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Abstract 

In vivo coronary angiography is one of the techniques used to investigate the heart diseases, by 

using catheter to inject a contrast medium of a given absorption coefficient into the heart 

vessels.  Taking X-ray images produced by X-ray tube or synchrotron radiation for visualizing 

the blood in the coronary arteries. 

As the synchrotron radiation generated by the relativistic charged particle at the bending 

magnets, which emits high intensity photons in comparison with the X-ray tube. The intensity 

of the synchrotron radiation is varies with time.  However for medical imaging it’s necessary to 

measure the incoming intensity with the integrated time. 

The thesis work includes building a Multi-channel ionization chamber which can be filled with 

noble gasses N2, Ar and Xe with controlled inner pressure up to 30 bar. This affects the better 

absorption efficiency in measuring the high intensity synchrotron beam fluctuation. The 

detector is a part of the experimental setup used in the k-edge digital subtraction angiography 

project, which will be used for correcting the angiography images taken by another detector at 

the same time. 

The Multi-channel ionization chamber calibration characteristics are measured using 2 kW    

X-ray tube with molybdenum anode with characteristic energy of 17.44 keV.  

According to the fast drift velocity of the electrons relative to the positive ions, the electrons 

will be collected faster at the anode and will induce current signals, while the positive ions is 

still drifting towards the cathode. However the accumulation of the slow ions inside the 

detector disturbs the homogeneous applied electric field and leads to what is known a space 

charge effect. 

In this work the space charge effect is measured with very high synchrotron photons intensity 

from EDR beam line at BESSYII. The strong attenuation in the measured amplitude signal 

occurs when operating the chamber in the recombination region. A plateau is observed at the 

amplitude signal when operating the chamber in the saturation region. 

Time response measurement is carried out by filling the chamber with different gasses pressure 

of argon methane mixture of (90%:10%) and pure nitrogen gas, using a lead slit chopper for 

pulsating the incoming synchrotron beam. The output current signal is measured with tuning 

the applied high voltage from recombination regime up to saturation regime. 

The numerical simulation is applied to understand the effect of the space charge, recombination 

effects and the charge dynamics behavior inside the ionization chamber. 
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Zusammenfassung 

In vivo-Koronarangiographie ist eine der Techniken die verwendet wird, um Herzkrankheiten zu 

untersuchen. Hierzu wird mittels Katheter ein Kontrastmittel mit einem bestimmten 

Absorptionskoeffizienten in die Herzgefäße injiziert. Anschließend aufgenommene Röntgenbilder 

ermöglichen die Visualisierung des Blutflusses in den Koronararterien. Als Röntgenquellen können 

sowohl Röntgenröhren als auch Synchrotrone dienen. 

Synchrotronstrahlung wird durch Ablenkung relativistischer, geladener Teilchen (z.B. bei der 

Durchquerung von Ablenkmagneten) erzeugt und hat im Vergleich zur Röntgenröhre u.a. eine höhere 

Intensität. Die Intensität der Synchrotron-Strahlung variiert mit der Zeit. Für die medizinische 

Bildgebung ist es jedoch notwendig, die eingehende Intensität über die Zeit zu integrieren. 

Diese Arbeit umfasst den Aufbau einer Multi-Channel-Ionisationskammer, die mit den Edelgasen N2, 

Ar und Xe bei variablen Innendrucken mit bis zu 30 bar gefüllt werden kann. Dies erhöht die 

Absorptions-Effizienz bei der Messung von Intensitätsfluktuationen der Synchrotronstrahlung. Der 

Detektor ist Teil des experimentellen Aufbaus im Projekt der digitalen K-Kanten 

Subtraktionsangiographie und dient der Korrektur der Angiographie-Bilder eines zweiten Detektors, der 

zeitgleich misst. 

Die Kalibrierung der Multi-Channel-Ionisationskammer wurde mit einer 2 kW Röntgenröhre mit 

Molybdän-Anode bei einer charakteristischen Energie von 17.44 keV durchgeführt. Aufgrund der 

höheren Driftgeschwindigkeit der Elektronen relativ zu den positiven Ionen werden die Elektronen 

schneller an der Anode gesammelt, wo sie bereits ein Stromsignal induzieren, während die positiven 

Ionen noch in Richtung der Kathode driften. Die Akkumulation der langsamen Ionen im Inneren des 

Detektors stört das homogen angelegte elektrische Feld und führt zu einem Raumladungs-Effekt. 

Für diese Arbeit wurde der Raumladungs-Effekt bei sehr hoher Photonen-Intensität an der EDR-

Beamline bei BESSYII gemessen. Beim Betrieb der Ionisationskammer im Rekombinationsbereich tritt 

eine starke Dämpfung der gemessenen Signalamplitude auf. Im Sättigungsbetrieb lässt sich ein Plateau-

artiges Verhalten der Signalamplitude beobachten. 

Zeitaufgelöste Messungen der Detektor-Response wurden für verschiedene Gasdrucke eines Argon 

Methan-Gemisches (90%:10%) sowie reinem Stickstoff durchgeführt. Hierzu wurde der 

Synchrotronstrahl durch eine rotierende Schlitzscheibe aus Blei gepulst und während dessen das 

Ausgangsstromsignal in Abhängigkeit der angelegte Hochspannung vermessen. Die Hochspannung 

wurde hierfür über den Rekombinations-Bereich bis hin zum Sättigungs-Bereich variiert. 

Zum Verständnis des Einflusses von Raumladung, Rekombinationseffekten und dem dynamischen 

Verhalten der Ladungen innerhalb der Ionisierungskammer wurde eine numerische Simulation 

durchgeführt. 
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Chapter 1 Introduction 

1. Introduction 

The aim of this project is to build and test a Multi-Strip-Ionization chamber, which will be used 

for monitoring the synchrotron radiation beam fluctuations for K-edge digital subtraction 

imaging (KEDSI), especially cardiac imaging using synchrotron radiation sources. Since a 

synchrotron radiation source always shows small intensity fluctuations due to mechanical 

movements of beam components, the need for such a correction arises when the inherently 

possible precision of KEDSI is to be exploited. 

Synchrotron radiation sources are mostly based on electron storage rings. They consist of an 

evacuated annular pipe with curved sections and straight sections where electrons are travelling 

at relativistic velocities. The synchrotron radiation is produced either by bending magnet which 

are needed to keep the electrons in a closed orbit as shown in sketch diagram in Fig (1-1), or by 

insertion devices such as wiggler’s or undulators in the straight sections. The loss energy is 

emitted in the form of synchrotron radiation must be replenished by accelerating cavities in the 

straight sections [1]. 

 

 

Figure 1-1: Sketch diagram shows the principle of synchrotron radiation production. Were R is the radius of 

the storage ring and the emitted photons at the bending magnet. 

 

Synchrotron radiation has the following characteristics [2] of high brilliance which results in 

particular in: 
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1. Small divergence. 

2. monochromaticity. 

3. High photon intensity. 

Modern synchrotron radiation sources deliver beams with such a high brilliance, that 

measurements with high precisions become possible as minute tracer analysis, EXAFS .etc. 

Although the precision is finally limited by the photon noise, given by the variance 

 

Var =N phot                                     (1-1) 

which is equal to the number of photons in a measurement, it is easily seen that the limit in 

precision may be extremely low: assuming 1012 photons in a measurement which lasts 1 sec a 

relative high  precision of 10-6 should be achievable. 

In practice, however this is not directly achieved. For example, in an absorption experiment 

governed by the relation 

I= I0 exp (-µx)                                                       (1-2) 

With x the length of the absorption and μ the absorption coefficient. The quantity of interest, 

which has to be determined is 

μ = − 1
𝑥

𝑙𝑛 𝐼
𝐼0

                                                        (1-3) 

The possible errors introduced by the other quantities, x and I0 have to be taken into account. In 

particular, the error of I0 may limit the precision considerably, which is caused by the beam 

fluctuations. The causes for the latter could be electron beam instabilities or mechanical 

movement of the beam optics components. Therefore for high precision experiments usually 

self-calibrations procedures are employed, where beam monitoring devices are used for 

measuring a small fraction of the total beam. 

Since X-rays are either absorbed or severely scattered, this measurement relies on the 

assumption, that the sub-sample measured in the monitoring device is representative to the rest 

of the beam used for the sample under study. 

1.1.  K-edge digital subtraction imaging: 
The advantage of the synchrotron beam characteristics described above which are not found in 

any other X-ray source leads to a broad spectrum of research. There are many experiments such 

as medical imaging or extended x-ray absorption spectroscopy (EXAFS), where it’s important 
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to monitor the incoming photon beam before it passes through the sample. The aim of this 

project was to build and test a synchrotron beam monitor which will be used for the K-edge 

Digital Subtraction Imaging (DSI) [3]. 

Today there are some medical applications with the synchrotron radiation. One of these 

advanced applications is the digital subtraction imaging (DSI) in energy subtraction mode (Di-

chromatic angiography). This offers observation of blood vessels with a diameter far less than 

1 mm which is used for basic research applications and may lead to earlier diagnostic stage of 

cardiovascular or cerebral diseases. A special application has been tested extensively, the 

intravenous coronary angiography, in order to assess the quality of these vessels without use of 

a catheter. Although the method proved to obtain the high contrast resolution expected, the 

usefulness in clinical application is limited because the left coronary artery sometimes is 

occulted by the ventricle filled with contrast medium. Still, the considerable effort invested in 

this method and the technical developments are available today for other imaging applications. 

Since this method set the standard for synchrotron radiation imaging it is presented here in 

some detail in order to elucidate the principle (Fig. 1-2). 

  
The basic principle is that two monochromatic beams selected by monochromators from the 

white synchrotron radiation beam with two energies E1 below the contrast medium K-edge and 

E2 above the edge as shown in Fig. (1-2). Taking two different images by using these two 

monochromatic beams and subtracted them logarithmically, one can get a very significant 

improvement in the subtracted image. The absorption coefficient of the bone and tissue remain 

the same in both images and by subtracting remains only the contribution of the contrast 

medium, which is filled in the blood vessels by intravenous or intra-arterial methods [2, 5, 15]. 

The radiographic image signal is proportional to the linear absorption coefficient as following 

 
 𝑁𝑎𝑏𝑠 =  𝑁0𝑒−µ𝜌𝑥                                                                (1-4) 

Where N0 initial photon flux intensity; Nabs the absorbed photons; μ linear attenuation coefficient; 

x is detector depth; ρ density. 

Equation (1-4) can also be written as 

𝑙𝑛 𝑁𝑎𝑏𝑠
𝑁0

=  −∆µ𝜌𝑥                                                             (1-5) 

𝜌𝑥 =
1

∆μ
𝑙𝑛

𝑁𝑎𝑏𝑠
𝑁0
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The setup at the synchrotron radiation source with the arrangement of the devices as shown in 

Fig (1-3), as the synchrotron beam emitted at the insertion device, a thin crystal 

monochromator is placed in front of the beam shutter to adjust the beam at different energies 

and delivers two monochromatic beams with energies above and below the K-edge of the 

contrast medium absorption coefficient. The beam monitor will be placed in front of the object 

and two germanium detectors are placed behind the object. Two images will be taken one 

image with the photon energy above the K-edge and another one with energy below the K-

edge, these two images are subtracted logarithmically, the subtracted image which have very 

high resolution of the heart arteries will be obtained [5]. 

 

 

Figure 1-2: The discontinuity in the absorption coefficient of the iodine contrast medium and the contribution of 

the absorption coefficient of the bone and tissue which will approximately remains constant in both images. 

The equation above depends on the left part which assumes that the initial photon flux intensity 

N0 is constant. The intensity N0 of the synchrotron radiation source which is emitted from the 

insertion device is not absolutely constant. It could be measured by a dedicated integral beam 

monitor. In our case this solution would not be sufficient since the vibrations of the 

monochromator result in a variation of the radiation intensity depending on the position on the 

monochromator. In preliminary tests it was found that the possible natural frequencies of the 

crystal cause variations which could be represented by polynomes of 8th order. This was the 

reason to develop the multi-channel ionization chamber with at least 8 separate signal 
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electrodes which can measure the synchrotron beam intensity and the beam fluctuation as a 

function of time [4]. 
 

 

Figure 1-3: Sketch diagram of the setup at the synchrotron radiation. Were E1 and E2 are the synchrotron beams 

with energies below and above the K-edge of the contrast medium. The beam monitor is inserted before the 

sample to measure the beam fluctuation and two germanium detectors is after the sample. 

1.2. Detector geometry 
The multi-channel ionization chamber geometry consist of segmented pads to measure the 

synchrotron fan beam which have 8 pads upwards and 8 pads downwards separated by central 

electrode to measure the intensity fluctuation of two separated synchrotron beams in the same 

time as shown in Fig (1-3). The detector has total active length of 15 cm, height of 1 cm and    

1 cm depth divided by the anode plate in the center (at depth of 0.5 cm) as shown in Fig (3-1). 

In comparison, the two monochromatic synchrotron fan beams are collimated to about    

Δz=0.4 mm height or less, depending on the required spatial resolution of the image, and 

separated such that they are recorded independently in the two detector sections. In order to 

obtain a full two dimensional image the object is scanned with constant speed (v-scan) in 

vertical direction such that each line is exposed during a time tΔx of  

 𝑡Δ𝑥 = ∆𝑧/𝑣𝑠𝑐𝑎𝑛 .                                                             (1-6) 

Consequently each line is exposed to the beam for tΔx which could be in the millisecond range 

or even below.  
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1.3.  Detectors characteristics and limitations: 
It is desirable that detectors have a linear performance with respect to the incident photon flux 

which is called linearity. Ideally the flowing current in the outer circuit will be equal to the 

ionization produced inside the ionization chamber, by the incident ionizing radiation, however 

at low applied electric field there is big loss in the output charge signal according to the 

recombination loss. This loss decreases as the applied voltage is increased which accordingly 

increases the remaining electric field in the detector volume and correspondingly the output 

charge signal. At sufficient high applied voltage the electric field is high enough to collect all 

the charges inside the ionization chamber. Further increase of the applied high voltage the 

output current will be constant which is called saturation regime. In addition to the charge 

signal reduction due to the recombination the reduced electric field also causes a reduction of 

signal current due to the slower drift velocity of the electrons and ions producing the measured 

current. This effect is not visible if the detector is operated in the integrating mode where the 

charge signal is recorded after the maximum collection time of the slower ions.  

