarantee upper bounds on the screen
space error.

* Visual assistance tools. Since the interactive approach of visualiza-
tion introduces many methods and parameters for the user to choose
and adjust, additional assistance tools are required to help the user
find the optimal set of parameters for the visualization task at hand.

This chapter describes framework components that address these chal-
lenges. These components form the basis for all methods and algorithms
presented in this dissertation.

1.2 Data Hierarchy and Management

As described in the Introduction, this work focusses on Remote Sensing
data that takes the form of two-dimensional maps for target areas on the
earth’s land or ocean surface.

Such maps can cover huge areas; some provide world-wide cover-
age. At the same time, advancements in sensor technology continue to
increase the spatial and spectral resolutions of these maps. For example,
for satellite-based systems, a ground resolution in the decimeter range is
now common both for SAR and optical systems, and hyperspectral instru-
ments are capable of resolving more than 200 spectral bands.

To handle the resulting huge amounts of sensor data in interactive vi-
sualization systems, hierarchical data structures must be used, and level
of detail techniques must pick the required subset of data from these hier-
archies to reduce the memory and processing requirements of the system.

10 Chapter 1. Visualization Framework

This section describes the data hierarchy and management component
of the framework, corresponding to the left side of Fig. 1.1. The underlying
data structure is chosen to combine the following benefits of previously
used structures:

¢ The data structure is suitable to store and manage huge amounts of
diverse sensor data.

* The data structure provides a common reference system for georef-
erenced data covering different areas of the earth’s surface.

¢ The data structure allows efficient adaptive grid triangulations for
level of detail purposes.

¢ The data structure and resulting triangulations are regular to allow
efficient parallel algorithm implementations on the GPU.

1.2.1 Related Work

Hierarchical data structures for two-dimensional maps are a fundamen-
tal component of many applications in computer graphics and computer
vision, and thus have been thoroughly researched for many years.

In the context of terrain rendering, a hierarchical data structure must
allow efficient construction of a single, seamless mesh for rendering. Ad-
ditionally, the data hierarchy must allow efficient use of highly-parallel
computing resources like the GPU. This latter requirement favors regular
hierarchies over irregular hierarchies, because regular hierarchies tend to
use simpler data structures that allow a higher grade of parallelization.
This outweighs the greater adaptability of irregular structures: with mod-
ern GPUs, it is generally cheaper to render more triangles than strictly
necessary than to compute an optimally adaptive triangulation.

A recent survey by Pajarola and Gobbetti gives an overview of data
hierarchies that fulfill these requirements [PG07]. In this survey, two
main classes of regular adaptive grid triangulation methods are identified:
quadtree-based methods and triangle bin-tree based methods. Pajarola
and Gobetti argue that both classes of methods lead to the same class of
adaptive grid triangulations. Quadtree-based methods have the advantage
to directly provide a hierarchical tiling suitable for storing elevation and
image maps.

Originally, terrain rendering methods used such quadtree (or trian-
gle bin-tree) structures to build the complete mesh for rendering on the
CPU, including continuous level of detail computation [LKR*96, Paj98,
DWS*97]. With GPU performance improvements, this approach became
a bottleneck in recent years since GPUs nowadays can render far more

1.2 Data Hierarchy and Management 11

s s s

Figure 1.2: An unrestricted quadtree (left), a restricted quadtree (mid-
dle), and one possible conforming triangle mesh for the restricted quadtree
(right).

triangles than these CPU-based methods can generate in a given time
frame. For this reason, more recent methods tend to choose and com-
bine larger blocks on the CPU for rendering on the GPU. Such blocks can
for example consist of fixed or precomputed meshes for quadtree struc-
tures [SW06, DSW09]. Special care must be taken that the mesh is consis-
tent at block boundaries. Some methods add special stitching geometry
for this purpose [WMD*04, DSW09, LKES09], which requires special han-
dling of block boundaries and introduces additional geometry data.

Most terrain rendering methods only handle terrain data sets that rep-
resent a limited local area on a planet’s surface, and interpret height
map input data relative to a local plane. Only a few methods explicitly
address the problems associated with handling a complete planet sur-
face [CGG*03, KLJ*09]. In this case, the geometry is given by interpret-
ing elevation data relative to an ellipsoid or sphere that represents the
planet. Sampling problems and distortion that arise when managing ele-
vation and image map hierarchies for ellipsoid or sphere surfaces have to
be addressed.

1.2.2 Restricted Quadtree

To combine the benefits of simple seamless triangle mesh creation with the
performance advantages of block-based approaches, a restricted quadtree
[PGO7] is used as the basic hierarchical data structure, and patches of tri-
angles are generated for each quad on the GPU.

A restricted quadtree is a quadtree in which the levels of neighboring
quads differ by not more than one. See Fig. 1.2. Restricted quadtrees allow
the generation of triangle meshes with two important properties:

1. The meshes consist entirely of right-angled, isosceles triangles. This
regularity is important for GPU-based mesh refinement techniques,

12 Chapter 1. Visualization Framework

Figure 1.3: Different conforming triangle meshes for a restricted quadtree:
level | = 0 (left) is the minimal conforming mesh. Level | = 1 (middle)
and level | = 2 (right) correspond to the minimal conforming mesh after
subdividing each quad of the quadtree I times.

as described in Chapter 3.

2. The meshes do not contain T-junctions that would lead to cracks
in the geometry when the mesh is applied to elevation maps. See
Fig. 1.2.

Restricted quadtree triangulations with these properties are called conform-
ing triangulations.

There are multiple ways to create conforming triangle meshes from a
restricted quadtree hierarchy [PG07]. The minimal conforming triangle
mesh consists of 4 to 8 triangles per quad, depending on the levels of
neighboring quads. This minimal conforming mesh is the level 0 triangu-
lation of the restricted quadtree. Higher level triangulations (level /,1 > 0)
are equivalent to minimal triangulations applied after subdividing each
quad of the restricted quadtree | times. See Fig. 1.3.

Triangle patches for a given level | can be generated for each quad
easily and efficiently, and these patches form a conforming triangle mesh
for the quadtree.

To meet the specific needs of Remote Sensing data visualization for
the earth, the restricted quadtree variant used in the framework has the
following additional properties:

* The quadtree is based on the World Geodetic System reference co-
ordinate system, version WGS84. This coordinate system defines
latitude/longitude coordinates relative to a reference ellipsoid that
represents the earth [NGA]. The single quad in the lowest level zero
of the quadtree represents the whole earth in the WGS84 coordi-
nate system, with the latitude ranging from +90° (north) to —90°
(south) and the longitude ranging from —180° (west) to +180° (east),
as shown in Fig. 1.4.

1.2 Data Hierarchy and Management 13

Level 0
.
P
=

Level 1

Level 2

Level 3

Figure 1.4: The quadtree variant used in the framework, representing the
WGS84 earth map. A data set (shown in green) provides data for a subset
of quads (shown in blue) in the hierarchy.

¢ The quadtree levels are contiguous at the —180°/ + 180° longitude
transition, i.e. the leftmost quads in a quadtree level are direct neigh-
bors to the rightmost quads in this level. This guarantees a seamless
visualization at this transition.

* To provide approximately square sample resolutions on the earth
surface, each quad is twice as large in longitude than in latitude di-
rection. With a quad size of 512 x 256 samples, quad level 16 would
provide a ground coverage of about 1m? per sample, and quad level
26 would provide a ground coverage of about 1mm? per sample
(near the equator). To generate conforming triangle meshes from
quads that are twice as wide as high, each quad is subdivided once
in longitude direction before creating a triangle patch for it. An ex-
ample is given in Fig. 1.5.

Note that this choice of a common georeferencing coordinate system
results in non-optimal behaviour at the north and south pole, because one
side of the northernmost and southernmost quads will be reduced to a
point when projecting WGS84 to cartesian coordinates. This leads to two
problems. First, triangles generated for these quads will degenerate when

14 Chapter 1. Visualization Framework

Figure 1.5: Triangulation of the quadtree variant used in the framework,
with quads that are twice as wide as high.

being projected to cartesian coordinates. Second, sensor data stored in
quads will exhibit sampling problems in near proximity to the poles.

Therefore, the presented data hierarchy is only suitable for a limited
latitude range. In the range from —67.5° to +67.5° latitude, which corre-
sponds to quadtree level 3 without the northernmost and southernmost
quad rows and covers more than 92 % of the earth’s surface, the degener-
ation of triangles is limited, and the longitude width of sensor data sam-
ples in proximity to £67.5° is still roughly 38 % of the width of samples
in proximity to the equator. See Fig. 1.6. The sampling problems and the
consequential increase in data size are manageable in this range. For the
pole regions outside this range, an approximative, lower-quality visualiza-
tion can be achieved by artificially limiting the level of detail and ignoring
the sampling problem in these regions.

An alternative quadtree-based representation of the earth’s surface with
the potential to avoid these precision limitations is described in Sec. 1.2.6.
However, the current framework implementation is only concerned with
the limited subset of the full latitude range as described above, and does
not incorporate this extension.

1.2.3 Sensor Data Representation

The restricted quadtree as described in Sec. 1.2.2 allows to represent all
sensor data sets in a single coordinate system and a single hierarchy. This
avoids having to mix and match different projections and hierarchies at
visualization time.

The hierarchy is suitable for many types of map-like sensor data. The
framework currently implements support for DEMs, color images (e.g. or-
thophotos), and SAR images. To store a given sensor data set in the hier-
archy, the following preprocessing steps have to be performed:

1.2 Data Hierarchy and Management 15

Figure 1.6: The latitude range from —67.5° to +67.5° (displayed in green)
for which the data hierarchy is valid.

1. The data set must be projected into the WGS84 coordinate system.
This coordinate system is in wide use in many applications, includ-
ing the Global Positioning System (GPS). Many data sets are already
available in a W(GS84 representation, and data sets in other repre-
sentations can be projected to WGS84 using widely available free
software packages such as the Geospatial Data Abstraction Library
(GDAL) [GDA].

2. The original resolution of a sensor data set in WGS84 representation
will generally lie between two quadtree levels, as shown in Fig. 1.4.
The data set is first resampled (using bilinear interpolation) to the
next higher quadtree level, resulting in a magnification factor be-
tween 1 and 2. The representation for each quad in lower quadtree
levels can then be computed by combining the four corresponding
quads from the next higher level using averaging.

3. Quads that are not covered by the data set are left empty. Areas of
a non-empty quad that are not covered by the data set are marked
with a special nodata flag. This also allows to handle data sets with
holes, as is common e.g. for various kinds of DEM data sets.

In addition to the unprocessed sensor data stored in the hierarchy, sup-
plemental information about the data needs to be available to subsequent
sensor data processing methods. This supplemental information is either
given or can be computed while building the hierarchy. It belongs into
one of the following categories:

* Global information, relevant for the complete data set. Examples for
this category are the sensor data type and specifications, the area
that is represented by the data set, global minimum and maximum

16 Chapter 1. Visualization Framework

Figure 1.7: The quads of levels 0 (solid lines), 1 (dashed lines) and 2 (dotted
lines) of the quadtree. The quads themselves are shown in black, and the
extending borders are shown in gray.

values, and so on. This information can easily be stored alongside
the quadtree hierarchy, e.g. in a structured text file.

* Quad-based information, relevant for the data stored in one quad.
For example, in the case of elevation data it is useful to know the
minimum and maximum elevation stored in each quad for level of
detail purposes (see Sec. 1.4), and for SAR data it is useful to know
some key statistical properties about the amplitude values stored
in each quad (see Sec. 2.2). Such information must be stored in a
metadata hierarchy that corresponds to the quadtree hierarchy.

® Local information, relevant for a limited area. For example, lo-
cal data processing methods require access to a local neighborhood
around one data sample. To make such data available without re-
quiring expensive data fetches from neighboring quads, each quad
is extended with an overlap area of a fixed size. See Fig. 1.7. This
leads to slightly higher storage space and memory consumption for
the enlarged quads in the quadtree hierarchy, but allows local pro-
cessing methods direct access to local neighborhood information.

1.2.4 Data Storage and Management
Data Storage

The storage of hierarchical sensor data representations and their metadata
must allow low-overhead access, for both local and network storage sys-
tems.

For this purpose, a quadtree hierarchy can be mapped directly to a di-
rectory hierarchy on a file system, with directories encoding the quadtree
level I and the horizontal and vertical coordinates x and y of a quad in that

1.2 Data Hierarchy and Management 17

level. The most direct implementation would use directories 1/x/y, but
this can lead to low performance due to the large number of subdirecto-
ries in higher quadtree levels (level I contains 2 quads both in horizontal
and vertical direction). Therefore, other encodings that limit the number
of subdirectories are preferable.

The framework currently implements a directory naming scheme of
the form 1/[[[.../1b2/1b1/]1bg.dat. The first directory is the level
directory. The coordinates x and y are then combined into a single index,
and this index is divided into blocks b;, each 12 bits wide. The number
of required blocks depends on the level I. These bit blocks are then trans-
formed to hexadecimal representation and used as subdirectory names or,
in case of the last block by, as the file name. That way, the number of
entries in one directory is limited to 212 — 4096, and the number of sub-
directory levels is kept low. For levels up to and including level 6, only
a single block is necessary, since 12 bits are sufficient to store the com-
bined index. For higher levels, more blocks are used, resulting in a deeper
directory hierarchy.

Each data file contains the sensor data of the corresponding quad in a
suitable file format that allows lossless compression. Quad-related meta-
data can be stored in the same file (depending on the file format) or in an
adequately named additional file in the same directory.

A single file at the highest level of the directory hierarchy stores global
information about the data set.

Such a simple directory hierarchy allows efficient filesystem-based ac-
cess and maps directly to common network protocols such as HTTP and
FTP, thus allowing network-based access with minimal overhead.

Data Transfer and Caching

An interactive visualization system must allow uninterrupted navigation
and adjustment of parameters: the user interface must not block when new
data has to be loaded in order to render the current scene. This results in
the following requirements that a data management system must fulfill:

e If data that is necessary to render the current view is not yet available
in GPU memory, a suitable approximation has to be used until the
data becomes available.

¢ The data transfer from the storage hierarchy to GPU memory has to
be done asynchronously to avoid blocking the rendering and user
interface.

¢ Data transfers must use caching extensively to reduce the amount of
time required to get data into GPU memory to a minimum.

18 Chapter 1. Visualization Framework

Level 3: GPU Memory
LRU Cache

async. sync.
transfers queries

Level 2: Main Memory
LRU Cache

async. async.
transfers queries

Level 1: Local Storage
Uncompressed data cache

async.
transfers

Level 0: Data Repository
Unlimited

Figure 1.8: Multilevel cache hierarchy. A level can query a lower level
to determine if missing data is available in that level, and subsequently
initiate an asynchronous transfer of this data. Level 0 always contains
all data. Cache levels with limited capacity use least-recently-used (LRU)
caching strategies.

In order to fulfill these requirements, a multilevel cache hierarchy is
necessary. This hierarchy must manage the following levels for each input
data set (see Fig. 1.8).

Level 0: Sensor data repository. This is the storage hierarchy described
in Sec. 1.2.4. The repository is accessed via network in the general case,
but may also reside on a local storage system. The sensor data is stored in
compressed form in this storage level.

Level 1: Local storage system cache. This cache level caches uncom-
pressed data on the local storage system. It uses the same directory struc-
ture as the sensor data repository. Sensor data is stored uncompressed
since many sensor data quads may be requested at the same time, and
concurrent decompression of multiple quads would occupy too many CPU
resources that are better spent on rendering and user interface tasks.

1.2 Data Hierarchy and Management 19

The local storage system cache may be limited in size. In this case,
sensor data quads can be replaced on a least-recently-used basis.

Data transfers from level 0 to level 1 must be done asynchronously be-
cause network data transfers may potentially take a long time to complete
or require multiple restarts.

Level 2: Main memory cache. This cache level stores the sensor data
uncompressed and keeps it available for transfer to the GPU. The main
memory cache is limited in size so that it does not congest the system’s
main memory pool. Sensor data quads are replaced on a least-recently-
used basis.

Data transfers from level 1 to level 2 must be done asynchronously
because each disk access can block the calling thread for an unknown
period of time. For the same reason, a query to determine if a sensor data
quad is available in cache level 1 must be done asynchronously, too.

Level 3: GPU memory cache. This cache level keeps the sensor data
available for the visualization system. The available amount of GPU mem-
ory is typically much smaller than the available amount of main memory,
thus the GPU memory cache is limited to a relatively small maximum size.
Sensor data quads are replaced on a least-recently-used basis.

Data transfers from level 2 to level 3 can be handled in an asynchronous
way by the GPU driver component. The driver guarantees that the transfer
is completed when the data is first accessed, if necessary by blocking this
first access for a short period of time. Since data transfers from main
memory to GPU memory are usually very fast and the rendering system
usually requires some CPU time before it triggers the first access to the
data, this is acceptable, and it is not necessary to implement a separate
thread to handle these data transfers. A query to determine if a sensor
data quad is available in cache level 2 is a simple main memory access
and thus can be done synchronously.

The visualization system determines which quads from which input
data sets are required to render the current scene, and then requests these
quads from the cache manager. A quad of a data set is identified by its
quadtree level [and its horizontal and vertical coordinates x and y within
that level.

The cache manager organizes data transfers, cache level queries, and
quad approximations. It works as depicted in Fig. 1.9. This procedure
ensures that each required quad will be transported from the lowest cache
level to the highest. Special care must be taken to guarantee that multiple

© ® N o U ke W N =

NORNORN NN R e s s s s s e
B O N A © © ®»® 9o @ k& @ 0 = O

20 Chapter 1. Visualization Framework

quad g(l, x, y);

if (gpu_cache.sync_query(gq) == FOUND) {
return gpu_cache.get (q);
}
else if (memory_cache.sync_query(g) == FOUND) ({
gpu_cache.async_put (q) ;
return gpu_cache.get(q); /+ only a reference is returned here,
so the transfer does not block */

}

else {
switch (local_storage_cache.async_query(q)) {
case FOUND:
memory_cache.async_put (local_storage_cache.get (q));
break;
case NOT_FOUND:
local_storage_cache.async_put (data_repository.get (q));
break;
case UNKNOWN: /# an asynchronous query 1is still running */
break;
}
quad r = gpu_cache.get_approximation (q);

return r;

Figure 1.9: Management of cache data transfers and cache level queries,
for a request of quad (I, x,y).

threads can access and modify the different cache levels concurrently, so
that multiple transfers and queries can be active at the same time.

When the cache manager gets a request for quad (I, x,y) of a data set,
and that quad is not readily available in GPU memory, the best available
approximation has to be used. This approximation can be found by look-
ing up the lower-resolution quads (I — 1, %, %),i =1,...,1 and using the
first one that is available in the GPU cache. The appropriate part of that
quad provides the best available approximation for the required quad. To
make sure that an approximation is always found, the single quad from
level 0 of the data hierarchy is always kept in the GPU memory cache.
(A quad could also be combined from its four children if these are all
available in GPU memory, however since this specific case is rare and an
approximation is only required for a very short period of time, it is usually
not worth to implement this).

Using these caching strategies, the visualization system does not need
to block the user interface when requested data is not yet available in
GPU memory, as suitable approximations will be used instead. At the

1.2 Data Hierarchy and Management 21

same time, multilevel caching ensures that requested data is available in
GPU memory as fast as possible.

The subset of sensor data quads that is required to render the cur-
rent view of the scene is determined by level of detail techniques, as de-
scribed in Sec. 1.4. Since the view typically varies smoothly over time, it
is possible to apply heuristics that try to predict which quads will be re-
quired in the near future, and trigger transfer of these quads in advance
so that they are immediately available when needed. Such techniques
have been shown to improve data availability in terrain rendering appli-
cations [CGG*03, BGP09, DSW09]. However, this is currently not imple-
mented in the framework.

1.2.5 Summary

This section described the fundamental hierarchical data structure imple-
mented in the framework: a variant of a restricted quadtree that covers the
WGS84 world map.

Restricted quadtrees are GPU friendly data structures that allow level
of detail techniques to create conforming triangle meshes without the need
for extra stitching geometry. This will be described in detail in Sec. 1.4.
The meshes consist entirely of right-angled, isosceles triangles and are thus
well-suited for GPU based mesh refinement, as described in Chapter 3.

At the same time, quadtree hierarchies can be mapped directly to file
system directory hierarchies, for multi-resolution storage of remote sens-
ing data sets. A multilevel cache manager transfers sensor data quads
from the original data repository to a local storage cache, main memory,
and finally GPU memory in a way that avoids interruptions of the visual-
ization user interface.

The particular quadtree variant presented in this section is valid only
for a limited latitude range. A possible extension for accurate planet-wide
coverage is described in the next section.

1.2.6 Future Work

Sec. 1.2.2 describes limitations of the chosen quadtree variant with regard
to accurate coverage of the earth’s surface in proximity to the poles. These
limitations are

1. degenerated triangles when transforming near-pole quad meshes to
cartesian coordinates, and

2. sampling problems for sensor data stored in near-pole quads.

22 Chapter 1. Visualization Framework

Figure 1.10: A subdivision of the planet surface into six equal intercon-
nected areas, each managing its own quadtree hierarchy while keeping
proper neighborhood relations with its four neighbor areas.

These limitations are common to all approaches based on quadtree or
triangle bintree hierarchies, but are rarely investigated. Only a few works
exist that explicitly address these problems.

Kooima et al. use a uniform sphere triangulation instead of a quadtree
hierarchy, thereby avoiding triangle degeneration entirely. To reduce sam-
pling problems, they interpolate sensor data from three different projec-
tions: a polar projection for each pole area and a spherical projection for
the remaining area [KL]*09]. However, their level of detail technique based
on icosahedron subdivision cannot guarantee error bounds, and is there-
fore not suitable for accurate visualization of Remote Sensing data.

