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Zusammenfassung

Die vorliegende Arbeit befasst sich mit Methoden aus dem Bereich der sogenannten

Fictitious Domain (FD) Techniken bei gleichzeitiger Verwendung von Finiten Ele-

menten. Fictitious Domain Techniken eigenen sich gut, falls das Gebiet, auf dem

eine partielle Differenzialgleichung gelöst werden soll, geometrisch komplex oder

auch zeitabhängig ist.

Eigene Vorschläge, welche auf Straf- und Regularisierungstechniken basieren, wer-

den vorgestellt und analysiert. Varianten der bekannten Nitsche-Methode zur

Aufprägung von Randbedingungen kommen zum Einsatz. Dies wird kombiniert

mit Verfahren einer regularisierungs-basierenden FD Methode, ursprünglich erdacht

von Glowinski et al.

Die zugrunde liegenden Modellgleichungen zweiter Ordnung sind dabei von nicht-

linearer und recht allgemeiner Natur. Eine numerische Analyse findet in Bezug

auf die linearisierten Gleichungen statt. So wird neben den resultierenden sym-

metrischen Problemen insbesondere auch auf Aspekte hinsichtlich dominanter Kon-

vektion eingegangen, sowie auf die Umgehung einer diskreten Inf-Sup-Bedingung im

Falle des Oseen-Problems. Der Nutzung von Streamline-Diffusion/Galerkin-Least-

Squares Techniken kommt dabei die Schlüsselrolle zu.

Die erforderliche implizite Beschreibung der ursprünglichen Geometrie erfolgt über

die Level Set Methode. Dabei wird der eingebettete Rand als Nullmenge einer

geeigneten Funktion beschrieben, was eine bequeme und flexible Handhabung der

Geometrie erlaubt.

Der Darstellung von zugrunde liegenden algorithmischen Aspekten und einer allge-

meinen Überprüfung hinsichtlich der Genauigkeit der neuen Methoden anhand von

verschiedenen Beispielen mit bekannter analytischer Lösung wird Platz eingeräumt.

Teil der Arbeit ist zudem die Präsentation verschiedener Anwendungen, um das

Potenzial der neuen Methoden auf verschiedenen Gebieten auszuloten. Dazu

werden Beispiele aus dem Bereich der planaren stationären und instationären

Strömungsprobleme, inklusive einem Beispiel mit bewegtem Rand, sowie die Bouss-

inesq-Gleichungen auf komplexen, mehrfach zusammenhängenden Gebieten, behan-

delt.



Summary

The work at hand is addressed to methods from the fictitious domain context, com-

bined with the finite element method. Fictitious domain techniques are suitable in

case partial differential equations have to be solved on a geometrically complex or

time-dependent domain.

Own suggestions based on penalization and regularization, utilizing variants of

Nitsches method in order to impose boundary conditions in a weak sense, are intro-

duced and analyzed. The techniques presented are generalizations of methods due

to Glowinski et al.

The underlying model equations of order two are non-linear reaction-diffusion-

convection equations of rather general type, able to describe a lot of real-world

situations. In addition, incompressible Stokes and Navier-Stokes systems are intro-

duced, being special cases of the original model equations in some sense.

The numerical analysis is carried out with respect to linearized versions of the origi-

nal model equations. Within this process, symmetrical reaction-diffusion, diffusion-

convection-reaction and a version of the Oseen equations are treated separately, in

order to deal with different typical problems appearing in each case adequately.

Following that, besides symmetrical problems, tasks like dominant convection, as

well as the circumvention of a discrete inf-sup condition in case the Oseen problem

are discussed. Streamline diffusion/Galerkin least squares techniques playing a key

role in that matter.

For implicit description of the embedded boundary the well established level set

method is used, describing the boundary as a zero level set of suitable functions.

This allows for an easy and flexible handling of the geometrical aspects.

Algorithmic tasks are addressed, followed by tests regarding numerical accuracy. In

the end, several applications are presented in order to show the potential of the

new methods: Examples regarding plain flow problems, including one with moving

boundary, and the Boussinesq equations on complex multi-connected domains.
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1 Introduction

Motivation and Objectives

In many fields, like fluid dynamics and elasticity, problems occur making it necessary

to solve problems on domains being geometrically complex or time-dependent. As

the generation of boundary-fitted meshes of good quality in such cases is a rather

complex, often time consuming task of (not at least from the computational point of

view) high cost, the fictitious domain (FD) method (see [Glo03]) and other related

methods have been developed in order to overcome the meshing and re-meshing

problem. This is done by embedding the original problem stated on a domain

Ω ⊂ Rd into a simple shaped domain Ω̃, in many cases chosen as a parallelepiped of

equal dimension. After that, the triangulation is carried out for the larger domain

Ω̃, which has a rather Eulerian character, and is not fitted to the boundary of Ω ⊂ Ω̃

in general. The original problem then is replaced by a new, being related to the

original one, with the resulting solution restricted to Ω being at least close to the

solution of the original problem in some sense.

The actual work at hand jumps on that bandwagon by presenting new variants of

methods in the FD context, based on regularization, to overcome the problems stem-

ming from ill-posedness of the problems on the fictitious domain, and those following

from the necessity of imposing additional essential constraints on the solution. The

level set method (see [Set99]) is used to describe the domain Ω implicitly rather than

explicitly by a boundary-fitted mesh. We follow the papers of Pan and Glowinski et

al. [GPWZ96,GP92], in order to develop and analyse methods being generalizations

of the one stated in the mentioned papers, to the cases of far more general time-

dependent, non-linear reaction-diffusion-convection problems with mixed boundary

conditions, as well as the case of Stokes and Navier-Stokes systems describing in-

compressible fluid flow. Various numerical tests and applications are given in order

to demonstrate and evaluate the new methods under consideration.

The aim is to present methods being able to handle problems without introducing
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1 Introduction

additional degrees of freedom, which is a common way in the fictitious domain

community, but just using standard finite element spaces and meshes. Moreover,

the philosophy of the methods at hand is to handle the problems in a quit standard

way on the domain Ω, employing techniques like Galerkin least squares stabilization

(e.g. [RST08]) in order to deal with additional problems like dominant convection

and violation of a discrete inf-sub condition in case of saddle point problems and

mixed finite elements (cf. [BF91]).

As a first demonstration and motivation, an example of Navier-Stokes flow around

multiple obstacles in case of a lid-driven cavity is shown in Figure 1.1. The ficti-

tious domain techniques presented in this work are used for the simulation, with a

Cartesian grid covering (−1, 1)2 as a fictitious domain. While it would be standard

to generate a triangulation in case of a single inner circle, as such kind of holed do-

mains are contained in every ordinary grid-generator, it would be harder to generate

a suitable fitted mesh in case of the multi-obstacle flow. That case would make it

necessary to build up a new grid, using a mesh-generator or by hand in an suitable

format, if there was not a good soul having already implemented such a structure,

which in general would be surprising. Not to mention the case the obstacles would

change the number or shape and/or move in time. With the methods at hand han-

dling such problems is not hard in principle, as only an implicit description has to be

given for the position of the obstacles, avoiding complicated meshing an re-meshing

procedures.

Outline of the thesis

The outline after the introduction is as follows:

- In the second chapter, the continuous context, including the nomenclature and

basic principles, as well as the underlying general linear and non-linear prob-

lems is given. This is done along with a review of FD methods and related

ones already existing. The new methods, being generalizations of the one pre-

sented in [GPWZ96,GP92], are introduced in the continuous context, based on

suitable model problems being linearized versions of the firstly presented non-

linear equations. Furthermore, methods fit for describing a domain implicitly

are discussed, with the level set method among them.

- The third chapter is addressed to the discretization of the continuous case,

with special attention on formulating well-posed discrete problems. The latter

2



Figure 1.1: Example of a lid-driven cavity flow around multi-obstacles modelled by
the Navier-Stokes equations. The regularized fictitious domain methods
presented in this work have been used for solving the system of equations.

in general is not an easy task, as one has to deal with grids not fitted to the

boundary of the underlying domain. Numerical robustness in case of singularly

perturbed equations is discussed. Variants of Nitsches method (see [Nit71])

are the methods of choice in order to enforce essential Dirichlet boundary

conditions, while streamline diffusion/Galerkin least squares techniques are

brought into play for stabilization. The methods are given and analysed for

linear scalar model problems and vectorial Oseen problems, as both types of

equations need different treatment to show the methods result in well-posed

problems.

- Implementational and algorithmic issues are presented in the fourth chap-

ter : Linearization techniques, local quadrature, the solution process and for

completeness an additional geometrical regularization. As the basis for imple-

mentation, the free finite element C++-library deal.II, see [BHK07], is used.

The chapter ends with the presentation of test problems for evaluating the

accuracy of the methods.

- The fifth chapter gives some practical applications:

a) Laminar flow around a plain cylinder, which is an essential benchmark

problem, as a lot of numerical and experimental data are available, show-

ing that our new methods work accurate, while being able to handle

steady flow problems,
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1 Introduction

b) Unsteady flow around a plain cylinder, another benchmark for testing

whether a solver works accurate and is able to resolve non-linear effects,

while leaving the laminar regime. As it turns out the solver based on

the new FD based methods is able to produce sufficiently good results

compared to established boundary-fitted methods,

c) Exploring the capabilities of the new methods to treat with the time-

dependent Boussinesq equations on multi-connected domains. Which

turns out to give qualitatively good results with respect to physical phe-

nomena, while at the same time the accurate enforcing of strong con-

straints at the inner boundaries of the domain in the considered laminar

regime is ensured. Moreover, the high flexibility regarding geometrical

complex stationary domains is shown,

d) Time-dependent incompressible viscous flow around a moving plain cylin-

der, in order to show the method is able to deal with moving boundary

problems in principle. This is another test the new methods pass, while

the description of the method is not perfectly adequate from the physical

and mathematical point of view with no further modification regarding

the time derivative. Nevertheless, from the qualitative side the methods

gives sufficient results compared to other FD methods.

Finally, the work is ended by the discussion and outlook section, highlighting pros

and cons of the new methods, along with giving hints for further improvements and

interesting fields to be explored using the methods developed in this work.

4



2 Description of the model equations

In this chapter the model equations treated in this work are introduced. We want

to deal with systems of non-linear reaction-diffusion-convection (RDC) equations,

in order to be able to cover a wide range of problems in a uniform framework. The

aim is to give a general background, not to focus on the solvability of this partial

differential equation (PDE) systems. Doing so, we present the basic principles and

the nomenclature used in this work, as well as the general appearance of the equa-

tions and terms we have to deal with. As complicated and maybe time dependent

domains have to be considered, furthermore a journey on the treatment of weakly

imposed boundary conditions in the case of a mesh not fitted to the boundary of the

domain the equations are defined on, is given. Finally we present own ideas in this

context, based on regularization techniques first time given in [GP92]. The chapter

is ended by discussing techniques for implicit description of a given domain.

2.1 Nomenclature and basic principles

Within this paragraph the basic principles and the nomenclature of this work are

presented in a compact fashion. In what follows let Ω ⊂ Rd (d = 2, 3) always

be a connected, open and bounded domain with a rectifiable, sufficiently smooth

boundary Γ := ∂Ω, i.e. Γ being of class Ck,1 for some integer k ≥ 0.

Definition 2.1 (see [AH09]). Let V be a function space on Rd−1. Γ is of class V ,

if for each point x0 ∈ Γ there exists an r > 0, as well as a function g ∈ V , such that

we have

Ω ∩ Br(x0) = {x ∈ Br(x0) : xd > g(x1, . . . , xd−1)} ,

upon a transformation of the coordinate system if necessary.

Here Br(x0) is the open d-dimensional ball with radius r and center x0. In particular,

if the function space V consists of Ck functions, we say Ω is of class Ck or simply

5



2 Description of the model equations

a Ck domain. If the function space V consists of Ck,1 functions, that is functions

with k-times Lipschitz continuous partial derivatives, we say Ω is of class Ck,1, or

Ω is a Lipschitz domain (of class Ck,1), or simply a Ck,1 domain.

The unit normal vector pointing outward in some point x (in what follows not

written in bold letters) of the boundary is denoted by n = n(x). Let always be

I := (0, T ) ⊂ R a time interval, T > 0 and t ∈ I. In general the domain could be

time-dependent (Ω = Ω(t)) as well.

The normal derivatives ∂nu and ∂nu are defined to be

∂nu := n · ∇u, ∂nu := (n · ∇)u = (∂nui)i=1,...,d

in the vectorial case.

The Lebesgue measure of a subset X ⊂ Rm is written as

meas(X) :=

∫
Rm

1X dX, where 1X(x) :=

1 if x ∈ X,

0 else.

We will denote the standard inner product of the Hilbert space L2(X) over the real

numbers, with elements defined on a bounded domain X ⊂ Rd, for scalar functions

u, v ∈ L2(X) by

(u, v)X :=

∫
X

uv dx,

and

(u,v)X :=
d∑
i=1

(ui, vi)X , (U ,V )X :=
d∑

i,j=1

(Uij, Vij)X ,

in the case of u,v being elements of (L2(X))
d

and U ,V ∈ (L2(X))
d×d

, with the

corresponding component functions indexed.

Moreover, in case of X ⊂ Rd−1 the inner product of L2(X) is denoted by

〈u, v〉X :=

∫
X

uv ds, 〈u,v〉X :=
d∑
i=1

〈ui, vi〉X ,

analogous to the former cases. The induced L2(X)-norms are then denoted by

‖ · ‖0,X := (·, ·)
1
2
X or ‖ · ‖0,X := 〈·, ·〉

1
2
X ,

6



2.1 Nomenclature and basic principles

depending on the context.

Besides that, for X ⊂ Rd and p ∈ [1,∞], we denote the Lp(X)-norm of a suitable

function v (analogous in case of vector or matrix functions) by

‖v‖Lp(X) :=

(∫
X

|v|p
) 1

p

and ‖v‖L∞(X) := ‖v‖∞,X := inf
meas(X′)=0

sup
x∈X\X′

|v(x)|.

Following that, it holds ‖v‖L2(X) = ‖v‖0,X in case v ∈ L2(X).

Definition 2.2. Let k be a non-negative integer, p ≥ 1 a real number. The Sobolev

space W k,p(X), X ⊂ Rd open and bounded, is defined to be

W k,p(X) :=
{
v ∈ Lp(X) : ∂αv ∈ Lp(X), |α| ≤ k

}
,

with α a multi-index. The space shall be equipped with the norm and semi-norm

‖v‖k,p,X :=

∑
|α|≤k

‖∂αv‖2
0,X

 1
2

, |v|k,p,X :=

∑
|α|=k

‖∂αv‖2
0,X

 1
2

.

It is a well-known fact that W k,p(X) is a Banach space.

The case p = 2 is very important when dealing with second order problems. As it

is common practice, we will make use of the Sobolev spaces Hk(X) := W k,2(X),

X ⊂ Rd open and bounded, for some integer k > 0.

Definition 2.3. Let k be a non-negative integer. The space Hk(X) := W k,2(X)

shall be equipped with the norm and semi-norm

‖v‖k,X := ‖v‖k,2,X , |v|k,X := |v|k,2,X

and the inner product

(u, v)k,X :=
∑
|α|≤k

(∂αu, ∂αv)0,X , u, v ∈ Hk(X).

Another well-known fact is the next theorem, see e.g. [Hac86] and [Bra03].

7



2 Description of the model equations

Theorem 2.1. Assume Ω ⊂ Rd is a Lipschitz domain. Then there exists a contin-

uous linear operator γ̃ : H1(Ω)→ L2(Γ) with

(a) γ̃v = v|Γ if v ∈ H1(Ω) ∩ C(Ω).