It’s very important to choose the proper gas and pressure in order to achieve a good signal to 

noise ratio respect to the required resolution with an acceptable attenuation in the order of 1% 

of the incoming beam. In these work two types of gasses are used, pure nitrogen and argon 

methane mixture of (90:10%) with different pressure settings. 

In this thesis measurements of the space charge effect are carried out with high synchrotron 

photon intensities. In addition numerical simulations are carried out in order to understand the 

charge dynamics. Besides recombination also the repulsion of the generated charges has to be 

taken into account and to be compared to the measurements. 

A full three dimensional simulation of the space charge and associated processes is beyond the 

scope of this thesis and measurement with arbitrary charge generation with a realistic photon 

beam is technically not accessible and therefore approximations will be used (see chapter 3.1). 

It will be shown that useful results can be obtained, in particular with a two dimensional 

approximation of the electric field in order to optimize the detector design. 

1.4. Time structure 
The total collection time of the charges depends on the mobility of the charge carriers, the 

electric field strength and the distances between electrodes.  

When illuminating the ionization chamber with a continuous radiation in a given time period, a 

current signal will flow in the outer read out electronic circuit. In the imaging application, as 
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explained above, time sections tΔx are considered belonging to individual lines. In practice they 

are obtained by integrating the detector current during the exposure time. For each individual

line the flowing current pulses magnitude and duration will depend on the interaction types and

position as shown in Fig (1-4) below. The measured charge is the integral of the current I0 and 

distorted by time dependent fluctuations like electronic noise [6].  

In conclusion, the time response of the monitor detector has to be fast enough to follow the 

fluctuations of the beam and to allow a clean separation of the integrated intensity during the 

recording of one line. This requirement is not automatically fulfilled since the response of the 

detector due to the slow motion of the positive ions is of importance. 

A test measurement is carried out using rectangular PMMA chopper with different thickness to 

modulate the incoming X-ray photon flux and measure the time response signal. Different X-

ray photon intensities are applied by changing the X-ray tube current. The chamber was filled 

with ArCH4 gas mixture of (90:10%) and applying high voltage of 1 kV. The rise time of the 

signal was 208 μs and the fall time was 242 μs at a chopper frequency of 9.8 Hz as shown in 

Fig (1-5). 

 

 

Figure 1-4: Sketch diagram of the modulated input photon intensity which enters the ionization chamber and the 

corresponding measured signal. 
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Figure 1-5: The test measurement by modulating the input photon intensity using 1cm PMMA rectangular chopper 

as a function of different X-ray photon intensities; showing the chopper rise and fall time. 

From the above measurements and discussions, it may be anticipated that the time response of 

the ion chamber is critical and is investigated in detail. It should be mentioned that the two 

germanium detectors which are used for in the imaging setup as shown in Fig (1-3) are 

certainly faster since the electrons travel at about the same speed as in a gas detector but the 

holes in this semiconductor device travel much faster than the ions in a gas detector.  
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Chapter 2 Theoretical background 

2. Introduction 

This chapter introduces the theoretical formulas which describe the charge dynamics process 

during the drift and the charge expansion due to diffusion and drift processes as well 

recombination and induced charges in the outer plates for the gas detectors. 

2.1. Basic principle 
Ionization chambers are detectors filled with a certain gas in which the X-ray photons ionize 

the gas and create electron ion pairs. The electric field created between the electrodes separates 

the ions and the electrons. The electrons drift towards the anode and conversely the ions drift 

towards the cathode.  

The detector consists of two parallel electrodes separated by a distance d. The gap is filled with 

a gas which defines the sensitive volume of the chamber. The electric field is generated by 

externally applied high voltage across a gap.  

Ideally, the total amount of collected charges at the chamber plates must be equal to the amount 

of generated electrons and ions at a specific time. However, according to the difference in 

mobility of the ions and electrons, the charges accumulate at different times on the chamber 

plates. This is due to the fact that the ions are 1000 times slower than the electrons.   

The slower drift of the positive ions towards the cathode plate by the applied electric field will 

increase the ion density near the cathode plate and minimize the ion density near the anode 

plate. Accordingly, the electrons which drift in the opposite direction of the ions towards the 

anode plate lead to a higher electron density near the anode plate and less electron density near 

the cathode plate. The total electron density inside the chamber is less than the ion density [6]. 

2.2. Pulsed shape 
When a high energy photon passes through the detector it will ionize the gas and produce an 

electron ion pair. As soon as the charged particle reaches the chamber electrode, a pulsed signal 

is generated which can be measured with external readout electronic circuits. 
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The simple geometry of a parallel plate detector is shown in Fig (2-1). This simple geometry is 

used to discuss the signal-pulsed shape produced in the ionization chamber. The ionization 

particle moves through the chamber in different positions and produces electron ion pairs. 

For a relatively long collection time, the movement and the collection process can be divided 

into two parts: first the movement and collection of the electrons and secondly, the movement 

and collection of the positive ions.  

The mean drift velocity for the electrons and ions is proportional to the electric field and 

inversely proportional to the gas pressure as shown in Eq. (2-3) and (2-1).  If the mobility of 

the ions has a value of 10-4 bar V-1s-1 when applying an electric field of 104 V/cm, a velocity of 

roughly 1 m/s is expected, provided that pressure is 1 atmosphere. This corresponds to a transit 

time of 5 ms across the full chamber width of 5 mm [7]. 

 

Figure 2-1: Simple parallel plate geometry which contains two electrodes 

separated by distance (d), the photon beam enters the chamber from different 

positions. 

The fact that the mobility of the electron is much greater than the positive ion mobility is due to 

their mass difference, the electron’s velocity is 1000 times greater than the velocity of the 

positive ions.  Therefore, the electrons will reach the anode faster and they will be collected in 

a short time (a few microseconds). In contrast, the positive ions need longer to be collected (a 

few milliseconds).  

After the electrons are collected they give no further contribution to the output signal. The rest 

of the signal is from the contribution of the slower positive ions 
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The pulse shape of the collected charges generated from a discrete photon in the ionization 

chamber plates is described in Fig (2-2). The initial rapid increase signal is due to the collection

of the electrons. The positive ions, being slow, continue to reach the cathode as shown in part 

(2) followed by a long signal which is due to the collection of the slower positive ions, as 

shown in part (3). 

Figure (2-2) illustrates three slopes which correspond to three classes of current flowing in the 

outer circuit. The rising part of the curves occurs when the electrons and positive ions are in 

motion. The first part labeled 1 in the figure is obtained from the contribution of both electrons 

and ions.  When the electrons and positive ions are in motion they induce a current in the 

chamber plates which can be measured. The slope labeled (2) is due to electron motion only 

and the third part labeled (3) occurs when positive ions only, which have smaller magnitude, 

are in motion [7]. 

 

Figure 2-2: The expected pulse shape when an ionizing particle passes 

through a chamber far from the chamber plates. The full line (1) shows the 

initial signal till the electron are collected followed by the slower range as the 

positive ions moves towards the cathode (2) and (3). 

Previous discussion indicates that the output signal depends mainly on the generated position 

of the charge carriers with respect to the chamber plates. Different pulse shapes can be obtained 

according to the position of the incident X-ray photon.  

The various conditions in gas field detectors and the big difference between the electron and 

ion velocities makes it difficult to sketch the pulse shape accurately. 
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Three different pulse shapes are described according to the interaction position of the ionizing 

particle. In these cases it enters the detector from the side and parallel to the chamber plates. In 

addition, the velocity of the electrons is taken as roughly three times higher than the ion’s 

velocity in the discussion [7].  

2.2.1. The interaction position near the cathode 
When the ionizing particle enters close to the cathode (negative electrode), the positive ions 

accumulate quickly. In this case it makes no contribution to the output signal pulse and the

slope of the current results from the electrons alone, as shown in Fig (2-3) [7]. 

Figure 2-3: The ionizing particle enters the chamber near the cathode plate (left) and the corresponding 

pulsed signal (right).  

2.2.2. The interaction position near the anode 

When the ionizing particle enters the chamber close to the anode, the electrons are collected in 

a very short time. The pulsed shape is only due to the movement of the positive ions towards 

the cathode which has a slow rise time, seen in Fig (2-4) [7].  
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Figure 2-4: Sketch diagram shows the position of the entering ionizing particle near the anode plate 

(left) and the output pulsed signal (right). 

2.2.3. The interaction position in the center 

If the ionizing particle enters in the middle of the chamber, the electrons and the positive ions 

are both in motion until the electrons and ions are collected at the chamber electrodes. The 

pulsed shape will contain the contribution of both charge carriers as shown in Fig (2-5) [7]. 

 

Figure 2-5: The ionizing particle entering the chamber in the middle of the plates left, the pulsed signal shows 

the contribution of both electrons and ions due to the movement towards the chamber plates. 

Practically, when the ionization particle passes through the chamber it produces N number of 

electrons and ions. The movement of each charge carrier induces a pulsed signal in the 
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chamber readout electrodes and the total net collection of the charges produces a pulsed signal 

containing the contribution of all charges accumulated in the chamber plates. 

2.3. Space charge effect  

The distortion of the steady state electric field inside the ionization chamber according to the 

positive ions density ρ+ is called a space charge effect. The space charge distorts the uniform 

electric field E according to Poisson’s equation given below: 

                                                                 𝜀  𝜕𝐸
𝜕𝑥

= 𝜌                                        (2-1) 

Where ρ is the charge density; x is distance from the cathode and ε, permittivity [8] 

2.3.1.   Charge density distribution  

The spread of the positive ions and electrons inside the ionization chamber depends on the 

applied electric field strength and direction. Boag (1950) studied the space charge effect in a 

parallel plate ionization chamber, taking into account the varying distribution of the positive 

and negative charges across the space between the plates of the ionization chamber, the total 

ionization is produced along the axis per unit time to get an accurate representation of the 

charge density distribution inside an ionization chamber formed by an X-ray pencil beam       

[9, 11]. 

In order to get an accurate representation of the charge density distribution in the sensitive 

volume, the variation in the charge distribution per time and space should be considered.  

The model described by Boag (1969) assumes that the ionization produced is q. He assumes 

also that at all points in the gas between the plates, the space charge and recombination are 

negligible. The distribution of the positive charge density ρ+(x) which drifts with a constant 

mobility (µ+) towards the cathode along the direction of the applied electric field E will rise 

from zero at the anode plate to a maximum of (Q+d/µ+E) at the cathode. On the other hand, the 

fast electrons will drift towards the anode in the opposite direction and the density ρ-(x) will 

have the same distribution in the opposite direction with a maximum of (Q-d/µ-E) at the anode 

plate. The steady-state distribution of the space charge can be calculated from the shape of the 

overlapping positive and negative charge distributions as shown in Fig (2-6) [10]. 
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Figure 2-6: Boag illustration of the charge density distribution inside a parallel 

plate chamber, the positive ion density distribution is higher than the electron 

density distribution because of its slower velocity 

The space charge depends mainly on the amount of free charges between the chamber plates 

and disturbance by the applied electric field which increases near the cathode plate and 

decreases near the anode plate.  

2.3.2. Electric field distribution  

The distribution of the applied electric field is assumed to be constant in the case of the steady 

state. However, the presence of the positive ions becomes relevant when the ionization 

chamber is illuminated with high photon intensity. The high photon rate will consequently 

generate positive space charge whose distribution interferes with the applied electric field and 

thus disturbs it.  

In a one-dimensional description, the electric field depends on time and chamber depth (x). The 

change of the electric field E according to the space charge ρ+(x) is calculated using the 

following Gauss formula [12]. 

𝜕𝐸
𝜕𝑥

= (𝜌+(𝑥))
𝜀0

                                                                (2-2) 

Where 𝜀0  is the gas dielectric constant.  
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2.4. Drift velocity 

Considering the case of isolated electron ion pairs created at some distance from the anode, in 

the presence of an externally applied electric field, the electrostatic force will move the charges 

from their original points towards the electrodes. The positive ion will drift toward the negative 

electrode in the direction of the conventional electric field, whereas the electrons will drift in 

the opposite direction towards the anode. The drift velocity of the positive ions is given by 

[13]. 

𝑣+ = 𝑑𝑥
𝑑𝑡

= µ+
𝑃

𝐸 =  µ+
𝑃

𝑉
𝑑

                                                                   (2-3) 

Where µ+ is ion mobility, v+
 positive ion drift velocity; d total distance; E electric field and V 

the applied voltage.  

From Eq. (2-3), it was found out that the drift velocity is proportional to the electric field and 

inversely proportional to the gas pressure. The drift velocity per unit electric field divided by 

density is called the mobility, which remains constant for the positive ions because of their 

heavy mass.  

The electrons have smaller mass than ions, which allow them to experience greater 

acceleration, typically 1000 times greater than the positive ion drift velocity in the same gas. 

The electron drift velocity is also dependent on the gas pressure P as shown in the following 

formula [13]. 

𝑣(𝑒) = 𝑑𝑥
𝑑𝑡

=
µ𝑒(𝐸)

𝑃
𝐸 =  

µ𝑒(𝐸)

𝑃
𝑉
𝑑

                                                                               (2-4) 

Where µe(E)  is electron mobility and v(e)   electron drift velocity. 

2.5. Recombination 

The recombination loss is calculated in the ionization chamber using the electron ion density 

distribution in the sensitive volume. The theoretical model of recombination was completed by 

(Hübner (1958), Scott and Greening (1961) and Boag (1969)). Boag discussed the general 

recombination in a parallel plate ionization chamber near the saturation region by considering 

the varying distribution of electron-ion densities across the space between the chamber 

plates [10, 11]. 
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The recombination and screening effect due to space charges are very small in the ionization 

chamber at low X-ray beam intensity and thus can be neglected. At high X-ray photon 

intensity, the effect of the positive ion contribution is very important. 

The rate of recombination in the detector can be evaluated quantitatively by considering the 

positive ion density (n+) and the electron density (n-), with α the recombination coefficient, 

as [12]. 

  

dn−
dt

=  −αn+n−                                                                (2-5) 

Where the negative sign denotes the reduced number of charged particles with time. 

