
Simulation and Estimation of
Operator scaling stable

random Fields

Dissertation

zur Erlangung des Grades eines Doktors

der Naturwissenschaften

(Dr. rer. nat.)

vorgelegt von

Dipl.–Math. Tobias Kegel

Eingereicht bei der Naturwissenschaftlich-Technischen Fakultät

der Universität Siegen

Siegen 2011

GUTACHTER:

Prof. Dr. Hans-Peter Scheffler, Universität Siegen
Prof. Dr. Peter Kern, Heinrich-Heine-Universität Düsseldorf

TAG DER MÜNDLICHEN PRÜFUNG: 14. Oktober 2011

Kurzzusammenfassung

Operator-skalierende stabile Zufallsfelder (engl. Operator-scaling stable random fields,
kurz: OSSRFs) sind stochastische Modelle, die räumliche Abhängigkeiten beschreiben
können. Dabei sind Abhängigkeiten unterschiedlicher Stärke und in verschiedenen, nicht
notwendigerweise zueinander senkrechten, Richtungen zugelassen. Die resultierenden
anisotropen Felder werden z.B. zur Beschreibung poröser Medien in der Hydrologie oder
fraktaler Oberflächen in der Physik verwendet. In [1] präsentierten H. Biermé, M. M.
Meerschaert und H.-P. Scheffler Modelle für operator-skalierende stabile Zufallsfelder in
harmonizable und in moving-average Darstellungen, und zeigten einige wichtige Eigen-
schaften dieser Felder.

Um diese OSSRFs in praktischen Anwendungen einsetzen zu können, werden Methoden
für die numerische Simulation und für die statistische Analyse (z.B. Parameterschätzung)
solcher Felder benötigt. In der vorliegenden Arbeit werden numerische Approximatio-
nen von OSSRFs präsentiert und ihre Abweichungen von den ursprünglichen Feldern
untersucht. Algorithmen für die Berechnung dieser Approximationen wurden ebenfalls
entwickelt und in dieser Arbeit vorgestellt. Für die in der Praxis relevanten Fälle von
zwei- und drei-dimensionalen Feldern wurden diese Algorithmen in den Programmier-
sprachen Matlab und Java implementiert. Schliesslich stellen wir auch eine Methode für
die Schätzung mehrerer Parameter eines harmonizable OSSRF sowie ihre Implemen-
tierung in Matlab vor.

III

IV

Abstract

Operator-scaling stable random fields are stochastic models which can describe spacial
dependencies. Thereby dependencies of different intensities and in different, not neces-
sarily orthogonal, directions are allowed, resulting in anisotropic fields which are used,
e.g. in hydrology to represent porous media, or to describe fractal surfaces in physics.
In [1], Bierme, Meerschaert and Scheffler presented models for operator-scaling stable
random fields in harmonizable and in moving average representation, and showed some
important properties of these fields.

In order to use these fields for practical application, procedures for their numeric simula-
tion are needed, and also methods for the statistical analysis (e.g. parameter estimation)
of observed realizations of OSSRFs. The present thesis presents numeric approximations
of OSSRFs and examines their deviation from the original OSSRFs. Algorithms for the
calculation of these approximations have been also developed and are described in the
thesis. For the cases of two- and three-dimensional fields, which are relevant for practi-
cal applications, these algorithms for the simulation of OSSRFs have been implemented
in the programming languages Matlab and Java. Finally, we present also a method for
the estimation of several parameters of a two-dimensional harmonizable OSSRF, and its
implementation in Matlab.

V

VI

Contents

Kurzzusammenfassung III

Abstract V

1 Introduction 1

2 Definition of OSSRFs 5

3 Approximation of OSSRFs in harmonizable representation 9
3.1 Approximation . 9
3.2 Approximation error due to the truncation 10
3.3 Approximation error due to the discretisation 22

3.3.1 Approximation error if ψ is a ρ-norm 22
3.3.2 Approximation error for general ψ 41

4 Approximation of OSSRFs in moving average representation 59
4.1 Approximation . 59
4.2 Approximation error due to the truncation 60
4.3 Approximation error due to the discretisation 63

5 Approximation algorithms 71
5.1 Simulation of stable random variables . 71

5.1.1 Simulation of an isotropic complex-valued stable random variable 71
5.1.2 Simulation of a real-valued symmetric stable random variable . . 73

5.2 Approximation of two-dimensional OSSRF in harmonizable distribution . 73
5.3 Approximation of d-dimensional OSSRF in harmonizable distribution . . 75
5.4 Approximation of two-dimensional OSSRF in moving average distribution 76
5.5 Approximation of d-dimensional OSSRF in moving average representation 78
5.6 The fast Fourier transform . 79
5.7 The fast convolution . 82

6 Implementations of the approximation algorithms 87
6.1 Implementations in Matlab . 87

6.1.1 Simulation of two-dimensional OSSRFs in Matlab 87

VII

Contents

6.1.2 Simulation of three-dimensional OSSRF in Matlab 96
6.2 Implementations in Java . 105

6.2.1 Simulation of two-dimensional OSSRF in Java 105
6.2.2 Simulation of three-dimensional OSSRF in Java 110

7 Parameter estimation in the harmonizable case 113
7.1 Derivation of an estimation algorithm . 113
7.2 Implementation in Matlab . 116
7.3 Numerical study . 122

A Manual of the Java program “OSSRFSIM” 129
A.1 Program start . 129
A.2 2-dimensional OSSRF . 130

A.2.1 The main menu . 131
A.2.2 The File menu . 131
A.2.3 The Save Image menu . 132
A.2.4 The parameter dialog . 132
A.2.5 Progress display . 134
A.2.6 Mouse and keyboard commands 135

A.3 3-dimensional OSSRF . 137
A.3.1 The parameter dialog . 137
A.3.2 The display parameter dialog . 138
A.3.3 The main menu . 139
A.3.4 Mouse and keyboard commands in the main window 140
A.3.5 Progress display . 140

A.4 The option.txt file . 143

B Contents of the attached CD 145

List of symbols and abbreviations XIII

Bibliography XV

VIII

List of Figures

6.1 Examples of 2-dim. harmonizable OSSRFs, simulated with Matlab. . . . 94
6.2 Examples of 2-dim. moving-average OSSRFs, simulated with Matlab. . . 95
6.3 Dialog windows for the input of parameters in Matlab. 102
6.4 Visualizations (types (a) and (b)) of a 3-dim. harmonizable OSSRF. . . . 103
6.5 Visualizations (type (c)) of a 3-dim. harmonizable OSSRF. 104
6.6 Visualizations (type (d), i.e. anaglyph) of a 3-dim. harmonizable OSSRF. 104
6.7 Examples of harmo. 2-dim. OSSRFs, simulated with OSSRFSIM (Java). 108
6.8 Example of an mov.-av. 2-dim. OSSRF, simulated with OSSRFSIM (Java).109
6.9 Examples of 2-dim. OSSRFs, simulated with OSSRFSIM (Java). 109
6.10 A 3-dim. non-gaussian harmonizable OSSRF with 230 simulated values. . 112

7.1 Boxplots of deviations of estimated parameter values. 124
7.2 Boxplots of deviations of estimated parameter values (for large fields). . . 125
7.3 The mean absolute deviation in dependency of the parameter M. 127
7.4 The mean squared error in dependency of the parameter M. 127

A.1 The start screen. 129
A.2 The Program window with a simulated 2-dimensional OSSRF. 130
A.3 The file chooser dialog. 131
A.4 The parameter dialog for the simulation of two-dimensional OSSRFs. . . 132
A.5 Changing the color map. 134
A.6 Display of progress during the simulation. 135
A.8 The display parameter dialog. 138
A.7 The Parameter dialog for the simulation of three-dimensional OSSRFs. . 141
A.9 Main menu and status bar. 141

IX

List of Figures

X

List of Tables

3.1 Estimation and numerical approximations of Ĩ with ν = 1.0 and γ = −3.0. 21

5.1 Times for the calculation of two-dimensional discrete Fourier transforms
on N ·N data points. 82

6.1 Time (in s.) for the calculation of two-dimensional OSSRF in Matlab (ha.
“α = 2” = gaussian, harmonizable OSSRFs, “ha. α < 2” = non-gaussian,
harmonizable OSSRFs, “mov. av.” = moving average OSSRFs). 93

6.2 Time (in s.) for the calculation of three-dimensional OSSRF in Matlab
(ha. = harmonizable, mov. av. = moving average). 102

6.3 Times for the calculation of 2-dim. OSSRFs with the Java implementation.106
6.4 Times per mio. elements for the calculation of 2-dim. OSSRFs with the

Java implementation. 106
6.5 Time for the calculation of 2-dim. OSSRFs (using 32bit floats). 107
6.6 Time for the calculation of 3-dimensional OSSRF with the Java program

(without caching data and without parallel threads). 111
6.7 Time for the calculation of 3-dimensional OSSRF with the Java program

(caching data on the HDD; without parallel threads). 111
6.8 Time for the calculation of 3-dimensional harmonizable OSSRF with the

Java program (caching data on the HDD; with 2 parallel threads). 111

7.1 Comparison of fminsearch and fminunc. 122
7.2 Mean absolute deviation depending on the size of the random field. . . . 126
7.3 Mean squared error (MSE) depending on the size of the random field. . . 126

A.1 Keyboard commands for the display of 2d OSSRFs. 136
A.2 Keyboard commands for the display of 3d OSSRFs. 142
A.3 Parameter names in the file “option.txt”. 144

XI

List of Tables

XII

Chapter 1

Introduction

Operator-scaling stable random fields are stochastic models which describe spacial de-
pendencies. Thereby dependecies of different intensities and in different, not necessarily
orthogonal, directions are allowed, resulting in anisotropic fields which are used, e.g. in
hydrology to represent porous media, or to describe fractal surfaces in physics. In [1],
Bierme, Meerschaert and Scheffler presented models for operator-scaling stable random
fields in harmonizable and in moving average representation, which can be anisotropic,
and showed some important properties of these fields.

In order to use these fields for practical application, procedures for their numeric simula-
tion are needed, and also methods for the statistical analysis (e.g. parameter estimation)
of observed realizations of OSSRFs. The present thesis presents numeric approximations
of OSSRFs and examines their deviation from the original OSSRFs. Algorithms for the
calculation of these approximations have been also developed and are described in the
thesis. For the cases of two- and three-dimensional fields, which are relevant for practi-
cal applications, these algorithms for the simulation of OSSRFs have been implemented
in the programming languages Matlab and Java. Finally, we present also a method for
the estimation of several parameters of a two-dimensional harmonizable OSSRF, and its
implementation in Matlab.

This thesis is organized as follows: In Chapter 2, we quote the basic definitions and
results from [1], which are used in this thesis, e.g. the definitions of E-homogeneous
functions and of operator-scaling stable random fields.

In Chapter 3, we present an approximation of the harmonizable integral representation
of OSSRFs by a discrete model, and calculate error bounds for this approximation. In
Section 3.1, the approximation is described. It is obtained in two steps: In the first step
the domain of integration is truncated from Rd to a finite subset, and in the second step
this finite integral is approximated by a sum with a finite number of summands. After the
presentation of this approximation, we examine the resulting error between the approxi-
mation and the original model, and divide this task again in two parts: First, in Section

1

Chapter 1 Introduction

3.2, we estimate the approximation error resulting from the truncation. We give exact
error bounds for isotropic OSSRFs, which is defined with a norm as the E-homogeneous
function, in Theorem 3.5, and for harmonizable OSSRFs in general in Theorem 3.10.
Then we consider the approximation error due to the discretisation in Section 3.3. We
use two similar variants of discretisation, the first one being a special case of the second.
For both cases, the approximation error is estimated, like the approximation error for the
truncation, first for the special case of OSSRFs with norms as E-homogeneous functions,
and then for the general class of OSSRFs in harmonizable representation. Thus, we show
that using the second variant of discretisation, the approximation error can be reduced
below any given threshold ε > 0 by choosing suitable parameters for the approximation
(Theorem 3.34, Corollary 3.35 and Remark 3.36), and give exact error bounds in the
case of the E-homogeneous function being a norm (Theorem 3.20 and Corollary 3.21).

Chapter 4 contains similar considerations for OSSRFs in moving-average representation.
Like the previous chapter, it consists of three sections: Section 4.1 contains, analogous
to Section 3.1, a description of the approximation of these OSSRFs. Again, the approx-
imation is obtained by truncating the domain of integration in the integral occuring in
the definition of the OSSRF, and subsequently approximating the truncated integral
by a finite sum. For OSSRFs for which the E-homogeneous function is a norm, the
approximation error of the truncation is estimated in Section 4.2, and the error due to
discretisation in Section 4.3. For both error estimates, exact error bounds are obtained.

In Chapter 5 we develop algorithms for the numeric calculation of the approximations
which were presented in the Chapters 3 and 4. First, we describe in Section 5.1, how the
α-stable random variables, which are needed for the approximation of the OSSRFs, can
be simulated using the algorithm published by Chambers, Mallows and Stuck in [4]. Then
we develop an algorithm for the simulation of two-dimensional harmonizable OSSRFs in
Section 5.2, which is generalized for the simulation of d-dimensional OSSRFs with d ≥ 2
(e.g. three-dimensional fields) in Section 5.3. In the Sections 5.4 and 5.5, an algorithm
for the simulation of OSSRFs in moving-average representation is presented. Because
the algorithm for the simulation of harmonizable OSSRFs includes the calculation of a
discrete Fourier transform, the basic principles of an efficient, fast Fourier transform are
explained in Section 5.6. Finally, we show in Section 5.7, how the convolution of two
arrays, which is a key element of the algorithm for the simulation of moving-average
OSSRFs, can be calculated efficiently with the help of the fast Fourier transform.

These algorithms for the simulation of OSSRFs were implemented in the programming
languages Matlab and Java for the important cases of two- and three-dimensional ran-
dom fields. The complete source codes of these implementations can be found on the
accompanying CD. In Chapter 6, we analyze and compare the required system resources
(memory space and computation time) which are needed by the different implementation
variants of the simulation algorithms, and show some images of examples of OSSRFs
that have been generated by these programs. We also present the relevant source codes

2

of the Matlab implementations in Section 6.1, while the Java sources are not quoted
in the thesis because of their size. However, an user manual for the Java program is
included in Appendix A.

Finally, we turn from the topic of the approximation and simulation of OSSRFs to the
estimation of their parameters. In Chapter 7, we discuss a method for the estimation of
several parameters of an OSSRF, presenting an algorithm for this task in Section 7.1 and
implementing it in Matlab for the case of five estimated parameters of a two-dimensional
harmonizable OSSRF (see Section 7.2). In Section 7.3, the results of a numerical case
study are presented which indicate that the described algorithm is indeed an useful
and effective means for the estimation of parameters. In particular, it gives empirical
evidence to the assumption that the estimator is consistent, i.e. that the estimated
parameter values converge to the underlying, original values if the sizes of the simulated
fields (and thus the sample size) are increased. The results for the considered sample
indicate that the mean squared error is proportional to the inverse of the number of
elements in the simulated field, and some other statistics, like the median of absolute
deviations, are proportional to its square root, i.e. to the inverse of the width and height
of the field. In this context, further research is needed in order to prove the consistency
of this estimator mathematically.

3

Chapter 1 Introduction

4

Chapter 2

Definition of OSSRFs

The Operator Scaling Stable Random Fields (OSSRFs) in harmonizable or moving aver-
age representation, which will be considered in this thesis, have been introduced in the
paper [1]. In this chapter we quote some definitions and results from that paper which
will be used in the thesis. The proofs of these results are not given here, but can be
found in the paper.

In section 2 of [1], a polar representation of vectors x ∈ Rd\{0}, depending on a matrix
E, is defined:

Let E be a real d×d matrix with positive real parts of the eigenvalues 0 < a1 < . . . < ap
for p ≤ d. Let us define Γ = Rd\{0}. It follows from Lemma 6.1.5 of [8] that there exists
a norm || · ||0 on Rd such that for the unit sphere S0 = {x ∈ Rd : ||x||0 = 1} the mapping
Ψ : (0,∞) × S0 → Γ,Ψ(r, θ) = rEθ is a homomorphism. Moreover for any x ∈ Γ the
function t 7→ ||tEx||0 is strictly increasing. Hence we can write any x ∈ Γ uniquely as
x = τ(x)El(x) for some radial part τ(x) > 0 and some direction l(x) ∈ S0 such that
x 7→ τ(x) and x 7→ l(x) are continuous. Observe that S0 = {x ∈ Rd : τ(x) = 1} is
compact. Moreover we know that τ(x)→∞ as x→∞ and τ(x)→ 0 as x→ 0. Hence
we can extend τ(·) continuously by setting τ(0) = 0. Note that further τ(−x) = τ(x)
and l(−x) = −l(x). The following result gives bounds on the growth rate of τ(x) in
terms of the real parts of the eigenvalues of E.

Lemma 2.1. (Lemma 2.1 in [1])
For any (small) δ > 0 there exist constants C1, . . . , C4 > 0 such that for all ||x||0 ≤ 1 or
all τ(x) ≤ 1,

C1||x||1/a1+δ
0 ≤ τ(x) ≤ C2||x||1/ap−δ0 ,

and, for all ||x||0 ≥ 1 or all τ(x) ≥ 1,

C3||x||1/ap−δ0 ≤ τ(x) ≤ C4||x||1/a1+δ
0 .

The following proposition provides an integration in polar coordinates formula (with
q = trace(E)).

5

Chapter 2 Definition of OSSRFs

Proposition 2.2. (Proposition 2.3 in [1])
There exists a unique finite Radon measure σ on S0 such that for all f ∈ L1(Rd, dx) we
have ∫

Rd
f(x)dx =

∫ ∞
0

∫
S0

f(rEθ)σ(dθ)rq−1dr.

Definition 2.3. (Definition 2.6 in [1])
Let ϕ : Rd → C be any function. We say that ϕ is E-homogeneous if ϕ(cEx) = cϕ(x)
for all c > 0 and x ∈ Γ.

Remark 2.4. (from section 2 in [1], following after Definition 2.6)
An E-homogeneous function ϕ is completely determined by its values on S0, since ϕ(x) =
ϕ(τ(x)El(x)) = τ(x)ϕ(l(x)). Observe that if ϕ is E-homogeneous and continuous with
positive values on Γ, then

Mϕ = max
θ∈S0

ϕ(θ) > 0 and mϕ = min
θ∈S0

ϕ(θ) > 0. (2.1)

Moreover by continuity we necessarily have ϕ(0) = 0.

Definition 2.5. (Definition 2.7 in [1])
Let β > 0. A continuous function ϕ : Rd → [0,∞) is called (β,E)-admissible, if ϕ(x) > 0
for all x 6= 0 and for any 0 < A < B there exists a positive constant C > 0 such that,
for A ≤ ||y|| ≤ B,

τ(x) ≤ 1⇒ |ϕ(x+ y)− ϕ(y)| ≤ Cτ(x)β.

In the following corollary, a family of E-homogenous, (β,E)-admissible functions in a
certain parametric representation is defined. In this thesis, we usually use (if not stated
otherwise) E-homogeneous and (β,E)-admissible functions which can be written in this
representation.

Corollary 2.6. (Corollary 2.12 in [1])
Let θ1, . . . , θd be any basis of Rd, let 0 < λ1 ≤ . . . ≤ λd and C1, . . . , Cd > 0. Choose a
d× d matrix E such that ET θj = λjθj for j = 1, . . . , d. Then for any ρ > 0, if ρ < 2λ1

the function

ϕ(x) =

(
d∑
j=1

Cj| < x, θj > |ρ/λj
)1/ρ

(2.2)

is a continuous E-homogeneous and (β,E)-admissible function for β < min
(
λ1, ρ

λ1

λd

)
if

λ1 ≤ ρ and β = ρ if λ1 > ρ.

Definition 2.7. (see section 1 in [1])
A scalar valued random field {X(x)}x∈Rd is called operator-scaling if for some d × d
matrix E with positive real parts of the eigenvalues and some H > 0 we have

{X(xE)}x∈Rd
f.d.
= {cHX(x)}x∈Rd for all c > 0, (2.3)

6

where
f.d.
= denotes equality of all finite-dimensional marginal distributions, and cE =

exp(E log(c)) where exp(A) =
∑∞

k=0
Ak

k!
is the matrix exponential.

Furthermore, a scalar valued random field is called stable, if all its finite dimensional
marginal distributions are stable (see [10], Def. 3.1.1), i.e. α-stable for an α ∈ (0, 2].
A random field, which is both operator scaling and stable, is called operator scaling
stable random field , or abbreviated: OSSRF . In this thesis, two classes of OSSRF will
be considered, which are the OSSRFs in harmonizable representation and the OSSRFs
in moving average representation.

Theorem 2.8. (Theorem 4.1 and Corollary 4.2 in [1])
For 0 < α ≤ 2, be Wα(dξ) a complex isotropic α-stable random measure with Lebesgue
control measure (see [10], p. 281). Be E a real d × d matrix with 0 < a1 < . . . < ap
denoting the real parts of the eigenvalues of E, and let q = trace(E). Let ψ : Rd → [0,∞)
be a continuous, ET -homogeneous function such that ψ(x) 6= 0 for x 6= 0. Then for any
0 < α ≤ 2 the random field

Xψ(x) = Re

∫
Rd

(
ei<x,ξ> − 1

)
ψ(ξ)−H−q/α Wα(dξ), x ∈ Rd (2.4)

exists and is stochastically continuous if and only if H ∈ (0, a1). It is operator-scaling
and has stationary increments.

Definition 2.9. The representation (2.4) of the OSSRF {Xψ(x)}x∈Rd in Theorem 2.8 is
called harmonizable representation.

Theorem 2.10. (Theorem 3.1 and Corollary 3.2 in [1])
For 0 < α ≤ 2 be Zα(dy) an independently scattered, symmetric α-stable random measure
on Rd with Lebesgue control measure λd. Be E a real d×d matrix with 0 < a1 < . . . < ap
denoting the real parts of the eigenvalues of E, and let q = trace(E). Be β > 0. Let ϕ :
Rd → [0,∞) be an E-homogeneous, (β,E)-admissible function. Then for any 0 < α ≤ 2
and any 0 < H < β the random field

Xϕ(x) =

∫
Rd

(
ϕ(x− y)H−q/α − ϕ(−y)H−q/α

)
Zα(dy), x ∈ Rd (2.5)

exists and is stochastically continuous. It is operator-scaling and has stationary incre-
ments.

Definition 2.11. The representation (2.5) of the OSSRF {Xϕ(x)}x∈Rd in Theorem 2.10
is called moving average representation.

7

Chapter 2 Definition of OSSRFs

8

Chapter 3

Approximation of OSSRFs in
harmonizable representation

3.1 Approximation

Be Xψ an OSSRF in harmonizable representation on the Rd. In order to simulate this
random field numerically, the integral which occurs in its definition (see (2.4)) has to be
approximated by a finite sum. This approximation is performed in two steps:

(a) Truncation of the domain of integration from Rd to [−A,A]d: The scope of inte-
gration is reduced from the complete space Rd to the finite area [−A,A]d (for a
“large” positive real number A; in this thesis it is assumed that A > 1). Thus,
Xψ(x) is approximated by

XA
ψ (x) = Re

∫
[−A,A]d

(
ei<x,ξ> − 1

)
ψ(ξ)−H−

q
α Wα(dξ). (3.1)

(b) Discretisation: The integral over [−A,A]d is approximated by a finite sum, by
dividing [−A,A]d into (2M)d small hypercubes ∆k1,...,kd of size (length of side)
D := A

M
(note: in this thesis, the d-dimensional vector of indices (k1, . . . , kd)

T

will be written as ~k), and approximating the function
(
ei<x,ξ> − 1

)
ψ(ξ)−H−

q
α on

each of these small hypercubes by a constant value g~k ∈ [0,∞). Thus, XA
ψ (x) is

approximated by the sum

XA,M
ψ (x) = Re

∑
~k∈{−M,...,M−1}d

g~k ·Wα(∆~k) (3.2)

with ∆~k := [k1 ·D, (k1 + 1) ·D)× . . .× [kd ·D, (kd + 1) ·D) for each
~k = (k1, . . . , kd) ∈ {−M, . . . ,M − 1}d

9

Chapter 3 Approximation of OSSRFs in harmonizable representation

In this chapter, two slightly different versions of the discretisation are considered: First,
(g~k)~k∈J is set to

g~k =

{
0, ~k ∈ {−1, 0}d(
ei<x,ξ~k> − 1

)
ψ(ξ~k)−H−

q
α , else

(3.3)

with ξ~k := (k1 ·D, . . . , kd ·D)T . Then it is compared with a discretisation in which the

approximation g~k is set to zero not only for the indices ~k ∈ {−1, 0}d, but for the indices
~k ∈ {−N, . . . , N − 1}d, for an additional integer parameter N > 0, i.e. g~k is defined as

g~k =

{
0, ~k ∈ {−N, . . . , N − 1}d(
ei<x,ξ~k> − 1

)
ψ(ξ~k)−H−

q
α , else

(3.4)

Thereby, the “hole” near the origin, for which the g~k are set to zero, doesn’t have to
shrink proportional to D = A

M
for growing M , but can be kept at about the same size

2B = 2N ·D = 2A · N
M

by choosing N approximately proportional to M (Obviously B
doesn’t change if A and the quotient N

M
are kept constant). The second version of the

discretisation is a generalization of the first one: The first version is equivalent to the
second with parameter N = 1.

3.2 Approximation error due to the truncation

It is desired to estimate the errors of the approximations (XA
ψ (x)−Xψ(x) and XA,M

ψ (x)−
XA
ψ (x)) for a given x ∈ Rd, i.e. to calculate an upper bound for the absolute values of

these differences. Because Xψ(x), XA
ψ (x) and XA,M

ψ (x) are symmetric α-stable (SαS)
random variables, their differences are SαS random variables, too. Therefore, as a mea-
sure of the approximation errors, the scale parameters of their distributions (||XA

ψ (x)−
Xψ(x)||α and ||XA,M

ψ (x)−XA
ψ (x)||α) have to be estimated. According to equation (3.4.4)

in [10] (p. 122), such a norm for an α-stable integral is defined by ||
∫

Rd f(ξ)Wα(dξ)||α =(∫
Rd |f(ξ)|αdξ

)1/α
(this means that ||

∫
Rd f(ξ)Wα(dξ)||αα =

∫
Rd |f(ξ)|αdξ). Therefore, the

scale parameter can be estimated by an estimation of this non-random integral.

Lemma 3.1. The scale parameter of the approximation error due to the truncation can
be bounded by the following integral:

∣∣∣∣Xψ(x)−XA
ψ (x)

∣∣∣∣α
α
≤
∫

Rd\[−A,A]d

∣∣ei<x,ξ> − 1
∣∣α ψ(ξ)−αH−qdξ

10

3.2 Approximation error due to the truncation

Proof.

∣∣∣∣Xψ(x)−XA
ψ (x)

∣∣∣∣α
α

=

∣∣∣∣∣∣∣∣Re

∫
Rd

(
ei<x,ξ> − 1

)
ψ(ξ)−H−

q
α Wα(dξ)

− Re

∫
[−A,A]d

(
ei<x,ξ> − 1

)
ψ(ξ)−H−

q
α Wα(dξ)

∣∣∣∣∣∣∣∣α
α

≤
Re

∣∣∣∣∣∣∣∣∫
Rd\[−A,A]d

(
ei<x,ξ> − 1

)
ψ(ξ)−H−

q
α Wα(dξ)

∣∣∣∣∣∣∣∣α
α

=

∫
Rd\[−A,A]d

∣∣∣(ei<x,ξ> − 1
)
ψ(ξ)−H−

q
α

∣∣∣α dξ
=

∫
Rd\[−A,A]d

∣∣(ei<x,ξ> − 1
)∣∣α ψ(ξ)−αH−q dξ

The error of approximation by truncation of the domain of integration can be estimated
with the help of Lemma 2.1, Proposition 2.2 and Definition 2.3 as follows:

Theorem 3.2. There are positive real numbers C and δ′, which depend on the approx-
imated random field Xψ, (i.e. on the function ψ and on the parameters α and H), but
not on A, so that ∣∣∣∣Xψ(x)−XA

ψ (x)
∣∣∣∣α
α
≤ C · A−

αH
λd

+δ′

and therefore (with C̃ := C1/α and δ′′ = δ′

α
)∣∣∣∣Xψ(x)−XA

ψ (x)
∣∣∣∣
α
≤ C̃ · A−

H
λd

+δ′′
.

This estimation is valid for all dimensions d ≥ 2 and for all ET -homogeneous functions
ψ, even if ψ can’t be represented in the special form of (2.2) (in the more general case -
if ψ is not in this special form - the value of λd in this estimation is the largest real part
of eigenvalues of E).

Proof. According to Lemma 3.1,∣∣∣∣Xψ(x)−XA
ψ (x)

∣∣∣∣α
α
≤
∫

Rd\[−A,A]d

∣∣ei<x,ξ> − 1
∣∣α ψ(ξ)−αH−q dξ.

Using the fact that
∣∣ei<x,ξ> − 1

∣∣ ≤ 2, it follows that

∣∣∣∣Xψ(x)−XA
ψ (x)

∣∣∣∣α
α
≤ 2α

∫
Rd\[−A,A]d

ψ(ξ)−αH−q dξ.

11

Chapter 3 Approximation of OSSRFs in harmonizable representation

In the polar representation depending on ET (see chapter 2), ξ can be represented

uniquely in the form ξ = τ(ξ)E
T
l(ξ). According to Lemma 2.1, there exists a C̃3 > 0 so

that τ(ξ) ≥ C̃3||ξ||1/λd−δ0 if ||ξ||0 ≥ 1. Because all norms on Rd are equivalent, there is a

C̃2 > 0 with ||ξ||0 ≥ C̃2 · ||ξ||∞ for all ξ ∈ Rd, so that

τ(ξ) ≥ C̃3||ξ||1/λd−δ0 ≥ C̃3

(
C̃2 · ||ξ||∞

)1/λd−δ
≥ C̃3

(
C̃2 · A

)1/λd−δ
= C̃4 · A1/λd−δ

if ||ξ||∞ ≥ A and ||ξ||0 ≥ 1. Therefore, if A is sufficiently large, ||ξ||∞ ≥ A⇒ τ(ξ) ≥ g(A)

with g(A) := C̃4·A1/λd−δ. According to Proposition 2.2, there exists a unique finite Radon
measure σ on S0 such that∫

Rd
1Rd\[−A,A]d(ξ)ψ(ξ)−αH−qdξ =

∫ ∞
0

∫
S0

1Rd\[−A,A]d(r
ET θ)ψ(rE

T

θ)−αH−q σ(dθ)rq−1 dr.

The inequality for τ(ξ) implies that ||rET θ||∞ ≥ A ⇒ τ(rE
T
θ) ≥ g(A) and therefore

1Rd\[−A,A]d(r
ET θ) ≤ 1(g(A),∞)

(
τ(rE

T
θ)
)

= 1(g(A),∞)(r). Thus

∣∣∣∣Xψ(x)−XA
ψ (x)

∣∣∣∣α
α
≤ 2α

∫
Rd

1Rd\[−A,A]d(ξ)ψ(ξ)−αH−q dξ

= 2α
∫ ∞

0

∫
S0

1Rd\[−A,A]d(r
ET θ)ψ(rE

T

θ)−αH−q σ(dθ)rq−1 dr

≤ 2α
∫ ∞

0

∫
S0

1(g(A),∞)(r)ψ(rE
T

θ)−αH−q σ(dθ)rq−1 dr

= 2α
∫ ∞
g(A)

∫
S0

(r · ψ(θ))−αH−q σ(dθ)rq−1 dr

= 2α
∫ ∞
g(A)

r−αH−1 ·
∫
S0

ψ(θ)−αH−q σ(dθ) dr

= 2α ·
[

1

−αH
· r−αH

]∞
g(A)

·
∫
S0

ψ(θ)−αH−q σ(dθ)︸ ︷︷ ︸
=: eC1

= 2α · C̃1 ·
1

αH
· g(A)−αH

= 2α · C̃1 ·
1

αH
· C̃−αH4

(
A1/λd−δ

)−αH
= C · A

−αH
λd

+δ′

with δ′ := δαH and C = 2α · C̃1 · 1
αH
· C̃−αH4 .

This estimation has the drawback that it contains unknown constants (C and δ′), so
that it can’t be used to calculate a concrete value for the error. However, it shows that

12

3.2 Approximation error due to the truncation

the error of estimation decreases with growing values of the parameter A, and converges
to zero if A→∞, and it gives an approximate estimate for the rate of convergence.

In a special case, if ψ is a ρ-norm, then an estimation can be found, which only contains
calculable numbers instead of the unknown constants of the previous estimation, and
thereby allows to easily calculate an upper bound for ||Xψ(x)−XA

ψ (x)||αα. This calculation
uses the (d − 1-dimensional) Lebesgue measure of the || · ||∞-unit-sphere, i.e. of {x ∈
Rd : ||x||∞ = 1}. Therefore this integral is first considered in a lemma:

Lemma 3.3. The d− 1-dimensional Lebesgue measure of S∞ := {x ∈ Rd : ||x||∞ = 1}
is ∫

S∞

1 dx = d · 2d. (3.5)

Proof. The set {x ∈ Rd : ||x||∞ ≤ 1} = [−1, 1]d is a d-dimensional hypercube whose
edges have the length 2. Its surface {x ∈ Rd : ||x||∞ = 1} consists of 2d d−1-dimensional
hypercubes whose edges have length 2, too. Each of this d − 1-dimensional hypercubes
has a Lebesgue-measure of 2d−1. Therefore the whole surface {x ∈ Rd : ||x||∞ = 1}
(1-sphere according to the || · ||∞ - norm) has the measure 2d · 2d−1 = d · 2d.

Remark 3.4. In the special cases d = 2 and d = 3, which are particularly relevant for
real data and for simulation, the measure of S∞ is 2 · 22 = 8 if d = 2, and 3 · 23 = 24
if d = 3. This can also be confirmed by a visualisation of this set in these cases: In the
two-dimensional case, S∞ is the perimeter of the square [−1, 1]2 and therefore consists
of four edges of length 2 each, their sum being 8, and in the three-dimensional case, it
is the surface of the cube [−1, 1]3, consisting of six squares with side length 2. Each of
this squares has an area of 4, thus their total sum is 24.

This values of the Lebesgue measure of S∞ are used in the following estimation of the
approximation error in the case of ψ being a norm:

Theorem 3.5. If ψ = || · ||ρ with 1 ≤ ρ (i.e. if in the representation of equation (2.2)
the parameters are choosen as λ1 = . . . = λd = C1 = . . . = Cd = 1, and the vectors
θ1, . . . , θd are the standard unit vectors of the Rd), then

∣∣∣∣Xψ(x)−XA
ψ (x)

∣∣∣∣α
α
≤ 2α+d · d

αH
· A−αH

which implies ∣∣∣∣Xψ(x)−XA
ψ (x)

∣∣∣∣
α
≤ 2 ·

(
2d · d
αH

) 1
α

· A−H .

13

Chapter 3 Approximation of OSSRFs in harmonizable representation

Proof. According to Lemma 3.1,∣∣∣∣Xψ(x)−XA
ψ (x)

∣∣∣∣α
α
≤
∫

Rd\[−A,A]d

∣∣ei<x,ξ> − 1
∣∣α ψ(ξ)−αH−qdξ

which implies for ψ = || · ||ρ (and q = λ1 + . . .+ λd = 1 + . . .+ 1 = d):∣∣∣∣Xψ(x)−XA
ψ (x)

∣∣∣∣α
α
≤
∫

Rd\[−A,A]d

∣∣ei<x,ξ> − 1
∣∣α ||ξ||−αH−dρ dξ

This integral is estimated as follows:∫
Rd\[−A,A]d

∣∣ei<x,ξ> − 1
∣∣α︸ ︷︷ ︸

≤2α

||ξ||−αH−dρ dξ

≤ 2α
∫

Rd\[−A,A]d
||ξ||−αH−dρ dξ

≤ 2α
∫

Rd\[−A,A]d
||ξ||−αH−d∞ dξ

= 2α
∫ ∞
A

∫
S∞

||r · ζ||−αH−d∞ dζ · rd−1 dr

= 2α
∫ ∞
A

∫
S∞

1 dζ · r−αH−d · rd−1 dr

= 2α ·
∫
S∞

1 dζ ·
∫ ∞
A

r−αH−1 dr

≤
L.3.3

2α · d · 2d ·
[

1

−αH
· r−αH

]∞
A

=
2α+d · d
αH

· A−αH .

Corollary 3.6. Particularly, if d = 2 then ||Xψ(x)−XA
ψ (x)||αα ≤ 8·2α

αH
· A−αH

and if d = 3 then ||Xψ(x)−XA
ψ (x)||αα ≤ 24·2α

αH
· A−αH .

Remark 3.7. As the exponent of A is negative (in Theorem 3.5), the estimated error of
truncation converges to zero for A → ∞. For any ε > 0, a value for A can easily be

found so that ||Xψ(x)−XA
ψ (x)||αα ≤ ε: Be A :=

(
αH

2α+d·d · ε
)−1/αH

. Then

∣∣∣∣Xψ(x)−XA
ψ (x)

∣∣∣∣α
α
≤ 2α+d · d

αH
· A−αH =

2α+d · d
αH

·

((
αH

2α+d · d
· ε
)− 1

αH

)−αH
= ε.

14

3.2 Approximation error due to the truncation

Not only in the special case of a norm, but also in the general case of an ET -homogeneous
function ψ in the representation of equation (2.2), an estimation of the error of approx-
imation can be found without using the inequalities of Lemma 2.1 or Definition 2.5. Be
the ET -homogeneous function ψ defined as in equation (2.2), i.e.

ψ(x) =

(
d∑

k=1

Ck |< x, θk >|ρ/λk
)1/ρ

with linear independent vectors θ1, . . . , θd ∈ Rd. Be assumed that 0 < λ1 ≤ . . . ≤ λd
(this is no limitation, as the λi have to be positive anyway, and the indices can be chosen
according to the ordering of the λi), and that A > 1.

Without limitation of the possible functions ψ, we may assume that the vectors θk,
1 ≤ k ≤ d in this representation of ψ are of length 1 (i.e. ||θk||2 = 1), as we show in the
following lemma:

Lemma 3.8. If not ||θk||2 = 1 for all 1 ≤ k ≤ d, then ψ can be transformed in order to
have this property, i.e. ψ can always be represented in such a form, by choosing C1, . . . , Cd
accordingly. Therefore it can be assumed that ||θk||2 = 1 for all 1 ≤ k ≤ d.

Proof. Be θ̃k := θk
||θk||2

, so that θk = ||θk||2 · θ̃k and ||θ̃k||2 = 1. Then

ψ(x) =

(
d∑

k=1

Ck |< x, θk >|ρ/λk
)1/ρ

=

(
d∑

k=1

Ck

∣∣∣< x, ||θk||2 · θ̃k >
∣∣∣ρ/λk)1/ρ

=

(
d∑

k=1

Ck||θk||ρ/λk2 ·
∣∣∣< x, θ̃k >

∣∣∣ρ/λk)1/ρ

=

(
d∑

k=1

C̃k ·
∣∣∣< x, θ̃k >

∣∣∣ρ/λk)1/ρ

with C̃k := Ck||θk||ρ/λk2 , and ||θ̃k||2 = 1 for all k ∈ {1, . . . , d}.