(b) ∃C = C(Ω) > 0 : ‖γ̃v‖0,Γ ≤ C‖v‖1,Ω ∀v ∈ H1(Ω).

(c) γ̃ is a compact mapping.

Using this trace operator, the Sobolev space H
1
2 (Γ) is defined as

H
1
2 (Γ) := {w ∈ L2(Γ) : ∃v ∈ H1(Ω) : w = γ̃v},

equipped with the norm

‖w‖ 1
2
,Γ := inf{‖v‖1,Ω : v ∈ H1(Ω), γ̃v = w}.

Furthermore, by the trace operator the closed subspace:

H1
0 (Ω) :=

{
v ∈ H1(Ω) : γ̃(v) = v|Γ = 0

}
⊂ H1(Ω).

can be specified.

Let now the boundary be partitioned into Γ1 and Γ2, with Γ = Γ1∪Γ2 and Γ1∩Γ2 = ∅,
where Γ1 is relatively closed, Γ2 relatively open. The cases Γ1 = ∅ or Γ2 = ∅ shall be

allowed as well. In the case of Γ1 6= ∅ it can be shown, that there exists an analogous

continuous trace operator γ̃1 : H1(Ω)→ L2(Γ1) with γ̃1v = v|Γ1 , see [Glo03,QV94].

In this sense, for suitable functions g, gi ∈ C∞(Ω) ∩ H1(Ω) mapping to R, g =

(gi)i=1,...,d, we define for frequently usage:

Vg(Ω) :=
{
v ∈ H1(Ω) : v|Γ1 = g

}
,

Vg(Ω) :=
{
v ∈

(
H1(Ω)

)d
: v|Γ1 = g

}
.

In order to get convergence results for the methods presented later on, it will be

necessary to extend the solution of the problems we want to treat onto a domain

covering the original one. An interesting and also well known statement, suitable for

this purpose, is given in Theorem 2.2. It is a basic result regarding the existence of an

extension operator in case of sufficiently smooth functions and domain boundaries.

8



2.2 Reaction-Diffusion-Convection (RDC) equations

Theorem 2.2 (see [GT83]). Let k ≥ 0 be an integer and Ω ⊂ Rd be a bounded Ck,1

domain with Ω ⊂ Ω̃, Ω̃ being an open set in Rd. Then there exists a bounded linear

extension operator Ek+1 : Hk+1(Ω)→ Hk+1(Ω̃) such that Ek+1v|Ω = v and

‖Ek+1u‖k+1,Ω ≤ C(k,Ω, Ω̃)‖u‖k+1,Ω̃ ∀v ∈ Hk+1(Ω). (2.1)

2.2 Reaction-Diffusion-Convection (RDC) equations

Motivated by physical processes and applications like reactive flow, droplet evapo-

ration and other complex systems, we want to model the transport of one or several

quantities wi within an open, time-dependent domain, driven by diffusion and/or a

flow field. Reactions between these quantities should be allowed as well.

As we will specify the terms for special cases in the application parts later on, we

will now state the general type of non-linear coupled second order partial differential

equation systems with possibly mixed Dirichlet and Neumann boundary data we

want to deal with.

2.2.1 Classical formulation

Splitting the boundary Γ = ∂Ω into the disjoint sets Γ = ΓD∪ΓN , with ΓD∩ΓN = ∅,
the classical formulation of the problems we want to treat is stated to be:

∂twi −∇ · ji + β · ∇wi = ri + fi in Ω× I, (2.2)

wi = giD on ΓD × I, (2.3)

ji ∂nwi = giN on ΓN × I, (2.4)

wi(x, 0) = wi0 on Ω. (2.5)

The cases ΓD = ∅ or ΓN = ∅ are allowed as well.

The index i runs from 1 to N , with N being the total number of quantities wi under

consideration. For the vector valued flux functions ji we suppose that there holds

ji = ji∇wi.

9



2 Description of the model equations

In this general formulation ri, ji are sufficiently smooth scalar functions, typically

depending on

w = (wi)i=1,...,n

and/or the space coordinate x and time coordinate t:

ri = ri(x, t,w), ji = ji(x, t,w).

Neumann and Dirichlet data are supposed to be functions in space and time, but in

general could be depending on w as well:

giN = giN(x, t,w), giD = giD(x, t,w).

Physically the ji stands for the individual diffusive flux of the ith quantity, and so

the term including the ji stands for the diffusive part, also taking into account the

influence of the remaining quantities on the diffusive processes of ith quantity. The

ri-terms model the reactions between the ith quantity and the rest of the system.

The fi represents an external force, taking effect on the ith quantity, this functions

sufficiently smooth as well.

The data β : Ω × I → Rd is an external velocity field which models convection

within the system. This velocity field will be calculated from a Stokes or Navier-

Stokes system (see next subsection) in many cases, but it could be of complete

external origin. In many cases the convective part will dominate the equations.

2.2.2 Weak formulation

Testing with appropriate functions from V0(Ω) and integrating by parts yields the

weak form corresponding to our problem (1.2)-(1.5). Our weak formulation thus

reads:

For i = 1, . . . , N and t ∈ I find wi(t) ∈ VgiD(Ω), with wi(·, 0) = wi0(·), such that:

(∂twi, v)Ω + ai(w; v) = (hi(w); v) (2.6)

for all v ∈ V0(Ω).

10



2.3 Stokes and Navier-Stokes equations

The semi-linear forms are defined as:

ai(w; v) := (ji,∇ϕ)Ω + (β · ∇wi, v)Ω, (2.7)

(hi(w); v) := (ri, v)Ω + (fi, v)Ω + 〈giN , v〉ΓN . (2.8)

Clearly, this system in general does not have a solution, we will focus on such cases

a solution exists.

In particular we will have to treat linearized versions of the system under the typical

assumptions ensuring the solvability due to the Lax-Milgram theorem in the linear

case. These assumptions will be discussed in another section, which treats a (linear)

model problem closely related to the general (stationary) system, and we will assume

that analogue and directly transferable assumptions always hold in the considered

problems.

Remark 2.1. In case the diffusion coefficient depends on derivatives of w, it may

be necessary to substitute the underlying H1(Ω)-space by W 1,p(Ω), with suitable

p in the definition of VgiD(Ω), in order to match the smoothness properties of the

solution. An example for this is the well known p-Laplace problem and other akin

ones. Similar will be true in case of the Stokes and Navier-Stokes problem later on.

2.3 Stokes and Navier-Stokes equations

In order to handle flow problems as well and compute velocity fields driving the phys-

ical processes mentioned above, in particular for the calculation of the field β from

(2.2) if necessary, we treat variants of the incompressible Stokes and Navier-Stokes

equations as well. This equations are effectively variants of the PDE systems of the

former paragraph, but with an additional constraint to ensure incompressibility.

2.3.1 Classical formulation

Let the boundary be partitioned into the disjoint subsets ΓD and ΓN covering the

overall boundary in order to state the essential and the natural boundary conditions

of the problems we want to include.

11



2 Description of the model equations

The system of equations for the velocity u : Ω→ Rd in case of the (dimensionless)

Stokes problem to be estimated is written as follows:

−∇ · (ν∇u) +∇p = f in Ω, (2.9)

∇ · u = 0 in Ω, (2.10)

u = gD on ΓD, (2.11)

ν∂nu− np = gN on ΓN . (2.12)

In this system p stands for the pressure, being the Lagrangian parameter to ensure

the constraint (2.10), while f is an external forcing distribution. Furthermore,

ν > 0 is the kinematic viscosity, in some cases being dependent on u as well. All

the equation data are supposed to be sufficiently smooth.

Now for a full version of the Navier-Stokes equations:

∂tu−∇ · (ν∇u) + (u · ∇)u+∇p = f in Ω× I, (2.13)

∇ · u = 0 in Ω× I, (2.14)

u = gD on ΓD × I, (2.15)

ν∂nu− np = gN on ΓN × I, (2.16)

u(x, 0) = u0 on Ω. (2.17)

The initial data u0 is supposed to meet the constraint ∇ · u0 = 0. I = (0, T ) is a

given time interval.

2.3.2 Weak formulation

Lets assume meas(ΓN) > 0. First we handle the weak formulation, originating from

(2.9)-(2.12). The corresponding weak formulation of the Stokes system reads:

Find (u, p) ∈ VgD(Ω)× L2(Ω) such that

S((u, p); (v, q)) = L(v) ∀(v, q) ∈ V0(Ω)× L2(Ω), (2.18)

12
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where

S((u, p); (v, q)) := (ν∇u,∇v)Ω − (p,∇ · v)Ω + (∇ · u, q)Ω,

L(v) := (f ,v)Ω + 〈gN ,v〉ΓN ∀v ∈
(
H1(Ω)

)d
,

for all u,v ∈ (H1(Ω))
d
, p, q ∈ L2(Ω).

For the full version of the Navier-Stokes equations (2.13)-(2.17) the resulting weak

formulation is:

For t ∈ I find (u(t), p(t)) ∈ VgD(Ω)× L2(Ω) with u(·, 0) = u0(·) such that

(∂tu,v)Ω +N((u, p); (v, q)) = L(v) (2.19)

for all (v, q) ∈ V0(Ω)× L2(Ω). The semi-linear form N is defined to be

N((u, p); (v, q)) := S((u, p); (v, q)) + ((u · ∇)u,v)Ω. (2.20)

Providing the case the corresponding classical formulations are solvable, both the

saddle point problem (2.18) and the non-linear problem (2.19) are well posed, as

there holds the inf-sup condition, see e.g. [BF91]:

∃γ > 0 : inf
q∈L2(Ω)

sup
v∈V0(Ω)

(q,∇ · v)Ω

‖v‖(H1(Ω))d‖q‖L2(Ω)

≥ γ. (2.21)

Closing with this kind of weak formulation, it shall be pointed out that in the case

meas(ΓN) = 0 the pressure space L2(Ω) often is replaced by L2
0(Ω), defined as:

L2
0(Ω) :=

{
q ∈ L2(Ω) : (q, 1)Ω = 0

}
.

This additional constraint ensures the unique solvability of the problem, as the

pressure variable is only defined up to a real constant if not doing so. Additionally

the compatibility condition

〈gD,n〉ΓD = 0

has to be fulfilled by the essential boundary data due to the divergence theorem.

We will give a second possible form of a weak formulation of the linear Stokes

13



2 Description of the model equations

problem. Let’s define the following subspace of divergence-free vector functions:

Vg,div(Ω) := {v ∈ Vg(Ω) : ∇ · v = 0 a.e.} .

That is the condition of the velocity being incompressible is already incorporated

into the function space. The weak form of the Stokes problem in this case simply

reads, see e.g. [BF91] or [GR94]:

u ∈ VgD,div(Ω) : Bdiv(u,v) = (f ,v)Ω + 〈gN ,v〉ΓN ∀v ∈ V0,div(Ω), (2.22)

with

Bdiv(u,v) := (ν∇u,∇v)Ω ∀u,v ∈
(
H1(Ω)

)d
,

and ν∂nu|ΓN = gN .

Analogous the resulting weak formulation of the Navier-Stokes problem can be de-

duced. The advantage of this formulation is the fact, that it leads to a convex

minimization problem, which can be employed to bring the tools developed for the

scalar model equations in the next paragraph into play. As in practice it is quite

hard to achieve the incompressibility constraint in the construction of the underlying

function space, and as it is more natural and sometimes even necessary to treat the

weak formulation (2.18), stemming from the original strong formulation, the latter

one is to be preferred.

2.4 Fictitious Domain (FD) method

Problems like those we want to handle may include a domain being time dependent

and may have a complicated curved boundary as well. As boundary fitted meshes

may be of poor quality and/or their computation may be a hard and expensive task,

in areas like computational fluid dynamics a lot of techniques have been developed

to overcome those problems. The idea is to replace the original problem posed on

a complicated domain Ω ⊂ Rd, to one posed on a very simple domain Ω̃ of equal

dimension, which includes the complicated one, see Figure 2.1. After embedding

the complicated domain of interest Ω into the bigger and simpler one, in most cases

being a parallelepiped, the original function space the potentially solution will be an
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Ω̃

Ω

n

Figure 2.1: Example of a rectangular hold all domain Ω̃, triangulated by a Cartesian
grid, and the domain of interest Ω being embedded.

element of, is embedded into a space defined in a natural way on Ω̃. Methods based

on this idea therefore are called Domain Embedding methods sometimes. Then the

original problem is replaced by one defined on the covering domain. More plastically:

Let the original problem of interest defined on Ω be of the form:

u ∈ V : aΩ(u, v) = lΩ(v) ∀v ∈ V,

where V = V (Ω). This problem then is replaced by an alternative problem defined

on Ω̃:

ũ ∈ Ṽ : aΩ̃(ũ, ṽ) = lΩ̃(ṽ) ∀ṽ ∈ Ṽ ,

where Ṽ = Ṽ (Ω̃) or based on such a space. Providing the new problem has been

chosen well, it holds ũ|Ω = u, with u ∈ V the solution of the original problem, or a

function close to it with respect to a suitable norm.

Following this idea, the concept of fictitious domain methods and other closely

related ones is ”embed and conquer” instead of ”divide and conquer”, which is the

guiding one in general domain decomposition methods, see e.g. [QV05].
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2 Description of the model equations

2.4.1 General concept of FD and related methods

This subsection deals with a collection of common methods in order to handle prob-

lems with complicated and/or moving boundaries, using fictitious domain and re-

lated methods. A little bit anticipating on what is coming up below in the next

chapter, continuous and discrete concepts will be mixed up within this subsection.

This is due to the fact, that several formulations regarding FD methods and related

ones only make sense after migrating to a discrete setting, using a mesh to launch

an FEM on the problem. Also the full range of problems and advantages of the

methods can only be shown this way.

For ease of presentation, a simple Cartesian grid with cell diameter h > 0, covering

a rectangular hold all domain Ω̃, which includes the original domain Ω, is employed

as a stationary grid, while the boundary conditions on ∂Ω are imposed in an ap-

proximative sense, see Figure 2.1. This overall methodology for handling boundary

value problems is often called Cartesian grid methods.

As a simple model for describing the resulting methods consider the problem

−4u+ u = f in Ω, (2.23)

with Dirichlet conditions

u = gD on ∂Ω, (2.24)

as well as the associated elliptical bilinear form

aΩ(u, v) := (∇u,∇v)Ω + (u, v)Ω ∀ u, v ∈ H1(Ω).

Boundary penalty One method for describing the essential Dirichlet boundary

conditions, fitting into the context, is the Boundary penalty method, see [BE86]

and [Bab73b]. After replacing (2.24) by the Robin type condition

ε∂nu+ u = g on ∂Ω, (2.25)

where ε > 0 is a penalty parameter, and testing in (2.23) with v ∈ C∞(Ω̃), the

resulting weak formulation writes

uε ∈ H1(Ω̃) : aΩ(uε, v) + ε−1〈uε, v〉∂Ω = (f, v)Ω + ε−1〈g, v〉∂Ω ∀v ∈ H1(Ω̃). (2.26)
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2.4 Fictitious Domain (FD) method

Indeed, the solution of this problem is not unique in H1(Ω̃), but uε|Ω is unique in

H1(Ω), and it is shown in the mentioned papers that it holds uε|Ω → u strongly

as ε tends to zero. In order to ensure the best possible convergence results for

this nonconforming method after discretization by an FEM, the penalty parameter

has to be coupled to the grid parameter. If optimal order of convergence in the

L2-norm has to be achieved (if possible at all), this has to be done in such a way

that the original behaviour from the conforming discrete method, regarding the

condition number of the resulting matrix, in general is not preserved. Furthermore,

it has to be taken into account that meas(K ∩ Ω), K an element of the underlying

triangulation, can be arbitrarily small, as we have to deal with an unfitted mesh.