 

This formula becomes    

 
dn−

dt
=  dn+

dt
                                                                      (2-6) 

 
d(n−−n+)

dt
= 0                                                                     (2-7) 

After the integration, we get  

n− − n+ = c                                                                     (2-8) 

 

If the electron density and ion density are equal then we get  

 
dn
dt

=  −αn2                                                                     (2-9) 

 

If recombination takes place during the time interval from t=t0  to  t=t, provided that the 

density of the charged particle at t=t0 is  n0 , Eq. (2-7) gives::  

 

n =  n0
1+αn0t

                                                                        (2-10) 

 

After the separation and integration of Eq. (2-7), see appendix [B2]. And by using Boag’s 

theory, the charges which escape the recombination are given by [11, 15]. 

𝑛 = 𝛼𝑐𝑛0𝑒−𝛼𝑐 (t−t0)

�𝛼𝑐+𝑛0(1−𝑒−𝛼𝑐 (t−t0)�
                                 (2-11) 
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Using  𝑛− − 𝑛+ = 𝑐                  when c
∆
→  0 

we get  

𝑛 =  𝑛0
1+𝛼𝑛0𝑡

                                (2-12) 

2.6. Diffusion 

The thermal motion of the gas atoms is characterized by the mean free bath, the positive ions 

and electrons which are created inside the active volume of the ionization chamber also move 

with random motion and diffuse away from the original position.  The free electrons will 

spread from the original point in a Gaussian spatial distribution and the width will increase 

with time. 

The Gaussian density distribution which describes the point-like charge cloud which begins to 

drift at time t=0 from the origin is given by [14]. 

𝑛 = � 1
√4𝜋𝐷𝑡

� 𝑒𝑥𝑝 �−𝑟2

4𝐷𝑡
�     (2-13) 

Where    𝑟2 =  𝑥2 + 𝑦2 + (𝑧 − 𝑢𝑡)2; with D a diffusion constant  

The diffusion width is given by  

𝜎2 =  √2𝐷𝑡             (2-14) 

σ  is the standard deviation of the charge distribution;  t is time  

If n satisfy the continuity equation condition one can drive the diffusion constant by  

𝐷 = 2𝜀𝑡
3𝑚

         (2-15) 

Where ε  is the electron energy; t average time between collisions and m electron mass 

Using electron mobility which is given by  

𝜇 = 𝑒
𝑚

𝑡     (2-16) 

From Eq. (2-15) and Eq. (2-16) we get  

𝜀 = 3𝐷𝑒
2𝜇

     (2-17) 
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For  ε = 3
2

𝑘𝑡       Eq. (2-17) becomes 

𝐷
𝜇

= 𝑘𝑡
𝑒

      (2-18) 

Where k is the Boltzmann constant; μ mobility and t temperature 

The diffusion width (σ) of an electron which has traveled over a distance x is given by [16]  

𝜎2 = 2𝐷𝑡 = 2𝐷𝑥
𝜇𝐸

     (2-19) 

𝜎 = �2𝐷𝑥
𝜇𝐸

                                                                                              

Were E is electric field;  

Since the positive ions have large masses compared to the electrons, the diffusion coefficient is 

much smaller than that of the electrons and the angular distribution is considered to be a 

magnified image around the cathode plate. Okuno (1979) calculated the avalanche distribution 

of the positive ions around the cathode and electrons around the anode wire in the proportional 

chamber, taking into account the space charge effect using Argon (90%) Methane (10%) 

mixture. The simplified formula from Okuno is: 

𝜎2 = 2 ∫ 𝐷
𝜇

𝑥=𝑑
𝑥=0  1

𝐸𝑥

1
𝑥

 𝑑𝑥    (2-20) 

Which gives the angular spread of an electron starting at x0 and reaching the anode at x=x [16]. 

2.7. Repulsion 

Electrostatic repulsion between charge particles is due to the Coulomb force. Considering 

many charge particles traveling in spherical cross section, Coulomb repulsion pushes the 

charged particle away from the center. Assuming that Q is the total charge inside the sphere, 

given by 

 𝑄(𝑟, 𝑡) = 𝑞 ∫ 𝑛(𝑟, 𝑡)4𝜋𝑟2𝑑𝑟𝑟
0                                                      (2-21) 

Where r is the radius of the sphere and Q the total charge density 

The dynamic of the electrons, according to electrostatic repulsion, described by: 

𝜕𝑄
𝜕𝑡

+ � 𝜇𝑒
4𝜋𝜀

� 1
𝑟

𝜕𝑄
𝜕𝑟

= 0                                                               (2-22) 
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Where μe is electron mobility and ε permittivity 

By separating the variables in Eq. (2-22) one gets  

𝑄(𝑟, 𝑡) =  4𝜋𝜀𝑟3

3𝜇𝑒𝑡
[𝑈(𝑟) − 𝑈(𝑟 − 𝑟0(𝑡))                                           (2-23) 

where U(r) is the step function and 𝑟0(𝑡) the limits of the repulsion size reached by the electron 

at time t. 

The radius of the charge expansion according to Coulomb repulsion can be derived from Eq. 

(2-23) as follows:  

𝑟 =  ��3𝜇𝑒𝑞 𝑁 𝑡
4𝜋𝜀

�
3

                                                                 (2-24) 

N is the total amount of charge from Eq. (2-21) and q is electron charge 

This equation represents the change in repulsion with time if the amount of charge and mobility 

(µ) is known [17]. 

2.8. Signal formation 

The movement of the charged particle in an electric field induces a signal on the detector 

electrodes. The surface charge can be calculated by solving the Poisson equation for the 

potential φ with a point charge q at x= x0 and the boundary condition φ = 0; at x= 0. From 

Gauss's law, the resulting electric field E=-∇∅ on the metal surface is related to the surface 

charge density σ by 

𝜎(𝑦, 𝑧) = 𝜀0 𝐸(𝑦, 𝑧, 𝑥 = 0)                     (2-25) 

The solution of this particular geometry can be found by assuming a mirror charge -q at x=-x0. 

The electric field on the metal surface is thus given by  

𝐸𝑥(𝑦, 𝑧) =  − 𝑞𝑥0
2𝜋𝜀0 (𝑥2+𝑦2+𝑧2)3/2 

               𝐸𝑦 = 𝐸𝑧 = 0 (2-26) 

For a moving charge in a trajectory x (t), the time-dependent induced charge on the electrode 

and the induced current is given by  

𝑄𝑛
𝑖𝑛𝑑 = 𝑞

𝑉
 − ∇∅(𝑥(𝑡)        (2-27) 
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𝐼𝑛
𝑖𝑛𝑑 = 𝑑𝑄𝑛

𝑖𝑛𝑑

𝑑𝑡
=  𝑞

𝑉
 − 𝛻∅𝑥(𝑡) 𝑑𝑥(𝑡)

𝑑𝑡
                  (2-28) 

𝐼𝑛
𝑖𝑛𝑑 = 𝑑𝑄𝑛

𝑖𝑛𝑑

𝑑𝑡
=  𝑞

𝑉
 𝐸𝑥(𝑡) 𝑑𝑥(𝑡)

𝑑𝑡
       (2-29) 

Where V is applied voltage, Ext=-∇∅x(t)  the weighting function of the electrode, from 

Ramo’s theorem [18]. 

The weighting field for the parallel plate detector is calculated by Riegler [19]. This is 

described by the following formula.          

                            𝐸𝑥(𝑡) = 𝑉
𝑑
                                                  (2-30) 

Where d is the total distance between electrodes.  

If the charge moves in trajectory x (t) from position x0=x (0) to position x1=x (t1), the total 

amount of charge 𝑄𝑛
𝑖𝑛𝑑 that flows between electrodes n and a ground is given by 

𝑄𝑛
𝑖𝑛𝑑 = ∫ 𝐼𝑛

𝑖𝑛𝑑𝑑𝑡𝑡1
𝑡=0 = 1

𝑉 ∫ 𝑞 𝐸𝑥(𝑡)𝑣(𝑡)𝑑𝑡𝑡1
𝑡=0         (2-31) 

Where v(t) is the drift velocity at time t and V the applied voltage between the two electrodes 

[14]. 

The output-induced current can be calculated by differentiation of the induced charge given by 

Eq. (2-31).   
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Chapter 3 Numerical simulation 

3. Introduction 

This chapter aims to explain the effect of the positive ions on the electric field inside the 

detector. The readout current and the influence of the physical parameters introduced in the 

previous chapter on the detection process. The numerical simulation is thus encoded and 

involves illuminating the ionization chamber with high synchrotron photon intensity.     

3.1. Chamber geometry 

The detector architecture illustrated in Fig (3-1) below of the ionization chamber is divided into 

two parts, each having 0.5 cm depth in the detector, both on the left and right sides. The anode 

is located in the middle of the detector and two cathodes are located on the left and right sides.   

 

Figure 3-1: Sketch diagram shows the slab unit cross section dx on the x-axis where the total distance between 

plates is 0.5 cm. At the left and right sides are the cathode plates, and where the anode plate is in the middle is the 

sensitive volume which is divided into small bins.  

In the simulation, the detector depth is divided into 50 bins. Each bin is 100 µm across. The 

simulation considers 2 ns bunch time for the incoming synchrotron photon flux as in BESSYII. 

The simulated synchrotron spectrum shown below is used to calculate the expected absorbed 

photons in the active volume.  
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3.2. Simulated synchrotron photon flux spectrum 

Synchrotron radiation is generated when accelerating the electron bunch in the storage ring, 

which is an evacuated annular pipe. 

Electrons are pre-accelerated in a linear accelerator and then injected into a straight section of 

the storage ring, then to the curved section through which the electrons are accelerated. The 

synchrotron radiation is produced either by the bending magnet which is needed to keep the 

electrons in a closed orbit, or by an insertion device such as a wiggler or an undulator. The loss 

of the accelerated electron's energy is emitted in the form of synchrotron radiation. Synchrotron 

radiation has a broad, continuous spectrum from infrared to hard X-ray. It is emitted from an 

accelerated charged particle inside the synchrotron ring at the bending magnets or (insertion 

devices) with high intensity and brilliance. 

The spectrum is expressed in terms of photons per second per mm2 of the source area per mrad2 

of the source angular divergence and per 0.1% of the emitted bandwidth.  

The synchrotron spectrum from an EDR beam line in BESSYII is calculated in each case for 

the electron current of I= 200 mA. The photon rate is calculated with XOP software. In 

addition, the following assumptions were made:  

1- The magnetic flux density of the bending magnet is 0.97 T. 

2- The electron energy is 1.7 GeV. 

 

The XOP software provides the number of primary photons per s. mrad 0.1% bw. The photon 

flux is converted to photons per s eV mm2. The absorption of 1.2 m of air at the entrance to the 

carbon window of the chamber is calculated. The dead volume of the chamber at the width of 

0.5 cm, and including the gas pressure inside the chamber is calculated, as shown in the 

following plots for both Argon and Nitrogen gases [20]. 

The full EDR spectrum shown in Fig (3-2) and Fig (3-3) is used in the simulation after the 

absorption of air, the carbon window and dead volume are corrected at pressures of 15 and 26 

bar for Nitrogen and 5, 7 and 10 bar for Argon gas, which is used to simulate the space charge 

effect in the Multi-channel ionization chamber. 
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Figure 3-2: The expected photon flux per eV*s*mm2 at 10 bar Nitrogen gas pressure are shown, with the beam 

from the bending magnet (Black) after absorption in 1.2 m Air in (brown beam) after absorption at the carbon 

window of the chamber (Blue), and the dead volume absorption of 10 bar Nitrogen gas with a volume of 7.5 cm3

(Red). 

 

Figure 3-3: The expected photon flux per eV*s*mm2 for Argon gas pressure at 7 bar, with the beam from the 

bending magnet (Black) after absorption in 1.2 m air (brown beam) after absorption at the carbon window of the 

chamber (Blue), and the dead volume absorption of 10 bar Argon-Methane gas mixture with a volume of 7.5 cm3

(Red). 
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3.3. Absorption and calculation  

The total number of absorbed photons in the active range of the gas is given by the following 

formula:  

𝑁𝑎𝑏𝑠 = 𝑁𝟎�1 − 𝒆−(µ𝝆𝒙)�                                                         (3-1) 

Where ρ is gas density, N0 initial photon flux and x is depth in cm, 

From the simulation of the synchrotron spectrum, each photon number with a certain energy 

bandwidth, as discussed above, is used to calculate the total number of electron ion pairs 

produced inside the chamber for the total detector volume using the following formula [21].  

𝑛𝑒−𝑖𝑜𝑛 = 𝑒𝐸𝛾𝑁𝑎𝑏𝑠

𝑤
                                                              (3-2) 

Where e is electron charge, Eγ photon energy and w energy needed to create an electron ion 

pair; w = 36.6 for Nitrogen gas; w = 26.4 for Argon gas from table (3-1) 

Assuming that there is no change in y and z directions and that the ions and electrons drift in 

the x direction only, we can divide the x-axis into small bins from x=0 at the cathode and x=d 

at the anode as shown in the sketch diagram in Fig. (3-1). the total number of electron ion pairs 

in the small bin Δx is given by 

𝑛(𝑒 − 𝑖𝑜𝑛)∆𝑥 = 𝑒𝑁0𝐸𝛾�(𝑒−µ𝜌(∆𝑥)𝑖)−(𝑒−µ𝜌(∆𝑥)𝑖+1)�
𝑤

                                          (3-3) 

 The ion charge density 𝜌+ is given by 

𝜌+ = 𝑄+
𝑉

                                                                           (3-4) 

Q+ is the charge number; V is the volume.  

3.4.  Applied electric field  

The following approximations have been made in order to calculate the electric field 

distribution inside the ionization chamber. 
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Approximation I: 

The fluctuation of the synchrotron beam intensity is given in a percentage range and comes 

from many sources including the vibration of the monochromator. 

The detector is designed to have a precision higher than the beam fluctuation for each pixel and 

to measure the change between the upper beam and the lower beam with a precision three times 

better than the photon statistics in each resolution element of the imaging Ge-detector (0.4 mm 

width). 

Taken into account the time sequence the situation may be sketched as in Fig (3-4) below. 

Since the intensity changes in the MIC are slowly varying in time and space an estimate is 

generated for the beam intensity hitting the object and producing the modulated image in the 

Ge-detector. This allows to approximate the signal in the MIC by an extended in y-direction 

constant intensity and taking only the temporal changes into account. Therefore the simulation 

is restricted to this case.  

It should be noted, however, that for the measurements at the synchrotron only a beam with 

rather small dimensions was available rather approximation a pencil beam. It will be discussed 

later, how this affects the conclusions. 