Before estimating an upper bound for the approximation error, we estimate a lower
bound for the values of the function ψ (Since now, be Cmin := min{C1, . . . , Cd} and
Cmax := max{C1, . . . , Cd}).

15

Chapter 3 Approximation of OSSRFs in harmonizable representation

Lemma 3.9. Be Cmin := min{C1, . . . , Cd}, Cmax := max{C1, . . . , Cd}
and θξ := ξ

||ξ||2 ∈ S2 := {ξ ∈ Rd : ||ξ||2 = 1}. Then

(a) If ||ξ||2 ≥ 1, then ψ(ξ) ≥ C
1/ρ
min · ||ξ||

1/λd
2 ·

(∑d
k=1 |< θξ, θk >|ρ/λ1

)1/ρ

.

(b) If ||ξ||2 ≤ 1, then ψ(ξ) ≥ C
1/ρ
min · ||ξ||

1/λ1

2 ·
(∑d

k=1 |< θξ, θk >|ρ/λ1

)1/ρ

.

(Remark: The only difference between the two cases is in the exponent of ||ξ||2.)

Proof. From the assumption λ1 ≤ . . . ≤ λd follows ρ
λ1
≥ ρ

λk
≥ ρ

λd
for all 1 ≤ k ≤ d, and

therefore aρ/λk ≥ aρ/λ1 for any 0 ≤ a ≤ 1, and bρ/λk ≥ bρ/λd for b ≥ 1.

If ||ξ||2 ≥ 1, then

ψ(ξ) =

(
d∑

k=1

Ck |< ξ, θk >|ρ/λk
)1/ρ

≥

(
Cmin

d∑
k=1

|< ξ, θk >|ρ/λk
)1/ρ

= C
1/ρ
min

(
d∑

k=1

|< θξ · ||ξ||2, θk >|ρ/λk
)1/ρ

= C
1/ρ
min

(
d∑

k=1

||ξ||ρ/λk2 · |< θξ, θk >|ρ/λk
)1/ρ

≥ C
1/ρ
min

(
d∑

k=1

||ξ||ρ/λd2 · |< θξ, θk >|ρ/λ1

)1/ρ

= C
1/ρ
min · ||ξ||

1/λd
2 ·

(
d∑

k=1

|< θξ, θk >|ρ/λ1

)1/ρ

.

If ||ξ||2 ≤ 1, then ψ(ξ) can be estimated analogously:

ψ(ξ) ≥ C
1/ρ
min

(
d∑

k=1

||ξ||ρ/λk2 · |< θξ, θk >|ρ/λk
)1/ρ

≥ C
1/ρ
min

(
d∑

k=1

||ξ||ρ/λ1

2 · |< θξ, θk >|ρ/λ1

)1/ρ

= C
1/ρ
min · ||ξ||

1/λ1

2 ·

(
d∑

k=1

|< θξ, θk >|ρ/λ1

)1/ρ

.

16

3.2 Approximation error due to the truncation

If ||ξ||∞ ≥ A, then the first case is relevant, because ||ξ||2 ≥ ||ξ||∞ ≥ A ≥ 1.

Using these lemmas, the error of truncation can be estimated as follows:

Theorem 3.10. Be the ET -homogeneous function ψ defined as in equation (2.2), i.e.

ψ(x) =

(
d∑

k=1

Ck |< x, θk >|
ρ
λk

) 1
ρ

with linear independent vectors θ1, . . . , θd ∈ Rd. Be assumed that 0 < λ1 ≤ . . . ≤ λd
(this is no limitation, as the λi have to be positive anyway, and the indices can be chosen
according to the ordering of the λi), that A > 1 (which we may assume as we are only
interested in error estimates for large values of A), and that ||θk||2 = 1, 1 ≤ k ≤ d
(compare Lemma 3.8). Then∣∣∣∣Xψ(x)−XA

ψ (x)
∣∣∣∣α
α
≤ C̃ · A

−αH−q+dλd
λd

with

C̃ := 2α · C
−αH−q

ρ

min · Ĩ · λd
αH + q − dλd

if dλd − q < αH (using the notation Ĩ :=
∫
S2

(∑d
k=1 |< θξ, θk >|−

ρ
λ1

)−Hα−q
ρ

dθξ with

S2 := {ξ ∈ Rd : ||ξ||2 = 1}).

Proof. According to Lemma 3.1,∣∣∣∣Xψ(x)−XA
ψ (x)

∣∣∣∣α
α
≤
∫

Rd\[−A,A]d

∣∣ei<x,ξ> − 1
∣∣α ψ(ξ)−αH−q dξ

which is not more than∫
Rd\[−A,A]d

∣∣ei<x,ξ> − 1
∣∣α ψ(ξ)−αH−q dξ

≤2α ·
∫

Rd\[−A,A]d
ψ(ξ)−αH−q dξ

≤2α ·
∫

Rd\[−A,A]d

C 1
ρ

min · ||ξ||
1
λd
2 ·

(
d∑

k=1

|< θξ, θk >|
ρ
λ1

) 1
ρ

−αH−q dξ
≤2α · C

−αH−q
ρ

min ·
∫
{ξ∈Rd:||ξ||2≥A}

||ξ||−αH−qλd
2 ·

(
d∑

k=1

|< θξ, θk >|
ρ
λ1

)−αH−q
ρ

 dξ

17

Chapter 3 Approximation of OSSRFs in harmonizable representation

=2α · C
−αH−q

ρ

min ·
∫ ∞
A

∫
S2

r
−αH−q
λd ·

(
d∑

k=1

|< θξ, θk >|
ρ
λ1

)−αH−q
ρ

dθξ · rd−1 dr

=2α · C
−αH−q

ρ

min ·
∫ ∞
A

r
−αH−q
λd

+d−1
dr ·

∫
S2

(
d∑

k=1

|< θξ, θk >|
ρ
λ1

)−αH−q
ρ

dθξ︸ ︷︷ ︸
:=Ĩ

=2α · C
−αH−q

ρ

min · λd
−αH − q + dλd

[
r
−αH−q+dλd

λd

]∞
A

· Ĩ

=2α · C
−αH−q

ρ

min · λd
−αH − q + dλd

·
(
−A

−αH−q+dλd
λd

)
· Ĩ

=2α · C
−αH−q

ρ

min · Ĩ · λd
αH + q − dλd

· A
−αH−q+dλd

λd

if the exponent −αH−q+dλd
λd

is negative, i.e. if −αH − q + dλd < 0⇔ dλd − q < αH.

Remark 3.11. Because the exponent of A is assumed to be negative, the error estimate
converges to zero for A→∞.

Corollary 3.12. If all eigenvalues of the matrix E are equal, i.e. λ1 = . . . = λd, then
q = dλ1, and the term of the estimation is reduced to∣∣∣∣Xψ(x)−XA

ψ (x)
∣∣∣∣α
α
≤ 2α · C

−αH−dλ1
ρ

min · Ĩ · λ1

αH
· A

−αH
λ1 .

The integral Ĩ =
∫
S2

(∑d
k=1 |< θξ, θk >|

ρ
λ1

)−αH−q
ρ

dθξ is dependent only on the param-

eters of the approximated random field X (like H and the parameters of the function
ψ), but independent of the approximation parameter A. As no estimation in a simpler
form was found for if d ≥ 3, it has to be approximated numerically in each concrete case
(which can be done in a sufficient precision on a modern computer within a fraction of a
second). For the case d = 2, the integral can also be estimated as follows (however, the
numerical approximation of the integral gives a much better result also in this case):

Corollary 3.13. In the two-dimensional case (if d = 2), the Integral Ĩ can be estimated

by Ĩ ≤ 2π · 2
αH+q
λ1 · (1− | < θ1, θ2 > |2)

−αH−q
2λ1 , so that the inequality

||Xψ(x)−XA
ψ (x)||αα

≤C
−αH−q

ρ

min · 2
αH+q
λ1 ·

(
1− | < θ1, θ2 > |2

)−αH−q
2λ1 · 2α · 2π · λ2

αH + λ1 − λ2

A
αH−λ1+λ2

λ2

follows (provided that the exponent of A is negative).

18

3.2 Approximation error due to the truncation

Proof. Be α1 the angle between the vectors θξ and θ1, α2 the angle between the vectors
θξ and θ2, and α12 the angle between θ1 and θ2. Then (using the fact that ||θ1||2 =
||θ2||2 = ||θξ||2 = 1) it follows that

| < θξ, θ1 > | = | cos(α1)|, | < θξ, θ2 > | = | cos(α2)|, | < θ1, θ2 > | = | cos(α12)|

Then (
|< θξ, θ1 >|ρ/λ1 + |< θξ, θ2 >|ρ/λ1

)1/ρ

≥
(

max{|< θξ, θ1 >|ρ/λ1 , |< θξ, θ2 >|ρ/λ1}
)1/ρ

=
(

(max{|< θξ, θ1 >| , |< θξ, θ2 >|})ρ/λ1

)1/ρ

= (max{|cos(α1)| , |cos(α2)|})1/λ1

= (max{|cos(α1)| , |cos(α1 + α12)|})1/λ1

≥min
β∈R

{
(max{|cos(β)| , |cos(β + α12)|})1/λ1

}
= min

β∈R

{
(max{|cos(β − π/2)| , |cos(β + α12 − π/2)|})1/λ1

}
= min

β∈R

{
(max{|sin(β)| , |sin(β + α12)|})1/λ1

}
= (max{|sin(−α12/2)| , |sin(α12/2)|})1/λ1

=
∣∣∣sin(α12

2

)∣∣∣ 1
λ1 ≥

(
| sin(α12)|

2

) 1
λ1

= 2
− 1
λ1 | sin(α12)|

1
λ1

=2
− 1
λ1 ·
(√

1− cos2(α12)
) 1
λ1 = 2

− 1
λ1 ·
(
1− | < θ1, θ2 > |2

) 1
2λ1

which implies

Ĩ =

∫
S2

(
|< θξ, θ1 >|

ρ
λ1 + |< θξ, θ2 >|

ρ
λ1

)−αH−q
ρ

dθξ

≤
∫
S2

(
2
− 1
λ1 ·
(
1− | < θ1, θ2 > |2

) 1
2λ1

)−αH−q
dθξ

≤ 2
αH+q
λ1 ·

(
1− | < θ1, θ2 > |2

)−αH−q
2λ1 ·

∫
S2

1 dθξ

≤ 2
αH+q
λ1 ·

(
1− | < θ1, θ2 > |2

)−αH−q
2λ1 · 2π

19

Chapter 3 Approximation of OSSRFs in harmonizable representation

For a numerical approximation of the integral Ĩ, be ν = ρ
λ1

and γ = −Hα−q
ρ

. Then

Ĩ =

∫
S2

(|< θξ, θ1 >|ν + |< θξ, θ2 >|ν)γ dθξ

which can be approximated (with n support points) by the sum

S̃n :=
2π

n
·

n∑
k=1

(∣∣< (cos(ζk), sin(ζk))
T , θ1 >

∣∣ν +
∣∣< (cos(ζk), sin(ζk))

T , θ2 >
∣∣ν)γ

with ζk := 2π
n
· k.

Table 3.1 shows approximated values of Ĩ for the parameter values ν = 1.0 and γ = −3.0.
One of the vectors which are parameters to the integral is set to θ1 = (1, 0)T , and the
other is θ2 = (cos(v2), sin(v2))T for different values of v2 (v2 ∈ { 1

20
π, . . . , 19

20
π}). Thereby,

Î is the estimation of Ĩ according to Corollary 3.13, while S̃4k and S̃60k are the numerical
approximations of Ĩ with 4000 and 60000 points of support.

From this table, several conclusions can be drawn (for the used sample of parameter
values):

(a) The difference of the approximations S̃4k and S̃60k are relatively small. Thus it may
be assumed that only a few thousand (e.g. 4000) points of support are necessary
to obtain a sufficient approximation of the integral for most purposes.

(b) The estimation of Ĩ in Corollary 3.13 overestimates the integral by a large factor.

(c) The values of S̃60k · sin(v2)2 didn’t show large differences for different values of
v2. They were all in the interval [3.0, 3.25]. Therefore, the term 3.25 · sin(v2)−2

seems to be a relatively good approximation for Ĩ with the parameters ν = 1.0
and γ = −3.0. A comparison with similar tables of numerical approximations for
other values of γ and ν suggests that, generally, Ĩ may be estimated quite well by
Ĩ ≤ Cγ,ν · sin(v2)γν+1, where Cγ,ν is a number which depends on γ and ν (but not
on v2).

20

3.2 Approximation error due to the truncation

v2 Î S̃4k S̃60k S̃60k · sin(v2)2

0.05 · π 13130.2360 123.2474 123.2392 3.0159
0.10 · π 1703.4240 31.9048 31.9043 3.0466
0.15 · π 537.1920 14.9577 14.9576 3.0829
0.20 · π 247.5220 9.0309 9.0309 3.1201
0.25 · π 142.1723 6.3106 6.3106 3.1553
0.30 · π 94.9286 4.8684 4.8684 3.1864
0.35 · π 71.0603 4.0458 4.0458 3.2120
0.40 · π 58.4320 3.5720 3.5720 3.2309
0.45 · π 52.1687 3.3239 3.3239 3.2425
0.50 · π 50.2655 3.2465 3.2465 3.2465
0.55 · π 52.1687 3.3239 3.3239 3.2425
0.60 · π 58.4320 3.5720 3.5720 3.2309
0.65 · π 71.0603 4.0458 4.0458 3.2120
0.70 · π 94.9286 4.8684 4.8684 3.1864
0.75 · π 142.1723 6.3106 6.3106 3.1553
0.80 · π 247.5220 9.0309 9.0309 3.1201
0.85 · π 537.1920 14.9577 14.9576 3.0829
0.90 · π 1703.4240 31.9048 31.9043 3.0466
0.95 · π 13130.2360 123.2474 123.2392 3.0159

Table 3.1: Estimation and numerical approximation of Ĩ with ν = 1.0 and γ = −3.0,
where v2 is the angle between the vectors θ1 and θ2. Î is the estimation of Ĩ
according to Corollary 3.13, while S̃4k and S̃60k are the numerical approxima-
tions of Ĩ with 4000 and 60000 points of support.

21

Chapter 3 Approximation of OSSRFs in harmonizable representation

3.3 Approximation error due to the discretisation

3.3.1 Approximation error if ψ is a ρ-norm

First version of the discretisation

In the first step of approximation, the random field Xψ(x) was approximated by

XA
ψ (x) = Re

∫
[−A,A]d

(
ei<x,ξ> − 1

)
ψ(ξ)−H−

q
α Wα(dξ). (3.6)

Now, this is approximated by the sum

XA,M
ψ (x) = Re

∑
~k∈J

(
ei<x,ξ~k> − 1

)
ψ(ξ~k)−H−

q
α Wα(∆~k) (3.7)

with J := {−M, . . . ,M − 1}d\{−1, 0}d, ξ~k := D · ~k = (D · k1, . . . , D · kd)T and

∆~k := [k1 ·D, (k1 + 1) ·D) × . . . × [kd ·D, (kd + 1) ·D) for each ~k = (k1, . . . , kd)
T ∈ J .

Written a bit different, this means that

XA,M
ψ (x) = Re

∑
~k∈{−M,...,M−1}d

g~k Wα(∆~k) (3.8)

with

g~k =

{
0, ~k ∈ {−1, 0}d(
ei<x,ξ~k> − 1

)
ψ(ξ~k)−H−

q
α , else

. (3.9)

Like the error of approximation which is caused by the truncation of the domain of
integration, the error of approximation due to the discretisation of the integrand function
(XA

ψ (x) − XA,M
ψ (x)) is a symmetric α-stable random variable, too. In this section, an

estimation of the scale parameter ||XA
ψ (x)−XA,M

ψ (x)||α will be calculated:

Lemma 3.14. For XA,M
ψ (x) defined as in equation (3.8), the scale parameter of the

error random variable can be estimated by

||XA
ψ (x)−XA,M

ψ (x)||αα ≤
∑

~k∈{−M,...,M−1}d

∫
∆~k

∣∣∣(ei<x,ξ> − 1
)
ψ(ξ)−H−

q
α − g~k

∣∣∣α dξ (3.10)

22

3.3 Approximation error due to the discretisation

Proof.

||XA
ψ (x)−XA,M

ψ (x)||αα

=

∣∣∣∣∣∣
∣∣∣∣∣∣Re

∫
[−A,A]d

(
ei<x,ξ> − 1

)
ψ(ξ)−H−

q
α Wα(dξ)− Re

∑
~k∈{−M,...,M−1}d

g~k Wα(∆~k)

∣∣∣∣∣∣
∣∣∣∣∣∣
α

α

≤
Re

∣∣∣∣∣∣
∣∣∣∣∣∣
∫

[−A,A]d

∑
~k∈{−M,...,M−1}d

1∆~k
(ξ)
(
ei<x,ξ> − 1

)
ψ(ξ)−H−

q
α Wα(dξ)

−
∫

[−A,A]d

∑
~k∈{−M,...,M−1}d

1∆~k
(ξ)g~k Wα(dξ)

∣∣∣∣∣∣
∣∣∣∣∣∣
α

α

=

∣∣∣∣∣∣
∣∣∣∣∣∣
∫

[−A,A]d

∑
~k∈{−M,...,M−1}d

1∆~k
(ξ)
((
ei<x,ξ> − 1

)
ψ(ξ)−H−

q
α − g~k

)
Wα(dξ)

∣∣∣∣∣∣
∣∣∣∣∣∣
α

α

=

∫
[−A,A]d

∣∣∣∣∣∣
∑

~k∈{−M,...,M−1}d

1∆~k
(ξ)
((
ei<x,ξ> − 1

)
ψ(ξ)−H−

q
α − g~k

)∣∣∣∣∣∣
α

dξ

=

∫
[−A,A]d

∑
~k∈{−M,...,M−1}d

1∆~k
(ξ)
∣∣∣(ei<x,ξ> − 1

)
ψ(ξ)−H−

q
α − g~k

∣∣∣α dξ
=

∑
~k∈{−M,...,M−1}d

∫
∆~k

∣∣∣(ei<x,ξ> − 1
)
ψ(ξ)−H−

q
α − g~k

∣∣∣α dξ
Lemma 3.15. With g~k being defined according to (3.9), the term on the right side of
(3.10) in the previous lemma can be estimated further by

∑
~k∈{−M,...,M−1}d

∫
∆~k

∣∣∣(ei<x,ξ> − 1
)
ψ(ξ)−H−

q
α − g~k

∣∣∣α dξ ≤ I0 + I1 + I2 (3.11)

with

I0 = ||x||α2 ·
∫

[−D,D]d
||ξ||α2 · ψ(ξ)−αH−qdξ

I1 = 2 · ||x||α2 ·Dαdα/2 ·
∫

[−A,A]d\[−D,D]d
ψ(ξ)−αH−qdξ

I2 = 21+α ·
∑
~k∈J

∫
∆~k

∣∣∣ψ(ξ)−H−
q
α − ψ(ξ~k)−H−

q
α

∣∣∣α dξ

23

Chapter 3 Approximation of OSSRFs in harmonizable representation

Proof. Using the definition of g~k in (3.9), the right side of (3.10) is equal to∑
~k∈{−M,...,M−1}d

∫
∆~k

∣∣∣(ei<x,ξ> − 1
)
ψ(ξ)−H−

q
α − g~k

∣∣∣α dξ
=

∑
~k∈{−M,...,M−1}d

∫
∆~k

∣∣∣(ei<x,ξ> − 1
)
ψ(ξ)−H−

q
α −

(
ei<x,ξ~k> − 1

)
ψ(ξ~k)−H−

q
α · 1J(~k)

∣∣∣α dξ
=

∑
~k∈{−1,0}d

∫
∆~k

∣∣∣(ei<x,ξ> − 1
)
ψ(ξ)−H−

q
α

∣∣∣α dξ
+
∑
~k∈J

∫
∆~k

∣∣∣(ei<x,ξ> − 1
)
ψ(ξ)−H−

q
α −

(
ei<x,ξ~k> − 1

)
ψ(ξ~k)−H−

q
α

∣∣∣α dξ

The absolute value in the second line can be transformed and estimated with the triangle
inequality as follows:∣∣∣(ei<x,ξ> − 1

)
ψ(ξ)−H−

q
α −

(
ei<x,ξ~k> − 1

)
ψ(ξ~k)−H−

q
α

∣∣∣
=
∣∣∣(ei<x,ξ> − 1

)
ψ(ξ)−H−

q
α −

(
ei<x,ξ~k> − 1

)
ψ(ξ)−H−

q
α

+
(
ei<x,ξ~k> − 1

)
ψ(ξ)−H−

q
α −

(
ei<x,ξ~k> − 1

)
ψ(ξ~k)−H−

q
α

∣∣∣
≤
∣∣∣(ei<x,ξ> − 1

)
ψ(ξ)−H−

q
α −

(
ei<x,ξ~k> − 1

)
ψ(ξ)−H−

q
α

∣∣∣
+
∣∣∣(ei<x,ξ~k> − 1

)
ψ(ξ)−H−

q
α −

(
ei<x,ξ~k> − 1

)
ψ(ξ~k)−H−

q
α

∣∣∣
=
∣∣∣(ei<x,ξ> − ei<x,ξ~k>)ψ(ξ)−H−

q
α

∣∣∣+
∣∣∣(ei<x,ξ~k> − 1

) (
ψ(ξ)−H−

q
α − ψ(ξ~k)−H−

q
α

)∣∣∣
As α ∈ (0, 2], this implies:∣∣∣(ei<x,ξ> − 1

)
ψ(ξ)−H−

q
α −

(
ei<x,ξ~k> − 1

)
ψ(ξ~k)−H−

q
α

∣∣∣α
≤
(∣∣∣(ei<x,ξ> − ei<x,ξ~k>)ψ(ξ)−H−

q
α

∣∣∣+
∣∣∣(ei<x,ξ~k> − 1

) (
ψ(ξ)−H−

q
α − ψ(ξ~k)−H−

q
α

)∣∣∣)α
≤2 ·

(∣∣∣(ei<x,ξ> − ei<x,ξ~k>)ψ(ξ)−H−
q
α

∣∣∣α +
∣∣∣(ei<x,ξ~k> − 1

) (
ψ(ξ)−H−

q
α − ψ(ξ~k)−H−

q
α

)∣∣∣α)
=2 ·

∣∣ei<x,ξ> − ei<x,ξ~k>∣∣α ψ(ξ)−αH−q + 2 ·
∣∣ei<x,ξ~k> − 1

∣∣α ∣∣∣ψ(ξ)−H−
q
α − ψ(ξ~k)−H−

q
α

∣∣∣α

24

3.3 Approximation error due to the discretisation

Therefore ∑
~k∈{−M,...,M−1}d

∫
∆~k

∣∣∣(ei<x,ξ> − 1
)
ψ(ξ)−H−

q
α − g~k

∣∣∣α dξ
=

∑
~k∈{−1,0}d

∫
∆~k

∣∣∣(ei<x,ξ> − 1
)
ψ(ξ)−H−

q
α

∣∣∣α dξ
+
∑
~k∈J

∫
∆~k

∣∣∣(ei<x,ξ> − 1
)
ψ(ξ)−H−

q
α −

(
ei<x,ξ~k> − 1

)
ψ(ξ~k)−H−

q
α

∣∣∣α dξ
≤
∫

[−D,D]d

∣∣ei<x,ξ> − 1
∣∣α ψ(ξ)−αH−q dξ

+ 2 ·
∑
~k∈J

∫
∆~k

∣∣ei<x,ξ> − ei<x,ξ~k>∣∣α ψ(ξ)−αH−q dξ

+ 2 ·
∑
~k∈J

∫
∆~k

∣∣ei<x,ξ~k> − 1
∣∣α ∣∣∣ψ(ξ)−H−

q
α − ψ(ξ~k)−H−

q
α

∣∣∣α dξ
Because |eit − 1| ≤ 2 and |eit − 1| ≤ |t| for all t ∈ R, the inequalities

|ei<x,ξ> − 1| ≤ | < x, ξ > | ≤ ||x||2 · ||ξ||2,
|ei<x,ξ> − ei<x,ξ~k>| = |ei<x,ξ−ξ~k> − 1| ≤ ||x||2 · ||ξ − ξ~k||2 ≤ ||x||2 ·D

√
d,

|ei<x,ξ~k> − 1| ≤ 2

hold, so that ∑
~k∈{−M,...,M−1}d

∫
∆~k

∣∣∣(ei<x,ξ> − 1
)
ψ(ξ)−H−

q
α − g~k

∣∣∣α dξ
≤||x||α2 ·

∫
[−D,D]d

||ξ||α2 · ψ(ξ)−αH−qdξ

+ 2 · ||x||α2 ·Dαd
α
2 ·
∑
~k∈J

∫
∆~k

ψ(ξ)−αH−qdξ

+ 2 · 2α ·
∑
~k∈J

∫
∆~k

∣∣∣ψ(ξ)−H−
q
α − ψ(ξ~k)−H−

q
α

∣∣∣α dξ
Because the ∆~k are disjoint, and

∑
~k∈J ∆~k = [−A,A]d\[−D,D]d, the second term can

be written also as

2 · ||x||α2 ·Dαd
α
2 ·
∫

[−A,A]d\[−D,D]d
ψ(ξ)−αH−qdξ

25

Chapter 3 Approximation of OSSRFs in harmonizable representation

Theorem 3.16. Be ψ the ρ-norm (in the representation (2.2) of ψ, the parameters are
chosen as C1 = . . . = Cd = 1, λ1 = . . . = λd = 1, and the vectors θ1, . . . , θd form the
standard base of the Rd). Be also assumed that 0 < H < 1. Then the approximation
error due to the discretisation can be estimated by

||XA
ψ (x)−XA,M

ψ (x)||αα ≤
(
C̃0,x + C̃1,x

)
·Dα(1−H) + C̃2 ·D−αH

with

C̃0,x = ||x||α2 ·
d1+α

2 · 2d

α(1−H)

C̃1,x = ||x||α2 ·
d1+α

2 · 2d+1

αH

C̃2 = 2α+2 · d1+α ·
(
H +

d

α

)α
·
(

4d−1 +
3d−1

α(1 +H)

)

Proof. Lemma 3.15 implies for this specific choice of ψ, that∑
~k∈{−M,...,M−1}d

∫
∆~k

∣∣∣(ei<x,ξ> − 1
)
ψ(ξ)−H−

q
α − g~k

∣∣∣α dξ ≤ I0 + I1 + I2

with

I0 = ||x||α2 ·
∫

[−D,D]d
||ξ||α2 · ||ξ||−αH−dρ dξ

I1 = 2 · ||x||α2 ·Dαd
α
2 ·
∫

[−A,A]d\[−D,D]d
||ξ||−αH−dρ dξ

I2 = 21+α ·
∑
~k∈J

∫
∆~k

∣∣∣||ξ||−H− d
α

ρ − ||ξ~k||
−H− d

α
ρ

∣∣∣α dξ
(the identity q = d follows from the choice of the parameters λ1, . . . , λd).

26

3.3 Approximation error due to the discretisation

The term I0 can be estimated as follows (under the assumption 0 < H < 1):

I0 = ||x||α2 ·
∫

[−D,D]d
||ξ||α2 · ||ξ||−αH−dρ dξ

≤ ||x||α2 ·
∫

[−D,D]d

(√
d · ||ξ||∞

)α
||ξ||−αH−d∞ dξ

= ||x||α2 · d
α
2 ·
∫

[−D,D]d
||ξ||α−αH−d∞ dξ

= ||x||α2 · d
α
2 ·
∫ D

0

∫
S∞

||r · ζ||α−αH−d∞ dζ · rd−1 dr

= ||x||α2 · d
α
2 ·
∫ D

0

∫
S∞

1 dζ · rα−αH−d+d−1 dr

=
L.3.3
||x||α2 · d

α
2 · d · 2d ·

∫ D

0

rα−αH−1 dr

= ||x||α2 · d1+α
2 · 2d ·

[
1

α− αH
· rα−αH

]D
0

= ||x||α2 ·
d1+α

2 · 2d

α(1−H)
·Dα(1−H) = C̃0,x ·Dα(1−H)

with C̃0,x := ||x||α2 · d
1+α/2·2d
α(1−H)

.

The term I1 is estimated similarly: The integral is∫
[−A,A]d\[−D,D]d

||ξ||−αH−dρ dξ

≤
∫

[−A,A]d\[−D,D]d
||ξ||−αH−d∞ dξ =

∫ A

D

∫
S∞

||r · ζ||−αH−d∞ dζ · rd−1 dr

=

∫ A

D

∫
S∞

1 dζ · r−αH−d+d−1 dr = d · 2d ·
∫ A

D

r−αH−1 dr

= d · 2d ·
[

1

−αH
· r−αH

]A
D

=
d · 2d

αH

(
D−αH − A−αH

)

27

Chapter 3 Approximation of OSSRFs in harmonizable representation

Therefore

I1 = 2 · ||x||α2 ·Dαd
α
2 ·
∫

[−A,A]d\[−D,D]d
||ξ||−αH−dρ dξ

≤ 2 · ||x||α2 ·Dαd
α
2 · d · 2

d

αH

(
D−αH − A−αH

)
= ||x||α2 ·Dα · d

1+α
2 · 2d+1

αH

(
D−αH − A−αH

)
≤ ||x||α2 ·

d1+α
2 · 2d+1

αH
·Dα−αH

= C̃1,x ·Dα(1−H)

with C̃1,x := ||x||α2 · d
1+α/2·2d+1

αH
.

Finally, the term I2 = 21+α ·
∑

~k∈J
∫

∆~k

∣∣∣||ξ||−H− d
α

ρ − ||ξ~k||
−H− d

α
ρ

∣∣∣α dξ is estimated.

The Mean Value Theorem implies for a, b > 0 that∣∣∣a−H− d
α − b−H−

d
α

∣∣∣ ≤ |a− b| · ∣∣∣∣−H − d

α

∣∣∣∣ ·m−H− d
α
−1

with a m > 0 which fulfills m−H−
d
α
−1 ≥ max(a−H−

d
α
−1, b−H−

d
α
−1), i.e. m ≤ min(a, b). Be

now
µ~k := inf

ξ∈∆~k

(||ξ||ρ). (3.12)

Then, for all ξ ∈ ∆~k, we have µ
−H− d

α
−1

~k
≥ ||ξ||−H−

d
α
−1

ρ (note that also ξ~k ∈ ∆~k) and it
follows that∣∣∣||ξ||−H− d

α
ρ − ||ξ~k||

−H− d
α

ρ

∣∣∣ ≤ ∣∣||ξ||ρ − ||ξ~k||ρ∣∣ · |−H − d/α| · µ−H− d
α
−1

~k

≤ d ·D · (H + d/α) · µ−H−
d
α
−1

~k

(using the fact that ||ξ||, ||ξ~k|| ∈ ∆~k, ρ ≥ 1⇒
∣∣||ξ||ρ − ||ξ~k||ρ∣∣ ≤ ||ξ − ξ~k||ρ ≤ d ·D).

28

3.3 Approximation error due to the discretisation

With this inequality we obtain

I2 = 21+α ·
∑
~k∈J

∫
∆~k

∣∣∣||ξ||−H− d
α

ρ − ||ξ~k||
−H− d

α
ρ

∣∣∣α dξ
≤ 21+α ·

∑
~k∈J

∫
∆~k

(
d ·D · (H + d/α) · µ−H−

d
α
−1

~k

)α
dξ

= 21+α · dα ·Dα · (H + d/α)α ·
∑
~k∈J

∫
∆~k

µ−αH−d−α~k
dξ

= 21+α · dα ·Dα · (H + d/α)α ·Dd ·
∑
~k∈J

µ−αH−d−α~k

µ~k is defined as µ~k = infξ∈∆~k
(||ξ||ρ), i.e. µ~k = ||ξ̃~k||ρ where ξ̃~k is the corner of ∆~k which

is nearest to the origin. From ∆~k = [k1 ·D, (k1 + 1) ·D) × . . . × [kd ·D, (kd + 1) ·D) it
follows that

ξ̃~k =
(
k̃1 ·D, . . . , k̃d ·D

)T
= D ·

(
k̃1, . . . , k̃d

)T
= D · t(~k) (3.13)

with t(~k) =
(
k̃1, . . . , k̃d

)T
and (for j ∈ {1, . . . , d})

k̃j =

{
kj , kj ≥ 0

kj + 1 , kj < 0
(3.14)

Therefore∑
~k∈J

µ−αH−d−α~k
=
∑
~k∈J

||ξ̃~k||
−αH−d−α
ρ = D−αH−d−α ·

∑
~k∈J

||t(~k)||−αH−d−αρ (3.15)

If the set of index vectors J is divided into 2d parts according to the sign of the com-
ponents of these vectors ~k ∈ J , and two of these sets are compared, e.g. J ′ := {~k ∈ J :

kj ≥ 0, 1 ≤ j ≤ d} = {0, . . . ,M − 1}d\{0}d and J ′′ := {~k ∈ J : kj < 0, 1 ≤ j ≤ d} =

{−M, . . . ,−1}d\{−1}d, it can be shown that the sums of ||t(~k)||−αH−d−αρ on these sets

29

Chapter 3 Approximation of OSSRFs in harmonizable representation

are equal:∑
~k∈J ′′

||t(~k)||−αH−d−αρ =
∑

~k∈{−M,...,−1}d\{−1}d

(
|k̃1|ρ + . . .+ |k̃d|ρ

)−αH−d−α
ρ

=
(3.14)

∑
~k∈{−M,...,−1}d\{−1}d

(|k1 + 1|ρ + . . .+ |kd + 1|ρ)
−αH−d−α

ρ

=
∑

~k∈{−M+1,...,0}d\{0}d

(|k1|ρ + . . .+ |kd|ρ)
−αH−d−α

ρ

=
∑

~k∈{0,...,M−1}d\{0}d

(|k1|ρ + . . .+ |kd|ρ)
−αH−d−α

ρ

=
∑
~k∈J ′

(
|k̃1|ρ + . . .+ |k̃d|ρ

)−αH−d−α
ρ

=
∑
~k∈J ′

||t(~k)||−αH−d−αρ

For other parts of J , this equality can be shown analogously. With these equalities, and
the fact that ∀ k ≥ 0 : k̃ = k ⇒ ∀~k ∈ J ′ : t(~k) = ~k, it follows that∑

~k∈J

||t(~k)||−αH−d−αρ = 2d ·
∑
~k∈J ′

||t(~k)||−αH−d−αρ = 2d ·
∑
~k∈J ′

||~k||−αH−d−αρ (3.16)

Therefore

I2 ≤ 21+α · dα ·Dα · (H + d/α)α ·Dd ·
∑
~k∈J

µ−αH−d−α~k

≤ 21+α · dα ·Dα · (H + d/α)α ·Dd ·D−αH−d−α ·
∑
~k∈J

||t(~k)||−αH−d−αρ

≤ 21+α · dα · (H + d/α)α ·D−αH · 2d ·
∑
~k∈J ′

||~k||−αH−d−αρ

For each m ∈ {1, . . . ,M − 1}, be

J ′m := {~k ∈ J ′ : max
1≤j≤d

(kj) = m} =
d⋃
j=1

{~k ∈ {0, . . . ,m}d : kj = m}.

Then

30

3.3 Approximation error due to the discretisation

(a) The sets J ′m, 1 ≤ m ≤M − 1, are disjoint and their union is
⋃M−1
m=1 J

′
m = J ′.

(b) If ~k ∈ J ′m then ||~k||∞ = m.

(c) The number of elements in the set J ′m can be estimated by

#J ′m ≤
d∑
j=1

#{~k ∈ {0, . . . ,m}d : kj = m} = d ·#{~k ∈ {0, . . . ,m}d : k1 = m}

= d · (m+ 1)d−1.

Using these properties of J ′m, the sum can be estimated as follows:

∑
~k∈J ′

||~k||−αH−d−αρ ≤
∑
~k∈J ′

||~k||−αH−d−α∞ =
(a)

M−1∑
m=1

∑
~k∈J ′m

||~k||−αH−d−α∞

<
(b)

M∑
m=1

∑
~k∈J ′m

m−αH−d−α

≤
(c)

M∑
m=1

d · (m+ 1)d−1m−αH−d−α

≤ d ·

(
2d−1 +

M∑
m=2

(
3

2
m

)d−1

m−αH−d−α

)

≤ d ·

(
2d−1 +

(
3

2

)d−1

·
M∑
m=2

m−αH−α−1

)

≤ d ·

(
2d−1 +

(
3

2

)d−1

·
M∑
m=2

∫ m

m−1

x−αH−α−1dx

)

= d ·

(
2d−1 +

(
3

2

)d−1

·
∫ M

1

x−αH−α−1dx

)

= d ·

(
2d−1 +

(
3

2

)d−1

·
[

1

−αH − α
· x−αH−α

]M
1

)

= d ·

(
2d−1 +

(
3

2

)d−1

· 1

α(1 +H)

(
1−M−α(1+H)

))

31

Chapter 3 Approximation of OSSRFs in harmonizable representation

We obtain as an estimation for I2:

I2 ≤ 2α+d+1 · d1+α · (H + d/α)α ·D−αH ·
(

2d−1 +
(3/2)d−1

α(1 +H)

(
1−M−α(1+H)

))
≤ 2α+2 · d1+α · (H + d/α)α ·D−αH ·

(
4d−1 +

3d−1

α(1 +H)

)
= C̃2 ·D−αH

with C̃2 := 2α+2 · d1+α · (H + d/α)α ·
(

4d−1 + 3d−1

α(1+H)

)
.

From these estimations of I0, I1 and I2, and the lemmas 3.14 and 3.15, we conclude that

||XA
ψ (x)−XA,M

ψ (x)||αα ≤
∑

~k∈{−M,...,M−1}d

∫
∆~k

∣∣∣(ei<x,ξ> − 1
)
ψ(ξ)−H−

q
α − g~k

∣∣∣α dξ
≤ I0 + I1 + I2

≤ C̃0,x ·Dα(1−H) + C̃1,x ·Dα(1−H) + C̃2 ·D−αH

with

C̃0,x = ||x||α2 ·
d1+α/2 · 2d

α(1−H)

C̃1,x = ||x||α2 ·
d1+α/2 · 2d+1

αH

C̃2 = 2α+2 · d1+α · (H + d/α)α ·
(

4d−1 +
3d−1

α(1 +H)

)

Remark 3.17. If expressed using only the parameters A and M (and not D), then this
estimation has the following form:

||XA
ψ (x)−XA,M

ψ (x)||αα ≤ C̃0,A,x ·M−α(1−H) + C̃1,A,x ·M−α(1−H) + C̃2,A ·MαH

with

C̃0,A,x = ||x||α2 ·
d1+α/2 · 2d

α(1−H)
· Aα(1−H)

C̃1,A,x = ||x||α2 ·
d1+α/2 · 2d+1

αH
· Aα(1−H)

C̃2,A = 2α+2 · d1+α · (H + d/α)α ·
(

4d−1 +
3d−1

α(1 +H)

)
· A−αH

32

3.3 Approximation error due to the discretisation

Remark 3.18. The estimation of I2 contains the factor D−αH and thus increases if D is
chosen smaller (or, equivalently, if M is chosen larger, see Remark 3.17), which is not
desired. Obviously, the reason for this undesired asymptotic behaviour is the fact that for
smaller values of D, the “hole” near the origin, which isn’t considered when estimating
I2, also decreases. Thereby, the domain of integration is enlarged in the area where the
integrated function takes its largest values, and thus also the integral increases. This
problem can be avoided by setting ψ to zero not on [−D,D]d, but on an environment
of the origin whose size is independent of D, e.g. on [−B,B]d for a fixed parameter
B > 0. Therefore a corresponding version of the discretisation is also considered in the
following.