This fact causes additional stability problems, as the system gets ill conditioned

due to the potentially existence of several matrix rows with a vector-norm being

arbitrarily small, see [Hei08].

Lagrange multiplier Very popular are the boundary and volume supported La-

grange multiplier methods due to Glowinski et al. [Glo03] and variants of it. In case

of boundary supported methods, the idea is the same as in case of the boundary

Lagrange multiplier method due to Babuška [Bab73a]. A Lagrangian multiplier,

being an element of a suitable function space, is introduced in order to impose the

boundary condition approximately. Defining the elliptic bilinear form

aΩ̃(u, v) := (∇ũ,∇v)Ω̃ + (ũ, v)Ω̃ ∀u, v ∈ H1(Ω̃),

the following saddle point problem to be solved results:

Find (ũ, λ) ∈ H1(Ω̃)×H− 1
2 (∂Ω):

aΩ̃(ũ, v) + 〈λ, v〉∂Ω = (f̃ , v)Ω̃ ∀v ∈ H1(Ω̃), (2.27)

〈ũ, µ〉∂Ω = 〈g, µ〉∂Ω ∀µ ∈ H−
1
2 (∂Ω), (2.28)

where f̃ is a suitable extension of the load. Certainly, the choice of f̃ is crucial for

the smoothness of the resulting solution.

As pointed out in [GG95], in the continuous setting the above saddle point problem

is well posed. Passing to the discrete setting, the interaction of data living on

two (or possibly more) different meshes (for primal solution on the fictitious domain

and Lagrange multiplier on the embedded boundary) have to be coordinated. In

general this leads to a rather expensive searching problem (from the computational
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2 Description of the model equations

point of view) when combining the data from the different grids. The boundary

grid parameter η > 0 has to be chosen carefully in order to get a discrete inf-sup

condition satisfied. In [GG95] a mixed FEM employing a P1/P0 pairing was studied,

and the compatibility condition

3h < η < Lh

has been deduced to make the discrete spaces compatible.

Different ways of avoiding such rather vague compatibility conditions and get the

resulting saddle point problem well posed are given e.g. in [HY09] and [BH10a].

In [HY09], inspired by XFEM methods (see below), the discrete inf-sup condition is

circumvented by a stabilization method in the spirit of Barbosa and Hughes [BH91].

Cut elements and stabilization are used in [BH10a].

In addition to the boundary Lagrange multiplier methods, having the drawback of

being not well suited in case of an a priori unknown evolution of Ω, the volume

based Lagrange multiplier methods have been developed, see e.g. [Glo03] and the

literature therein. The idea: Let ω ⊂ Ω be an open domain and Ω̃ = Ω ∪ ω, extend

the resulting weak problem to Ω̃, and augment the formulation by a suitable scalar-

product over H1(ω) in order to get to an appropriate saddle point problem. Variants

of this methods have been widely used for simulation of incompressible viscous flow

around rigid bodies as well as fluid particle interaction, see e.g. [GPH+99,Bön06].

Variants of Nitsches method In [Nit71] Nitsche presented a method for imposing

the essential Dirichlet boundary conditions in a weak sense by applying the discrete

weak formulation:

Find uh ∈ Vh ⊂ H1(Ω) :

aΩ(uh, vh)− 〈∂nuh, vh〉∂Ω − 〈uh, ∂nvh〉∂Ω + 〈γDh−1uh, vh〉∂Ω

= (f, vh)Ω + 〈gD, γDh−1vh − ∂nvh〉∂Ω ∀vh ∈ Vh

for discretization of problem (2.23)-(2.24) within a discrete space of functions not

satisfying constraint (2.24) in case of a mesh fitted to the domain Ω by an FEM. An

extensive review on Nitsches method can be found in [Han05]. The parameter γD > 0

can in principle be estimated by solving an eigenvalue problem, see also [Han05].

This kind of penalty method turns out to be of optimal order in the H1- and
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2.4 Fictitious Domain (FD) method

L2-sense, while maintaining the condition of the original discrete problem with

boundary conditions already incorporated into the discrete function space. Nitsches

method and its variants have been employed and studied extensively in the context

of different fields like fluid-structure interaction (e.g. [BF09, HH03]), optimization

(e.g. [Bec02,Düc10]), domain decomposition (e.g. [BHS01,Ste98]) and FD methods

(e.g. [CB09,BH10b]). It is directly related to a stabilized boundary Lagrange multi-

plier method on the one hand, and the boundary penalty method on the other hand,

see [JS08] and [Ste95]. In this work other regularized variants of Nitsches method

are given and analyzed in order to impose boundary conditions approximately in

the case of an unfitted mesh.

Immersed boundary Another popular family of methods are the so called Im-

mersed Boundary methods due to Peskin et al., see e.g. [Pes72,Pes02] and the liter-

ature therein. The key component is the imposition of the boundary conditions by

appropriate delta distributions, describing suitable punctual penalty forces on the

embedded inner boundary. As this kind of method is very popular in the context

of fluid-structure interaction, this forcing terms often are interpreted as and stem

from a feedback control of the physical forces acting on a structure. First order

accuracy can be granted in the original version, although higher order accuracy has

been reached, see for example [LP00].

Extended FEM (XFEM) In order to handle different kinds of discontinuities like

cracked and holed domains (e.g. [MDB99,SCMB01]), interface problems (e.g. [CB03,

GR07]) and later on in FD and related methods (e.g. [HY09, BBH10]), the XFEM

has been introduced. A basis is the partition of unity method due to Babuška et

al. [BM97]. The principle of the original extended FEM is the enrichment of a

standard continuous FE space with suitable local FE functions, while the set of the

enriched functions gives a partition of unity. The enriched space allows to handle

the physical forces/conditions in an adequate and more elegant way compared to

standard FE methods without complicated meshing. Existing discontinuities and

other troublemakers are resolved by means of the enriched function space.
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2 Description of the model equations

Discontinuous Galerkin (DG) methods In [LB08] an example of an FE method,

using continuous elements on the part of the mesh not being intersected by the

boundary, and elementwise discontinuous functions on elements intersected by the

boundary, is proposed. In the interface zone, a geometry dependent local FE basis of

discontinuous functions, fulfilling zero boundary conditions exactly on the embedded

boundary described by a level set function is used. The method was analyzed

in [LN11] and turns out to be of almost optimal order.

Another approach using a set of discontinuous FE basis functions on the overall grid

meshing the fictitious domain is presented in [EB05]. In this method first the parts

of the domain lying within each element of the covering grid are detected, using a

two-dimensional bisection if necessary. The advantage of this method is that it can

handle very complex domains, but the bisection procedure is not a cheap one from

the computational point of view, and the shape of the artificial elements possibly

violates the cone condition.

Composite FE Originally created as an effective geometrical multigrid precondi-

tioner in the case of complicated domains, the composite FE method and its vari-

ants have been fully developed to handle boundary value problems like the Poisson

problem, and also the Stokes problem, in the case of arbitrarily mixed boundary

conditions, while the mesh does not resolve the geometrical details in a direct way,

see [HS97, Rec06, PS08, PS09]. A container-grid, covering the original domain, is

departed into standard degrees of freedom and the so called slave nodes, being as-

sociated to the degrees of freedom on elements cut by the domain boundary. On

the part of the mesh including the slave nodes, the essential and natural boundary

conditions are imposed approximately by extending the shape functions in the inner

part of the original domain under consideration, and projecting this extension in a

suitable way. So the shape of the finite element functions is adapted to fulfill the

boundary constraints in order to impose the boundary conditions.
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2.4.2 Scalar problem with mixed boundary conditions

Now we will formulate a linear scalar model problem being closely related to a

linearized version of the (stationary) subproblems for the individual species treated

above. Due to this latter fact, and in order to demonstrate the principles of the

fictitious domain approach we will present here, we focus on the solution of

−∇ · (D∇u) + β · ∇u+ cu = f on Ω, (2.29)

u = gD on ΓD, (2.30)

D∂nu = gN on ΓN . (2.31)

It shall be pointed out, that there are different ways to linearize the non-linear

subproblems, but in almost every case this leads to a similar problem of solving an

equation like the given one.

In order to guarantee the unique solvability of this model problem, we make the

following assumptions on the equation data to bring the Lax-Milgram theorem into

play:

D, βi, c ∈ L∞(Ω); (2.32)

∃ θ > 0 : D ≥ θ a.e. in Ω; (2.33)

f ∈ L2(Ω); (2.34)

gD ∈ L2(ΓD); (2.35)

gN ∈ L2(ΓN); (2.36)

β · n ≥ 0 a.e. on ΓN ; (2.37)

∃ c0 > 0 : c− 1

2
∇ · β ≥ c0 a.e. in Ω. (2.38)

The velocity field β = (βi)i=1,...,d and the rest of the data are supposed to be suffi-

ciently smooth to match these assumptions.

In [GPWZ96] and [GP92] a regularized/penalized fictitious domain method for linear

reaction-diffusion equations with Neumann boundary conditions was presented. We

will adapt the ideas presented in the mentioned papers to this more general problem

with a non-symmetric operator, including an additional convection term and mixed

boundary conditions. In order to do so, we embed the domain Ω into the larger

rectangular domain Ω̃, where Ω ⊂ Ω̃ (see figure 2.2). Following Glowinski et al.
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[GP92] let Ω be of class C0,1.

ΓD

ΓN

Ω

Ω̃

Figure 2.2: An example for a fictitious hold all domain Ω̃ with original domain Ω
embedded. The boundary ∂Ω being decomposed into a Neumann part
ΓN and a Dirichlet part ΓD.

We concentrate on the case gD = 0 on ΓD, respectively we make the standard

assumption that there exists a suitable u0 ∈ C2(Ω)∩H1(Ω), with u0|ΓD = gD in the

sense of traces, and replace l(v) by l′(v) := l(v)− a(u0, v) if necessary. Equivalently

the corresponding variational formulation now reads:

u ∈ V0(Ω) :

a(u, v) = l(v) ∀v ∈ V0(Ω),
(2.39)

where

a(u, v) := (D∇u,∇v)Ω + (β · ∇u+ cu, v)Ω ∀u, v ∈ H1(Ω)×H1(Ω),

l(v) := (f, v)Ω + 〈gN , v〉ΓN ∀v ∈ H1(Ω).

are a continuous, elliptic bilinear form, and a continuous linear form.
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Now let us define the following spaces/subsets:

V := H1(Ω̃) or V := H1
0 (Ω̃),

VΓD := {v ∈ V : v|ΓD = 0} ,

H := {v ∈ VΓD : a(v, µ) = l(µ) ∀µ ∈ VΓD} ,

H0 := {v ∈ VΓD : a(v, µ) = 0 ∀µ ∈ VΓD} .

Note that

H1(Ω) = {v : v = ṽ|Ω, ṽ ∈ V } , (2.40)

V0(Ω) = {v : v = ṽ|Ω, ṽ ∈ VΓD} , (2.41)

i.e. H1(Ω) is embedded in V and V0(Ω) is embedded in VΓD . The assumption on Ω

to be of class C0,1 was used for this kind of embedding of the function spaces.

As the problem (2.39) under consideration has a unique solution due to the Lax-

Milgram theorem, the subsets H, H0 thus are non-empty closed convex subsets of

H1(Ω̃). It follows that the variational inequality

ũ ∈ H :

b(ũ, v − ũ) ≥ 0 ∀v ∈ H,
(2.42)

where b : V × V → R is the continuous, V -elliptic bilinear form

b(v, w) := (∇v,∇w)Ω̃ + α(v, w)Ω̃ ∀v, w ∈ V, (2.43)

has a unique solution, see e.g. [LGT81]. Here α ≥ 0 is a constant, and α > 0 in case

of V = H1(Ω̃). We consider then the regularized problem

uρ ∈ VΓD :

ρb(uρ, v) + a(uρ, v) = l(v) ∀v ∈ VΓD .
(2.44)

In this formulation the parameter ρ > 0 is a penalty/regularization parameter.

While the mentioned papers treat the case of a linear reaction-diffusion equation with

Neumann boundary conditions, in our case there are mixed boundary conditions

and an additional, probably dominant, convective term included as well. Thus, the
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equations under consideration are not symmetric anymore, and hence this is true

for the corresponding bilinear forms, also.

An analysis of the proof of Theorem 3.1 in [GPWZ96] shows that the resulting

statement is still true in the considered case. So we get the following theorem:

Theorem 2.3. Let Ω ⊂ Rd (d = 2, 3) be a C0,1 domain and ρ > 0 a parameter. Let

u, ũ and uρ be the solutions of the problems (2.39), (2.42) and (2.44), respectively.

Then there holds:

lim
ρ→0
‖uρ − ũ‖H1(Ω̃) = 0,

lim
ρ→0

ρ−
1
2‖uρ − u‖H1(Ω) = 0. (2.45)

Proof. The proof closely follows the one from [GPWZ96], which is a typical conver-

gence proof for regularization problems. We will show the result in three steps.

(1) Boundedness of the family {uρ}ρ>0.

As there holds ũ|Ω = u and ũ|ΓD = 0 we get the relation

a(ũ, v) = l(v) ∀v ∈ VΓD . (2.46)

By taking v = uρ − ũ ∈ VΓD in (2.46) and by (2.44) we get

b(uρ − ũ, uρ − ũ) +
1

ρ
a(uρ − ũ, uρ − ũ)

= −b(ũ, uρ − ũ) +
1

ρ
{l(uρ − ũ)− a(ũ, uρ − ũ)} (2.47)

= −b(ũ, uρ − ũ).

From the latter relation, the continuity and ellipticity of b over V × V and the

ellipticity of a over V0(Ω)× V0(Ω) it follows:

C
(
‖uρ − ũ‖2

1,Ω̃
+ ρ−1‖uρ − u‖2

1,Ω

)
≤ ‖b‖‖ũ‖1,Ω̃‖u

ρ − ũ‖1,Ω̃ ∀ρ > 0, (2.48)

where C > 0 is an appropriate constant. This implies the boundedness

‖uρ‖1,Ω̃ ≤ C̃ ∀ρ > 0, (2.49)

as ũ is fixed.
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(2) Weak convergence of the family {uρ}ρ>0.

From the boundedness of {uρ}ρ>0 there exists a subsequence {uρk}ρk>0, such that

lim
ρk→0

uρk = u∗ (2.50)

weakly in H1(Ω̃). Hence by taking the limit ρk → 0 in (2.44) we obtain:

a(u∗, v) = l(v) ∀v ∈ VΓD ,

and thus we have

u∗ ∈ H. (2.51)

Taking into account that v|Ω = u and v|ΓD = 0 ∀v ∈ H we get:

a(v, v − uρ) = l(v − uρ) ∀v ∈ H. (2.52)

After replacing v by v − uρ ∈ VΓD in (2.44), using the V0(Ω)-ellipticity of a and

combining with the latter relation, we obtain (setting ρk = ρ)

b(uρ, v) = b(uρ, uρ) +
1

ρ
{−a(uρ, v − uρ) + l(v − uρ)}

≥ b(uρ, uρ) +
1

ρ
{−a(v − uρ, v − uρ)− a(uρ, v − uρ) + l(v − uρ)}

= b(uρ, uρ) +
1

ρ
{−a(v, v − uρ) + l(v − uρ)} (2.53)

= b(uρ, uρ) ∀v ∈ H.