 

Figure 3-4: Sketch diagram showing the incoming beam intensity and the measured signal by the multi-ionization 
chamber and comparison of the expected signal from Germanium detector. 

Assuming this, the field at any point of interest will have a component along the axis of 

symmetry. According to the radial symmetry of the ionization inside the chamber, the change is 

only in the depth direction according to the drift direction of the charge particle. By this 

Intensity in MIC 

y 
t1 t2 

y 
t1 t2 

Intensity in Ge detector 

Estimated incoming intensity for narrow section in Ge-detector 
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assumption, there is no change in the angular dependent. The radial dependent does not play an 

important role, while the ionization is only around the pencil beam and the mean of the radial 

value is taken into account in the calculation.  

As the ionization spreads around the pencil beam, the non-uniformity of the electric field, 

according to the space charge effect will be at the central region of the ionization and 

surrounded by a uniform electric field. Considering the recombination effect, which is a rapid 

process, left over are only the slow ions. This also allows using this approximation for the 

pencil beam situation of the test beam, except with the slowly drifting ions in the tail of the 

signal. 

The total distance in the x-direction is 5 mm, divided into 100 µm bin size and the applied high 

voltage is U0. Assuming that the initial value E0 is variable at x=0, we can calculate the 

difference of the electric field on each surface of each bin from Gauss’s law and Maxwell’s 

equation, as follows: 

∇𝐸 = 𝜌
𝜀0

                                                                    (3-5) 

∮ 𝐸 𝑑𝑎 = ∭ 𝜌
𝜀0

 𝑑𝑦𝑑𝑧𝑑𝑥     
             

(3-6) 

If there is no change in the y and z directions and the change is in the x-direction only, then 

Eq.(2-6) becomes: 

𝐸. 𝐴 = 𝐴
𝜀0

∫ 𝜌(𝑥)𝑑𝑥𝑑
𝑥=0                                     

                      
(3-7) 

The electric field difference at each surface of bin dx is given by  

∆𝐸 = 𝜌(𝑥)
𝜀0

𝑑𝑥                                            (3-8) 

The applied high voltage is known and the total distance d is a constant value. Thus the total 

electric field inside the active volume can be calculated, taking into account that the electrons 

and ions drift, and calculating the recombination, repulsion and diffusion process each time. 

With the first bunch shot with homogenous illumination by an X-ray beam at time t= 0, and 

assuming that the positive ions concentration is constant gives  

∫ 𝐸𝑑𝑥𝑑
0 = 𝑈0                                                                (3-9) 
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Assuming that the mean value of the applied electric field is constant throughout the chamber 

depth at time t=0, using the computer simulation we get a value for E0 by iteration, (more 

detail in appendix B1). The simulated distribution of the electric field throughout the chamber 

depth is shown in Fig (3-5). 

 

Figure 3-5: Electric field distribution inside the chamber, showing the change according to the 

surrounding space charge; simulation at 15 bar Nitrogen gas applying an electric field of 200 V/cm. 

3.5.  Drift velocity of electrons 

In some gas mixtures such as Argon-Methane, the electron drift velocity approaches its 

maximum value in an intense electric field and a saturation effect is observed. Increasing the 

applied electric field slightly decreases the electron drift velocity. Fraser (1986) represents a 

Monte Carlo simulation with measurements of the electron drift velocity in a 90% Argon, 10% 

Methane mixture. The values of electron mobility in this given Argon-Methane gas mixture are 

derived from simulation and measurement [22]; the drift velocity as a function of applied 

electric field is shown in Fig (3-6). 

The electron mobility for Nitrogen gas is shown in [13], the drift velocity as a function of 

applied electric field is shown in Fig (3-7).  

The values of electron and ion mobility and the photon energy needed to produce electron ion 

pairs used in the simulation for different gases is shown in Table (3-1) [23]. 
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Table 3-1: The energy required to produce electron ion pairs and electron and ion mobility in 

the used gases. [leo. 1994], exp. data [Smirnov 1968 Elecki et al. 1975], [sauli 1977]. 

[V.Palladino, et al., IBL-3013(1974)]. 

Gas µ- (electron mobility) 

(cm2* bar/ V*s) 

µ+(positive ion mobility) 

(cm2* bar/ V*s) 

W (energy to produce 

electron ion pair)( eV) 

N2 559.8 1.87 36.3 

Ar 4.39x102 1.7 26.4 

Xe 1.33x103 0.58 22.3 

 

 

 

Figure 3-6: Measurement and calculation of electron drift velocity as a function of applied electric 

field in an Argon-Methane gas mixture of (90:10%). 
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Figure 3-7: Measurement and calculation of electron drift velocity in Nitrogen gas as 

a function of applied electric field. 

The simulated drift velocity of the electrons in Nitrogen gas uses the values of the mobility (µ) from 

Fig. (3-6) and using the simulated synchrotron spectrum shown before when applying high voltage of 

100 V is shown in Fig (3-8). 

 

Figure 3-8: Electron drift velocity distributions inside the chamber, the drift velocity is higher 

near the cathode and slower near the anode, according to the electric field distribution. 

Simulation curve for 15 bar Nitrogen gas and an applied electric field of – 200 V/cm.  
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3.6. Drift velocity of ions 
The behavior of ions is different from that of electrons because of their much larger mass. The 

simulated positive ion drift velocity distribution is shown in Fig (3-9) using the mobility value 

of 1.7 cm2* bar/V*s for Nitrogen ion mobilities from table (3-1). 

 

Figure 3-9: Positive ion drift velocity distributions inside the chamber, simulated with 15 bar 

Nitrogen gas and 200 V/cm applied electric field.  

3.7. Charge movements 

The charge movement inside the chamber, between the plates is simulated by dividing the total 

distance (d= 0.5 cm) into small bins. Each bin has a slab thickness of (Δx= 100 µm) and the 

unit area is perpendicular to the x-axis, as shown in Fig (3-1).  

The electron ion densities vary with time according to the different drift velocities as discussed 

before. Therefore, the main part of the simulation is to obtain the change in charge densities as 

a function of time. The change of the electron ion densities within each slab is calculated by 

finding the difference between the numbers of electron entering the slab volume (Δx) and the 

number of electrons leaving the slab volume to the next slab volume towards the anode.  The 

change in the ion number entering the slab volume (Δx) and the ion numbers leaving to the next 

slab volume (Δx) are calculated.  Taking into consideration the left part of the detector 

geometry shown in Fig (3-1), the ions drift toward the cathode from right to left and electrons 
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drift towards the anode from left to right. This process is done by computer software which 

calculates the change in two nanosecond increments for all bin numbers [12].  

Calculating the reference velocity for both ions and electrons is done with: 

𝑥 = 𝑣 ∗ 𝑡                (3-10) 

Where x is the distance in cm, v  is velocity in cm/s and t is the time in seconds   

𝑣 = 𝑥
𝑡
   = 100µm

2ns
 = 100𝑥10−4 𝑐𝑚

2𝑥10−9 𝑠
 = 5x106 cm/s         (3-11) 

The start of drifting of the electrons and ions which are created in the first bunch, and using the 

percentage of the electron drift velocity and the reference velocity, gives us the number of 

electrons that drift towards the anode and the number of ions drifting towards the cathode to the 

next bin. This procedure is done for all 50 bins. The remaining electrons and ions in each bin 

are summed up with the drifted one from the previous bin minus the recombined charges 

before and after drift.  

After 2 nanoseconds comes the new bunch. This creates new electron and ion pairs in each bin. 

These are added to the existing number of electrons and ions in each bin. This procedure is 

repeated from the opening time of the chopper till it closed, as shown in the sketch diagram in 

Fig (3-10). After a certain amount of time the detector reaches the equilibrium state. This 

means that the number of newly generated electron and ion pairs are equal to the numbers of 

electrons and ions which disappear by recombination process and accumulate in the anode and 

cathode respectively, as shown in Fig (3-11). 
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Figure 3-10: Sketch diagram showing the beam monitor divided into small values Δx of 100 µm in the x direction 

and the X-ray beam coming from left to right with energy Eγ, the chopper is placed in between. 

 

Figure 3-11: Simulated total number of electron (green) and ion (red) distribution inside the chamber while there is 

continuous illumination by synchrotron beam. For 15 bar Nitrogen gas, and using an applied electric field of          

-200 V/cm. 
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After closing the chopper there are no new photons hitting the ionization chamber, but the 

software keeps on running.  After a certain amount of time all electrons disappear and only the 

remaining ions are drifting, as shown in Fig (3-12). At this time there is no recombination 

process and the charge is lost only by the accumulation on the cathode plate which delivers the 

long signal tail observed in the measured signal as shown in chapter 6. 

 

Figure 3-12: Electron and ion number distributions inside the chamber after the chopper has closed, we see only 

the contribution of the positive ions (red) increasing near the cathode and decreasing near the anode. The electron 

density is zero. 

3.8. Recombination 

Using Boag's formula for recombination in a parallel plate chamber and applying the boundary 

conditions, the recombination effect is calculated at 2 ns intervals before drift and before the 

new bunch arrives. Every 2 ns, a new number of electrons and ions which escaped 

recombination are calculated in each bin, and accordingly, the new electric field distribution 

inside the detector and drift velocities of electrons and ions are calculated with the information 

of drift velocities and the number of charges in each bin. The induced charges are calculated 

using Blum's formula, the output current is obtained by differentiating the induced charge.

(Appendix B2). 
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3.9. Chopper system for the time resolved measurements 

The beam chopping, with a rotating axis perpendicular to the beam axis, offers a short opening 

time and the beam is blocked during the closed cycle. 

The chopper system for the time-response experiment with an X-ray beam from a synchrotron 

and an X-ray tube is described below. 

The chopper consists of a lead disk with radius of 9 cm, 1 mm of lead and 3 mm of aluminum 

comprise its thickness and it contains 4 slits, each 1 mm wide, cut into the disk to increase the 

chopping frequency. A laser photodiode is placed on top of the chopper disk and connected to 

an Oscilloscope to measure the rotation speed. Another chopper is built with PMMA and also a 

radius of 9 cm, 4 mm thick and slits of 1 mm in four positions.  The disk chopper is mounted 

on a drill machine which is connected to a stable power supply as shown in Fig (3-13). 

The applied voltage has a linear proportional to the chopper frequency as shown in the 

measurement data in table (3-2) and Fig (3-14). 

    

Figure 3-13: The lead disk chopper mounted to the drill machine and connected to the power supply left, the 

PMMA slit chopper right. 
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Table 3-2: The measured frequency as a function of applied voltage to the drill machine with 

Pb and PMMA disk choppers. 

Applied voltage (Volt) Pb slit chopper 

frequency (Hz) 

PMMA slit chopper  

frequency (Hz) 

2 7.06 7.18 

3 11.062 11.49 

4 15.598 15.726 

5 19.602 20.216 

9 34.48 34.48 

10 37.4 37.79 

12 46.72 46.72 

14 52.64 53.56 

 

 

Figure 3-14: The calibration measurement of the applied voltage to the chopper, relative 

to chopper frequency. 
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The opening time t of a slit with a width of w for the chopper disk with radius r and rotating 

frequency f is given by [24].  

𝑡 = 𝑤
2𝜋𝑟𝑓

                                                                   (3-12) 

The opening profile of the chopper, for the time-response measurement uses a 0.2 mm vertical 

lead collimator in front of the detector, where the chopper slit is bigger than the collimator slit. 

The integrated intensity of the incoming beam profile corresponds to a trapezoidal opening in 

the chopper. During the open time, the slit open area increases and more photon flux enters the 

detector till it is wide open for a while and then starts to close with the same function as 

opening. The slit closes with time till it cuts the beam. Calculated integrated intensity of the 

simulated synchrotron beam spectrum for close/open/close cycle is shown in Fig (3-15) below. 

 

 

Figure 3-15: The simulated total integrated photons flux shown in Fig (3-2) that enters the 

chamber for 15 bar Nitrogen gas during the close/open/close cycle of the chopper. 

A trapezoidal function is mathematically defined by a lower limit a, an upper limit d, a lower 

support limit b, and an upper support limit c, as shown in the sketch diagram in Fig (3-16) 

below, where (a < b < c < d)  from Eq. (3-13).  
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𝑓(𝑥) =

⎩
⎪
⎨

⎪
⎧

   0                               (𝑥 < 𝑎) 𝑜𝑟 (𝑥 > 𝑏)
𝑥−𝑎
𝑏−𝑎

                                          𝑎 ≤ 𝑥 ≤ 𝑏
 1                                             𝑏 ≤ 𝑥 ≤ 𝑐

𝑑−𝑥
𝑑−𝑐

                                           𝑐 ≤ 𝑥 ≤ 𝑑 ⎭
⎪
⎬

⎪
⎫

                               (3-13) 

 

Figure 3-16: The trapezoidal function sketch diagram from Eq. (3-13).  

3.10. Simulated output signal 

The output signal is obtained by the induced charge formula described in chapter 2. As the 

simulation program runs each 2 ns, the induced charge is calculated by Eq. (2-31) and 

integrated till the end of the program, as shown in Fig (3-17) below.  
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Figure 3-17: Induced charge of the total charges inside the chamber volume on the cathode 

and anode plate, for 15 bar Nitrogen gas and applying an electric field of -200 V/cm.  

The induced current is given by differentiating the induced charge given by Eq. (2-31) in 

chapter 2. This is described by the following formula [14]. 

𝑖𝑖𝑛𝑑 = 𝑑 𝑄𝑛
𝑖𝑛𝑑

𝑑𝑡
(3-14) 

The simulated induced current assumes an ideal chopper setting, opened to maximum in a very 

short time, leading to a high signal speed which decreases when the chopper closes to zero, as 

shown in Fig (3-18) 

Figure 3-18: The output induced current simulated by assuming that ideal chopper opening to 

maximum at time t = 0. 
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The simulated output current signal, using the chopper as described before, and applying a 

trapezoidal function for the close/open/close cycles, and by differentiating the induced charge 

shown in Fig (3-16), the induced current is obtained for 15 bar Nitrogen gas with an applied 

electric field of -200 V/cm using a chopper frequency of 36.5 Hz is shown in Fig (3-19). 