Second version of the discretisation

In a variation to the previously presented discretisation of the OSSRF Xψ(x), this OS-
SRF is again approximated by a sum in the form of (3.8), but now with a different
definition of the function g~k:

g~k =

{
0, ~k ∈ {−N, . . . , N − 1}d(
ei<x,ξ~k> − 1

)
ψ(ξ~k)−H−

q
α , else

(3.17)

(with N ∈ N). This can be considered as a generalisation of the previous variant of the
discretisation, because the first version can be obtained by setting N to the value 1.
As an additional parameter, N , is used for the approximation, the discretised random
field is now denoted by XA,M,N

ψ (in contrast to the previously used XA,M
ψ). Thus, the

“truncated” random field

XA
ψ (x) = Re

∫
[−A,A]d

(
ei<x,ξ> − 1

)
ψ(ξ)−H−

q
α Wα(dξ)

is approximated by the sum

XA,M,N
ψ (x) = Re

∑
~k∈JN

(
ei<x,ξ~k> − 1

)
ψ(ξ~k)−H−

q
α Wα(∆~k) (3.18)

with JN := {−M, . . . ,M − 1}d\{−N, . . . , N − 1}d, ξ~k := D · ~k = (Dk1, . . . , Dkd)
T and

∆~k := [k1 ·D, (k1 + 1) ·D)× . . .× [kd ·D, (kd + 1) ·D) for each ~k = (k1, . . . , kd)
T ∈ JN .

(Note that JN is defined different from the set J in the first version of the discretisation).

This can be interpreted as setting ψ(ξ) = 0 not only on [−D,D]d (as in the first version),
but on [−B,B]d with B = N · D = N · A

M
= N

M
· A. Thereby, this environment of the

origin which is not considered in the approximation, can be kept at an almost constant
size if N is chosen approximately proportional to M .

33

Chapter 3 Approximation of OSSRFs in harmonizable representation

Lemma 3.14 is also valid for this version of the discretisation, as it doesn’t use any
information on the definition of the function g~k:

||XA
ψ (x)−XA,M,N

ψ (x)||αα ≤
∑

~k∈{−M,...,M−1}d

∫
∆~k

∣∣∣(ei<x,ξ> − 1
)
ψ(ξ)−H−

q
α − g~k

∣∣∣α dξ
From Lemma 3.15, a similar lemma can be derived for this version of the discretisation:

Lemma 3.19. With g~k being defined according to (3.17), the term on the right side of
(3.10) in Lemma 3.14 can be estimated further by

∑
~k∈{−M,...,M−1}d

∫
∆~k

∣∣∣(ei<x,ξ> − 1
)
ψ(ξ)−H−

q
α − g~k

∣∣∣α dξ ≤ I0 + I1 + I2

with

I0 = ||x||α2 ·
∫

[−B,B]d
||ξ||α2 · ψ(ξ)−αH−qdξ

I1 = 2 · ||x||α2 ·Dαdα/2 ·
∫

[−A,A]d\[−B,B]d
ψ(ξ)−αH−qdξ

I2 = 21+α ·
∑
~k∈JN

∫
∆~k

∣∣∣ψ(ξ)−H−
q
α − ψ(ξ~k)−H−

q
α

∣∣∣α dξ

Proof. The proof of this lemma is analogous to the proof of Lemma 3.15.

The approximation error is estimated again for a ρ-norm as E-homogeneous function ψ
(analogous to Theorem 3.16):

Theorem 3.20. Be ψ the ρ-norm, i.e. the parameters of ψ in the representation (2.2)
are chosen as in Theorem 3.16. Then the approximation error due to the discretisation
is not more than

||XA
ψ (x)−XA,M,N

ψ (x)||αα ≤ C̃0,x ·Bα(1−H) +
(
C̃1,A,B,x + C̃2,A,B

)
·Dα

with

C̃0,x = ||x||α2 ·
d1+α

2 · 2d

α(1−H)

C̃1,A,B,x = ||x||α2 ·
d1+α

2 · 2d+1

αH

(
B−αH − A−αH

)
C̃2,A,B = 2α+2d1+α ·

(
H +

d

α

)α
·
(

4d−1B−αH−α +
3d−1

α(1 +H)

(
B−αH−α − A−αH−α

))

34

3.3 Approximation error due to the discretisation

Proof. The choice of the parameters implies again q = λ1 + . . .+ λd = d. Following the
lemmas 3.14 and 3.19,

||XA
ψ (x)−XA,M,N

ψ (x)||αα ≤
∑

~k∈{−M,...,M−1}d

∫
∆~k

∣∣∣(ei<x,ξ> − 1
)
ψ(ξ)−H−

q
α − g~k

∣∣∣α dξ
≤I0 + I1 + I2

with I0, I1 and I2 being defined as in Lemma 3.19.

The results for I0 and I1 can be calculated analogously to their estimation in Theorem
3.16.

The term

I2 = 21+α ·
∑
~k∈JN

∫
∆~k

∣∣∣||ξ||−H− d
α

ρ − ||ξ~k||
−H− d

α
ρ

∣∣∣α dξ
is estimated as follows:

As already shown in the proof of Theorem 3.16,∣∣∣||ξ||−H− d
α

ρ − ||ξ~k||
−H− d

α
ρ

∣∣∣ ≤ d ·D · (H + d/α) · µ−H−
d
α
−1

~k

with µ~k := infξ∈∆~k
(||ξ||ρ), and with this inequality we obtain (analogously to the calcu-

lation in that proof):

I2 = 21+α ·
∑
~k∈JN

∫
∆~k

∣∣∣||ξ||−H− d
α

ρ − ||ξ~k||
−H− d

α
ρ

∣∣∣α dξ
≤ 21+α · dα ·Dα · (H + d/α)α ·Dd ·

∑
~k∈JN

µ−αH−d−α~k

With J ′N := {~k ∈ JN : kj ≥ 0, 1 ≤ j ≤ d} = {0, . . . ,M − 1}d\{0, . . . , N − 1}d we can
write (analogous to (3.15) and (3.16)):∑

~k∈JN

µ−αH−d−α~k
= D−αH−d−α · 2d ·

∑
~k∈J ′N

||~k||−αH−d−αρ

Therefore

I2 ≤ 21+α · dα · (H + d/α)α ·D−αH · 2d ·
∑
~k∈J ′N

||~k||−αH−d−αρ

35

Chapter 3 Approximation of OSSRFs in harmonizable representation

The sum can be estimated, analogous to the similar sum in the proof of Theorem 3.16,
as follows (with Lm := {~k ∈ J ′N : max1≤j≤d(kj) = m}):

∑
~k∈J ′N

||~k||−αH−d−αρ ≤
∑
~k∈J ′N

||~k||−αH−d−α∞ =
M−1∑
m=N

∑
~k∈Lm

||~k||−αH−d−α∞

=
M−1∑
m=N

∑
~k∈Lm

m−αH−d−α

<
M∑

m=N

d · (m+ 1)d−1m−αH−d−α

≤ d ·

(
(N + 1)d−1N−αH−d−α +

M∑
m=N+1

(
1 +

1

m

)d−1

m−αH−α−1

)

≤ d ·

((
1 +

1

N

)d−1

N−αH−α−1

+

(
1 +

1

N + 1

)d−1

·
M∑

m=N+1

m−αH−α−1

)

≤ d ·

((
1 +

1

N

)d−1

N−αH−α−1

+

(
1 +

1

N + 1

)d−1

·
∫ M

N

x−αH−α−1dx

)

≤ d ·

((
1 +

1

N

)d−1

N−αH−α−1

+

(
1 +

1

N + 1

)d−1

·
[

1

−αH − α
· x−αH−α

]M
N

)

≤ d ·

((
1 +

1

N

)d−1

N−αH−α−1

+

(
1 +

1

N + 1

)d−1

· 1

α(1 +H)

(
N−αH−α −M−αH−α))

36

3.3 Approximation error due to the discretisation

We obtain as an estimation for I2:

I2 ≤2α+d+1 · d1+α ·
(
H +

d

α

)α
·D−αH ·

((
1 +

1

N

)d−1

N−αH−α−1

+

(
1 +

1

N + 1

)d−1

· 1

α(1 +H)

(
N−αH−α −M−αH−α))

=2α+d+1 · d1+α ·
(
H +

d

α

)α
·Dα ·

((
1 +

D

B

)d−1

· D
B
·B−αH−α

+

(
1 +

D

B +D

)d−1

· 1

α(1 +H)

(
B−αH−α − A−αH−α

))

≤2α+d+1 · d1+α ·
(
H +

d

α

)α
·Dα

·
(

2d−1 ·B−αH−α +
(3/2)d−1

α(1 +H)

(
B−αH−α − A−αH−α

))
=2α+2 · d1+α ·

(
H +

d

α

)α
·Dα

·
(

4d−1 ·B−αH−α +
3d−1

α(1 +H)

(
B−αH−α − A−αH−α

))
=C̃2,A,B ·Dα

with C̃2,A,B = 2α+2·d1+α·
(
H + d

α

)α·(4d−1 ·B−αH−α + 3d−1

α(1+H)

(
B−αH−α − A−αH−α

))
.

Using the results for ||Xψ(x)−XA
ψ (x)||αα and ||XA

ψ (x)−XA,M,N
ψ (x)||αα, the total error of

the approximation ||Xψ(x)−XA,M,N
ψ (x)||αα can also be estimated:

Corollary 3.21. Be ψ a ρ-norm as in Theorem 3.20. Then∣∣∣∣∣∣Xψ(x)−XA,M,N
ψ (x)

∣∣∣∣∣∣α
α
≤ C̃ · A−αH + C̃0,x ·Bα(1−H) +

(
C̃1,A,B,x + C̃2,A,B

)
Dα

with

C̃ =
2α+d · d
αH

C̃0,x = ||x||α2 ·
d1+α

2 · 2d

α(1−H)

C̃1,A,B,x = ||x||α2 ·
d1+α

2 · 2d+1

αH

(
B−αH − A−αH

)
C̃2,A,B = 2α+2d1+α ·

(
H +

d

α

)α
·
(

4d−1B−αH−α +
3d−1

α(1 +H)

(
B−αH−α − A−αH−α

))

37

Chapter 3 Approximation of OSSRFs in harmonizable representation

Proof. Similar to the proof of Lemma 3.14, the error of estimation can be estimated by∣∣∣∣∣∣Xψ(x)−XA,M,N
ψ (x)

∣∣∣∣∣∣α
α

=

∣∣∣∣∣∣
∣∣∣∣∣∣Re

∫
Rd

(
ei<x,ξ> − 1

)
ψ(ξ)−H−

q
α Wα(dξ)−

∑
~k∈{−M,...,M−1}d

g~k Wα(∆~k)

∣∣∣∣∣∣
∣∣∣∣∣∣
α

α

≤

∣∣∣∣∣∣
∣∣∣∣∣∣
∫

Rd

(
ei<x,ξ> − 1

)
ψ(ξ)−H−

q
α Wα(dξ)−

∑
~k∈{−M,...,M−1}d

g~k

∫
Rd

1∆~k
(ξ) Wα(dξ)

∣∣∣∣∣∣
∣∣∣∣∣∣
α

α

=

∣∣∣∣∣∣
∣∣∣∣∣∣
∫

Rd

(
ei<x,ξ> − 1

)
ψ(ξ)−H−

q
α −

∑
~k∈{−M,...,M−1}d

g~k 1∆~k
(ξ) Wα(dξ)

∣∣∣∣∣∣
∣∣∣∣∣∣
α

α

=

∫
Rd

∣∣∣∣∣∣(ei<x,ξ> − 1
)
ψ(ξ)−H−

q
α −

∑
~k∈{−M,...,M−1}d

1∆~k
(ξ) · g~k

∣∣∣∣∣∣
α

dξ

If ξ ∈ Rd\[−A,A]d, then 1∆~k
(ξ) = 0 for all ~k ∈ {−M, . . . ,M − 1}d, which implies∑

~k∈{−M,...,M−1}d 1∆~k
(ξ) · g~k = 0.

However, if ξ ∈ [−A,A]d, then 1 =
∑

~k∈{−M,...,M−1}d 1∆~k
(ξ), because the ∆~k are disjoint

and their sum is [−A,A]d. Therefore

∫
Rd

∣∣∣∣∣∣(ei<x,ξ> − 1
)
ψ(ξ)−H−

q
α −

∑
~k∈{−M,...,M−1}d

1∆~k
(ξ) · g~k

∣∣∣∣∣∣
α

dξ

=

∫
Rd\[−A,A]d

∣∣∣(ei<x,ξ> − 1
)
ψ(ξ)−H−

q
α

∣∣∣α dξ
+

∫
[−A,A]d

∣∣∣∣∣∣
∑

~k∈{−M,...,M−1}d

1∆~k
(ξ)
((
ei<x,ξ> − 1

)
ψ(ξ)−H−

q
α − g~k

)∣∣∣∣∣∣
α

dξ

Together with ψ = || · ||ρ, this implies

38

3.3 Approximation error due to the discretisation

∣∣∣∣∣∣Xψ(x)−XA,M,N
ψ (x)

∣∣∣∣∣∣α
α

≤
∫

Rd\[−A,A]d

∣∣∣(ei<x,ξ> − 1
)
||ξ||−H−

d
α

ρ

∣∣∣α dξ
+

∫
[−A,A]d

∣∣∣∣∣∣
∑

~k∈{−M,...,M−1}d

1∆~k
(ξ)
((
ei<x,ξ> − 1

)
||ξ||−H−

d
α

ρ − g~k
)∣∣∣∣∣∣

α

dξ

=

∫
Rd\[−A,A]d

∣∣ei<x,ξ> − 1
∣∣α ||ξ||−αH−dρ dξ

+
∑

~k∈{−M,...,M−1}d

∫
∆~k

∣∣∣(ei<x,ξ> − 1
)
||ξ||−H−

d
α

ρ − g~k
∣∣∣α dξ

According to the proof of 3.5∫
Rd\[−A,A]d

∣∣ei<x,ξ> − 1
∣∣α ||ξ||−αH−dρ dξ ≤ 2α+d · d

αH
· A−αH

and according to Lemma 3.19∑
~k∈{−M,...,M−1}d

∫
∆~k

∣∣∣(ei<x,ξ> − 1
)
ψ(ξ)−H−

q
α − g~k

∣∣∣α dξ ≤ I0 + I1 + I2

with I0, I1 and I2 as in Lemma 3.19. With the proof of Theorem 3.20, it follows that∣∣∣∣∣∣Xψ(x)−XA,M,N
ψ (x)

∣∣∣∣∣∣α
α
≤2α+d · d

αH
· A−αH + I0 + I1 + I2

≤C̃ · A−αH + C̃0,x ·Bα(1−H) +
(
C̃1,A,B,x + C̃2,A,B

)
Dα

with

C̃ =
2α+d · d
αH

C̃0,x = ||x||α2 ·
d1+α

2 · 2d

α(1−H)

C̃1,A,B,x = ||x||α2 ·
d1+α

2 · 2d+1

αH

(
B−αH − A−αH

)
C̃2,A,B = 2α+2d1+α ·

(
H +

d

α

)α
·
(

4d−1B−αH−α +
3d−1

α(1 +H)

(
B−αH−α − A−αH−α

))

39

Chapter 3 Approximation of OSSRFs in harmonizable representation

Remark 3.22. In this version of the discretisation, the error estimate is a monotonic
increasing function of D, i.e. it can be reduced by choosing a smaller value of the Pa-
rameter D (or, equivalently, by choosing larger values of M and N , so that D = A

M
= B

N

becomes smaller). The estimation for I0 is independent of D, while the results for I1 and
I2 contain the factor Dα and therefore converge to 0 when D → 0.

The error estimates of the approximation can be made arbitrarily small by choosing
suitable values for the parameters A, B and D:

(a) First, choose a sufficiently large value for A so that the error of truncation is smaller
than a given limit ε > 0. (this is possible, because the error estimate converges to
0 if A→∞).

(b) Then choose a sufficiently small value of B, so that C̃0,x ·Bα(1−H) < ε′ for a given

limit ε′ > 0 (Because the exponent is negative, we have limB→0 C̃0,x · Bα(1−H) = 0
for every fixed x ∈ Rd).

(c) Finally choose a sufficiently small value for D, so that
(
C̃1,A,B,x + C̃2,A,B

)
·Dα < ε′′

for a given ε′′ > 0 (i.e. choose D so that 0 < D < ((C̃1,A,B,x + C̃2,A,B)−1 · ε′′)1/α).

Thus, the errors are kept smaller than certain given limits (in the latter two steps,
appropriate values of B and D should be chosen so that M = A

D
∈ N and N = B

D
∈ N).

Remark 3.23. The algorithms for the simulation of two- or three-dimensional OSSRF in
harmonizable representation, which are presented in this thesis, approximate an OSSRF
in the points x = x ~m = π

A
· ~m for ~m ∈ {−M, . . . ,M − 1}d (see sections 5.2 and

5.3). For these points, the euclidean norm which appears in the terms I ′0 and I ′1, is
||x ~m||2 = π

A
· || ~m||2. If ~m ∈ {−K, . . . ,K − 1}d for some K ∈ {1, . . . ,M}, then

||x ~m||2 =
π

A
· || ~m||2 ≤

π

A
·
√
d · || ~m||∞ =

π

A
·
√
d ·K.

Therefore

I ′0 ≤ A−α ·Kα · π
α · d1+α · 2d

α(1−H)
·Bα(1−H)

I ′1 ≤ A−α ·Kα ·Dα · π
α · d1+α · 2d+1

αH

(
B−αH − A−αH

)

for x = x ~m with ~m ∈ {−K, . . . ,K − 1}d (for a K ∈ N, K ≤M).

40

3.3 Approximation error due to the discretisation

3.3.2 Approximation error for general ψ

In this subsection, be ψ a function which fulfills the assumptions of Theorem 3.10, i.e. it
is a function in the representation (2.2) with linear independent vectors θ1, . . . , θd ∈ Rd

for which ||θ1||2 = . . . = ||θd||2 = 1, and 0 < λ1 ≤ . . . ≤ λd. In order to be able to use
Corollary 2.6, we also have to assume that 0 < ρ < 2λ1. Be also assumed that for the
parameters A, B and D the inequalities 0 < D ≤ B ≤ 1√

d
and 1 < A hold, and that

N := B
D

and M := A
D

are integers. As already defined in Lemma 3.9, be also in this
subsection Cmin := min{C1, . . . , Cd}, Cmax := max{C1, . . . , Cd}, S2 := {ξ ∈ Rd : ||ξ||2 =
1} and θξ := ξ

||ξ||2 ∈ S2. As in Theorem 3.10, be Ĩ a short notation for the integral∫
S2

(∑d
k=1 |< θξ, θk >|−

ρ
λ1

)−Hα−q
ρ

dθξ.

Remark 3.24. Obviously the first version of discretisation is a special case of the second
one, which is obtained by setting N = 1. In this case, the value of B is B = N ·D = D.
Therefore, results for the first version can be derived from the results for the second
version by setting N = 1 and B = D. Thus, in this subsection the results are calculated
for the second version of discretisation, and then the corresponding results for the first
version are derived by interpreting this discretisation as a special case of the second one.

Second version of the discretisation

Remark 3.25. Be XA,M,N
ψ an approximation of XA

ψ which uses the second version of
discretisation (see (3.18)). According to the lemmas 3.14 and 3.19, the error of approxi-
mation can be estimated by

||XA
ψ (x)−XA,M,N

ψ (x)||αα

≤
∑

~k∈{−M,...,M−1}d

∫
∆~k

∣∣∣(ei<x,ξ> − 1
)
ψ(ξ)−H−

q
α − g~k

∣∣∣α dξ
≤I0 + I1 + I2

with

I0 = ||x||α2 ·
∫

[−B,B]d
||ξ||α2 · ψ(ξ)−αH−q dξ

I1 = 2 · ||x||α2 ·Dαd
α
2 ·
∫

[−A,A]d\[−B,B]d
ψ(ξ)−αH−q dξ

I2 = 21+α ·
∑
~k∈JN

∫
∆~k

∣∣∣ψ(ξ)−H−
q
α − ψ(ξ~k)−H−

q
α

∣∣∣α dξ

41

Chapter 3 Approximation of OSSRFs in harmonizable representation

Lemma 3.26. Under the given assumptions, the term I0 can be estimated by

I0 ≤ C̃0,x ·B
αλ1−αH−q+dλ1

λ1

with

C̃0,x = ||x||α2 · C
−αH−q

ρ

min · Ĩ · λ1

αλ1 − αH − q + dλ1

· d
αλ1−αH−q+dλ1

2λ1

and Ĩ =
∫
S2

(∑d
k=1 |< θξ, θk >|

ρ
λ1

)−αH−q
ρ

dθξ,

if the exponent is positive, i.e. if α(λ1 −H) > q − dλ1.

Proof. From the assumption B ≤ 1√
d

follows ||ξ||2 ≤ 1 for all ξ ∈ [−B,B]d. According
to Lemma 3.9,

ψ(ξ) ≥ C
1/ρ
min · ||ξ||

1/λ1

2 ·

(
d∑

k=1

|< θξ, θk >|ρ/λ1

)1/ρ

holds for these ξ. Using this inequality, we estimate

I0 = ||x||α2 ·
∫

[−B,B]d
||ξ||α2 · ψ(ξ)−αH−q dξ

≤ ||x||α2 ·
∫

[−B,B]d
||ξ||α2 ·

C 1
ρ

min · ||ξ||
1
λ1
2 ·

(
d∑

k=1

|< θξ, θk >|
ρ
λ1

) 1
ρ

−αH−q dξ
= ||x||α2 · C

−αH−q
ρ

min ·
∫

[−B,B]d
||ξ||α2 · ||ξ||

−αH−q
λ1

2 ·

(
d∑

k=1

|< θξ, θk >|
ρ
λ1

)−αH−q
ρ

dξ

≤ ||x||α2 · C
−αH−q

ρ

min ·
∫ √d·B

0

∫
S2

rα · r
−αH−q
λ1 ·

(
d∑

k=1

|< θξ, θk >|
ρ
λ1

)−αH−q
ρ

dθξ · rd−1 dr

= ||x||α2 · C
−αH−q

ρ

min ·
∫ √d·B

0

r
−αH−q+αλ1

λ1
+d−1 ·

∫
S2

(
d∑

k=1

|< θξ, θk >|
ρ
λ1

)−αH−q
ρ

dθξ︸ ︷︷ ︸
:=Ĩ

dr

= ||x||α2 · C
−αH−q

ρ

min · Ĩ ·
∫ √d·B

0

r
−αH−q+αλ1

λ1
+d−1

dr

= ||x||α2 · C
−αH−q

ρ

min · Ĩ · λ1

αλ1 − αH − q + dλ1

(√
d ·B

)αλ1−αH−q+dλ1
λ1

= C̃0,x ·B
αλ1−αH−q+dλ1

λ1

with C̃0,x = ||x||α2 · C
−αH−q

ρ

min · Ĩ · λ1

αλ1−αH−q+dλ1
· d

αλ1−αH−q+dλ1
2λ1

42

3.3 Approximation error due to the discretisation

Lemma 3.27. Under the given assumptions, and the condition that αH + q − dλd 6= 0,
the term I1 can be estimated by

I1 ≤ C̃1,A,B,x ·Dα

with

C̃1,A,B,x =2 · ||x||α2 · d
α
2 · C

−αH−q
ρ

min · Ĩ ·
(

λ1

αH + q − dλ1

(
B
−αH−q+dλ1

λ1 − 1
)

+
λd

αH + q − dλd

(
1−

(
A
√
d
)−αH−q+dλd

λd

))

(and Ĩ as before).

Proof. Be S := {x ∈ Rd : ||x||2 ≤ 1}. From the assumption B ≤ 1√
d

follows that

[−B,B]d ⊂ S, and the assumption 1 < A implies S ⊂ [−A,A]d. The domain of integra-
tion [−A,A]d\[−B,B]d is now divided into the two parts [−A,A]d\S and S\[−B,B]d.

According to Lemma 3.9, ψ(ξ) ≥ C
1/ρ
min · ||ξ||

1/λd
2 ·

(∑d
k=1 |< θξ, θk >|ρ/λ1

)1/ρ

for ξ from

the first part, and ψ(ξ) ≥ C
1/ρ
min · ||ξ||

1/λ1

2 ·
(∑d

k=1 |< θξ, θk >|ρ/λ1

)1/ρ

for ξ from the latter

part. These inequalities are applied in the following calculation:

I1 = 2 · ||x||α2 ·Dα · d
α
2 ·
∫

[−A,A]d\[−B,B]d
ψ(ξ)−αH−qdξ

= 2 · ||x||α2 ·Dα · d
α
2 ·
(∫

[−A,A]d\S
ψ(ξ)−αH−qdξ +

∫
S\[−B,B]d

ψ(ξ)−αH−qdξ

)

≤ 2 · ||x||α2 ·Dα · d
α
2 ·

∫
[−A,A]d\S

C 1
ρ

min · ||ξ||
1
λd
2 ·

(
d∑

k=1

|< θξ, θk >|
ρ
λ1

) 1
ρ

−αH−q dξ
+

∫
S\[−B,B]d

C 1
ρ

min · ||ξ||
1
λ1
2 ·

(
d∑

k=1

|< θξ, θk >|
ρ
λ1

) 1
ρ

−αH−q dξ


≤ 2 · ||x||α2 ·Dα · d
α
2 · C

−αH−q
ρ

min

·

 ∫
[−A,A]d\S

||ξ||
−αH−q
λd

2 ·

(
d∑

k=1

|< θξ, θk >|
ρ
λ1

)−αH−q
ρ

dξ

+

∫
S\[−B,B]d

||ξ||
−αH−q
λ1

2 ·

(
d∑

k=1

|< θξ, θk >|
ρ
λ1

)−αH−q
ρ

dξ



43

Chapter 3 Approximation of OSSRFs in harmonizable representation

≤ 2 · ||x||α2 ·Dα · d
α
2 · C

−αH−q
ρ

min

·

 ∫ A
√
d

1

r
−αH−q
λd · rd−1 ·

∫
S2

(
d∑

k=1

|< θξ, θk >|
ρ
λ1

)−αH−q
ρ

dθξ dr

+

∫ 1

B

r
−αH−q
λ1 · rd−1 ·

∫
S2

(
d∑

k=1

|< θξ, θk >|
ρ
λ1

)−αH−q
ρ

dθξ dr


≤ 2 · ||x||α2 ·Dα · d

α
2 · C

−αH−q
ρ

min ·

(∫ A
√
d

1

r
−αH−q
λd

+d−1 · Ĩ dr +

∫ 1

B

r
−αH−q
λ1

+d−1 · Ĩ dr

)

= 2 · ||x||α2 ·Dα · d
α
2 · C

−αH−q
ρ

min · Ĩ ·

(∫ A
√
d

1

r
−αH−q
λd

+d−1
dr +

∫ 1

B

r
−αH−q
λ1

+d−1
dr

)
.

Because dλ1 < λ1 + . . .+ λd = q, for the exponent of the second integral the inequality
−αH−q+dλ1

λ1
− 1 < −1 holds, therefore the integral is∫ 1

B

r
−αH−q
λ1

+d−1
dr =

λ1

−αH − q + dλd
·
(

1−B
−αH−q+dλ1

λ1

)
,

and under the assumption αH + q − dλd 6= 0, the exponent of the first integral is
−αH−q+dλd

λd
− 1 6= −1, so that this integral can be calculated analogously:∫ A
√
d

1

r
−αH−q+dλd

λd
−1
dr =

λd
−αH − q + dλd

·

((
A
√
d
)−αH−q+dλd

λd − 1

)
.

Therefore

I1 ≤ 2 · ||x||α2 ·Dα · d
α
2 · C

−αH−q
ρ

min · Ĩ ·
(

λ1

αH + q − dλ1

(
B
−αH−q+dλ1

λ1 − 1
)

+
λd

αH + q − dλd

(
1−

(
A
√
d
)−αH−q+dλd

λd

))
= C̃1,A,B,x ·Dα

with

C̃1,A,B,x =2 · ||x||α2 · d
α
2 · C

−αH−q
ρ

min · Ĩ ·
(

λ1

αH + q − dλ1

(
B
−αH−q+dλ1

λ1 − 1
)

+
λd

αH + q − dλd

(
1−

(
A
√
d
)−αH−q+dλd

λd

))
.

44

3.3 Approximation error due to the discretisation

Remark 3.28. If λ1 = . . . = λd, then dλ1 = dλd = q and

I1 ≤ C̃1,A,B,x ·Dα

with

C̃1,A,B,x = 2 · ||x||α2 · d
α
2 · C

−αH−dλ1
ρ

min · Ĩ · λ1

αH
·
(
B
−αH
λ1 −

(
A ·
√
d
)−αH

λ1

)
.

Before estimating I2, some lemmas are shown first which are used to estimate I2. In the
following, the variables JN,1 and JN,2 refer to two subsets of the set
JN = {−M, . . . ,M − 1}d\{−N, . . . , N − 1}d:

JN,1 := {~k ∈ JN : ∆~k ∩ [−1, 1)d 6= ∅},
JN,2 := {~k ∈ JN : ∆~k ∩ [−1, 1)d = ∅}.

Then JN,1, JN,2 are disjoint, JN,1 ∪ JN,2 = JN and

~k ∈ JN,1 ⇒ ∃ ξ ∈ ∆~k : ||ξ||∞ ≤ 1

~k ∈ JN,1 ⇒ ∀ ξ ∈ ∆~k : ||ξ||∞ ≤ 1 +D

~k ∈ JN,2 ⇒ ∀ ξ ∈ ∆~k : ||ξ||∞ ≥ 1

Lemma 3.29. Be

c1 := C
1
ρ

min · min
θξ∈S2

(
d∑

k=1

|< θξ, θk >|
ρ
λ1

) 1
ρ

.

Then

(a) c1 > 0.

(b) If ||ξ||2 ≥ 1 then ψ(ξ) ≥ c1 · ||ξ||
1
λd∞ .

(c) If ||ξ||2 ≤ 1 then ψ(ξ) ≥ c1 · ||ξ||
1
λ1∞ .

(d) ψ(ξ) ≥ c1 ·B
1
λ1 for all ξ ∈ [−A,A]d\[−B,B]d.

Proof.

45

Chapter 3 Approximation of OSSRFs in harmonizable representation

(a) The function ψ̃(x) =
(∑d

k=1 |< θξ, θk >|
ρ
λ1

) 1
ρ

is a continuous E-homogeneous

function (according to Corollary 2.6), and this implies minθξ∈S2

(
ψ̃(ξ)

)
> 0 (ac-

cording to Remark 2.4). Because C1, . . . , Cd are assumed to be positive, Cmin :=
min{C1, . . . , Cd} is also positive. Thus, c1 > 0.

(b) If ||ξ||2 ≥ 1, then ψ(ξ) ≥ C
1/ρ
min · ||ξ||

1/λd
2 ·

(∑d
k=1 |< θξ, θk >|ρ/λ1

)1/ρ

(see Lemma 3.9). This implies ψ(ξ) ≥ c1 · ||ξ||1/λd2 ≥ c1 · ||ξ||1/λd∞ .

(c) If ||ξ||2 ≤ 1, then ψ(ξ) ≥ C
1/ρ
min · ||ξ||

1/λ1

2 ·
(∑d

k=1 |< θξ, θk >|ρ/λ1

)1/ρ

(see Lemma 3.9). This implies ψ(ξ) ≥ c1 · ||ξ||1/λ1

2 ≥ c1 · ||ξ||1/λ1
∞ .

(d) Be ξ ∈ [−A,A]d\[−B,B]d. Then ||ξ||∞ ≥ B.

If ||ξ||2 ≤ 1, then ψ(ξ) ≥ c1 · ||ξ||1/λ1
∞ ≥ c1 ·B1/λ1 ,

and if ||ξ||2 > 1, then ψ(ξ) ≥ c1 · ||ξ||1/λd2 ≥ c1 · 1 ≥ c1 ·B1/λ1 .

Lemma 3.30. There is a c4 > 0 and a δ > 0 (depending on ψ) such that for all ~k ∈ JN ,
for all ξ ∈ ∆~k

|ψ(ξ~k)− ψ(ξ)| ≤ c4D
(1/λd−δ)β

Proof. According to Corollary 2.6, ψ is (β,E)-admissible for a matrix E which fulfills
the equation ET θj = λjθj for all 1 ≤ j ≤ d (in other words: a matrix E for which the
transpose ET has the eigenvectors θj and the corresponding eigenvalues λj) and for a

real number β with 0 < β < min
(
λ1, ρ

λ1

λd

)
if λ1 ≤ ρ and β = ρ if λ1 > ρ. With Definition

2.5, this implies that for any 0 < Ã < B̃ there exists a C̃ > 0 so that for all x, y ∈ Rd

with A ≤ ||y|| ≤ B and τ(x) ≤ 1, the inequality |ψ(x + y) − ψ(y)| ≤ Cτ(x)β holds. As
ξ~k, ξ ∈ ∆~k ⇒ ||ξ~k − ξ||∞ ≤ D and as we are interested in results for small D > 0, it
may be assumed that ξ~k and ξ are sufficiently close to each other, and especially that
the inequality τ(ξ~k − ξ) < 1 holds. With this assumption, it follows that

|ψ(ξ~k)− ψ(ξ)| = |ψ(ξ + (ξ~k − ξ))− ψ(ξ)| ≤ C̃τ(ξ~k − ξ)
β.

From Lemma 2.1 it follows that there are a norm || · ||0 and constants c2, δ > 0 so

that τ(ξ~k − ξ) ≤ c2||ξ~k − ξ||
1
λd
−δ

0 . Because all norms are equivalent in Rd, there exists a

46

3.3 Approximation error due to the discretisation

constant c3 > 0 for which ||x||0 ≤ c3||x||∞ for all x ∈ Rd. Therefore,

|ψ(ξ~k)− ψ(ξ)| ≤ C̃τ(ξ~k − ξ)
β ≤ C̃

(
c2||ξ~k − ξ||

1
λd
−δ

0

)β
≤ C̃

(
c2

(
c3||ξ~k − ξ||∞

) 1
λd
−δ
)β

= C̃cβ2c
(1/λd−δ)β
3 ||ξ~k − ξ||

(1/λd−δ)β
∞

= c4||ξ~k − ξ||
(1/λd−δ)β
∞

≤ c4D
(1/λd−δ)β

with c4 := C̃cβ2c
(1/λd−δ)β
3 .

In the following two lemmas, this lemma is used to find estimations for the expression
|ψ(ξ)−H−

q
α − ψ(ξ~k)−H−

q
α | in the two cases ~k ∈ JN,1 and ~k ∈ JN,2:

Lemma 3.31. Be ~k ∈ JN,1. Then constants c5, β, δ > 0 (independent of D, but depen-
dent from ψ, α and H) exist, such that∣∣∣ψ(ξ)−H−

q
α − ψ(ξ~k)−H−

q
α

∣∣∣ ≤ c5 ·D(1/λd−δ)β ·B
1
λ1

(−H− q
α
−1)
.

Proof. Be ~k ∈ JN,1. According to Lemma 3.29 (d), ψ(ξ) ≥ c1 ·B
1
λ1 for all

ξ ∈ [−A,A]d\[−B,B]d, and according to Lemma 3.30, there are c′4, δ > 0 with
|ψ(ξ~k) − ψ(ξ)| ≤ c′4D

(1/λd−δ)β. From this lemmas and the Mean Value Theorem follows
that ∣∣∣ψ(ξ)−H−

q
α − ψ(ξ~k)−H−

q
α

∣∣∣
≤
∣∣ψ(ξ)− ψ(ξ~k)

∣∣ · ∣∣∣−H − q

α

∣∣∣ · (c1 ·B
1
λ1

)−H− q
α
−1

≤c′4D(1/λd−δ)β ·
(
H +

q

α

)
· c−H−

q
α
−1

1 ·B
1
λ1

(−H− q
α
−1)

=c5 ·D(1/λd−δ)β ·B
1
λ1

(−H− q
α
−1)

with c5 := c′4 ·
(
H + q

α

)
· c−H−

q
α
−1

1 .

Lemma 3.32. Be ~k ∈ JN,2. Then constants c6, β, δ > 0 (independent of D, but depen-
dent from ψ, α and H) exists, such that∣∣∣ψ(ξ)−H−

q
α − ψ(ξ~k)−H−

q
α

∣∣∣ ≤ c6 ·D
“

1
λd
−δ
”
β+ 1

λd
(−H− q

α
−1) · ||t(~k)||

1
λd

(−H− q
α
−1)

∞

(where t(~k) is defined as in the proof of Theorem 3.16).

47

Chapter 3 Approximation of OSSRFs in harmonizable representation

Proof. Be ~k ∈ JN,2. Then ||ξ||∞ ≥ 1⇒ ||ξ||2 ≥ 1, and with Lemma 3.29 follows ψ(ξ) ≥

c1 · ||ξ||
1
λd∞ (for all ξ ∈ ∆~k). The existence of c′′4, δ > 0 with |ψ(ξ~k)−ψ(ξ)| ≤ c′′4 ·D(1/λd−δ)β

(according to Lemma 3.30) is also used:

|ψ(ξ)−H−
q
α − ψ(ξ~k)−H−

q
α |

≤|ψ(ξ)− ψ(ξ~k)| ·
∣∣∣−H − q

α

∣∣∣ ·max
{
ψ(ξ)−H−

q
α
−1, ψ(ξ~k)−H−

q
α
−1
}

≤c′′4 ·D
“

1
λd
−δ
”
β ·
(
H +

q

α

)
·max

{(
c1 · ||ξ||

1
λd∞

)−H− q
α
−1

,

(
c1 · ||ξ~k||

1
λd∞

)−H− q
α
−1
}

=c′′4 ·D
“

1
λd
−δ
”
β ·
(
H +

q

α

)
· c−H−

q
α
−1

1 ·
(
min

{
||ξ||∞, ||ξ~k||∞

}) 1
λd

(−H− q
α
−1)

≤c′′4 ·
(
H +

q

α

)
· c−H−

q
α
−1

1 ·D
“

1
λd
−δ
”
β · ||ξ̃~k||

1
λd

(−H− q
α
−1)

∞

≤c′′4 ·
(
H +

q

α

)
· c−H−

q
α
−1

1 ·D
“

1
λd
−δ
”
β ·D

1
λd

(−H− q
α
−1) · ||t(~k)||

1
λd

(−H− q
α
−1)

∞

=c6 ·D
“

1
λd
−δ
”
β+ 1

λd
(−H− q

α
−1) · ||t(~k)||

1
λd

(−H− q
α
−1)

∞

with c6 := c′′4 ·
(
H + q

α

)
· c−H−

q
α
−1

1 , and with ξ̃~k and t(~k) being defined as in (3.13) and
(3.14) in the proof of Theorem 3.16.