Combining this result with the continuity and ellipticity properties of b we have:

b(u∗, v) ≥ b(u∗, u∗) ∀v ∈ H. (2.54)

Hence u∗ is a solution of problem (2.42). As problem (2.42) has a unique solution

ũ, the weak convergence of the whole family to ũ follows.

(3) Strong convergence of the family {uρ}ρ>0.

From equation (2.47), using the ellipticity properties of the bilinear forms under

consideration, the weak convergence of the family {uρ}ρ>0 to ũ and that there holds

25



2 Description of the model equations

ũ|Ω = u we obtain:

lim
ρ→0

(
‖uρ − ũ‖2

1,Ω̃
+

1

ρ
‖uρ − u‖2

1,Ω

)
= 0.

Which implies the desired result.

An analysis of the last proof shows that the bilinear form a and linear form l only

have to fulfill the standard assumptions regarding coercivity and continuity. So

other linear forms standing in context to the model problem, or problems close to

it, are included within the statement of an analogous theorem as well.

In the case of a pure Neumann problem, or by substituting the essential Dirichlet

conditions, or both of the given boundary conditions, by Robin conditions, there

would be no need to incorporate the corresponding boundary constraints into the

underlying function space. The latter would be necessary when providing the penalty

problem to a numerical method, in order to get an advantage over a standard method

in case the mesh can or is not fitted to the inner boundary. As a consequence, the

method is not intended for direct usage.

The real advantage, as will be shown later on, is the combination with Nitsches

method (see [Nit71]) in order to impose the essential boundary condition accurately

in a weak sense. Other methods based on a kind of boundary penalty, see e.g. [BE86]

and [Bab73b], would fit into the context, too.

One word on pure Neumann problems: The mixed case is set back to the original

one handled in the mentioned papers by simply setting ΓD = ∅ and substituting

VΓD by V .

2.4.3 Fictitious Domain Oseen problem

After providing the theoretical background for a fictitious domain method in case

of a scalar model problem, the same thing will be done with the help of a model

problem being close to linearized versions of the stationary Navier-Stokes equations

in the vector valued case. For ease of presentation we keep the focus on homogeneous

Dirichlet conditions on the whole boundary, but the case of Neumann conditions also

included is not far away.
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2.4 Fictitious Domain (FD) method

A vector valued model problem, well suited for this goal, is the Oseen problem with

sufficiently smooth data analogously to the scalar case:

−∇ · (ν∇u) + (β · ∇)u+ σu+∇p = f in Ω (2.55)

∇ · u = 0 in Ω (2.56)

u = 0 on ΓD. (2.57)

As already done in the case of the Stokes problem above, in this theoretical part we

give the weak formulation using divergence-free spaces and keeping the notation of

paragraph 2.3.2:

u ∈ V0,div(Ω) : A(u,v) = (f ,v)Ω ∀v ∈ V0,div(Ω), (2.58)

where

A(u,v) := Bdiv(u,v) + ((β · ∇)u,v)Ω + (σu,v)Ω ∀u,v ∈
(
H1(Ω)

)d
. (2.59)

Clearly, it is possible to generalize the theoretical framework of the scalar case using

the underlying function spaces, as each of the components of this system is of the

form (2.29)-(2.30). Hence the regularized/penalized problem prepared for handling

the original problem on a suitable fictitious domain Ω̃ reads:

uρ ∈ VΓD,div : ρ(∇uρ,∇v)Ω̃ + A(uρ,v) = (f ,v)Ω ∀v ∈ VΓD,div, (2.60)

where in this case

VΓD,div :=

{
v ∈

(
H1(Ω̃)

)d
: v|ΓD = 0, ∇ · v = 0 a.e.

}
,

and ρ > 0 again is a penalty parameter.

27



2 Description of the model equations

2.5 Description of domain geometries

A survey and comparison on suitable methods for describing geometries in flow

problems, applicable for a wider class of problems also, is given e.g. in [Jim04]. As

always let Ω ⊂ Rd be a domain with sufficiently smooth boundary Γ = ∂Ω, and

Ω̃ ⊂ Rd, with Ω ⊂ Ω̃, be a covering domain. One way of treating the boundary of

an embedded complex or time dependent domain is to interpret the boundary as a

front between two different chemical/physical species, while only the behaviour of

one species (the one contained in Ω) is of relevance for the original problem. Two

general concepts of describing complex or time dependent domains in this sense can

be distinguished:

• Front tracking methods, describing the boundary/interface Γ as the boundary

of a (in general) time-dependent subdomain explicitly, using a boundary-fitted

mesh for numerical methods.

• Front capturing methods, describing the underlying geometry in an implicit

way on a fixed covering domain Ω̃, without a boundary-fitted grid on the

resulting discrete level.

We will concentrate on the second concept, being a kind of Eulerian framework,

in order to describe the underlying geometry in an implicit way by a scalar field

φ : Ω̃ × I → R, where as always I is a time interval. We will now discuss popular

and common ways of describing a co-dimension one surface implicitly, needed for

our purpose.

The transport equation

∂tφ+ v · ∇φ = 0 on Ω̃× (0, T ], (2.61)

φ(x, 0) = φ0(x) on Ω̃, (2.62)

in many cases plays a key role in order to get the scalar field, for it can be interpreted

as describing the evolution of the zero level set of a function φ in time with respect

to a given (or estimated) velocity field v.
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2.5 Description of domain geometries

Phase Field Method One kind of implicit description utilizes the so called phase

field function φ, see for example [EGK08], which covers the boundary of the domain

Ω, being the surface or curve to describe, in a diffusive sense. Depending on whether

the function value is one or zero in a given point, this point is within or out of

Ω. Moreover, the interface-zone, covering Γ, has typically the form of a tube of

maximal-width ε > 0. In this zone φ behaves like a regularized step-function. The

parameter ε typically is proportional to the grid width of a covering triangulation

on the numerical level. The phase field function can be calculated by solving the

Cahn-Hillard equation, be constructed from a signed distance function, for example

after solving the transport equation (2.61)-(2.62), or from external data. This kind

of description is well suited if the boundary has to be smeared out, see [Jim04].

Volume of Fluid Another common way of implicit description, somewhat akin to

the phase field method, often used in multi-physical interface problems of fluids, is

the volume of fluid method, see [HN81]. φ is a (ideally) cellwise constant function,

where φ(x, t) ∈ [0, 1] gives the volume fraction of the fluids and thus provides a way

of giving information regarding the position with respect to the domain Ω and Ω̃\Ω,

both filled by different fluids. Again an equation of the form (2.61)-(2.62) often is

employed in order to get a suitable scalar field φ.

Level Set Method The way of implicit description chosen in this work is the so

called level set framework, see e.g. [Set99] and [OS88]. A level set function is a

(smooth) scalar field φ : Ω̃ × (0, T ] → R, which is often calculated from the first

order hyperbolic transport equation (2.61)-(2.62).

Ideally the level set function is a signed distance function, that is it holds ‖∇φ‖ = 1.

This is for reason of mass conservation, see [Set99, SFSO97], and for a good and

geometrically intuitive description of the co-dimension one surface either, because

as the name already says, the function just gives the signed distance of a point

in x ∈ Rd to the surface; the sign depends on the local orientation of the latter.

It allows for the construction of an oriented normal vector field, needed in various

calculations in an adequate and easy way as well. Moreover, a sharp description of

the boundary can be obtained.
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2 Description of the model equations

φ > 0

φ < 0

n = ∇φ|Γ

Figure 2.3: Example of the implicit description of a circle Br(xm, ym) within a
covering domain Ω̃. The level set function in this case is given by
φ(x, y) :=

√
(x− xm)2 + (y − ym)2 − r.

The implicit description of Ω embedded in a larger domain Ω ⊂ Ω̃ is very intuitive

and works like that:


φ(x) < 0 if x ∈ Ω,

φ(x) = 0 if x ∈ ∂Ω,

φ(x) > 0 if x ∈ Ω̃ \ Ω.

So a simple evaluation of φ gives information regarding the surface at time t, see

Figure 2.3.
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3 Discretization

In this chapter the discretization of the coupled systems of equations from Chapter

2 will be described. More precise, we will deal with appropriate linear prototypes,

being closely related to linearizations of the original systems of equations from Sec-

tion 2.2 and 2.3. We will focus on the two-dimensional case, but the methods can

be extended to the three-dimensional case as well.

As we potentially have to handle complex and time-dependent domains, and we do

not want to employ a re-meshing algorithm, which may produce a very poor grid (see

for discussion within the previous chapter), we will use a fictitious domain method.

In order to respond to these goal we focus on numerical aspects like stability and

the weak incorporation of boundary conditions on implicitly given domains.

We start by formulating assumptions on the relation between covering grid and

domain Ω in general. Next an adequate discrete weak formulation of the linear

model problems, using the penalty/regularized/FD framework already described in

Chapter 2, is developed. This is done for scalar model problems first, followed by

another related one for an Oseen model problem. After that we deal with accurate

techniques of semi-discretization in time in case of non stationary problems.

In general the model equations and the non-linear RDC-Systems will be convec-

tion dominated. So we will have to take care about choosing a robust numerical

scheme, being able to handle the resulting problems due to stability and spurious

non-physical oscillations, while fitting into the overall framework at the same time.

The discretization of the Stokes and Navier-Stokes systems, based on the Oseen

model problem stated below, is given similar to the scalar model equations, but under

the additional aspect of the pressure, to be understood as a Lagrangian parameter

to ensure the incompressibility condition. Thus, a discrete saddle point problem

has to be solved, using Galerkin least squares stabilization techniques to circumvent

a discrete inf-sup condition, which is not fulfilled in case of the FE spaces defined

below.
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3 Discretization

While in the standard case a polygonal boundary is given which is part of the closure

of a triangulation, we will have to deal with an only implicitly given boundary

which cuts an unfitted mesh (see also [BH10a, BH10b] for example). Thus, we will

employ the utilities from Section 2.4.2. Whereas in the latter the incorporation of

Dirichlet boundary conditions is an essential part of the considered function spaces,

we will describe this conditions in an adequate weak sense using Nitsches method,

see [Nit71].

3.1 Assumptions on domain and triangulation

Let Ω̃ be a suitable rectangular domain in R2, see Section 2.4.2, with Ω ⊂ Ω̃. We

will make the additional assumption on Ω to be of class C2, which makes it possible,

among other things, to define the boundary of the domain by a locally smooth level

set function being a signed distance function (see [LN11] and the literature therein).

Furthermore, the following assumptions and definitions regarding the domain Ω, its

boundary Γ and the triangulations of the fictitious domain Ω̃ are made:

A1: Let {Th}h be a shape regular family of triangulations of Ω̃, each of them

consisting of open quadrilateral elements K with bounded maximal diameter

hK being less or equal to the grid-parameter h > 0, where

hK := diam(K) and h := max
K∈Th

hK > 0.

One hanging node per element face or quad shall be allowed. In what follows

let h > 0 always be given and fixed.

A2: The boundary shall be well approximated by piecewise polygons without self-

intersections. To be more precise: There exists a domain Ωh with piecewise

polygonal boundary, such that dist(Ω∩K,Ωh ∩K) ≤ Ch2
K holds on each cell.

Moreover, the cut ∂Ω ∩ ∂K with each element boundary is either empty, a

complete face or exactly two points on different faces of ∂K.

A3: There exists a γ0 > 0, such that for each triangulation Th the diameter dK of

the largest circle contained in Ω∩K is limited away from zero by dK ≥ γ0hK .

Assumption A1 enables the usage of the finite element library deal.II, used for the

implementations in this work, which only supports quadrilateral-based elements.
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3.1 Assumptions on domain and triangulation

The hanging nodes give rise for efficient and easy to implement local refinement

algorithms. In the case of continuous FE the additional constraints to be fulfilled

on a side shared by three elements is ensured by elimination/condensation before

solving the resulting system, see [BHK].

Assumption A2 represents the wish for the boundary of the domain to be resolved

sufficiently good enough by the underlying mesh in some sense, as well as to use

an adequate polygonal approximation of it in the concrete implementation, see Sec-

tion 4.1. If necessary it would be possible to reach this state by local refinements

and/or local geometrical smoothing. The methods under consideration thus treats

boundaries without self-intersection and local protuberances with respect to the grid.

Moreover, the boundary should be sufficiently smooth. Methods better suited for

the direct treatment of complex rough boundaries, like the composite FE method,

are discussed in Subsection 2.4.1.

In [DBDV10] a domain and the underlying grid are called compatible, if a slight

variation of Assumption A3 is valid. This clearly is well founded, as with A1-

A3 being valid, the following proposition, being a variant of Proposition 4.1 in

[DBDV10], can be given, bringing the roundedness of a local element K ∩Ω in case

meas(K ∩ Ω) > 0 into play (see also the discussion in the next section).

Proposition 3.1. Let Assumptions A1-A3 be true in case of Ω, with Ω ⊂ Ω̃ and

the triangulation Th of Ω̃. Let (K,P,Σ) be an associated finite element and k,m

nonnegative integers such that m < k. Assume that Π ∈ L(Hk+1(K), P ) is a bounded

projection and P ⊂ Hm(K∩Ω), where P is a polynomial finite dimensional subspace.

Then there exists a constant C > 0, not depending on u ∈ Hk+1(K) and h, such

that

|u− Πu|m,K∩Ω ≤ Chk+1−m|u|k+1,K∩Ω. (3.1)

Proof. Due to the assumed kind of shape regularity, the standard techniques of

interpolation theory, based on the Bramble-Hilbert lemma, can be utilized in order

to get the result.

The last proposition now opens the gate for analyzing FEMs in the context of the

purposed FD methods. Moreover, Assumption A3 will be a key to the error analysis

in the next two sections.
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3 Discretization

3.2 FD discretization for the scalar model equation

The regularized/penalized fictitious domain method of Section 2.4.2, based on the

ideas of [GP92] and [GPWZ96] for the model equation (2.29)-(2.31), is now adapted

to variants of Nitsches method, see [Nit71]. The reason for doing so is the ability of

this methods to impose the essential Dirichlet boundary conditions accurately in a

weak sense. In the original formulation of Section 2.4.2 adjusted function spaces for

considering the Dirichlet boundary conditions have been used. As the boundary is

given only implicitly and the mesh will in general not be fitted to Γ, those spaces

are not available. Thus, Nitsches method is an accurate way for imposing essential

boundary conditions in a weak sense, when passing over to a discretization of the

model equations or the non-linear RDC system.

In what follows let C > 0 always be a generic constant if not stated otherwise. Let

ΓD,K := ΓD ∩K and ΓN,K := ΓN ∩K,

if K∩Γ 6= ∅. We will describe and analyze the methods at hand under the premise of

the absence of variational crimes in the form of approximating a smooth boundary by

an appropriate polygonal set, which in fact is done in the concrete implementation.