 

Figure 3-19: Simulated output induced current showing a fast response signal in the ionization 

chamber, obtained by differentiation of the induced charge shown in Fig (3-16) 

3.11. Simulation flowchart: 

The numerical simulation flowchart used to simulate the time response signal and the space 

charge effect explained in this chapter is described in detail below. 
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Chapter 4 Chamber design 

4. Introduction  

In this chapter the multi-channel ionization chamber construction and electronic design is 

described in detail, followed by the electronic noise and calibration measurement results. 

4.1. The Multi-channel ionization chamber design 

The multi-channel ionization chamber is designed in such a way as not absorb more than 1% of 

the incoming synchrotron beam. The chamber is divided into two parts by the anode strip, each 

part is of 0.5 cm depth to decrease the collection time of positive ions as shown in Fig. (4-1). It 

consists of an aluminum cover (1) with a 1 cm deep. 6 mm wide threaded with Helicoil to stand 

the high pressure of up to 30 bar and uses 6 mm steel screws. The second part is a 1 mm thick 

carbon-fiber plate (2). These light-conductive windows allow raising the gas pressure beyond 

30 bar, the cathode (3) is made from a thin layer of aluminum foil, 13 µm thick (6) on a 

polyimide layer (polyimide 35E) as shown in Fig (4-2) [25]. The high voltage connection is 

made through two polyimide [27] layers (4) of 50 µm aluminum. As shown in Fig (4-3) a small 

hole (8) is made in one side for the high voltage connection to the strips on the ceramic with a 

resistance of 13 MΩ for the inner electric field and using inter-connecter NE [26]. The anode 

(5) is placed in the middle of the chamber as shown in Fig (4-1). The pressurized volume is 

sealed by a foil of Nova-press material [27]. The chamber is connected with a 3 mm diameter 

tube for gas input and output to decrease the differential pressure [28]. 
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Figure  4-1: Photographs of the open chamber with a view of the anode and cathode details as well as the 

assembled detector 

 

 

Figure  4-2: The design of the cathode (13 µm thick aluminum foil) for multi-channel ionization chamber 

construction.   
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Figure  4-3: High voltage connection for the multi-ionization chamber. High voltage contacts (7), feed through 

contact for the cathode (8) and Central electrode (9). 

4.1.1.  The anode 

The anode contains different layers as shown in Fig (4-4) below. The first layer (10) from top 

to bottom is thin aluminum used as a guard ring. The careful implementation of guard rings has 

resulted in an effective isolation resistance of more than 10 MΩ to the high voltage (HV) 

electrode (cathode) on a polyimide layer with (e. glass) (11), the low flaw prepreg polyimide 

layer (12), another thin aluminum layer for the readout is divided into 16 readout panels (13), 8 

upward and 8 downward lines each of size (4.5 x 17.8) mm2. The space interval between the 

pads is 0.2 mm, and the space between rows is 1 mm. 

[a] 
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[b] 

Figure  4-4: The anode sketch diagram showed the different layers design[a]. The anode photo [b].  

4.1.2. Central electrode 

The central electrode is a ceramic plate with a conductive strip built with a thick film 

processing technique. At the end of the strip is a resistive divider of 13 MΩ used to set the 

potential of the strip difference values for correcting the bending of the electric field lines. The 

central electrode separates the chamber into an upper and lower part see Fig (4-3), since there 

are two separated parallel synchrotron beams as discussed in chapter 1, with different energies 

E1 and E2 entering the chamber that should be measured independently without any 

interference [29]. The central electrode sketch diagram is shown in Fig (4-5). 

 

Figure  4-5: 3D sketch diagram of the Multi-channel ionization chamber shows the central electrode (red) at the 

middle of the chamber readout pads (blue)  and gas input and output pipes. 
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4.2. Readout electronics 

Low noise and linear electronics are important for high precision measurement. The following 

analog and digital electronics used for the readout of the beam monitor are briefly described. 

The low noise electronics mainly contain the current voltage convertor (C.V) in which the 

operational amplifier OPA727 is used. It has very low noise of 6 nV/ at 100 kHz and 

bandwidth of 20 MHz. The OPA AD8131 is used as a differential line driver. A differential 

line receiver with OPA AD8130 is used. The output signal from the differential line receiver is 

injected into the 16 bit ADC from Meilhause which is used to digitize the signal to be 

processed by computer software [29]. 

 

 

 

 

 

 

 

 

 

Figure  4-6: The complete sketch diagram of the PCB contains C.V converter and differential line 

driver. 

4.2.1. Current to voltage converter 

The output current which is produced from the Multi-channel ionization chamber is converted 

to a voltage. A constant input current obtained with a battery was used to test the current to 

voltage convertor [29]. The linear relation obtained from the measurement is shown in Fig(4-7).  
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Figure  4-7: Calibration of the input current versus the output voltage from the current voltage convertor electronic 

circuit, shown in Fig (4-6). 

4.2.2. Differential line driver 

The second stage after the C.V convertor is the differential line driver (DLD). The OPA 

AD8131 is used as DLD which drives a differential signal from the output voltage signal of the 

C.V convertor. The sketch circuit diagram is shown in Fig (4-6). 

 

  Figure  4-8: Layout board PCB image using Eagle software. 

Out put voltage (mV) 
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4.2.3.  Differential line receiver 

After the signal is derived from the current voltage converter and differential line driver, the 

signal is transferred through a shielded twisted pair cable of 20 m to the differential line 

receiver as a differential signal and received by a differential line receiver. The OPA AD 8130 

is used as a differential line receiver, which subtracts the differential signal to reduce the pick-

up noise from the signal. A low-pass filter with a cutoff frequency of (150 kHz) is implemented 

after the differential line receiver to reduce the pick-up of high frequency noise and get the 

signal ready to digitize by the Meilhaus ADC (ME-4661i) with 500 kHz, 16-bit A/D convertor 

which has A/D and D/A sections with a common ground isolated from the PC ground and the 

rest of the board. It has a channel time of 2 µs and a relaxation time of 1.5 µs [30]. 

The minimum time between two simultaneous measurements depends on the number of 

channels being sampled and the recovery time, which can be calculated as following. 

Minimum scan time= number of channels x channel time + relaxation time. 

 

 

 

 

 

 

 

 

 

Figure  4-9: Differential line receiver sketch diagram showing the differential input signal and single-ended signal 

as output. 
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4.3. Noise measurement with styroflex capacitors 

Polypropylene Film capacitors are used due to their most desirable electrical characteristics 

such as exceptionally high insulation, low leakage, low dielectric absorption, low distortion and 

excellent temperature stability. 

We used a linear gate, spectroscopic amplifier and multi-channel analyzer to measure the 

output noise from the read-out electronics for the Multi-channel ionization chamber using 

different capacitors of type styroflex (120, 180, 200, 220, 270 and 330) pF. 

4.3.1. Calibration the multi-channel analyzer 

The calibration of the MCA is done using a 9 V battery which is terminated with a 150 MΩ 

resister to produce a current to the input channel of the electronics, which accepts an input 

current [30]. The output voltage is measured after the differential line driver by an oscilloscope 

and voltmeter to calibrate the offset and gain of the C.V convertor. The calibration curve is 

shown in Fig (4-7). The signal is injected into the multi-channel analyzer and the calibration 

spectrum and line fitting to the voltage with the channel number is shown in Fig (4-11), (4-12). 

The relation between the channel number and applied voltage is derived.  

 

Figure  4-10: Calibration peaks of the input voltages and the peak channel number. 
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Figure  4-11: The linear fit for the input voltage and the channel number. The slope is 

found to be (0.05662). 

4.3.2. Noise measurement 

Different values of capacitor-type Styroflix are injected into the input stage of the readout 

electronics and then we look at the output from the linear gate, which depends on the gate pulse 

which is injected from a pulsed generator. The integrating time was 5 μs. This feeds the output 

of the linear gate to the spectroscopic amplifier, then to the multi-channel analyzer and then to 

the PC [31], as shown in the following block diagram.  

 

Figure  4-12: Measurement block diagram of the electronic noise with capacitors.  
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The following graph is the relation between the gain of the spectroscopic amplifier and noise in 

rms (V). It shows that noise increases with increasing gain. 

 

Figure  4-13: Noise level measurements with MCA as a function of spectroscopic amplifier gain. 

4.3.3. Noise versus integration time  

Theoretically, noise is dependent on the time between sampling pulses. The relationship 

between noise and integration time is measured using the setup shown in Fig (4-12). Using the 

MCA, the relationship between noise and integration time can be obtained. Fig (4-14) shows 

that noise decreases with increasing integration time. 

 

Figure  4-14: Relationship between integration time and noise, showing that noise 

decreases with increasing integration time. 

2.0 2.5 3.0 3.5 4.0
25

30

35

40

45

50

No
ise

 σ(
rm

s)

Integration time (µs)

Data: Data2_B
Model: ExpDec1 
--------------------------------------------------  
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Noise is measured with different input capacitors used to determine the dependence of noise on 

a range of input capacitors. The plot of noise versus the values of the input capacitors is shown 

in Fig (4-15). A polynomial fit is applied on the measured data to specify the noise at 0 pF 

intercept. The intercept represents the electronic noise at 0.3 rms (V). 

 

Figure  4-15: Noise measurements with MCA versus different input capacitors using the 

measurement setup in Fig (3-12). 

 

4.3.4. Noise measurement with Meilhaus ADC 
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and the Meilhause ADC and directing the output signal to the PC as shown in the block 

diagram below, the signal comes out of the differential line driver and is driven through a 20 m 

twisted pair cable as differential signal to the differential line receiver, implementing a low-

pass filter in front of the ADC card to reduce the pickup of high frequency noise. The overall 
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Figure  4-16: Sketch diagram showing the noise measurement with ADC and PC with different input capacitors. 

 

 

Figure  4-17: Measured noise in rms (V) as a function of the input capacitors with Meilhaus ADC card (ME 4661i). 

The noise of the charge-sensitive preamplifier is measured by the setup block diagram shown 

in Fig (4-16), where the capacitors are inserted into the preamplifier and the output resulting 

from this charge is measured at the output of the filter amplifier (DLR), preamplifier noise is 

determined by measuring the root-mean-square (rms) of noise voltage at the output.  

A polynomial fit is applied to the measurement results shown in Fig (4-17), the intercept value 

of the noise at 0 pF was 0.00769 rms (V). The measured signal is considered to be in the order 

of a few volts, and from chapter 6, the signal to noise ratio is calculated to be  

SNR= Signal / Noise = 1V/ 0.00769 V = 130                                                       (4-1) 

Capacitance value (pF) 
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Chapter 5 Experimental setup 

5. Introduction 

This chapter introduces the most important experimental measurement setup and calibration 

procedures of the Multi-channel ionization chamber using synchrotron radiation and 2 kW 

molybdenum X-ray sources with a characteristic energy of 17.44 keV and regulation of photon 

intensity by changing the X-ray tube current.  

5.1. Setup 1. X-ray spectrum 

The major characteristic of the Multi-channel ionization chamber has been studied using a 

crystallographic 2 kW X-ray tube. The X-ray spectrum is measured using a proportional 

chamber connected to the multi-channel analyzer. The setup sketch diagram is shown in        

Fig (5-1), setting the voltage of the X-ray tube to 25 kV and the tube current to 5 mA. 

 

Figure  5-1: Setup for X-ray spectrum measurement with proportional counter and MCA, a 2 mm collimator 

is placed in front of the X-ray tube, a 1 mm lead collimator in front of the proportional chamber and the 

total distance between the X-ray tube and the proportional chamber is 170 cm: 
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5.2. Setup 2. Linearity and saturation current measurement:  
The following setup is used for the measurements of the saturation current with synchrotron 

radiation at EDR beam line at BESSYII where the Multi-channel ionization chamber is placed 

16 cm from the beam shutter and a 5 mm lead collimator is placed 3.5 cm from the chamber 

and a 3 mm lead collimator is attached to the chamber entrance window to protect the lower 

pads from the synchrotron beam. 

 

Figure 5-2 saturation current setup at EDR beam line at BESSYII. 

The following setup is used for the saturation current and linearity measurement with the X-ray 

tube at Siegen University is shown in Fig (5-3) where the chamber is placed 14 cm from the X-

ray tube and a 0.5 mm lead collimator is placed 3.5 cm from the chamber.  

Figure 5-3 linearity and saturation current measurement setup with Mo source X-ray tube. 

Synch. beam 
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5.3. Setup 3. Position resolution measurement:  
The chamber is placed on a horizontal scanner and moves in increments of 1 µm. A 50 µm step 

scan is performed for the measurement with a 2 kW molybdenum X-ray source. The 

experiment is carried out by applying a 60 mA tube current and voltage of 25 kV, filling the 

chamber with 15 bar of Argon-Methane gas mixture (90%:10%) and applying voltage of 1 kV, 

using the experimental setup shown in Fig (5-4) below. 

 

Figure 5-4: Setup for the position resolution measurement with 15 bar of Argon-Methane gas (90%:10%) with an 

X-ray tube source. Chamber is set 10 cm from the X-ray tube on a horizontal scanner; 50 µm vertical lead slit 

collimator is set 1.5 cm in front of the chamber.  

5.4. Setup 4. Time response measurement  
The results are obtained using a multi-channel ionization chamber with construction details 

shown in chapter 4. The chamber is filled with a mixture of 90% Argon and 10% Methane using 

an applied pressure of 5, 7 and 10 bar and pure Nitrogen gas with pressures of 15 and 26 bar. 

The measurements were carried out in the EDR synchrotron beam line at BESSYII. The beam 

size was 1x1.5 mm2. A circular lead chopper with diameter of 9 cm and 1 mm slits cut in four 

positions as discussed in chapter 3, and shown in Fig (3-12) is used. The chopper is mounted on 

a drill machine connected to a power supply which is used for chopping the synchrotron beam as 

shown in Fig (5-5). Two collimators are placed in front of the chamber; a 3x50 mm2 horizontal 

slit lead collimator is attached to the chamber entrance window to protect the lower parts of the 

chamber from the beam and a 0.2x0.4 mm2 collimator is placed 4 cm from the chamber, (see  

Fig 5-5). 
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The multi-channel ionization chamber is placed 122.5 cm from the beam shutter. The lead 

chopper is mounted in between at 35 cm from the beam shutter and 87.5 cm from the chamber. 