The preceding lemmas are now used to estimate I2:

Lemma 3.33. Under the assumptions stated at the beginning of this subsection, and the
conditions that −αH − α − q + dλd 6= 0 and αH + α + q − dλd + λd ≥ 0, there exist
constants (i.e. values which are independent of D) C̃2,A,B, δ

′ > 0 such that

I2 < C̃2,A,B ·D
αβ
λd
−δ′ · (1 +D)d .

Proof. According to Remark 3.25 and Lemma 3.19,

I2 = 21+α ·
∑
~k∈JN

∫
∆~k

∣∣∣ψ(ξ)−H−
q
α − ψ(ξ~k)−H−

q
α

∣∣∣α dξ.
Using the facts that JN,1, JN,2 are disjoint and JN,1 ∪ JN,2 = JN , and with the lemmas

48

3.3 Approximation error due to the discretisation

3.31 and 3.32, this term can be transformed as follows:

I2 = 21+α ·
∑
~k∈JN

∫
∆~k

∣∣∣ψ(ξ)−H−
q
α − ψ(ξ~k)−H−

q
α

∣∣∣α dξ
= 21+α ·

 ∑
~k∈JN,1

∫
∆~k

∣∣∣ψ(ξ)−H−
q
α − ψ(ξ~k)−H−

q
α

∣∣∣α dξ
+
∑
~k∈JN,2

∫
∆~k

∣∣∣ψ(ξ)−H−
q
α − ψ(ξ~k)−H−

q
α

∣∣∣α dξ


≤ 21+α ·

 ∑
~k∈JN,1

∫
∆~k

(
c5 ·D

“
1
λd
−δ
”
β ·B

1
λ1

(−H− q
α
−1)

)α
dξ

+
∑
~k∈JN,2

∫
∆~k

(
c6 ·D

“
1
λd
−δ
”
β+ 1

λd
(−H− q

α
−1) · ||t(~k)||

1
λd

(−H− q
α
−1)

∞

)α
dξ


≤ 21+α ·

cα5 ·D“ 1
λd
−δ
”
αβ ·B

1
λ1

(−H− q
α
−1)α ·

∑
~k∈JN,1

∫
∆~k

1dξ

+cα6 ·D
“

1
λd
−δ
”
αβ+ 1

λd
(−H− q

α
−1)α ·

∑
~k∈JN,2

||t(~k)||
1
λd

(−H− q
α
−1)α

∞

∫
∆~k

1 dξ


≤ 21+α · cα5 ·D

“
1
λd
−δ
”
αβ ·B

−αH−q−α
λ1 ·

∫
[−1−D,1+D]d

1 dξ

+ 21+α · cα6 ·D
“

1
λd
−δ
”
αβ+−αH−q−α

λd ·Dd ·
∑
~k∈JN,2

||t(~k)||
1
λd

(−αH−q−α)

∞

Analogous to equation (3.16), the sum can be transformed to∑
~k∈JN,2

||t(~k)||
1
λd

(−αH−q−α)

∞ = 2d ·
∑
~k∈J ′N,2

||t(~k)||
1
λd

(−αH−q−α)

∞ = 2d ·
∑
~k∈J ′N,2

||~k||
1
λd

(−αH−q−α)

∞

with J ′N,2 := {~k ∈ JN,2 : kj ≥ 0, 1 ≤ j ≤ d} = JN,2 ∩ {0, . . . ,M − 1}d.

49

Chapter 3 Approximation of OSSRFs in harmonizable representation

Therefore

I2 ≤ 21+α · cα5 ·D
αβ
λd
−αβδ ·B

−αH−q−α
λ1 · (2 + 2D)d

+ 21+α+d · cα6 ·D
αβ
λd
−αβδ+−αH−q−α

λd
+d ·

∑
~k∈J ′N,2

||~k||
1
λd

(−αH−q−α)

∞
(3.19)

Using the fact that t(~k) ∈ Z⇒ ||t(~k)||∞ ∈ N0, the definition of JN,2 can be transformed
as follows:

JN,2 = {~k ∈ JN : ∆~k ∩ [−1, 1)d = ∅} = {~k ∈ JN : ξ̃~k /∈ (−1, 1)d}

= {~k ∈ JN : ||D · t(~k)||∞ ≥ 1} =

{
~k ∈ JN : ||t(~k)||∞ ≥

1

D

}
=

{
~k ∈ JN : ||t(~k)||∞ ≥

⌈
1

D

⌉}
so that

J ′N,2 = JN,2 ∩ {0, . . . ,M − 1}d =

{
~k ∈ {0, . . . ,M − 1}d : ||t(~k)||∞ ≥

⌈
1

D

⌉}
=

{
~k ∈ {0, . . . ,M − 1}d : ||~k||∞ ≥

⌈
1

D

⌉}
=

M−1⋃
m=d 1

De

{
~k ∈ {0, . . . ,M − 1}d : ||~k||∞ = m

}
=

M−1⋃
m=d 1

De
Lm

with Lm :=
{
~k ∈ {0, . . . ,M − 1}d : ||~k||∞ = m

}
(obviously, the Lm are pairwise dis-

joint).

Thus the remaining sum in (3.19) can be estimated as follows(similar to the estimation
of the sum on page 36,in the proof of Theorem 3.20):

∑
~k∈J ′N,2

||~k||
1
λd

(−αH−q−α)

∞ =
M−1∑

m=d 1
De

∑
~k∈Lm

||~k||
1
λd

(−αH−q−α)

∞

=
M−1∑

m=d 1
De

∑
~k∈Lm

m
1
λd

(−αH−q−α)

≤
M−1∑

m=d 1
De
d(m+ 1)d−1 ·m

1
λd

(−αH−q−α)

50

3.3 Approximation error due to the discretisation

=d ·
M−1∑

m=d 1
De

(
1 +

1

m

)d−1

·m
1
λd

(−αH−q−α)+d−1

≤d · (1 +D)d−1 ·

⌈ 1

D

⌉−αH−α−q+dλd
λd

−1

+
M−1∑

m=d 1
De+1

m
−αH−α−q+dλd

λd
−1


<d · (1 +D)d−1 ·

(
D

αH+α+q−dλd+λd
λd +

∫ M

d 1
De
x
−αH−α−q+dλd

λd
−1
dx

)

The last inequalities use the implication m ≥ 1
D
⇒ 1

m
≤ D ⇒ (1 + 1

m
)d−1 ≤ (1 + D)d−1

and the fact that d 1
D
e ≥ 1

D
⇒ d 1

D
e−1 ≤ D together with the assumption αH + α + q −

dλd + λd ≥ 0.

Because of the assumption −αH − α − q + dλd 6= 0, the integral can be calculated as
follows (with γ := −αH − α− q + dλd):∫ M

d 1
De
x

γ
λd
−1
dx =

λd
γ

[
x

γ
λd

]M
d 1
De

=
λd
γ

(
M

γ
λd −

⌈
1

D

⌉ γ
λd

)
.

If γ > 0, then
⌈

1
D

⌉ γ
λd ≥

(
1
D

) γ
λd , and if γ < 0 then

⌈
1
D

⌉ γ
λd ≤

(
1
D

) γ
λd . In both cases follows

λd
γ

⌈
1
D

⌉ γ
λd ≥ λd

γ

(
1
D

) γ
λd , which implies:

∫ M

d 1
De
x

γ
λd
−1
dx ≤ λd

γ

(
M

γ
λd −

(
1

D

) γ
λd

)
= D

− γ
λd · λd

γ

(
A

γ
λd − 1

)
.

Therefore

I2 ≤ 21+α · cα5 ·D
αβ
λd
−αβδ ·B

−αH−q−α
λ1 · (2 + 2D)d

+ 21+α+d · cα6 ·D
αβ
λd
−αβδ+−αH−q−α

λd
+d ·

∑
~k∈J ′N,2

||~k||
1
λd

(−αH−q−α)

∞

< 21+α+d · cα5 ·D
αβ
λd
−δ′ ·B

−αH−q−α
λ1 · (1 +D)d

+ 21+α+d · cα6 ·D
αβ
λd
−δ′+−αH−q−α+dλd

λd · d · (1 +D)d−1

·

(
D

αH+α+q−dλd+λd
λd +

∫ M

d 1
De
x
−αH−α−q+dλd

λd
−1
dx

)

51

Chapter 3 Approximation of OSSRFs in harmonizable representation

≤ 21+α+d · cα5 ·D
αβ
λd
−δ′ ·B

−αH−q−α
λ1 · (1 +D)d

+ 21+α+d · cα6 ·D
αβ
λd
−δ′+−αH−q−α+dλd

λd · d · (1 +D)d−1

·
(
D

αH+α+q−dλd+λd
λd +D

αH+α+q−dλd
λd · λd

−αH − α− q + dλd

(
A
−αH−α−q+dλd

λd − 1

))
≤ 21+α+d · cα5 ·D

αβ
λd
−δ′ ·B

−αH−q−α
λ1 · (1 +D)d

+ 21+α+d · cα6 · d ·D
αβ
λd
−δ′ · (1 +D)d−1

·
(
D +

λd
−αH − α− q + dλd

(
A
−αH−α−q+dλd

λd − 1

))
≤ D

αβ
λd
−δ′ · (1 +D)d ·

(
21+α+d · cα5 ·B

−αH−q−α
λ1

+21+α+d · cα6 · d ·
(

1 +
λd

−αH − α− q + dλd

(
A
−αH−α−q+dλd

λd − 1

)))
= C̃2,A,B ·D

αβ
λd
−δ′ · (1 +D)d

with δ′ = αβδ and

C̃2,A,B = 21+α+d · cα5 ·B
−αH−q−α

λ1

+ 21+α+d · cα6 · d ·
(

1 +
λd

−αH − α− q + dλd

(
A
−αH−α−q+dλd

λd − 1

))

Theorem 3.34. Be XA
ψ the approximation of a harmonizable OSSRF by truncation of

the domain of integration, and XA,M,N
ψ a discretisation of this approximation which uses

the second type of discretisation (see (3.18)). If the function ψ and the other parameters
fulfill the assumptions stated at the beginning of this subsection, as well as also the
conditions αλ1 − αH − q + dλ1 > 0, −αH − q + dλd 6= 0, −αH − α − q + dλd 6= 0
and αH + α + q − dλd + λd ≥ 0, then exist constants δ′, C̃0,x (both independent from

the parameters A, B and D) and C̃1,A,B,x, C̃2,A,B (independent from D), so that the
approximation error due to the discretisation can be estimated by∣∣∣∣∣∣XA

ψ (x)−XA,M,N
ψ (x)

∣∣∣∣∣∣α
α

≤C̃0 ·B
αλ1−αH−q+dλ1

λ1 + C̃1,A,B,x ·Dα + C̃2,A,B ·D
αβ
λd
−δ′ · (1 +D)d .

Proof. According to the lemmas 3.14 and 3.19, the error of approximation can be esti-

52

3.3 Approximation error due to the discretisation

mated by ∣∣∣∣∣∣XA
ψ (x)−XA,M,N

ψ (x)
∣∣∣∣∣∣α
α

≤
∑

~k∈{−M,...,M−1}d

∫
∆~k

∣∣∣(ei<x,ξ> − 1
)
ψ(ξ)−H−

q
α − g~k

∣∣∣α dξ
≤I0 + I1 + I2

with

I0 = ||x||α2 ·
∫

[−B,B]d
||ξ||α2 · ψ(ξ)−αH−q dξ

I1 = 2 · ||x||α2 ·Dαd
α
2 ·
∫

[−A,A]d\[−B,B]d
ψ(ξ)−αH−q dξ

I2 = 21+α ·
∑
~k∈JN

∫
∆~k

∣∣∣ψ(ξ)−H−
q
α − ψ(ξ~k)−H−

q
α

∣∣∣α dξ
In the lemmas 3.26, 3.27 and 3.33 it has been shown that these terms can be estimated

by I0 ≤ C̃0,x ·B
αλ1−αH−q+dλ1

λ1 , I1 ≤ C̃1,A,B,x ·Dα and I2 < C̃2,A,B ·D
αβ
λd
−δ′ · (1 +D)d.

Similar to Corollary 3.21, the results for ||Xψ(x)−XA
ψ (x)||αα and ||XA

ψ (x)−XA,M,N
ψ (x)||αα

can be combined also in this more general case in order to give an estimation of ||Xψ(x)−
XA,M,N
ψ (x)||αα:

Corollary 3.35. Be Xψ a harmonizable OSSRF, and XA,M,N
ψ an approximation of this

OSSRF which uses the second type of discretisation (see (3.18)). If the function ψ and the
other parameters fulfill the assumptions of Theorem 3.10 and Theorem 3.34, then exist
constants δ′, C̃, C̃0,x (independent from the parameters A, B and D) and C̃1,A,B,x, C̃2,A,B

(independent from D), so that the approximation error (due to the truncation and the
discretisation) can be estimated by∣∣∣∣∣∣Xψ(x)−XA,M,N

ψ (x)
∣∣∣∣∣∣α
α

≤C̃ · A
−αH−q+dλd

λd + C̃0,x ·B
αλ1−αH−q+dλ1

λ1 + C̃1,A,B,x ·Dα + C̃2,A,B ·D
αβ
λd
−δ′ · (1 +D)d .

Proof. In the proof of Corollary 3.21 it has been shown that∣∣∣∣∣∣Xψ(x)−XA,M,N
ψ (x)

∣∣∣∣∣∣α
α

≤
∫

Rd\[−A,A]d

∣∣∣(ei<x,ξ> − 1
)
ψ(ξ)−H−

q
α

∣∣∣α dξ
+

∫
[−A,A]d

∣∣∣∣∣∣
∑

~k∈{−M,...,M−1}d

1∆~k
(ξ)
((
ei<x,ξ> − 1

)
ψ(ξ)−H−

q
α − g~k

)∣∣∣∣∣∣
α

dξ

53

Chapter 3 Approximation of OSSRFs in harmonizable representation

which implies ∣∣∣∣∣∣Xψ(x)−XA,M,N
ψ (x)

∣∣∣∣∣∣α
α

≤
∫

Rd\[−A,A]d

∣∣ei<x,ξ> − 1
∣∣α ψ(ξ)−αH−qdξ

+
∑

~k∈{−M,...,M−1}d

∫
∆~k

∣∣∣(ei<x,ξ> − 1
)
ψ(ξ)−H−

q
α − g~k

∣∣∣α dξ.
According to the proof of Theorem 3.10∫

Rd\[−A,A]d

∣∣ei<x,ξ> − 1
∣∣α ψ(ξ)−αH−q dξ

≤ 2α · C
−αH−q

ρ

min · Ĩ · λd
αH + q − dλd︸ ︷︷ ︸

:= eC
·A
−αH−q+dλd

λd ,

and according to the proof of Theorem 3.34∑
~k∈{−M,...,M−1}d

∫
∆~k

∣∣∣(ei<x,ξ> − 1
)
ψ(ξ)−H−

q
α − g~k

∣∣∣α dξ
≤C̃0,x ·B

αλ1−αH−q+dλ1
λ1 + C̃1,A,B,x ·Dα + C̃2,A,B ·D

αβ
λd
−δ′ · (1 +D)d .

Therefore∣∣∣∣∣∣Xψ(x)−XA,M,N
ψ (x)

∣∣∣∣∣∣α
α

≤C̃ · A
−αH−q+dλd

λd + C̃0,x ·B
αλ1−αH−q+dλ1

λ1 + C̃1,A,B,x ·Dα + C̃2,A,B ·D
αβ
λd
−δ′ · (1 +D)d .

Remark 3.36. If all assumptions on the parameter values are fulfilled, then the exponent
of A in this estimation is negative and the exponents of B and D are positive. Therefore,
the error estimate decreases with increasing values of A and decreasing values of B and
D.

For any fixed x ∈ Rd,
∣∣∣∣∣∣Xψ(x)−XA,M,N

ψ (x)
∣∣∣∣∣∣α
α
< ε can be achieved for any ε > 0 by

choosing suitable values for the approximation parameters A, B and D:

(a) First choose a sufficiently large A > 0 and a sufficiently small B > 0 so that

C̃ · A
−αH−q+dλd

λd < ε
4

and C̃0,x · B
αλ1−αH−q+dλ1

λ1 < ε
4
. This is possible because the

exponent of A is positive and the one of B is negative.

54

3.3 Approximation error due to the discretisation

(b) Then choose a sufficiently small value for D (depending on the values of A and

B which have been selected in the previous step), so that C̃1,A,B,x · Dα < ε
4

and

C̃2,A,B ·D
αβ
λd
−δ′ · (1 +D)d < ε

4
. This can be done because α > 0, αβ

λd
− δ′ is supposed

to be positive, too, and the factor (1+D)d is bounded by a constant: (1+D)d ≤ 2d.

If the parameters are chosen so that these inequalities are fulfilled, then the previous

corollary implies that
∣∣∣∣∣∣Xψ(x)−XA,M,N

ψ (x)
∣∣∣∣∣∣α
α
< ε.

First version of the discretisation

Corollary 3.37. Be XA
ψ the approximation of a harmonizable OSSRF by truncation of

the domain of integration, and XA,M
ψ a discretisation of this approximation which uses

the first type of discretisation (see (3.7)). If the function ψ and the other parameters
fulfill the assumptions stated at the beginning of this subsection, as well as also the
conditions αλ1 − αH − q + dλ1 > 0, −αH − q + dλd 6= 0, −αH − α− q + dλd 6= 0 and
αH+α+q−dλd+λd ≥ 0, then exist constants C̃0,x, C̃1,x, C̃1,A,x, C̃2 and C̃2,A (independent
from D), so that the approximation error due to the discretisation can be estimated by∣∣∣∣∣∣XA

ψ (x)−XA,M
ψ (x)

∣∣∣∣∣∣α
α
≤ C̃0,x ·D

αλ1−αH−q+dλ1
λ1 + C̃1,x ·D

αλ1−αH−q+dλ1
λ1 + C̃1,A,x ·Dα

+ C̃2 ·D
−αH−q−α

λ1
+αβ
λd
−δ′ · (1 +D)d + C̃2,A ·D

αβ
λd
−δ′ · (1 +D)d

Proof. The first version of the discretisation can be interpreted as a special case of the
second version with parameter value N = 1 (which implies B = D). Therefore, we can
conclude from the proof of Theorem 3.34 by replacing N by 1 and B by D, that the
error of approximation can be estimated by∣∣∣∣∣∣XA

ψ (x)−XA,M
ψ (x)

∣∣∣∣∣∣α
α
≤ I0 + I1 + I2

with

I0 = ||x||α2 ·
∫

[−D,D]d
||ξ||α2 · ψ(ξ)−αH−q dξ,

I1 = 2 · ||x||α2 ·Dαd
α
2 ·
∫

[−A,A]d\[−D,D]d
ψ(ξ)−αH−q dξ,

I2 = 21+α ·
∑
~k∈J1

∫
∆~k

∣∣∣ψ(ξ)−H−
q
α − ψ(ξ~k)−H−

q
α

∣∣∣α dξ.
By setting N := 1 and B := D in the proofs of the lemmas 3.26, 3.27 and 3.33, the
following estimations of I0, I1 and I2 can be obtained:

55

Chapter 3 Approximation of OSSRFs in harmonizable representation

From the proof of Lemma 3.26 follows

I0 ≤ ||x||α2 · C
−αH−q

ρ

min · Ĩ · λ1

αλ1 − αH − q + dλ1

(√
d ·D

)αλ1−αH−q+dλ1
λ1

= C̃0,x ·D
αλ1−αH−q+dλ1

λ1

with C̃0,x = ||x||α2 · C
−αH−q

ρ

min · Ĩ · λ1

αλ1−αH−q+dλ1
· d

αλ1−αH−q+dλ1
2λ1 ,

and from the proof of Lemma 3.27 follows:

I1 ≤ 2 · ||x||α2 · d
α
2 · C

−αH−q
ρ

min · Ĩ︸ ︷︷ ︸
:=c1,x

·Dα ·
(

λ1

αH + q − dλ1

(
D
−αH−q+dλ1

λ1 − 1
)

+
λd

αH + q − dλd

(
1−

(
A
√
d
)−αH−q+dλd

λd

))

< c1,x ·Dα ·
(

λ1

αH + q − dλ1

D
−αH−q+dλ1

λ1

+
λd

αH + q − dλd

(
1−

(
A
√
d
)−αH−q+dλd

λd

))
=

c1,x · λ1

αH + q − dλ1

D
−αH−q+dλ1

λ1
+α

+
c1,x · λd

αH + q − dλd

(
1−

(
A
√
d
)−αH−q+dλd

λd

)
·Dα

= C̃1,x ·D
αλ1−αH−q+dλ1

λ1 + C̃1,A,x ·Dα

with

C̃1,x =
c1,x · λ1

αH + q − dλ1

and C̃1,A,x =
c1,x · λd

αH + q − dλd

(
1−

(
A
√
d
)−αH−q+dλd

λd

)
where

c1,x = 2 · ||x||α2 · d
α
2 · C

−αH−q
ρ

min · Ĩ .

Finally, the proof of Lemma 3.33 implies:

I2 ≤ D
αβ
λd
−δ′ · (1 +D)d ·

(
21+α+d · cα5 ·D

−αH−q−α
λ1

+21+α+d · cα6 · d ·
(

1 +
λd

−αH − α− q + dλd

(
A
−αH−α−q+dλd

λd − 1

)))
= D

αβ
λd
−δ′ · (1 +D)d ·

(
C̃2 ·D

−αH−q−α
λ1 + C̃2,A

)
= C̃2 ·D

−αH−q−α
λ1

+αβ
λd
−δ′ · (1 +D)d + C̃2,A ·D

αβ
λd
−δ′ · (1 +D)d

56

3.3 Approximation error due to the discretisation

with
C̃2 = 21+α+d · cα5

and

C̃2,A = 21+α+d · cα6 · d ·
(

1 +
λd

−αH − α− q + dλd

(
A
−αH−α−q+dλd

λd − 1

))
.

Remark 3.38. Like already in the case of a ρ-norm as E-homogeneous function ψ, no
convergence of the error estimate to 0 for D → 0 can be shown when using the first
version of discretization, because the exponent −αH−q−α

λ1
+ αβ

λd
− δ′ can’t be assumed to

be positive (compare Remark 3.18).

57

Chapter 3 Approximation of OSSRFs in harmonizable representation

58

Chapter 4

Approximation of OSSRFs in moving
average representation

4.1 Approximation

Be Xϕ an OSSRF in moving average representation on the Rd. In order to simulate this
random field numerically, the integral which occurs in its definition (see (2.5)) has to be
approximated by a finite sum (analogous to the harmonizable case) . This approximation
is performed in two steps:

(a) Truncation of the domain of integration: The scope of the integration is narrowed
from the infinite space Rd to the finite space [−A,A]d (for a parameter value
A > 1). Thus, Xϕ(x) is approximated by

XA
ϕ (x) =

∫
[−A,A]d

(
ϕ(x− y)H−

q
α − ϕ(−y)H−

q
α

)
Zα(dy) (4.1)

(b) Discretization: The integral on [−A,A]d is approximated by a finite sum, by di-

viding [−A,A]d into (2M)d small hypercubes ∆~k (for ~k = (k1, . . . , kd)
T , −M ≤

kj ≤ M − 1, 1 ≤ j ≤ d) with equal side length D := A
M

, and approximating the

function ϕ(x − y)H−
q
α − ϕ(−y)H−

q
α on each ∆~k by a constant function. For each

~k ∈ {−M, . . . ,M − 1}d, y~k is defined by y~k := D ·~k = (D · k1, . . . , D · kd)T and ∆~k

by ∆~k = ∆k1,...,kd := [k1 ·D, (k1 + 1) ·D)× . . .× [kd ·D, (kd + 1) ·D). For y ∈ ∆~k,
the term ϕ(x− y)H−

q
α − ϕ(−y)H−

q
α is approximated by ϕ̃(x− y~k)− ϕ̃(−y~k) with

ϕ̃ being defined by

ϕ̃(z) :=

{
ϕ(z)H−

q
α , z /∈ [−D,D)d

0, z ∈ [−D,D)d
(4.2)

59

Chapter 4 Approximation of OSSRFs in moving average representation

(for z ∈ Rd), so that XA
ϕ is approximated by

XA,M
ϕ (x) =

∑
~k∈{−M,...,M−1}d

(
ϕ̃(x− y~k)− ϕ̃(−y~k)

)
Zα(∆~k) (4.3)

with (preferably large) parameters A > 0 and M ∈ N.

It is assumed that the exponent H− q
α

is negative. Therefore, the value of ϕ(y)H−
q
α

is replaced by 0 in the approximation ϕ̃ in an environment of the origin, in order
to avoid the calculation with infinite values during the simulation and in order to
be able to estimate the errors of approximation.

4.2 Approximation error due to the truncation

As already in the harmonizable case, it is desired to estimate the errors of the ap-
proximations (XA

ϕ (x) − Xϕ(x) and XA,M
ϕ (x) − XA

ϕ (x)) for a given x ∈ Rd, i.e. to
calculate an upper bound for the absolute values of these differences. Because Xϕ(x),
XA
ϕ (x) and XA,M

ϕ (x) are symmetric α-stable (SαS) random variables, their differences
are SαS random variables, too. Therefore the scale parameters of their distributions
(||XA

ϕ (x) − Xϕ(x)||α and ||XA,M
ϕ (x) − XA

ϕ (x)||α) have to be estimated as a measure of
the approximation errors. As mentioned in section 3.2, ||

∫
Rd f(y)Zα(dy)||α can be calcu-

lated by ||
∫

Rd f(y)Zα(dy)||αα =
∫

Rd |f(y)|α dy (the latter being a non-random integral).

In this chapter, estimations for ||XA
ϕ (x)−Xϕ(x)||αα and ||XA,M

ϕ (x)−XA
ϕ (x)||αα are calcu-

lated in the case that the function ϕ is a ρ-norm (i.e. ϕ = || · ||ρ with ρ ≥ 1). Such a norm
can be obtained as a special case of an ET -homogeneous and (β,E)-admissible function
in the representation of (2.2) by setting the parameter values to λ1 = . . . = λd = 1
(which implies q = λ1 + . . .+ λd = 1 + . . .+ 1 = d), C1 = . . . = Cd = 1 and the vectors
θ1, . . . , θd to the base of standard unit vectors of the Rd.

Theorem 4.1. If the function ϕ is a ρ-norm (i.e. ϕ = || · ||ρ with ρ ≥ 1), and the
inequalities 0 < H < 1, H− d

α
< 0 and A ≥ 2 · ||x||ρ are fulfilled, then the approximation

error can be estimated as follows:

||Xϕ(x)−XA
ϕ (x)||αα ≤ C̃α

1,x · ||x||αρ · A−α(1−H)

with

C̃1,x =

(
d

α
−H

)
· 21−H ·

(
d · 22d

α(1−H)

)1/α

,

which implies that
||Xϕ(x)−XA

ϕ (x)||α ≤ C̃1,x · ||x||ρ · AH−1.

60

4.2 Approximation error due to the truncation

Proof. If ϕ = || · ||ρ (implying q = d), then

||Xϕ(x)−XA
ϕ (x)||αα =

∣∣∣∣∣∣∣∣∫
Rd

(
||x− y||H−

d
α

ρ − || − y||H−
d
α

ρ

)
Zα(dy)

−
∫

[−A,A]d

(
||x− y||H−

d
α

ρ − ϕ|| − y||H−
d
α

ρ

)
Zα(dy)

∣∣∣∣∣∣∣∣α
α

Using the above-mentioned equality ||
∫

Rd f(y)Zα(dy)||αα =
∫

Rd |f(y)|α dy, this can be
transformed to

||Xϕ(x)−XA
ϕ (x)||αα

=

∣∣∣∣∣∣∣∣∫
Rd\[−A,A]d

(
||x− y||H−

d
α

ρ − || − y||H−
d
α

ρ

)
Zα(dy)

∣∣∣∣∣∣∣∣α
α

=

∫
||y||∞>A

∣∣∣||x− y||H− d
α

ρ − || − y||H−
d
α

ρ

∣∣∣α dy
=

∫
||y||∞>A

∣∣∣||x+ y||H−
d
α

ρ − ||y||H−
d
α

ρ

∣∣∣α dy
=

∫
||y||∞>A

∣∣∣∣∣||y||H− d
α

ρ

(
||x+ y||H−d/αρ

||y||H−d/αρ

− 1

)∣∣∣∣∣
α

dy

=

∫
||y||∞>A

||y||αH−dρ

∣∣∣∣∣
(
||x+ y||ρ
||y||ρ

)H−d/α
− 1

∣∣∣∣∣
α

dy

For ||y||∞ > A the inequality∣∣∣∣ ||x+ y||ρ
||y||ρ

− 1

∣∣∣∣ =

∣∣∣∣∣
∣∣∣∣∣∣∣∣ x

||y||ρ
+

y

||y||ρ

∣∣∣∣∣∣∣∣
ρ

−
∣∣∣∣∣∣∣∣ y

||y||ρ

∣∣∣∣∣∣∣∣
ρ

∣∣∣∣∣
≤
∣∣∣∣∣∣∣∣ x

||y||ρ

∣∣∣∣∣∣∣∣
ρ

=
||x||ρ
||y||ρ

≤ A

2 · ||y||ρ
<
||y||∞

2 · ||y||ρ
≤ 1

2

holds (following from the triangle inequality for the norm || · ||ρ, and the assumptions
that ||y||∞ > A and A ≥ 2 · ||x||ρ), and therefore

||x+ y||ρ
||y||ρ

≥ 1− 1

2
=

1

2
,

which implies together with the Mean Value Theorem

61

Chapter 4 Approximation of OSSRFs in moving average representation

∣∣∣∣∣
(
||x+ y||ρ
||y||ρ

)H−d/α
− 1H−d/α

∣∣∣∣∣
≤
∣∣∣∣ ||x+ y||ρ
||y||ρ

− 1

∣∣∣∣ ·
∣∣∣∣∣
(
H − d

α

)
·max

{(
||x+ y||ρ
||y||ρ

)H−d/α−1

, 1H−d/α−1

}∣∣∣∣∣
≤
∣∣∣∣ ||x+ y||ρ
||y||ρ

− 1

∣∣∣∣ · ∣∣∣∣H − d

α

∣∣∣∣ ·
∣∣∣∣∣
(

1

2

)H−d/α−1
∣∣∣∣∣

≤||x||ρ
||y||ρ

·
(
d

α
−H

)
· 2−H+d/α+1

and thus (using ||y||∞ ≤ ||y||ρ)

||Xϕ(x)−XA
ϕ (x)||αα

=

∫
||y||∞>A

||y||αH−dρ

∣∣∣∣∣
(
||x+ y||ρ
||y||ρ

)H−d/α
− 1

∣∣∣∣∣
α

dy

≤
∫
||y||∞>A

||y||αH−dρ

(
||x||ρ
||y||ρ

·
(
d

α
−H

)
· 2−H+ d

α
+1

)α
dy

≤
(
d

α
−H

)α
· 2d+α−αH · ||x||αρ ·

∫
||y||∞>A

||y||αH−dρ · ||y||−αρ dy

≤
(
d

α
−H

)α
· 2d+α−αH · ||x||αρ ·

∫
||y||∞>A

||y||αH−d−α∞ dy

≤
(
d

α
−H

)α
· 2d+α−αH · ||x||αρ ·

∫ ∞
A

∫
S∞

rαH−d−α · rd−1 dζ dr

=

(
d

α
−H

)α
· 2d+α−αH · ||x||αρ ·

∫
S∞

1 dζ ·
∫ ∞
A

rαH−1−α dr

=
L.3.3

(
d

α
−H

)α
· 2d+α−αH · ||x||αρ ·

(
d · 2d

)
·
[

1

αH − α
· rαH−α

]∞
A

=

(
d
α
−H

)α · d · 22d+α(1−H)

α(1−H)
· ||x||αρ · A−α(1−H)

= C̃α
1,x · ||x||αρ · A−α(1−H)

with

C̃1,x =

(
d

α
−H

)
· 21−H ·

(
d · 22d

α(1−H)

)1/α

62

4.3 Approximation error due to the discretisation

4.3 Approximation error due to the discretisation

The algorithm for the simulation of OSSRFs in moving average representation, which is
presented in this thesis, approximates the values of an OSSRF in the points x ~m = ~m ·D
for ~m ∈ {−M, . . . ,M − 1}d. In this section, an estimation for the approximation error
of the discretisation in the points x ~m with || ~m||∞ < M is given (again for the case of
the function ϕ being a ρ-norm).

Lemma 4.2. Be x ~m = ~m ·D for a ~m ∈ {−M, . . . ,M − 1}d. Then∣∣∣∣XA,M
ϕ (x ~m)−XA

ϕ (x ~m)
∣∣∣∣α
α

≤2
∑

~k∈({−M,...,M−1}d− ~m)

∫
∆~k

∣∣∣ϕ̃(−y~k)− ϕ(−y)H−
q
α

∣∣∣α dy
+ 2

∑
~k∈{−M,...,M−1}d

∫
∆~k

∣∣∣ϕ̃(−y~k)− ϕ(−y)H−
q
α

∣∣∣α dy

Proof. For x ∈ Rd, the term ||XA,M
ϕ (x)−XA

ϕ (x)||αα can be transformed to∣∣∣∣XA,M
ϕ (x)−XA

ϕ (x)
∣∣∣∣α
α

=

∣∣∣∣∣∣
∣∣∣∣∣∣

∑
~k∈{−M,...,M−1}d

(
ϕ̃(x− y~k)− ϕ̃(−y~k)

)
Zα(∆~k)

−
∫

[−A,A]d

(
ϕ(x− y)H−

q
α − ϕ(−y)H−

q
α

)
Zα(dy)

∣∣∣∣∣∣∣∣α
α

=

∣∣∣∣∣∣
∣∣∣∣∣∣

∑
~k∈{−M,...,M−1}d

(
ϕ̃(x− y~k)− ϕ̃(−y~k)

) ∫
[−A,A]d

1∆~k
(y) Zα(dy)

−
∫

[−A,A]d

(
ϕ(x− y)H−

q
α − ϕ(−y)H−

q
α

) ∑
~k∈{−M,...,M−1}d

1∆~k
(y) Zα(dy)

∣∣∣∣∣∣
∣∣∣∣∣∣
α

α

=

∣∣∣∣∣∣
∣∣∣∣∣∣
∫

[−A,A]d

∑
~k∈{−M,...,M−1}d

1∆~k
(y) ·

(
ϕ̃(x− y~k)− ϕ̃(−y~k)

)
Zα(dy)

−
∫

[−A,A]d

∑
~k∈{−M,...,M−1}d

1∆~k
(y) ·

(
ϕ(x− y)H−

q
α − ϕ(−y)H−

q
α

)
Zα(dy)

∣∣∣∣∣∣
∣∣∣∣∣∣
α

α

63

Chapter 4 Approximation of OSSRFs in moving average representation

=

∫
[−A,A]d

∣∣∣∣∣∣
∑

~k∈{−M,...,M−1}d

1∆~k
(y) ·

(
ϕ̃(x− y~k)− ϕ̃(−y~k)

)

−
∑

~k∈{−M,...,M−1}d

1∆~k
(y) ·

(
ϕ(x− y)H−

q
α − ϕ(−y)H−

q
α

)∣∣∣∣∣∣
α

dy

=

∫
[−A,A]d

∑
~k∈{−M,...,M−1}d

1∆~k
(y)

·
∣∣∣(ϕ̃(x− y~k)− ϕ̃(−y~k)

)
−
(
ϕ(x− y)H−

q
α − ϕ(−y)H−

q
α

)∣∣∣α dy
=

∑
~k∈{−M,...,M−1}d

∫
∆~k

∣∣∣ϕ̃(x− y~k)− ϕ̃(−y~k)− ϕ(x− y)H−
q
α + ϕ(−y)H−

q
α

∣∣∣α dy
≤

∑
~k∈{−M,...,M−1}d

∫
∆~k

(∣∣∣ϕ̃(x− y~k)− ϕ(x− y)H−
q
α

∣∣∣+
∣∣∣−ϕ̃(−y~k) + ϕ(−y)H−

q
α

∣∣∣)α dy
≤2

∑
~k∈{−M,...,M−1}d

∫
∆~k

∣∣∣ϕ̃(x− y~k)− ϕ(x− y)H−
q
α

∣∣∣α dy
+ 2

∑
~k∈{−M,...,M−1}d

∫
∆~k

∣∣∣ϕ̃(−y~k)− ϕ(−y)H−
q
α

∣∣∣α dy

If x = x ~m = ~m ·D, then∑
~k∈{−M,...,M−1}d

∫
∆~k

∣∣∣ϕ̃(x− y~k)− ϕ(x− y)H−
q
α

∣∣∣α dy
=

∑
~k∈{−M,...,M−1}d

∫
∆~k

∣∣∣ϕ̃(~m ·D − ~k ·D)− ϕ(~m ·D − y)H−
q
α

∣∣∣α dy
=

∑
~k∈{−M,...,M−1}d

∫
∆~k

∣∣∣ϕ̃((~m− ~k) ·D)− ϕ(~m ·D − y)H−
q
α

∣∣∣α dy
=

∑
~k∈{−M,...,M−1}d

∫
∆

(~k−~m)

∣∣∣ϕ̃((~m− ~k) ·D)− ϕ(−y)H−
q
α

∣∣∣α dy
=

M−1−m1∑
k1=−M−m1

. . .

M−1−md∑
kd=−M−md

∫
∆~k

∣∣∣ϕ̃(−~k ·D)− ϕ(−y)H−
q
α

∣∣∣α dy
=

∑
~k∈({−M,...,M−1}d− ~m)

∫
∆~k

∣∣∣ϕ̃(−y~k)− ϕ(−y)H−
q
α

∣∣∣α dy

64

4.3 Approximation error due to the discretisation

Theorem 4.3. If the E-homogeneous, (β,E)-admissible function ϕ is a ρ-norm (i.e.
ϕ = || · ||ρ with ρ ≥ 1), the parameter H is in the interval (0, 1), the exponent H − q

α

is negative (i.e. αH < q), and x = x ~m with ~m ∈ {−M + 1, . . . ,M − 1}d, then the
approximation error in the point x ~m can be estimated as∣∣∣∣XA,M

ϕ (x ~m)−XA
ϕ (x ~m)

∣∣∣∣α
α
≤ C̃2 ·DαH

with

C̃2 =
d · 2d+2

αH
+ 23 · dα+1 ·

(
d

α
−H

)α
·
(

4d−1 +
3d−1

α(1−H)

)
,

which implies ∣∣∣∣XA,M
ϕ (x ~m)−XA

ϕ (x ~m)
∣∣∣∣
α
≤ C̃

1/α
2 ·DH .