For the details on that see Section 4.2. Using the finite-dimensional space

Vh = {v ∈ C0
(
Ω̃
)

: v|K ∈ Q1(K) ∀K ∈ Th, v = 0 on ∂Ω̃} ⊂ H1
0 (Ω̃)

of picewise bilinear elements, the discrete weak formulation can be stated as:

Find uρh ∈ Vh such that

a∓h (uρh, vh) + ρb(uρh, vh) = l∓h (vh) (3.2)

for all vh ∈ Vh and ρ > 0. The discrete bilinear forms a∓h (·, ·), b(·, ·) respectively the

linear form l∓h (·) are defined as:

a∓h (u, v) := a(u, v)− 〈D∂nu, v〉ΓD ∓ 〈Du, ∂nv〉ΓD +

+
∑
ΓD,K

γ∓D
hK
〈Du, v〉ΓD,K − 〈(β · n)−u, v〉ΓD ,
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3.2 FD discretization for the scalar model equation

b(u, v) := (∇u,∇v)Ω̃,

l∓h (v) := l(v)∓ 〈DgD, ∂nv〉ΓD +
∑
ΓD,K

γ∓D
hK
〈DgD, v〉ΓD,K

−〈(β · n)−gD, v〉ΓD + 〈gN , v〉ΓN ,

where γ∓D > 0 is a stabilization parameter, being a sufficiently large real number.

In what follows we often refer to those two different FE formulations as (3.2)− and

(3.2)+. Furthermore, let

(y)− :=

y if y < 0,

0 else,

and

(y)+ :=

y if y > 0,

0 else.

Before coming to the proof of the well-posedness of the two discrete problems (3.2)∓,

a short briefing on the terms appearing in this formulation is given, see also [JS08]:

• The first boundary integral in the definition of a∓h (·, ·) stems from testing the

model PDE and integrating by parts, splitting the boundary into ΓD and ΓN .

• The third term in the definition of a∓h (·, ·) is added in order to preserve symme-

try in H1(Ω) in case the minus is chosen, while else with the plus the resulting

method has better stability properties, see next subsection.

• In general choosing the symmetry preserving version (3.2)− results in a more

accurate method, at least in case of boundary fitted shape regular meshes,

see [ABCM02]. But the latter has drawbacks when using unfitted meshes,

which will be discussed later on.

• The sum over the cellwise parts of ΓD is added for stability reason, as well as

the last term, which allows a better control of the convection term, see [RST08].

• In all cases a counterpart on the right hand side is added in order to guarantee

consistency, taking into account the boundary conditions of the model problem

in strong formulation.
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3 Discretization

So far so classical, but in order to assure stability, care has to be taken when dealing

with the roundedness of a local element K ∩ Ω next to ΓD, similar to the case of

the original Nitsche method, see [Han05]. For demonstration a cellwise constant

parameter hΓD,K is defined, giving a measure of shape regularity of the involved

implicitly given elements Ω ∩K in case of K ∩ ΓD 6= ∅:

hΓD,K :=


hK if three nodes are in K ∩ Ω,

min(hK,1, hK,2) if two nodes are in K ∩ Ω,

min(hK,1, hK,2) if one node is in K ∩ Ω,

(3.3)

where hK,1, hK,2 > 0 are the Euclidean distances between the two intersections

∂Ω ∩ ∂K and the in each case closest vertex inside Ω, see Figure 3.1.

hΓD,K = hK,2

K ∩ Ω

ΓD,K

hK,1

hK,2

K ∩ Ω

ΓD,K

hK,1
hK,2

hΓD,K = hK,1

ΓD,K

K ∩ Ω

hK

hΓD,K = hK

Figure 3.1: The pictures visualize the definition of the parameter hΓD,K . In the left
situation it is hΓD,K = hK,2, while in the middle we set hΓD,K = hK,1. In
the right picture hΓD,K can be set to the cell-diameter.

Especially the definition of the second and the last case in (3.3) depends on the

existence of a minimal diameter dK > 0 of a circle completely within the local cut

K ∩Ω, as pointed out in [Han05] and [BH10b] as well. While this is obvious for the

third case, in the second case this is due to the fact that the local cut with the mesh

has the form of a (deformed) rectangle (small sliver cut). Even if meas(ΓD,K) has

a finite value, meas(K ∩ Ω) does not have to be bounded away from zero, causing

hΓD,K to tend to zero.

However, providing Assumption A3 holds, there will be a constant γK ∈ (0, 1] with

hΓD,K = γKhK and a circle with diameter hΓD,K/2 = γKhK/2 ≥ γ0hK bounded away

from zero.

In order to analyze the method we will need the following versions of trace/inverse

inequalities.

36



3.2 FD discretization for the scalar model equation

Proposition 3.2. Let Assumptions A1-A3 be true. Then there holds

h
1
2
K‖v‖0,ΓK ≤ C(‖v‖0,K∩Ω + hK |v|1,K) ∀v ∈ H1(K), (3.4)

h
1
2
K‖∂nv‖0,ΓK ≤ C(|v|1,K∩Ω + hK |v|2,K) ∀v ∈ H2(K), (3.5)

h
1
2
K‖∂nvh‖0,ΓK ≤ C‖∇vh‖0,K∩Ω ∀vh ∈ Vh, (3.6)

with a bounded constant C > 0 and ΓK := Γ ∩K.

Proof. These inequalities follow by using the trace Theorem (2.1) from [Bra03],

and a scaling argument. In more detail, and similar to the proof of Lemma 4.1

in [DBDV10]:

Let v ∈ H1(K), K̂ := (0, 1)2, ϕK : K → K̂ be the corresponding affine-linear

mapping and v̂ := v ◦ϕK ∈ H1(K̂). Due to the made assumptions ϕK(K ∩Ω) ⊂ K̂

is a Lipschitz domain. According to that we find:∫
Γ∩K

v2 dΓ ≤
∫

K̂∩ϕK(∂Ω)

v̂2 |JϕK | dΓ̂ ≤ ‖v̂‖2
0,∂(ϕK(K∩Ω)) ≤ CK‖v̂‖2

1,ϕK(K∩Ω),

where CK is the Lipschitz constant of the local cut geometry, depending heavily on

the assumed roundedness of K ∩ Ω. Writing out the definitions of the norms and

by scaling we get

‖v‖2
0,Γ∩K ≤ CK

(
‖v̂‖2

0,ϕK(K∩Ω) + |v̂|21,ϕK(K∩Ω)

)
≤ C̃K

(
h−1
K ‖v‖

2
0,K∩Ω + hK |v|21,K∩Ω

)
from which the the inequalities (3.4) and (3.5) follow again by using the assumed

roundedness by setting C := max{C̃K : K ∈ Th, K ∩ Γ 6= ∅}. Taking into account

the norm-equivalence on finite-dimensional spaces inequality (3.6) follows, too.

Remark 3.1. Note that as Assumption A3 does not hold for every pair of triangu-

lation and embedded domain, the constant C from the last statement does not have

to be moderate or even is not bounded as γ0 does not have to be bounded away from

zero in general. In order to get around this problem, a slight additional geometrical

regularization might be necessary to ensure a minimal roundedness of the K ∩Ω in

any case, see Section 4.2 for a possible strategy.
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3 Discretization

3.2.1 Stability of the discrete form

In order to make things clear, the case of a convection dominated problem, i.e. |D| �
|β|, is omitted for the moment. For ease of presentation the diffusion coefficient is

supposed to be constant within this section. The presentation is similar to the

analogous in the standard case, see e.g. [RST08].

Lemma 3.1. Assuming A1-A3 and (2.32)-(2.38) hold, for all vh ∈ Vh the bilinear

form ρb(·, ·) + a∓h (·, ·) satisfies

ρb(vh, vh) + a∓h (vh, vh) ≥ C
{
ρ‖∇vh‖2

0,Ω̃
+D‖∇vh‖2

0,Ω + c0‖vh‖2
0,Ω +

+ ‖|n · β|
1
2vh‖2

0,ΓD
+
∑
ΓD,K

D

hK
‖vh‖2

0,ΓD,K

}
, (3.7)

with sufficiently large γ∓D ≥ γ0 > 0 and C > 0 being independent of h, ρ and u.

Proof. By the identity

1

2
〈(n ·β), v2〉ΓD +

1

2
〈(n ·β), v2〉ΓN =

1

2
(∇ · (βv2), 1)Ω =

1

2
(∇ ·β, v2)Ω + (β · ∇v, v)Ω,

being valid for all v ∈ H1(Ω̃) (H1(Ω) is embedded in this larger space), we find:

(β · ∇vh + cvh, vh)Ω − 〈(n · β)−vh, vh〉ΓD =

(c− 1

2
∇ · β︸ ︷︷ ︸
≥c0

, v2
h)Ω + 1

2
〈(n · β), v2

h〉ΓD + 1
2
〈(n · β)︸ ︷︷ ︸
≥0

, v2
h〉ΓN − 〈(n · β)−vh, vh〉ΓD ≥

c0‖vh‖2
0,Ω + 1

2
〈|n · β|, v2

h〉ΓD = c0‖vh‖2
0,Ω + 1

2
‖|n · β| 12vh‖2

0,ΓD
.

Consider now the terms 2D〈∂nvh, vh〉ΓD,K appearing in case a−h (·, ·) is chosen. We

find by applying the Cauchy-Schwarz and Young’s inequality, using inequality (3.6)

|2D〈∂nvh, vh〉ΓD,K | ≤ 2DCh
− 1

2
K ‖∇vh‖0,K∩Ω‖vh‖0,ΓD,K

≤ D

2
‖∇vh‖2

0,K∩Ω +
2DC2

hK
‖vh‖2

0,ΓD,K
.

Hence summation over all elements lying within Ω or including the artificial edges
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3.2 FD discretization for the scalar model equation

ΓD,K yields:

ρb(vh, vh) + a−h (vh, vh) = ρ‖∇vh‖2
0,Ω̃

+D‖∇vh‖2
0,Ω + (β · ∇vh + cvh, vh)Ω +

− 2D〈∂nvh, vh〉ΓD +
∑
ΓD,K

D
γ−D
hK
‖vh‖2

0,ΓD,K
− 〈(n · β)−vh, vh〉ΓD

≥ ρ‖∇vh‖2
0,Ω̃

+
D

2
‖∇vh‖2

0,Ω + c0‖vh‖2
0,Ω

+
∑
ΓD,K

D(
γ−D
hK
− 2C2

hK
)‖vh‖2

0,ΓD,K
+

1

2
‖|n · β|

1
2vh‖2

0,ΓD

for each function vh ∈ Vh.

After all coercivity of the discrete bilinear form b(·, ·) + a−h (·, ·) is ensured by the

choice γ−D ≥ γ0 ≥ 1
2

+ 2C2, where C from Proposition 3.2.

In case a+
h (·, ·) is employed, simply setting γ+

D > 0 suffices, as the boundary terms

containing the normal derivatives erase each other.

It follows that problem (3.2) is well posed. Note that by choosing a+
h (·, ·) in place

of a−h (·, ·) ones is far less dependent on Assumption A3 regarding the roundedness

of the local cut K ∩ Ω next to ΓD.

Another relation, taking effectively the place of the Galerkin orthogonality in this

case, see also [GP92], and will be used frequently in this work, comes from the

following lemma. The value of the penalty parameter ρ > 0 may change in different

situations.

Lemma 3.2. Let u ∈ H2(Ω) be the solution of the model problem (2.39), uρh is the

solution of the regularized discrete problem (3.2), then

a∓h (E2u− uρh, vh) = ρb(uρh, vh) ∀vh ∈ Vh. (3.8)

Proof. Due to the consistency arguments in the former paragraph (for further details

see e.g. [JS08]), using (2.29)-(2.31), and the properties of the extension operator we

can write

a∓h (E2u, vh) = l∓h (vh) ∀vh ∈ Vh,

using the fact that H1(Ω) is embedded in H1
0 (Ω̃). Substracting from this equation

(3.2) yields the relation.
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3 Discretization

3.2.2 Stabilization in the convection dominated case

In order to give an analysis in case of a convection dominated problem, and for ease

of presentation, the diffusion coefficient in (2.39) is assumed to be a constant value

ε, being small compared to the norm of β at least in some part of the underlying

domain. It is well known, see for example [Joh90], that the discretization scheme

resulting from the standard Galerkin method gets unstable in case a dominating

convective term is added to the symmetrical part of the equation.

This is due to the weak ellipticity of the problem, with respect to its resulting ε-

weighted natural norm. In the numerical solution after lauching an FEM based on

standard Galerkin, non-physical oscillations can be observed in many cases.

Besides of these nonphysical features, this is a cause of trouble, especially when

the numerical solutions are of temporal nature, needed during an overall solution

process. The poor quality can lead to a breakdown of the superior task.

In order to stabilize a scheme, which often may have to treat with a dominating

convective part for the problems we have to deal with, a standard procedure is the

addition of consistency preserving terms (with respect to the original problem) of

the form ∑
K∈Th

δK(Lu− f, ψ(u))Ω∩K ,

see e.g. [RST08]. The mesh dependent parameters δK > 0 will be chosen in a suitable

manner in order to ensure stability of the resulting scheme, covering the cases of a

reaction, diffusion or convection dominated problem, as will be shown later on.

Typical choices for ψ can be ψ(v) = β · ∇v (streamline diffusion, SD) or ψ(v) = Lv

(Galerkin least squares, GLS), with L being the underlying linear operator, or an

operator close to it. Other choices would be possible, depending on the nature of

the underlying problem. We will concentrate on the case ψ(v) = β · ∇v, that is

the streamline diffusion method. However, the basic principles stay the same for

many stabilization methods of this kind and thus the analysis further down can be

extended analogously.

The stabilized discrete weak formulation using the SD method with penalty param-

eter ρ > 0 now writes: Find uρh ∈ Vh, such that

A∓h (uρh, vh) + ρb(uρh, vh) = F∓h (vh) ∀vh ∈ Vh, (3.9)
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3.2 FD discretization for the scalar model equation

where the linear forms are given by

A∓h (u, v) := a∓h (u, v) +
∑
K∈Th

δK(−ε4u+ β · ∇u+ cu,β · ∇v)Ω∩K ,

F∓h (v) := l∓h (v) +
∑
K∈Th

δK(f,β · ∇v)Ω∩K ,

defined for all u, v ∈ H1(Ω̃).

Note that due to the local consistency on Ω there holds

A∓h (E2u− uρh, vh) = ρb(uρh, vh) ∀vh ∈ Vh (3.10)

by the same argument used in the case of the non-stabilized method.

Lemma 3.3. Suppose the assumptions of Lemma 3.1 hold true. Let δK be an ele-

mentwise constant function satisfying

0 < δK ≤
c0

c2
K

, where cK := ‖c‖∞,K∩Ω,

on K ∩ Ω 6= ∅. Then the discrete bilinear form A∓h (·, ·) + ρb(·, ·) satisfies

A∓h (vh, vh) + ρb(vh, vh) ≥ C
{
ρ‖∇vh‖2

0,Ω̃
+ ε‖∇vh‖2

0,Ω + c0‖vh‖2
0,Ω +

+ ‖|n · β|
1
2vh‖2

0,ΓD
+
∑
K∩Ω

δK‖β · ∇vh‖2
K∩Ω + (3.11)

+
∑
ΓD,K

D

hK
‖vh‖2

0,ΓD,K

}
,

with sufficiently large γD ≥ γ0 > 0 and C > 0 being independent of h.

Proof. Due to (3.7) we only have to focus on the additional stabilization part. For

each function vh ∈ Vh there holds:∑
K

δK(−ε4vh︸︷︷︸
=0

+β · ∇vh + cvh,β · ∇vh)K∩Ω =

∑
K∩Ω

δK(cvh,β · ∇vh)K∩Ω +
∑
K∩Ω

δK‖β · ∇vh‖2
K∩Ω. (3.12)

Note that contributions from Laplacians are canceled out, as we effectively use

bilinear finite elements on Cartesian grids. We will give an upper bound for the
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absolute value of the first term resulting from stabilization, using the given constraint

on the parameter δK on each element/subelement.∣∣∣∣∣∑
K∩Ω

δK(cvh,β · ∇vh)K∩Ω

∣∣∣∣∣ ≤ ∑
K∩Ω

[
δK
c2
K

2
‖vh‖2

0,K∩Ω +
δK
2
‖β · ∇vh‖2

K∩Ω

]
≤

∑
K∩Ω

[
c0

2
‖vh‖2

0,K∩Ω +
δK
2
‖β · ∇vh‖2

K∩Ω

]
≤ c0

2
‖vh‖2

0,Ω +
∑
K∩Ω

δK
2
‖β · ∇vh‖2

K∩Ω.