Cignoni et al. subdivide the sphere that represents the earth into six
equal partitions similar to a cube map. Each partition then manages its
own hierarchy structure, stores its sensor data in its own coordinate sys-
tem, and generates its own triangle bin-tree based meshes [CGG*03]. This
ensures that both triangle degeneration and data sampling pose no prob-
lem. Proper handling of neighbor relations at the borders of the partitions
ensure a seamless visualization result.

This solution is also applicable to quadtree based methods such as the
one presented in Sec. 1.2.2: the approach of subdividing a sphere into
six equal areas, each holding a quadtree structure, was already used by
White and Stemwedel as a means to store sky-related data in the FITS
image format [WS92]. To use this approach in the framework, each of
the six areas must maintain proper neighboring relations with each of its
four neighbor areas, to allow consistent restricted subdivision of the six
quadtrees for level of detail purposes. See Fig. 1.10.

With this approach, the creation of a single seamless mesh is still pos-
sible using the same methods that are described in the following sections.
Since each of the six areas would use its own coordinate system to store

1.3 GPU-Based Data Processing 23

sensor data, sampling irregularities would be limited and acceptable for
all areas on the earth’s surface.

1.3 GPU-Based Data Processing

This section covers the infrastructure required for the GPU-based sensor
data processing tasks. These tasks are the following (see also the right half
of Fig. 1.1):

¢ The transformation of sensor data quads into elevation maps (if the
input data set is a DEM) or color textures (if the input data set was
produced by an imaging sensor technology).

¢ The fusion of multiple elevation maps or textures, from different
data sets, into a single elevation map or texture.

These tasks take one or more two-dimensional maps as input and pro-
duce one two-dimensional map as output. GPUs are highly optimized for
this kind of work, since one of their design goals is to efficiently apply
textures (which correspond to multiple two-dimensional input maps) to
two-dimensional regions of the output image (which corresponds to the
two-dimensional output map).

However, to make optimal use of GPU computing resources, it is neces-
sary to adhere to requirements resulting from the highly specialized GPU
architecture.

This section starts with an overview of GPU technology advances in
recent years, and then gives an overview of related work in the field of
general purpose computations on GPUs. Based on this information, a
GPU-based processing pipeline for sensor data is described, as well as
a set of requirements that sensor data processing methods such as those
described in Chapter 2 need to fulfill.

1.3.1 Background

In the last decade, graphics hardware became more and more flexible and
powerful. It moved from a fixed function graphics pipeline model with
a very limited set of supported input data types to a fully programmable
stream processor model with full support for common input and output
data types.

At the same time, thanks to the highly data-parallel nature of graph-
ics computations, the computational power of GPUs in terms of theoreti-
cally achievable floating point operations per second (FLOPS) grew faster
than that of CPUs [OLG*07]. Furthermore, GPUs have a very attractive

24 Chapter 1. Visualization Framework

price/performance ratio since they have become off-the-shelf mass-market
articles.

This transformation of GPU technology began with the introduction
of shaders that allowed limited manipulation of the operations carried out
by the graphics pipeline. First, fragment shaders allowed per-pixel com-
putations, followed by vertex shaders for per-vertex computations. Ini-
tially, these shaders were only programmable using low level assembly
language. Later, higher level shading languages were introduced, such as
the OpenGL Shading Language (GLSL) or the DirectX High Level Shader
Language (HLSL).

The classic graphics pipeline was then extended with the introduction
of geometry shaders that allowed manipulation of the vertex stream, includ-
ing the insertion and deletion of vertices. At the time of writing, the latest
addition to the now fully programmable graphics pipeline are tessellation
stages that can be used to add geometric detail on the fly.

In parallel to this increase in programmability, GPUs added support
for more and more data types. For texture data, the 1 -4 components were
originally each represented using a maximum of 8 bits. Meanwhile, tex-
ture formats include support for half, single, and double precision floating
point components. Similarly, GPUs originally supported only simplified
floating point computations internally (not IEEE 754 standard compliant,
e.g. without infinity and not-a-number representations), but now support
the same range of integer and floating point data types and computations
that CPUs do (although some mathematical functions are not yet available
in an IEEE 754 compliant double precision variant at the time of writing).

To be able to handle this much increased functionality, the GPU had
to move from a fixed function design (where each component fulfilled a
fixed role) to a general-purpose stream processor design. In the stream
processing model, a set of compute cores is first configured to execute a
particular task, and then processes a large set of data in parallel [Owe05].
In this model, the graphics driver can assign different tasks to different
compute core sets on the GPU depending on demand.

The increased flexibility that the hardware had to offer, combined with
its rapidly increasing performance at relatively low prices, made GPUs
more and more interesting for applications beyond displaying graphics.
Using a graphics pipeline centered API such as OpenGL or DirectX to
program the GPU proved to be cumbersome for many general purpose
tasks, and new ways to program GPUs independent of graphics concepts
were sought after [SDKO05]. As a consequence, new APIs and languages
were developed to allow more flexible use of the hardware.

McCool et al. presented Sh, a C++ library that allows to program GPUs

1.3 GPU-Based Data Processing 25

from within the application’s source code instead of using specialized lan-
guages such as GLSL [MDTP*04]. Buck et al. described a compilation and
runtime system called Brook for GPUs, with which the GPU can be used
as a streaming coprocessor [BFH*04]. McCormick et al. presented the
Scout programming language and environment for interactive data ma-
nipulations on GPUs for analysis and visualization purposes [MIA*07].
Lefohn et al. introduced Glift, an abstraction and generic template library
for complex GPU data structures which allows to separate data structures
and algorithms [LSK*06]. All of these systems provide abstraction layers
that hide the graphics centric GPU management core from the application
programmer.

These research projects soon inspired vendor-specific solutions such as
ATI/AMD’s Close To Metal [AMD] and NVIDIA’s CUDA [NVI], which
allowed direct access to the GPU as a stream processor for the first time,
thus eliminating the need to encapsulate graphics centric GPU access with
abstraction layers. Today, all manufacturers of graphics hardware with
stream processing capabilities also support the cross-vendor standard
OpenCL [Khr].

1.3.2 Related Work

The improvements of graphics hardware described in the previous section
made it more and more interesting to use GPUs to solve problems that
are not directly related to graphics. This field is now often summarized
by the term General Purpose Computations on Graphics Processing Units
(GPGPU) [GPG].

Among the first general purpose tasks implemented on the GPU were
image processing tasks, where one or more 2D input images are trans-
formed into a 2D output image using the fragment shader of the graphics
pipeline [Jar04, War(05]. The reason is that this task maps ideally to the
graphics pipeline. In the simplest form, one or more textures that contain
the input images are rendered into an output framebuffer of the same di-
mensions using a simple quad, thereby establishing a one-to-one mapping
of input to output pixels. The fragment shader that is executed for each
output pixel then can gather the various input pixels, perform the desired
computations, and write the result to its designated output pixel.

A thorough survey of early work in the GPGPU field was given by
Owens et al. in 2007 [OLG*07]. A large part of this survey describes data
structures and programming techniques that map common tasks to the
graphics pipeline. This was necessary because at that time the graph-
ics hardware was still very much centered around the classic graphics
pipeline model, and graphics APIs such as OpenGL and DirectX were of-

26 Chapter 1. Visualization Framework

ten the only feasible way to program GPUs.

However, the stream processing concepts described in this survey still
apply to the more general architecture of todays GPUs. The techniques
that are relevant to the sensor data processing pipeline of the framework
are summarized below.

Separation of input and output. Graphics APIs require strict separation
of input (textures) from output (framebuffer) data. While newer APIs
do allow mixed input and output in the same memory region, this is
highly inefficient. For best performance, the hardware driver must be
able to schedule the per-sample computations on different compute cores,
and to coalesce the resulting memory writes into a contiguous memory
area [NVI10].

Input gathering and avoidance of scattering. Gathering is the process of
reading input data from different memory locations, and scattering is the
process of writing output data to different memory locations. Graphics
APIs allow gathering by texture sampling, while implementing scattering
requires indirections. Newer APIs allow scattering to be implemented
directly, but again, this is highly inefficient because the hardware driver
must be able to coalesce memory writes into a contiguous memory region
for best performance. While there are different techniques to implement
scattering in relatively efficient ways using intermediate steps, it is usually
better to reformulate a given algorithm to avoid scattering if possible. This
is the case for many types of sensor data processing methods [LKNKO07].

Branching techniques. Older GPU generations had very limited support
for branching in shaders: initially it was only possible for an output op-
eration to choose between two computed results based on a comparison
value [War05]. Various techniques were used to avoid in-shader branching
by moving the branching to other parts of the graphics pipeline. Newer
GPUs have much improved support for branching, but it is still important
to avoid branching in compute kernels if possible, even more so than it is
to avoid inner-loop branching on CPUs. One reason is performance, and
the other reason is to avoid hitting hardware limits such as the maximum
number of instructions allowed in a compute kernel or the maximum num-
ber of required registers. As a result, it is still beneficial to move branching
out of the compute kernels and into other parts of the program flow, and
to choose one of multiple highly specialized compute kernels instead of
using a single combined one that uses branching.

1.3 GPU-Based Data Processing 27

=
| L ¢ I L | l

Input Optional intermediate steps Output

Figure 1.11: Processing pipeline.

1.3.3 Processing Pipeline

The aforementioned basic image processing technique, where input im-
ages are mapped to an output image by rendering a quad, can be extended
with support for intermediate processing steps. Combined with the ex-
tended support for texture and framebuffer data types in current GPUs,
in particular floating point types, this results in a general processing chain
that allows the implementation of many classes of sensor data processing
methods. See Fig. 1.11. This processing chain takes one or more sensor
data maps as input and produces one output map. Usually, this output
map will contain an elevation map or a texture. Optional intermediate
processing steps store their results using ping-pong buffers.

To apply this processing pipeline to the task of transforming sensor
data to elevation maps or images, usually only one sensor data quad is
used as input. Depending on its complexity, a transformation method
might require one or more intermediate steps to produce the output. For
example, a separable Gauss filter would usually be implemented using one
intermediate step. Many classes of sensor data processing methods can be
implemented using this method [LKNKO07]. See Chapter 2 for details and
examples.

To apply the processing pipeline to the task of fusing multiple eleva-
tion maps or textures into a single elevation map or texture, multiple in-
put quads are used. The currently implemented fusion filter uses simple
blending of input maps, but supports special nodata flags that mark ar-
eas for which the input data set provides no data. This simple fusion filter
requires only one processing step. More advanced fusion filters, e.g. DEM
fusion filters with intelligent nodata hole filling techniques, might use
multiple intermediate steps.

Note that the original sensor data quads contain an overlap area that al-
lows sensor data processing methods to access local neighborhoods with-

28 Chapter 1. Visualization Framework

out expensive data fetches from neighboring quads (see Sec. 1.2.3). After
sensor data processing and fusion, this overlap area is no longer required,
so that the output quad of the fusion step may be smaller than its input
quads. However, a minimum border of one sample must be kept in order
to avoid interpolation artifacts in the rendering stage. This applies to both
elevation maps and textures.

The processing pipeline is used for each quad of the restricted quadtree
hierarchy that is necessary to render the current scene, as determined by
appropriate level of detail techniques (see Sec. 1.4). Currently, these com-
putations are repeated for each rendered frame. Changes of processing
parameters take effect immediately, and the user gets immediate feedback
on interactions. It would be possible to cache the processing results and
recompute only when relevant processing parameters have changed, but
this would require substantial amounts of graphics memory and is thus
currently not implemented in the framework.

The current implementation of the processing pipeline in the frame-
work is based on OpenGL, since it maps directly to the graphics pipeline.
However, it can of course be replaced by e.g. an OpenCL implementation
should the need arise.

1.3.4 Summary

This section described a GPU-based processing pipeline for two central
tasks in the visualization framework: the transformation of sensor data to
elevation maps and textures, and the fusion of multiple elevation maps
or textures into a single elevation map or texture, as shown in Fig. 1.1.
The processing pipeline uses the GPU to achieve the necessary processing
speed. Processing methods must adhere to a set of requirements to make
full use of the GPU’s potential.

The implementation of different classes of sensor data processing meth-
ods using this pipeline is demonstrated in Chapter 2 based on the example
of SAR images.

1.4 Level of Detail and Rendering

This section describes the rendering part of the framework. This part
consists of three components:

* A basic level of detail technique that chooses the subset of data from
the quadtree hierarchy that is required to render the current scene.
This is the CPU-based part shown in Fig. 1.1.

1.4 Level of Detail and Rendering 29

* A technique to build a single, seamless triangle mesh from the cho-
sen quadtree subset. This is included in the GPU-based part shown
in Fig. 1.1. Note that only the creation of an initial mesh is discussed
in this section. The refinement of this mesh for final level of detail
computations is discussed in Chapter 3.

* The rendering technique itself, including support for distributed ren-
dering e.g. in Virtual Reality installations. This, too, is included in
the GPU-based part shown in Fig. 1.1.

The main challenges associated with these components are the follow-
ing:

e Since the terrain data is generated dynamically, only limited sup-
plemental information is available. In particular, the level of detail
technique cannot rely on precomputed error estimates.

* The generated mesh spans an arbitrary area on the planet’s surface,
and not just a limited local patch relative to a plane. Therefore,
the underlying earth model has to be taken into consideration, and
geometry computations are subject to special precision requirements.

¢ The rendering technique must allow mesh refinement techniques for
final level of detail computations as described in Chapter 3. It must
have efficient access to input data hierarchy information, without
the need to traverse tree structures on the GPU. Furthermore, the
rendering state must be representable in a data structure that allows
distributed rendering across multiple hosts and/or graphics cards.

In the following, the components as implemented in the framework
are described in detail.

1.4.1 Related Work

Pajarola and Gobetti’s survey shows that quadtree hierarchies are com-
monly used in the context of terrain rendering both because they provide
a hierarchical structure for the terrain data (elevation maps and images)
and because they can easily be used for level of detail techniques [PG07].
As mentioned in Sec. 1.2, earlier terrain rendering methods used quadtree
hierarchies for full level of detail computation and then generated a min-
imal or near-minimal triangle mesh for the resulting quadtree. Generally,
such methods split a quad into four sub quads if it does not fulfill an
acceptance criterion, and then ensure that neighboring quads are recur-
sively split, too, if that is necessary to keep the quadtree restricted. When

30 Chapter 1. Visualization Framework

all quads fulfill the acceptance criterion, the minimal conforming triangle
mesh is created and rendered [LKR*96, Paj98, DWS*97]. However, this
approach is not efficient anymore because the CPU cannot generate this
mesh fast enough to saturate the GPU. Newer methods prefer to choose
and combine larger blocks of triangles on the CPU for rendering on the
GPU, instead of working on triangle level [PG07].

Traditionally, terrain rendering methods assumed that the input ge-
ometry and texture data is static and cannot change. Under this assump-
tion, elaborate offline preprocessing can be applied to the original sensor
data to produce highly optimized geometry and texture data representa-
tions, including precomputed level of detail information. For example,
Duchaineau et al. [DWS*97] and Bosch et al. [BGP09] precompute object-
space error metrics. In contrast, a fully interactive visualization system
must compute the level of detail based on dynamically generated terrain
data, where only limited supplemental information is available.

Creating and rendering triangle meshes for an area on the earth’s sur-
face (as opposed to a limited local reference plane) leads to two precision
problems. First, the single precision floating point data type that is com-
monly used in the graphics pipeline does not provide enough accuracy for
cartesian coordinates, resulting in jitter and cracks. Thorne noted that due
to the non-uniform resolution of this data type, precision problems can
be avoided by rendering the scene relative to the viewer, i.e. with viewer
coordinates (0,0,0) [Tho05]. This makes sure that inaccuracies and loss
of precision affect only regions far away from the viewer, and thus do not
result in visible screen space errors. As a generalization of this method, all
vertex computations (e.g. for the purpose of mesh refinement) can be per-
formed in a local reference frame to reduce numerical inaccuracies. This
has been used by the few terrain rendering methods that explicitly address
the planetary scale [CGG*03, KL]J*09]. Terrain rendering methods that ig-
nore these precision problems are generally only applicable to scenes of
limited size.

The second precision problem that may arise is limited depth buffer
precision. In some terrain rendering situations, it is difficult to determine
good near and far plane values, and as a result the available depth buffer
precision may not be sufficient to accurately render the scene. This is
traditionally solved by arbitrarily limiting the far plane, e.g. using fog
effects, and/or by dividing the frustum into multiple partitions, each with
enough depth precision, and then rendering the scene in multiple passes.

1.4 Level of Detail and Rendering 31

1.4.2 Level Of Detail

In the level of detail technique used in the framework, the quadtree hi-
erarchy is only used to determine a first, conservative estimation of the
final level of detail. The purpose of this step is to determine the sensor
data quads that are required to render the scene, and to create a single
conforming triangle mesh that is suitable for further refinement depend-
ing on the elevation map data generated from the sensor data quads (such
refinement methods are detailed in Chapter 3). This triangle mesh con-
sists only of right-angled, isosceles triangles, and is free of T-junctions that
could result in cracks in the rendered image. These mesh properties also
guarantee that elevation maps are sampled in a regular pattern.
This level of detail technique works as follows:

1. Determine the view frustum of the current scene.

2. Start with quadtree level 0, which contains a single quad represent-
ing the whole planet surface.

3. Compute a bounding volume for the current quad.
4. Project the bounding volume to screen space.

5. If the quad covers more screen space pixels than it provides map
samples, split it into four sub quads.

6. Enforce the restricted quadtree property by recursively splitting
neighboring quads as needed.

7. Repeat steps 3-6 for all newly created quads, until no quads need
to be split anymore.

In the first step, the view frustum must be determined. The view frus-
tum is defined by the viewer position and orientation and by the display
setup, except for the near and far plane. Since the final scene geometry
is not yet known, finding optimal values for the near and far plane is
not possible. By using inner and outer bounding spheres for the earth
to model the maximum extent of the final geometry, it is possible to find
acceptable values for many common situations. See Fig. 1.12. Such situa-
tions include from-space views that show the whole planet, and close-ups
that show only a limited part of the surface. However, for one common
situation, namely flat views across the surface to the horizon, near and far
plane are often too far apart to give enough depth buffer precision. If this
is the case, it is necessary to split the view frustum into several parts along
the viewing direction, each using near and far plane settings such that the

32 Chapter 1. Visualization Framework

=

near far

near far

Figure 1.12: Near and far plane settings (red) using inner and outer bound-
ing spheres (blue) for the earth in three common situations: a from-space
view of the whole planet (left), a close-up of a limited surface area (mid-
dle), and a flat view to the horizon (right). In the latter case, setting near
and far plane requires special handling.

resulting depth buffer precision is acceptable, and then render the scene
in multiple passes.

After determining the view frustum, bounding volumes have to be
computed for each quad and then projected to screen space. To compute a
bounding volume for a quad, its minimum and maximum elevation values
must be known. To make these values available, three requirements have
to be fulfilled:

¢ Each DEM data set hierarchy must store the minimum and maxi-
mum elevation value for each quad in the form of quad-based meta-
data, as described in Sec. 1.2.4.

¢ The processing method that generates elevation maps from DEM
data quads must provide the minimum and maximum elevation val-
ues of the generated maps.

Note that it is not necessary for this purpose to scan the generated
elevation map for its minimum and maximum values. Instead, the
processing method can be defined in a way that allows to guaran-
tee bounds for the output values when given bounds for the input
values.

¢ The data fusion method that combines several input elevation maps
into a single elevation map must combine all input minimum /max-
imum pairs into a single minimum/maximum pair. Again, it is not
necessary at this point to scan the output quad for minimum and
maximum values; it is sufficient to combine the given input ranges.

Once a bounding volume is computed, view frustum culling can be ap-
plied at this early stage with no additional cost: if the projected bounding

1.4 Level of Detail and Rendering 33

Figure 1.13: Mesh creation and rendering. A restricted quadtree is given
by the level of detail mechanism (left). This quadtree is triangulated us-
ing a predefined refinement level / (middle). For rendering, the resulting
mesh must be transformed from quad coordinates to cartesian coordinates
(right).

volume is outside the visible area, then it does not need to be subdivided
or rendered, and consequently the sensor data for this quad does not need
to be transferred or processed.

1.4.3 Mesh Creation

The mesh creation step creates a triangle mesh for the restricted quadtree
that determines the initial level of detail estimate, as described in the pre-
vious section. See Fig. 1.13. This mesh consists entirely of right-angled,
isosceles triangles, which allows further refinement on the GPU as de-
scribed in Chapter 3.

At the mesh creation step, it is possible to choose the initial mesh re-
finement level. As explained in Sec. 1.2.2, refinement level 0 corresponds
to the minimal conforming triangulation of the restricted quadtree, and
refinement level / corresponds to the minimal conforming triangulation
after subdividing each quad I times. Thus, higher refinement levels result
in finer meshes with more triangles per quad. See Fig. 1.3.

In the framework, quads provide 2571 x 2F samples. See Fig. 1.5. The
maximum initial refinement level that makes sense for these quads is
Imax = k, because at this level all elevation map information is covered, and
further refinement would not reveal additional geometric detail. Thus, the
mesh at refinement level /.« would result in an accurate rendering of the
scene. However, meshes at this level are too large and detailed to be ren-
dered at sufficiently high frame rates. It is thus necessary to choose a lower
level I and apply mesh refinement only where necessary. See Chapter 3
for a discussion of the parameter /.

In summary, the rules to generate an initial mesh of refinement level
[for the current quadtree hierarchy are the following (see Fig. 1.3 and
Fig. 1.5):

34 Chapter 1. Visualization Framework

¢ Divide each quad into 2/*! x 2! square sub quads.