The synchrotron beam is aligned to hit the upper readout pads and the lower readout pads are 

shielded with a 3x50 mm2 lead collimator as shown in Fig (5-5). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-5: The measurement setup at BESSYII beam line, the beam shutter left, lead chopper at 35 cm from the 

shutter, the chamber is placed at 87.5 cm from the chopper.  Magnified image to show the two collimators in front 

of the chamber. 
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Chapter 6 Results and analysis 

6. Introduction 

This chapter details the experimental results and offers analysis of the calibration 

measurements of the multi-channel ionization chamber with X-ray tube and time response 

measurement, when operating a multi-ionization chamber with a high synchrotron radiation 

photon flux from an EDR beam line at BESSYII, and the simulated output signals compared to 

those measured. 

6.1. X-ray spectrum 
The multi-channel analyzer (MCA) is calibrated using different fluorescent X-ray sources of 

(Cu, Rb, Mo and Ag). A linear model is fitted to the channel number and X-ray energy curve to 

get the calibration value. The spectrum of the X-ray tube is measured using setup 1, a Gaussian 

fit is applied to the spectrum peak and the characteristic energy kα is found to be 17.40373 keV 

which fits with the theoretical value. The measured spectrum is shown in Fig (6-1).   

 

Figure 6-1: Measured spectrum of the Molybdenum X-ray source which has 

characteristic energy of 17.40373 keV. 
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The relationship between the tube current and the X-ray photon intensity is measured by using 

setup 1 and applying 25 kV X-ray tube high voltage and regulating the tube current. The 

intensity measured spectrum is plotted in Fig (6-2). 

 

Figure 6-2: Measured X-ray spectrum at different intensities using proportional counter and applying 25 kV X-ray 

tube high voltage and regulating the tube current from (5 to 7) mA. 

6.2. Linearity  
The linearity test is particularly important when using the detector in a measurement with a 

synchrotron radiation, were the beam intensity is extremely high and the measurements can be 

affected by the nonlinear response of the detector. 

The linearity response of the multi-channel ionization chamber has been investigated with 

respect to variation of X-ray photon intensities, which depends linearly on the X-ray tube 

current from Fig (6-2). Using setup 2, in Fig (5-3) and filling the chamber with a 10 bar ArCH4 

gas mixture (90:10%),  and 10 bar Nitrogen gas, the detector was biased to (-1000 V) by using 

a stable power supply while a small collimator with a 1 mm slit is placed in front of the 

detector [23]. The measured results of the linearity are shown in Fig (6-3).  
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Figure 6-3: Linearity measurement of the multi-channel ionization chamber at 

different tube current using Nitrogen gas and ArCH4 gas mixture of (90:10%). 

6.3. Saturation current  

In the ionization chamber the drift of the positive and negative charges is represented by the 

applied electric field in a given volume of gas that is continuously irradiated by an X-ray 

source. The amount of electron ion pair production depends on the gas density, number of 

photons and energy of the incoming photon flux. The rate of charge will be balanced by the 

loss of ion pairs from the volume by recombination and diffusion. 

Current voltage characteristics of the chamber have been studied using different X-ray photon 

intensities by applying different tube currents which increase the photon flux and using setup 2, 

in Fig (5-3). When operating the chamber with the synchrotron radiation the saturation current 

is measured using setup 2, in Fig (5-2), by filling the chamber with Nitrogen gas at different 

pressures and regulating the applied voltage from 0 to 5 kV as shown in Fig (6-4) panel [b]. 

The electric field is created inside the chamber by applying external voltage from a stable 

power supply.   

Figure (6-4) shows that no current flows in the absence of an applied electric field, since the 

ions and electrons which are created disappear either by recombination or diffusion from the 

active volume. As the voltage increases, the electric field begins to drive the positive ion 

towards the cathode and electrons towards the anode. The measured current increases with the 

10 100

10

100

1000
linearity of Multi-ionization chamber  

Ou
t p

ut
 c

ur
re

nt
 (n

A)

X-ray tube current (mA)

 15bar ArCH4 gas
 15bar Nitrogen gas

Detector high voltage: -1kV
Tube HV: 50kV for ArCH4

Tube HV: 50kV for Nitrogen



Chapter 6                                                                                                                     Result and analysis 
 

61 
 

applied voltage as this increases the drift velocities of the charges and reduces the amount of 

lost charges. At sufficiently high applied voltage, the electric field is great enough to reduce the 

recombination to a negligible level and all the produced charges are collected in the electrodes, 

and with further increase of the applied voltage the output current remains constant because the 

charge collection rate is constant under these conditions, the ionization chamber is 

conventionally operated where the measured current is also constant which is called saturation 

current [6]. 

  

[a]                                   [b] 

Figure 6-4: The current voltage characteristics measurement with different applied voltages and different Nitrogen 

gas pressures with synchrotron radiation [b]. And 10 bar pressure of ArCH4 gas mixture with X-ray tube [a], 

showing that the saturation level increases with increasing photon flux intensities. 

The multi-ionization chamber sensitivity is given by  

𝐼𝑜𝑢𝑡 = 𝑠 𝑝 𝐼𝑠𝑦𝑛                                                                          (6-1) 

𝑠 =  𝐼𝑜𝑢𝑡
𝑝 𝐼𝑠𝑦𝑛

                                                                             (6-2) 

Where Iout is the measured current, p is pressure and Isyn is the synchrotron current 

Detector sensitivity to high intensity photon flux is taken from the measurements with different 

nitrogen gas pressures and the synchrotron beam shown in Fig (6-4), by dividing the output 

current signal to the applied pressure and the synchrotron current which is shown in Fig (6-5) 

below.  
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Figure 6-5: Multi-ionization chamber sensitivity measurement with high 
intensity synchrotron beam and different nitrogen gas pressures. 

6.4. Position resolution measurement:  
A horizontal scan measurement is done to check the separation between the pads of the multi-

channel ionization chamber. The horizontal scan measurement results are shown in Fig (6-6) 

using setup 3 as in Fig (5-4), the scan started from the middle of upward pad number 2 and 

continued to the middle of upward pad number 5 while operating the chamber in the saturation 

region by applying voltage of 1kV, the pad size was found to be 178 mm and by differentiating 

the edge profile as shown in Fig (6-6) to obtain the line spread function that is shown in        

Fig (6-7). 

 

Figure 6-6: The horizontal scan result profile of two neighboring pads of the multi-channel ionization chamber 

[A]. Position resolution measurements with a 15 bar Argon-Methane gas mixture of (90:10%) and applied high 

voltage of 1 kV using a 50 µm lead collimator in front of the detector, a 50 µm scan step is performed [B]. 
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The experimental value of sigma (σx) is determined by the intrinsic resolution of the chamber 

that is included, geometry of the chamber with accurate alignment of the anode pad, photon 

beam distribution and secondary electrons, mainly photoelectrons which are produced by 

photon interaction in the sensitive volume. These depend on the photon energy, gas pressure 

and geometry. The space charge effect of ion and electron diffusion also contributes [28]. 

The photon beam distribution depends on the focal spot of the X-ray tube, collimator width and 

step geometry. In addition there are also effects from the space charge, diffusion of electrons 

and florescence.

 

 

Figure 6-7: Derivative of the S shape scan shown in Fig (6-6), it represents the 

Gaussian shape, which is the effect of the primary photo electrons in the chamber. 

The FWHM was found to be 0.228 mm. 

6.5. Space charge effect 
At high photon flux rates, the most obvious impedance is caused by the space charge effect of 

most gas chambers. Space charge has an influence on the signal amplitude within the signal 

track where the positive ions need several milliseconds be moved from their position of 

creation by the incoming photons to the cathode. The arrival of the electrons at the anode plates 

is in the order of microseconds. The accumulation of the slow positive ions distorts the electric 

field, which has an influence on the electron and ion drift velocities and affects the total current 

density inside the chamber volume. In this chapter the measured result of the space charge 

effect will be shown. [32] 
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6.5.1. Measurement with ArCH4 gas mixture 

The time response measurement is carried out using setup 4, in Fig (5-5) and filling the 

chamber with an Argon-Methane mixture of (90:10%), the space charge effect is investigated. 

As shown in the following figure the time response measurement with a 10 bar ArCH4 mixture 

using a lead slit chopper, when applying a low electric field with the slit open, a fast current 

signal appears and immediately drops down according to the space charge effect which disturbs 

the electric field and drift velocity of the charges till an equilibrium is reached and the signal 

declines as soon as the chopper is closed. By applying a high electric field in the saturation 

region a plateau is observed according to the fast drift velocities of the charges as well as 

reduction of the charge loss by the recombination effect as shown in Fig (6-8).  

 

Figure 6-8: Time response measurement with 10 bar ArCH4 mixture of (90:10%) using 1 mm lead slit chopper. 

When applying low electric field in the recombination regime with electric field of 400 V/cm [A].  By applying a 

high electric field in the saturation region with electric field of 2500 V/cm, the time response is measured and a 

plateau is observed [B]. 

The measured result of the space charge effect using an Argon-Methane mixture of (90:10%) 

with the pressure mentioned before and tuning the applied electric field from 400 V/cm up to  

2500 V/cm, by plotting the figures together the space charge effect is clearly observed. As 

shown in Fig (6-9), Fig (A-1) and Fig (A-2). 
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Figure 6-9: This figure shows different measurements of the output current as a function of 

applied electric field from 400 V/cm to 2500 V/cm, where the space charge effect decreases 

with the increasing of the applied electric field [A]. Magnified long tail signal to study the ion 

collection time [B]. 

6.5.2. Measurements with Nitrogen gas  

Another measurement was conducted using setup 4, shown in Fig (5-5) and filling the chamber 

with pure Nitrogen gas at pressure of 15 and 26 bar and tuning the applied electric field from    

200 V/cm up to 2000 V/cm. By plotting the figures together the measured output current as a 

function of applied electric field, a strong attenuation of the output current signal and 

exponential behavior is clearly observed according to the loss of the charges by recombination 

and diffusion when operating the chamber in the recombination regime. Further increasing the 

applied electric field in turn increases the drift velocities of the charges thus increasing the 

output current and a flattening at the top of the amplitude signal is observed. By further 

increasing the applied electric field till the saturation regime a plateau is observed as shown in 

Fig (6-10), Fig (6-11).  

400 450 500 550 600 650

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

600 800 1000 1200 1400 1600 1800 2000 2200 2400
0

50

100

150

200

250

300

350

400

450

500

550

600

650

700

750

Time(µs)

O
ut

pu
t c

ur
re

nt
 (n

A
)

Space charge effect with diferent applied electric field 

[A]

[B]
O

ut
pu

t c
ur

re
nt

 (n
A

)

Time(µs)

10bar ArCH4

 Syn 199.52mA 
10V Pb Chopper

Residual effect with diferent applied electric field 

 E: 400V/cm
 E: 1000V/cm
 E: 1500V/cm
 E: 2000 V/cm
 E: 2500 V/cm



Chapter 6                                                                                                                     Result and analysis 
 

66 
 

 

Figure 6-10: Time response measurement for 26 bar Nitrogen gas pressure as a 

function of different applied electric field a plateau is observed at 2000 V/cm [A]. 

The magnified long tail signal for ion collection time [B]. 

 

Figure 6-11: Time response measurement for 15 bar Nitrogen gas pressure as a 

function of different levels of applied electric field, a plateau is observed at 1000 

V/cm [A]. Magnified long tail signal [B].  
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The effect of the space charge on the output amplitude current signal shown in Fig (6-8) panel 

[A] can be represented by the difference between the maximum amplitude height and the 

minimum amplitude height. Plotting the difference in amplitude of the measured curves gives 

the relation between applied electric field and output current signal in Fig (6-12) below  

 

 Figure 6-12: The relationship between the applied electric field and the space charge effect on the amplitude 
signal is plotted with different pressures of Argon methane gas mixture and nitrogen gas, showing the distortion 
of the electric field according to the space charge effect as a function of gas pressure. 

This effect increases with increasing gas pressure which also increases the total amount of 

charge produced inside the chamber. However, the space charge effect, recombination and 

diffusion effects are considered, as well the strong attenuation in the output response signal 

observed in the measurements when operating the chamber in the recombination regime, this 

effect is less with Nitrogen gas than the ArCH4 gas mixture. 

It was found that increase of drift potential is proportional to the pressure and the amount of 

positive ion charge that flows back into the drift volume and produces the same amount of 

charge inside the drift volume as before, and the output current signal increases by a factor with 

increasing gas pressure.  

6.5.3. Residual effect 

The long tail signal observed from the measurements shown in panel [B] in Fig (6-9),            

Fig (6-10), Fig (6-11), Fig (A-1) and Fig (A-2) represents the remaining ions per collection 

time. At these moments of measurement the chopper had closed and interrupted the incoming 

photon flux. Accordingly, there is no new generation of electron and ion pairs. The remaining 
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electrons inside the active volume collect at the anode plate in a very short time, according to 

their fast drift velocity compared to the ion drift velocity, and remaining are only the slow ions 

inside the active volume of the chamber.  

The remaining positive ions inside the chamber volume continuously drift toward the cathode, 

according to their drift velocity, which is caused by the applied electric field. The loss of the 

ions by recombination effect is negligible as all electrons have disappeared from the active 

volume. These ions are continuously drifting toward the cathode and induce a current signal, 

from the measurement results discussed before, the mean value of the residual signal, which 

represents the positive ion signal as a function of the applied electric field is shown in           

Fig (6-13). 

6.6. Comparison measurements with simulation 

The numerical simulation discussed in chapter 2 is applied to understand the behavior of the 

ionization chamber and the output measured signals, the comparison illustrated below shows 

close agreement of the simulation with the measurements. 

The simulation is used by applying 26 bar Nitrogen gas pressure and using an incoming photon 

flux intensity and energy calculated from the simulated synchrotron photon spectrum, after 

calculating the absorption 122.5 cm of air, the 1 mm carbon window at the entrance of the 

detector and 0.5 cm dead of volume of the same gas and pressure filled in the active volume 

inside the chamber shown in Fig (6-14). The total charge produced in each bin inside the 

chamber is calculated using Eq. (3-3) and the integrated entrance synchrotron beam profile in a 

timed structure by using the open and closed cycles of the chopper described by a trapezoidal 

function is shown in Fig (6-15). 

The numerical simulation is developed using a Nitrogen recombination factor of 2.7x10-7cm/s 

given by [33], and using electron and ion mobility from the measured values discussed in 

chapter 3, the ion mobilities are a constant value from table (3-1). 