This upper bound together with (3.7) yields the statement.

As can be seen from the statement of the last lemma, the SD adds artificial diffusion

in streamline direction resulting in a more of stability. But there still can be observed

over- and undershots in the finite element solution in the presence of sharp layers.

Thus, it can be necessary to augment the formulation by suitable shock capturing

stabilization terms, in order to add a good amount of artificial diffusion not only in

streamline direction. All this is due to the fact that the SD method does not satisfy

a discrete maximum principle by itself, which is not addressed in more detail in this

work.

Following [RST08], an alternative stabilized method for numerical solution of the

regularized/penalized problem, using additional local consistency preserving shock-

capturing terms, writes:

uρh ∈ Vh : ρb(uρh, vh) + A∓h (uρh, vh) + asc(u
ρ
h; vh) = Fh(vh) ∀vh ∈ Vh. (3.13)

As an example in this formulation the new terms are defined to be of the form

asc(u; v) :=
∑

K∩Ω6=∅

(τK(u)∇u,∇v)K∩Ω,

τK(u) := τ ∗(R∗K(u)),

R∗K(u) :=
‖Lu− f‖0,K

κK + ‖u‖1,K

,

where κK is a regularization parameter to ensure the well-posedness of the underlying

non-linear problem. τ ∗K = O(hγK) has to be chosen in such a way, that the order

of convergence of the overall scheme is preserved. Note that the consistency with

respect to the original problem is still preserved and thus the method fits into the
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3.2 FD discretization for the scalar model equation

overall FD framework.

3.2.3 A priori error in the symmetric case

The symmetric case, i.e. β = 0 in (2.29), is treated first and separately, as it is the

easier one and as it is a special case often needed in applications as well.

As there will be given an a priori error bound for the error u − uρh in a suitable

norm, controlling both the L2(Ω)- and H1(Ω)-norms of the latter, later on, we first

want to give the result of Glowinski et al. from [GP92] for the case of ΓD = ∅ and

β = 0. Note that VΓD has to be replaced by V when using the nomenclature of

Section 2.4.2, as ΓD = ∅.

Clearly, assuming Ω is a C1,1 domain in Rd (d = 2, 3), f ∈ H2(Ω), g ∈ H
1
2 (Γ),

the solution u of problem (2.29)/(2.31) in the considered case will be an element of

H2(Ω).

Theorem 3.1 (see [GP92]).

Let Ω ⊂ Rd (d = 2, 3) be a bounded Ck,1 domain, where k > max{0, d/2 − 1} and

Ω ⊂ Ω̃, with Ω̃ being a rectangular domain. If the solution u of problem (2.39) with

ΓD = ∅, β = 0 is in Hk+1(Ω), then there holds

‖uρh − u‖1,Ω ≤ C1

(
hk‖u‖k+1,Ω +

√
ρ‖u‖k+1,Ω

)
, (3.14)

‖uρh − u‖0,Ω ≤ C2

(
h+
√
ε
) (
hk +

√
ρ
)
‖u‖k+1,Ω + (3.15)

+ρ

(
h√
ε

+ 1

)(
hk
√
ρ

+ 1

)
‖u‖k+1,Ω,

where C1, C2 > 0 are constants independent of h, u, the solution of problem (2.44)

uρh and ρ, ε > 0.

The ε is the regularization parameter coming from solving and analyzing the auxil-

iary regularized problem to (2.44):

Find φε ∈ H1
0 (Ω̃) such that:

a(φε, v) + εb(φ, v) = ((u− uρh), v)Ω ∀v ∈ H1
0 (Ω̃), (3.16)

due to get the L2(Ω)-error estimate (3.15).
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Thus, the regularization/penalty parameters ρ and ε are chosen to be of the form

ρ = Ch2s, where s is an integer greater or equal to k, as the optimal error estimate

for ‖u− uρh‖L2(Ω) is of order hk+1.

Following [BH10b] and [GP92], the operator I∗ : H1(Ω) → Vh is defined by I∗ :=

IhE, where Ih is an appropriate projection onto the approximation space Vh. We will

take the nodewise bilinear interpolant, E is the extension operator from Theorem

(2.2) with k = 2.

In order to quantify the different error contributions we define

ξρh := I∗u− uρh, ηρ := Eu− I∗u

and

eρ := Eu− uρh = (Eu− I∗u)︸ ︷︷ ︸
ηρ

+ (I∗u− uρh)︸ ︷︷ ︸
ξρh

,

which are the approximation and method error regarding the regularized solution

and the extended solution of problem (2.39) with respect to the space H1
0 (Ω̃). Note

that it holds ‖ηρ‖1,Ω̃ ≤ ch‖u‖2,Ω for sufficiently smooth u due to the properties of

the operators E and I∗. The parameter ρ is always assumed to be bounded away

from zero and shall be fixed.

For the error analysis the following mesh dependent discrete quantities, being semi-

norms, are introduced. Note that these are norms due to the Poincaré inequality.

In the case ρ→ 0 the norm properties are only fulfilled on suitable subspaces of V .

‖v‖2
h,ρ,sym := ρ|v|2

1,Ω̃
+ |v|21,Ω + ‖v‖2

0,Ω +
∑
K∈Th

h−1
K ‖v‖

2
0,ΓD,K

∀v ∈ V,

|‖v‖|2h,ρ,sym := ‖v‖2
h,ρ,sym +

∑
K∈Th

hK‖∂nv‖2
0,ΓD,K

∀v ∈ V.

Clearly, these quantities are related to the stabilized discrete bilinear form (ρb +

a∓h )(·, ·) with β = 0, while the first turns out to be equivalent to the second one on

the space Vh:

Lemma 3.4. Providing A3 holds, there exists a bounded constant C > 0, not de-

pending on local grid-widths, such that∑
ΓD,K

hK‖∂nvh‖2
0,ΓD,K

≤ C|vh|21,Ω ∀vh ∈ Vh. (3.17)
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3.2 FD discretization for the scalar model equation

Proof. Immediately from (3.6).

This feature is also well established and used in the standard case, see [JS08]. More-

over, this paragraph has been inspired by the techniques used in [BH10b].

Lemma 3.5. Providing Assumption A3 holds, u, v ∈ H1(Ω̃), vh ∈ Vh, then

ρb(u, v) + a∓h (u, v) ≤ C|‖u‖|h,ρ,sym|‖v‖|h,ρ,sym, (3.18)

ρb(u, vh) + a∓h (u, vh) ≤ C|‖u‖|h,ρ,sym‖vh‖h,ρ,sym, (3.19)

with a constant C > 0 not depending on h, ρ and u.

Proof. The first bound is an immediate consequence of the Cauchy-Schwarz inequal-

ity. The second one follows again by the Cauchy-Schwarz inequality taking the norm

equivalence proved by (3.17) into account.

Lemma 3.6. Let z be an element of H2(Ω), then

|‖Ez − I∗z|‖h,ρ,sym ≤ Ch
√
ρ+ 1 + h2‖z‖2,Ω, (3.20)

with C > 0 not depending on h, ρ and z.

Proof. Simply writing out the definition yields

|‖Ez − I∗z|‖2
h,ρ,sym ≤ ρ|Ez − I∗z|2

1,Ω̃
+ |Ez − I∗z|21,Ω + ‖Ez − I∗z‖2

0,Ω +

+
∑
K∈Th

hK‖∂n(Ez − I∗z)‖2
0,ΓD,K

+
∑
K∈Th

h−1
K ‖Ez − I

∗z‖2
0,ΓD,K

.

The individual terms can be handled in the following way to bring the approximation

properties of the underlying discrete space into play:

ρ|Ez − I∗z|2
1,Ω̃
≤ Cρh2‖Ez‖2

2,Ω̃
≤ Cρh2‖z‖2

2,Ω,

|Ez − I∗z|21,Ω ≤ Ch2‖Ez − I∗z‖2
2,Ω̃
≤ Ch2‖z‖2

2,Ω,

‖Ez − I∗z‖2
0,Ω ≤ Ch4‖z‖2

2,Ω.

The boundary terms are treated cell by cell, frequently using the trace inequalities
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3 Discretization

and an inverse inequality (3.4)-(3.6) following from Assumption A3.

h
1
2
K‖∂n(Ez − I∗z)‖0,ΓD,K ≤ C (|Ez − I∗z|1,K + hK |Ez − I∗z|2,K) ≤ ChK‖Ez‖2,K ,

h
− 1

2
K ‖(Ez − I

∗z)‖0,ΓD,K ≤ C
(
h−1
K ‖Ez − I

∗z‖0,K + |Ez − I∗z|1,K
)
≤ ChK‖Ez‖2,K .

Hence by squaring and summing these contributions we get∑
K∈Th

hK‖∂n(Ez − I∗z)‖2
0,ΓD,K

≤ Ch2‖z‖2
2,Ω,∑

K∈Th

γDh
−1
K ‖Ez − I

∗z‖2
0,ΓD,K

≤ Ch2‖z‖2
2,Ω.

and the statement follows.

Corollary 3.1. For the error eρ = Eu − uρh, u, uρh being the solutions of the sym-

metric versions of (2.39) and (2.44) it holds:

|‖eρ|‖h,ρ,sym ≤ C(h
√
ρ+ 1 + h2 +

√
ρ)‖u‖2,Ω. (3.21)

Proof. By (3.7), setting β = 0, we get:

C‖ξρh‖
2
h,ρ,sym ≤ ρb(ξρh, ξ

ρ
h) + a∓h (ξρh, ξ

ρ
h)

= ρb(I∗u− Eu, ξρh) + a∓h (I∗u− Eu, ξρh) + ρb(Eu− uρh, ξ
ρ
h) + a∓h (Eu− uρh, ξ

ρ
h)

= −ρb(ηρ, ξρh)− a
∓
h (ηρ, ξρh) + ρb(Eu− uρh, ξ

ρ
h) + ρb(uρh, ξ

ρ
h)

= −ρb(ηρ, ξρh)− a
∓
h (ηρ, ξρh) + ρb(Eu, ξρh).

Bringing Lemma 3.5 and Lemma 3.6 into play one gets on the one hand

ρb(ηρ, ξρh) + a∓h (ηρ, ξρh) ≤ C|‖ηρ|‖h,ρ,sym|‖ξρh|‖h,ρ,sym
≤ Ch

√
ρ+ 1 + h2‖ξρh‖h,ρ,sym‖u‖2,Ω.

And on the other hand

ρb(Eu, ξρh) ≤ Cρ
1
2‖Eu‖2,Ω̃ρ

1
2 |ξρh|1,Ω̃ ≤ Cρ

1
2‖Eu‖2,Ω̃‖ξ

ρ
h‖h,ρ,sym.

Hence combining the last relations, dividing by ‖ξρh‖h,ρ,sym and employing the norm

equivalence on the discrete subspace yields

|‖ξρh|‖h,ρ,sym ≤ C
(
h
√
ρ+ 1 + h2 +

√
ρ)
)
‖u‖2,Ω.
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3.2 FD discretization for the scalar model equation

Applying a triangle inequality finally yields

|‖eρ|‖h,ρ,sym ≤ |‖ηρ‖|h,ρ,sym + |‖ξρh‖|h,ρ,sym ≤ C
(
h
√
ρ+ 1 + h2 +

√
ρ
)
‖u‖2,Ω.

Following this statement and as the quantity |‖u − uρh|‖h,ρ,sym controls the error

‖u − uρh‖1,Ω as well, ρ = Ch2 is the optimal choice for the penalty parameter, as it

was in the case of the pure Neumann problem either.

3.2.4 A priori error for the stabilized method

We will use the error contributions eρ, ηρ, ξρh defined in the previous section and

concentrate on the SD method without additional shock-capturing term. For the

error analysis the following mesh dependent quantities are defined, analogously to

the symmetric case:

‖v‖2
h,ρ :=ρ|v|2

1,Ω̃
+ ε|v|21,Ω + c0‖v‖2

0,Ω + ‖|β · n|
1
2v‖2

0,ΓD
+
∑
ΓD,K

ε

hK
‖v‖2

0,ΓD,K
.

|‖v‖|2h,ρ :=‖v‖2
h,ρ +

∑
K∈Th

δK‖β · ∇v‖2
K∩Ω.

Lemma 3.7. Let u be the solution of the original problem (2.39), uρh the solution of

the problem (3.9). Then for the error eρ = Eu− uρh holds

|‖eρ‖|h,ρ ≤ C

(∑
K∈Th

{
hKλ(ε,β, c, hK , δK , ρ) +

√
ρ
}
‖Eu‖2,K

)
, (3.22)

where

λ(ε,β, c, hK , δK , ρ) := ρ
1
2 + ε

1
2 + (1 + δ

− 1
2

K )hK + h
1
2
K +

+δ
1
2
K(εh−1

K + ‖β‖∞,K∩Ω + ‖c‖∞,K∩ΩhK)

and C > 0 does not depend on ε, ρ, h and u.
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Proof. By (3.7) it holds analogously to the symmetric case

C|‖ξρh‖|
2
h,ρ ≤ ρb(ξρh, ξ

ρ
h) + A∓h (ξρh, ξ

ρ
h)

= ρb(I∗u− Eu, ξρh) + A∓h (I∗u− Eu, ξρh) +

+ ρb(Eu− uρh, ξ
ρ
h) + A∓h (Eu− uρh, ξ

ρ
h)

= −ρb(ηρ, ξρh)− A
∓
h (ηρ, ξρh) +

+ ρb(Eu− uρh, ξ
ρ
h) + ρb(uρh, ξ

ρ
h)

= −ρb(ηρ, ξρh)− A
∓
h (ηρ, ξρh) + ρb(Eu, ξρh).

The last term on the right hand side can be bounded in the usual way by

ρb(Eu, ξρh) ≤ ρ
1
2 |Eu|1,Ω̃ρ

1
2 |ξρh|1,Ω̃ ≤ Cρ

1
2‖Eu‖2,Ω̃|‖ξ

ρ
h‖|h,ρ.

The first two terms on the right hand side write

A∓h (ηρ, ξρh) + ρb(ηρ, ξρh) = ρ(∇ηρ,∇ξρh)Ω̃ + ε(∇ηρ,∇ξρh)Ω + (β · ∇ηρ + cηρ, ξρh)Ω +

−ε〈∂nηρ, ξρh〉ΓD ∓ ε〈η
ρ, ∂nξ

ρ
h〉ΓD +

+ ε
∑
ΓD,K

γ∓D
hK
〈ηρ, ξρh〉ΓD,K − 〈(n · β)−ηρ, ξρh〉ΓD,K +

+
∑
K∈Th

δK(−ε4ηρ + β · ∇ηρ + cηρ,β · ∇ξρh)K∩Ω

= ρ(∇ηρ,∇ξρh)Ω̃ + ε(∇ηρ,∇ξρh)Ω +

+ ((c−∇ · β)ηρ, ξρh)Ω − (ηρ,β · ∇ξρh)Ω +

+ 〈(β · n)+ηρ, ξρh〉ΓD + 〈(β · n)ηρ, ξρh〉ΓN +

− ε〈∂nηρ, ξρh〉ΓD ∓ ε〈η
ρ, ∂nξ

ρ
h〉ΓD + ε

∑
ΓD,K

γ∓D
hK
〈ηρ, ξρh〉ΓD,K +

+
∑
K∈Th

δK(−ε4ηρ + β · ∇ηρ + cηρ,β · ∇ξρh)K∩Ω.