* Generate 4 triangles for each square sub quad, by dividing it using
its two diagonals.

¢ If the hypotenuse of a triangle is shared with a neighboring quad,
and this quad is of a higher level than the current quad, split the
triangle into two smaller triangles by splitting the hypotenuse at its
center.

Note that the core mesh inside each quad is the same for all quads,
and only the border triangles may differ. Furthermore, there are only 16
possible border triangle setups, depending on whether the neighboring
quad at each of the four sides has a higher level or not. See Fig. 1.5. Thus,
for a given level /, the core mesh as well as the 16 border triangle setups
can be precomputed and stored in vertex buffer objects on the GPU. To
generate the mesh, it is then only necessary to combine these precomputed
meshes on the GPU.

In order to make quadtree hierarchy information available to the GPU-
based mesh refinement and rendering steps without having to perform
expensive tree traversals on the GPU, the quads that need to be rendered
are enumerated, and the quad index g is stored as a vertex attribute. The
quadtree information can then be stored in a set of arrays that can be
accessed using this index. These arrays store the following information:

* Quad level and coordinates (,x,y), to identify each quad and to
know its location on the WGS84 map.

¢ Indices of neighboring quads. Each quad can have up to two neigh-
bors in each direction, so a total of 8 neighbor indices needs to be
stored for each quad. If a neighbor does not exist, -1 is stored in its
index field.

The currently required elevation map and texture can be identified
using the quad index vertex attribute, and the texture coordinates corre-
spond to the original quad-space vertex coordinates.

The result of the mesh creation step is a single mesh for the restricted
quadtree, consisting only of right-angled, isosceles triangles. This mesh
initially is in quadtree space, which corresponds to WGS84 coordinates as
explained in Sec. 1.2.2. In order to allow fast GPU-based access to quadtree
information, a vertex attribute carries the index of the current quad.

1.4 Level of Detail and Rendering 35

Figure 1.14: Demonstration of precision problems with single precision
floating point computations. The left image shows the mesh for a ground
area viewed from 36 m altitude, with the viewer-relative world coordinates
computed using a single precision floating point data type. The right
image shows the same scene, but with viewer-relative world coordinates
computed using double precision.

1.4.4 Rendering

To render the mesh, each vertex must first be transformed to cartesian
world space coordinates, which then allows the usual graphics pipeline
transformations to screen space. See Fig. 1.13.

The transformation of quad-relative coordinates to cartesian world
space coordinates works as follows. First, the quad index g is extracted
from a vertex attribute. Then the elevation & for the vertex is determined
by sampling the elevation map corresponding to quad g at the quad-space
vertex coordinates (x4, y,). Then, the quad coordinates (I, x,y) and quad-
space vertex coordinates (x4, ;) are combined and transformed to WGS84
latitude/longitude coordinates (¢, A). The complete three-dimensional
WGS84 coordinates (¢, A, h) can then be transformed to cartesian coor-
dinates (x,y, z) using the formulas defined by the WGS84 standard.

To avoid precision problems with the single precision floating point
data type used by the graphics pipeline, the cartesian world space co-
ordinates must be transformed to be relative to the viewer by subtract-
ing the viewer position. In order to get an accurate result that can then
be passed to the single precision graphics pipeline, the first computation
steps, i.e. the transformation to world space and the subtraction of the
viewer position, must be done using a double precision data type. See
Fig. 1.14. This data type is available on current GPUs, and consequently
the mesh transformation can be performed entirely on the GPU. Note that
double precision computations are still relatively expensive on the GPU,
but the performance gap between single and double precision computa-

36 Chapter 1. Visualization Framework

tions is narrowing with each new generation of GPUs [NVI09b].

Once the mesh is transformed to single precision viewer-relative world
space coordinates, it can be rendered using the standard graphics pipeline.
This allows the integration of commonly used effects such as per-pixel
lighting, atmospheric effects, ocean reflections, or clouds [Mal06]. The
correct texture for each quad is determined by the quad index 4. To al-
low seamless texturing without interpolation artifacts at quad borders, an
additional quad border of one pixel is required, as explained in Sec. 1.3.

1.4.5 Distributed and Parallel Rendering

To allow distributed rendering, the visualization framework must encap-
sulate the render state, i.e. the set of all information that together defines
the current scene. The main application process manages the master ren-
der state, and may distribute it over a network.

In the framework, the render state consists of the viewer position and
orientation, the list of active data sets and their processing parameters,
and additional rendering parameters such as the maximum allowed screen
space error for the mesh refinement step.

To render a view of the scene, a renderer must know its view frustum
in addition to the render state. With this information, the scene can be
rendered for different displays, managed by different GPUs (e.g. on vi-
sualization workstations), potentially residing on different hosts (e.g. the
nodes of a render cluster): each display renders its own view of the scene
defined by its own view frustum.

In a common desktop environment, only a single view of the scene
is rendered. For high resolution display walls or virtual reality systems,
multiple synchronized render states exist on multiple hosts, and the scene
may be rendered on multiple GPUs using different view frustums.

Each render process builds its own restricted quadtree for rendering,
depending on its view frustum. Thus, each render process decides which
sensor data quads are required for its own view, and needs to transfer and
process only these quads.

The multilevel cache hierarchy can be distributed for maximum effi-
ciency: all render processes can share a single on-disk cache stored on a
fast, shared network filesystem, and multiple GPUs on a single host can
share a single main memory cache on that host.

By guaranteeing a low screen space error using the mesh refinement
methods described in Chapter 3, it is possible to ensure a consistent view
across neighboring displays without a visible transition between them.

The current implementation of distributed and parallel rendering in
the framework, in particular the synchronization of render states and the

1.5 Visual Assistance Tools 37

configuration of multiple views, is based on the Equalizer Parallel Render-
ing Framework [EMPO09, Eil].

1.4.6 Summary

This section describes the rendering part of the framework. The three
main aspects of this rendering part are the initial level of detail technique
that determines which parts of the sensor data hierarchy are required for
accurate rendering of the scene, the mesh creation technique that builds
an initial mesh by efficiently combining larger triangle patches, and the
rendering technique that handles precise coordinates on a planetary scale
and uses flattened quadtree information stored in arrays to access hierar-
chy information. Furthermore, the rendering part is built in a way that
allows distributed rendering, e.g. for virtual reality installations. Mesh re-
finement methods for final level of detail computations are described in
Chapter 3.

1.5 Visual Assistance Tools

The interactive approach to visualization of Remote Sensing data leads to
many opportunities for the user to choose and adjust methods and param-
eters. This flexibility comes at the price of increased complexity. Finding
a suitable set of visualization parameters may become time consuming
and/or non-intuitive.

Visual assistance tools are integrated into the user interface of visual-
ization systems to help manage the complexity of the parameter adjust-
ment task. In the context of Remote Sensing data visualization, the main
challenges associated with visual assistance tools are the following:

¢ The assistance tools must be designed for application area experts,
and not for visualization experts.

* Since the assistance tools must steer parameters of subsequent data
processing and fusion methods, they must work on the data repre-
sentation level that is available before data processing and fusion,
i.e. hierarchical sensor data with little or no supplemental data. See
Fig. 1.1.

This section describes visual assistance tool concepts and their appli-
cation to Remote Sensing data visualization.

38 Chapter 1. Visualization Framework

1.5.1 Related Work

As computer hardware in general and graphics hardware in particular
become more powerful, visualization systems move towards more inter-
active control over the visualization process. This leads to more powerful
and flexible applications, but at the cost of increasingly complex user in-
terfaces.

Designing intuitive and manageable user interfaces is a common chal-
lenge in all application areas of interactive visualization systems. An im-
portant consideration in this regard is that the targeted user group of vi-
sualization systems are application area experts, but not necessarily vi-
sualization experts. As a consequence, user interfaces for visualization
systems are highly specialized for their application area. For example, for
the field of interactive visualization of medical volume data, Rezk-Salama
et al. propose a system that introduces application area semantics to the
visualization user interface [RSKKO06].

This section focusses on two user interface concepts that are applicable
to the field of interactive visualization of Remote Sensing data: lenses and
detectors.

A lens allows two sets of visualization parameters to be active at the
same time: one global set, and one local set that only applies to the region
of the lens.

In the original work by Bier et al. [BSP*93], a lens defines a rectangular
sub-region of the two-dimensional screen space. In this sub-region, visu-
alization methods differ from those used in the rest of the screen space.
This two-dimensional screen space lens is mainly applied to the drawing
of two-dimensional shapes, but an initial example of a 3D scene is also
given.

Viega et al. introduced a three-dimensional volumetric lens that is
a sub-region of the three-dimensional object space instead of the two-
dimensional screen space [VCWP96]. This volumetric lens is used to in-
spect 3D objects.

Borst et al. adapted the concept of volumetric lenses to specialized
applications in the domain of geospatial information visualization, and
discussed aspects of a GPU-accelerated implementation [BBBKO07].

All these lens concepts are tailored to their specific application area.

A detector allows an interactive visualization system to find interesting
features in the sensor data in real time. The system can then display visual
hints for each detected feature, thereby guiding and assisting the user in
exposing the important detail of the data.

A detector usually specializes in finding well-defined features in a data
set with known properties. Consequently, a very wide range of detectors

1.5 Visual Assistance Tools 39

exists, each tailored for a special application, and often consisting of mul-
tiple processing steps. For example, Brekke and Solberg proposed special-
ized methods to detect oil spills in SAR images [BS05]. Such specialized
detectors are not designed to be used in interactive applications, and con-
sequently are far too slow for this purpose.

Diard demonstrated an efficient GPU-based implementation of a fea-
ture detector using the geometry shader stage of recent GPUs [Dia08],
suitable for interactive use. Nevertheless, even with an optimized GPU-
based implementation, detectors for interactive applications need to be
restricted in computational costs and complexity.

1.5.2 Lenses

The lens concept allows to compare two different parameter sets directly,
thus giving additional insight into the data and the effects of parameters,
and simplifying the choice of a particular parameter set.

The implementation of the lens concept is specific to the application.
Previous two-dimensional and three-dimensional lenses all have in com-
mon that the geometry of the scene must be known at the time the lens is
applied, so that the part of the geometry that is relevant to the lens can be
handled in a special way.

In contrast, in the situation of interactive visualization of Remote Sens-
ing data, the geometry is not known before the lens is applied, because
the geometry depends on the visualization parameters defined by the lens.
For example, a lens might define processing parameters for a DEM data
set that differ from the global parameters, resulting in different geome-
tries. Therefore, a lens in the framework must be defined in terms of a
geometry that is fixed regardless of visualization parameters.

To this end, the lens used in the framework is defined as a two-dimen-
sional circular area on the planet surface, given by a center and a radius.
Since WGS84 coordinates are used in the framework, the WGS84 ellipsoid
is used as the reference surface. See Fig. 1.15.

Each quad of the quadtree hierarchy describes an area on the WGS84
ellipsoid (see Fig. 1.4), and for each quad one of the following three cases
applies:

1. The quad and lens areas do not intersect. Only the global processing
parameters apply to the quad.

2. The quad area is a subset of the lens area. Only the lens processing
parameters apply to the quad.

3. The quad area is partly inside and partly outside the lens area. Both
the global and lens parameter sets apply to the quad.

40 Chapter 1. Visualization Framework

Figure 1.15: A circular lens, defined by center and radius, on the WGS84
ellipsoid surface. Different processing parameters are applied for regions
inside and outside the lens.

In the latter case, the quad is processed with both parameter sets, and an
additional postprocessing step is applied that combines the two processing
results into a single quad by determining for each sample whether it lies
inside or outside the lens. This double processing for a small number of
quads is the only computational overhead caused by the usage of lenses.

Since this lens concept is applied at the sensor data processing stage, it
is completely transparent to the rendering stage. In particular, it is guar-
anteed to produce a consistent and crack-free geometry even at the border
of the lens. This is in contrast to previous two-dimensional and volumetric
lenses, where different visualization methods lead to inconsistencies at the
lens borders.

1.5.3 Detectors

The purpose of a detector in the context of interactive visualization is to

draw the user’s attention to important aspects of the data, and to give the

opportunity to quickly examine these aspects for a more detailed analysis.
For this purpose, a detector must consist of three components:

¢ A feature detection component that scans the current set of hierar-
chical sensor data for relevant features.

1.5 Visual Assistance Tools 41

* A display component that provides a visual hint about location and
basic attributes to the user.

* An analysis component that presents the user a detailed view and
examination of a detected feature on demand.

All three components need to be highly specialized for one kind of
sensor data and one kind of feature to be effective. In Sec. 2.4, a detector
for near-ideal reflectors in SAR amplitude images is presented in detail.

The feature detection component works on sensor data quads managed
by a quadtree hierarchy, and thus must take the different resolution levels
into account. Detectors that look for features with similar sizes in world
space must adapt to the resolution level. For example, if a feature spans
n samples in quadtree level [, then it spans 5 samples in level [— 1 and
2n samples in level [+ 1. A detector for this feature will only work in
the limited range of levels that represent the feature with adequate detail.
On the other hand, detectors that look for features with similar sizes in
screen space (and thus varying scales in world space) might choose to
ignore the resolution level. For example, certain terrain features occur at
multiple scales (this self-similarity allows to use fractal methods for the
generation of artificial terrain [MKMS89]), and a detector for such features
might choose a fixed mask size regardless of the quadtree level, so that
such features will be detected at the scale given by the current region of
interest.

A detected feature initially only has an associated two-dimensional lo-
cation on the WGS84 ellipsoid, because the full geometry of the scene is
not known at this stage of the framework. The display component usu-
ally requires the full three-dimensional location. This information can be
acquired after the processing and fusion stage, by sampling the fully pro-
cessed and fused elevation map corresponding to the quad that contains
the feature.

To be interactively usable, a detector must focus on speed rather than
accuracy, and thus can only give a rough hint about features in the scene.
A detailed examination of a feature by the user, possibly with the help of
the analysis component of the detector, is always necessary.

1.5.4 Summary

In this section, two user interface concepts are described that help the user
in managing the potentially complex task of parameter adjustment. Lenses
allow focused comparisons of different parameter sets, thus helping to un-
derstand the effects of parameters. Detectors point the user to important
features in the data, thus allowing directed parameter adjustments.

42 Chapter 1. Visualization Framework

Both concepts are applied at an early stage of the visualization frame-
work, and thus must work on hierarchical sensor data representation.
While lenses are a general concept applicable independent of the type
of sensor data, detectors must be highly specialized to be effective. A
detailed description of such a specialized detector is given in Chapter 2.

1.6 Results

This chapter described a framework for GPU-based interactive visualiza-
tion of remote sensing data. Its main components are

* A quadtree-based data hierarchy and management module.
¢ A GPU-based processing chain for sensor data.

¢ A level of detail technique to choose the suitable subset of data from
the hierarchy.

* A rendering component to render the processed and fused elevation
maps and textures.

* Visual assistance tools to help the user manage the various interac-
tively adjustable parameters.

The hierarchical data structure is a restricted quadtree based directly
on the WGS84 map. It is currently valid for a limited latitude range, span-
ning more than 92 % of the planet surface, but can be extended to be valid
for the complete planet by subdividing the planet surface into six equal
areas with proper neighboring relations; the techniques presented in this
chapter still apply.

For each sensor data type that is visualized using this framework, spe-
cialized methods must be implemented for GPU-based data processing
and fusion, and for visual assistance tools such as detectors. Chapter 2
will give a detailed description of such specialized methods for SAR im-
ages.

The level of detail technique uses a conservative approach to deter-
mine the restricted quadtree subset that is necessary to render the scene.
An initial mesh can be constructed from this subset by combining larger
triangle patches directly on the GPU. This initial mesh consists only of
right-angled, isosceles triangles and is free of T-junctions.

The final level of detail for accurate rendering lies in the responsibil-
ity of a GPU based mesh refinement technique, as described in Chap-
ter 3. This technique must work on dynamically generated terrain data
and guarantee screen space error bounds. The output of this technique is

43

1.6 Results

4

Figure 1.16: An image sequence zooming in on the University of Siegen
Germany. The images on the right show the restricted quadtree generated
by the level of detail technique (red), and an initial conforming triangle

= 2 (yellow).

mesh of level |

44 Chapter 1. Visualization Framework

Figure 1.17: The area around Rome, Italy, in a combined view of two DEM
data sets, a false color image, and a SAR amplitude image.

a triangle mesh with the same properties as the input mesh (right-angled,
isosceles triangles, no T-junctions). This output mesh can then be rendered
using the techniques described in this chapter.

In the following, example results are shown that demonstrate the inte-
gration of the different presented framework components. These example
results were produced on a PC with an Intel Core 2 Duo 3 GHz CPU, 8 GB
main memory, and an NVIDIA GTX 285 graphics card with 2 GB of graph-
ics memory. The software environment consisted of Debian GNU/Linux
5.0 64bit, NVIDIA CUDA 2.3 and the NVIDIA graphics driver version
190.53.

As described in Sec. 1.2.2, the size of a quad is 21 x 2k samples,
plus an additional border to allow local neighborhood access during data
processing. All following examples use a quad size of 512 x 256 samples
(k = 8) and a border of 9 samples. This quad size was found to be a good
compromise between the initial level of detail estimate granularity, GPU
data chunk handling performance, and data storage overhead. The border
size was chosen so that all SAR processing methods have access to local
neighborhoods of up to 19 x 19 samples (see Chapter 2).

In the examples shown here, triangle meshes with different initial re-
finement levels are used (as described in Sec. 1.4.3), but these meshes are
not refined yet. A discussion of suitable refinement methods for final level
of detail computation is given in Chapter 3. Since rendering performance
largely depends on these mesh refinement methods, results with perfor-
mance measurements are given in that section, and are omitted here.

Fig. 1.16 shows a sequence of images zooming in on the University of
Siegen, Germany. Data sets in this scene are the DEM from the Nasa Blue
Marble Next Generation (BMNG), the BMNG image for April 2004, and a
higher resolution aerial photograph of the city area around the university.

1.6 Results 45

plew

File View Dialog Help
Navigation

Mode: Virtual Globe v

TS TerraSAR-X 2007-11-24-Rome-SM-EEC-RE_VV

Mesh creation method: ~Bottom Up Refinement v

Info | Global Parameters | Lens Parameters | Global Detectors | Lens Detectors

Jump
> . N L Mesh start level: o
URL: g.informatik.uni-siegen. data,
Lens o infoterr o ScreenSpace Error: 1.00
Aetivatelons Description: Multisampling: off =
Latitude: 00000000 Je Wireframe: off =
Type: sARimage (amplitude), 32 bits i
Longitude: | 0.0000000 Al Extent: WGs84: from lat 42.098 lon 12,376 to lat 41.539 lon 12.776 | Quad Bounding Boxes: | OFF '
i 1000.000 Jm Original size: 7875x15750 pixels, 473.14 MiB. GPU cache size (MB): 256
Tile size: 512x256, plus a border of width 9 and height 9)
7 5 - Memory cache size (MB): 4096
Data set size: 5180tiles in 16 levels, 18944x26368 pixels at highest level
Data sets
SARminimum amplitude: 1
Current data sets SAR maximum amplitude: 28599
¥ Altitude Data SAR average amplitude: 104.636

NASA Blue Marble Topography SARlog average amplitude: 9.28695
CIAT SRTM 90m V4

v Surface Textures SAR log avg normalized amplitude: 0.107787
v RGB Image Data

NASA Blue Marble 01/2004
Info | Global Parameters | Lens Parameters = Global Detectors | Lens Detectors

v SARImage Data

Priority: [10 |0 Weight: [0.50 |2
TerraSAR-X 2007-11-24-Ro.

Image parameters

Gamma:
Hue:
Lightness:
Contrast:
Saturation:

Sharpness:

Approximated tiles: 0 Head: lat 40.628 lon 8.650 alt 379.2 km Pointer: lat 42.027 lon 11.109 alt 0m

Figure 1.18: A screenshot of the framework, showing a selection of user
interfaces.

The wireframe version of the images shows the restricted quadtree struc-
ture built by the level of detail technique, and the initial triangle mesh
generated from it.

Fig. 1.17 shows an example scene of the area around Rome, Italy. Ac-
tive data sets in this scene are:

1. The DEM from the NASA BMNG data set. This DEM provides
world-wide coverage at a relatively low resolution: 86400 x 43200
data samples, each 16 bits wide, for the complete WGS84 map. This
results in an original raw data size of 6.95 GiB.

2. A DEM based on data from the Shuttle Radar Topography Mission
(SRTM), but post-processed using additional data sources to fill holes
and eliminate inconsistencies [JRNGO08]. This data set has a signif-
icantly higher resolution, but covers only part of the earth surface.
It provides 432000 x 144000 data samples, each 16 bits wide, for the
latitude range from +60° to —60° on the WGS84 map. This results
in 115.87 GiB of raw data.

3. The NASA BMNG image for January 2004. This data set provides
86400 x 43200 color image pixels (RGB, combined 24 bits) for the
complete WGS84 map, resulting in 10.43 GiB of raw data.

46 Chapter 1. Visualization Framework

Figure 1.19: Demonstration of a lens, applied to the example scene shown
in Fig. 1.17. The top and middle views show the scene with different pro-
cessing and fusion parameters. The bottom view shows both parameter
sets combined using a lens.

1.6 Results 47

Figure 1.20: A detector for near-ideal reflectors in SAR images, displaying
visual hints for each detected reflector.

4. A SAR amplitude image taken by the TerraSAR-X satellite and pro-
vided by Infoterra GmbH. This image covers only a limited area
around Rome, and provides 7875 x 15750 data samples, each 16 bits
wide, resulting in 236.57 MiB of raw data.