The loss of the charge is calculated by a recombination event every 2 ns, the diffusion and 

repulsion generate new charge volume and is calculated from the information taken from the 

previous calculation. The total charge density in each bin inside the chamber is calculated using 

Eq. (3-4), as well as the disturbed electric field, drift velocities, induced charges by Eq. (2-31) 

and the output current signal by Eq. (3-14). 
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The simulated output current is compared to the measured output current signal shown in      

Fig (6-16). It shows very good overall agreement with the measurement. 

 Figure (6-16) panel [A], is a reduction of the pulse height as observed when applying an 

electric field of 500 V/cm. With further increase of the applied voltage up to 1000 V/cm and 

1500 V/cm, there is a decrease in the signal amplitude attenuation as shown in Fig (6-16) panel 

[B] and [C]. Saturation at the top of the signal amplitude (plateau) occurs when applying    

2000 V/cm see Fig (6-16) panel [D]. 

From Fig (6-16) and Fig (6-19) the fast part (rise time) discussed in chapter 2, occurs for the 

fast signal during the open time of the chopper and is reproduced in all simulated curves with 

Nitrogen gas by using gas pressure of 15 and 26 bar, also showing good agreement to the 

measurements. 

The slow part (tail signal) of the time response measurement which is shown in Fig (6-10), 

panel [B] describes the slow drift of the remaining ions inside the ionization chamber at 

different applied electric fields. Plotting the curves together from Fig (6-10), for 26 bar 

Nitrogen gas pressure and Fig (6-11), for 15 bar Nitrogen gas pressure, it is shown that the 

collection of the remaining ions is faster when applying a high electric field up to 2000 V/cm 

and it crosses the signal measured when applying low electric field of 1500 V/cm, 1000 V/cm 

and 500 V/cm as described before. 

In the simulation, a small deviation from the measured signal is observed in the slow part when 

they are compared together. The simulated collected ions are faster than the measurements, as 

shown in Fig (6-16) [C] and [D] which occurs at the stronger applied electric field. 

The measured residual signal of the remaining slow ions is faster than the simulated signal 

when applying stronger electric field from Fig (6-13), as in reality the electric field out of the 

beam is higher. In the simulation we assumed the first approximation in the calculation by 

considering the electric field only inside the beam where the ionization occurs and assuming 

that there is only a charge inside the beam depth, the simulation result has a good fit to the 

measured signals with weaker applied electric fields, as shown in Fig (6-16) [A] and [B]. 
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[A]        [B] 
 Figure (6-13) Residual signal mean values for the measurement and simulation as a function of applied electric 
field for nitrogen gas [A]. The measured mean values of residual signal for ArCH4 gas mixture of (90:10%) [B]. 

Another measurement of the residual signal is simulated by reducing the Nitrogen gas pressure 

to 15 bar. It shows a very good fit to the measurements when applying electric field of          

200 V/cm and 400 V/cm. Small deviation of the simulated signal from the measurement of the 

slow part of the time response, is observed when applying an electric field of 800 V/cm and 

1000 V/cm where the simulated signal is faster than the measurement. 

The simulated amplitude signal fits well to the measurement and shows the same effect that 

occurs with the measurement and also has a good fit to the strong attenuation at the top of the 

amplitude signal, which occurs according to the space charge effect described before, when 

operating the chamber with low power electric field and the plateau observed in the simulated 

signal at greater applied electric field near saturation. 

The signal decline (fall time) during the closed time of the chopper, which reduces the 

incoming photon flux is simulated and has good fit to all measurements, as shown in Fig (6-16) 

and  Fig (6-19). 

6.6.1. Simulation parameter  

The most important parameters which affect the time response signal shape is the applied 

electric field, gas pressure and recombination factor. Increasing the gas pressure it increases the 

charge density inside the ionization chamber in each bin. This leads to a higher value of the 

simulated signal according to the high number of charges which are collected at the outer 

plates. By increasing the applied electric field value in the program, it increases the drift 

1000
1

10

100

R
es

id
ua

l s
ig

na
l m

ea
n 

va
lu

e 
(n

A)

Applied electric field (V/cm)

 Measurement with 15bar N2

 Simulation with 15bar N2

 Measurement with 26bar N2

 Simulation with 26bar N2

Residual mean value vs Applied electric field 

500 1000 1500 2000 2500

50

100

150

200

250
Residual mean value vs Applied electric field 

 Measurement with5bar ArcH4 gas
 Measurement with 7bar ArcH4 gas
 Measurement with 10bar ArcH4 gas

Applied electric field (V/cm)

R
es

id
ua

l s
ig

na
l m

ea
n 

va
lu

e 
(n

A
)

 ArCH4 

ArCH4 

r ArCH4 



Chapter 6                                                                                                                     Result and analysis 
 

71 
 

velocity of the charges, ass given by Eq. (2-3) and Eq. (2-4), accordingly, the fast drift of the 

charged particles which leads to fast collection and increases the value of the total integrated 

charge on the outer plates. This delivers high values for the simulated output current signal. 

The plateau is observed at the top of the simulated time response signal when applying an 

electric field value of 1000 V/cm with 15 bar Nitrogen gas and 2000 V/cm with 26 bar 

Nitrogen gas pressure. 

The simulated parameters are summarized in table (6-2) for both 26 bar and 15 bar nitrogen gas 

pressures, and tunings of the electric field from 200 V/cm up to 2000 V/cm. 

Table 6-2: Simulation parameters of the time response signal for Nitrogen gas.  

Simulation parameter 15 bar N2 26 bar N2 

Applied Electric field V/cm) 200 400 800 1000 500 1000 1500 2000 

Rec_factor (α) cm3/s 2.7E-7 2.7E-7 2.7E-7 2.7E-7 2.7E-7 2.7E-7 2.7E-7 2.7E-7 

Rec_Correction num 3.5E-7 5.8E-7 5.4E-7 7.7E-7 2E-7 2.3E-7 3.1E-7 4E-7 

Ρair  g/cm3 1.25E-3 1.25E-3 1.25E-3 1.25E-3 1.25E-3 1.25E-3 1.25E-3 1.25E-3 

µN2  cm2/g 1.53 1.53 1.53 1.53 1.53 1.53 1.53 1.53 

Trapezoidal- (a)/ ns 0 0 0 0 0 0 0 0 

Trapezoidal- (b)/ ns 15.5E+3 15 E+3 13 E+3 16 E+3 16 E+3 16 E+3 16 E+3 16 E+3 

Trapezoidal- (c)/ ns 50 E+3 50 E+3 49 E+3 51 E+3 49 E+3 50 E+3 51 E+3 51 E+3 

Trapezoidal- (d) /ns 70 E+3 68 E+3 66.5 E+3 70 E+3 67 E+3 67 E+3 67 E+3 67 E+3 

Residual time/ ns 90 E+3 90 E+3 90 E+3 90 E+3 90 E+3 90 E+3 90 E+3 90 E+3 

 ions factor 2 2 5 6 2 2 5 5 
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Figure 6-14: Synchrotron photon absorption by 26 bar Nitrogen gas inside the multi-channel 

ionization chamber.  

 

Figure 6-15: The total integrated synchrotron photon flux from Fig (6-8), entering the ionization chamber as a 

function of time. 
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 [A]                                                                                           [B] 

       

 

 [C]                                                                                        [D]                         

Figure 6-16: The simulated results discussed before compared to the measurement results shown in Fig (6104). 

The output current signal as a function of applied electric field for 26 bar Nitrogen gas pressure.  
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Another simulation is done by changing the Nitrogen gas pressure to 15 bar using the 

simulation method and parameters described before. By changing the gas pressure to 15 bar 

and using the simulated synchrotron spectrum shown in Fig (6-17), and tuning the electric field 

from 200 V/cm to 1500 V/cm with the same values used in the measurement shown in          

Fig (6-11), the simulated output current signal has good agreement with the measurements, as

shown in Fig (6-19) below. 

 

Figure 6-17:  Synchrotron photon absorption by 15 bar Nitrogen gas pressure filled inside the 

Multi-channel ionization chamber. 

 

Figure 6-18: The total integrated photon flux from Fig (6-16), entering the ionization chamber as a 

function of time. 
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[A]                                                                                         [B] 

                            

 

 [C]                                                                                       [D] 

 

Figure 6-19: The simulated output current signal as a function of applied electric field is compared to the 

measurement signal shown in Fig (6-11) for 15 bar Nitrogen gas pressure. 
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Chapter 7 Discussion and conclusion 

7. Space charge effects 

To study the charge dynamics behavior and the space charge effects inside the multi-channel 

ionization chamber (MIC) with a chamber geometry shown in Fig (7-1), the results from the 

numerical simulation using 7 bar ArCH4 gas mixture of (90%:10%), an applied electric field of 

-400 V/cm and the recombination factor of 25x10-6
 cm3/s are used including the chopper 

geometry discussed in chapter 3, with frequency of 37.4 Hz and the simulated photon flux for 

the synchrotron radiation spectrum shown in Fig (3-3) in chapter 3. The simulation program 

runs till 400 μs and the chopper closed after 89 μs as shown in Fig (7-2) below. 

 

Figure  7-1: The detector geometry; divided into two parts. The photon beam is coming from 

the left side. The cathode plates on the left and right side and the anode in the center.  

 

Figure  7-2:  The measurement current (red) with 7 bar ArCH4 and the applied electric 

field of 400 V/cm, simulation curve (black). 
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Figure (7-2) shows the space charge effect in the decay of the current signal. The long tail on 

the end represents the positive ions collection time. The labeled region has been chosen to 

represent the physics processes inside the chamber as shown above. 

{1} when the lead slit chopper starts opening, the incoming photon flux will increase thus the 

produced charge will also increase. 

{2} Maximum opening of the slit chopper and the full beam enters the chamber which should 

result in a flat top. 

{3} Continuous illumination of the full beam and drop in the signal is observed according to 

the recombination and accumulation of the space charge inside the chamber, which affects the 

electric field  and consequently the measured signal. 

{4} The equilibrium states where there is no more drop in the signal. 

{5} Closing of the chopper which decreases the incoming photon flux to zero. 

{6} The chopper is closed and no more photons are arriving. This reduces the electron density 

in a short time to zero, due to their fast drift velocity compared to the ions which are still 

remaining inside the chamber volume. 

{7} The ion density inside the chamber decreases due to the accumulation at the cathode. The 

measured signal decreases as the charge column is absorbed until no charge is left. 

7.1.1. Ions density distribution 

Positive ions distribution inside the chamber in each region of interest as described in Fig (7-2) 

is shown in Fig (7-3). At Region, [1] the ions density is relatively low since there are less 

photons which enter the chamber, [2] the ions density is increased due to the increasing of 

photon flux, [3] during continuous illumination the electrons and ions intermix and result in a 

reduction of free charges due to recombination, [4] equilibrium state of the chamber. The 

number of produced ions is equal to the ions lost by the accumulation at the cathode and 

recombination process [5] the chopper is closing, no ions generated and no ions are lost [6]. 

This eliminates the loss of the ions by recombination process and the ions density therefore 

decreases only by accumulation at the cathode. [7] The ions density is continuously reduced 

near the cathode and it dropped to zero near the anode because the ions drift towards the 

cathode plate. 
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Figure  7-3:  The ions density distribution in each region from Fig (7-2), it shows the increased 

density when the incoming photons flux increases at regions [1], [2], [3] and equilibrium at 

region[4], the density decreases on the regions [5], [6] and [7]. 

7.1.2. Electron density distribution 

The electron density distribution inside the chamber is taken in each region of interest as 

defined in Fig (7-2). In region [1], a high electron density is obtained near the anode and few 

near the cathode since electrons drift rather fast towards the anode, [2] a higher electron 

density is observed according to increasing of the photon flux (until the full opening chopper 

is reached), [3] a decrease of the electron density according to the recombination and fast 

collection time, [4] at equilibrium there is a reduced electron density according to the 

continuous recombination process and collection process, [5], [6] and [7] the chopper is 

closed. There are no electrons in the chamber since all remaining electrons are collected fast. 
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Figure  7-4:  Electron density distribution inside the chamber in each region of interest shown in 

Fig (7-2), it shows that the electron density increases with the incoming photons flux and 

decreases to zero when the chopper closed.   

7.1.3. Electric field distribution 

The slow movement of the ions inside the chamber disturbs the applied electric field as shown 

in Fig (7-5). The electric field distribution inside the chamber is shown in Fig (7-2) for each 

region of interest. Region [1], there is small distortion of the applied field which seems to be 

negligible, [2] the increased ions density leads to more distortion of the electric field, [3] there 

is further increase of space charge when the chamber is continuously illuminated with the full 

beam, [4] in equilibrium state the recombination decreases the space charge inside the 

chamber volume, [5] and [6] the electric field stays almost constant. There is a decreasing in 

photon flux down to zero and according to the low drift velocity of the positive ions 

representing in total the space charge which leads to low collection time, [7] there is a 

decrease of space charge due to the ions collection at the cathode with time and consequently 

an increase in the electric field 
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Figure  7-5: Electric field distortion according to the space charge inside the chamber in each 

region of interest shown in Fig (7-2). 

 

7.1.4. Distribution of electrons and ions drift velocities 

The relationship between the electric field and drift velocity is given by Eq. (2-3) and Eq.(2-4). 

The positive ion drift velocity distribution is shown in Fig (7-6), and the electron drift velocity 

distribution Fig (7-7) below, at each region of interest from Fig (7-2 reflecting the fact  that the 

drift velocity is dependent on the electric field. when the electric field increases the drift 

velocity increases from Fig (7-5). 
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Figure  7-6: The ions drift velocity distribution inside the chamber in each region of 

interest, it changes linearly with the electric field.  

 

Figure  7-7:  The linear relationship between the electric field and the electron drift velocity 

as well when the electric field increases the drift velocity increases from Fig (7-5). 
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7.2. Conclusion and outlook 

From the measurements and discussions shown in this thesis it can be concluded that:  

• The optimum operation of the ionization chamber is recommended by applying high voltage 

of -1 kV in the saturation region for 10 bar ArCH4 gas mixture of (90:10%) with different     

X-ray photon intensities as shown Fig (7-8) below.  

 

Figure (7-8) shows the optimum operation voltage of the Multi-ionization 
chamber at the saturation current with different photon intensities.  