Proof. Because the condition y~k = D · ~k ∈ [−D,D)d is equivalent to ~k ∈ {−1, 0}d, the
definition of ϕ̃ in (4.2) implies that

∣∣∣ϕ̃(−y~k)− ϕ(−y)H−
q
α

∣∣∣ =

{∣∣ϕ(−y~k)H−
q
α − ϕ(−y)H−

q
α

∣∣ , ~k /∈ {−1, 0}d

ϕ(−y)H−
q
α , ~k ∈ {−1, 0}d

(4.4)

Therefore the cases ~k ∈ {−1, 0}d and ~k /∈ {−1, 0}d have to be distinguished in the
following. Because {−1, 0}d ⊂ {−M, . . . ,M − 1}d and (following from the assumption
~m ∈ {−M+1, . . . ,M−1}d, i.e. || ~m||∞ < M) also {−1, 0}d ⊂

(
{−M, . . . ,M − 1}d − ~m

)
,

Equation (4.4) and Lemma 4.2 imply that∣∣∣∣XA,M
ϕ (x ~m)−XA

ϕ (x ~m)
∣∣∣∣α
α

≤2
∑

~k∈({−M,...,M−1}d− ~m)

∫
∆~k

∣∣∣ϕ̃(−y~k)− ϕ(−y)H−
q
α

∣∣∣α dy
+ 2

∑
~k∈{−M,...,M−1}d

∫
∆~k

∣∣∣ϕ̃(−y~k)− ϕ(−y)H−
q
α

∣∣∣α dy
=4

∑
~k∈{−1,0}d

∫
∆~k

∣∣∣ϕ̃(−y~k)− ϕ(−y)H−
q
α

∣∣∣α dy + 2
∑
~k∈J1

∫
∆~k

∣∣∣ϕ̃(−y~k)− ϕ(−y)H−
q
α

∣∣∣α dy
+ 2

∑
~k∈J2

∫
∆~k

∣∣∣ϕ̃(−y~k)− ϕ(−y)H−
q
α

∣∣∣α dy
=4

∑
~k∈{−1,0}d

∫
∆~k

ϕ(−y)αH−qdy + 2
∑
~k∈J1

∫
∆~k

∣∣∣ϕ(−y~k)H−
q
α − ϕ(−y)H−

q
α

∣∣∣α dy

65

Chapter 4 Approximation of OSSRFs in moving average representation

+ 2
∑
~k∈J2

∫
∆~k

∣∣∣ϕ(−y~k)H−
q
α − ϕ(−y)H−

q
α

∣∣∣α dy

with J1 :=
(
{−M, . . . ,M − 1}d − ~m

)
\{−1, 0}d and J2 := {−M, . . . ,M−1}d\{−1, 0}d.

Because ϕ = || · ||ρ (and therefore q = λ1 + . . .+ λd = d), this implies∣∣∣∣XA,M
ϕ (x ~m)−XA

ϕ (x ~m)
∣∣∣∣α
α
≤4

∑
~k∈{−1,0}d

∫
∆~k

||y||αH−dρ dy

+ 2
∑
~k∈J1

∫
∆~k

∣∣∣||y~k||H− d
α

ρ − ||y||H−
d
α

ρ

∣∣∣α dy

+ 2
∑
~k∈J2

∫
∆~k

∣∣∣||y~k||H− d
α

ρ − ||y||H−
d
α

ρ

∣∣∣α dy

=4

∫
[−D,D)d

||y||αH−dρ dy + 2
∑
~k∈J1

I~k + 2
∑
~k∈J2

I~k

with I~k :=
∫

∆~k

∣∣∣||y~k||H− d
α

ρ − ||y||H−
d
α

ρ

∣∣∣α dy

The first integral can be estimated as follows (with S∞ being defined as in Lemma 3.3):∫
[−D,D)d

||y||αH−dρ dy ≤
∫

[−D,D)d
||y||αH−d∞ dy =

∫ D

0

∫
S∞

||r · ζ||αH−d∞ dζ · rd−1 dr

=

∫ D

0

rαH−1 dr ·
∫
S∞

1 dζ =
1

αH
·
[
rαH

]D
0
· d · 2d

=
d · 2d

αH
·DαH

For the estimation of the integrals I~k, the Mean Value Theorem can be used:∣∣∣||y~k||H− d
α

ρ − ||y||H−
d
α

ρ

∣∣∣ ≤ ∣∣ ||y~k||ρ − ||y||ρ ∣∣ · ∣∣∣∣(H − d

α

)
· µH−

d
α
−1

~k

∣∣∣∣
with µ~k := infy∈∆~k

(||y||ρ) (analogous to (3.12) in the proof of Theorem 3.16). As∣∣ ||y~k||ρ − ||y||ρ ∣∣ ≤ ||y~k − y||ρ ≤ ||(D, . . . , D)T ||ρ ≤ d · ||(D, . . . , D)T ||∞ = d ·D

and H − d
α
< 0, it follows that∣∣∣||y~k||H− d

α
ρ − ||y||H−

d
α

ρ

∣∣∣ ≤ d ·D ·
(
d

α
−H

)
· µH−

d
α
−1

~k

66

4.3 Approximation error due to the discretisation

which implies that

I~k =

∫
∆~k

∣∣∣||y~k||H− d
α

ρ − ||y||H−
d
α

ρ

∣∣∣α dy

=

∫
∆~k

dα ·Dα ·
(
d

α
−H

)α
· µαH−d−α~k

dy

=dα ·Dα ·
(
d

α
−H

)α
· µαH−d−α~k

·
∫

∆~k

1 dy

=dα ·Dα+d ·
(
d

α
−H

)α
· µαH−d−α~k

.

Therefore∣∣∣∣XA,M
ϕ (x ~m)−XA

ϕ (x ~m)
∣∣∣∣α
α

≤4

∫
[−D,D)d

||y||αH−dρ dy + 2
∑
~k∈J1

I~k + 2
∑
~k∈J2

I~k

≤4 · d · 2
d

αH
·DαH + 2

∑
~k∈J1

dα ·Dα+d ·
(
d

α
−H

)α
· µαH−d−α~k

+ 2
∑
~k∈J2

dα ·Dα+d ·
(
d

α
−H

)α
· µαH−d−α~k

=
d · 2d+2

αH
·DαH + 2dα ·Dα+d ·

(
d

α
−H

)α
·

∑
~k∈J1

µαH−d−α~k
+
∑
~k∈J2

µαH−d−α~k


It can be shown that

∑
~k∈J1

µαH−d−α~k
≤
∑

~k∈J2
µαH−d−α~k

by dividing the set J1 into 2d

subsets and replacing these subsets by sets of equal sizes whose sum is J2, such that the
sum of µαH−d−α~k

on each subset of J1 is less than or equal to the sum on its replacement.

As an example, be d = 2 and ~m =
(
m1

m2

)
with 0 ≤ m1,m2 < M , and be the values µ~k for

~k ∈ {−1, 0}2 defined as some positive, finite values, e.g. µ~k = 1 for ~k ∈ {−1, 0}2. Then

67

Chapter 4 Approximation of OSSRFs in moving average representation

J1 =
(
{−M, . . . ,M − 1}2 −

(
m1

m2

))
\{−1, 0}2 and∑

~k∈J1

µαH−d−α~k
+

∑
~k∈{−1,0}2

µαH−d−α~k

=

M−1−m1∑
k1=−M−m1

M−1−m2∑
k2=−M−m2

µαH−d−αk1,k2

=
−M−1∑

k1=−M−m1

−M−1∑
k2=−M−m2

µαH−d−αk1,k2
+

−M−1∑
k1=−M−m1

M−1−m2∑
k2=−M

µαH−d−αk1,k2

+

M−1−m1∑
k1=−M

−M−1∑
k2=−M−m2

µαH−d−αk1,k2
+

M−1−m1∑
k1=−M

M−1−m2∑
k2=−M

µαH−d−αk1,k2

≤
M−1∑

k1=M−m1

M−1∑
k2=M−m2

µαH−d−αM,M +
M−1∑

k1=M−m1

M−1−m2∑
k2=−M

µαH−d−αM,k2

+

M−1−m1∑
k1=−M

M−1∑
k2=M−m2

µαH−d−αk1,M
+

M−1−m1∑
k1=−M

M−1−m2∑
k2=−M

µαH−d−αk1,k2

≤
M−1∑

k1=M−m1

M−1∑
k2=M−m2

µαH−d−αk1,k2
+

M−1∑
k1=M−m1

M−1−m2∑
k2=−M

µαH−d−αk1,k2

+

M−1−m1∑
k1=−M

M−1∑
k2=M−m2

µαH−d−αk1,k2
+

M−1−m1∑
k1=−M

M−1−m2∑
k2=−M

µαH−d−αk1,k2

=
M−1∑
k1=−M

M−1∑
k2=−M

µαH−d−αk1,k2

=
∑
~k∈J2

µαH−d−α~k
+

∑
~k∈{−1,0}2

µαH−d−α~k

If m1 < 0 or m2 < 0, or for higher dimensions d, the inequality
∑

~k∈J1
µαH−d−α~k

≤∑
~k∈J2

µαH−d−α~k
can be shown analogously. Therefore∣∣∣∣XA,M

ϕ (x ~m)−XA
ϕ (x ~m)

∣∣∣∣α
α

≤d · 2
d+2

αH
·DαH + 2dα ·Dα+d ·

(
d

α
−H

)α
· 2 ·

∑
~k∈J2

µαH−d−α~k

The sum
∑

~k∈J2
µαH−d−α~k

can be estimated analogously to the estimation of

68

4.3 Approximation error due to the discretisation

∑
~k∈J µ

−αH−d−α
~k

in the proof of Theorem 3.16: The equation∑
~k∈J2

µαH−d−α~k
= DαH−d−α · 2d ·

∑
~k∈J ′

||~k||αH−d−αρ (4.5)

with J ′ := {0, . . . ,M − 1}d\{0}d can be shown analogous to (3.15) and (3.16), and
similar to the following calculation, we obtain

∑
~k∈J ′

||~k||αH−d−αρ ≤ d ·

(
2d−1 +

(3/2)d−1

α(1−H)

(
1−M−α(1−H)

))
(4.6)

Therefore ∣∣∣∣XA,M
ϕ (x ~m)−XA

ϕ (x ~m)
∣∣∣∣α
α

≤d · 2
d+2

αH
·DαH + 2dα ·Dα+d ·

(
d

α
−H

)α
· 2 ·DαH−d−α · 2d

· d ·

(
2d−1 +

(3/2)d−1

α(1−H)

(
1−M−α(1−H)

))

≤d · 2
d+2

αH
·DαH + 23 · dα+1 ·

(
d

α
−H

)α
·DαH ·

(
4d−1 +

3d−1

α(1−H)

)
=C̃2 ·DαH

with

C̃2 =
d · 2d+2

αH
+ 23 · dα+1 ·

(
d

α
−H

)α
·
(

4d−1 +
3d−1

α(1−H)

)
.

69

Chapter 4 Approximation of OSSRFs in moving average representation

70

Chapter 5

Approximation algorithms

In this chapter, algorithms for the numerical simulation of OSSRFs in harmonizable and
in moving average representation will be developed. First, the generation of α-stable
random variables, which is necessary for the simulation of α-stable random fields, is
considered, then the simulation of random fields in harmonizable representation, and
after this the simulation in the moving average case. For easier notation and better
readability, we start by developing an algorithm for the simulation of two-dimensional
OSSRF in both cases, and then generalize it to higher dimensions. Finally we consider
algorithms for a fast Fourier transform and for a fast convolution, which are used for the
simultaneous calculation of a large number of certain sums by the simulation algorithms,
in the last two sections of this chapter.

5.1 Simulation of stable random variables

5.1.1 Simulation of an isotropic complex-valued stable random
variable

For the approximation of a realization of an OSSRF in harmonizable representation, the
simulation of isotropic complex-valued α-stable random variables is required.

If α = 2, then the random variable X which has to be simulated, is an isotropic gaussian
random variable, and can be calculated by X := G1 + i ·G2, for two standard gaussian
random variables G1 and G2. In MATLAB and Java, the two programming platforms
used for this project, functions for the simulation of standard gaussian random variables
are already provided by the API (application programming interface) - in MATLAB
with the function randn, and in Java with the function Random.nextGaussian(). The
algorithm which is used in Java (in Random.nextGaussian()) to generate gaussian dis-
tributed random numbers is explicitely stated in the Java API documentation of this
function.

71

Chapter 5 Approximation algorithms

However, if α < 2, then an isotropic α-stable random variable can be simulated using
the following equations from [10]:

(a) Be A ∼ Sα/2
(
(cos πα

4
)2/α, 1, 0

)
and G = (G1, . . . , Gd) be a zero mean Gaussian

vector, independent of A. Then the random vector X = (A1/2G1, . . . , A
1/2Gd) has

a symmetric α-stable distribution (see [10], section 2.5). Note that (under the
assumption α < 2) the shape parameter of A is α

2
< 1.

(b) If X ∼ Sα(1, β, 0), then σX + µ ∼ Sα(σ, β, µ) if α 6= 1,
and σX + 2

π
βσ ln(σ) + µ ∼ Sα(σ, β, µ) if α = 1 (see [10], section 1.7, page 43).

(c) A Sα(1, β, 0)-distributed r.v. can be simulated using the algorithm by Chambers,
Mallows and Stuck (see [4]), which (when called with the parameters α ∈ (0, 2)
and β ∈ [−1, 1]) simulates a random variable

Y ∼

{
Sα(1, β,−β tan(πα

2
)) if α 6= 1

Sα(1, β, 0) if α = 1

Therefore, in order to simulate an α-stable isotropic complex random variable X, the
following algorithm may be used:

• If α = 2: Simulate G1, G2 ∼ N0,1 (e.g. in MATLAB with randn or in Java with
Random.nextGaussian()) and set X := G1 + i ·G2

• if 0 < α < 2:

(a) Simulate a random variable Y ∼ Sα′
(
1, 1,− tan(πα

′

2
)
)

with α′ = α
2
, i.e.

Y ∼ Sα/2

(
1, 1,− tan

(πα
4

))
using the method by Chamber, Mallows and Stuck: Y := rstab

(
α
2
, 1
)
.

Note that we assume α < 2, therefore α
2
< 1.

(b) Calculate

A :=
(
Y + tan

(πα
4

))
·
(

cos
(πα

4

))2/α

(Then Y + tan(πα/4) ∼ Sα/2(1, 1, 0)⇒ A ∼ Sα/2
(
cos(πα/4)2/α, 1, 0

)
)

(c) Simulate G1, G2 ∼ N0,1 (as in the case α = 2)

(d) Calculate X :=
√
A ·G1 + i ·

√
A ·G2

Then (in both cases) X is a realization of an isotropic complex α-stable random variable
(with scale parameter 1). If a random variable with scale parameter σ 6= 1 should be
simulated, then X has to be multiplied with σ, i.e. the requested random number is
σ ·X.

72

5.2 Approximation of two-dimensional OSSRF in harmonizable distribution

5.1.2 Simulation of a real-valued symmetric stable random variable

For the approximation of a realization of an OSSRF in moving average representation,
the simulation of symmetric α-stable random variables is required. These random vari-
ables can be simulated directly with the algorithm by Chambers, Mallows and Stuck
(see [4]) by calling it with the shape parameter α and the skewness parameter 0. The
obtained random number then has to be multiplied with the required scale parameter
σ, if a random variable with scale parameter σ 6= 1 needs to be simulated.

5.2 Approximation of two-dimensional OSSRF in
harmonizable distribution

A 2-dimensional OSSRF in harmonizable representation

Xψ(x) = Re

∫
R2

(
ei<x,ξ> − 1

)
ψ(ξ)−H−

q
αWα(dξ), x ∈ R2

is approximated by the finite sum

XA,B,D
ψ (x) = Re

∑
(k,l)∈J

(
ei<x,ξk,l> − 1

)
ψ(ξk,l)

−H− q
αWα(∆k,l)

with M := A
D
∈ N and N := B

D
∈ N, J := {−M, . . . ,M − 1}2\{−N, . . . , N − 1}2,

ξk,l := (k ·D, l ·D)T , and ∆k,l := [k ·D, (k + 1) ·D)× [l ·D, (l + 1) ·D) for each (k, l) ∈
J .

This can be transformed as follows:

XA,B,D
ψ (x) = Re

∑
(k,l)∈J

(
ei<x,ξk,l> − 1

)
ψ(ξk,l)

−H− q
α Wα(∆k,l)

= Re
∑

(k,l)∈J

(
ei<x,ξk,l>ψ(ξk,l)

−H− q
α − ei·0ψ(ξk,l)

−H− q
α

)
Wα(∆k,l)

= Re
(
V A,B,D
ψ (x)

)
− Re

(
V A,B,D
ψ (0)

)
with

V A,B,D
ψ (x) =

∑
(k,l)∈J

ei<x,ξk,l>ψ(ξk,l)
−H− q

α Wα(∆k,l)

which can be represented by

V A,B,D
ψ (x) =

∑
−M≤k,l<M

ei<x,ξk,l> · fk,l · wk,l

73

Chapter 5 Approximation algorithms

where

fk,l =

{
0 if (k, l) ∈ {−N, . . . , N − 1}2

ψ(ξk,l)
−H− q

α else

is a function of the indices k and l, and where (for each pair of indices (k, l)), wk,l =
Wα(∆k,l) is an α-stable, isotropic complex-valued random variable with scale parame-
ter (A/M)2/α (because Wα(dξ) has Lebesgue control measure, and ∆k,l has Lebesgue
measure (A/M)2).

Usually, we are not interested in simulating the value of XA,B,D
ψ (x) for only one x ∈ R2, or

only a few such arguments, but for a large set of x ∈ R2. In order to perform the necessary
computations efficiently, it is useful to simulate the values of the OSSRF on a regular grid
(xm,n) with 2M×2M points (e.g. the number of approximated values of the OSSRF is the
same as the number of simulated α-stable random variables Wα(∆k,l) which are used for

their calculation). Thus, the approximated random field XA,B,D
ψ (and for that purpose,

the values of V A,B,D
ψ) are calculated on xm,n = (C ·m,C · n)T , with −M ≤ m,n < M

and a certain constant C > 0, so that (for each pair (m,n) ∈ {−M, . . . ,M}) we have to
calculate

V A,B,D
ψ (xm,n) =

∑
−M≤k,l<M

ei<xm,n,ξk,l> · fk,l · wk,l

=
∑

−M≤k,l<M

ei<(C·mC·n),(D·kD·l)> · (fk,l · wk,l)

=
∑

−M≤k,l<M

ei·CD·(km+ln) · (fk,l · wk,l)

If the constant C is chosen as C = π
A

, then C ·D = π
A
· A
M

= π
M

, so that i·CD ·(km+ln) =

2πi · km+ln
2M

which means that (V A,B,D
ψ (xm,n)) is the two-dimensional discrete Fourier

transform (DFT) of (fk,l · wk,l). In this case, a fast Fourier transform (FFT) algorithm
can be used for this calculation. Therefore this choice for the constant C is used in the
algorithm, so that

V A,B,D
ψ (xm,n) =

∑
−M≤k,l<M

e2πi· km+ln
2M · (fk,l · wk,l).

The considerations of this section can be summarized in the following algorithm for the
simulation of two-dimensional OSSRF in harmonizable representation:

(a) Simulation of (2M) × (2M) i.i.d. complex-valued isotropic α-stable random vari-
ables (r.v.) wk,l = Wα(∆k,l) (with scale parameter σ = D2/α),
for k, l ∈ {−M, . . . ,M − 1}2 with the algorithm from subsection 5.1.1.

74

5.3 Approximation of d-dimensional OSSRF in harmonizable distribution

(b) Calculation of

fk,l =

{
0 if (k, l) ∈ {−N, . . . , N − 1}2

ψ(ξk,l)
−H− q

α else

and of the products fk,l · wk,l for (k, l) ∈ {−M, . . . ,M − 1}2.

(c) Calculation of V A,B,D
ψ (xm,n) =

∑
−M≤k,l<M e2πi· km+ln

2M · (fk,l · wk,l) = DFT ((fk,l ·
wk,l)k,l), i.e. the two-dimensional discrete Fourier transform of the products (fk,l ·
wk,l), using a fast Fourier transform algorithm.

(d) Calculation of XA,B,D
ψ (xm,n) = Re

(
V A,B,D
ψ (xm,n)

)
− Re

(
V A,B,D
ψ (0)

)

5.3 Approximation of d-dimensional OSSRF in
harmonizable distribution

The algorithm for the simulation of two-dimensional OSSRF in harmonizable represen-
tation can be easily generalized to an algorithm for the simulation of d-dimensional
OSSRF (with d ≥ 2, e.g. for three-dimensional OSSRF). Like in the two-dimensional
case, the OSSRF is simulated on the points x ~m := π

A
· ~m for ~m ∈ {−M, . . . ,M − 1}d:

(a) Simulation of (2M)d i.i.d. complex-valued isotropic α-stable random variables

(with scale parameter σ = Dd/α) w~k = Wα(∆~k), for ~k ∈ {−M, . . . ,M − 1}d
with the algorithm from subsection 5.1.1.

(b) Calculation of f~k =

{
ψ(ξ~k)−H−

q
α for ξ~k = ~k ·D , ~k ∈ J

0 , else.

and of the products g~k := f~k · w~k for ~k ∈ {−M, . . . ,M − 1}d.

(c) Calculation of V A,B,D
ψ (x ~m) =

∑
~k∈{−M,...,M−1}d e

2πi
2M

<~m,~k>g~k = DFT (g~k)
using a fast Fourier transform algorithm.

(d) Calculation of
XA,B,D
ψ (x ~m) = Re(V A,B,D

ψ (x ~m))− Re(V A,B,D
ψ (0)).

75

Chapter 5 Approximation algorithms

5.4 Approximation of two-dimensional OSSRF in
moving average distribution

A 2-dimensional OSSRF in moving average representation

Xϕ(x) =

∫
R2

(ϕ(x− y)H−q/α − ϕ(−y)H−q/α)Zα(dy), x ∈ R2

is approximated by the finite sum

XA,M
ϕ (x) =

M−1∑
k,l=−M

(ϕ̃(x− yk,l)− ϕ̃(−yk,l))Zα(∆k,l)

with parameters A > 0 and M ∈ N, and with D := A
M

, yk,l := (k ·D, l ·D)T =
(
k
l

)
·D,

∆k,l := [k ·D, (k + 1) ·D)× [l ·D, (l + 1) ·D) and

ϕ̃(z) :=

{
ϕ(z)H−q/α, z /∈ [−D,D)2

0, z ∈ [−D,D)2

(see (4.2) and (4.3)).

This can be transformed as follows:

XA,M
ϕ (x) =

M−1∑
k,l=−M

(ϕ̃(x− yk,l)− ϕ̃(−yk,l)) Zα(∆k,l)

=
M−1∑

k,l=−M

ϕ̃(x− yk,l) Zα(∆k,l)−
M−1∑

k,l=−M

ϕ̃(−yk,l) Zα(∆k,l)

= V A,M
ϕ̃ (x)− V A,M

ϕ (0)

with

V A,M
ϕ̃ (x) =

M−1∑
k,l=−M

ϕ̃(x− yk,l)Zα(∆k,l).

In order to obtain a useful and efficient algorithm for the simulation of a whole random
field XA,M

ϕ (x), the values of V A,M
ϕ are evaluated not just on some arbitrary point x ∈ R2,

but on the same grid of points, on which the function ϕ is evalated during the simulation.
This means, the values of V A,M

ϕ̃ (xm,n) (and, using these results, the values of XA,M
ϕ (xm,n))

are simulated for xm,n := ym,n = D ·
(
m
n

)
for all m,n ∈ {−M, . . . ,M −1}. As we will see,

this choice of evaluation points enables an efficient implementation of the simulation of
2M · 2M values of the OSSRF at once.

76

5.4 Approximation of two-dimensional OSSRF in moving average distribution

With this choice of evaluation points, V A,M
ϕ̃ has the form

V A,M
ϕ̃ (xm,n) =

M−1∑
k,l=−M

ϕ̃(xm,n − yk,l) Zα(∆k,l)

=
M−1∑

k,l=−M

ϕ̃

(
D ·
(
m

n

)
−D ·

(
k

l

))
Zα(∆k,l)

=
M−1∑

k,l=−M

ϕ̃

(
D ·
(
m− k
n− l

))
Zα(∆k,l)

=
M−1∑

k,l=−M

fm−k,n−l · zk,l

with fr,s = ϕ̃(D ·
(
r
s

)
) for each k, l ∈ {−2M + 1, . . . , 2M − 1}, and where zk,l := Zα(∆k,l)

is a realization of a symmetric α-stable random variable with scale parameter D2/α,
because the random measure Z has Lebesgue control measure, and ∆k,l has the Lebesgue
measureD2. In other words: V A,M

ϕ is a convolution of the arrays (fr,s) (the function values
of ϕ̃) and (zk,l) (the simulated values of a symmetric α-stable random variable). This
convolution can be calculated very efficiently using the fast Fourier transform and the
inverse fast Fourier transform (see section 5.7).

Therefore, the random field XA,M
ϕ (x) can be simulated by the following algorithm:

(a) Simulation of (2M)2 i.i.d. symmetric α-stable random variables zk,l = Zα(∆k,l),
−M ≤ k, l ≤ M − 1, with parameters µ = 0, β = 0, σ = D2/α (see subsection
5.1.2).

(b) Calculation of

fk,l := ϕ̃(yk,l) =

{
ϕ(yk,l)

H−q/α, (k, l) /∈ {−1, 0}2

0, (k, l) ∈ {−1, 0}2

for yk,l =
(
k·D
l·D

)
, −2M ≤ k, l ≤ 2M − 1.

(c) Calculation of

V A,M
ϕ̃ (xm,n) :=

M−1∑
k,l=−M

ϕ̃(ym−k,n−l) · Zα(∆k,l) =
M−1∑

k,l=−M

fm−k,n−l · zk,l

for m,n ∈ {−M, . . . ,M − 1} (with the algorithm presented in section 5.7).

77

Chapter 5 Approximation algorithms

(d) Calculation of
XA,M
ϕ (xm,n) = V A,M

ϕ̃ (xm,n)− V A,M
ϕ̃ (0)

for m,n ∈ {−M, . . . ,M − 1}.

5.5 Approximation of d-dimensional OSSRF in moving
average representation

In the moving-average case, the algorithm for the simulation of two-dimensional OSSRF
can also be generalized straight-forward to the simulation of OSSRF in higher dimension
(analogous to the generalization to higher dimensions in the harmonizable representa-
tion): Be d ≥ 2, then an OSSRF in moving average representation can be approximated
(in the points x ~m = ~m ·D for ~m ∈ {−M, . . . ,M − 1}d) with the following procedure:

(a) Simulation of (2M)d i.i.d. symmetric α-stable random variables z~k = Zα(∆~k),
~k ∈ {−M, . . . ,M − 1}d, with parameters µ = 0, β = 0, σ = Dd/α (see subsection
5.1.2).

(b) Calculation of

f~k = ϕ̃(y~k) =

{
ϕ(y~k)H−q/α, ~k /∈ {−1, 0}d

0, ~k ∈ {−1, 0}d

for y~k = ~k ·D, ~k ∈ {−2M, . . . , 2M − 1}d.

(c) Calculation of

V A,M
ϕ̃ (x ~m) =

∑
~k∈{−M,...,M−1}d

ϕ̃(y ~m−~k) · Zα(∆~k) =
∑

~k∈{−M,...,M−1}d

f ~m−~k · z~k

for ~m ∈ {−M, . . . ,M − 1}d (see section 5.7).

(d) Calculation of
XA,M
ϕ (x ~m) = V A,M

ϕ̃ (x ~m)− V A,M
ϕ̃ (0)

for ~m ∈ {−M, . . . ,M − 1}d.

78

5.6 The fast Fourier transform

5.6 The fast Fourier transform

The methods for the simulation of OSSRF, which have been presented in this chapter,
use d-dimensional discrete Fourier transforms, i.e. the calculation of sums of the form

y ~m =
∑

~k∈{0,...,N−1}d

x~k · e
2πi<~m,~k>

N , ~m ∈ {0, . . . , N − 1}

for a number N ∈ N. If the transform was implemented directly from this sum formula
(i.e. calculating Nd sums of Nd summands each), the required time for the calcula-
tion would be asymptotically proportional to N2d (respective P 2, where P = Nd is
the number of processed data points), i.e. the calculation would have a complexity of
O(N2d) (resp. O(P 2)). However, with a more sophisticated algorithm (a “fast Fourier
transform”), the same sums can be calculated with a complexity of O(Nd · log(N)) (resp.
O(P ·log(P))), thus performing the calculations much faster. In the following paragraphs,
some basic principles of a “fast” Fourier transform, which reduce the time complexity
(and thus the needed time for the calculation), are presented.

Multi-dimensional discrete Fourier transforms

A discrete Fourier transform of a d-dimensional data array (with d ≥ 2) can be parti-
tioned into the calculation of one-dimensional Fourier transforms. More precisely, the
Fourier transform of an d-dimensional array of size Nd (i.e. length N in each dimen-
sion) can be calculated by performing Nd−1 one-dimensional DFTs (each of size N)
in the first dimension, followed by Nd−1 one-dimensional DFTs in the second dimen-
sion, etc. Combined, d × Nd−1 one-dimensional DFTs (with a complexity of O(N2)
each) have to be calculated, so that the complexity has been reduced from O(N2d) to
O(Nd−1 ·N2) = O(Nd+1).

This sectioning of the DFT is shown more detailed in the case of a two-dimensional
transform: Be the array ym,n the result of a DFT of xk,l (with k, l,m, n ∈ {0, . . . , N−1}),
i.e.

ym,n =
∑

0≤k,l<N

xk,l · e2πi· km+ln
N .

This can be transformed to:

ym,n =
∑

0≤k,l<N

xk,l · e2πi· km+ln
N =

N−1∑
l=0

N−1∑
k=0

xk,l · e2πi· km
N · e2πi· ln

N

=
N−1∑
l=0

e2πi· ln
N ·

N−1∑
k=0

xk,l · e2πi· km
N︸ ︷︷ ︸

=:zm,l

79

Chapter 5 Approximation algorithms

i.e. ym,n =
∑N−1

l=0 zm,l · e2πi· ln
N with zm,l =

∑N−1
k=0 xk,l · e2πi· km

N . Therefore, the two-
dimensional DFT can be calculated by calculating first the zm,l from the xk,l for each l
(DFTs of the columns) and then calculating the ym,n from the zm,l for each m (DFTs of
the rows). Thus, the algorithm of the two-dimensional DFT has been changed from the
calculation of N2 sums with N2 summands each to the calculation of 2N one-dimensional
DFTs, i.e. 2N ·N sums with N sums each. Therefore, the number of evaluations of the
exp-function and the number of multiplications have been reduced from N4 to 2N3.
The same method can be used to calculate a d-dimensional DFT using one-dimensional
DFTs also for higher dimensions (d > 2). This technique is used in the implementation of
FFTs in JAVA which is part of the JAVA implementation of the simulation algorithms
for OSSRF described in this chapter, and it is also used for the calculation of multi-
dimensional FFTs in MATLAB, as it is described in [9] (a German MATLAB manual)
in section 8.6, and in [7] in the descriptions of the functions fft2 and fftn.

One-dimensional Fourier transform

Be ym =
∑N−1

k=0 xk·e2πi· km
N . If this sum is calculated for eachm ∈ {0, . . . , N−1} separately,

then N2 evaluations of the complex exp-function and N2 complex multiplications need
to be performed. With a more efficient algorithm, the fast Fourier transform, these sums
can be calculated much faster. It is most efficient if N is a power of 2, then its complexity
is in O(N × log(N)) (compared to O(N2) for the simple DFT algorithm). An algorithm
for the fast calculation of a Fourier transform was published by J. Cooley and J. Tukey
in 1965 (see [3]).

If N is an even number, the calculation of this sum can be divided into the calculation
of two smaller sums (one sum for all even indices of the original sum, and one sum of
the summands with odd indices), and their combination, as follows (be N ′ = N

2
):

ym =
N−1∑
k=0

xk · e2πi· km
N

=
N ′−1∑
k′=0

x2k′ · e2πi· 2k
′m

2N′ +
N ′−1∑
k′′=0

x2k′′+1 · e2πi· (2k
′′+1)m

2N′

=
N ′−1∑
k′=0

x2k′ · e2πi· k
′m
N′︸ ︷︷ ︸

=:y′m

+e2πi· m
2N′ ·

N ′−1∑
k′′=0

x2k′′+1 · e2πi· k
′′m
N′︸ ︷︷ ︸

=:y′′m

.

The sums y′m and y′′m, which again have the form of a discrete Fourier transform, have
N ′ = N/2 summands each (opposed to the N summands of the original sum), and they

80

5.6 The fast Fourier transform

only have to be calculated for m < N ′, because their values are the same for m and for
m+N ′:

y′m+N ′ =
N ′−1∑
k′=0

x2k′ · e2πi· k
′(m+N′)
N′ =

N ′−1∑
k′=0

x2k′ · e2πi· k
′m
N′ · e2πi· k

′N′
N′

=
N ′−1∑
k′=0

x2k′ · e2πi· k
′m
N′ · 1 = y′m

(and analogously for y′′m+N ′). After calculating these sums for 0 ≤ m < N ′ (which can
be done recursively with this method, if N ′ is also even, or by a direct summation with
only N ′2 = N2/4 summands for each of the two sums), the values of ym and ym+N ′ are

calculated (in O(N) time) by ym = y′m + e2πi·m
N · y′′m and ym+N ′ = y′m + e2πi·m+N′

N · y′′m =
y′m − e2πi·m

N · y′′m (for 0 ≤ m < N ′).

If N is a power of 2, then the DFT can be calculated by dividing the summation into
two parts of half length recursively, until only DFTs of length 1 have to be processed.

This partitioning method can be applied not only if N is divisible by 2, but analogously
also if N is divisible by 3, 5, or other numbers. Therefore, the DFT can be calculated very
efficiently if N can be factorized into small prime factors. However, the best performance
is achieved for powers of 2.

The effect of an efficient implementation of the discrete Fourier transform is demon-
strated in table 5.1, which compares the runtimes of a direct implementation of the
DFT without optimizations (tDFT2), of an implementation which uses calls to a simple
implementation of the one-dimensional DFT (tDFT), of an implementation which uses
calls to a one-dimensional fast Fourier transform (tFFT) - all of them implemented in
JAVA - and of the fft2 function in MATLAB (tMATLAB) for a two-dimensional DFT.
The values are times in seconds, unless stated otherwise, and were measured for cal-
culations on a single core of a 2.4 Ghz Intel Core 2 Duo processor. Times in brackets
have not been measured, but extrapolated from the measured smaller values. The table
shows that using a fast algorithm reduces the processing time by a large factor, thereby
enabling the calculation of DFTs with several million data points within a few seconds
instead of several hours or even days. For example, the calculation of a DFT with one
million elements can be calculated by the used implementation of the FFT within one
second, while it would have taken about 7.5 hours with a simple, direct implementation.
The corresponding function in MATLAB took only 0.14 seconds to finish the calculation.

81

Chapter 5 Approximation algorithms

N N2 tDFT2 tDFT tFFT tMATLAB

40 1600 0.069 0.0032 0.00055 0.00015
60 3600 0.350 0.011 0.0018 0.00039
80 6400 1.08 0.026 0.0024 0.00066

100 10000 2.71 0.051 0.0060 0.0015
200 40000 [43] 0.42 0.027 0.0048
300 90000 [≈ 3.7 min.] 1.5 0.072 0.011
500 250000 [≈ 28 min.] 7.4 0.23 0.034

1000 1000000 [≈ 7.5 h.] [≈ 1.0 min.] 0.95 0.14
2000 4000000 [≈ 5.0 days] [≈ 8.0 min.] 4.0 0.60
3000 9000000 [≈ 25 days] [≈ 27.0 min.] 10.5 1.38

64 4096 0.44 0.013 0.0009 0.0007
128 16384 7.3 0.11 0.0042 0.0020
256 65536 [116] 0.92 0.019 0.0071
512 262144 [≈ 31 min.] 7.95 0.089 0.041

1024 1048576 [≈ 8.2 h.] [64] 0.40 0.17
2048 4194304 [≈ 5.5 days] [≈ 8.6 min.] 1.8 0.71
4096 16777216 [≈ 88 days] [≈ 69 min.] 8.5 2.94

Table 5.1: Times for the calculation of a two-dimensional discrete Fourier transform on
N · N data points (times without a stated unit are in seconds). tDFT2 is the
time for a direct implementation of the two-dimensional transform, tDFT the
time for an implementation which splits the transform into one-dimensional
DFTs, tFFT the time for an implementation using one-dimensional fast Fourier
transforms (all three being implemented in JAVA), and tMATLAB the comput-
ing time for the corresponding FFT function in MATLAB. Times in brackets
have not been measured, but extrapolated.

5.7 The fast convolution

During the simulation of a moving-average OSSRF, sums of the form

v ~m := V A,M
ϕ̃ (x ~m) =

∑
~k∈{−M,...,M−1}d

f ~m−~k · z~k

for ~m ∈ {−M, . . . ,M − 1}d have to be calculated (in step (c) of the algorithms in
sections 5.4 and 5.5). If these sums are simply calculated one after another by explicitly
calculating each single summand and adding these summands, (2M)d sums of (2M)d

summands each have to be calculated, i.e. the complexity of this calculation is in O(M2d).
As we will show in this section, this convolution can also be calculated by performing
two fast Fourier transforms and one inverse FFT of arrays of size (4M)d. Because these

82

5.7 The fast convolution

FFTs and the inverse FFT have a complexity of O(Md · log(M)) (as it has been shown
in the previous section), the computing time for the convolution is reduced to a small
fraction for sufficiently large values of M .

In this section, (FFT(x~k)) be the notation of the array which is the result of a fast
Fourier transform applied to the array x~k, and (IFFT(v~n)) be the notation for the result
of an inverse fast Fourier transform on v~n. Additionally be

M4 := {0, . . . , 4M − 1}d

and

z̃~k :=

{
z~k,

~k ∈ {−M, . . . ,M − 1}d

0, else
.