In this example view, the two DEMs are scaled with different factors and
then combined into a single elevation map set using a simple weighted
fusion filter. The BMNG image and the SAR image are processed and then
combined into a single texture set using a weighted blending filter. All
processing and fusion parameters are interactively adjustable, as shown in
Fig. 1.18.

The compressed quadtree hierarchies for the four data sets use a com-
bined 123.5 GiB of storage space. This includes overhead for the multi-
resolution representation, the 9 sample border around each data quad, and
global and per-quad metadata. Building these hierarchical representations
of the original sensor data requires substantial amounts of time, but only
needs to be done once per data set. Previous static terrain rendering meth-
ods that build hierarchical representations of fixed texture and elevation

48 Chapter 1. Visualization Framework

Figure 1.21: The framework running in a Virtual Reality laboratory, with
distributed rendering across six render nodes with a total of 12 graphics
cards.

map sets have more opportunities for optimization in the preprocessing
step, e.g. by applying lossy compression techniques to lower the demand
for storage space.

Fig. 1.19 demonstrates the use of a lens. The data sets and scene are
identical to Fig. 1.17, but the processing and fusion parameters differ. The
lens allows direct comparison of two parameter sets, thus allowing a better
understanding of the effects of parameters and of data set properties.

Fig. 1.20 shows an example of a detector for near-ideal reflectors in
SAR amplitude images. This detector is described in detail in Sec. 2.4.

Fig. 1.21 demonstrates distributed rendering. It shows the framework
running in the Virtual Reality laboratory of the University of Siegen. This
setup uses six cluster nodes for rendering, each equipped with two graph-
ics cards for passive stereo (left and right view), and an additional master
node. The framework also includes support for dynamic warping via a
post-processing fragment shader pass, which is required for user tracking
in this installation due to the curved screen [KLT*09].

Chapter 2

Synthetic Aperture Radar
Image Visualization

2.1 Overview

Synthetic Aperture Radar (SAR) is an active imaging sensor technology. A
target scene is illuminated using electromagnetic waves, typically in one
of the microwave frequency bands X (3cm), C (6cm), or L (24cm). A
receiver collects the signals reflected from the target area. In Remote Sens-
ing applications, both transmitter and receiver are typically spaceborne or
airborne. Monostatic SAR systems use the same platform for transmitter
and receiver. Recently, experiments with bistatic SAR systems were con-
ducted, where different platforms are used for transmitter and receiver,
e.g. a satellite and an airplane [WEB*10].

The two dimensions of a SAR image are given by the azimuth and
range directions. The azimuth (or along-track) direction is defined by the
motion of the receiver relative to the target. The range (or cross-track)
direction is usually perpendicular to the azimuth direction.

The image resolution in range direction is determined by the band-
width of the transmitted signal. To achieve a high resolution in azimuth
direction, SAR systems use a synthetic aperture by combining multiple
recordings of a physical antenna that moves across the target area. This
requires fully phase-coherent signal collection and processing, and exact
knowledge of the transmitter and receiver positions relative to the target
for the full duration of the recording [Mor00].

Unlike passive optical imaging systems, SAR systems are independent
of daylight conditions, since they actively illuminate the target area, and
they are also independent of weather conditions, since microwaves can
penetrate clouds. At the same time, current SAR systems achieve high spa-

49

50 Chapter 2. Synthetic Aperture Radar Image Visualization

Figure 2.1: A SAR amplitude image of an area in Peru, taken by the
TerraSAR-X satellite on 2008-03-12 and provided by Infoterra GmbH.

tial resolutions (less than 1 m resolution cell diameter for spaceborne sys-
tems, and less than 10 cm for airborne systems). Additionally, microwaves
can partially penetrate canopy, soil, and snow, and the characteristics of
SAR images allow analysis of features that cannot be observed through
other sensor systems. These properties make SAR images indispensable
for many Remote Sensing tasks.

A SAR image is produced from the collected reflected signals in the
SAR image formation process. A variety of image formation methods ex-
ist, with focus on different optimization strategies and different transmit-
ter /receiver configurations [Bam92, LNPKO04]. Due to various constraints
regarding the available processing power, storage space, and bandwidth,
most SAR systems store the collected raw signals onboard and transmit
them asynchronously to a ground station where the image formation pro-
cess takes place.

Originally, one sample of a SAR image contains both amplitude and
phase information. The phase information can be used in interferometry
applications. Additionally, depending on the SAR system, polarization
information can be exploited. The focus of this dissertation is the am-
plitude information only; interferometry and other applications are not

2.2 Dynamic Range 51

considered. Therefore, the term SAR image in this dissertation refers to a
SAR amplitude image, where each sample contains an amplitude value.
Furthermore, it is assumed that radiometric correction and georeferencing
were already applied.

A SAR image typically uses a 16 bit integer or single precision floating
point data type to store amplitude values (see Sec. 2.2). SAR amplitude
images are usually displayed by mapping these amplitude values to gray
levels. See Fig. 2.1 for an example.

The interpretation of SAR images is a complex task that depends on
the characteristics of both the SAR system and the features under investi-
gation [OQO04]. Nevertheless, two common challenges can be identified:

¢ the high dynamic range of SAR amplitude data, and
¢ the speckled nature of SAR images.

In this chapter, techniques are presented that address both aspects in
an interactively adjustable way, based on the data processing stage of the
framework as described in Sec. 1.3. Additionally, a detector for near-ideal
reflectors in SAR images is presented that is usable as a visual assistance
tool for SAR image analysis as discussed in Sec. 1.5.

2.2 Dynamic Range

2.2.1 Introduction

The dynamic range of a SAR image is described by the ratio of its largest
amplitude value and its smallest non-zero amplitude value. This dynamic
range depends on the characteristics of the SAR system and the target
scene. For example, newer SAR systems with higher ground resolutions
tend to produce images with increased dynamic range due to pulse com-
pression effects [Mor00]. Furthermore, corner reflectors in the target scene,
commonly used for calibration and georeferencing purposes, generate es-
pecially high amplitude values in their characteristic response patterns.
See Sec. 2.4. Data types commonly used for accurate representations of
SAR images include 16 bit integer types and the single precision floating
point type.

The dynamic range of a SAR image is typically much higher than
the dynamic range of common display devices such as LCD monitors or
printed media. Common gray level images used for display and print-
ing use the 8 bit integer range {0,...,255} to represent the gray levels.
Currently, only special purpose display systems can use a wider 10-bit
integer range [NVI09a]. In either case, mapping SAR amplitude values

52 Chapter 2. Synthetic Aperture Radar Image Visualization

Figure 2.2: The SAR amplitude image from Fig. 2.1. To produce this image,
the lowest 10 % of the amplitude range was linearly mapped to gray levels.
The highest 90 % of the amplitude range was clipped to white, and all
details in this range are lost.

to gray levels for display results in information loss: low amplitude val-
ues are clipped to black, high amplitude values are clipped to white, and
many intermediate steps are lost because they cannot be represented. For
example, a simple linear mapping of the amplitude values to gray lev-
els delivers unusable results, mostly because a large range of amplitude
values is clipped. See Fig. 2.2.

A dynamic range reduction method for SAR images maps the ampli-
tude values a to gray levels g € [0, 1] using a mapping function f. The gray
level range [0,1] is then quantized to a range of integers suitable for the
output device (usually the 8 bit range {0, ...,255}).

The mapping function of global dynamic range reduction methods de-
pends only on the current sample a(x,y):

g(x,y) =f(a(x,y)) (2.1)

For local methods, f depends on a all samples in a neighborhood N (x, i)
of the current sample a(x,y):

g(x,y) = f({a(x’y)|(x’y) e N(x,y)}) (2.2)

2.2 Dynamic Range 53

In the remainder of this section, it is assumed that the amplitude values
have been normalized to [0,1] using the maximum amplitude value amax
stored in the image.

The goal of the mapping function f is to minimize the information
loss that occurs in the quantization step, and at the same time maximize
contrast in interesting amplitude ranges and image areas. Since the inter-
esting amplitude ranges and image areas will vary between different data
sets and different visualization tasks, the dynamic range reduction meth-
ods must be adjustable. To enable quick exploration of image features in
different amplitude ranges and optimization of the mapping for the fea-
tures that are relevant to the current visualization task, it must be possible
to perform this adjustment interactively.

2.2.2 Related Work

There is very little published work on dynamic range reduction specifically
for SAR images. The mapping of SAR amplitude values to gray levels in
different software packages is largely undocumented in the literature. Of-
ten, ad-hoc methods are used that give visually pleasing results for most
data sets. For example, the RAT radar tools [RHO4] first apply gamma
mapping to the amplitude values, then clip values that are larger than a
threshold, and then map the results linearly to [0, 1]. There are many simi-
lar possibilities, e.g. mapping an interval [a, b] to [0, 1] using a logarithmic
function after estimating the bounds 4 and b from the amplitude data.

All of the known ad-hoc methods are global methods; local dynamic
range reduction methods for SAR images have not been described before.
Local methods can enhance local contrast and thereby improve the visi-
bility of details, but resulting gray levels in different image areas are not
directly comparable anymore.

While there is very little previous work on dynamic range reduction for
SAR images, much research has been carried out in a related field from
the computer graphics domain: tone mapping. Tone mapping is used
to reproduce high dynamic range optical images on low dynamic range
display devices.

For this purpose, tone mapping operators (TMOs) reduce the dynamic
range of the luminance in optical images. Global TMOs use an identical
mapping function for all image pixels. In contrast, local TMOs map pixels
depending on their neighborhood: bright pixels in dark areas are treated
differently than bright pixels in bright areas. This gives local TMOs more
flexibility both for reduction of the dynamic ranges and for preservation
of local image details. Global techniques are the natural choice when pro-
cessing speed is critical, but GPUs also allow fast implementations of local

54 Chapter 2. Synthetic Aperture Radar Image Visualization

methods, e.g. for video applications [KMS05].

A number of global and local TMOs have been proposed in recent
years. An introduction and extensive overview was given by Reinhard
et al. in 2005 [RWPDO05]. The focus in this section is on TMOs that are rele-
vant for the purpose of interactive visualization of SAR amplitude images,
i.e. TMOs that

e are applicable to SAR amplitude values, and

e are suitable for a GPU-based, interactively adjustable implementa-
tion.

This excludes TMOs that are based on sophisticated models of color per-
ception, such as the iCAM model proposed by Fairchild and Johnson [FJ04]
and the multiscale model proposed by Pattanaik et al. [PFFG98]. Addition-
ally, some TMOs aim to reproduce certain perceptual effects of the human
visual system, e.g. night vision and glare effects [KMS05]. Such methods
are not applicable to SAR amplitude values, and are therefore not consid-
ered here.

The majority of the remaining TMOs work on single channel data: they
first extract the luminance information from the image, then reduce its
dynamic range, and re-add the color information afterwards. By omitting
the color handling, such TMOs are applicable to SAR amplitude values
(and other types of data) in a straightforward way. Of course, the quality
of the results varies depending on the models on which the individual
method is based.

Although the purpose is similar, there are several important differences
between tone mapping for optical images and dynamic range reduction
for SAR images:

¢ Tone mapping approximates the original appearance of high dy-
namic range optical images on low dynamic range displays. There-
fore, quality measurement techniques for TMOs can be based on
comparisons of the reproduced result with the original scene, or with
the original scene as reproduced by a special high dynamic range
display device [YMMS06, LCTS05]. Such quality measurements can
also use a model of the human visual system to account for different
dynamic ranges in the reproductions [AMMS08]. For SAR images,
no original appearance exists, and similar quality measurements for
dynamic range reduction methods are not possible.

¢ The distribution of amplitude values in SAR data sets differs from
the distribution of luminance in optical images [OQ04]. For example,
corner reflectors and other strong scatterers cause small peaks of

2.2 Dynamic Range 55

high amplitude in areas of significantly lower amplitude in the SAR
image. This is very uncommon in optical images and may cause
problems for TMOs. Additionally, local average values in optical
images are often estimated based on assumptions that do not hold
for the speckled nature of SAR images.

* The goal of TMOs is often to produce results that look natural to the
human observer. The reproduction of details is not of high impor-
tance for this goal [CWNAO06], but it is essential for dynamic range
reduction for SAR images.

A selection of global and local TMOs and their application to SAR
images is described in Sec. 2.2.4.

2.2.3 Commonly Used Methods

The methods described in this section are those that are reported to be
commonly used in the context of SAR image display. All of them are
variants of linear, logarithmic, or gamma mapping.

Note that all commonly used methods are global dynamic range re-
duction methods. No local dynamic range reduction methods for SAR
images are documented.

Linear Mapping

Linear mapping from amplitude values to gray levels is only usable if a
relatively small range of the amplitude values is selected and all values
outside of this range are clipped to black or white respectively. Otherwise,
most details are lost in very dark regions of the resulting image. A possible
mapping function is the following, where a,yg is the arithmetic mean of the
amplitude values and 4, is the standard deviation:

g(X, y) = a(xt’ y) , t= Aavg + 3a, (23)

Due to clipping of the result to [0,1], all information in amplitude
values greater than t is lost when using this method.

Logarithmic Mapping

Logarithmic mapping is often used with SAR data, since most of the image
detail is concentrated in low amplitude ranges (see Fig. 2.2). Logarithmic

56 Chapter 2. Synthetic Aperture Radar Image Visualization

mapping methods are usually adjustable with one parameter ¢ that con-
trols the overall brightness of the result. The following mapping function
can be used:

_ log(1+c-a(x,y))
g(x/y) - 10g(1+c)

, c>1 (2.4)

To make better use of the available gray level range, often only a part of
the amplitude range, from tpin to fmax, is mapped to gray levels in this way.
Values outside of this range are clipped to black or white respectively. The
values tmin and tmax can be estimated from the SAR images. Interactive
systems allow the user to change these values on the fly.

Gamma Mapping

This is an ad-hoc dynamic range reduction method based on gamma map-
ping, with properties similar to the logarithmic mapping described above:

g(x,y) =alx,y)’, v€(0,1) (2.5)

The RAT radar tools [RH04] use the following variant: First, gamma
mapping with o = 0.7 is applied to the amplitude values. Then the mean
value m of the results is computed. After that, the interval [0,2.5 - m] is
linearly mapped to [0, 1]. Values larger than 2.5 - m are clipped to white.

2.2.4 Tone Mapping Operators

This section describes a selection of global and local tone mapping opera-
tors and their application to SAR images.

In the tone mapping situation, the input samples for the dynamic range
reduction method usually provide absolute luminance values measured in
cd/m?. In some situations, absolute luminance values are not known and
the input image only provides relative values from [0,1] without an ex-
plicit scale. Furthermore, some TMOs do not require absolute luminance
values as input samples, and instead just assume a certain range of input
values.

As stated above, it is assumed in this section that SAR amplitude values
are normalized to [0, 1]. Where necessary, this interval can be transformed
for input into a dynamic range reduction method using a prescaling factor
p, which becomes an additional parameter if the method does not have
prescaling built in.

2.2 Dynamic Range 57

Drago Logarithmic Mapping

Drago et al. propose a global logarithmic mapping method that adapts the
base of the logarithm depending on the current value [DMACO3].

2(t,y) = m ‘ log(1+4c-a(x,y))

= >1,m>1,b .11 (2.
log(1+c¢) log(2+8-a(x,y)?)’ cz>1lm=> €[0,1] (26

The parameter c¢ is analogous to the simple logarithmic mapping. The
parameter m determines the maximum brightness of the result, and the
parameter b steers the amount of contrast.

Tumblin Brightness Preserving Operator

Tumblin and Turk describe a global TMO that is based on psychophysi-
cal experiments measuring the interrelation of luminance and perceived
brightness [TT99]. The aim is to preserve the perceived brightness in the
resulting image. The method uses two adaptation parameters, a; and a,,
for display luminances and amplitude values respectively. Additionally, a
prescaling parameter c is used.

v(2a)
c-a(x, 7(ag)
g(xly) = 4aq <5(ly>> ’ s c Z 1/ad 2 1/a11 2 1 (27)
a
The function 7 is a logarithmic function that models the human contrast
sensitivity, derived from measured data.

Schlick Uniform Rational Quantization

Schlick proposes a general global quantization method that is applica-
ble to single channel data such as normalized SAR amplitude values in
a straightforward way [Sch95]. The mapping function is not based on
assumptions about the human visual system:

sy) = G- ?)' ai?xy;) 1 belle) (28)

It uses a single parameter b which controls the overall brightness of the
result.
Reinhard/Devlin Photoreceptor Model

Reinhard and Devlin describe a TMO that is motivated by photorecep-
tor behaviour and is designed to work on the RGB channels of optical

58 Chapter 2. Synthetic Aperture Radar Image Visualization

images [RD05]. Using sophisticated models for the computation of a pho-
toreceptor adaptation level, effects such as light adaptation and chromatic
adaptation can be simulated. If the method is applied to single channel
data, only the light adaptation term [remains.

I(x,y) = (1—c)-a(x,y) +c-aag c€0,1] (2.9)
1— a0, \ 4
m:03+07<1_a?> (2.10)
_ a(x,y) 3
) = G+ e Ty PESS @D

This method requires knowledge of the minimum and average amplitude
values in the image, dmin and adayg.

The parameter c in the light adaptation term controls the contrast in
the resulting image. The parameter b determines the brightness.

Chiu Spatially Variant Operator

Chiu et al. proposed one of the first local methods to be used for tone
mapping [CHS*93]. The mapping function is as follows:

a(x,y)

, >0 (2.12)
c-ag(x,y)

g(xy) =

Here, a4 is a Gauss-filtered version of a. Therefore, g(x,y) depends on the
neighborhood N as described by Eq. 2.2. The parameter c is a constant of
proportionality between the two values.

Rahman Retinex

Like the Chiu method, the method proposed by Rahman, Jobson and
Woodell is a local method that uses Gauss filtering to reduce the dynamic
range [RJW96]. Multiple filtered versions of the input data set are pro-
duced using different Gauss filter sizes. A set of weights determines the
influence of each filtered data set on the result. The weights can be com-
puted from a single user parameter w. Additionally, the method uses a
prescaling parameter.

Ashikhmin Spatially Variant Operator

Ashikhmin describes a TMO that is designed to preserve contrasts [Ash02].
It is a local TMO that uses multiple Gauss filtered versions of the input
data set to determine a local adaptation value A for each pixel. The largest

2.2 Dynamic Range 59

.

Figure 2.3: The transition between the bright image area on the left and
the dark image area on the right causes high gradient values at the border
between both areas. For the positions marked with a cross, the largest
Gauss filter that does not cross this border is chosen (green). A Gauss
filter that crosses the border would cause blurring of image features and
is rejected (red).

Gauss filter that does not cross high gradients is used, as shown in Fig. 2.3.
This avoids blurring of image features. The mapping function is then de-

fined as (x,1)
c-a(x,y
=F(c-A — 0 2.13
s(vy) = Fle Alxy) 4ot o> 2.13)
The parameter ¢ is a prescaling factor. An additional parameter t > 0
is used to determine the minimum strength of gradients that the Gauss
filters are not allowed to cross. The function F is designed using perceptual
motivations.

Reinhard Photographic Tone Reproduction

Reinhard et al. propose a tone reproduction operator that uses ideas from
photography, namely scene keys and dodging-and-burning [RSSF02]. It is
a local TMO and uses the following mapping function:

() = —SA&Y) (2.14)

g\y 1+4c-Ax,y) '

Analogous to the Ashikhmin TMO, A is a Gauss filtered version of the
amplitude values 4, using the biggest filter size that does not cross strong
gradients. Reinhard et al. propose some refinements to this equation to

60 Chapter 2. Synthetic Aperture Radar Image Visualization

make better use of the available gray level range. Parameters of the result-
ing mapping function are the prescaling factor c and a parameter w that
influences the smallest amplitude that is mapped to white. Additionally,
the computation of A requires a sharpness-influencing parameter s and a
gradient threshold ¢.

Durand Bilateral Filtering

The TMO proposed by Durand and Dorsey splits the input image into
a base layer and a detail layer. Dynamic range compression is applied
only to the base layer, and the details are re-added afterwards [DDO02].
The base layer is produced by applying a bilateral filter to the original
data set. The bilateral filter is a smoothing filter that avoids to smooth
across boundaries, i.e. high amplitude differences. The detail layer is the
difference between the original and the filtered data set.

2.2.5 Local Methods for SAR Images

The mapping function of global dynamic range reduction methods is usu-
ally monotonically increasing. Brighter pixels in the result displayed are
known to be caused by larger amplitude values. This is not necessarily
true for local methods, because local methods can treat the same ampli-
tude value differently depending on its neighborhood. The comparability
of resulting gray levels is lost, but local contrast can be enhanced to im-
prove the visibility of details. Interactive visualization systems allow to
use global and local methods simultaneously, thus combining the benefits
of both. A lens is ideally suited for this purpose (see Sec. 1.5.2).

The local TMOs described in the previous section all compute a local
adaptation value from a neighborhood and use this value to determine
how to treat the current sample. Such local adaptation values are variants
of local averages. Most local TMOs use Gauss filtering to determine the
local adaptation value.

Simple Gauss filtering as used by early methods such as the Chiu and
Rahman methods leads to large halo artefacts (contrast reversals) at the
boundary of bright image features [RWPDO05]. Therefore, more recent
methods use various strategies to avoid computing averages across bor-
ders between image regions of different brightness, such as bilateral fil-
tering (Durand method) or locally varying Gauss filter sizes (Ashikhmin
method, Reinhard photographic method). This reduces undesired halos.

However, small halos in largely homogeneous regions can emphasize
details that might otherwise be lost. This property of local methods is
desirable in the context of dynamic range reduction for SAR images.