 

Figure 7-9:  Relationship between the saturation current and X-ray tube current from 
above figure, which has a linear relation with the X-ray photon intensity. 
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• The linearity of the chamber response with different photons intensities is measured with 

ArCH4 gas mixture and Nitrogen gas. A line spread function is measured at 15 bar ArCH4 

and applying high voltage of -1 kV. By scanning the Multi-Channel Ionization Chamber 

horizontally the FWHM is found to be (0.228 mm). This is sufficient to guarantee the 

separation between the anode pads. 

• The simulation reproduces in most aspects the experimental results and can used to predict 

the time response profile changing different gases and parameters. 

• The space charge effect due to the high positive ion density inside the chamber volume 

depending on the applied electric field is qualitatively understood in the simplifying field 

approximation used. 

• The decrease of the signal amplitude measured as function of applied electric field shows 

good agreement with the simulation. 

• The diffusion and repulsion effects are only understood qualitatively since the simulation 

does not include effects perpendicular to the drift as discussed before. 

• For the optimum detector operation it is necessary to choose the right gas filling and 

Pressure. Besides the space charge effects and recombination it has to be taken into account 

that the attenuation of the incoming beam is small but sufficient to reach the desired 

precision. Using gases with very small attenuation coefficient will produce a small number of 

electron ion pairs. Therefore for optimum operation the following gas choice and pressure 

should be used: 

  i- High pressure + big gap 

ii- Low pressure + medium gap 

iii- High pressure + small gap ( free of gas choice) 

• In this work pure nitrogen gas is used. Argon gas mixed with methane meets this requirement 

at low pressure but has the problem that the x-ray fluorescence photons from the K-shell 

have a rather large range which affects the spatial resolution. 

• The slow tail of the signal caused by the movement of the positive ions accentuated by the 

low drift field caused by the generated space charge is a serious problem when high speed 

imaging is considered. It may be conceivable to develop a correction algorithm of the space 

charge effects using the dynamics found in the actual work.  
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7.3. Summary 
Medical imaging with synchrotron radiation has a broad spectrum of applications in particular 

when high speed or high precision is require, which cannot be seen by the normal clinical 

imaging techniques. 

A Multi-Channel Ionization Chamber (MIC) has been successfully developed, and the most 

important characteristics and calibrations have been measured. The saturation characteristics 

for a broad beam have been determined with an X-ray generator with characteristic energy of 

17.44 keV Molybdenum anticathode. By regulating the tube current different photon 

intensities are obtained which are used for the measurements. 

The theoretical calculation of the physical interaction of the photons with the active gas 

volume is considered for the chamber design geometry and construction. 

The saturation current as a function of applied electric field is measured by filling the chamber 

with different gas types and pressures. 

A numerical simulation is carried out to investigate the charge dynamics as drift, diffusion and 

repulsion as well the disturbance of the homogeneous applied electric filed considering the 

space charge and recombination effects inside the gas chamber in a steady state. 

In order to observe the dynamic effects a time response measurement is carried out on the 

EDR beam line at BESSYII. A lead chopper of 1 mm slit is used to modulate the synchrotron 

photon intensity as a function of time, and recording the output current signal. By regulating 

the applied electric field from recombination regime up to the saturation regime, the space 

charge effect and recombination is investigated with different gas pressure of ArCH4 gas 

mixture and Nitrogen gas. At beam intensities where space charge and recombination are 

present it is observed that shortly after onset of the beam a peak current is reached which 

settles down to an equilibrium value typically after the maximum electron drift time. After 

switching off the beam the current drops again in a time corresponding to the electron drift 

time leaving only the ion current. The latter produces a long tail where the complete 

disappearance is further delayed due to the lowered electric field caused by the remaining 

space charge. 
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Appendix A 

The following time response measurements are taken using the setup in Fig (6-1), and 

applying pressure of 7 bar and 5 bar of ArCH4 gas mixture of (90%:10%), and tuning he 

applied electric field from 200 V/cm to 2000 V/cm, Fig (A-1) and (A-2) panel [A], shows the 

change of the amplitude signal according to the space charge effect where strong attenuation 

occurs at low electric field and plateau at the high applied electric field. 

Fig (A-1) and (A-2) panel [B], represent the slaw part signal from the remaining positive ions 

in which the positive ions collected faster at high applied electric field and need longer time to 

collect at low applied electric field.  

 

Figure A-1: This figure shows the time response of 7 bar ArCH4 gas pressure using the 

setup shown in Fig (6-1), the same effect as 10 bar signal except that it reaches the plateau 

at applied electric field of 2000 V/cm [A]. Magnified long tail signal [B]. 
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Figure A-2: This figure shows the time response of 5 bar ArCH4 gas pressure using setup 

shown in Fig (6-1), the same effect as 10 bar signal except that it reaches the plateau at 

applied electric field of 1500 V/cm [A]. Magnified long tail signal [B]. 
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Appendix B: 

B-1. Electric field calculation 

By the symmetry of the ionization which occurs by the pencil like synchrotron beam and there 

is homogenous distribution of the charge throughout the chamber depth around the beam. By 

assuming that there is no change in the angular dependent and considering the total charge 

distribution will be around the beam which has radial symmetry. The maximum value of the 

radial dependent R will not play important role in the calculation and the mean value is taken 

into account in the calculation.   

By dividing the chamber depth in the x-axis into small binning, using this assumption will 

give a good approximation to use the gauss’s formula to calculate the change of the electric 

field in each bin as shown below.  

 
Figure B-1: Sketch diagram of the detector depth in the x direction divided into small binning cathode 

plate in the left side and anode in the right side. 

 

At the first bunch the charge density is constant and homogenous throughout the chamber 

volume. The calculation the electric field difference in each bin surface from Gauss’s law and 

Maxwell’s equation as following

𝐸2−𝐸1
∆𝑥

= ∆𝐸
∆𝑥

=  
0ε
ρi       (1) 
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0

.

ε
ρ i

iE =∇
                                                      

(2) 

 Where i is the bin number 
    

 

∫ 𝐸�  𝑑𝑠��� = 𝑈0
𝑑

0       (3) 

 

Were U0 is the applied high voltage, ds is the small surface area for each bin.  

The mean electric field is constant   𝐸�= constant then:  

 

|𝐸�|. 𝑑 = 𝑈0       (4) 

 

Assume that there is no change in the y and z direction and the charge drift only in x direction 

equation (3) become 

∫ 𝐸(𝑥)𝑑𝑥 = 𝑈0
𝑑

0       (5) 

A difference of the electric field between each bin can be calculated as following  

From Fig (B-2), the electric field in each bin is given by: 

  

⎩
⎪⎪
⎨

⎪⎪
⎧

𝐸1 = 𝐸0
𝐸2 = 𝐸0 − 𝛥𝐸1

𝐸3 = 𝐸0 − 𝛥𝐸1 − 𝛥𝐸2
.
.
.

𝐸𝑛 = 𝐸0 − 𝛥𝐸1 − 𝛥𝐸2 − 𝛥𝐸3 … − 𝛥𝐸𝑛−1

�                        (6) 

 

The total electric field from equation (5), and substitute the values of electric field in each bin 

 

E1 Δx + E2 Δx + E3 Δx +….+n En Δx= U0                  (7) 

 

Dividing equation (6) by Δx  

 

               E0+E0-ΔE+ E0 –2 ΔE+…...... E0 – (n-1) ΔE = U0/ Δx                 (8) 

   

By separating variables equation (12) becomes  

     

nE0 –n ((n-1)/2) ΔE =   U0/ Δx      (9) 
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nE0= U0/ Δx + n ((n-1)/2) ΔE           (10) 

 

Dividing equation (10) by n, 

 

E0 = U0/ Δx n + ((n-1)/2) ΔE     (11) 

Sub d= n* Δx  

 

E0 = U0/ d + ((n-1)/2) ΔE       (12) 

 

The iteration method on equation (12) and (7) is used to calculate the electric field change in 

each bin in the chamber depth. The applied high voltage is known and the total distance d is 

constant value. Thus the total electric field inside the active volume can calculated. Taking into 

a count that the electrons and ions drift and the recombination process occurs each time. 

Assuming that the positive ions concentration is constant with a homogenous illumination of 

X-ray in one shot. 

B-2 Recombination 

The rate of recombination in the detector can evaluated quantitatively by considering the n+ and 

n-  the ion and electron densities respectively if α is the recombination coefficient as  

 
𝑑𝑛−

𝑑𝑡
=  −𝛼𝑛+𝑛−                                                                   (13) 

 

𝑑𝑛+
𝑑𝑡

=  −𝛼𝑛+𝑛−                                                                                   (14) 
 

Become   𝑑𝑛−
𝑑𝑡

=  𝑑𝑛+
𝑑𝑡

 

𝑑(𝑛−−𝑛+)
𝑑𝑡

= 0                                                             (15) 

After integration we get  

 

𝑛− − 𝑛+ = 𝑐                                                                   (16) 

 

Were the negative sign denotes the reduce of the number of charge d particle with time [12].  
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If the electron density and ion density are equal then we get  

 
dn
dt

=  −αn2                                                              (17) 

 

If recombination is taking place on the time interval from 𝑡 = 𝑡0  𝑡𝑜  𝑡 = 𝑡 and the density of 

the charged particle at 𝑡 = 𝑡0 is  𝑛0 by integrating the equation (15) we get  

 

𝑛 =  𝑛0
1+𝛼𝑛0𝑡

                                                         (18) 

 

Sub equation (16) in equation (14)  

 
𝑑𝑛+

𝑑𝑡
=  −𝛼𝑛+(𝑛+ + 𝑐)                                        (19) 

 

If  𝛼𝑛+ = 𝑛     and 𝑑𝑛 = 𝛼 𝑑𝑛+ 

Then sub in (19) 

 
1  
𝛼

𝑑𝑛
𝑑𝑡

= − 1
𝛼

n2 − nc                                    (20) 

 
𝑑𝑛
𝑑𝑡

=  −𝛼𝑛2 − 𝛼𝑛𝑐                                                   (21) 

 
𝑑𝑛

𝑛2+𝛼𝑛𝑐
=  −𝑑𝑡                                                           (22) 

 

Solution of (22)   is then by taking the roots  

 

𝑛2 + 𝛼𝑛𝑐 + (𝛼𝑐
2

)2 = (𝛼𝑐
2

)2                                                           (23) 
 

𝑛 + �𝛼𝑐
2

� = ± �𝛼𝑐
2

�                                                       (24) 

 

The roots is  

 

𝑛1= - 𝛼 c;              𝑛2= 0 
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1
𝑛2+𝛼𝑛𝑐

=  1
𝑛(𝑛+𝛼𝑐) =  𝐴

𝑛+𝛼𝑐
+ 𝐵

𝑛
=  𝑛𝐴

𝑛(𝑛+𝛼𝑐) + (𝑛+𝛼𝑐)𝐵
𝑛(𝑛+𝛼𝑐)= (𝑛𝐴+𝑛𝐵+𝐵𝛼𝑐)

𝑛(𝑛+𝛼𝑐)                      (25) 

 

 
1

𝑛(𝑛+𝛼𝑐) =  𝑛(𝐴+𝐵)+𝐵𝛼𝑐
𝑛(𝑛+𝛼𝑐)

     (26) 

 

Then 
 

𝑛(𝐴 + 𝐵) + 𝐵𝛼𝑐 = 1 

𝐴 = −𝐵;          𝐵 =
1

𝛼𝑐
 ;  𝐴 = −

1
𝛼𝑐

 

 

Substitute the values of the roots A and B in equation (22) 
 

1
𝑛(𝑛+𝛼𝑐) =  

− 1
𝛼𝑐

𝑛+𝛼𝑐
+

1
𝛼𝑐
𝑛

=  −𝑑𝑡    (27) 

 

 

Multiply by (–) we got  
 

∫ 𝑑𝑛
(𝑛+𝛼𝑐)

𝑛0
𝑛 − ∫ 𝑑𝑛

𝑛
𝑛0

𝑛 = −𝛼𝑐 ∫ 𝑑𝑡𝑡0
𝑡     (28) 

After integration  

 

ln(𝑛 + 𝛼𝑐) − ln(𝑛) =  𝛼𝑐 𝑡           (29) 

 

Substitute the integration limits 
 

ln(𝑛 + 𝛼𝑐) − ln(𝑛0 + 𝛼𝑐) − (ln(𝑛) − ln(𝑛0)) = =  𝛼𝑐 (𝑡 − 𝑡0)                   (30) 

 

Separation variables we got  

 

ln (𝑛+𝛼𝑐)
(𝑛0+𝛼𝑐) - ln

(𝑛)
(𝑛0) =  𝛼𝑐 (𝑡 − 𝑡0) = ln (𝑛0+𝛼𝑐)

(𝑛+𝛼𝑐)  - ln (𝑛)
(𝑛0) =  −𝛼𝑐 (𝑡 − 𝑡0)           (31) 

 

Separation and multiply by exponential  
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(𝑛0+𝛼𝑐)𝑛
(𝑛+𝛼𝑐)𝑛0

=  e−𝛼𝑐 (t−t0)     (32) 

Cross product 

 

(𝑛0 + 𝛼𝑐)𝑛 =  (𝑛 + 𝛼𝑐)𝑛0𝑒−𝛼𝑐 (t−t0),                                        (33) 

 

Separation variables 

 

𝑛�𝑛0 − 𝑛0𝑒−𝛼𝑐 (t−t0) + 𝛼𝑐� =  𝛼𝑐𝑛0𝑒−𝛼𝑐 (t−t0)                  (34) 

 
 

𝑛 = 𝛼𝑐𝑛0𝑒−𝛼𝑐 (t−t0)

�𝛼𝑐+𝑛0(1−𝑒−𝛼𝑐 (t−t0)�
                                 (35) 

 

Using  𝑛− − 𝑛+ = 𝑐                  when c
∆
→  0               

                                    

Then we get  

 

𝑛 =  𝑛0
1+𝛼𝑛0𝑡

                                                       (36) 

 

Using Boag formula to calculate t which is given by [9]. 

 

𝑡 = 𝑑𝑎
(µ𝑖𝑜𝑛+µ𝑒𝑙𝑒𝑐𝑡)𝐸

        (37) 

 

Were t  is the time needed to for all ions and electrons to arrive to the cathode and anode 

respectively, µ(ions)  is the mobility of the ions ; µ(elect) is the mobility of the electrons ; E is the 

electric field [15]. 
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