Be f̂ and ẑ the fast Fourier transforms of the shifted arrays (f~l)~l∈{−2M,...,2M−1} and

(z̃~k)~k∈{−2M,...,2M−1}, i.e.

f̂~n := (FFT (f~l−{2M}d))~n =
∑
~l∈M4

e2πi<~n,
~l>

4M f~l−{2M}d

and

ẑ~n := (FFT (z̃~k−{2M}d))~n =
∑
~k∈M4

e2πi<~n,
~k>

4M z̃~k−{2M}d

=
∑

~k∈{M,...,3M−1}d

e2πi<~n,
~k>

4M z~k−{2M}d

for ~n ∈M4. Then the elementwise product of these arrays is (again, for each ~n ∈M4)

v̂~n := f̂~n · ẑ~n = (FFT (f~l−{2M}d))~n · (FFT (z̃~k−{2M}d))~n

=

∑
~l∈M4

e2πi<~n,
~l>

4M f~l−{2M}d

 ·
∑
~k∈M4

e2πi<~n,
~k>

4M z̃~k−{2M}d


=
∑
~l∈M4

∑
~k∈M4

e2πi<~n,
~l>+<~n,~k>

4M · f~l−{2M}d · z̃~k−{2M}d

=
∑
~l∈M4

∑
~k∈M4

e2πi
n1(l1+k1)+...+nd(ld+kd)

4M · f~l−{2M}d · z̃~k−{2M}d

=
∑
~p∈M4

∑
~l,~k∈M4

lj+kj≡pj (mod 4M),
1≤j≤d

e2πi
n1p1+...+ndpd

4M · f~l−{2M}d · z̃~k−{2M}d

83

Chapter 5 Approximation algorithms

=
∑
~p∈M4

∑
~k∈M4

∑
~l∈M4

lj≡pj−kj (mod 4M),
1≤j≤d

e2πi<~n,~p>
4M · f~l−{2M}d · z̃~k−{2M}d

=
∑
~p∈M4

e2πi<~n,~p>
4M

∑
~k∈M4

z̃~k−{2M}d · ft(~p−~k)−{2M}d

where t(~l) = t((l1, . . . , ld)
T) = (t(l1), . . . , t(ld))

T , with

t(lj) := lj mod 4M =

{
lj, 0 ≤ lj ≤ 4M − 1

lj + 4M, −4M ≤ lj ≤ −1

The inverse Fourier transform of v̂~n,
i.e. IFFT (v̂~n) = IFFT ((FFT (f~l−{2M}d))~n · (FFT (z̃~k−{2M}d))~n), is given by

ṽ ~m−{2M}d := (IFFT (v̂~n)) ~m

=
1

(4M)d

∑
~n∈M4

e−2πi<~m,~n>
4M v̂~n

=
1

(4M)d

∑
~n∈M4

e−2πi<~m,~n>
4M

∑
~p∈M4

e2πi<~n,~p>
4M

∑
~k∈M4

z̃~k−{2M}d · ft(~p−~k)−{2M}d

=
1

(4M)d

∑
~n∈M4

∑
~p∈M4

e2πi<~n,~p−~m>
4M

∑
~k∈M4

z̃~k−{2M}d · ft(~p−~k)−{2M}d

=
1

(4M)d

∑
~p∈M4

∑
~k∈M4

z̃~k−{2M}d · ft(~p−~k)−{2M}d

 ·(∑
~n∈M4

e2πi<~n,~p−~m>
4M

)

=
1

(4M)d

∑
~p∈M4

∑
~k∈M4

z̃~k−{2M}d · ft(~p−~k)−{2M}d

 · (4M)d · 1{ ~m}(~p)

=
∑
~k∈M4

z̃~k−{2M}d · ft(~m−~k)−{2M}d

=
∑

~k∈{M,...,3M−1}d

z~k−{2M}d · ft(~m−~k)−{2M}d

for ~m ∈M4.

Therefore,

ṽ ~m =
∑

~k∈{M,...,3M−1}d

z~k−{2M}d · ft(~m+{2M}d−~k)−{2M}d

=
∑

~k∈{−M,...,M−1}d

z~k · ft(~m−~k)−{2M}d

84

5.7 The fast convolution

for ~m ∈ {−2M, . . . , 2M − 1}d. In the following, be s(~m − ~k) := t(~m − ~k) − {2M}d. If

~m ∈ {−M, . . . ,M − 1}d and ~k ∈ {−M, . . . ,M − 1}d, then follows for all j ∈ {1, . . . , d}
that

mj − kj ∈ {−2M + 1, . . . , 2M − 1}

⇒t(mj − kj) =

{
mj − kj, mj − kj ∈ {0, . . . , 2M − 1}
mj − kj + 4M, mj − kj ∈ {−2M, . . . ,−1}

⇒t(mj − kj)− 2M =

{
mj − kj − 2M, mj − kj ∈ {0, . . . , 2M − 1}
mj − kj + 2M, mj − kj ∈ {−2M, . . . ,−1}

,

i.e. the array fs(~l) := ft(~l)−{2M}d is obtained from the array f~l by a transformation s which

cuts the array in each dimension into two halves and exchanges them (this is exactly the
operation which - for one dimension - is provided in Matlab by the function fftshift).
Obviously, this transformation is inverse to itself.

Thus, ṽ ~m =
∑

~k∈{−M,...,M−1}d z~k · ft(~m−~k)−{2M}d =
∑

~k∈{−M,...,M−1}d z~k · fs(~m−~k)

can be calculated by

ṽ ~m−{2M}d := (IFFT (v̂~n)) ~m = IFFT ((FFT (f~l−{2M}d))~n · (FFT (z̃~k−{2M}d))~n),

or, equivalently, v ~m =
∑

~k∈{−M,...,M−1}d z~k · f ~m−~k =
∑

~k∈{−M,...,M−1}d z~k · fs(s(~m−~k)) can be
calculated by

v ~m−{2M}d = IFFT ((FFT (fs(~l−{2M}d)))~n · (FFT (z̃~k−{2M}d))~n),

For example, in the case of d = 2 this algorithm for the fast convolution of the arrays
f and z can be implemented in Matlab as follows (assuming that an array z of size
2M × 2M and an array f of size 4M × 4M have already been initialized):

1 function v = fas tconv2 (f , z)
2 f = f f t s h i f t (f f t s h i f t (f , 1) , 2) ; % ’ trans format ion s ’
3 f = f f t2 (f) ; % Fourier transform of f
4
5 zz = zeros (4∗M, 4∗M) ; % ’ t i l d e { z } ’
6 zz (M+1:3∗M, M+1:3∗M) = z ; % copy z to cen ter o f z z
7 zz = f f t2 (zz) ; % Fourier transform of t i l d e { z}
8
9 vv = zz .∗ f ; % componentwise mu l t i p l i c a t i o n

10 vv = i f f t 2 (vv) ; % inve r s e Fourier trans forms
11 v = vv (M+1:3∗M, M+1:3∗M) ; % use only the c en t r a l par t . . .
12 end % . . . o f s i z e 2M∗2M

85

Chapter 5 Approximation algorithms

86

Chapter 6

Implementations of the approximation
algorithms

The algorithms for the simulation of OSSRF in harmonizable representation or in moving
average representation which are presented in the previous chapter, have been imple-
mented for the two-dimensional and the three-dimensional cases in Matlab and also in
the programming language Java. In this chapter, some visualisations of OSSRFs which
have been generated by these programs are presented, as well as also several statistics
of the required system resources (memory and computing time) in relation to the size of
the simulated random field. The source codes for the simulation functions in Matlab are
also included in this chapter (however, sources of the Java implementation are not listed
in this thesis because of their length, but they can be found as files on the attached CD).

6.1 Implementations in Matlab

6.1.1 Simulation of two-dimensional OSSRFs in Matlab

The algorithms for the simulation of two-dimensional OSSRF, which are described in
sections 5.2 and 5.4, have been implemented in the Matlab language. These implemen-
tations are given in the following program listings and are based on Matlab programs
for the simulation of OSSRF by Prof. H. P. Scheffler.

Simulation of harmonizable OSSRF

The first function implements the simulation of a harmonizable OSSRF. It has to be
provided with the parameters of the OSSRF which should be simulated, and of the
simulation procedure (A and M), and returns a matrix with the simulated values of the

OSSRF and a matrix of the function values fk,l := ϕ (ξk,l)
−H− q

α :

87

Chapter 6 Implementations of the approximation algorithms

Listing 6.1: The file simuH2ds.m

1 function [X, phi]=simuH2ds (alpha , H, A, M, N, a1 , a2 , v1 , v2 , C1 , C2 , rho)
2
3 % two va lu e s which are r ep ea t e d l y used in the c a l c u l a t i o n s
4 M2 = M∗2 ;
5 D = A/M;
6
7 % genera te complex random numbers
8 Z = complex (randn(M2, M2) , randn(M2,M2)) ;
9 Z = Z∗ Dˆ(2/ alpha) ;

10
11 i f alpha < 2
12 A1sh i f t = tan (pi∗ alpha / 4) ;
13 A1 = reshape (r s tab (alpha /2 , 1 , M2∗M2) , M2, M2) + A1sh i f t ;
14 A1 = (cos (pi∗ alpha /4))ˆ(2/ alpha) ∗A1 ;
15 Z = A1 . ˆ (1 / 2) . ∗Z ;
16 end ;
17 clear (’A1 ’ , ’ A1sh i f t ’) ;
18
19 % ca l c u l a t e va l u e s o f E−homogeneous func t i on phi
20 [k , l]=meshgrid(−A:D:A−D, −A:D:A−D) ;
21 phi = (C1∗(abs (k∗cos (v1) + l ∗ sin (v1))) . ˆ (rho/a1) . . .
22 + C2∗(abs (k∗cos (v2) + l ∗ sin (v2))) . ˆ (rho/a2)) . . .
23 .ˆ((−H−(a1+a2)/ alpha)/ rho) ;
24 phi (−N+M+1 : N+M, −N+M+1 : N+M) = 0 ;
25 clear (’ k ’ , ’ l ’) ;
26
27 %mu l t i p l y complex random numbers wi th va l u e s o f phi
28 newphi = phi .∗Z ;
29 clear (’Z ’) ;
30
31 % FFT
32 newphi = f f t s h i f t (f f t s h i f t (newphi , 1) , 2) ;
33 X = real (f f t2 (newphi)−sum(sum(newphi))) ;
34 X = f f t s h i f t (f f t s h i f t (X, 1) , 2) ;
35 end

In order to test this function and to simulate an OSSRF, this function can be called by
the following MATLAB script, which calls the function, providing it with the necessary
parameter values, and displays the values of the simulated random field in a picture
(mapping the values to different colors):

Listing 6.2: The file ossrfHs2d.m

1 % i n i t i a l i z a t i o n o f parameters f o r s imu la t i on
2 alpha = 1 . 5 ; H = 0 .5 ;
3 M = 2000 ; N = 4 ;
4 a1 = 1 ; a2 = 1 ;
5 v1 = 0 ; v2 = 0 . 8 ;

88

6.1 Implementations in Matlab

6 C1 = 1 ; C2 = 1 ;
7 rho = 2 ; A = 5 . 0 ;
8
9 % simu la t e o s s r f

10 t ic ;
11 Y=simuH2ds (alpha ,H,A,M,N, a1 , a2 , v1 , v2 , C1 , C2 , rho) ;
12 disp (sprintf (’OSSRF of s i z e %dx%d simulated in %g seconds . ’ , . . .
13 2∗M, 2∗M, toc)) ;
14
15 % d i s p l a y o s s r f
16 figure , surf (Y) , view (0 , 90) , shading f l a t , axis (’ o f f ’) ;

The required amount of memory space for this program is particularly large during the
simulation of non-gaussian random variables by the function rstab. This function does
not simulate single random numbers one after another in a loop, but avoids using loops
by manipulating the whole vector of random numbers at once (which is a usual strategy
when programming in Matlab). This implies that the intermediate results are also stored
as vectors of the length which is specified as the third parameter of the function rstab. In
the presented program it is (2M)2. During the calculation, the function initializes several
variables with intermediate results as vectors of this length, so that twelve such vectors
are in the memory at the end of a simulation by rstab. This means that if the parameter
M has, for example, the value M = 2000, then the function rstab needs memory space
for more than 12 · 40002 = 192000000 double-precision floating point numbers (with
8 bytes each), which is about 1.43 GB - or 96 bytes per simulated random number.
Therefore, the amount of required memory space can be reduced by calling the rstab

function several times with a smaller third parameter in order to simulate a part of the
random numbers, instead of simulating all random numbers at once. If the respective
lines of code in the function simuH2ds

A1 = reshape (r s tab (alpha /2 , 1 , M2∗M2) , M2, M2) + A1sh i f t ;
A1 = (cos (pi∗ alpha /4))ˆ(2/ alpha) ∗A1 ;

are replaced, for example, by the following lines

A1 = zeros (M2) ;
A1(1 :M, 1 :M) = reshape (r s tab (alpha /2 ,1 ,M∗M) ,M,M) ;
A1(1 :M, 1+M:M2) = reshape (r s tab (alpha /2 ,1 ,M∗M) ,M,M) ;
A1(1+M:M2, 1 :M) = reshape (r s tab (alpha /2 ,1 ,M∗M) ,M,M) ;
A1(1+M:M2, 1+M:M2) = reshape (r s tab (alpha /2 ,1 ,M∗M) ,M,M) ;
A1 = (cos (pi∗ alpha /4))ˆ(2/ alpha)∗ (A1 + A1sh i f t) ;

then the function rstab uses only vectors of length M2 instead of 4M2. Considering the
fact that now the matrix A1 with 4M2 has been initialized (with zeros) before applying
rstab (and therefore also occupies memory space), the amount of memory needed for
the simulation of the random numbers in A1 has been reduced from 8 ·12 ·4M2 = 384M2

89

Chapter 6 Implementations of the approximation algorithms

bytes to 8 · (4M2 + 12M2) = 128M2 bytes, which is a reduction by the factor 3. This
procedure is implemented in the function simuH2dl, which is called, e.g. by the script in
the file ossrfH2d.m. Usually, it is a bit slower (by less than 1%) than the first (simpler)
code variant.

Another, even more memory-saving alternative for the simulation of the non-gaussian
random variables is to call the function rstab in a loop (with more than 4 repetitions
of the loop), as in the following code example:

numBlocks = 20 ;
bStart = f loor ((0 : numBlocks−1)∗M2/numBlocks)+1;
bEnd = f loor ((1 : numBlocks) ∗M2/numBlocks) ;
A1 = zeros (M2) ;
for ib = 1 : numBlocks

bS ize = bEnd(ib)−bStart (ib)+1;
A1(bStart (ib) : bEnd(ib) , :) = . . .

reshape (r s tab (alpha /2 , 1 , bS ize ∗M2) , bSize , M2) ;
end
A1 = (cos (pi∗ alpha /4))ˆ(2/ alpha) ∗ (A1 + A1sh i f t) ;

With this variant for the simulation of the non-gaussian random variables, the simulation
of an OSSRF takes about 2% more time than with the first (simpler) variant.

Another task which requires much memory space is the display of the simulated OSSRF
as an image. Displaying the image only for a part of the random field, rather than for all
simulated values, reduced the memory consumption of the display functions and allows
to simulate larger fields without causing an error due to a lack of available memory
(Anyways, random fields with a width and height of e.g. 2000 - or even more - can’t be
shown in all details on usual computer displays, because the displays don’t have such a
high resolution). This can be achieved by exchanging the line

figure , surf (Y) , view (0 , 90) , shading f l a t , axis (’ o f f ’) ;

by

m2 = M+f loor (d i s p l a y S i z e / 2) ;
m1 = m2 − d i s p l a y S i z e +1;
figure , surf (Y(m1:m2, m1:m2)) , view (0 , 9 0) ;
shading f l a t , axis (’ o f f ’) ;

where the variable displaySize has been defined before as the size of the displayed
central part of the OSSRF (see the file ossrfH2d.m).

Some examples of harmonizable OSSRFs which have been simulated using this Matlab
program, are shown in figure 6.1.

90

6.1 Implementations in Matlab

Simulation of moving-average OSSRF

The algorithm for the simulation of two-dimensional OSSRF in moving-average repre-
sentation, which is described in section 5.4, has been implemented in the following two
files: The function simuM2d simulates an OSSRF, and the script ossrfM2d calls this
function and displays the resulting random field (similar to the files simuH2ds.m and
ossrfHs2d.m, or simuH2dl.m and ossrfH2d.m in the harmonizable case).

Listing 6.3: The file simuM2d.m

1 function [X, phi]=simuM2d(alpha , H, A, M, a1 , a2 , v1 , v2 , C1 , C2 , rho)
2
3 % two va lu e s which are r ep ea t e d l y used in the c a l c u l a t i o n s
4 M2 = M∗2 ;
5 D = A/M;
6
7 %genera te alpha−s t a b l e random numbers
8 Z= reshape (r s tab (alpha , 0 , M2∗M2) , M2, M2) ;
9 Z=Dˆ(2/ alpha)∗Z ;

10
11 %ca l c u l a t e va l u e s o f E−homogeneous func t i on phi
12 [k , l]=meshgrid(−2∗A:D:2∗A−D, −2∗A:D:2∗A−D) ;
13 phi = (C1∗(abs (k∗cos (v1) + l ∗ sin (v1))) . ˆ (rho/a1) . . .
14 + C2∗(abs (k∗cos (v2) + l ∗ sin (v2))) . ˆ (rho/a2)) . . .
15 . ˆ ((H−(a1+a2)/ alpha)/ rho) ;
16 phi (M2:M2+1,M2:M2+1)=0;
17 clear (’ k ’ , ’ l ’) ;
18
19 %convo lu t i on o f random numbers and va l u e s o f phi , us ing the f f t
20 phi = f f t s h i f t (phi , 1) ;
21 phi = f f t s h i f t (phi , 2) ;
22 phi = f f t2 (phi) ;
23 Y = zeros (M∗4 , M∗4) ;
24 Y(M+1:M∗3 , M+1:M∗3) = Z ;
25 clear (’Z ’) ;
26 Y = f f t2 (Y) ;
27 Y = Y .∗ phi ;
28 clear (’ phi ’) ;
29 Y = i f f t 2 (Y) ;
30 X = Y (M+1:M∗3 , M+1:M∗3) ;
31 X=X−X(M+1,M+1);
32 end

Listing 6.4: The file ossrfM2d.m

1 % i n i t i a l i z a t i o n o f parameters f o r s imu la t i on
2 alpha = 2 . 0 ; H = 0 .6 ;
3 a1 = 1 . 0 ; a2 = 2 . 0 ;
4 v1 = 1 . 0 ; v2 = 2 . 5 7 ;
5 C1 = 1 ; C2 = 1 ;

91

Chapter 6 Implementations of the approximation algorithms

6 rho = 2 . 0 ;
7 A = 2 0 . 0 ; M = 800 ;
8
9 %simu la t e OSSRF

10 t ic ;
11 [Y, phi]=simuM2d(alpha , H,A,M, a1 , a2 , v1 , v2 , C1 , C2 , rho) ;
12 disp (sprintf (’OSSRF of s i z e %dx%d simulated in %g seconds . ’ , . . .
13 2∗M, 2∗M, toc)) ;
14
15 %d i s p l a y OSSRF
16 figure , surf (Y) , view (0 , 90) , shading f l a t , axis (’ o f f ’) ;
17 set (gca , ’ Act ivePos i t i onProper ty ’ , ’ p o s i t i o n ’ , ’ Po s i t i on ’ , [0 0 1 1]) ;

In figure 6.2, some examples of two-dimensional OSSRF in moving-average representa-
tion are shown, which have been generated with the given Matlab functions.

As an alternative to setting the values of the parameters explicitly in the source code (of
the file ossrfM2d.m), and therefore having to edit this file always when a parameter must
be changed, the script ossrfMi2d can be used instead, which prompts the user to input
these values. Analogously, the script ossrfHi2d asks the user to state parameter values
for the simulation of a harmonizable OSSRF (unlike ossrfH2dl, where the parameter
values are set in the source code), and with the command ossrfgui2d a dialog window
can be opened (see figure 6.3 (a)) which enables the user to input and change the
parameter values and start the simulation of an OSSRF in harmonizable or moving
average representation.

Required memory and CPU time

Table 6.1 shows the times which were required for the simulation of two-dimensional
OSSRF with this Matlab programs. These times are also considered in relation to the size
of the simulated field (i.e. as time for the calculation per million values of the simulated
field) in this table. The times were taken with the Matlab commands tic and toc. The
used test system (which was also used for all other simulations which are described in
this chapter) is an Apple MacBook with a 2.4 GHz Intel Core 2 Duo processor and
4 GB RAM. The tests of the Matlab programs were performed using one CPU core
(i.e. no multithreading) and with 2GB free RAM. Using this amount of memory, the
maximum size of an OSSRF which could be simulated was about 31.4 mio. values (i.e.
parameter M = 2800, generating a matrix of size 5600× 5600) for a harmonizable field,
and about 10.2 mio. values (M = 1600, or a 3200× 3200-matrix) in the moving-average
case. This demonstrates the fact that the simulation of a harmonizable OSSRF can be
achieved much more memory-efficient than the simulation of an equally-sized moving-
average OSSRF. The main reason is the need to perform FFTs with 4M×4M - matrices
of complex numbers during the fast calculation of the convolution in the simulation of

92

6.1 Implementations in Matlab

moving average OSSRFs, which are four times larger than the 2M ×2M -matrices which
are used in the functions for the simulation of harmonizable random fields. The numbers
in table 6.1 demonstrate that:

(a) The time for the calculation is approximately proportional to the number of points
for which the OSSRF is simulated (if the other parameters remain unchanged).

(b) There is a huge difference between the simulation time of a harmonizable gaussian
random field and the simulation time of a harmonizable non-gaussian field of the
same size, the latter being approximately three times as large as the first: The
approximation of a gaussian field takes about 0.8 seconds per mio. elements of
the simulated matrix, while for a non-gaussian field about 2.4 seconds per mio.
elements are needed. This is due to the fact that the part of the calculation which is
only needed when simulating non-gaussian OSSRFs (mainly the simulation of non-
gaussian random variables with rstab) takes about twice as much time as all the
calculation steps for the simulation of gaussian random fields (i.e. the simulation
of gaussian r.v.s, the calculation of the function phi, and a Fourier transform).

(c) The simulation of moving-average random fields does not only require much more
memory space, but also much more time for the calculation than the simulation
of a harmonizable field of the same size.

size of the OSSRF simulation time simulation time per mio. values
M mio. values ha. α = 2 ha. α < 2 mov. av. ha. α = 2 ha. α < 2 mov. av.

100 0.04 0.035 0.097 0.238 0.88 2.43 5.95
200 0.16 0.118 0.364 0.95 0.74 2.28 5.94
400 0.64 0.462 1.49 3.80 0.72 2.33 5.94
800 2.56 1.84 6.01 16.7 0.72 2.35 6.52

1600 10.24 8.07 24.4 68.0 0.79 2.38 6.64
2800 31.36 25.7 75.2 −− 0.82 2.40 −−

Table 6.1: Time (in s.) for the calculation of two-dimensional OSSRF in Matlab (ha.
“α = 2” = gaussian, harmonizable OSSRFs, “ha. α < 2” = non-gaussian,
harmonizable OSSRFs, “mov. av.” = moving average OSSRFs).

93

Chapter 6 Implementations of the approximation algorithms

(a) α = 2.0, isotropic (b) α = 2.0, anisotropic

(c) α = 1.5, isotropic (d) α = 1.5, anisotropic

Figure 6.1: Some examples of two-dimensional harmonizable OSSRFs, simulated with
Matlab.

94

6.1 Implementations in Matlab

(a) α = 2.0, isotropic (b) α = 2.0, anisotropic

(c) α = 1.8, isotropic (d) α = 1.8, anisotropic

Figure 6.2: Some examples of two-dimensional moving-average OSSRFs, simulated with
Matlab.

95

Chapter 6 Implementations of the approximation algorithms

6.1.2 Simulation of three-dimensional OSSRF in Matlab

The algorithms for the simulation of OSSRF, which are described in sections 5.3 and
5.5, have been implemented in the Matlab language also for the three-dimensional case.
These implementations are based on the programs for the simulation of two-dimensional
OSSRF (which have been presented on the previous pages).

Harmonizable three-dimensional OSSRF can be simulated in Matlab with the function
simuH3ds, whose source code is given in the following listing. When 2 GB (=2048 MB)
free memory are available, then this function can simulate gaussian fields up to a size of
about 26.5 million data points (parameter M = 149) and non-gaussian stable fields up
to a size of approximately 12.8 mio. data points (parameter M = 117).

Listing 6.5: The file simuH3ds.m

1 function Y=simuH3ds (alpha ,H,A, M, N, a1 , a2 , a3 , v1 , v2 , v3 , C1 , C2 , C3 , rho)
2
3 % two va lu e s which are r ep ea t e d l y used in the c a l c u l a t i o n s
4 M2 = M∗2 ;
5 D = A/M;
6
7 % Part 1 : S imulat ion o f i s o t r o p i c s t a b l e r . v . s
8 % Part 1 . 1 : S imulat ion o f complex i s o t r o p i c gauss ian r . v . s
9 disp (’ Simulate s t a b l e random v a r i a b l e s . . . ’) ;

10
11 % Part 1 . 1 : genera te complex random numbers
12 Z = complex (randn(2∗M, 2∗M, 2∗M) , randn(2∗M, 2∗M, 2∗M)) ;
13 Z = Z∗ Dˆ(3/ alpha) ;
14
15 % Part 1 . 2 : I f a lpha < 2 , then mu l t i p l y wi th s q r t o f s t a b l e r . v .
16 % with parameter beta ’ = 1 and alpha ’ = alpha /2
17 i f alpha < 2
18 A1sh i f t = tan (pi∗ alpha / 4) ;
19 A1 =reshape (r s tab (alpha /2 ,1 , M2∗M2∗M2) , M2,M2,M2) ;
20 A1 = (cos (pi∗ alpha /4))ˆ(2/ alpha) ∗ (A1 + A1sh i f t) ;
21 Z = A1 . ˆ (1 / 2) . ∗Z ;
22 clear (’A1 ’ , ’ A1sh i f t ’) ;
23 end ;
24
25 % Part 2 : Ca l cu l a t e va l u e s o f the func t i on phi
26 disp (’ Ca l cu la t e func t i on PHI . . . ’) ;
27
28 [k , l ,m] = meshgrid(−M∗D:D: (M−1)∗D) ;
29
30 phi = (C1∗(abs (k∗v1 (1) + l ∗v1 (2) + m∗v1 (3))) . ˆ (rho/a1) . . .
31 + C2∗(abs (k∗v2 (1) + l ∗v2 (2) + m∗v2 (3))) . ˆ (rho/a2) . . .
32 + C3∗(abs (k∗v3 (1) + l ∗v3 (2) + m∗v3 (3))) . ˆ (rho/a3) . . .
33) .ˆ((−H−(a1+a2+a3)/ alpha)/ rho) ;
34 clear (’ k ’ , ’ l ’ , ’m’) ;

96

6.1 Implementations in Matlab

35
36 % cut out area in the cen ter
37 phi (M−N+1:M+N, M−N+1:M+N, M−N+1:M+N) = 0 ;
38
39 % Part 3 : FFT
40 disp (’FFT . . . ’) ;
41 Y = phi .∗Z ;
42 clear (’ phi ’ , ’Z ’) ;
43 Y = f f t s h i f t (f f t s h i f t (f f t s h i f t (Y, 1) , 2) , 3) ;
44 sumY = sum(sum(sum(Y))) ;
45 Y = f f t n (Y) ;
46 Y = real (Y−sumY) ;
47 Y = f f t s h i f t (f f t s h i f t (f f t s h i f t (Y, 1) , 2) , 3) ;
48 end

The required amount of memory can be reduced by calculating the simulated random
numbers and the values of the function phi in several parts, e.g. separately for each two-
dimensional plane with the same z-coordinate, rather than calculating this values at once
for the whole three-dimensional array. The following variation of the simulation func-
tion (simuH3dl) uses this improvement and allows the simulation of three-dimensional
OSSRFs in harmonizable representation with a maximum parameter value of M = 177
(for gaussian and for non-gaussian OSSRFs), corresponding to a maximum size of al-
most 44.4 millionen data points, when 2 GB of free memory space are available. This
maximum sample size is about 68% larger than before in the gaussian case, and almost
3.5 times the previous maximum number of simulated values in the non-gaussian case.

Listing 6.6: The file simuH3dl.m

1 function Y=simuH3dl (alpha ,H,A, M, N, a1 , a2 , a3 , v1 , v2 , v3 , C1 , C2 , C3 , rho)
2
3 % two va lu e s which are r ep ea t e d l y used in the c a l c u l a t i o n s
4 M2 = M∗2 ;
5 D = A/M;
6
7 [k , l] = meshgrid(−M∗D:D: (M−1)∗D) ;
8 arrayD = D∗ ones (M2, M2) ;
9

10 Y = zeros (2∗M, 2∗M, 2∗M) ; % rese r v e space f o r l a r g e array
11 for j = 1 :M2
12 % Part 1 : S imulat ion o f i s o t r o p i c s t a b l e r . v . s
13 % Part 1 . 1 : S imulat ion o f complex i s o t r o p i c gauss ian r . v . s
14 Z = complex (randn(2∗M, 2∗M) , randn(2∗M, 2∗M)) ;
15 Z = Z∗ Dˆ(3/ alpha) ;
16
17 % Part 1 . 2 : I f a lpha < 2 , then mu l t i p l y wi th s q r t o f s t a b l e r . v .
18 % with parameter beta ’ = 1 and alpha ’ = alpha /2
19 i f alpha < 2
20 A1sh i f t = tan (pi∗ alpha / 4) ;

97

Chapter 6 Implementations of the approximation algorithms

21 A1 =reshape (r s tab (alpha /2 ,1 , M2∗M2) , M2,M2) ;
22 A1 = (cos (pi∗ alpha /4))ˆ(2/ alpha) ∗ (A1 + A1sh i f t) ;
23 Z = A1 . ˆ (1 / 2) . ∗Z ;
24 clear (’A1 ’ , ’ A1sh i f t ’) ;
25 end ;
26
27 % Part 2 : Ca l cu l a t e va l u e s o f the func t i on phi
28 m = (j−M−1)∗arrayD ;
29 phi = (C1∗(abs (k∗v1 (1) + l ∗v1 (2) + m∗v1 (3))) . ˆ (rho/a1) . . .
30 + C2∗(abs (k∗v2 (1) + l ∗v2 (2) + m∗v2 (3))) . ˆ (rho/a2) . . .
31 + C3∗(abs (k∗v3 (1) + l ∗v3 (2) + m∗v3 (3))) . ˆ (rho/a3) . . .
32) .ˆ((−H−(a1+a2+a3)/ alpha)/ rho) ;
33 clear (’m’) ;
34
35 % cut out area in the cen ter
36 i f ((j>= M−N+1)&&(j<= M+N))
37 phi (M−N+1:M+N, M−N+1:M+N) = 0 ;
38 end ;
39
40 Z = phi .∗Z ;
41
42 % f f t s h i f t
43 Z = f f t s h i f t (f f t s h i f t (Z , 1) , 2) ;
44 i f (j <= M)
45 Y(: , : , j+M) = Z ;
46 else
47 Y(: , : , j−M) = Z ;
48 end ;
49 end ; % end o f loop ’ f o r j= 1 :M2’
50
51 % Part 3 : FFT
52 clear (’ phi ’ , ’Z ’ , ’ k ’ , ’ l ’ , ’ arrayD ’) ;
53
54 sumY = sum(sum(sum(Y))) ;
55 Y = f f t n (Y) ;
56 Y = real (Y−sumY) ;
57 Y = f f t s h i f t (f f t s h i f t (f f t s h i f t (Y, 1) , 2) , 3) ;
58 end

OSSRFs in moving average representation can be simulted with the function simuM3d.
If 2 GB free memory space are available, random fields with a maximal parameter value
of M = 80 (and a size of about 4.1 mio. data points) can be simulated by this function:

Listing 6.7: The file simuM3d.m

1 function X=simuM3d (alpha , H, A, M, a1 , a2 , a3 , v1 , v2 , v3 , C1 , C2 , C3 , rho)
2
3 % two va lu e s which are r ep ea t e d l y used in the c a l c u l a t i o n s
4 M2 = M∗2 ;
5 D = A/M;

98

6.1 Implementations in Matlab

6
7 % Part 1 : S imulat ion o f symmetric s t a b l e random va r i a b l e s
8 Z=rs tab (alpha , 0 , M2∗M2∗M2) ;
9 Z = Dˆ(3/ alpha)∗ reshape (Z , M2, M2, M2) ;

10
11 % Part 2 : Ca l cu l a t i on o f va l u e s f o r the func t i on phi
12 [k , l ,m] = meshgrid(−2∗A:D:2∗A−D) ;
13 phi = (C1∗(abs (k∗v1 (1) + l ∗v1 (2) + m∗v1 (3))) . ˆ (rho/a1) . . .
14 + C2∗(abs (k∗v2 (1) + l ∗v2 (2) + m∗v2 (3))) . ˆ (rho/a2) . . .
15 + C3∗(abs (k∗v3 (1) + l ∗v3 (2) + m∗v3 (3))) . ˆ (rho/a3) . . .
16) . ˆ ((H−(a1+a2+a3)/ alpha)/ rho) ;
17 phi (M2:M2+1, M2:M2+1, M2:M2+1) = 0 ;
18 clear (’ k ’ , ’ l ’ , ’m’) ;
19
20 % Part 3 : Convolut ion
21 phi = f f t s h i f t (phi , 1) ;
22 phi = f f t s h i f t (phi , 2) ;
23 phi = f f t s h i f t (phi , 3) ;
24 phi = f f t n (phi) ;
25 Y = zeros (M∗4 , M∗4 , M∗4) ;
26 Y(M+1:M∗3 , M+1:M∗3 , M+1:M∗3) = Z ;
27 clear (’Z ’) ;
28 Y = f f t n (Y) ;
29 Y = Y .∗ phi ;
30 clear (’ phi ’) ;
31 Y = i f f t n (Y) ;
32 X = Y (M+1:M∗3 , M+1:M∗3 , M+1:M∗3) ;
33 X=X−X(M+1,M+1, M+1);
34 end

These functions for the simulation of three-dimensional OSSRF (simuH3ds, simuH3dl
and simuM3d) are called by the script ossrf3d which is given in the following listing. As
an alternative, they can also (like in the two-dimensional case) be started from a dialog
window which allows the user to input the parameters for the simulation. This dialog
window can be opened with the command ossrfgui3d (see figure 6.3).

Listing 6.8: The file ossrf3d.m

1 alpha = 2 . 0 ; A = 5 ; M = 50 ;
2 rho = 2 ; H = 0 .9 ; N = 1 ;
3 a1 = 1 ; a2 = 1 ; a3 = 1 ;
4 v1 = [0 . 8 , 0 , 0 . 6] ; v2 = [0 . 0 , 1 . 0 , 0 . 0] ; v3 = [−0.6 , 0 , 0 . 8] ;
5 C1 = 1 ; C2 = 1 ; C3 = 1 ;
6
7 harmonizable = true ; %se t t h i s ’ true ’ to s imu la t e a harmonizab le OSSRF
8 % or ’ f a l s e ’ f o r a moving average OSSRF
9

10 maxNumBlue = 40000;
11 maxNumRed = 40000;

99

Chapter 6 Implementations of the approximation algorithms

12
13 % Simulat ion o f OSSRF
14 t ic ;
15 i f (harmonizable)
16 disp (sprintf (’ Simulate a harmonizable OSSRF of s i z e %d ˆ 3 . . . ’ , 2∗M)) ;
17 % use s imp ler ve r s i on f o r sma l l OSSRF,
18 % and more s o p h i s t i c a t e d ve r s i on wi th for−l oop f o r l a r g e r OSSRF
19 i f (M<=50)
20 X = simuH3ds (alpha , H, A, M, N, a1 , a2 , a3 , v1 , v2 , v3 , C1 , C2 , C3 , rho) ;
21 else
22 X = simuH3dl (alpha , H, A, M, N, a1 , a2 , a3 , v1 , v2 , v3 , C1 , C2 , C3 , rho) ;
23 end ;
24 else
25 disp (sprintf (’ Simulate a moving average OSSRF of s i z e %d ˆ 3 . . . ’ , 2∗M)) ;
26 X = simuM3d(alpha , H, A, M, a1 , a2 , a3 , v1 , v2 , v3 , C1 , C2 , C3 , rho) ;
27 end ;
28 disp (sprintf (’OSSRF of s i z e %dx%dx%d simulated in %g seconds . ’ , . . .
29 2∗M, 2∗M, 2∗M, toc)) ;
30
31 % Disp lay OSSRF
32 t ic ;
33 [f i g u r e s , movies] = d i s p l a y o s s r f 3 d (X, A, M, 4 , ’ o s s r f 3d −1. av i ’ , . . .
34 ’ o s s r f 3d −2. av i ’ , ’ o s s r f 3d −3. av i ’ , ’ o s s r f 3d −4. av i ’ , . . .
35 maxNumBlue , maxNumRed) ;
36 disp (sprintf (’OSSRF of s i z e %dx%dx%d d i sp layed in %g seconds . ’ , . . .
37 2∗M, 2∗M, 2∗M, toc)) ;

This script (as does also the graphical interface ossrfgui3d) uses the function
displayossrf3d in order to display up to four series of images of the generated random
fields:

(a) A series of two-dimensional cuts through the three-dimensional field: For each
value of the z-coordinate, the set of simulated points with this coordinate value
is displayed as a two-dimensional image (with x-coordinate axis from left to the
right and y-coordinate axis pointing up). Thereby, the z-axis is interpreted as the
dimension time.

(b) A three-dimensional plot of the points with the largest and smallest values of the
random field, which is viewed from different angles.

(c) A three-dimensional isosurface plot of the same points, which is also viewed from
different sides.

(d) A red/cyan anaglyph version of this three-dimensional isosurface plot. This plot is
intended to be viewed with red/cyan 3d-glasses, in order to see it three-dimensional.

Examples for this plots are shown in figures 6.4 to 6.6. The visualizations in figure 6.6
should be viewed using red/cyan 3d-glasses. Because of the length of the file

100

6.1 Implementations in Matlab

displayossrf3d.m, it is not listed here completely, but only a few short sections shall
be quoted here (however, the entire file can be found, together with all other source code
files, on the attached CD). In this code fractions, the variable X is the given array of the
values of the OSSRF, M is the parameter M and M2 the length of one side of the random
field (i.e. M2 = 2 ∗ M).

Listing 6.9: display of a series of two-dimensional layers

1 % f ind minimal and maximal va l u e s o f s imu la ted OSSRF
2 % and norm i t to va l u e s in the i n t e r v a l [0 , 1]
3 xmax = max(max(max(X))) ;
4 xmin = min(min(min(X))) ;
5 Y = (X−xmin)/ (xmax−xmin) ;
6
7 % ==
8 % Figure 1 : Draw a s e r i e s o f two−dimensiona l images
9 f i g u r e s (1) = f igure (’ Po s i t i on ’ , [1 0 10 500 500] , ’ Color ’ , ’ white ’) ;

10 set (gca , ’ Act ivePos i t i onProper ty ’ , ’ p o s i t i o n ’ , ’ Po s i t i on ’ , [0 0 1 1]) ;
11 nFrames = M2; % number o f frames in the movie
12 Frames = moviein (nFrames) ; % i n i t i a l i z e the matrix ’Frames ’
13
14 for k=1:nFrames
15 surf (Y(: , : , k)) , view (0 , 9 0) ;
16 shading in te rp , axis (’ o f f ’) ;
17 caxis ([0 , 1]) ;
18 drawnow ;
19 Frames (: , k)=getframe ;
20 end
21 movies (1 , 1 : nFrames) = Frames ;
22 % Now save as movie :
23 i f (length (aviFi lename1) > 0)
24 movie2avi (Frames , aviFilename1 , ’ compress ion ’ , ’None ’ , ’ f p s ’ , 1 5) ;
25 end ;

Listing 6.10: display of a three-dimensional scatter plot

1 % three−dimensiona l s c a t t e r p l o t
2 f i g u r e s (2) = f igure (’ Po s i t i on ’ , [520 10 500 500] , ’ Color ’ , ’ white ’) ;
3 pba = pi/A;
4 [mgx , mgy , mgz] = meshgrid(−pba∗M: pba : pba ∗(M−1)) ;
5 view (30 , 2 7) ;
6 hold on
7 plot3 (mgx(Y>redLim) , mgy(Y>redLim) , mgz(Y>redLim) , ’ r . ’) ;
8 plot3 (mgx(Y<bluLim) , mgy(Y<bluLim) , mgz(Y<bluLim) , ’b . ’) ;
9 hold o f f

10 axis ([−pba∗M, pba ∗(M−1) , −pba∗M, pba ∗(M−1) , −pba∗M, pba ∗(M−1)]) ;
11 axis v i s3d ;
12 grid on ;

When 2 GB of free memory are available, harmonizable OSSRFs with a maximal parame-

101

Chapter 6 Implementations of the approximation algorithms

ter value of M = 160 (and a size of about 32.8 mio. simulated values) and moving-average
fields with a parameter M up to M = 80 (about 4.1 mio. values) can be simulated. Like
for the two-dimensional OSSRFs, the necessary computing time was also tested for some
three-dimensional fields of different sizes, with the results which are given in table 6.2.
From this table, the same conclusions can be drawn as in the two-dimensional case: For
the tested fields, the time of simulation is approximately proportional to the number of
simulated values (i.e. proportional to M3 in the case of three-dimensional fields), the
simulation of non-gaussian harmonizable fields takes about three times as long as the
simulation of gaussian harmonizable fields, and the simulation of moving-average fields
takes even much more time.

size of the OSSRF simulation time simulation time per mio. values
M mio. values ha. α = 2 ha. α < 2 mov. av. ha. α = 2 ha. α < 2 mov. av.