2.2 Dynamic Range 61

The main problem of adapting local methods to dynamic range reduc-
tion of SAR images is to find a suitable method to compute local adapta-
tion values. Because of the different properties of SAR images and optical
images, methods developed for optical images give unsatisfactory results
(see also Sec. 2.2.7).

In this section, new adaptive methods for dynamic range reduction
of SAR images are proposed. The methods are based on existing tone
mapping techniques, but the computation of local adaptation values is
tailored to the properties of SAR images.

Base Methods

Dynamic range reduction methods intended for interactive use should not
require tweaking of too many parameters, and the parameters that are
required should have an intuitive and predictable effect on the image.

Of the global TMOs described in Sec. 2.2.4, the Schlick quantization
method and the Reinhard/Devlin photoreceptor model both fulfill this
requirement. The Schlick method has a single parameter b that steers the
brightness of the result (see Eq. 2.8), and the Reinhard/Devlin method
uses two parameters b and c that control brightness and contrast of the
result (see Eq. 2.11). The local methods, on the other hand, usually require
more parameters and /or parameters whose impact on the result is difficult
to understand.

Both Schlick and Reinhard/Devlin describe extensions to their global
methods to make them adaptive to local neighborhoods. Since these ex-
tensions do not significantly improve the tone mapping results for optical
images, both methods are mostly used in their global variant [RWPDO05].
However, the extended methods deliver good results for SAR images when
used with a suitable method to compute local adaptation values.

The Schlick quantization method is extended by replacing the current
amplitude value a(x,y) in the denominator of Eq. 2.8 with a replacement
value a’(x,y) [Sch95]:

) = b-a(x,y) -
g(xy) = b-1)-a(xy) 11 bell,0) (2.15)

Similarly, the Reinhard/Devlin method is extended by replacing the
term a(x,y) in the computation of the light adaptation value in Eq. 2.9
with a’(x,y) [RDO5]:

I(x,y) = (1—c)-a'(x,y) + - aag c<[0,1] (2.16)

The replacement value a’(x, y) can be computed using a linear interpo-
lation between the current amplitude value a(x, y) and the local adaptation

62 Chapter 2. Synthetic Aperture Radar Image Visualization

value A(x,y):
a(x,y)=01—-4d)-a(x,y)+d-A(x,y), del01] (217)

This allows to steer the amount of adaptivity of each method using the
parameter d. For d = 0, the extended method is equivalent to the global
method, and for d = 1 the adaptivity is set to its maximum.

The remaining problem is to find a suitable method to compute the
local adaptation values A(x,y) for SAR images.

Adaptation Values for SAR Images

The choice of a method to compute adaptation values depends on the im-
age features one wants to emphasize. In regions where no features should
be emphasized, the adaptivity value A(x,y) should not differ much from
the current amplitude value a(x,y), so that the method behaves similar to
its global counterpart. Around image features that should be emphasized,
A(x,y) should be the average of a local region, and therefore usually dif-
ferent from a(x,y). The method can then adapt to the properties of local
neighborhoods, thereby emphasizing the feature of interest.

In SAR images, major features of interest are peaks in the data that
have a considerably greater amplitude than the surrounding region. The
following method to compute a local adaptation value A(x,y) accounts
for this:

e Compute local averages G, around the current pixel (x,y) using
Gauss filters of increasing radius r, from 1 sample to 10 samples.
Choosing the standard deviation o = r/2.5 ensures that the filter
mask covers almost all of the filter mass.

¢ Compute quotients v,;1 = %, 1<r<o.

T

* Choose the largest G, such that v, > t for a user specified threshold
t. If no v, is greater than ¢, use G1(x,y) = a(x,y).

In largely homogeneous regions, this method will choose A(x,y) =
G;(x,y) for small values of r or even r = 1, which means that the dynamic
range reduction will behave like its global counterpart. Around peaks
however, the local adaptation value will be the Gauss weighted average
of a larger region. This results in an emphasized peak in the gray level
image.

Note that this is the opposite of what the Ashikhmin Spatially Vari-
ant TMO [Ash02] does: in Ashikhmin’s method, the largest G, such that
v, < t is chosen. This results in using large radii in homogeneous re-
gions and smaller ones when boundaries between bright and dark image

2.2 Dynamic Range 63

regions would be crossed otherwise. Image details in largely homoge-
neous regions are emphasized, and halos around borders between image
regions of different brightness are avoided. These properties are suitable
for optical images, but not for SAR images.

2.2.6 Implementation

The dynamic range reduction methods described above were implemented
using the GPU-based processing chain of the visualization framework, de-
scribed in Sec. 1.3.

The global methods do not require intermediate steps: the input im-
age can be mapped directly to the output image in a single step, and the
mapping function can be implemented in a GLSL shader or CUDA kernel
in a straightforward way.

Most local methods compute local adaptation values, and often this
computation can be done by a separable filter. In this case, a multi-step
implementation can be used. For example, to apply multiple Gauss filters
at the same time for the Ashikhmin operator or the local SAR methods, a
first shader can compute the horizontal filter components and store them
in different array components of an intermediate result. If OpenGL tex-
tures are used, up to four components can be stored in this way; with
OpenCL or CUDA, this limitation does not exist. A second shader step
can then compute the vertical filter component and store the result in the
output buffer.

2.2.7 Results

The implementation as part of the visualization framework allows to inter-
actively explore the properties of each method when applied to different
SAR images. Having a variety of dynamic range reduction methods is only
useful if the user can interactively adjust method and parameters to both
the current SAR image and the analysis aims. In particular, the user must
be able to interactively switch between global methods that allow a direct
comparison of different image regions, and local methods that show more
details in specific regions. The lens concept of the visualization frame-
work allows to use global and local methods simultaneously, as shown in
Fig. 2.4. This allows users to benefit from the more detailed results of lo-
cal methods while still allowing the direct comparison of different image
regions permitted by global methods.

Fig. 2.5 shows results of selected methods for an example image pro-
duced with the AER-II sender and PAMIR receiver [BE06]. The raw data
was processed at ZESS, University of Siegen, to produce the SAR image.

64 Chapter 2. Synthetic Aperture Radar Image Visualization

Figure 2.4: Global and local dynamic range reduction methods applied
simultaneously to a SAR image using a lens.

The methods were also applied to different SAR images from the ERS-1/2,
Envisat, and TerraSAR-X spaceborne platforms.

Global Methods

The result of linear mapping (top left in Fig. 2.5) clearly shows that high
amplitude ranges are clipped to white, and therefore details are lost. The
logarithmic mapping (top right in Fig. 2.5) and the similar gamma map-
ping avoid this problem to some extent. The result of gamma mapping
lacks contrast when compared to other results. The Drago logarithmic
mapping method can produce better results than the simple logarithmic
mapping due to its adaptability and additional parameters, but this re-
quires some fine-tuning.

The Tumblin-Rushmeier method is adjustable to a wide range of input
data via its parameters, but it tends to clip higher amplitude ranges to
white. The psychophysical model that motivates the method is likely not
suitable for SAR data.

The Reinhard-Devlin method (middle left in Fig. 2.5) and the Schlick

2.2 Dynamic Range 65

Figure 2.5: Results from a selection of global and local dynamic range
reduction methods. Top row: linear and logarithmic methods, middle
row: Reinhard/Devlin and Rahman methods, bottom row: Ashikhmin
and Reinhard Photographic method. The bottom right part of each image
shows a closeup of the area framed by the white rectangle.

66 Chapter 2. Synthetic Aperture Radar Image Visualization

Figure 2.6: Detail of a SAR amplitude image, visualized using the ex-
tended Schlick method with parameter d = 0.0,0.5,1.0.

method both produce high contrast results without clipping high ampli-
tude values. The brightness parameter of the Schlick method and the
brightness/contrast parameter pair of the Reinhard-Devlin method are
easily adjustable. Both methods are valuable alternatives to the commonly
used simple logarithmic mapping method.

Local Tone Mapping Operators

The Rahman method (middle right in Fig. 2.5) emphasizes high frequen-
cies corresponding to very fine local structures even when used with rel-
atively strong Gauss filtering. The similar Chiu method exhibits the same
problem to an even greater extent. With these methods, it is difficult to
obtain usable results for SAR images because of their speckled nature, al-
though for the Rahman method the influence of speckle can be reduced
somewhat by tweaking the parameters.

The Ashikhmin method (bottom left in Fig. 2.5) works well for SAR
data even though it is based on perceptual motivations. The parameter ¢
influences the amount of detail that is emphasized. By setting t appropri-
ately, the results are much less affected by speckle than the results of the
Chiu and Rahman methods.

The Reinhard Photographic method (bottom right in Fig. 2.5), like
the Tumblin-Rushmeier method, tends to clip higher amplitude ranges
to white when applied to SAR data. Additionally, for the test images, it is
hard to adjust the four parameters to produce reasonable results. The Du-
rand method is slightly easier to adjust, but like the Tumblin-Rushmeier
and Reinhard Photographic methods it tends to clip higher amplitude
ranges to white. For all three methods, this effect may be caused by the
photo-centric nature of the underlying assumptions.

2.2 Dynamic Range 67

Figure 2.7: Detail of a SAR amplitude image, visualized using the ex-
tended Reinhard /Devlin method with parameter d = 0.0,0.5,1.0.

Fig. 2.5 shows that local methods can produce results with increased
local contrast, and significantly increase the preservation of local details.
This helps to analyze image details. Nevertheless, the results should still
be improved by using local adaptation values suitable for SAR images.

Proposed Local Methods

The local extensions of the global Schlick and Reinhard-Devlin methods
combine the advantages of easy-to-adjust, intuitive parameters of the glo-
bal methods with the increased local contrast offered by adaptive methods.
The local variants use adaptation value computations suitable for SAR
images, and introduce the additional parameters d, to steer the amount of
adaptivity, and the threshold value ¢.

Fig. 2.6 shows results of the local Schlick method. The brightness pa-
rameter b was set to 75 in this example. The parameter d was set to 0.0,
0.5, and 1.0 respectively. For d = 0.0, the extended method is equivalent
to the global method.

Fig. 2.7 shows results for the Reinhard/Devlin method. Similarly to
Fig. 2.6, the parameter d was set to 0.0, 0.5, and 1.0 respectively. The
brightness parameter b was set to —1.5 and the contrast parameter ¢ to
0.9. Setting the contrast parameter to 1.0 would eliminate the influence of
the local adaptivity value (see Eq. 2.16). Therefore, ¢ should not be higher
than 0.95.

Setting the threshold t for the computation of the local adaptation val-
ues too low will result in emphasized details in all image regions, in-
cluding emphasized speckle; this is not desirable. Setting the threshold
too high will disable all emphasizing effects because the local adaptation
value will always be the same as the current amplitude value. Experi-

68 Chapter 2. Synthetic Aperture Radar Image Visualization

ments have shown that threshold values between 0.05 and 0.1 work well
for different SAR images from different sensors. The images in Fig. 2.6
and Fig. 2.7 were produced using a threshold of t = 0.05.

The method to compute local adaptation values for SAR images pro-
posed in Sec. 2.2.5 can also be used with other methods, such as the Du-
rand Bilateral Filter TMO or the Ashikhmin Spatially Variant TMO. How-
ever, the Schlick and Reinhard/Devlin methods are preferable because of
their intuitive parameters and the quality of their results.

2.3 Speckle

2.3.1 Introduction

A SAR image resolution cell contains the combined reflected signals of the
objects located in the target area covered by this cell. Since the backscat-
tered signals of all objects inside the resolution cell are coherently
summed, constructive or destructive interference can lead to very high or
very low values. This results in the characteristic speckled nature of SAR
images [MJ04]. See Fig. 2.1.

It is important to note that this speckle is the recorded signal and not
noise. Nevertheless, speckle can hinder both human visual interpretation
of SAR images as well as computer-based image analysis, segmentation,
and classification techniques. For these reasons, a reduction of the speckle
is a central step in many SAR image analysis applications.

One way to reduce speckle in SAR images is using multi-look tech-
niques which combine several measurements for each resolution cell dur-
ing the image formation process. This reduces the speckle at the cost of
reduced spatial resolution. Multi-look techniques are applied at the image
formation stage and are therefore part of the SAR system. Such techniques
are not discussed in this section; the focus here is on filtering techniques
for standard single-look SAR images.

In the context of the interactive visualization framework presented in
Chapter 1, the goal of this section is not to propose new speckle filter meth-
ods, but rather to show the feasibility of interactively adjustable, GPU-
based implementations of the various existing filtering methods.

2.3.2 Related Work

A wide variety of filters for speckle reduction in SAR images exist. These
filters have different strengths and weaknesses for different types of input
images. Therefore, having a variety of methods to choose and adapt to the
current task is important for interactive visualization of SAR images.

2.3 Speckle 69

Various comparative studies give details about the existing filter meth-
ods and their properties [L]D*94, GJ97, Tou02]. Touzi presents a classifi-
cation of filter methods that is based on the different speckle models used
by the filters [Tou02]. In contrast, this section uses a classification that is
based on the processing techniques used, as this is the main property of
interest with regard to GPU-based implementations of the filters. Typical
representatives for each class are mentioned in parentheses:

¢ Convolution filters (Mean filter, Gauss filter). These filters apply
different convolution kernels to the SAR image data. Most of the
common convolution kernels are separable, and allow to split the
filtering process into two steps to reduce the total number of opera-
tions.

e Filters based on local statistics (Lee filter, Kuan filter, Frost filter,
Gamma maximum a posteriori probability). These filters compute
statistics from a local neighborhood, and produce an output value
based on a statistical model of SAR speckle.

* Rank Operators (Median filter). These filters apply some form of
sorting to the input values given by the mask size.

* Wavelet based filters (Soft thresholding). These filters perform filter-
ing on wavelet coefficients.

The following section discusses the details of GPU-based implementa-
tions of filters from each of these classes, using the GPU-based processing
chain presented in Sec. 1.3.

2.3.3 Interactive Speckle Reduction

The interactive visualization framework presented in Chapter 1 uses a hi-
erarchical, quad-based representation of the SAR image, to allow inter-
active use of processing methods, including speckle reduction for SAR
images. Therefore, all speckle reduction methods must work on this hier-
archical, quad-based representation. This has two consequences:

1. Speckle reduction filters can directly access only local information.
Global information requires special handling.

2. Filter mask sizes must be adapted to the hierarchy level, so that the
filters have a constant mask size in world space.

70 Chapter 2. Synthetic Aperture Radar Image Visualization

Convolution filters. Simple convolution filters like the Mean and Gauss
filters are easily implementable in the framework. A 3x3 Mean filter, for
example, can be implemented using one processing step. The GPU micro-
program gathers the information from the 9 samples of the local neigh-
borhood and computes the filtered output sample. Mean and Gauss filters
with larger masks can be implemented in a separable manner to increase
performance by reducing the total number of operations. In this case, each
filter needs two processing steps: one for the horizontal mask, and one for
the vertical mask. The masks can usually be stored in uniform variables
(OpenGL) or shared memory (CUDA), but for special filters it may be ben-
eficial to use 1D textures or arrays, which allows fast interpolated access
to mask elements [Nov05].

Filters based on local statistics. Such methods interpret a local neigh-
borhood N (e.g. 5x5 or 7x7) as a sampling distribution, and compute
sample mean m and sample variance s? of the amplitude values a; € N:

1

= - i 2.18
"L 19
1
52 = |_/\/’|7—1 Z./v (ai — m)2 (219)
a;e
_ 1 (ye t(yva) 020
|N| -1 a;eN 1 |N| a;eN : .

The value of the output pixel is then computed based on the underlying
assumptions about statistical properties of SAR images. For rectangu-
lar neighborhoods, the sums), c - a; and Y, ¢y a? used in Eq. 2.18 and
Eq. 2.20 can be computed simultaneously in a separable manner by storing
the results of the first processing step in an intermediate texture or array
with two components. In the second processing step, after computing m
and s? from these sums, the filter result is computed and stored in the
output texture or array.

Some methods based on local statistics need additional values that are
computed globally from the SAR image. For example, the method pro-
posed by Xiao, Li, and Moody [XLMO03] needs global minimum and max-
imum deviation values. These cannot be computed efficiently on the GPU
due to the quad-based data management: only local information is avail-
able. Generally, there are three methods to solve this kind of problem:

1. Compute the values in the preprocessing step, while building the
data hierarchy.

2.3 Speckle 71

2. Estimate the values based on a local neighborhood. This can be done
on the GPU.

3. Treat the values as additional parameters to the method and let the
user adjust them.

The first method is the method of choice in order to achieve results that are
comparable to the original algorithm. See Sec. 1.2.3. The third method also
works reasonably well, but at the cost of additional parameter adjustment
required by the user, which is disadvantageous in interactive visualization
systems. The second method will lead to unintended differences in filter
behaviour in different regions of the image.

Ranking operators. Ranking operators like the Median filter are based
on sorting the values in the local neighborhood, and computing their out-
put based on the order of the sorted values. Usually, sorting on the GPU is
performed with algorithms that fit the GPU programming model, such as
merge sort variants [KWO05] or, more recently, algorithms based on parallel
scan techniques [SHG09]. However, for the relatively small local neigh-
borhoods used in typical filters, the overhead of applying such techniques
outweighs their benefits.

Instead, a small number of values can be sorted directly within an
OpenGL fragment shader or CUDA kernel using simple algorithms such
as bubble sort. If the number of values (i.e. the mask size) is known at
compile time, the GPU compiler can produce relatively efficient code using
complete loop unrolling, thus reducing branching.

The maximum size of neighborhoods is limited with this approach, be-
cause the maximum number of GPU instructions allowed in one unit can
easily be exceeded, depending on the hardware limits. A solution to this
problem is to use a separable approximation of the median filter [Nar81].
That way, the number of values in each of the two processing passes is
kept small, and reasonably large filter masks can be used.

Wavelet based filters. Filters based on wavelet transforms allow frequen-
cy-related manipulations of the SAR image. A suitable wavelet transform
is applied to the image, and a filtering method, e.g. a variant of soft thresh-
olding [Don95], is applied to the wavelet coefficients. The reverse wavelet
transformation then yields the filtered SAR image. Due to the limited lo-
cal support of wavelets, it is possible to perform the wavelet transform on
the quad-based image representation used in the framework. The discrete
wavelet transform can be computed efficiently on the GPU [WLHWO07].

72 Chapter 2. Synthetic Aperture Radar Image Visualization

Figure 2.8: Results from a selection of despeckling filters, applied on a
TerraSAR-X SAR image of a rural area provided by Infoterra GmbH. In
reading order: original image, Gauss filter, approximative Median filter,
Lee filter, Gamma MAP filter, and Wavelet Soft Thresholding.

2.4 Point Target Analysis 73

2.3.4 Results

Fig. 2.8 shows example despeckling results for a TerraSAR-X SAR image.
The despeckling filters can be interactively adjusted for the SAR image and
the visualization task. Typically, filter masks are not larger than 9 x 9 or
11 x 11 for most filter methods. Since efficient separable implementations
of the filter methods are possible, processing time is not a problem for
interactive use.

2.4 Point Target Analysis

2.4.1 Introduction

A single perfect reflector for the signals sent by the SAR transmitter would
result in a characteristic pattern, known as an ideal point target response,
in the SAR image [Mor00]. See Fig. 2.9. The central lobe is the main lobe.
Side lobes are arranged along two axes that cross at the main lobe.

This property of SAR images is commonly used for quality assessment
purposes [SBA*99]. A corner reflector placed into the target scene reflects
the radar signal back in the direction of the SAR receiver and serves as an
approximation of the theoretical perfect reflector. By comparing the SAR
image pattern caused by the corner reflector with the ideal point target
response pattern, the quality of the SAR image can be estimated.

Another important use of the point target response is that it can be
used to mark fixed locations in a scene. A corner reflector placed in a pre-
cisely known, fixed location is known as a persistent scatterer. A persistent
scatterer will cause the typical point target response pattern in each SAR
image taken of the target scene. The point target response pattern can
therefore be used for precise registration of SAR images [FPR0O1]. This is
a prerequisite for important applications in interferometric SAR as well as
for time-dependent analysis of SAR image series.

In the absence of corner reflectors in the target scene, e.g. when the ter-
rain is inaccessible or a costly preparation of the target scene is unfeasible,
strong natural scatterers available in the scene can be used as a substitute.

Due to the importance of SAR point target analysis, an interactive vi-
sualization framework should provide tools to assist the user in this task.
In this section, a detector for point target response patterns in SAR im-
ages is presented, based on the detector concept described in Sec. 1.5.3.
The detector automatically gathers information about each pattern in the
currently viewed scene, allowing the application to provide the user with
a visual overview of potentially interesting patterns as well as their key
properties. Furthermore, the user can select single patterns for a more

74 Chapter 2. Synthetic Aperture Radar Image Visualization

Figure 2.9: A simulated SAR point target response pattern

detailed analysis.

2.4.2 Related Work

A detector for point target response patterns typically searches for the
characteristic crossing axes in the amplitude values. Even if an application
is only interested in point target response patterns from known corner
reflectors, automatic detection of such patterns is still beneficial to cope
with uncertainties and inaccuracies [GZYO08].

In a georeferenced SAR image, the angle between the two axes of a
point target pattern depends on the setup of the SAR system that took the
image, and is usually identical for all such patterns in the image.

Quality measurements associated with a point target response pat-
tern include the estimated width of the main lobe, as a measurement
for ground resolution, and the peak side lobe ratio (PSLR), which mea-
sures the ratio of the peak side lobe amplitude to the peak main lobe
amplitude [SBA*99]. As a visual analysis aide, point target analysis tools
usually include cross-sections through the two side lobe axes of the pat-
tern [RHO4].