Now we estimate the error contributions element by element. An upper bound for

local contributions of the first two terms in this expression can be estimated the

following way

ρ(∇ηρ,∇ξρh)K ≤ ρ
1
2 |ηρ|1,Kρ

1
2 |ξρh|1,K ≤ Cρ

1
2hK‖Eu‖2,K |‖ξρh‖|h,ρ,

ε(∇ηρ,∇ξρh)K ≤ ε
1
2 |ηρ|1,K∩Ωε

1
2 |ξρh|1,K∩Ω

≤ ε
1
2 |ηρ|1,Ω̃|‖ξ

ρ
h|‖h,ρ ≤ ε

1
2hK‖Eu‖2,K |‖ξρh‖|h,ρ.
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3.2 FD discretization for the scalar model equation

Now for the remaining contributions from the regular weak formulation:

((c−∇ · β)ηρ, ξρh)Ω∩K − (ηρ,β · ∇ξρh)Ω∩K

≤ C
(
‖ηρ‖0,K∩Ω‖ξρh‖0,K∩Ω + δ

− 1
2

K ‖η
ρ‖0,K∩Ωδ

1
2
K‖β · ∇ξ

ρ
h‖0,K∩Ω

)
≤ C

(
1 + δ

− 1
2

K

)
‖ηρ‖0,K |‖ξρh‖|h,ρ

≤ C
(

1 + δ
− 1

2
K

)
h2
K‖Eu‖2,K |‖ξρh‖|h,ρ.

The next terms stem from stabilization:

δK(−ε4ηρ + β · ∇ηρ + cηρ,β · ∇ξρh)K∩Ω

≤ δ
1
2
K‖ − ε4η

ρ + β · ∇ηρ + cηρ‖0,K∩Ωδ
1
2
K‖β · ∇ξ

ρ
h‖0,K∩Ω

≤ δ
1
2
K(‖ − ε4ηρ‖0,K∩Ω + ‖β‖∞,K∩Ω|ηρ|1,K∩Ω + ‖c‖∞,K∩Ω‖ηρ‖0,K∩Ω)|‖ξρh‖|h,ρ

≤ Cδ
1
2
KhK(εh−1

K + ‖β‖∞,K∩Ω + ‖c‖∞,K∩ΩhK)‖Eu‖2,K |‖ξρh‖|h,ρ.

Now we handle the terms from boundary integration. The trace inequalities (3.4)-

(3.6) will be used frequently to estimate an upper bound for the error contributions:

〈(β · n)+ηρ, ξρh〉ΓD,K ≤ C‖ηρ‖0,ΓD,K |‖ξ
ρ
h|‖h,ρ ≤ Ch

3
2
K‖Eu‖2,K |‖ξρh‖|h,ρ,

〈(β · n)ηρ, ξρh〉ΓN,K ≤ C‖ηρ‖0,ΓN,K |‖ξ
ρ
h|‖h,ρ ≤ Ch

3
2
K‖Eu‖2,K |‖ξρh‖|h,ρ,

ε〈∂nηρ, ξρh〉K ≤ Ch
1
2
Kε

1
2‖∂nηρ‖0,ΓD,Kh

− 1
2

K ε
1
2‖ξρh‖0,ΓD,K

≤ ChKε
1
2‖Eu‖2,K |‖ξρh‖|h,ρ,

ε〈ηρ, ∂nξρh〉ΓD,K ≤ Cε
1
2‖ηρ‖0,ΓD,Kε

1
2‖∂nξρh‖0,ΓD,K

≤ Cε
1
2‖ηρ‖0,ΓD,Kh

− 1
2

K ε
1
2 |ξρh|1,Ω∩K

≤ Cε
1
2 (h−1

K ‖η
ρ‖0,K + |ηρ|1,K)|‖ξρh‖|h,ρ

≤ Cε
1
2hK‖Eu‖2,K |‖ξρh‖|h,ρ,

ε
γ∓D
hK
〈ηρ, ξρh〉ΓD,K ≤ C

ε
1
2

h
1
2
K

‖ηρ‖0,ΓD,K

ε
1
2

h
1
2
K

‖ξρh‖0,ΓD,K

≤ Cε
1
2hK‖Eu‖2,K |‖ξρh‖|h,ρ.

Summation of all these terms together with the triangle inequality

|‖eρ|‖h,ρ ≤ |‖ηρ‖|h,ρ + |‖ξρh‖|h,ρ
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3 Discretization

and an analogous error bound for the error ηρ yields the statement.

In order to guarantee the best possible convergence rates in the case of dominant

convection, diffusion or reaction either, while the conditions of Lemma 3.3 are still

fulfilled, the elementwise term δ
− 1

2
K hK+δ

1
2
K

(
εh−1

K + ‖β‖∞,K∩Ω + ‖c‖∞,K∩ΩhK
)
, being

part of the expression λ, has to be minimized.

This is done by the choice

δK =
δ0

ε/h2
K + ‖β‖∞,K∩Ω/hK + ‖c‖∞,K∩Ω

, (3.23)

where δ0 > 0 is another constant parameter. Note that this choice leads to the

following desirable asymptotic behaviour:
δK ∼ h

‖b‖∞,K∩Ω
‖β‖∞,K∩Ω � ε, ‖c‖∞,K∩Ω (convection dominance),

δK ∼ h2

ε
ε� ‖β‖∞,K∩Ω, ‖c‖∞,K∩Ω (diffusion dominance),

δK ∼ ‖c‖−1
∞,K∩Ω ‖c‖∞,K∩Ω � ‖β‖∞,K , ε (reaction dominance),

(3.24)

on the domain Ω without further loss of accuracy. This choice coincides with the

one in [Bra98] for the case of a reactive flow system in an analogous problem. Other

choices would be possible, see e.g. [RST08].

3.3 FD discretization of the Oseen problem

As divergence-free discrete spaces are very hard to construct and are not at hand

in most cases, including ours, we want to handle the more physical formulation

including the pressure, which guarantees the divergence-free condition in a weak

sense.

The presence of a Lagrange multiplier makes it necessary to show a discrete inf-

sup condition for the underlying bilinear form to be fulfilled, since simply showing

mere coercivity of the bilinear form is not sufficient to guarantee the unique discrete

solution converging to the continuous one in an admissible norm controlling both

the (H1(Ω))d- and (H1(Ω̃))d-norm of the primal variable, being the velocity in this

case, as well as the L2(Ω)- and L2(Ω̃)-norm of the pressure.

The outline of this section is as follows: First a suitable FE formulation of the

considered problem is derived, with a stability proof given. After that, an a priori
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3.3 FD discretization of the Oseen problem

error analysis is presented, as it was done in the scalar case. In this error analysis

we will focus on the symmetric case only, again by setting β = 0. This is done,

because the error analysis in the asymmetrical case would not bring a fundamental

new perception, as the resulting new parts from dealing with the convection-term

would be treated similar to the asymmetrical scalar case.

3.3.1 Stability of the discrete form

In order to show a discrete inf-sup condition, necessary for proving the stability in

the case of a saddle point problem, or better said a resulting mixed FE method, the

following lemma will be useful.

Lemma 3.8. Let p ∈ L2(Ω̃) and ΩC := Ω̃\Ω be sufficiently smooth, e.g. a Lipschitz

domain. Then there exists a w ∈ (H1(Ω̃))d and constants C1, C2 > 0 not depending

on p, such that:

‖w‖1,Ω̃ ≤ C1‖p‖0,Ω̃, (3.25)

‖w‖1,Ω ≤ C2‖p‖0,Ω, (3.26)

−(∇ ·w, p)Ω = ‖p‖2
0,Ω. (3.27)

Moreover, if meas(ΓD) > 0, the related velocity w can be chosen such that w|ΓD = 0

in the sense of traces.

Proof. As p ∈ L2(Ω̃), p|Ω is an element of L2(Ω) and p|ΩC ∈ L2(ΩC) as well. Let first

meas(ΓN) > 0. It follows for the restriction of the pressure to Ω that there exists a

v1 ∈ (H1(Ω))d, with v1|ΓD = 0 in case meas(ΓD) > 0, and a constant M1 > 0, such

that

‖v1‖1,Ω ≤ M1‖p‖0,Ω, −∇ · v1 = p in Ω.

In case meas(ΓN) = 0, causing Γ = ΓD, p|Ω can be identified as a member of

the equivalence-class [p] ∈ L2(Ω)/R being isometric to L2
0(Ω). Again it follows the

existence of a velocity v1 ∈ (H1
0 (Ω))d and a constant M1 > 0 with

‖v1‖1,Ω ≤ M1 inf
c∈R
‖p+ c‖0,Ω ≤M1‖p‖0,Ω, −∇ · v1 = p in Ω.
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3 Discretization

The existence of v1 ∈ (H1(Ω))d in both cases is ensured by the surjectivity of the

divergence operator, see e.g. [Glo03].

Let now E1 : (H1(Ω))d → (H1
0 (Ω̃))d be a proper, continuous, linear extension oper-

ator. Setting ṽ1 := E1v1 ∈ (H1
0 (Ω̃))d we find with M0(Ω, Ω̃) > 0

‖ṽ1,Ω̃‖ ≤M0(Ω, Ω̃)‖v1‖1,Ω.

The pressure p|ΩC ∈ L2(ΩC) can be decomposed and written as

p|ΩC = p2 + p3 : p2 ∈ L2
0(ΩC), p3 = c3 ∈ R.

It follows, again due to the surjectivity of the divergence operator, using the con-

dition of ΩC being sufficiently smooth, that there exists a v2 ∈ (H1
0 (ΩC))d and a

M2 > 0, such that:

‖v2‖1,ΩC ≤ M2‖p2‖0,ΩC , −∇ · v2 = p2 in ΩC .

Let now ṽ2 ∈ (H1
0 (Ω̃))d be the extension by zero of v2 to the whole domain Ω̃.

Furthermore, let p̃3 ∈ L2(Ω̃) be the extensions by zero of p3 to Ω̃. Similar as before

there exists ṽ3 ∈ (H1(Ω̃))d, M3 > 0, such that:

‖ṽ3‖1,Ω̃ ≤ M3‖p̃3‖0,Ω̃, −∇ · ṽ3 = p̃3 in Ω̃.

With that in mind, setting w := ṽ1 + ṽ2 ∈ (H1(Ω̃))d, remembering the choices of

the individual velocities ṽi, it follows:

‖w‖1,Ω̃ ≤ ‖ṽ1‖1,Ω̃ + ‖ṽ2‖1,Ω̃ + ‖ṽ3‖1,Ω̃

≤M0‖v1‖1,Ω + ‖ṽ2‖1,Ω̃ +M3‖p̃3‖0,Ω̃

≤M0M1‖p‖0,Ω +M2‖p2‖0,ΩC +M3‖p3‖0,ΩC

≤M0M1‖p‖0,Ω + (M2 +M3)‖p‖0,ΩC

≤ C1‖p‖0,Ω̃,

where C1 := (M0M1 +M2 +M3) > 0 and we used the fact that

(p2, p3)ΩC = 0.
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3.3 FD discretization of the Oseen problem

Moreover, the definition of w yields:

‖w‖1,Ω ≤ ‖ṽ1‖1,Ω + ‖ṽ2‖1,Ω︸ ︷︷ ︸
=0, as ṽ2|Ω=0

≤M0M1‖p1‖0,Ω

by setting C2 := M0M1 > 0.

The last relation to proof then follows by the fact that ṽ2|Ω = 0 and thus∇·ṽ2|Ω = 0:

−(∇ ·w, p)Ω = −(∇ · ṽ1, p)Ω − (∇ · ṽ2, p)Ω

= (p, p)Ω

= ‖p‖2
0,Ω.

Finally, as w|Ω = v1 ∈ (H1(Ω))d and v1|ΓD = 0, the statement follows.

Following a similar task as in case of the scalar model problem (2.29)-(2.31), we

proceed with giving a discrete, regularized weak formulation convenient to handle

the boundary conditions to be imposed weakly, too. Consequently, the same as-

sumptions regarding the equation-data, the triangulation, how the boundary cuts

the mesh and so on are being made.

Especially it is assumed that a relation of the form

∃σ0 > 0 : σ − 1

2
∇ · β ≥ σ0 a.e. in Ω

is valid.

As already said, we have to handle a saddle point problem, due to the presence of

the pressure variable. Clearly, this changes the nature of the underlying problem

compared to the scalar one in an essential way. Remembering the discrete formula-

tion of the scalar problem one could use a regularized version of Nitsches method.

Additionally, for ease of presentation, we concentrate on the case Γ = ΓD, i.e. the

pure Dirichlet case.

Keeping the idea of the scalar case, the weak formulation is enriched by a bilinear

form corresponding to the natural norm on the corresponding continuous product-

space in order to ensure coercivity on the discrete space.
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3 Discretization

The subspaces used for discretization are defined to be:

Vh :=

{
vh ∈

(
C0
(
Ω̃
))d

: vh|K ∈ (Q1(K))d ∀K ∈ Th
}
∩
(
H1

0

(
Ω̃
))d

,

Qh :=
{
qh ∈ C0

(
Ω̃
)

: qh|K ∈ Q1(K) ∀K ∈ Th
}
∩H1

0 (Ω̃).

With that in mind, we now state the underlying discrete formulation for the Oseen

problem.

Let ρ > 0 be a regularization parameter. Then find (uρh, p
ρ
h) ∈Wh := Vh ×Qh:

(ρB + A∓h )((uρh, p
ρ
h), (vh, qh)) = L∓h (vh, qh) ∀(vh, qh) ∈Wh, (3.28)

with the linear forms defined to be

A∓h ((u, p), (v, q)) := (ν∇u,∇v)Ω + (σu,v)Ω − (p,∇ · v)Ω + (∇ · u, q)Ω +

+((β · ∇)u,v)Ω + γdiv(∇ · u,∇ · v)Ω +

+
∑
K

δK(−ν4u+ (β · ∇)u+ σu+∇p, (β · ∇)v +∇q)K∩Ω +

−〈ν∂nu,v〉ΓD ∓ 〈νu, ∂nv〉ΓD +
∑
ΓD,K

γ∓D
ν

hK
〈u,v〉ΓD,K +

+〈p,n · v〉ΓD − 〈n · u, q〉ΓD +
∑
ΓD,K

γ∓1
hK
〈n · u,n · v〉ΓD,K +

−〈(n · β)−u,v)〉ΓD ,

L∓h (v, q) := (f ,v)Ω +
∑
K

δK(f , (β · ∇)v +∇q)K∩Ω +

∓〈νgD, ∂nv〉ΓD +
∑
ΓD,K

νγ∓D
hK
〈gD,v〉ΓD,K +

−〈n · gD, q〉ΓD +
∑
ΓD,K

γ∓1
hK
〈n · gD,n · v〉ΓD,K +

−〈(n · β)−gD,v)〉ΓD ,

B((u, p), (v, q)) := (u,v)1,Ω̃ + (p, q)1,Ω̃.

In this formulation the parameters γ∓D > 0 and γ∓1 ≥ 0 are penalty parameters

54



3.3 FD discretization of the Oseen problem

analogous to the scalar case. As it turns, out γ∓1 can be set to zero; but γ∓1 > 0

obviously has an additional stabilizing effect in case of higher Reynolds numbers

Re ∼ ν−1 as well as in case of an unfitted mesh.