50 1.0 0.87 2.54 9.95 0.87 2.54 9.95
64 2.1 1.84 5.21 20.99 0.88 2.48 9.99
80 4.1 3.42 9.83 43.89 0.84 2.40 10.72

100 8.0 7.03 19.46 −− 0.88 2.43 −−
128 16.8 15.21 41.15 −− 0.91 2.45 −−
160 32.8 30.98 81.93 −− 0.95 2.50 −−

Table 6.2: Time (in s.) for the calculation of three-dimensional OSSRF in Matlab
(ha. = harmonizable, mov. av. = moving average).

(a) ossrfgui2d (b) ossrfgui3d

Figure 6.3: Dialog windows for the input of parameters for the simulation of OSSRFs in
Matlab.

102

6.1 Implementations in Matlab

Figure 6.4: Visualization (types (a) and (b)) of a three-dimensional harmonizable OS-
SRF with α = 1.8.

103

Chapter 6 Implementations of the approximation algorithms

Figure 6.5: Visualization (type (c)) of a three-dimensional harmonizable OSSRF with
α = 1.8.

Figure 6.6: Visualization of a three-dimensional harmonizable OSSRF with α = 1.8
(type (d): anaglyph plot. These pictures should be viewed with red/cyan
3d-glasses).

104

6.2 Implementations in Java

6.2 Implementations in Java

6.2.1 Simulation of two-dimensional OSSRF in Java

The simulation of two-dimensional OSSRF in harmonizable or moving-average represen-
tation has been also implemented in the programming language Java (the source code
of this program is too large to be quoted in this thesis, but is included on the attached
CD-ROM). The simulation algorithms have been implemented in a version which uses
variables of the type “double” (64 bit long) for all floating-point data (like the implemen-
tations in MATLAB), and a version which saves intermediate results in “float” variables
(32 bit long). The second version needs only approximately half as much memory space
for the simulation of large random fields as the first implementation, which allows the
simulation of larger fields with a certain given amount of available memory. Saving the
results in 32-bit fields instead of 64-bit fields reduces the precision of the calculation,
but for the simulation of random fields a precision of about 5 digits is usually accept-
able, and a comparisons of both versions using the same simulated random fields showed
differences in the magnitude of only about 10−5. Therefore also the second version is a
useful method for the simulation of random fields.

In order to increase the speed of the simulation, most of the calculations can be split into
several parts which can be processed in parallel threads (on a CPU with multiple cores).
The simulation of harmonizable OSSRF has been also implemented in variants which
use parallel computing, and tests of the computing times showed that this improvement
indeed considerably increases the speed of the calculations on computers with multiple
CPU cores.

Thus, the simulation of two-dimensional harmonizable random fields has been imple-
mented in four versions (which can be chosen by editing the file “options.txt” in the
program folder: Using 32-bit or 64-bit floating point variables for the intermediate re-
sults during the simulation, and each of these versions with or without the use of multiple
threads), and two versions exist for the simulation of moving-average random fields (32-
bit or 64-bit variables for intermediate data).

When simulating with a variant which uses only 64-bit (“double precision”) floating
point variables and 2 GB of memory, harmonizable fields up to a parameter value of
about M = 5750 (with approximately 132 mio. simulated values) and moving-average
fields up to about M = 2000 (with 16 mio. values) can be simulated (i.e. with the Java
program, the simulation of a random field needs less memory than with the Matlab
implementation, and therefore larger fields can be simulated with the same available
amount of memory). When a variant is used which stores intermediate results in 32-
bit variables, then the needed amount of memory per simulated value is approximately
reduced to the half, so that random fields can be simulated which are about twice as

105

Chapter 6 Implementations of the approximation algorithms

large as with the 64-bit variant. The upper limit for the size of a harmonizable field
is now about 262 mio. simulated values (with the parameter M = 8100), and moving
average fields can be simulated up to a parameter value of about M = 2880 (i.e. about
33 mio. simulated values). As examples, the figures 6.7 and 6.8 show two-dimensional
harmonizable random fields with a parameter value of M = 8000 (e.g. with 256 mio.
simulated values) and a moving-average random field with M = 2800 (e.g. about 31 mio.
simulated values).

size of the OSSRF harmonizable, 1 thread harmonizable, 2 threads moving average
M mio. values gaussian non-gaussian gaussian non-gaussian

100 0.04 0.068 0.095 0.050 0.065 0.474
200 0.16 0.268 0.378 0.169 0.230 1.84
400 0.64 1.06 1.52 0.633 0.887 7.61
800 2.56 4.29 6.15 2.51 3.51 32.5

1600 10.24 17.9 25.2 10.1 13.9 164.1
2000 16.00 31.4 43.2 18.1 24.1 343.2
2800 31.36 67.7 90.2 39.5 51.4 −−
5600 125.44 342.3 424.3 186.5 228.3 −−
5750 132.25 460.5 556.4 261.3 314.2 −−

Table 6.3: Times (in s.) for the calculation of two-dimensional OSSRFs with the Java
implementation (using 64bit floats).

size of the OSSRF harmonizable, 1 thread harmonizable, 2 threads moving average
M mio. values gaussian non-gaussian gaussian non-gaussian

100 0.04 1.70 2.38 1.25 1.63 11.9
200 0.16 1.68 2.36 1.06 1.44 11.5
400 0.64 1.66 2.38 0.99 1.39 11.9
800 2.56 1.68 2.40 0.98 1.37 12.7

1600 10.24 1.75 2.46 0.99 1.36 16.0
2000 16.00 1.96 2.70 1.13 1.51 21.5
2800 31.36 2.16 2.88 1.26 1.64 −−
5600 125.44 2.73 3.38 1.49 1.82 −−
5750 132.25 3.48 4.21 1.98 2.38 −−

Table 6.4: Times (in s.) per mio. elements for the calculation of two-dimensional OSSRFs
with the Java implementation (using 64bit floats).

In the tables 6.3 and 6.4, computing times for the simulation of two-dimensional OSSRFs
(using the implementations with 64-bit floating point numbers) in different sizes are

106

6.2 Implementations in Java

summarized. These tables compare the computing times for the simulation of gaussian
OSSRFs vs. non-gaussian OSSRFs, and the computing times for simulations using only
one thread vs. parallel calculations in two threads. The following observations are made
with the numbers in these tables:

(a) As with the implementations in Matlab, the computing times for an OSSRF of
a certain type is approximately proportional to the number of simulated values.
However, for large fields, the time per mio. values rises slightly when increasing
the size of the field.

(b) The simulation of a gaussian harmonizable or of a moving average random field
with the Java program (without using parallel threads) takes about two to three
times as much time than with the Matlab program. The simulation of a non-
gaussian harmonizable random field, however, has a similar speed as with the
Matlab implementation.

(c) The simulation of non-gaussian harmonizable OSSRFs takes between 20 and 45
percent more time than the simulation of gaussian harmonizable OSSRFs of the
same size. This difference is much smaller than in the Matlab implementation,
where the simulation of a non-gaussian field takes about 200 percent more time.
This can be explained by the use of a very fast and optimized implementation of the
FFT algorithm by Matlab, making the part of the calculations which is performed
in both cases much faster in Matlab than in Java, while the simulation of non-
gaussian random variables in Matlab is not faster than in the Java implementation.

(d) When the simulation procedure uses two parallel threads for the simulation of a
field with 0.64 mio. data points or more (i.e. M ≥ 400), the needed amount of
time for the simulation is only 53 to 60 percent of the time needed without using
parallel threads. This shows that the simulation of OSSRF is a task which can
very efficiently use calculation in parallel threads.

size of the OSSRF simulation time simulation time per mio. values
M mio. values ha. 1 thr. ha. 2 thr. mov. av. ha. 1 thr. ha. 2 thr. mov. av.

100 0.04 0.101 0.085 0.475 2.53 2.13 11.9
200 0.16 0.294 0.202 1.85 1.84 1.26 11.6
800 2.56 4.39 2.56 32.6 1.71 1.00 12.7

2000 16.00 31.4 18.0 278.3 1.96 1.13 17.4
2800 31.36 65.2 38.3 623.4 2.08 1.22 19.9
5600 125.44 297.0 169.6 −− 2.37 1.35 −−
8000 256.00 654.6 364.0 −− 2.56 1.42 −−

Table 6.5: Time (in s.) for the calculation of 2-dim. gaussian OSSRFs (using 32bit floats).

107

Chapter 6 Implementations of the approximation algorithms

The times for the calculation of some gaussian random fields using 32-bit floating point
variables to store the data during simulation are listed in table 6.5. A comparison with the
respective times for the 64-bit version (in tables 6.3 and 6.4) shows that the computation
for small fields (with about M < 2000) is slower when using the 32-bit variant, however
for larger OSSRFs (with M > 2000) it is faster than the 64-bit version.

(a) Non-gaussian field (α = 1.5). (b) enlarged detail from the center of
(a).

(c) Gaussian field (α = 2.0). (d) enlarged detail from the center of
(c).

Figure 6.7: Some examples of two-dimensional, isotropic, harmonizable OSSRFs with
parameter M = 8000 (i.e. with 256 mio. simulated values), calculated with
the Java program “OSSRFSIM”.

108

6.2 Implementations in Java

(a) α = 2.0, M = 2800. (b) enlarged detail from the center of (a).

Figure 6.8: An example of a two-dimensional, anisotropic, moving-average OSSRF, sim-
ulated with the Java program “OSSRFSIM”.

(a) H = 0.10. (b) H = 0.99.

Figure 6.9: Examples of two-dimensional, anisotropic, gaussian (α = 2.0), harmonizable
OSSRFs with M = 3200 (i.e. 41 mio. simulated values), simulated with the
Java program “OSSRFSIM”.

109

Chapter 6 Implementations of the approximation algorithms

6.2.2 Simulation of three-dimensional OSSRF in Java

The algorithms for the simulation of three-dimensional OSSRF in harmonizable or
moving-average representation have been implemented in Java in several versions: In
order to enable the simulation of large OSSRFs, whose data doesn’t fit into the available
RAM, versions which cache parts of the data on the hard disk drive (HDD) have also
been implemented, in addition to the simpler versions which only use the RAM to store
the data. The versions which store the OSSRF data on the HDD are slower, but allow
simulation of OSSRFs whose size is not limited by the RAM but rather by the size of
the HDD. For each simulated value of the OSSRF, the program needs 24 bytes of free
space on the disc if a harmonizable random field is simulated, and 512 bytes if it is a
moving average OSSRF. For example, a harmonizable field with parameter M = 512
(i.e. with values simulated in 1.074 billion points) can be simulated using 24 GB disc
space, and 192 GB free space on the HDD are required for the simulation of a field
with parameter M = 1024 (and 8.59 billion simulated values). The program decides
automatically whether to cache data on the disk or not, depending on the size of the
OSSRF (i.e., on the parameter M), and on the amount of RAM which can be used
by the program. Figure 6.10 shows some visualizations of a harmonizable OSSRF with
parameter M = 512 (i.e. with about 1.07 billion simulated values), which was calculated
using the HDD.

For both cases - simulation with or without using the HDD to cache data - there are also
implementations for the simulation of harmonizable OSSRFs which use parallel threads
to accelerate the computations (analogous to the simulation of two-dimensional random
fields). Therefore, like for the implementations of the simulation of two-dimensional
fields, there are four implementations of the simulation algorithm for harmonizable fields
(with or without using the HDD during the simulation process, and with or without using
parallel threads), and two different implementations for the simulation of moving average
OSSRFs (with or without storing data on the HDD).

We tested the needed computing times for the simulation of OSSRFs in different sizes
also for this program module. The observed times are listed in the Tables 6.6 to 6.8.
Comparing the numbers in theses tables, we can see that the simulation of a three-
dimensional harmonizable OSSRF (without using parallel threads) was slower if inter-
mediate results were written to and read from the HDD than in the case of a calculation
of an equally-sized OSSRF without caching on the HDD. More precisely, the observed
times with caching were about 23% - 77% longer than without it. In the case of the
simulation of a moving-average OSSRF, however, the difference were much more seri-
ous: When caching data on the HDD, the simulation needed about three to four times
as much time as without. The numbers in the tables also show that the simulation of a
harmonizable OSSRF which caches data on the HDD needs about 27% - 30% less time
if it is calculated with two parallel threads instead of only one thread.

110

6.2 Implementations in Java

size of the OSSRF simulation time simulation time per mio. values
M mio. values ha. α = 2 ha. α < 2 mov. av. ha. α = 2 ha. α < 2 mov. av.

50 1.0 2.12 2.70 28.8 2.12 2.70 28.8
64 2.1 3.03 4.54 35.8 1.44 2.16 17.1
80 4.1 6.86 9.86 93.3 1.67 2.41 22.8

100 8.0 16.2 22.0 238.5 2.03 2.75 29.8
128 16.8 25.0 36.8 −− 1.49 2.19 −−
160 32.8 57.0 79.9 −− 1.74 2.44 −−
200 64.0 133.1 179.0 −− 2.08 2.80 −−
225 91.1 229.4 293.4 −− 2.52 3.22 −−

Table 6.6: Time (in s.) for the calculation of 3-dimensional OSSRF with the Java pro-
gram (without caching data on the HDD and without parallel threads).

size of the OSSRF simulation time simulation time per mio. values
M mio. values ha. α = 2 ha. α < 2 mov. av. ha. α = 2 ha. α < 2 mov. av.

100 8.0 25 30 900 3.16 3.80 112.5
128 16.8 44 55 1843 2.63 3.30 109.9
160 32.8 95 115 −− 2.88 3.50 −−
200 64.0 198 242 −− 3.10 3.79 −−
225 91.1 312 377 −− 3.42 4.13 −−
320 262.1 775 979 −− 2.96 3.73 −−
512 1073.7 3373 3801 −− 3.14 3.54 −−

Table 6.7: Time (in s.) for the calculation of 3-dimensional OSSRF with the Java pro-
gram “OSSRFSIM” (caching data on the HDD; without parallel threads).

size of the OSSRF simulation time simulation time per mio. values
M mio. values α = 2 α < 2 α = 2 α < 2

100 8.0 18 20 2.25 2.50
128 16.8 32 38 1.91 2.27
160 32.8 68 81 2.08 2.47
200 64.0 142 177 2.22 2.77
225 91.1 223 255 2.45 2.80
320 262.1 566 704 2.16 2.69
512 1073.7 2440 2711 2.27 2.52

Table 6.8: Time (in s.) for the calculation of 3-dimensional harmonizable OSSRF with
the Java program (caching data on the HDD; with 2 parallel threads).

111

Chapter 6 Implementations of the approximation algorithms

Figure 6.10: Images of a three-dimensional harmonizable OSSRF with parameters α =
1.5 and M = 512 (i.e. with 230 ≈ 1.07 billion calculated values), simu-
lated with Java. The anaglyph pictures in the second row are intended for
observation with red/cyan 3d-glasses.

112

Chapter 7

Parameter estimation in the
harmonizable case

In this chapter, a method for the estimation of some parameters of an OSSRF in har-
monizable representation will be presented. This algorithm has been proposed by Prof.
H. P. Scheffler.

7.1 Derivation of an estimation algorithm

In order to find a method for the parameter estimation of harmonizable OSSRFs, we
first look again at the simulation algorithm for these fields:

(a) Simulation of (2M)d i.i.d. complex-valued isotropic α-stable random variables (see
subsection 5.1.1).

(b) Calculation of f(~k) =

{
ψ(ξ~k)−H−

q
α for ξ~k = ~k ·D , ~k ∈ J

0 , else.

(c) Calculation of the products g~k := f(~k) ·Wα(∆~k) for ~k ∈ {−M, . . . ,M − 1}d.

(d) Calculation of
(
V A,B,D
ψ (x ~m)

)
~m∈{−M,...,M−1}d

= FFT
(

(g~k)~k∈{−M,...,M−1}d

)
(e) Calculation of XA,B,D

ψ (x ~m) = Re
(
V A,B,D
ψ (x ~m)

)
− Re

(
V A,B,D
ψ (~0)

)
for ~m ∈ {−M, . . . ,M − 1}d.

In the following, we consider the case that one or more of the parameters of the function
f(~k) = ψ(ξ~k)−H−

q
α · 1J(~k) (i.e. one or more of the parameters C1, . . . , Cd, λ1, . . . , λd,

θ1, . . . , θd, α,H, ρ) are unknown and should be estimated from a simulated OSSRF (while

113

Chapter 7 Parameter estimation in the harmonizable case

the remaining parameters are known), and we assume that θ is the vector of unknown
parameters of this function.

Let us first assume that the intermediate result
(
g~k
)
~k∈J of the simulation were known.

According to step 3 in the algorithm, g~k := f(~k) · Wα(∆~k) which implies log(|g~k|) =

log(|f(~k)|)+log(|Wα(∆~k)|), for ~k ∈ J . Thereby, (f(~k)), for ~k ∈ J , is a sample of values of
the function f , some of whose parameters are to be estimated, and (log(|Wα(∆~k)|)~k∈J are
i.i.d. random variables. Thus, the parameter vector θ can be estimated by searching for a
vector θ for which the corresponding function log(|fθ(~k)|) approximates log(|g~k|)−E(W̃)

(where W̃ is a random variable with the same distribution as the log(|Wα(∆~k)|). This
means, the searched parameter vector is estimated by the vector θ which minimizes the

sum of squares S̄ :=
∑

~k∈J

(
log(|fθ(~k)|)− (log(|g~k|)− E(W̃))

)2

. As the expectation of

E(W̃) can’t be calculated easily, it is estimated, using the sample, by

1

|J |
·
∑
~k∈J

log(|Wα(∆~k)|) =
1

|J |
·
∑
~k∈J

(
log(|g~k|)− log(|fθ(~k)|)

)
=

1

|J |
·
∑
~k∈J

log(|g~k|)−
1

|J |
·
∑
~k∈J

log(|fθ(~k)|),

i.e. by the difference of the means of log(|g~k|) and of log(|fθ(~k)|). Thus, our estimator

of θ is the parameter vector θ̂ which minimizes

S :=
∑
~k∈J

log
(
|fθ(~k)|

)
− log(|g~k|) +

1

|J |
·
∑
~j∈J

log(|g~j|)−
1

|J |
·
∑
~j∈J

log
(
|fθ(~j)|

)2

.

In the previous paragraph, the estimation was derived under the assumption that the
values of

(
g~k
)
~k∈J are known, which usually is not true. If instead of this values, the

values of V A,B,D
ψ (x ~m) = FFT (g~k) are known, then the g~k can be calculated from the

V A,B,D
ψ (x ~m) by an inverse fast Fourier transform, as the Fourier transform is invertible.

Usually also the values of V A,B,D
ψ (x ~m) are unknown, and instead of them the values of the

simulated (or observed) OSSRF XA,B,D
ψ , which are XA,B,D

ψ (x ~m) = Re
(
V A,B,D
ψ (x ~m)

)
−

Re
(
V A,B,D
ψ (~0)

)
, have to be considered as the basis for the estimation. However, this

doesn’t really make a difference:

• If a complex number v is written in polar representation, i.e. as v = |v| · eiζ , then

Re(v) = |v| · cos(ζ)⇒ |Re(v)| = |v| · | cos(ζ)| ⇔ |v| = |Re(v)|
| cos(ζ)|

.

114

7.1 Derivation of an estimation algorithm

In the case of v = V A,B,D
ψ (x ~m), ζ is is a random value, and thus also | cos(ζ)| is

random. Therefore, considering only the real part of V A,B,D
ψ (x ~m) can be seen as

multiplication with a random variable Z = | cos(ζ)|, which is bounded to the inter-
val [0, 1]. Particularly, |v| ≥ |Re(v)|. To compensate the change in magnitude of the

absolute values, it seems appropriate to multiply the input data Re
(
V A,B,D
ψ (x ~m)

)
with the constant E

(
1
Z

)
before applying the inverse Fourier transform, or applying

this multiplication with E
(

1
Z

)
after the transform (which is equivalent because of

the linearity of the Fourier transform). However, it is not necessary to explicitely
perform this multiplication with the expectation value, as it is already included in
the step of adding the difference between the means of log(|g~k|) and of log(|fθ(~k)|).

• Adding the same (constant) value to each input value (v ~m) ~m∈J of a FFT or of an
inverse FFT doesn’t change the result of the output, except in the origin (i.e. if

the index is ~k = ~0), which is not included in the set J , but belongs to the “cut
out” center area, and therefore isn’t considered anyways.

For an inverse Fourier transform of an one-dimensional vector, it is easy to see
that only the first element of the resulting vector (i.e. the element with index 0)
changes, if every element of the input vector is changed by adding a c ∈ R:

(IFFT (~v + c))k =
N−1∑
m=0

e2πi km
N · (vm + c)

=
N−1∑
m=0

e2πi km
N · vm +

N−1∑
m=0

e2πi km
N · c

= (IFFT (~v))k + c ·
N−1∑
m=0

e2πi km
N

= (IFFT (~v))k +

{
c ·N, if k = 0

0, else

Thus substracting Re
(
V A,B,D
ψ (~0)

)
only changes the value of the inverse FFT at

g~0, and therefore doesn’t influence the result of the estimation.

Following from these considerations, the estimation of some parameters of the function
f(~k) = ψ(ξ~k)−H−

q
α ·1J(~k), based on the values XA,B,D

ψ (x ~m) of an (observed or simulated)
OSSRF in harmonizable representation, can be achieved by the following algorithm:

(a) Calculate
(
g̃~k
)
~k∈{−M,...,M−1}d by performing an inverse FFT on the input field(

XA,B,D
ψ (x ~m)

)
~m∈{−M,...,M−1}d

115

Chapter 7 Parameter estimation in the harmonizable case

(b) Set g~k := g̃~k · 1J(~k), for ~k ∈ {−M, . . . ,M − 1}d

(c) Search the parameter vector θ which minimizes the sum

S :=
∑
~k∈J

lε (fθ(~k)
)
− lε(g~k) +

1

|J |
·
∑
~j∈J

lε(g~j)−
1

|J |
·
∑
~j∈J

lε

(
fθ(~j)

)2

with lε(·) = log(max{| · |, ε}) for an appropriate (small) ε > 0, e.g. ε = e−40.
Thereby, an absolute value of zero is set to the positive value ε before applying
the log-function, in order to avoid a function value of −∞.

In the remaining part of this chapter, we show that this algorithm indeed can be used
to estimate some unknown parameters of the function f .

7.2 Implementation in Matlab

In this section, an implementation of this estimation method is presented, which tests
the estimation of the five parameters α, λ1, λ2, v1 and v2 for a two-dimensional OSSRF
in harmonizable representation (where v1 and v2 are the “angles” of the vectors θ1 and
θ2, i.e. θk = (cos(vk), sin(vk))

T , k ∈ {1, 2}). Procedures which estimate certain other
combinations of parameters can be developed analogously.

Listing 7.1: A program for the estimation of several parameters of an OSSRF)

1 % se t parameter va l u e s
2 % parameters which w i l l be es t imated
3 alpha = 2 . 0 ; % shape parameter (index o f s t a b i l i t y)
4 a1 = 1 ; % parameter \ lambda 1 (e i g enva l u e o f E)
5 a2 = 2 ; % parameter \ lambda 2 (e i g enva l u e o f E)
6 v1 = 1 . 0 ; % ’ angle ’ o f v e c t o r \ t h e t a 1 (\ t h e t a 1 = exp (i ∗v1))
7 v2 = 2 . 5 7 ; % ’ angle ’ o f v e c t o r \ t h e t a 2 (\ t h e t a 2 = exp (i ∗v2))
8 % other parameters (which are assumed to be known during
9 % the es t ima t ion process)

10 H = 1.0 ;
11 A = 4 . 0 ;
12 N = 2 ;
13 C1 = 1 ;
14 C2 = 1 ;
15 rho = 2 ;
16 M = 512 ; % Parameter M: determines the s i z e o f the random f i e l d
17
18 iM = 10 ; % index o f row in s t a t . t a b l e s
19 loopN = 20 ; % number o f t e s t runs
20

116

7.2 Implementation in Matlab

21 % mu l t i p l i c a t i o n o f v e c t o r ’param ’ wi th ’ mat switch ’
22 % exchanges a1 wi th a2 and v1 wi th v2
23 % (i . e . sw i t ch e s index ing o f ’ e i g enva lue s ’ and ’ e i g envec to r s ’)
24 mat switch = [0 1 0 0 0 ; 1 0 0 0 0 ; 0 0 0 1 0 ; 0 0 1 0 0 ; 0 0 0 0 1] ;
25
26 % t a b l e to which the s t a t i s t i c a l v a l u e s are saved
27 d e v i a t i o n s = zeros (loopN , 5) ;
28
29 % confirm tha t a1 <= a2 (i f not : exchange them)
30 i f (a1>a2) tmp = a1 ; a1 = a2 ; a2 = tmp ; clear (’ tmp ’) ; end
31
32 disp (’ ’) ;
33 disp (’ ’) ;
34 disp (sprintf (’ Test e s t imat i on with parameter M=%d . . . ’ , M)) ;
35
36 t ic ;
37 t o c l o o p s t a r t = toc ;
38
39 for l o o p i = 1 : loopN
40
41 toc1 = toc ;
42
43 % simu la t i on o f OSSRF whose parameters shou ld be es t imated
44 W =gen2Dharmo (alpha , H, A, M, N, a1 , a2 , v1 , v2 , C1 , C2 , rho) ;
45
46 % inve r s e FFT
47 W = f f t s h i f t (W, 1) ;
48 W = f f t s h i f t (W, 2) ;
49 W = i f f t 2 (W) ;
50 W = f f t s h i f t (W, 1) ;
51 W = f f t s h i f t (W, 2) ;
52
53 % ca l c u l a t i o n o f logAW and meanLogAW as ba s i s f o r the e s t ima t ion
54 AW = abs (W) ;
55 AW(−N+M+1 : N+M, −N+M+1 : N+M) = 0 ;
56 logAW = max(log (AW) , −40);
57 meanLogW = mean(mean(logAW)) ;
58
59 %de f i n e func t i on ’sum of squares o f d i f f e r en c e s ’
60 % (param = [a1 , a2 , v1 , v2 , a lpha])
61 diffSSum = @(param) (dif fSqrSum (param , H, A, M, N, C1 , C2 , . . .
62 rho , meanLogW, logAW)) ;
63
64 % search a s t a r t va lue (f o r the parameter v ec t o r)
65 % (t r y s e v e r a l randomly chosen param . vec tors ,
66 % and choose the one wi th the sma l l e s t sum of squares)
67 startParam = rand (1 , 5) .∗ [3 . 0 3 .0 pi pi 2 . 0] ;
68 i f (startParam (1)> startParam (2))
69 startParam = startParam ∗ mat switch ;
70 end

117

Chapter 7 Parameter estimation in the harmonizable case

71 startSSE = diffSSum (startParam) ;
72 for k = 2:10
73 testParam = rand (1 , 5) .∗ [3 . 0 3 .0 pi pi 2 . 0] ;
74 i f (testParam (1)> testParam (2))
75 testParam = testParam ∗ mat switch ;
76 end ;
77 testSSE = diffSSum (testParam) ;
78 i f (testSSE < startSSE)
79 startParam = testParam ;
80 startSSE = testSSE ;
81 end ;
82 end ;
83
84 % es t imat ion o f the parameter vec tor , us ing ’ fminunc ’
85 y = fminunc (diffSSum , startParam , opt imset (’ GradObj ’ , ’ o f f ’ , . . .
86 ’ LargeSca le ’ , ’ o f f ’ , ’ Display ’ , ’ n o t i f y ’)) ;
87
88 % Modi f i ca t ion o f r e s u l t f o r output
89 % (a) y (1) must be l e s s or equa l to y (2)
90 i f (y(1)>y (2)) y = y ∗ mat switch ; end ;
91
92 % (b) y (3) and y (4) can be chosen such tha th error i s max . p i /2
93 % (because o f p e r i o d i c i t y)
94 while (y(3)<v1−pi /2) y(3)=y(3)+pi ; end ;
95 while (y(3)>v1+pi /2) y(3)=y(3)−pi ; end ;
96 while (y(4)<v2−pi /2) y(4)=y(4)+pi ; end ;
97 while (y(4)>v2+pi /2) y(4)=y(4)−pi ; end ;
98
99 d e v i a t i o n s (l oop i , :) = [(y(1)−a1) , (y(2)−a2) , (y(3)−v1) , . . .

100 (y(4)−v2) , (y(5)− alpha)] ;
101
102 toc2 = toc ; % measure time at the end o f the loop
103 disp (sprintf (. . .
104 ’ Est imation o f OSSRF nr . %d (o f %d) f i n i s h e d (in %g s .) . . . ’ , . . .
105 loop i , loopN , toc2−toc1)) ;
106
107 end ; % end loop
108
109 toc l oops top = toc ;
110
111 disp (’ ’) ;
112
113 timesN (iM) = toc loopstop−t o c l o o p s t a r t ;
114 t imes1 (iM) = timesN (iM)/ loopN ;
115 disp (sprintf (’Time f o r %d loops : %g s . ; time per loop : %g s . ’ , . . .
116 loopN , timesN (iM) , t imes1 (iM))) ;
117
118 disp (’ ’) ;
119 disp (’ ’) ;
120 disp (’ d e v i a t i o n s : ’) ;

118

7.2 Implementation in Matlab

121 disp (’ a1 a2 v1 v2 alpha ’) ;
122 for l o o p j = 1 : loopN
123 disp (sprintf (’ %9.4 f %9.4 f %9.4 f %9.4 f %9.4 f ’ , . . .
124 d e v i a t i o n s (loop j , 1) , . . .
125 d e v i a t i o n s (loop j , 2) , d e v i a t i o n s (loop j , 3) , . . .
126 d e v i a t i o n s (loop j , 4) , d e v i a t i o n s (loop j , 5))) ;
127 end ;
128
129 disp (’−−− ’) ;
130
131 Ms(iM) = M;
132 mse (iM , :) = mean(d e v i a t i o n s . ˆ 2) ;
133 mean ad (iM , :) = mean(abs (d e v i a t i o n s)) ;
134 median ad (iM , :) = median(abs (d e v i a t i o n s)) ;
135
136 mean bs (iM , :) = mean(d e v i a t i o n s) ;
137 median bs (iM , :) = median(d e v i a t i o n s) ;
138
139 s t d s (iM , :) = std (d e v i a t i o n s) ;
140 i q r s (iM , :) = i q r (d e v i a t i o n s) ;
141
142 disp (sprintf (’ MSE: %9.4 f %9.4 f %9.4 f %9.4 f %9.4 f ’ , . . .
143 mse (iM , 1) , mse (iM , 2) , mse (iM , 3) , mse (iM , 4) , mse (iM , 5))) ;
144 disp (sprintf (’MEANAD: %9.4 f %9.4 f %9.4 f %9.4 f %9.4 f ’ , . . .
145 mean ad (iM , 1) , mean ad (iM , 2) , mean ad (iM , 3) , . . .
146 mean ad (iM , 4) , mean ad (iM , 5))) ;
147 disp (sprintf (’ MEDAD: %9.4 f %9.4 f %9.4 f %9.4 f %9.4 f ’ , . . .
148 median ad (iM , 1) , median ad (iM , 2) , median ad (iM , 3) , . . .
149 median ad (iM , 4) , median ad (iM , 5))) ;
150 disp (sprintf (’ BIAS : %9.4 f %9.4 f %9.4 f %9.4 f %9.4 f ’ , . . .
151 mean bs (iM , 1) , mean bs (iM , 2) , mean bs (iM , 3) , . . .
152 mean bs (iM , 4) , mean bs (iM , 5))) ;
153 disp (sprintf (’MDBIAS: %9.4 f %9.4 f %9.4 f %9.4 f %9.4 f ’ , . . .
154 median bs (iM , 1) , median bs (iM , 2) , median bs (iM , 3) , . . .
155 median bs (iM , 4) , median bs (iM , 5))) ;
156 disp (sprintf (’ STD: %9.4 f %9.4 f %9.4 f %9.4 f %9.4 f ’ , . . .
157 s t d s (iM , 1) , s t d s (iM , 2) , s t d s (iM , 3) , . . .
158 s t d s (iM , 4) , s t d s (iM , 5))) ;
159 disp (sprintf (’ IQR : %9.4 f %9.4 f %9.4 f %9.4 f %9.4 f ’ , . . .
160 i q r s (iM , 1) , i q r s (iM , 2) , i q r s (iM , 3) , . . .
161 i q r s (iM , 4) , i q r s (iM , 5))) ;

The main part of this example program is the loop which starts in line 39 and ends in
line 107. In every instance of the loop, an OSSRF is simulated with a set of parameters
which has been set before, and the five parameters α, λ1, λ2, v1 and v2 are estimated from
the simulated field. In order to evaluate the quality of the estimation, the deviations of
the estimated values from the predefined parameter values which have been used in the
simulation are saved in a table. In the code after this loop, these deviations are displayed

119

Chapter 7 Parameter estimation in the harmonizable case

and some statistical measures are calculated.

The loop begins with the simulation of a two-dimensional harmonizable OSSRF in line
44. The next step of the calculations is the inverse Fourier transform of these simulated
random values (lines 47 - 51). Following the algorithm presented in the previous section,
the searched parameters are estimated (in a simplified representation) by fitting the
logarithm of the function f to the logarithm of the absolute values resulting from this
inverse Fourier transform. Therefore, the logarithms of the absolute values of the results
from the inverse Fourier transform (and also their mean value) are calculated in the next
steps (lines 54-57) and saved in the array logAW. The logarithms of function values of
f are fitted to these values by searching the vector param of the five parameters, which
minimizes the function

S :=
∑
~k∈J

lε (fθ(~k)
)
− lε(g~k) +

1

|J |
·
∑
~j∈J

lε(g~j)−
1

|J |
·
∑
~j∈J

lε

(
fθ(~j)

)2

(compare the previous section). This function is defined as a function of the vector param
(in line 61f.) using the function diffSqrSum whose implementation is listed below. The
minimum of this function is searched with the Matlab function fminunc (line 85f.),
which requires as input not only the function that should be minimized (i.e. S), but also
an initial parameter vector. Therefore, an initial parameter vector for the minimizing
process is chosen before (in the lines 67 to 82) by testing some random vectors, and
selecting the one with the smallest sum of squares. After estimating the parameter
values, the deviations of the estimations from the true values of the parameters are
calculated (in line 99f.).

After repeating the process of simulation of an OSSRF and estimation of the parameters
α, λ1, λ2, v1 and v2 several times (in this example: 20 times), and thus obtaining a
sample of 20 deviations between estimated value and true value of each parameter,
several statistics of this deviations are calculated (lines 132-140) and displayed (lines
142-161) for each parameter, in order to evaluate the quality of the estimation.

Listing 7.2: The function ’diffSqrSum’ (a modified sum of squares of deviations)

1 % The parameter ’param ’ i s a vec to r o f l e n g t h 5 :
2 % param= [a1 a2 v1 v2 a lpha] − the parameters o f phi
3 % which are to be es t imated
4 % H, A, M, N, C1 , C2 , rho − the o ther parameters o f phi
5 % (which are supposed to be known)
6 % meanLogAW − the mean va lue o f logAW
7 % logAW − the sample f o r which the parameters o f
8 % phi shou ld be es t imated
9 function f v a l=dif fSqrSum (param , H, A, M, N, C1 , C2 , rho , meanLogAW, logAW)

10
11 a1 = param (1) ;

120

7.2 Implementation in Matlab

12 a2 = param (2) ;
13 v1 = param (3) ;
14 v2 = param (4) ;
15 alpha = param (5) ;
16
17 % crea t e the g r i d (wi th 2M x 2M data po in t s)
18 [km, lm]=meshgrid(−A:A/M:A−A/M,−A:A/M:A−A/M) ;
19
20 % ca l c u l a t e l o g (phi) wi th the g iven parameters
21 phi exponent = (−H−(a1+a2)/ alpha)/ rho ;
22 ph i base = C1∗(abs (km∗cos (v1) + lm∗ sin (v1))) . ˆ (rho/a1) . . .
23 + C2∗(abs (km∗cos (v2) + lm∗ sin (v2))) . ˆ (rho/a2) ;
24 l ogph i = phi exponent .∗ log (ph i base) ;
25 l ogph i (M−N+1 : M+N, M−N+1 : M+N) = −40;
26
27 % ca l c u l a t e the mean va lue o f l o g (phi)
28 meanLogPhi = mean(mean(l ogph i)) ;
29
30 % ca l c u l a t e the d i f f e r e n c e o f l o g (phi) and logAW,
31 % minus i t s mean value ,
32 % i . e . (l o g p h i − mean(mean(l o g p h i)))
33 % − (logAW − mean(mean(logAW)))
34 d i f fm = logph i + meanLogAW − meanLogPhi − logAW ;
35 di f fm (M−N+1 : M+N, M−N+1 : M+N) = 0 ;
36
37 % ca l c u l a t e the sum of squares
38 f v a l = sum(sum(d i f fm .ˆ2)) ;
39 end

This implementation uses the Matlab function fminunc in order to find a minimum of the
sum of squares diffSSum. In a first version, the function fminsearch was used for this
task, but Prof. H. P. Scheffler suggested to replace it by fminunc, because this function
is faster. Indeed, tests comparing these two methods on the same example random fields
showed that fminunc and fminsearch found estimations of the searched parameters
with similar precisions, but usually fminunc needed considerably less time for this task.

For example, the simulation and estimation (both methods applied to the same random
fields) of 10 random fields with parameter M = 200 (e.g. with 160000 data elements)
resulted in the sums of absolute deviations which are given in table 7.1. Here the sum
of absolute deviations for an estimation means the sum - over the different estimated
parameters - of absolute values of differences between estimated and true value of the
corresponding parameter, or: s = |â1 − a∗1|+ |â2 − a∗2|+ |v̂1 − v∗1|+ |v̂2 − v∗2|+ |α̂− α∗|,
where â1 is the estimated value and a∗1 is the actual value of the parameter a1, etc.