2.4.3 Interactive Point Target Analysis

As outlined in Sec. 1.5.3, the detector works on a hierarchical quad-based
SAR image representation. The SAR image quads that are used to form
the current view of the scene are searched for typical patterns on the GPU.
For interactive use, detection speed is more important than accuracy; an

2.4 Point Target Analysis 75

11
111(1[1) 1] 1)1 111[1]2]2
21212)2{2|2|2| [1]1]2]2]2]4]|4
4)14)4|4(4|44| [2]2]4]|4]4]2]|2
21212)2[2[2[2| [4]4]2]2]2]1]1
11221311 |2[2[1]1f1
1[1
1[1[2 112[4
1/2(2[4 1/2[4]2
1/1[2)4)4]|2 112[4[2|1
112(24)2]2]1 1/2[4]2]1
2|1414]2[1]1 1/2[4[2|1
412|2|1 2|14]2]1
21111 42| 1

Figure 2.10: The detection masks for 0°, 15°, 30°, and 45°. The masks for
the directions 60°, ..., 165° are analogous.

interactive detector cannot provide more than a rough overview of the
interesting features in a scene.

For these reasons, a very basic detector setup is used as follows. Every
SAR image sample in an input quad is tested to determine whether it is the
center of a point target response pattern. If it is, rough estimates of basic
properties of the pattern are computed, and the results are written to an
output map of the same dimensions as the input quad. Stream reduction
techniques [OLG*07] are then used to transfer this map to a list of detected
point target patterns and their basic properties. In an OpenGL implemen-
tation, this task can be performed using a geometry shader [Dia08]. The
list of detected patterns is then used to provide visual hints about the
detected patterns.

In detail, the actions performed for each SAR image sample are the
following:

1. If the amplitude value is lower than 15% of the maximum amplitude
value in the SAR image, then it is considered too low. A zero is
written to the output map, and no further tests are performed.

2. If the amplitude value is not the maximum value in its 7x7 neigh-
borhood, then it cannot be the center of a point target. A zero is
written to the output map, and no further tests are performed.

3. Mean values are computed using 12 masks for the directions 0°, ...,
165° as shown in Fig. 2.10. The two highest mean values whose
directions differ by at least 45° are chosen. If one of these two values

76 Chapter 2. Synthetic Aperture Radar Image Visualization

Figure 2.11: A visual hint for a detected point target response pattern.

is lower than a threshold ¢ multiplied with the arithmetic mean of
all amplitude values in the 7x7 neighborhood, then the pixel is not
considered to be a point target center, and a zero is written to the
output map. Otherwise, the two directions and a rough estimate
of the PSLR are encoded in a non-zero value that is written to the
output map.

The masks shown in Fig. 2.10 are generic enough to work for point
target patterns of different sizes, which is necessary because the pattern
size depends on the strength of the reflected signal: stronger reflections
will result in larger patterns. As a consequence, the masks also work for
patterns of a given size across different hierarchy levels.

If the side lobe direction of response patterns is known for the SAR im-
age under examination, the computational costs of the test can be reduced
significantly by only using the relevant masks. Detection accuracy will
improve with better SAR image resolution. At hierarchy levels that pro-
vide only a very coarse resolution of the SAR image, point target response
patterns become undetectable.

The threshold parameter ¢ steers the sensitivity of the detection pro-
cess. Higher values result in less detected point targets.

In the detector implemented in the framework, a visual hint for a de-
tected pattern consists of a circle enclosing a cross that gives a hint about
the detected side lobe axes orientation. A color coded bar below the circle
represents a quality estimate derived from the coarse PSLR estimation: a
full green bar indicates a high PSLR, and a nearly empty red bar indicates
a low PSLR. See Fig. 2.11. An overview of detected patterns in a scene can
contain multiple of these hints. See Fig. 2.12.

2.4 Point Target Analysis 77

Figure 2.12: An overview of detected patterns in an Envisat ASAR image.

When a user requests a more detailed analysis, much more accurate
and detailed examinations of the pattern are possible. An example for
an analysis view is given in Fig. 2.13. This view presents cross sections
through the two axes of the response patterns and lists several key prop-
erties of the pattern.

2.4.4 Results

The presented point target response pattern detector is capable of inter-
actively detecting patterns in the currently visualized scene. Because of
the generic masks used in the detector, this works across several hierarchy
levels, as long as point target responses are represented with sufficient
detail. A switch between hierarchy levels, e.g. when zooming in or out,
will occasionally cause previously detected patterns to be undetected, or
previously undetected patterns to be detected.

As predicted in Sec. 1.5.3, the detector is computationally very expen-
sive, even if it is simplified to provide only very coarse and approximate
detection. Therefore, the detector can only be used sparingly; detecting

78 Chapter 2. Synthetic Aperture Radar Image Visualization

A

~Paint Target at 540356 —————— ~Profile 0 deg -Profile 75 deg

Res. from -3db width: ~ 2.73 pixels Res. from -3db width: ~ 2.73 pixels

Res. from first min.. B pixels Res. from first min.. 10.5 pixels

PSLR left: -16.05db PSLR left: -17.96db

PSLR right -14.7db PSLR right: -13.14db

Amplitude: 29026 Intensity: 8.42509e+08

Figure 2.13: Example of a point target response analysis window, dis-
played on user demand.

patterns in multiple stacked SAR images at once or in very high resolu-
tion views is currently not possible.

Despite this limitation, the presented detector can give a useful over-
view of a scene and intuitive access to advanced analysis tools, which is
useful in the context of interactive visualization.

2.5 Summary

In this chapter, interactive visualization methods tailored to SAR images
were presented. SAR images are very important for many remote sensing
applications, and at the same time pose special challenges to a visualiza-
tion system, mainly due to their high dynamic range and speckled nature.

To address the dynamic range problem, existing dynamic range reduc-
tion operators were implemented in the GPU-based framework to allow
interactive use, and new operators tailored to SAR images were proposed,
inspired by related tone mapping methods.

It was shown that the main classes of known speckle reduction tech-
niques can be implemented in an interactive visualization system based
on GPU data processing. This allows to easily adjust methods and param-
eters to the current SAR image and visualization task.

Additionally, an interactive detector assists with the task of SAR point
target response analysis.

Taken together, the presented techniques provide powerful and flexible
tools for the interactive visualization of SAR images.

Chapter 3

Dynamic Terrain Rendering

3.1 Overview

Terrain rendering is the process of rendering a part of a surface that is
described by distances to a reference geometry and accompanying texture
data. Usually, the surface is a part of the earth’s surface, and the geometry
is given either by height maps (relative to a local reference plane) or by
elevation maps (relative to a model of the earth, e.g. a sphere or ellipsoid).

Terrain rendering is an important problem in the field of computer
graphics and has been intensively investigated in the last decade. A key
challenge is the large amount of data typically contained in a terrain data
set. Handling such data sets requires hierarchical data representations and
level of detail techniques.

Traditionally, terrain rendering methods have assumed static input
data. This allows sophisticated offline preprocessing to be applied be-
fore the online rendering takes place. This has been used extensively to
improve the performance of the rendering.

In the context of interactive visualization of Remote Sensing data, ter-
rain rendering methods need to address two additional challenges:

1. The terrain data is generated dynamically, depending on various in-
put data sets as well as interactively adjusted data processing and
fusion methods. See also Fig. 1.1. This means that existing methods
that rely on offline preprocessing cannot be used.

2. The visualization of Remote Sensing data for analysis purposes re-
quires accurate rendering, to avoid misinterpretations. Therefore,
the required level of detail techniques must guarantee upper bounds
on rendering inaccuracies. This is in contrast to other applications of
terrain rendering, e.g. in the field of entertainment, where the ren-

79

80 Chapter 3. Dynamic Terrain Rendering

dering result needs to be visually pleasing but not necessarily correct
with regard to the input data.

In this chapter, data structures and algorithms are presented that al-
low accurate, GPU-based refinement of triangle meshes for the purpose of
rendering dynamic terrain data.

To this end, a data structure called edge mark array is proposed that al-
lows GPU-based bottom up and top down refinement of triangle meshes
based on hierarchical elevation map (or height map) structures. The re-
finement methods require no supplemental information beside the eleva-
tion map data, and therefore can be applied to dynamic terrain data sets.
They work entirely on the GPU, avoiding any transfer of geometry data
between CPU and GPU. The resulting meshes consist only of right-angled
and isosceles triangles and are free of cracks and T-junctions. They can be
used for continuous level of detail rendering of dynamic terrain data, and
guarantee an upper bound on the screen space error.

The methods fit into the framework described in Chapter 1 in the fol-
lowing way (see Fig. 3.1):

* A first, conservative level of detail estimate is computed on the CPU
as described in Sec. 1.4.2. According to this level of detail, data from
the hierarchical input data sets are transferred to the GPU.

¢ The data is processed and fused on the GPU, forming an elevation
map set and a texture set.

* Based on the restricted quadtree that serves as the initial level of
detail estimate, a single conforming triangle mesh is created by the
framework. See Sec. 1.4.3.

¢ This mesh is adaptively refined using the methods described in this
chapter. The result is an adaptive mesh based on the dynamically
generated elevation map set and the current view. This mesh deter-
mines the final level of detail with accuracy guarantees.

* The refined mesh is then rendered using the techniques described in
Sec. 1.4.4.

Despite this tight integration into the framework, the methods presented
in this chapter are general enough to be applicable to mesh refinement
problems in all applications that use some form of quad-based elevation
or height map management.

3.2 Related Work 81

Figure 3.1: Overview of the dynamic terrain rendering process. Top left:
coarse level of detail estimation based on bounding boxes. Top right: data
processing and fusion. Bottom left: generation of an initial mesh. Bottom
right: rendering of the refined mesh in the final level of detail.

3.2 Related Work

In the last decade, many methods to render large-scale terrain data sets
have been proposed. This section focusses on the more recent GPU-
oriented techniques.

As discussed in Sec. 1.2, the large size of terrain data sets necessi-
tates the use of hierarchical data structures with appropriate level of detail
methods. This ensures that the amount of data required to render a given
scene depends on the viewport and not on the resolution of the data sets.
An overview of such data structures and methods is given by Pajarola and
Gobetti [PGO7]. In the following, some of the more recent variants are
examined in detail.

Many terrain rendering methods compute the triangulation for indi-
vidual tiles in a separate preprocessing step. For example, Wahl et al. pre-
compute triangulated irregular networks (TINs) with object-space error
bounds and use compression techniques to lower the memory and band-

82 Chapter 3. Dynamic Terrain Rendering

width requirements of the meshes [WMD*04]. An alternative to TINs
are regular triangulations, most prominently restricted quadtree triangu-
lations [Paj98]. Regular triangulations generally use more regular data
structures than TINs, which can result in more GPU-friendly methods.
For example, Schneider and Westermann use progressive transmission of
nested, quadtree-based meshes to reduce data transfers between CPU and
GPU [SWO06]. Livny et al. combine triangular tiles of different, fixed res-
olution levels [LKES09]. Dick, Schneider, and Westermann precompute
adaptive quadtree meshes and use geometry compression schemes that
are tailored for GPU-based decoding [DSW09]. Bosch, Goswami, and Pa-
jarola precompute object-space error metrics to choose the level of detail at
runtime [BGP09]. Cignoni et al. use patches of triangles that form binary
tree hierarchies [CGG*03].

Most methods that use precomputed triangulations guarantee error
bounds by choosing the level of detail according to precomputed or im-
plicit object-space error bounds of the tiles. Methods that combine meshes
of different tiles must avoid inconsistencies such as cracks, e.g. by adding
special stitching geometry [WMD*04, DSW09, LKES09].

All of the methods mentioned above assume static height map data to
precompute meshes and thus cannot be used with dynamically generated
terrain data.

A few methods explicitly support dynamic terrain data to a certain
extent. Losasso and Hoppe use a set of nested regular grids centered
around the viewer [LHO4]. The grid resolution decreases with increasing
distance to the viewer, resulting in an approximately uniform screen-space
resolution. Terrain synthesis is possible, but required to be spatially deter-
ministic, and no screen space error bound can be guaranteed for terrain
with steep slopes. Dachsbacher and Stamminger use a fixed base mesh
that is warped according to an importance map to move geometric detail
to the appropriate regions [DS04]. A terrain synthesis process can gener-
ate additional detail. This detail is restricted to a given frequency band,
depending on the geometry density in the current region, and the au-
thors explicitly state that no guarantees about error bounds can be made.
Kooima et al. present a method that allows the combination of different
terrain data sets on a planetary scale [KL]J*09] using overlay techniques,
but this method is not designed to be precise on small scales (< 1m) and
does not guarantee error bounds.

While these methods can handle dynamic terrain data to a certain ex-
tent, they place severe restrictions on the dynamic terrain synthesis and
do not guarantee screen space error bounds.

In addition to the classic terrain rendering approaches summarized

3.3 Data Structures 83

above, a few techniques exist that allow manipulation of terrain for the
use in games or simulators. The approaches of He et al. [HCP02] and
Bhattacharjee et al. [BPNO8] focus on handling changes to a single height
map, and do not contain any error guarantees. Atlan and Garland use
a wavelet-based multiresolution representation of height maps [AGO6],
which allows to use a set of interactive editing tools, but does not allow
unrestricted height map manipulations.

3.3 Data Structures

3.3.1 Hierarchy

As discussed in Sec. 1.2, the large size of terrain data sets necessitates
the use of hierarchical data structures. The presented framework and the
methods described in this chapter are based on a restricted quadtree struc-
ture, similar to other current terrain rendering methods. This has the fol-
lowing advantages:

1. A coarse, conservative approximation of the level of detail can be
computed on the CPU. This allows to handle all data management
tasks (hierarchy traversal, initiation of asynchronous data transfers,
caching) on the CPU.

2. A restricted quadtree (as given by the initial level of detail method)
allows efficient generation of a single consistent triangle mesh on the
GPU. See Fig. 1.2 and Fig. 1.3.

3. The quadtree hierarchy and the resulting mesh are regular structures
and thus offer parallelization opportunities for efficient, GPU-based
processing.

3.3.2 Mesh

A conforming triangulation of a restricted quadtree is a single, consistent
triangle mesh that consists only of right-angled, isosceles triangles and
contains no cracks and T-junctions, as described in Sec. 1.2.2. A restricted
quadtree hierarchy allows simple and efficient creation of such a conform-
ing triangle mesh. See Sec. 1.4.3. Iterative refinement methods such as
those presented in the following sections preserve these mesh properties
in each refinement step.

To refine a mesh top down, triangles are split into smaller triangles. To
keep the properties of the mesh intact (only right-angled, isosceles trian-
gles, no T-junctions), it is necessary to split the hypotenuse of a triangle

84 Chapter 3. Dynamic Terrain Rendering

- I BN
— —
—_— ——> —
— —

Figure 3.2: Splitting triangles: whenever one edge is split, the hypotenuse
is also split, to guarantee right-angled, isosceles triangles.

Figure 3.3: Forced splits of the hypotenuse result in propagation of splits
to neighboring triangles.

3.3 Data Structures 85

Figure 3.4: An edge mark array of size 17 x 17 for a quad of size 16 x 16.
Each edge midpoint occupies exactly one edge mark, except for edges of
length 1 (marked green), which do not need to be split as they would not
reveal further geometric detail.

whenever one of the edges needs splitting [Ulr00]. See Fig. 3.2. This may
cause the propagation of edge splits to neighboring triangles, as shown in
Fig. 3.3.

Therefore, triangles cannot be refined independently of each other.
Furthermore, it is not sufficient to take a restricted neighborhood of each
triangle into account, since forced splits in neighbor triangles can them-
selves force splits in further triangles. This split propagation must also
work across neighboring quads of the restricted quadtree. For these rea-
sons, a data structure is required that allows to uniquely identify all edges
over all hierarchy levels and the triangles they belong to.

86 Chapter 3. Dynamic Terrain Rendering

3.3.3 Edge Mark Arrays

An edge mark array for one quad with 2F x 2% height samples stores (2F +
1) x (2K +1) edge marks corresponding to all potential edge split points.
To cover the whole quadtree hierarchy, one edge mark array for every leaf
of the tree is required. Since each edge mark requires only one or two bits
to store information (depending on the refinement method; see below),
memory consumption is limited, and efficient mesh refinement is possible
without explicit geometry data.

An edge mark array uniquely represents all edges with a length greater
than 1 of all possible quad triangulations that have the properties de-
scribed above. Each edge midpoint occupies exactly one edge mark of
the array. Edges of length 1 never need to be split and thus do not need to
be represented in the edge mark array. See Fig. 3.4.

To find the mark corresponding to a given edge, it is only necessary to
compute the midpoint of the edge. Vice versa, a given mark represents the
shared hypotenuse of two neighboring triangles in one refinement level.
Since each pair of triangles in the refinement hierarchy is defined by its
shared hypotenuse, all triangle pairs in the refinement hierarchy can be
uniquely identified. See Fig. 3.5.

To find the triangle pair corresponding to a given edge mark (x,y) €
{0,...,2F}2, it is necessary to first determine the refinement level | €
{0,...,251} in which the mark represents a shared hypotenuse.

With a function lowest_bit(i) that returns the index (starting at 1) of
the lowest bit that is set in the integer i, or zero if no bit is set, this can be
done as follows:

by = lowest_bit(x)
b, = lowest_bit(y)
. {max(bx, b)) by=0Vb,=0
min(by, b,) otherwise
1

|2k —2b otherwise
Note that the first case (by = by) will applies to odd levels, and the
second case (by # by) applies to even levels.

The L! (city block) distance d of edge marks in level | determines the
size of the shared hypotenuse:

4 — ok=T1/2]

With [and d known, the triangle pair can be computed:

3.3 Data Structures 87

1=2d=4 1=3,d=2 l=4d=2

Figure 3.5: An edge mark array and the refinement levels 0 to 4 for a quad
of size 8 x 8, with the associated city block distance d of edge marks. Note
that the five edge marks in the corners of the edge mark array and in its
center do not correspond to triangle pairs.

e If]iseven:

- If ymod d = 0, then the triangle pair shares a horizontal hy-
potenuse that is given by its end points (x — 4,y) and (x + £, y).

— Otherwise, the triangle pair shares a vertical hypotenuse that is
given by its end points (x,y — 4) and (x,y + 2).

e If]is odd:

- If [2] mod 2 = [%] mod 2, then the triangle pair shares a di-
agonal hypotenuse given by its end points (x — %,y — %) and
(x+3,y+9).

— Otherwise, the triangle pair shares a diagonal hypotenuse given
by its end points (x — 4,y + %) and (x + 4,y — 2).

For example, the shared hypotenuse of the triangle pair corresponding
to the edge mark (5,3) in Fig. 3.5 is identified as follows:

by=1, b,=1 b=1
1=3-2(b—1)=3 (odd level)

88 Chapter 3. Dynamic Terrain Rendering

d=2
3/mod2=0, [3|mod2=1
End point1:(5—1,3+1) = (4,4)
End point2:(5+1,3—-1) = (6,2)

Similarly, for the edge mark (2, 8):

by=2, by=4, b=2
[=2-3—-2-2=2 (even level)
d=+4
8mod4 =0
End point 1: (2—-2,8) = (0,8)
End point2: (2+2,8) = (4,8)

Note that an edge mark array can represent any conforming triangula-
tion of its quad, from the minimum triangulation to the finest triangulation
and everything in between.

3.4 Refinement

3.4.1 Edge Split Criteria

Both bottom up and top down mesh refinement methods must know
whether a given triangle edge needs to be split. A triangle edge is given
by its endpoints (xp, o) and (x1,y1), which mark positions in the quad
that contains the triangle. The decision whether to split a given triangle
edge is made by an edge split criterion.

A simple and cheap edge split criterion could compare the elevation
values at both ends of the edge and decide to split the edge if their differ-
ence is greater than some threshold u:

true |h(xo,y0) — h(x1,y1)| > u,

S ht X0, X1, =
plit ((xo, ¥0), (x1,41)) {false otherwise

However, this split criterion does not take the current view into account,
and cannot make any guarantees about the screen space error of the re-
sulting mesh.

A split criterion that guarantees an upper bound t on the screen space
error does the following: the screen space coordinates sy and s; of the edge
endpoints are computed, as well as the screen space coordinates s. of the
edge midpoint as interpolated from the endpoints. Then, the screen space
coordinates s, of a new vertex at the edge midpoint are computed, using
a new sample of the elevation map. If the screen space coordinates of the

3.4 Refinement 89

interpolated and the new vertex differ by more than the screen space error
threshold ¢, then the edge needs to be split:

ho = h(xo,Yo)

hi = h(x1,41)

so = screen_space(xo, Yo, ho)

s1 = screen_space(x1, Y1, h)

Xo+x1 X1+ h0+h1>
2 7 2 7 2
X0+ X1 Yo+ 1

fin = I 2 2)

Xo+x1 X1+Y1
2 7 2

true |[sc —su| > ¢,

Sc = screen_space(

sy = screen_space()

split ((xo, ¥0), (x1,¥1)) = {

false otherwise

This criterion leads to triangle splits only where necessary, depending
on the current view. For example, triangles covering vastly different height
samples are not split when viewed directly from above, because no screen
space error occurs.

Note that this split criterion, when used in the framework presented in
Chapter 1, requires the use of double precision computations to compute
exact screen space coordinates on a global scale (see Sec. 1.4).

3.4.2 Bottom Up Refinement

Since all conforming quad triangulations can be represented by an edge
mark array, it is not necessary to work on actual vertices to refine the quad
mesh. Instead, the refinement method can work on the edge mark arrays,
and geometry can be generated in a single, last step.

For this purpose, every mark in the edge mark arrays needs to store
exactly 1 bit: whether to split the represented edge (1) or not (0). Initially,
all edge marks are 0. The decision whether to split an edge can be made
for each refinement level | consecutively, starting with I = 2(k —1). An
overview of bottom up refinement is given in Fig. 3.6. Details to each step
are given in the following paragraphs.

In the initialization step, the five marks of each edge mark array that
do not correspond to triangle pairs are initialized to 1, and the four marks
of level 0 of each edge mark array are initialized to 1 if the neighboring
quad has a higher level than the current quad (see Fig. 3.5).

© ® N o U ke W N =

S Sy
N o G R WN = O

90 Chapter 3. Dynamic Terrain Rendering

for (all leaves L in the quadtree) {
initialize_level_0O_marks (L) ;
for (1 = 2%(k=-1); 1 >= 1; 1--) {
for (all marks (x,y) in level 1)) {
tp = triangle_pair(x,y);
bool split_hypotenuse = false;
if (leg_is_marked_for_splitting(tp)) {
split_hypotenuse = true;
}
else if (hypotenuse_needs_splitting(tp)) {
split_hypotenuse = true;
}
set_mark (x,vy,split_hypotenuse) ;

}
}

generate_mesh () ;

Figure 3.6: Overview of the bottom up refinement method.

In the split decision step, a hypotenuse of a triangle pair is marked for
splitting if any one of the four legs of the triangle pair was already marked
for splitting in the previous level, or if the edge split criterion decides to
split the hypotenuse. This rule ensures that splits are correctly propagated
from lower to higher levels.

If a split decision is made for an edge that lies on a quad border, and
this quad has a neighbor quad that shares this edge, then the decision
must be written to the edge mark array of the neighboring quad, too. See
Fig. 3.7. This ensures consistent triangle splits across quads.

To handle hierarchy level differences in the quadtree, one special case
has to be accounted for: if a triangle pair consists of two triangles that
belong to neighboring quads, and the neighbor quad has a higher level
than the current quad, then the two legs of the neighbor triangle were not
marked yet. In this case, to be able to make the decision shown in line 7
of Fig. 3.6 for the current triangle pair, the mark of these two legs has to
be computed in advance. Since levels of neighboring quads cannot differ
by more than one in a restricted quadtree, this special case is enough to
handle all hierarchy level differences.

When the edge marks for all levels are set, the edge mark arrays rep-
resents a conforming, adaptive triangulation of the quads in the rendering
quadtree. This representation must then be transformed to a set of ver-
tices in a last step. For this purpose, all marks in all edge mark arrays are
examined. For each mark, the represented triangle pair is computed as
described in Sec. 3.3.3. A triangle exists in the represented mesh (and thus

3.4 Refinement 91

Figure 3.7: Examples for shared edges (green) of neighboring quads (red)
in a triangulation based on a restricted quadtree.

needs to be converted to vertices) if and only if the mark for its hypotenuse
is not set and the marks for all three triangle endpoints are set.

Bottom up refinement requires the evaluation of the split criterion for
every edge mark array element. Since the split criterion is evaluated first
for the shortest edges and then successively for all edge lengths up to the
longest edges, no elevation map features are missed.

3.4.3 Top Down Refinement

Top down refinement starts with a coarse mesh and splits triangles where
necessary.

Unlike bottom up refinement, for top down refinement it is not suf-
ficient to test only the midpoint of an edge to guarantee a screen space
error, since this might miss elevation map features that lie between the
endpoints and the midpoint of a long edge. Instead, it is necessary to
perform a number of tests, depending on the number / of elevation map
samples covered by the edge. If the length s of the edge is short in screen
space, the number of tests may be reduced accordingly. Specifically, the
number 1 of necessary tests is

n=2"-1, i = max {Zj < min{h,s}}.
]

Additionally, the interior of a triangle must be checked in order to not
miss any elevation map features there. The number of interior tests can

O ® N o G e W N =

W W W W W W L W W W RN NN RN NNNN RN s e s s s
© »® 9 A kR DR R, DS Y ® N U R WO N R S0 ® N U Re W N = O

92 Chapter 3. Dynamic Terrain Rendering

start with initial mesh M
do {
do {
for (all triangles t in M) {
if (mark(leg0(t)) == 0) {
if (edge_split_criterion(leg0)) {
set_mark (leg0(t), 1);
}
else {
set_mark (leg0(t), 2);

}
if (mark(legl(t)) == 0) {
if (edge_split_criterion(legl)) {
set_mark (legl(t), 1);
}
else {
set_mark (legl(t), 2);

}
if (mark (hypotenuse(t)) !=1
&& (mark (leg0(t)) == || mark(legl(t)) ==
set_mark (hypotenuse(t), 1);
}
else if (mark (hypotenuse(t)) == 0) {
if (edge_split_criterion (hypotenuse (t))
|| triangle_split_criterion(t)) {
set_mark (hypotenuse(t), 1);
}
else {
set_mark (hypotenuse(t), 2);

}

until (no edges were marked for splitting);

split marked edges, generating a new mesh M
}

until (no edges were split)

))

{

Figure 3.8: Overview of the top down refinement method.

3.4 Refinement 93

be limited by the screen space size of the triangle in the same way as the
number of edge tests.

This means that in contrast to bottom up refinement, the number of
tests that have to be performed is limited by screen space, resulting in a
smaller overall number of tests.

As in bottom up refinement, it would be possible to only work on
edge mark arrays and generate actual vertices only in the last step of the
refinement. However, since different parts of the quad can be refined at
different levels at any given time, and since split propagation propagates
from finer to coarser levels (see Fig. 3.2), this would make it necessary
to process the complete edge mark array in each refinement step. Since
the number of triangles in a quad mesh is usually much smaller than its
theoretical maximum, it is cheaper to perform top down refinement on a
triangle basis instead, while still keeping the necessary records in the edge
mark arrays.

To keep track of edges that were already processed, two bits in each
mark of an edge mark array are required to store three different states:
edge is unprocessed (0), edge must be split (1), edge does not need to be
split (2). The refinement process starts with a coarse conforming quadtree
triangulation. This initial mesh is then refined in a two step iterative pro-
cess. An overview is given in Fig. 3.8.

The first step is the mark step. Its immediate reiteration ensures that
forced splits propagate through the mesh. This reiteration is very fast
because it mostly works on cached data. The mark step works as follows.
If the two legs of the current triangle were not processed yet, they are
tested and marked accordingly. If the hypotenuse is not yet marked for
splitting but one of the legs is, then the hypotenuse is marked for splitting,
to ensure proper split propagation. Otherwise, if the hypotenuse is not
yet processed, both the edge split criterion and the triangle split criterion
are evaluated, and the hypotenuse is marked accordingly. Marked edges
that are shared between two neighboring quads are always marked in the
neighboring quad, too. See Fig. 3.7.

The second step is the split step. Every triangle of the input mesh is
examined, and the edge mark arrays are used to determine the number
of output triangles (between one and four). See Fig. 3.2. In a GPU im-
plementation, this can be done efficiently by writing four output triangles,
where some of them may be invalid, and removing the invalid triangles in
a subsequent stream compaction step.

Top down refinement performance depends on the initial refinement
level of the mesh: a fine initial mesh results in a large number of triangles
that have to be processed in each refinement step. On the other hand, a

94 Chapter 3. Dynamic Terrain Rendering

coarse initial mesh results in more refinement steps until the mesh fulfills
the screen space error guarantee.

3.5 Implementation Notes

A GPU-based implementation of the mesh creation and refinement tech-
niques is best done using general purpose programming environments
for the GPU, such as CUDA or OpenCL. The presented top down refine-
ment method has been implemented in OpenGL instead for the simplified
case of a mesh for a single quad and without screen space error guar-
antees [Hei09], but writing to edge mark arrays by rendering points into
special render targets proved to be cumbersome and too expensive to be
used on a whole quadtree hierarchy.

The current implementation is based on CUDA. The edge mark arrays
are stored as arrays of unsigned integer values, each storing 32 bits.

The bottom up refinement method uses one GPU thread per edge mark
in the currently processed level [, while the top down refinement method
uses one GPU thread per triangle of the current mesh. In both cases, the
GPU threads can run completely independent of each other. The edge
mark arrays are stored in global memory since they do not fit into shared
memory on current graphics hardware. For these reasons, there is cur-
rently no need for a special arrangement of threads into thread blocks.
Instead, the implementation simply runs as many threads in parallel as
possible.

Concurrent threads may need to modify the same bits in the edge
marker arrays at the same time. To prevent undefined results, special
atomic operations provided by CUDA can be used for this purpose. How-
ever, in the case of collisions these atomic operations are relatively slow
on current graphics hardware because colliding writes halt the accessing
threads. To reduce this problem to a certain extent, the marks stored in
the 32 bits of an unsigned integer can be organized in a way that makes
collisions less likely, for example by representing a 2D subset of the edge
mark array instead of consecutive marks. See Fig. 3.5.

Future generations of graphics hardware will allow faster atomic op-
erations. In particular, the next generation of NVIDIA GPUs will intro-
duce a read/write cache architecture that is explicitly designed for this
purpose [NVIO9b]. Therefore, the negative effects of atomic operation col-
lisions will become less relevant.

3.5 Implementation Notes 95

Figure 3.9: Five snapshots of an animated sequence, with and without the
adaptive mesh. The sequence shows four different data sets in a com-
bined view. It starts with a zoom on the area around Rome, Italy, and
then changes various data processing and fusion parameters, resulting in
dynamic changes of the terrain data.

96 Chapter 3. Dynamic Terrain Rendering

o Brute For'ce, 1=0 —+— 1
\ Brute Force, 1 = 14
) TOp DOWH,I:S -
25 \ - Bottom Up =
T \
—

20 F.

FPS

i ,
10 1
B oo |
- = -+
5 F *- .. KX
S “*xrrr%mﬁmmmﬁémm
(S
0 1 1 1 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40 45

Sequence keyframe

Figure 3.10: Frame rates achieved by different mesh creation and refine-
ment methods for the test sequence shown in Fig. 3.9.

3.6 Results

The methods presented above were tested as part of the framework pre-
sented in Chapter 1 on PC hardware with an Intel Core2 Duo 3 GHz CPU,
8 GB main memory, and an NVIDIA GTX 285 graphics card with 2GB
of graphics memory. The software environment consisted of Debian 5.0
64 bit, NVIDIA CUDA 2.3 and the NVIDIA graphics driver version 190.53.

Fig. 3.9 shows an animated sequence that was used in the tests. Both
the geometry and the texture are computed on-the-fly according to inter-
actively defined methods. The geometry is a mixture of the DEM data set
from the NASA Blue Marble Next Generation (BMING) project and a DEM
data set from the Shuttle Radar Topography Mission (SRTM) [JRNGOS].
The texture is a mixture of a BMNG image and a high resolution TerraSAR-
X amplitude image provided by Infoterra GmbH. Together, the original
data sets amount to 263.4 GiB of data. The sequence zooms in on the area
around Rome, Italy, and then changes various data processing and fusion
parameters, resulting in dynamic changes of the terrain data.

The quad size used in the tests was 512 x 256 samples, plus a 9 sample
wide border. The sequence was rendered in a 1280 x 1024 viewport. Four
different meshes were used for the tests:

3.6 Results 97
400 + I I I I I Blrute Forlce, 1=0 j— I_
Brute Force,1 =14
Top Down, [=8 -------
350 | Bottom Up £ i
300 i
w250 -
g
E [A-£]
q) B -
§ 200
=
150 5| OHEnEEEEY
100 | E R g 78
’ ¥ KX
50 |
0 b—— —t g L L S
0 5 10 15 20 25 30 35 40 45

Sequence keyframe

Figure 3.11: Time in milliseconds spent on mesh creation and refinement,
without data processing and fusion, for the test sequence shown in Fig. 3.9.

e A brute force mesh with refinement level I = 0. This is the minimal

conforming mesh.

A brute force mesh with refinement level | = 14, which corresponds
to the minimal conforming mesh after subdividing each quad 7 times
(see Fig. 1.3; note the different meaning of the term level). Due to the
quad size of 512 x 256 samples, this is the finest conforming mesh
that can be generated with the method described in Sec. 1.4.3, but it
still has edges with length 2 that potentially need splitting to achieve
a given screen space error bound.

A mesh refined using the top down method with the initial refine-
ment level | = 8, which corresponds to the minimal conforming
mesh after subdividing each quad 4 times. The screen space error
bound for the this method was set to 1 pixel. The initial refinement
level | = 8 was chosen because it consistently resulted in best perfor-
mance in the tests.

A mesh refined using the bottom up method. The screen space error
bound for this method was set to 1 pixel.

98 Chapter 3. Dynamic Terrain Rendering

Task Time
[ms]
Creation of base mesh ‘ 10.9
Refinement pass 1
Marker pass (initial) 29.5
Marker passes (propagation) 1.2
Triangle splitting 12.0
Refinement pass 2
Marker pass (initial) 5.8
Marker passes (propagation) 3.0
Triangle splitting 11.5
Refinement pass 3
Marker pass (initial) 3.3
Marker passes (propagation) 2.7
Triangle splitting 12.6
Refinement pass 4
Final marker pass (no change) 2.3
Total 94.8

Table 3.1: Time required by the top down refinement method for one ex-
ample scene.

Fig. 3.10 shows the frame rates achieved with these four methods for
the animated sequence. Note that the measured computation time in-
cludes all framework overhead, in particular the time that is spent on
processing and fusion of dynamic terrain data for each frame. Therefore,
frame rates that are comparable to those of methods that render static data
cannot be achieved. Instead, the maximum achievable frame rate is that
of the coarse brute force method (which produces meshes with very large
errors), and the minimum sensible frame rate is that of the fine brute force
method (which produces far too many triangles).

Since the time spent on data processing and fusion depends on the
open data sets, the number of leaves in the rendering quadtree, and the
interactively defined parameters, the maximum achievable frame rate dif-
fers significantly across the sequence.

To allow better comparison of the four mesh methods, Fig. 3.11 shows
the time in milliseconds spent on mesh creation and refinement, with-
out data processing and fusion. Note that all methods use double pre-
cision computations for exact screen space coordinates on a global scale
(see Sec. 1.4), therefore even the coarse brute force method requires sev-
eral milliseconds. Future generations of graphics hardware will reduce

3.7 Summary 99

the performance difference between single and double precision compu-
tations [NVI09b].

The bottom up refinement method consistently requires around 55%
of the time used by the fine brute force method, regardless of the scene.
The top down refinement method almost always requires less than 50%
of the time used by the fine brute force method, and often less than 30%.
This difference in behaviour is due to that fact that the top down method
can skip edge split tests based on screen space considerations, while the
bottom up method cannot. Consequently, the top down method performs
best when it can skip a large percentage of tests. This is the case in scenes
that contain a relatively large number of relatively small quadtree leaves.
Examples for such scenes include the earth viewed from a distance (sec-
onds 1-10 of the sequence), and scenes that have just switched to a finer
level of detail in the rendering quadtree (around second 30-35 of the se-
quence).

Tab. 3.1 examines the computation time of top-down refinement for
one example scene in more detail. The marker passes are relatively expen-
sive because of the aforementioned use of double precision computations
when evaluating the split criterion (see Sec. 3.4.1). The subsequent propa-
gation passes, on the other hand, are very fast because they mostly work
on cached data.

3.7 Summary

This chapter presented bottom up and top down refinement methods for
conforming triangulations of restricted quadtree hierarchies. Both meth-
ods are based on the edge mark array data structure, which allows efficient
parallel implementations that work entirely on the GPU.

The refinement methods are suitable as level of detail techniques for
rendering dynamically generated terrain data. In this case, traditional
terrain rendering approaches cannot be used because sophisticated pre-
processing of the data is not possible.

The methods can guarantee an upper bound for the screen space error,
which is important for visualization of Remote Sensing data.

The refinement methods do not yet achieve interactive frame rates
when used in applications that make heavy use of the GPU also for other
purposes. However, they will benefit from current trends in graphics hard-
ware development, specifically faster atomic operations and double preci-
sion computations.

Conclusion

Summary

Remote Sensing data is of fundamental importance for analysis tasks in
many diverse application areas. This is documented by the increasing
number of specialized airborne and spaceborne earth observation systems,
based on a wide variety of sensor technologies.

The visualization of Remote Sensing data requires the processing of
sensor data to produce color and geometry information. The full scope
of information contained in multimodal Remote Sensing data sets cannot
be preserved in a single, static terrain data set produced in a preprocess-
ing step. Therefore, interactive visualization systems are required to allow
interactive generation of dynamic terrain data, tailored to both the prop-
erties of the input data, and the goal of the current visualization task.

To handle the challenges associated with interactive visualization of
Remote Sensing data, this dissertation proposes

e A framework for GPU-based, interactive visualization of multimodal
Remote Sensing data, described in Chapter 1. This framework pro-
vides the infrastructure for data management, processing, fusion,
and rendering.

* GPU-based visualization techniques tailored to the special require-
ments of Synthetic Aperture Radar (SAR) data, described in Chap-
ter 2. These techniques serve as examples for the specialized vi-
sualization methods that are required for different Remote Sensing
modalities.

* Methods for accurate rendering of dynamically generated terrain
data, described in Chapter 3. These methods use GPU-based adap-
tive mesh refinement to allow efficient rendering with guaranteed
error bounds.

Combined, the presented methods allow interactive visualization of
multimodal Remote Sensing data, including interactive adjustments of

101

102 Conclusion

sensor data processing and fusion methods.

Not all problems associated with accurate planetary scale visualization
are solved satisfactorily yet. In particular, the data structures show limi-
tations in proximity to the planet poles (see Sec. 1.2.2 and Sec. 1.2.6), and
some intermediate steps require double precision computations, which
reduces the achievable frame rate (see Sec. 1.4.3 and Sec. 3.4.1). Still, in-
teractive handling of Remote Sensing data on a planetary scale is possible
with the presented methods.

Future Work

The size and diversity of Remote Sensing data sets continues to grow
rapidly. New and improved sensor systems continue to produce more
and more data sets with increasing spatial and spectral resolution. More-
over, time series of Remote Sensing data sets increasingly gain importance.
Such time series can contain data sets produced during periodic flyovers
by the same sensor system, but also data sets produced by different sen-
sors if these sensors provide sufficient data consistency.

Visualization tools are required to extract the relevant information from
this fast growing variety of data sources.

First, specialized tools tailored to specific modalities are required, anal-
ogous to the SAR visualization methods proposed in this dissertation. Im-
portant modalities that currently pose significant challenges for visualiza-
tion systems include multi- and hyperspectral sensor data, for example.

Once individual modalities can be handled with adequate interactive
visualization tools, it is also important to consider cross-modal data vi-
sualization and analysis, i.e. to combine data sets from different sensor
systems for joint visual analysis. The basic data fusion infrastructure pre-
sented in this dissertation can only be a starting point in this regard.

Furthermore, visual analysis of Remote Sensing data time series has
not been investigated yet. New visualization approaches have to be devel-
oped for related tasks such as visual change detection and analysis.

To cope with these demands, it will not be sufficient to simply rely on
the increasing computational power provided by parallel processing hard-
ware. Instead, new visualization concepts and methods have to be based
on new capabilities and increased flexibility offered by new hardware gen-
erations.

Bibliography

[AGO6]

[AMD]

[AMMS08]

[Ash02]

[Bam92]

[BBBKO07]

[BEO6]

[BFH*04]

ATLAN S., GARLAND M.: Interactive Multiresolution Editing
and Display of Large Terrains. Computer Graphics Forum 25, 2
(2006), 211-223.

AMD CORPORATION: AMD "Close to Metal" Press
Release. http://www.amd.com/us/press—-releases/
Pages/Press_Release_114147.aspx. Accessed 2010-10-
13.

AypIN T. O., MANTIUK R., Myszkowsk1 K., SEIDEL H.-P.: Dy-
namic Range Independent Image Quality Assessment. In

Proc. ACM SIGGRAPH (2008), pp. 69:1-69:10.

AsHIKHMIN M.: A Tone Mapping Algorithm for High Con-
trast Images. In Proc. Eurographics Workshop on Rendering
(2002), pp. 145-156.

BAMLER R.: A Comparison of Range-Doppler and Wavenum-
ber Domain SAR Focusing Algorithms. IEEE Trans. Geoscience
and Remote Sensing 30, 4 (1992), 706-713.

Borst C. W.,, Baryva V. B., Best C. M., KinsLanD G. L.:
Volumetric Windows: Application to Interpretation of Scien-
tific Data, Shader-Based Rendering Method, and Performance
Evaluation. In Proc. Int. Conf. Computer Graphics and Virtual Re-
ality (2007), pp. 72-78.

BrENNER A. R, ENDER . H. G.: Demonstration of Advanced
Reconnaissance Techniques with the Airborne SAR/GMTI
Sensor PAMIR. In IEE Proc. Radar, Sonar and Navigation (2006),
pp- 152-162.

Buck 1., FoLey T., HOrRN D., SUGERMAN J., FATAHALIAN K|,
HoustonN M., HANRAHAN P.: Brook for GPUs: Stream Com-

103

http://www.amd.com/us/press-releases/Pages/Press_Release_114147.aspx
http://www.amd.com/us/press-releases/Pages/Press_Release_114147.aspx

104

Bibliography

[BGP09]

[BPNOS]

[BSO5]

[BSP*93]

[CamO08]

[CGG*03]

[CHS*93]

[CWNAO06]

[DD02]

[Dia08]

puting on Graphics Hardware. In Proc. ACM SIGGRAPH
(2004), pp. 777-786.

BoescH J., Goswami P.,, PajaroLa R.: RASTeR: Simple and
Efficient Terrain Rendering on the GPU. In Proc. Eurographics
(Areas Papers) (2009), pp. 35—42.

BHATTACHARJEE S., PATIDAR S., NARAYANAN P. J.: Real-time
rendering and manipulation of large terrains. In Proc. Indian
Conf. on Computer Vision, Graphics & Image Processing (2008),
pp- 551-559.