In this example, both methods gave estimates with similar deviations from the true
parameter values (with average error of the fminunc method being a bit better than
the one of the fminsearch method), but the fminunc function usually calculated this

121

Chapter 7 Parameter estimation in the harmonizable case

fminsearch fminunc

0.063113 0.063926
0.063878 0.063741
0.056464 0.055868
0.019942 0.020176
0.055384 0.055667
0.025237 0.024853
0.068784 0.061975
0.025333 0.025504
0.080791 0.078862
0.081495 0.075756

mean values:
0.054042 0.052633

(a) sums of estimation errors

fminsearch fminunc

73.6 32.8
85.9 36.6
53.9 34.2
32.3 42.3
38.6 25.3
43.9 36.7
55.9 24.0
70.2 34.1
63.8 36.8
81.1 38.6

mean values:
59.9 34.1

(b) times for search for mini-
mum (in seconds)

Table 7.1: Sums of absolute approximation errors, and elapsed times of estimation pro-
cess (Comparison of fminsearch and fminunc).

results much faster than the fminsearch function: The average time for the calculation
was 59.9 seconds when using fminsearch, compared to only 34.1 seconds with fminunc.

7.3 Numerical study

In order to test and to demonstrate the accuracy of the presented estimation procedure,
it was applied to a series of simulated random fields, and the estimated parameter
values were compared to the parameter values which were used to simulate the field.
For several different values of the parameter M (i.e. for different sizes of the simulated
field), a series of 20 harmonizable OSSRFs with the same combination of parameters
each (here: alpha= 2.0, a1= 1.0, a2= 2.0, v1= 1.0, v2= 2.0, H= 1.0, A= 4.0, N= 2,
C1= 1.0, C2= 1.0 and rho= 2.0) was simulated, and the parameters a1, a2, v1, v2 and
alpha were estimated by the program from the previous section.

In this section, be n the number of simulated random fields (in this example: n = 20), α∗

be the actual value of the parameter α which has been used for the simulation of these
random fields, and α̂k denotes the value of α which has been estimated from the kth
simulated random field (1 ≤ k ≤ n). The deviation of α for the kth simulation is δαk :=
α̂k−α∗ and the absolute deviation is |δαk | = |α̂k−α∗|. For the other estimated parameters,
these notations are analogous. From the sample of 20 deviations, the following statistics

122

7.3 Numerical study

are calculated by the estimation program (here presented for the parameter α, for the
other parameters analogous):

• the MSE (mean squared error): mse(α) := 1
n

∑n
k=1(δαk)2

• the mean absolute deviation: mean ad(α) := 1
n

∑n
k=1 |δαk |

• the median absolute deviation: median ad(α) := median({|δα1 | . . . , |δαn |})

• the mean bias: mean bs(α) := 1
n

∑n
k=1 δ

α
k =

(
1
n

∑n
k=1 α̂k

)
− α∗

• the median bias: median bs(α) := median1≤k≤n(δαk) = median1≤k≤n(α̂k)− α∗

• the sample standard deviation of the deviations (which is the same as the sample
standard deviation of the estimated values)

• the interquartile range, i.e the difference between the upper and the lower quartile,
of the deviations, which is also the same as the interquartile range of the estimated
values.

The figures 7.1 and 7.2 show boxplots of the deviations of the 20 estimations for dif-
ferent values of M (i.e., for different sizes of the simulated random fields). These plots
demonstrate that the estimation returns quite useful results (with absolute deviations
below 0.1 in most cases) already for relative small random fields, and that the accuracy
of the estimation improves with increasing values of M . Speaking more precisely, the
plots indicate that the magnitude of the absolute deviations is proportional to M−1, and
therefore converges to zero for M →∞. In other words, the observed results give empir-
ical evidence to the assumption that the estimated parameter values converge towards
the parameter values which were used to simulate the fields, when M → ∞, i.e. that
the estimator is consistent (a theoretical proof of this assumption is a possible topic for
further research). Indeed, the calculated statistics of the deviations, like e.g. the mean
absolute deviation, the mean bias or the interquartile range of the deviations, seem to
be approximately proportional to M−1, and the mean squared error, being defined as
the mean of the squares of the deviations, is proportional to M−2. As examples for these
statistics, the values of the MSE and of the mean absolute deviation for different pa-
rameter values are presented in the graphs in figures 7.3 and 7.4 and in the tables 7.2
and 7.3.

123

Chapter 7 Parameter estimation in the harmonizable case

Figure 7.1: Boxplots of deviations of estimated parameter values.

124

7.3 Numerical study

Figure 7.2: Boxplots of deviations of estimated parameter values (for large fields).

125

Chapter 7 Parameter estimation in the harmonizable case

size of the random field mean absolute deviation
M elements (= 4M2) a1 a2 v1 v2 alpha mean

24 2304 0.1101 0.1620 0.0469 0.1537 0.1861 0.1317
32 4096 0.0457 0.0823 0.0123 0.0358 0.0829 0.0518
48 9216 0.0283 0.0616 0.0098 0.0259 0.0498 0.0351
64 16384 0.0327 0.0489 0.0060 0.0178 0.0358 0.0283
96 36864 0.0131 0.0269 0.0041 0.0117 0.0222 0.0156

128 65536 0.0123 0.0227 0.0033 0.0108 0.0220 0.0142
192 147456 0.0078 0.0123 0.0021 0.0060 0.0151 0.0087
256 262144 0.0044 0.0071 0.0018 0.0050 0.0084 0.0053
384 589824 0.0035 0.0072 0.0013 0.0027 0.0075 0.0044
512 1048576 0.0030 0.0054 0.0008 0.0017 0.0041 0.0030
768 2359296 0.0021 0.0039 0.0005 0.0012 0.0027 0.0021

Table 7.2: Mean absolute deviation depending on the size of the random field.

size of the r. field mean squared error
M elements a1 a2 v1 v2 alpha mean

24 2304 0.056073 0.053518 0.007040 0.081894 0.089297 0.057564
32 4096 0.003167 0.011863 0.000247 0.001892 0.013551 0.006144
48 9216 0.001345 0.005186 0.000136 0.000894 0.004608 0.002434
64 16384 0.001438 0.003878 0.000046 0.000504 0.002187 0.001611
96 36864 0.000281 0.001202 0.000024 0.000205 0.000878 0.000518

128 65536 0.000190 0.000710 0.000018 0.000162 0.000737 0.000363
192 147456 0.000105 0.000311 0.000008 0.000059 0.000344 0.000165
256 262144 0.000032 0.000077 0.000005 0.000036 0.000103 0.000051
384 589824 0.000020 0.000074 0.000003 0.000012 0.000085 0.000039
512 1048576 0.000013 0.000044 0.000001 0.000004 0.000026 0.000018
768 2359296 0.000007 0.000022 0.000000 0.000002 0.000011 0.000008

Table 7.3: Mean squared error (MSE) depending on the size of the random field.

126

7.3 Numerical study

(a) In a cartesian coordinate system. (b) In a log-log coordinate system.

Figure 7.3: The mean absolute deviation in dependency of the parameter M. The five
thin lines show the median absolute deviations for the different estimated
parameters. The thick, black line is the graph of h(M) = 1.7 ·M−1.

(a) In a cartesian coordinate system. (b) In a log-log coordinate system.

Figure 7.4: The mean squared error in dependency of the parameter M. The five thin
lines show the MSE for the different estimated parameters. The thick, black
line is the graph of h(M) = 5.4 ·M−2.

127

Chapter 7 Parameter estimation in the harmonizable case

128

Appendix A

Manual of the Java program
“OSSRFSIM”

A.1 Program start

The program is opened by the command line call “java START” (in the program direc-
tory, which contains the file START.class) - or when using MacOS, by a simple double
click on the file START.class. After a waiting time of a few seconds, the following window
appears (see figure A.1).

Figure A.1: The start screen.

In the text field after “Max. size of
memory” , the maximum amount of sys-
tem memory (RAM) which shall be used
by the program, can be set (the minimum
amount is 10 MB and the maximum is
2048 MB, i.e. two gigabytes). The amount
of memory should be chosen according to
the available free memory on the com-
puter which the program is running on:
For example, if it has three gigabyte - or
more - of RAM, then a choice of 2048 MB
is preferable, in order to avoid an unnec-
cessary limitation of the program. How-
ever, if the machine, for example, has 512
MB RAM and half of it is occupied by the
operating system and other programs running in the background, then it is recommended
not to use more than about 300 MB for this program.

If two-dimensional OSSRFs should be simulated, then the program module for this task
can be started by a click on the “Start 2d” button. In the same way, the module for

129

Appendix A Manual of the Java program “OSSRFSIM”

the simulation of three-dimensional OSSRFs is started with a click on the “Start 3d”
button. Alternatively, the program may be simply closed by clicking on the “Cancel”
button.

A.2 2-dimensional OSSRF

After a click on “Start 2d”, the program module for the simulation of two-dimensional
OSSRF starts, which shows after a few seconds the image of an OSSRF (see figure A.2).

Figure A.2: The Program window with a simulated 2-dimensional OSSRF.

130

A.2 2-dimensional OSSRF

A.2.1 The main menu

The main menu contains the submenus “File” and “Save Image”, and additionally the
menu items “Parameters...”, “Create Image”, “Start/Stop Loop” and “Info”.

A.2.2 The File menu

The menu “File” contains the menu items “Read OSSRF data file”, “Save OSSRF data
file” and “Close”. A click on “Save OSSRF data file” opens a dialog which enables the
user to choose a directory and specify a filename to which the numerical data of the
currently displayed OSSRF should be saved (see figure A.3). This enables the user to
view a certain simulated OSSRF again later, or to share it with other users. In the same
way, a click on “Read OSSRF data file” opens a dialog which allows to choose a file from
which a saved OSSRF can be loaded (instead of simulating a new one). A click on the
“Close” menu item closes the program (without asking for confirmation!).

Figure A.3: The file chooser dialog which opens after click on “Save OSSRF data file”
(this picture shows the dialog window on a German version of MacOS).

131

Appendix A Manual of the Java program “OSSRFSIM”

A.2.3 The Save Image menu

The menu “Save Image” contains some menu items which can be used to save the
currently displayed image of an OSSRF in an “.png” or “.jpg” image file: “Save JPG (A.
Nr.)”, “Save PNG (A. Nr.)”, “Save JPG as ...” and “Save PNG as ...”. When clicking
on one of the first two items, a picture is saved immediately into the program folder,
with an automatically generated, unique number (and, of course, the corresponding file
extension) as filename. When using one one of the latter two, however, a dialog window,
like the one shown above in figure A.3, opens so that the user can specify a filename to
which the image should be saved. The image is saved as a “.jpg” file when using “Save
JPG (A. Nr.)” or “Save JPG as ...”, and in the “.png” format when one of the other
items is used.

A.2.4 The parameter dialog

A click on the menu item “Parameters ...” opens a dialog window, which allows the user
to set the parameters of the simulated OSSRF and of the simulation procedure (figure
A.4):

Figure A.4: The parameter dialog for the simulation of two-dimensional OSSRFs.

At the bottom of the dialog, you can choose wether an OSSRF in harmonizable repre-
sentation or one in moving average representation should be simulated (At any time,
exactly one of these two possibilites is chosen. The default setting is “harmonizable”).

132

A.2 2-dimensional OSSRF

If the harmonizable representation is chosen, then the following random field is approx-
imated:

Xψ(x) = Re

∫
R2

(
ei<x,ξ> − 1

)
ψ(ξ)−H−(a1+a2)/αWα(dξ), x ∈ R2

and in the moving average case the following random field:

Xϕ(x) =

∫
R2

(
ϕ(x− y)H−(a1+a2)/α − ϕ(−y)H−(a1+a2)/α

)
Zα(dy), x ∈ R2

Thereby, in any case the occuring integral over R2 is approximated by a finite sum: In
the harmonizable case this is

XA,M
ψ (x) = Re

∑
(k,l)∈J

(
ei<x,ξk,l> − 1

)
ψ(ξk,l)

−H−(a1+a2)/αWα(∆k,l)

with J := {−M, . . . ,M − 1}2\{−N, . . . , N − 1}2, ξk,l = (kD, lD)T and ∆k,l = [kD, (k+
1)D)× [lD, (l + 1)D). In the moving average case the approximating sum is

Xϕ,A,M(x) =
M−1∑

k,l=−M

(
ϕ(x− yk,l)H−(a1+a2)/α − ϕ(−yk,l)H−(a1+a2)/α

)
Zα(∆k,l) ≈ Xϕ,A(x)

(with yk,l = (kD, lD)T and ∆k,l = [kD, (k + 1)D)× [lD, (l + 1)D)).

In both cases, an E-homogeneous function of the following form is used:

ψ(x) = ϕ(x) =
(
C1 |< x, θ1 >|ρ/a1 + C2 |< x, θ2 >|ρ/a2

)1/ρ

The meaning of the parameters alpha (=α), H (=H), a1 (= a1), a2 (=a2), C1 (= C1),
C2 (=C2) and rho (=ρ) can be read from these formulas. The vectors θ1 and θ2, which
are contained in the last formula, are calculated from the parameters v1 (= v1) and v2

(= v2) by θ1 = (cos(v1), sin(v1))T and θ1 = (cos(v2), sin(v2))T .

With a click on “OK” the parameter dialog can be closed, and changes to the parameters
are saved to the program if they are valid parameter values (however, if e.g. the input
in a parameter input field is not a number, or if the input for M is not an integer, then
the new value will not be accepted, and the text in the input field will be reset to the
previous value). Alternatively, the window can be closed without saving the input by a
click on “Cancel”.

133

Appendix A Manual of the Java program “OSSRFSIM”

Simulation of OSSRF

A click on the menu item “Create image” starts the simulation of a new OSSRF with
the currently set parameters. As an alternative, the repeated simulation of OSSRF with
identical parameter values can be started and stopped with the menu item “Start/Stop
Loop”.

Display settings: Color scale and size of image

The simulated two-dimensional OSSRF are shown in the program window as a two-
dimensional bitmap image, in which each pixel is painted according to the a value in
the simulated OSSRF. The color map, which maps each value in the normed OSSRF to
a corresponding color, can be chosen in the lower right corner of the program window.
A click on the button behind “Color scale” opens a list of availabel color scales, from
which a one entry may be chosen (see A.5).

(a) before change (b) changing the map (c) after the change

Figure A.5: Changing the color map.

A.2.5 Progress display

During the simulation of an OSSRF, some information about the progress of the calcu-
lations and about the memory usage are displayed in the status bar at the lower edge of
the program window (see A.6):

In the upper line (next to the display settings), on the left side a short information about
the current task is given (e.g., in the picture A.6: FFT). In the line below, the time since
the begin of the calculation, and an estimate of the remaining computing time is shown
on the left: From left to right the elapsed time, the estimated remaining time, and the

134

A.2 2-dimensional OSSRF

Figure A.6: Display of progress during the simulation (at the lower edge of the window).

resulting total computing time are displayed. The estimated ratio of elapsed time and
total time (e.g. the percentage of the calculations which have been done yet) is shown in
the progress bar on the right. In the middle, the amount of system memory currently in
use by the program (“use”) and the maximum amount of memory (“max”) which it can
use (according to the parameter value which was set in the start window) are displayed.

In the screen shot shown in image A.6, the program is currently calculating a FFT, the
total simulation process already took 140 seconds, and the program estimates that this is
about 76 percent of the whole simulation. This numbers imlpy a total computation time
of about 183 seconds, so that 42 seconds are remaining until the end of the calculation.
The program has been started with a limit of 1984 MB of RAM, but is currently using
only 1038 MB (in this example, an OSSRF is simulated with parameter M = 4000, i.e.
the approximated OSSRF is approximated in 64 million points.

A.2.6 Mouse and keyboard commands

Mouse commands

The image of the OSSRF which is shown in the program window can be scrolled and
zoomed by moving the mouse over the image while pressing a mouse button. If the right

135

Appendix A Manual of the Java program “OSSRFSIM”

button is pressed and the mouse is dragged vertically, then the image is zoomed in or
out. If the mouse is moved up, then the picture is zoomed out (showing a larger part
of the OSSRF, if its projection is larger than the displayed image), and if the mouse is
moved down, then the image is zoomed in (i.e. magnified). However, zooming can be
disabled: The program is always in one of the three zoom modes, which can be changed
by the “z” key:

• “0” (no zooming, the projection is always shown at 100% zoom, i.e. one data point
is shown as one pixel)

• “1” (squares: In a high zoom factor, each data point of the OSSRF is shown as a
small square),

• “2” (interpolation: the color of each pixel is determined by interpolation between
the neighboring data points).

If the left button is pressed, then the picture is shifted, following the movement of the
mouse. However, the movement of the image is limited: If the image is smaller than
the projection of the OSSRF, then the movement of the image stops at the edge of the
projection, so that it doesn’t “run out of the OSSRF”, and if the image is larger, than
the projection is not moved out of it.

Keyboard commands

The program window recognizes the following keyboard commands:

Key Function
+ zoom in (magnify image)
- zoom out (reduce image)

C, c center the image
I, i reset zoom factor to 100 %

Q, q Close the program (“Quit”)
(the same as the menu item “File - Close”)

Z switch to next zoom mode (0→ 1→ 2→ 0)
z switch to prev. zoom mode (0→ 2→ 1→ 0)

Table A.1: Keyboard commands for the display of 2d OSSRFs.

136

A.3 3-dimensional OSSRF

A.3 3-dimensional OSSRF

The program module for the simulation of three-dimensional OSSRF is started by a click
on the “Start 3d” button in the start window. It first shows the parameter dialog, giving
the opportunity to adjust the simulation parameters before the first simulation of an
OSSRF. After closing the parameter dialog, the simulation of an OSSRF can be started
by a click on the “Simulate OSSRF” menu item. To the left side of the program window,
the display parameter dialog also appears. It is recommended not to close this window,
as it is quite small and can stay on the side of the main window, thus permitting to
change the display parameters without requiring to open and close the window every
time. However, if it is closed, it is also possible to open it again (by the main menu).

A.3.1 The parameter dialog

The (simulation) parameter dialog can be opened by a click on the menu item “Param-
eters (Sim.)” in the program window, and allows the user to set the parameters of the
simulated OSSRF and of the simulation procedure (see figure A.7).

Below the text fields for the input of the simulation parameters, the choice of “Harmo-
nizable” or “Moving Average” determines, if an OSSRF in harmonizable or in moving
average representation should be simulated (only one of these choices can be checked;
the default setting is “Harmonizable”).

If the box before “Save 2d Pictures” is checked, then the program exports the OS-
SRF (immediately after its simulation) to a series of PNG-pictures (in the “pictures”-
folder, or in the folder which is specified in the file options.txt - if it exists - after
DIRNAME_PICTURES). Thereby each plane of points with identical z-coordinates is saved
in a PNG file, creating 2M pictures of size 2M × 2M , where M is the parameter of the
OSSRF which determines the size of the simulated sample. The x and y coordinates of a
point in the OSSRF are also his x and y coordinate in the picture, and the z coordinate
is translated to the number of the file. However, saving the series of pictures takes about
as much time as the whole simulation process, which is the reason for this function to
be switched off by default.

If “Harmonizable” is chosen, then the random field

Xψ(x) = Re

∫
R3

(
ei<x,ξ> − 1

)
ψ(ξ)−H−(a1+a2+a3)/αWα(dξ), x ∈ R3

is simulated, and if “Moving Average” is chosen, the simulated random field is the
following:

Xϕ(x) =

∫
R3

(
ϕ(x− y)H−(a1+a2+a3)/α − ϕ(−y)H−(a1+a2+a3)/α

)
Zα(dy), x ∈ R3.

137

Appendix A Manual of the Java program “OSSRFSIM”

In each case, the occuring integral over R3 is approximated by a finite sum, namely in
the harmonizable case by

XA,B,D
ψ (x) = Re

∑
~k∈J

(
ei<x,ξ~k> − 1

)
ψ(ξ~k)−H−

(a1+a2+a3)
α Wα(∆~k)

with J := {−M, . . . ,M − 1}3\{−N, . . . , N − 1}3, and in the moving average case by

Xϕ,A,M(x) =
∑

~k∈{−M,...,M−1}3

(
ϕ(x− y~k)H−

a1+a2+a3
α − ϕ(−y~k)H−

a1+a2+a3
α

)
Zα(∆~k).

In both cases, an E-homogeneous function in the following form is used:

ψ(x) = ϕ(x) =
(
C1 |< x, θ1 >|ρ/a1 + C2 |< x, θ2 >|ρ/a2 + C3 |< x, θ3 >|ρ/a3

)1/ρ

The meaning of the parameters alpha (=α), H (=H), rho (=ρ), D (=D = A
M

= B
N

), M
(=M), N (=N , used only in the “harmonizable” case), a1 (= a1), a2 (=a2), a3 (=a3),
C1 (= C1), C2 (=C2) und C3 (=C3) are to be read from these formulas.

The coordinates of each of the vectors θ1, θ2, θ3 ∈ R3 are set in three neighboring input
fields (i.e. in the form of a row vector), each vector θj to the left of the corresponding
eigenvalue aj.

A click on “OK” closes the dialog, and the changes are saved (if the new input values
are valid). If the button “Cancel” is clicked, then the dialog is closed without saving
changes to the parameters.

A.3.2 The display parameter dialog

Figure A.8

The display parameter dialog is a small window which usually ap-
pears at the left side of the screen (see figure A.8). It permits to spec-
ify whether a projection of the three-dimensional OSSRF should be
displayed in the main window, for which values of the normed OS-
SRF (values in the range [0.0, 1.0]) the corresponding points should
be shown, and which color map is to be used (about the color map,
see also the subsection A.2.4 “display settings” for two-dimensional
OSSRF).

138

A.3 3-dimensional OSSRF

A.3.3 The main menu

The main menu contains the submenus “File” and “Save Image”, and the additional
menu items “Simulate OSSRF”, “Parameters (Sim.)”, “Parameters (Image)” and “Info”.

A click on “Simulate OSSRF” starts a the simulation of a new OSSRF with the currently
set parameters. If the OSSRF is too large to fit into the the available RAM (i.e. if the
parameter M is too big), then the program automatically uses a method which stores
parts of the data on the hard disk between different steps of the calculation. Thereby,
the program needs more time for the calculation, but is able to calculate also random
fields which need more than the available memory space (especially: which need more
than 2 Gigabyte of RAM). Thus, the size of the simulated OSSRF is now limited by the
amount of free space on the hard disk. The needed disk space is 24 bytes per data point,
i.e. if M = 512, then the OSSRF has (2 ∗M)3 = 10243 points (about 1.074 billion), and
therefore needs 24 GB of disk space.

The menu item “Parameters (Sim).” opens the simulation parameter dialog (see subsec-
tion A.3.1) if it is closed. Analoguously, the menu item “Parameters (Image)” opens the
display parameter dialog (see subsection A.3.2).

The submenus “File” and “Save Image” are discribed in the following paragraphs:

The File menu

The menu “File” contains the menu items “Read OSSRF data file”, “Save OSSRF data
file”, “Save 2d Pictures” and “Close”. A click on “Save OSSRF data file” opens a dialog
which enables the user to choose a directory and specify a filename to which the numerical
data of the currently displayed OSSRF should be saved (see figure A.3). This enables the
user to view a certain simulated OSSRF again later, or to share it with other users. In
the same way, a click on “Read OSSRF data file” opens a dialog which allows to choose
a file from which a saved OSSRF can be loaded (instead of simulating a new one). With
the menu item “Save 2d Pictures”, the user can export the OSSRF to a series of .png
picture files (if the corresponding option has been chosen in the simulation parameters
dialog, this action is started automatically after the simulation of the OSSRF, compare
the description in subsection A.3.1. Using this menu item, the export tho the picture
files can also be done at a later time). A click on the “Close” menu item closes the
program (without asking for confirmation!).

139

Appendix A Manual of the Java program “OSSRFSIM”

The Save Image menu

Using the items in the “Save Image” menu, the projection of the three-dimensional
OSSRF, which is shown in the program window, can be saved to a .jpg or a .png file.
The menu and its items is identical to the corresponding menu in the module for two-
dimensional OSSRFs (compare subsection A.2.3).

A.3.4 Mouse and keyboard commands in the main window

The projection of the OSSRF in the program window can be changed by mouse move-
ments while a mouse button is pressed, and by keyboard commands. The image of the
OSSRF is rotated by moving the mouse over the window while the left mouse button
is pressed. If the right mouse button is pressed, then a vertical movement of the mouse
increases or decreases the size of the projection (zoom in / out). The keys which are
accepted by the program window as commands to the OSSRF projection are listed in
table A.2 (the program window must have the input focus, which means for example
that after an input to the image parameter dialog, the main window must be clicked in
order to regain the focus, before accepting keyboard commands).

A.3.5 Progress display

In the status bar (at the lower edge of the program window), the progress is displayed
during calculations. The progress display in the 3d module is the same as for the 2d
module (see subsection A.2.5).

140

A.3 3-dimensional OSSRF

Figure A.7: The Parameter dialog for the simulation of three-dimensional OSSRFs.

Figure A.9: Main menu and status bar.

141

Appendix A Manual of the Java program “OSSRFSIM”

Key Function
1 Switch to parallel projection.
2 Switch to perspectivic projection.
3 Switch to anaglyph projection (red/cyan 3D glasses needed)

B, b Switch between black and white background.
0 Reset transformation matrix to unit matrix,

i.e. undo all rotations
+ Magnify image (zoom in)
- Reduce image (zoom out)

(only relevant in anaglyph projection mode:)
e Decrease distance between eyes.
E Increase distance betwee eyes.
f Leave full screen mode.
F Enter full screen mode.
p reduce size of pixels.
P increase size of pixels.
Q Close (Quit) program.

(not relevant in parallel projection mode:)
w Decrease distance between eyes and origin.

(stronger perspectivic deformation)
W Increase distance between eyes and origin.

(less perspectivic deformation)
x Rotation of the OSSRF about the X-axis
X Rotation of the OSSRF about the X-axis (opposite direction)
y Rotation of the OSSRF about the Y-axis
Y Rotation of the OSSRF about the Y-axis (opposite direction)
c Rotation of the OSSRF about the Z-axis
C Rotation of the OSSRF about the Z-axis (opposite direction)

Table A.2: Keyboard commands for the display of 3d OSSRFs.

142

A.4 The option.txt file

A.4 The option.txt file

Some additional constants of the program, which are not set in a parameter dialog (e.g.
the name of the directory in which the temporary files are stored, or the filenames of
temporary files), can be read from a text file called “option.txt” which has to be in the
program folder in order to be found. This file allows to change these settings without
editing the source code and compiling again. If this file is not found, certain default
settings are used.

The file “option.txt” may, for example, look like this:

DO NOT EDIT THE TEXT BEFORE THE ’=’-SIGN !!!

##

DIRNAME_PICTURES=pictures

DIRNAME_CACHE=cache

FILENAME_OSSRF_DATA=ossrf_data3d

FILENAME_POINTS=points3d

FILENAME_PICTURES=img

simulation mode for 2d ossrf:

"8byte" / "64bit" or "4byte" / "32bit"

2D_VARIANT=8byte

number of parallel processes in simulation methods

which support parallel computation

(an integer number)

NUMBER_OF_PARALLEL_PROC=1

Lines which set a constant, have the format “KEY=value”, without any whitespaces. The
key, including the “=”-sign, has to be written exactly as in the example file, only the val-
ues after the “=”-sign may be changed. The constants to be read from the “option.txt”-
file are summarized in table A.3.

143

Appendix A Manual of the Java program “OSSRFSIM”

Key Meaning
DIRNAME PICTURES Name of the directory to which the series of

2d pictures are exported from a 3d OSSRF.
FILENAME PICTURES Name of the files of the 2d pictures which are

generated from the 3d OSSRFs.
DIRNAME CACHE Name of the directory into which temporary

files are stored (the directory and its contents
may be deleted after closing the program).

FILENAME OSSRF DATA Name of the (temporary) file(s) into which
large 3d OSSRFs are stored.

FILENAME POINTS The name of the file to which the dis-
played points in the projection of a three-
dimensional OSSRF are saved.

2D VARIANT Sets whether the OSSRF data of two-
dimensional OSSRF should be stored in
32bit (float) or in 64bit (double) floating
point variables. Using 32bit (4byte) variables
allows the simulation of larger OSSRF in a
certain amount of RAM.

NUMBER OF PARALLEL PROC=1 Some parts of the simulation of harmoniz-
able OSSRF can be split into several paral-
lel processes, in order to use more than one
CPU core, and thus accelerate the compu-
tation. This parameter determines into how
many parallel threads the computation is dis-
tributed (a value of 1 means “no parallel
computation”, a value of 2 uses both cores
of a dual-core system, etc.)

Table A.3: Parameter names in the file “option.txt”.

144

Appendix B

Contents of the attached CD

• Java: This directory contains the Java implementation (“OSSRFSIM”) of the
simulation algorithms.

– intro pictures: This directory contains some example pictures which are
used in the “Start”-window (when starting the program) and in the “Info”-
window.

– javadoc: This directory contains the javadoc-files (short documentation of
the java classes, in the HTML format) which have been generated from the
source files (start with index.html to view the documentation).

– ossrfsim: This directory contains the “*.class” Java bytecode files of the Java
implementation.

Under MacOS, the module for the simulation of two-dimensional OSSRF can
be started by a double click on OSSRFWindow2d.class, and the module for
three-dimensional OSSRF by a double click on OSSRFWindow3d.class. Under
all common operating systems (including all versions of Windows, MacOS
or Linux), each module can be started in a command line shell, e.g. the
“2d”-module by the command “java OSSRFWindow2d”. Using the parameter
“-XmxMSIZE”, the maximal available memory space for this program can
be specified to be MSIZE, for example a maximal amount of 2 GB by the
call “java -Xmx2048M OSSRFWindow2d”. However, it is recommended to
start the program using the “START”-file in the program directory (then the
maximum amount of memory can be specified in the start window, see section
A.1).

– src: This directory contains the “*.java” source files of the Java project.

– options.txt: A textfile which can be used to set some options for the Java
implementation (see section A.4).

145

Appendix B Contents of the attached CD

– START.class: This file can be used to start the Java program: Open a
command line shell, go to this folder and call “java START”. Under MacOS,
the program can alternatively also be started by a double click on this file
(see section A.1).

• Matlab: This directory contains the Matlab implementations of the simulation
algorithms (see section 6.1) and of the estimation algorithm of chapter 7.

– ossrf 2d: This directory contains the Matlab implementations of the simula-
tion algorithms for two-dimensional OSSRFs (see subsection 6.1.1).

∗ ossrfgui2d.fig: GUI definitions for ossrfgui2d.m.

∗ ossrfgui2d.m: A graphical user interface to input the parameters for
a 2d OSSRF, and start its simulation. It uses simuH2dl or simuM2d
(depending on the type of the OSSRF) for the simulation.

∗ ossrfH2d.m: Simulates a harmonizable OSSRF. Parameter values are
defined in the source code at the beginning of the file. It uses simuH2ds
or simuH2dl (depending on the size of the OSSRF) for the simulation.

∗ ossrfHi2d.m: The same as ossrfH2d.m, except that parameter values
are requested as user input on the Matlab command line rather than
specified in the source code.

∗ ossrfHs2d.m: Simpler version of ossrfH2d.m for a small OSSRF. It uses
the function simuH2ds for the simulation and should not be used for large
OSSRF with M > 2000.

∗ ossrfM2d.m: Simulates a harmonizable OSSRF. Parameter values are
defined in the source code at the beginning of the file. It uses simuM2d
for the simulation.

∗ ossrfMi2d.m: The same as ossrfM2d.m, except that parameter values
are requested as user input on the Matlab command line rather than
specified in the source code.

∗ simuH2dl.m: Function for the simulation of middle and large 2d har-
monizable OSSRFs. It should be used by calling one of the ossrf*.m-files.

∗ simuH2ds.m: Function for the simulation of small 2d harmonizable OS-
SRFs. It should be used by calling one of the ossrf*.m-files.

∗ simuM2d.m: Function for the simulation of 2d moving-average OSSRFs.
It should be used by calling one of the ossrf*.m-files.

146

– ossrf 3d: This directory contains the Matlab implementations of the simula-
tion algorithms for three-dimensional OSSRFs (see subsection 6.1.2).

∗ displayossrf3d.m: Function for the display of 3d OSSRFs. It is used by
ossrf3d.m and ossrfgui3d.m.

∗ ossrf3d.m: Simulates a 3d OSSRF. Parameter values are defined in
the source code at the beginning of the file. It uses one of the simu* -
functions (depending on the specified parameters) for the simulation,
and displayossrf3d for the presentation of the OSSRF.

∗ ossrfgui3d.fig: GUI definitions for ossrfgui3d.m.

∗ ossrfgui3d.m: A graphical user interface to input the parameters for a
3d OSSRF, and start its simulation. It uses one of the simu* -functions
(depending on the specified parameters) for the simulation, and dis-
playossrf3d for the presentation of the OSSRF.

∗ simuH3dl.m: Function for the simulation of middle and large 3d harmo-
nizable OSSRFs. It should be used by calling ossrf3d.m or ossrfgui3d.m.

∗ simuH3ds.m: Function for the simulation of small 3d harmonizable OS-
SRFs. It should be used by calling ossrf3d.m or ossrfgui3d.m.

∗ simuM3d.m: Function for the simulation of 3d moving-average OSSRFs.
It should be used by calling ossrf3d.m or ossrfgui3d.m.

– ossrfestim a1a2v1v2alpha: This directory contains the Matlab implemen-
tation of the estimation algorithm (for two-dimensional, harmonizable OSS-
RFs, see section 7.2).

∗ diffSqrSum.m: The function for the calculation of the “sum of squares”,
which has to be minimized. It is used by runEstimation.m.

∗ gen2Dharmo.m: The function for the simulation of 2d harmonizable
OSSRFs. It is used by runEstimation.m to create the OSSRF whose
parameters have to be estimated.

∗ runEstimation.m: The main file of the estimation test program.

Additionally, each directory contains the three files of the rstab-package by Prof.
Vandev from the University of Sofia (i.e. the files d2.m, rstab.m and tan2.m).

• thesis.pdf : This thesis in the form of a PDF file.

147

Appendix B Contents of the attached CD

148

List of symbols and abbreviations

Special symbols

N The positive integers {1, 2, 3, . . .}
N0 The non-negative integers N ∪ {0} = {0, 1, 2, 3, . . .}
Z The integer numbers {. . . ,−2,−1, 0, 1, 2, . . .}
R The real numbers

C The complex numbers

|| · ||ρ The ρ-norm ||~x||ρ :=
(∑d

j=1 x
ρ
j

)1/ρ

for ~x ∈ Rd, ρ ∈ [1,∞)

|| · ||∞ The maximum-norm ||~x||∞ := max1≤j≤d(xj) for ~x ∈ Rd

S∞ The || · ||∞-unit-sphere (S∞ := {x ∈ Rd : ||x||∞ = 1})
S2 The || · ||2-unit-sphere (S2 := {x ∈ Rd : ||x||2 = 1})
{k}n The vector of length n, all of whose elements have the value k, i.e.

{k}n = (k, . . . , k)T (n components)

~k The vector (k1, . . . , kd)
T

ξ~k The vector ~k ·D = (k1 ·D, . . . , kd ·D)T

∆~k The hypercube [k1 ·D, (k1 + 1) ·D)× . . .× [kd ·D, (kd + 1) ·D)

< x, y > The scalar product (“dot product”) of the vectors x and y.

X ∼ Sα(σ, β, µ) The random variable X is distributed according to an α-stable
distribution with shape parameter β, scaling parameter σ and lo-
cation parameter µ.

Γ Rd\{0}.

XIII

Frequently used abbreviations

OSSRF operator scaling stable random field

r.v. random variable

DFT discrete Fourier transform

FFT fast Fourier transform

mio. million (= 106)

bio. billion (= 109)

XIV

Bibliography

[1] Hermine Biermé, Mark M. Meerschaert, Hans-Peter Scheffler: Operator scaling
stable random fields, Stochastic Processes and their Applications 117, pages 312-
332, Elsevier, 2007

[2] Michael Clausen, Ulrich Baum: Fast Fourier Transforms BI-Wissenschafts-Verlag,
1993

[3] J.W. Cooley, J.W. Tukey: An algorithm for the machine calcula-
tion of complex Fourier series, Math. Comput. 19 (90): 297301, 1965.
http://dx.doi.org/10.1090%2FS0025-5718-1965-0178586-1

[4] J.M. Chambers, C.L. Mallows, B.W. Stuck: A Method for Simulating Stable Ran-
dom Variables, Journal of the American Statistical Association, vol. 71, nr. 354,
pages 340-344, 1976

[5] JAVA 2 SE 5.0 API Specification,
http://download.oracle.com/javase/1.5.0/docs/api/index.html

[6] G. Krüger, T. Stark: Handbuch der Java-Programmierung, 6. Auflage, Addison-
Wesley, 2009; free-of-charge download version: www.javabuch.de

[7] MATLAB Online Function Reference,
http://www.mathworks.com/help/techdoc/ref/

[8] M.M. Meerschaert, H.P. Scheffler, Limit Distributions for Sums of Independent
Random Vectors: Heavy Tails in Theory and Practice, Wiley-Interscience, New
York, 2001.

[9] W. Schweizer: MATLAB kompakt, 2. überarbeitete Aufl. Oldenbourg, München,
2007

[10] G. Samorodnitsky, M.S. Taqqu: Stable Non-Gaussian Random Processes, Chap-
man and Hall, New York, 1994

[11] James S. Walker: Fast Fourier Transforms, CRC Press, 1991

XV

http://www.stt.msu.edu/%7Emcubed/FracFields.pdf
http://www.stt.msu.edu/%7Emcubed/FracFields.pdf
http://dx.doi.org/10.1090%2FS0025-5718-1965-0178586-1
http://download.oracle.com/javase/1.5.0/docs/api/index.html
http://www.javabuch.de
http://www.mathworks.com/help/techdoc/ref/

	Front page
	Kurzzusammenfassung
	Abstract
	Contents
	Introduction
	Definition of OSSRFs
	Approximation of OSSRFs in harmonizable representation
	Approximation
	Approximation error due to the truncation
	Approximation error due to the discretisation
	Approximation error if psi is a norm
	Approximation error for general psi

	Approximation of OSSRFs in moving average representation
	Approximation
	Approximation error due to the truncation
	Approximation error due to the discretisation

	Approximation algorithms
	Simulation of stable random variables
	Simulation of an isotropic complex-valued stable random variable
	Simulation of a real-valued symmetric stable random variable

	Approximation of two-dimensional OSSRF in harmonizable distribution
	Approximation of d-dimensional OSSRF in harmonizable distribution
	Approximation of two-dimensional OSSRF in moving average distribution
	Approximation of d-dimensional OSSRF in moving average representation
	The fast Fourier transform
	The fast convolution

	Implementations of the approximation algorithms
	Implementations in Matlab
	Simulation of two-dimensional OSSRFs in Matlab
	Simulation of three-dimensional OSSRF in Matlab

	Implementations in Java
	Simulation of two-dimensional OSSRF in Java
	Simulation of three-dimensional OSSRF in Java

	Parameter estimation in the harmonizable case
	Derivation of an estimation algorithm
	Implementation in Matlab
	Numerical study

	Manual of the Java program ``OSSRFSIM''
	Program start
	2-dimensional OSSRF
	The main menu
	The File menu
	The Save Image menu
	The parameter dialog
	Progress display
	Mouse and keyboard commands

	3-dimensional OSSRF
	The parameter dialog
	The display parameter dialog
	The main menu
	Mouse and keyboard commands in the main window
	Progress display

	The option.txt file

	Contents of the attached CD
	List of symbols and abbreviations
	Bibliography