BrRexkE C., SOLBERG A. H.: Oil Spill Detection by Satellite
Remote Sensing. Remote Sensing of Environment 95, 1 (2005),
1-13.

Bier E. A., SToNE M. C,, P1er K., BuxtoN W., DEROSE T. D.:
Toolglass and Magic Lenses: The See-Through Interface. In
Proc. ACM SIGGRAPH (1993), pp. 73-80.

CampBELL]. B.: Introduction to Remote Sensing, fourth ed. The
Guilford Press, 2008.

CioNoNt P, GanoveLLl F., GoBBeTTI E., MARTON E.,, PONCHIO
E, Scorigno R.: Planet-Sized Batched Dynamic Adaptive
Meshes (P-BDAM). In Proc. IEEE Visualization (2003), pp. 147-
154.

CHiu K., HErr M., SHIRLEY P, Swamy S., WANG C., ZIMMER-
MAN K.: Spatially Nonuniform Scaling Functions for High
Contrast Images. In Proc. Graphics Interface (1993), pp. 245-
253.

CApik M., WiMMER M., NEUMANN L., ArRTUSI A.: Image At-
tributes and Quality for Evaluation of Tone Mapping Opera-
tors. In Proc. Pacific Graphics (2006), pp. 35—44.

DuraND E, Dorsky J.: Fast Bilateral Filtering for the Display
of High-Dynamic-Range Images. In Proc. ACM SIGGRAPH
(2002), pp. 257-266.

Diarp F: GPU Gems 3. Addison-Wesley, 2008, ch. Using
the Geometry Shader for Compact and Variable-Length GPU
Feedback, pp. 891-907.

Bibliography 105

[DMACO03] Draco E, Myszkowskr K., ANNeN T., CHiBA N.: Adaptive

[Don95]

[DS04]

[DSWO09]

[DWS*97]

[Eil]

[EMP09]

[F]04]

[FPRO1]

[GDA]

[GJ97]

[GPG]

Logarithmic Mapping for Displaying High Contrast Scenes.
Computer Graphics Forum 22, 3 (2003), 419-426.

DonoHno D.: De-noising by Soft-Thresholding. IEEE Trans. In-
formation Theory 41, 3 (1995), 613-627.

DacHsBACHER C., STAMMINGER M.: Rendering Procedural
Terrain by Geometry Image Warping. In Proc. Eurographics
Symposium on Rendering (2004), pp. 103-110.

Dick C., SCHNEIDER J., WESTERMANN R.: Efficient Geome-
try Compression for GPU-based Decoding in Realtime Terrain
Rendering. Computer Graphics Forum 28,1 (2009), 67-83.

DucHAINEAU M., WoLiNskY M., SigeT1 D. E., MiLLER M. C,,
ALDRrRICH C., MINEEV-WEINSTEIN M. B.: ROAMing Terrain:
Real-time Optimally Adapting Meshes. In Proc. IEEE Visual-
ization (1997), pp. 81-88.

ErLEMANN S.: The Equalizer Parallel Rendering Framework.
http://www.equalizergraphics.com/. Accessed 2010-
10-25.

EILEMANN S., MAKHINYA M., PajaroLA R.: Equalizer: A Scal-
able Parallel Rendering Framework. IEEE Trans. Visualization
and Computer Graphics 15, 3 (2009), 436-452.

FaircHiLD M. D., JounsoN G. M.: The iCAM Framework
for Image Appearance, Differences, and Quality. Journal of
Electronic Imaging 13, 1 (2004), 126-138.

FERRETTI A., PRATI C., Rocca E.: Permanent Scatterers in SAR
Interferometry. IEEE Trans. Geoscience and Remote Sensing 39,
1 (2001), 8-20.

GDAL - Geospatial Data Abstraction Library. http://www.
gdal.org/. Accessed 2010-10-13.

GacgNoON L., Jouan A.: Speckle Filtering of SAR Images —
A Comparative Study Between Complex-Wavelet-Based and
Standard Filters. In Proc. SPIE Vol. 3169 (1997), pp. 80-91.

GPGPU - General-Purpose Computation on Graphics Hard-
ware. http://www.gpgpu.org/. Accessed 2010-10-13.

http://www.equalizergraphics.com/
http://www.gdal.org/
http://www.gdal.org/
http://www.gpgpu.org/

106

Bibliography

[GZY08]

[HCP02]

[Hei09]

[Jar04]

[JRNGO8]

[Khr]

[KLJ*09]

[KLT*09]

[KMS05]

[KWO05]

[LCTS05]

[LHO4]

[LJD*94]

GonNG L., ZHANG J., , Y1 L.: Detection of Artificial Corner
Reflector on SAR Images. In Proc. Dragon Symposium (2008).

He Y., CREMER J., PAPELIS Y.: Real-Time Extendible-Resolution
Display of On-line Dynamic Terrain. In Proc. Graphics Interface
(2002), pp- 151-160.

Heipe E: Adaptive Terrain Rendering with Smooth Subdivision
Surfaces on the GPU. Bachelor Thesis, University of Siegen,
2009.

JaArGsTORFF F: GPU Gems. Addison-Wesley, 2004, ch. A
Framework for Image Processing, pp. 445—467.

Jarvis A., REUTER H., NELsoN A., GuevaRrA E.: Hole-filled
Seamless SRTM Data V4, 2008. International Centre for Trop-
ical Agriculture (CIAT).

Kuronos Grour: OpenCL API Registry. http://www.
khronos.org/registry/cl/. Accessed 2010-10-13.

Koomma R., LEIGH]., JoHNSON A., ROBERTS D., SuBBARAO M.,
DEeFaNTI T. A.: Planetary-Scale Terrain Composition. IEEE
Trans. Visualization and Computer Graphics 15, 5 (2009), 719-733.

Kors A., LamBERs M., Topt S.,, CunTZz N., REZK-SALAMA
R.: Immersive Rear Projection on Curved Screens. IEEE VR
(Poster-Session), 2009.

Krawczyk G., Myszxkowsk1 K., SEIDEL H.-P.: Perceptual Ef-
fects in Real-Time Tone Mapping. In Spring Conf. Computer
Graphics (2005), ACM, pp. 195-202.

Kirrer P, WESTERMANN R.: GPU Gems 2. Addison-Wesley,
2005, ch. Improved GPU Sorting, pp. 733-746.

Leppa P, CHALMERS A., TROsciANKO T., SEETZEN H.: Evalua-
tion of Tone Mapping Operators using a High Dynamic Range
Display. In Proc. ACM SIGGRAPH (2005), pp. 640-648.

Losasso F., Horre H.: Geometry Clipmaps: Terrain Render-
ing using Nested Regular Grids. Proc. ACM SIGGRAPH 23, 3
(2004), 769-776.

LEE J. S., JurkevicH L., DEWAELE P., WamMBACQ P., OOSTER-
LINCK A.: Speckle Filtering of Synthetic Aperture Radar Im-
ages: A Review. Remote Sensing Reviews 8 (1994), 313-340.

http://www.khronos.org/registry/cl/
http://www.khronos.org/registry/cl/

Bibliography 107

[LKO8a]

[LKO8b]

[LKO09]

[LK10a]

[LK10b]

[LKES09]

[LKNKO7]

[LKR*96]

[LNKO8]

[LNPKO04]

[LSK*06]

LamBErs M., KoL A.: Adaptive Dynamic Range Reduction
for SAR Images. In Proc. 7th European Conference on Synthetic
Aperture Radar (EUSAR) (2008), vol. 3, pp. 371-374.

LamBeErs M., KoL A.: Automatic Point Target Detection
For Interactive Visual Analysis of SAR Images. In Proc. IEEE
Int. Geoscience and Remote Sensing Symposium (IGARSS) (2008),
vol. 2, pp. II-903-11-906.

LamBERs M., KoLB A.: GPU-Based Framework for Distributed
Interactive 3D Visualization of Multimodal Remote Sensing
Data. In Proc. IEEE Int. Geoscience and Remote Sensing Sympo-
sium (IGARSS) (2009), vol. 4, pp. IV-57-IV-60.

LaMBERs M., KoL A.: Dynamic Terrain Rendering. 3D Re-
search 1, 4 (2010), 1-8.

LamBERs M., KoL A.: Visual Assistance Tools for Inter-
active Visualization of Remote Sensing Data. In Proc. IEEE
Int. Geoscience and Remote Sensing Symposium (IGARSS) (2010),
pp. 4745-4748.

LivNy Y., KoGgaN Z., EL-SANA J.: Seamless Patches for GPU-
Based Terrain Rendering. Vis. Comput. 25, 3 (2009), 197-208.

LamBers M., KoLB A., Nies H. KALKUHL M.: GPU-
based Framework for Interactive Visualization of SAR Data.

In Proc. IEEE Int. Geoscience and Remote Sensing Symposium
(IGARSS) (2007), pp. 4076—4079.

LinpstrOM P., KOLLER D., RiBaARskY W., HopGEs L. F.,, Faust
N., TURNER G. A.: Real-time, Continuous Level of Detail Ren-
dering of Height Fields. In Proc. ACM SIGGRAPH (1996),
pp- 109-118.

LamBErs M., Nies H., KoLB A.: Interactive Dynamic Range
Reduction for SAR Images. Geoscience and Remote Sensing Let-
ters 5, 3 (2008), 507-511.

LorrerLp O., Nies H., PETERs V., KNEDLIK S.: Models and
Useful Relations for Bistatic SAR Processing. IEEE Trans. Geo-
science and Remote Sensing 42, 10 (2004), 2031-2038.

LerouN A. E., SENGuPTA S., KN1Ss].,, STRzoDKA R., OWENS
J. D.: Glift: Generic, Efficient, Random-Access GPU Data
Structures. ACM Trans. Graph. 25 (2006), 60-99.

108

Bibliography

[MalO6]

[MDTP*04]

[MIA*07]

[MJ04]

[MKMS89]

[Mor00]

[Nar81]

[NGA]

[Nov05]

[NVI]

[NVI09a]

[NVIO9b]

MaranN H.: OpenGL Shading Language, 2nd ed. Addison-
Wesley, 2006, ch. RealWorldz, pp. 505-541.

McCoor M., Du Torr S, Pora T., CHAN B., MouLE K.: Shader
Algebra. In Proc. ACM SIGGRAPH (2004), pp. 787-795.

McCormick P.,, INMAN J.,, AHRENS J., MOHD-YUSOF J., RoTH
G., CummMins S.: Scout: A Data-Parallel Programming Lan-
guage for Graphics Processors. Parallel Comput. 33, 10-11
(2007), 648-662.

McCanpiEess S. W, JacksoN C. R.: Synthetic Aperture Radar
Marine User’s Manual. US Dept. of Commerce, 2004, ch. Prin-
ciples of Synthetic Aperture Radar, pp. 1-23.

MuscGrave E K., KoL C. E., MACE R. S.: The Synthesis and
Rendering of Eroded Fractal Terrains. In Proc. ACM SIG-
GRAPH (1989), pp. 41-50.

MoOREIRA A.: Radar mit Synthetischer Apertur: Grundlagen und
Signalverarbeitung. Habilitationsschrift, Karlsruhe University,
2000.

NARENDRA P. M.: A Separable Median Filter for Image Noise
Smoothing. IEEE Trans. Pattern Analysis and Machine Intelli-
gence 3,1 (1981), 20-29.

NGA (US NATIONAL GEOSPATIAL-INTELLIGENCE AGENCY):
World Geodetic System 1984 (WGS84). http://wwwl.
nga.mil/ProductsServices/GeodesyGeophysics/
WorldGeodeticSystem/Pages/default.aspx. Ac-
cessed 2011-05-12.

Novosap J.: GPU Gems 2. Addison-Wesley, 2005, ch. Ad-
vanced Hight Quality Filtering, pp. 417-435.

NVIDIA CORPORATION: CUDA Zone. http://www.
nvidia.com/cuda. Accessed 2010-10-13.

NVIDIA CORPORATION: 30-Bit Color Technology for
NVIDIA Quadro. http://www.nvidia.com/docs/IO/
40049/TB-04701-001_v02_new.pdf, 2009. Accessed
2010-12-02.

NVIDIA CorroraTION: NVIDIA’s Next Generation CUDA
Compute Architecture: Fermi. http://www.nvidia.

http://www1.nga.mil/ProductsServices/GeodesyGeophysics/WorldGeodeticSystem/Pages/default.aspx
http://www1.nga.mil/ProductsServices/GeodesyGeophysics/WorldGeodeticSystem/Pages/default.aspx
http://www1.nga.mil/ProductsServices/GeodesyGeophysics/WorldGeodeticSystem/Pages/default.aspx
http://www.nvidia.com/cuda
http://www.nvidia.com/cuda
http://www.nvidia.com/docs/IO/40049/TB-04701-001_v02_new.pdf
http://www.nvidia.com/docs/IO/40049/TB-04701-001_v02_new.pdf
http://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf
http://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf

Bibliography 109

[NVI10]

[OLG*07]

[OQ04]

[Owe05]

[Paj98]

[PFFG98]

[PGO7]

[RDO5]

[RHO4]

[RJW96]

[RSKKO6]

com/content/PDF/fermi_white_papers/NVIDIA_
Fermi_Compute_Architecture_Whitepaper.pdf,
2009. Accessed 2010-10-25.

NVIDIA CorroratioN: NVIDIA CUDA C Programming Guide
3.1.1. Sept. 2010.

OweNs J. D., LueBke D., GovINDARAJU N., HARrRris M,
KRUGER J., LEFoBN A. E., PUrceLL T.: A Survey of General-
Purpose Computation on Graphics Hardware. Computer
Graphics Forum 26, 1 (2007), 80-113.

OL1ver C., QUEGAN S.: Understanding Synthetic Aperture Radar
Images. SciTech, 2004.

OweNs J.: GPU Gems 2. Addison-Wesley, 2005, ch. Streaming
Architectures and Technology Trends, pp. 457-470.

PajaroLA R.: Large Scale Terrain Visualization using the Re-
stricted Quadtree Triangulation. In Proc. IEEE Visualization
(1998), pp. 19-26.

PAatTANAIK S. N., FERWERDA]J. A., FAIRCHILD M. D., GREEN-
BERG D. P.: A Multiscale Model of Adaptation and Spatial
Vision for Realistic Image Display. In Proc. ACM SIGGRAPH
(1998), pp. 287-298.

Pajarora R., GoBBETTI E.: Survey of Semi-Regular Multireso-
lution Models for Interactive Terrain Rendering. Vis. Comput.
23, 8 (2007), 583-605.

ReINHARD E., DEVLIN K.: Dynamic Range Reduction Inspired
by Photoreceptor Physiology. IEEE Trans. Visualization and
Computer Graphics 11, 1 (2005), 13-24.

REeI1GBER A., HELLwicH O.: RAT (Radar Tools): A Free SAR
Image Analysis Software Package. In Proc. EUSAR (2004),
pp- 997-1000.

RanMAN Z., JoBsoN D. J., WoobpeLL G. A.: A Multiscale
Retinex for Color Rendition and Dynamic Range Compres-
sion. In SPIE Proc. Applications of Digital Image Processing XIX
(1996), vol. 2847.

Rezk-SaLama C., KELLER M., KoHLMANN P.: High-Level User
Interfaces for Transfer Function Design with Semantics. IEEE

http://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf
http://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf
http://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf

110

Bibliography

[RSSF02]

[RWPDO5]

[SBA*99]

[Sch95]

[SDKO05]

[SHGO09]

[Sho10]

[SWO06]

[ThoO5]

[Tou02]

[TT99]

Trans. Visualization and Computer Graphics 12, 5 (2006), 1021-
1028.

REINHARD E., STARK M., SHIRLEY P., FERWERDA J.: Photo-
graphic Tone Reproduction for Digital Images. Proc. ACM
SIGGRAPH (2002), 267-276.

ReNHARD E., WARD G., Partanaix S., Desevec P.: High
Dynamic Range Imaging: Acquisition, Display and Image-based
Lighting. Morgan Kaufmann, 2005.

Srivastava S. K., Banik B. T, Apamovic M. Gray R,
Hawxians R. K., Lukowski1 T. 1., MURNAGHAN K. P.,, JEFFERIES
W. C.: RADARSAT-1 Image Quality — Update. In CEOS SAR
Workshop (1999).

ScHLrick C.: Photorealistic Rendering Techniques. Springer, 1995,
ch. Quantization Techniques for the Visualization of High Dy-
namic Range Pictures.

StrzODKA R., DOGGETT M., KoLB A.: Scientific Computation
for Simulations on Programmable Graphics Hardware. Simu-
lation Practice & Theory 13, 8 (2005), 667-680.

SatisH N., HARRIS M., GARLAND M.: Designing Efficient Sort-
ing Algorithms for Manycore GPUs. In Proc. IEEE Int. Sym-
posium on Parallel & Distributed Processing (2009), pp. 1-10.

SHORT N. M.: The Remote Sensing Tutorial. http://rst.
gsfc.nasa.gov/, 2010. Accessed 2010-10-13.

SCHNEIDER J., WESTERMANN R.: GPU-Friendly High-Quality
Terrain Rendering. Journal of WSCG 14, 1-3 (2006), 49-56.

THORNE C.: Using a Floating Origin to Improve Fidelity
and Performance of Large, Distributed Virtual Worlds. In
Proc. Int. Conf. on Cyberworlds (2005), pp. 263-270.

Touzi R.: A Review of Speckle Filtering in the Context of
Estimation Theory. IEEE Trans. Geoscience and Remote Sensing
40, 11 (2002), 2392-2404.

TumsLIN J., Turk G.: LCIS: A Boundary Hierarchy for Detail-
Preserving Contrast Reduction. In Proc. ACM SIGGRAPH
(1999), pp- 83-90.

http://rst.gsfc.nasa.gov/
http://rst.gsfc.nasa.gov/

Bibliography 111

[Ulr00]

[VCWP96]

[War05]

[WEB*10]

[WLHWO07]

[WMD*04]

[WS92]

[XLMO3]

[YMMS06]

ULrica T.: Continuous LOD Terrain Meshing Us-
ing Adaptive Quadtrees. http://www.gamasutra.com/
features/20000228/ulrich_01.htm, Feb. 2000. Ac-
cessed 2011-02-01.

VieGa J., Conway M. J., WiLLiams G., PauscH R.: 3D Magic
Lenses. In Proc. ACM Symp. User Interface Software and Tech-
nology (1996), pp. 51-58.

WARDEN P.: GPU Gems 2. Addison-Wesley, 2005, ch. GPU
Image Processing in Apple’s Motion, pp. 393—408.

WALTERSCHEID I., ESPETER T., BRENNER A., KLARE J., ENDER
J., N1es H., WANG R., LorreLD O.: Bistatic SAR Experiments
With PAMIR and TerraSAR-X — Setup, Processing, and Image
Results. IEEE Trans. Geoscience and Remote Sensing 48, 8 (2010),
3268-3279.

WonG T.-T.,, LeunG C.-S., HENG P.-A., WANG J.: Discrete
Wavelet Transform on Consumer-Level Graphics Hardware.
IEEE Trans. Multimedia 9, 3 (2007), 668—673.

WAHL R., MASSING M., DEGENER P.,, GUTHE M., KLEIN R.: Scal-
able Compression and Rendering of Textured Terrain Data.
Journal of WSCG 12, 3 (2004), 521-528.

WHITE R., STEMWEDEL S.: The Quadrilateralized Spherical
Cube and Quad-Tree For All Sky Data. In Astronomical Data
Analysis Software and Systems 1 (1992), Worrall D., Biemesder-
fer C., Barnes J., (Eds.), vol. 25 of Astronomical Society of the
Pacific Conference Series, pp. 379-381.

X1ao J.,, L1 J., Moopy A.: A Detail-Preserving and Flexible
Adaptive Filter for Speckle Suppression in SAR Imagery. Int.
J. Remote Sensing 24, 12 (2003), 2451-2465.

YosHIDA A., MANTIUK R., Myszkowsk1 K., SEIDEL H.-P.: Anal-
ysis of Reproducing Real-World Appearance on Displays of
Varying Dynamic Range. In Proc. Eurographics (2006), pp. 415
426.

http://www.gamasutra.com/features/20000228/ulrich_01.htm
http://www.gamasutra.com/features/20000228/ulrich_01.htm

	Title
	Abstract
	Zusammenfassung
	Contents
	Introduction
	Visualization of Remote Sensing Data
	Problem Statement
	Contribution
	Chapter Overview

	Visualization Framework
	Overview
	Data Hierarchy and Management
	Related Work
	Restricted Quadtree
	Sensor Data Representation
	Data Storage and Management
	Summary
	Future Work

	GPU-Based Data Processing
	Background
	Related Work
	Processing Pipeline
	Summary

	Level of Detail and Rendering
	Related Work
	Level Of Detail
	Mesh Creation
	Rendering
	Distributed and Parallel Rendering
	Summary

	Visual Assistance Tools
	Related Work
	Lenses
	Detectors
	Summary

	Results

	Synthetic Aperture Radar Image Visualization
	Overview
	Dynamic Range
	Introduction
	Related Work
	Commonly Used Methods
	Tone Mapping Operators
	Local Methods for SAR Images
	Implementation
	Results

	Speckle
	Introduction
	Related Work
	Interactive Speckle Reduction
	Results

	Point Target Analysis
	Introduction
	Related Work
	Interactive Point Target Analysis
	Results

	Summary

	Dynamic Terrain Rendering
	Overview
	Related Work
	Data Structures
	Hierarchy
	Mesh
	Edge Mark Arrays

	Refinement
	Edge Split Criteria
	Bottom Up Refinement
	Top Down Refinement

	Implementation Notes
	Results
	Summary

	Conclusion
	Summary
	Future Work

	Bibliography