The resulting methods do have similar properties regarding accuracy and stability

as in the scalar case. We refer to the resulting weak formulations as (3.28)− and

(3.28)+.

On the discrete space Wh = Vh×Qh ⊂ (H1
0 (Ω̃))d+1 we define the following expres-

sion:

‖(v, q)‖2
ρ,h := ρ

[
‖v‖2

1,Ω̃
+ ‖q‖2

1,Ω̃

]
+ ν|v|21,Ω + σ0‖v‖2

0,Ω + ν‖q‖2
0,Ω +

+γdiv‖∇ · v‖2
0,Ω +

∑
K

δK‖(β · ∇)v +∇q‖2
0,K∩Ω +

+
∑
ΓD,K

ν

hK
‖v‖2

0,ΓD,K
+ ‖|β · n|

1
2v‖2

0,ΓD
+
∑
ΓD,K

γ∓1 h
−1
K ‖n · v‖

2
0,ΓD,K

,

its square root being a norm on the discrete space in case ρ ≥ ρ0 > 0 and Assumption

A3 holds.

Note that due to the standard arguments already presented, there holds with (u, p)

being the solution of the model problem (2.55)-(2.57) and (uρh, p
ρ
h) ∈Wh being the

solution of the regularized problem (3.28) with regularization parameter ρ > 0, for

all (vh, qh) ∈Wh:

A∓h ((E2u− uρh, E1p− pρh), (vh, qh)) = ρB((uρh, p
ρ
h), (vh, qh)). (3.29)

The vector-valued operator E2 : (H2(Ω))d → (H2(Ω̃))d is defined to be based on the

standard extension operator E2 : H2(Ω)→ H2(Ω̃), but acting on each component of

the function. The operator E1 : H1(Ω)→ H1(Ω̃) is the standard extension operator

in the scalar case.

Let for simplicity ν be a constant value. We restrict ourself on the special case

0 < ν ≤ 1 which is harder to handle. The case ν > 1 is the easier one in general,

but the proof of a theorem handling this is similar to the one given below, as ν is

bounded away from zero. In that case, in the expression ‖(·, ·)‖ρ,h the factor ν of

the H1(Ω)-semi-norm of the velocity and the L2(Ω)-norm of the pressure has to be

replaced by 1.

We can now state the next theorem in order to show stability, assuring well-posedness
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3 Discretization

of the discrete problem in the sense of Babuška and Aziz. Note that compared to

the scalar case streamline diffusion type Galerkin least squares stabilization terms

are included right at the beginning. This is done in order to handle the instabilities

possibly appearing in the considered case. Those due to the violation of a discrete

inf-sup condition, as the FE spaces employed for the discretization are not com-

patible in the sense of Babuška. Moreover, those instabilities caused by a probably

dominant convection term can be handled as well.

Theorem 3.2. Let Assumptions A1-A3 be true and Ω̃ \ Ω be sufficiently smooth,

0 < ν ≤ 1, γdiv ≥ 0, γ∓D ≥ γ0 > 0, γ∓1 > 0. Let there be constants δ0, δ1 and an

elementwise constant function δK with

0 < δ0h
2
K ≤ δK ≤ δ1, 0 ≤ σ2

KδK ≤
σ0

2
, where σK := max

x∈K
|σ(x)|.

Then there exists a βs > 0 not depending on ν, h and ρ, such that for all (uh, ph) ∈
W h:

sup
(vh,qh)∈Wh

(ρB + A∓h )((uh, ph), (vh, qh))

‖(vh, qh)‖ρ,h
≥ βs ‖(uh, ph)‖ρ,h. (3.30)

Proof. We proceed as it is done in the case of ”standard”-grids (see e.g. [RST08]).

Set for abbreviation

X2
1 := γdiv‖∇ · v‖2

0,Ω, X2
2 :=

∑
K

δK‖(β · ∇)v +∇q‖2
0,K∩Ω,

X2
3 :=

∑
ΓD,K

h−1
K ‖v‖

2
0,ΓD,K

, X2
4 := ‖|β · n|

1
2v‖2

0,ΓD
,

X2
5 :=

∑
ΓD,K

γ∓1 h
−1
K ‖n · v‖

2
0,ΓD,K

.

Now, first by diagonal testing, it is shown that the bilinear form (ρB + A∓h )(·, ·) is

coercive with respect to the natural norm defined by the square root of the sum

below. As this part is very similar to the scalar one we skip the details here:

(ρB + A∓h )((vh, qh), (vh, qh)) ≥
1

2

{
ρ
[
‖vh‖2

1,Ω̃
+ ‖qh‖2

1,Ω̃

]
+ (3.31)

+ν|vh|21,Ω + σ0‖vh‖2
0,Ω +

5∑
i=1

X2
i

}
.

The inequality shows coercivity of the bilinear form on the discrete space, but still

we lack control of the L2(Ω)−norm of the pressure.
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3.3 FD discretization of the Oseen problem

In order to get into a position for giving an appropriate error analysis later on,

and show the statement of the theorem to be true as well, the key is to bring

Lemma 3.8 into play: As qh ∈ H1(Ω̃), it exists a unique real constant c0 with

qh|Ω = q0,h + c0, q0,h ∈ L2
0(Ω). From Lemma 3.8 it follows the existence of w ∈

(H1
0 (Ω̃))d with w|ΓD = 0, and constants CΩ, CΩ̃ > 0, such that ‖w‖1,Ω̃ ≤ CΩ̃‖qh‖0,Ω̃,

‖w‖1,Ω ≤ CΩ‖qh‖0,Ω and −(∇ · w, qh)Ω = ‖qh‖2
0,Ω. Let now wh := Πhw ∈ Vh,

Πh be a Zhang-Scott like interpolation operator, see [SZ90], fulfilling the standard

interpolation properties. Then there clearly exist positive constants C ′Ω, C
′
Ω̃

with

‖wh‖1,Ω̃ ≤ C ′
Ω̃
‖qh‖0,Ω̃ and ‖wh‖1,Ω ≤ C ′Ω‖qh‖0,Ω. For brevity we define

σmax := ‖σ‖∞,Ω.

Testing now with (wh, 0) in the second argument, we get

(ρB + A∓h ) ((vh, qh), (wh, 0)) = ρ
[
(∇vh,∇wh)Ω̃ + (vh,wh)Ω̃

]
+

+ν(∇vh,∇wh)Ω + (σvh,wh)Ω + ((β · ∇)vh,wh)Ω +

+γdiv(∇ · vh,∇ ·wh)Ω − (qh,∇ · (wh −w))Ω + ‖qh‖2
0,Ω +

+
∑
ΓD,K

νγDh
−1
K 〈vh,wh −w〉ΓD,K − 〈(β · n)−vh,wh −w〉ΓD+ (3.32)

+
∑
K

δK(−ν4vh + (β · ∇)vh + σvh +∇qh, (β · ∇)wh)K∩Ω +

−〈ν∂nvh,wh −w〉ΓD ∓ 〈νvh, ∂nwh〉ΓD + 〈qh,n · (wh −w)〉ΓD +

+
∑
ΓD,K

γ∓1
hK
〈n · vh,n · (wh −w)〉ΓD,K .

The single terms appearing in relation (3.32) are bounded by standard arguments

using the Cauchy-Schwarz and Young inequality, for the latter let ε1 > 0 be a generic

parameter. We only deal in detail with the more complicated terms:

〈qh,n · (wh −w)〉ΓD − (qh,∇ · (wh −w))Ω =
∑
K

(∇qh,wh −w)K∩Ω

=
∑
K

((β · ∇)vh +∇qh,wh −w)K∩Ω −
∑
K

((β · ∇)vh,wh −w)K∩Ω
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3 Discretization

≤
∑
K

δ
1
2
Kδ
− 1

2
K ‖(β · ∇)vh +∇qh‖0,k∩ΩCKhK‖w‖1,K∩Ω +

+
∑
K

‖(β · ∇)vh‖K∩ΩCKhK‖w‖1,K∩Ω

≤ CX2

∑
K

h2
Kδ
−1
K︸ ︷︷ ︸

≤δ−1
0

‖w‖2
1,K∩Ω


1
2

+ CCΩh‖β‖∞,Ω|vh|1,Ω‖qh‖0,Ω

≤ C1(‖β‖∞,Ω, δ0,Ω)
[ 1

2ε1

|vh|21,Ω +
1

2ε1

X2
2

]
+ ε1‖qh‖2

0,Ω.

Now we take a look at the terms resulting from least squares stabilization:∑
K

δK(−ν4vh︸︷︷︸
=0

+(β · ∇)vh + σvh +∇qh, (β · ∇)wh)K∩Ω

=
∑
K

(δK((β · ∇)vh +∇qh), (β · ∇)wh)K∩Ω +
∑
K

δK(σvh, (β · ∇)wh)K∩Ω

≤
∑
K

δK‖(β · ∇)vh +∇qh‖0,K∩Ω‖β‖∞,K∩Ω|wh|1,K∩Ω +

+
∑
K

δKσK‖β‖∞,K∩Ω‖vh‖0,K∩Ω|wh|1,K∩Ω

≤ δ
1
2
1 X2‖β‖∞,Ω|wh|1,Ω + δ1σmax‖β‖∞‖vh‖0,Ω|wh|1,Ω

≤ C2(‖β‖∞,Ω, σmax, σmax/σ0, δ1,Ω)
[ 1

2ε1

X2
2 +

σ0

2ε1

‖vh‖2
0,Ω

]
+ ε1‖qh‖2

0,Ω.

Finally we focus on the boundary terms:

1

hK
γD〈vh,wh −w〉ΓD,K ≤ γDh

− 1
2

K ‖vh‖0,ΓD,Kh
− 1

2
K ‖wh −w‖ΓD,K

=⇒
∑
ΓD,K

νγDh
−1
K 〈vh,wh −w〉ΓD,K ≤ C3(γD,Ω)

1

2ε1

X2
3 +

ε1

2
‖qh‖2

0,Ω,
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3.3 FD discretization of the Oseen problem

〈(β · n)−vh,wh −w〉ΓD,K ≤ ‖|β · n|vh‖0,ΓD,Kh
1
2
Kh
− 1

2
K ‖wh −w‖0,ΓD,K

≤ ‖|β · n|vh‖0,ΓD,KCK‖w‖0,K∩Ω

=⇒ 〈(β · n)−vh,wh −w〉ΓD ≤ C4(Ω)
1

2ε1

X2
4 +

ε1

2
‖qh‖2

0,Ω,

〈ν∂nvh,wh −w〉ΓD,K ≤ νh
1
2
K‖∂nvh‖0,ΓD,Kh

− 1
2

K ‖wh −w‖0,ΓD,K

=⇒ 〈ν∂nvh,wh −w〉ΓD ≤ C5(Ω)
1

2ε1

X2
3 +

ε1

2
‖qh‖2

0,Ω,

〈νvh, ∂nwh〉ΓD,K ≤ µh
− 1

2
K ‖vh‖0,ΓD,Kh

1
2
K‖∂nwh‖0,ΓD,K

=⇒ 〈νvh, ∂nwh〉ΓD ≤ C6(Ω)
1

2ε1

X2
3 +

ε1

2
‖qh‖2

0,Ω,

γ∓1
hK
〈n · vh,n · (wh −w)〉ΓD,K ≤ γ∓1 h

− 1
2

K ‖n · vh‖0,ΓD,Kh
− 1

2
K ‖n · (wh −w)‖0,ΓD,K

=⇒
∑
ΓD,K

γ∓1
hK
〈n · vh,n · (wh −w)〉ΓD,K ≤ C7(γ∓1 ,Ω)

1

2ε1

X2
5 +

ε1

2
‖qh‖2

0.

This yields the following inequality:

(ρB + A∓h )((vh, qh), (wh, 0)) ≥ ρ
[
− 1

2
‖vh‖2

1,Ω̃
−
C ′

Ω̃

2
‖qh‖2

0,Ω̃

]
− C ′Ω

2ε1

|vh|21,Ω +

− C8(σmax, σmax/σ0,Ω)
σ0

2ε1

‖vh‖2
0,Ω − C9(|β|1,Ω,Ω)

1

2ε1

|vh|21,Ω +

− C10(γdiv,Ω)
1

2ε1

X2
1 + (1− 8ε1)‖qh‖2

0,Ω − C1

[ 1

2ε1

|vh|21,Ω +
1

2ε1

X2
2

]
+

− C2

[ 1

2ε1

X2
2 +

1

2ε1

‖vh‖2
1,Ω

]
− C3

2ε1

X2
3 −

C4

2ε1

X2
4 −

C11

2ε1

X2
5 .

Choosing now ε1 = 1/16 gives

(ρB + A∓h )((vh, qh), (wh, 0)) ≥ ρ
[
− 1

2
‖vh‖2

1,Ω̃
−
C ′

Ω̃

2
‖qh‖2

0,Ω̃

]
+

−C12

2

[
|vh|21,Ω + σ0‖vh‖2

0,Ω +
5∑
i=1

X2
i

]
+

1

2
‖qh‖2

0,Ω, (3.33)

with an appropriate constant C12(‖β‖∞,Ω,, |β|1,Ω, σmax, δ0, δ1, γ
∓
D, γ

∓
1 , γdiv,Ω) > 0.
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3 Discretization

Now we combine (3.31) and (3.33) via testing by (αvh + νwh, αqh) in the second

argument, where α ≥ 0 is a parameter:

(ρB + A∓h )((vh, qh), (αvh + νwh, αqh)) ≥ ρ

[
α− 1

2
‖vh‖2

1,Ω̃
+
α− C ′

Ω̃

2
‖qh‖2

0,Ω̃

]
+

+
α− C12

2

[
ν|vh|21,Ω + σ0‖vh‖2

0,Ω +
5∑
i=1

X2
i

]
+
ν

2
‖qh‖2

0,Ω.

Fixing the parameter α by α := max
{

2, 1 + C ′
Ω̃
, 1 + C12

}
yields

(ρB + A∓h )((vh, qh), (αvh + νwh, αqh)) ≥
1

2
‖(vh, qh)‖2

ρ,h.

One clearly has that for an arbitrary qh ∈ Qh there holds

‖(νwh, 0)‖ρ,h ≤
[
C ′

Ω̃
+ C̃(σmax, γdiv, γD, δ1, ‖β‖∞,Ω,Ω)C ′Ω

] (
ρ‖qh‖2

0,Ω̃
+ ν‖qh‖2

0,Ω

) 1
2

≤
[
C ′

Ω̃
+ C̃(σmax, γdiv, γD, δ1, ‖β‖∞,Ω,Ω)C ′Ω

]
‖(vh, qh)‖ρ,h

due to the properties of wh and the definition of ‖(·, ·)‖ρ,h.
This finally yields, by setting

βs :=
1

2

(
α + (C ′

Ω̃
+ C̃C ′Ω)

)−1

,

the desired inf-sup condition.

Remark 3.2. Note that it would not be hard to adapt the last statement and

related proof to cases, where at least parts of the fictitious domain boundary ∂Ω̃

and Γ = ∂Ω coincide. A situation appearing while describing flow around a pinned

or even moving rigid body for example, see e.g. Sections 5.1 and 5.2. So after

adjusting the underlying function spaces, it is possible to deal with such situations

as well.
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3.3 FD discretization of the Oseen problem

3.3.2 A priori error in the symmetric case

Different to the scalar case, the error analysis will be carried out only for the symmet-

ric problem, as the essential ideas of an analysis are shown already in the symmetrical

case, while additional terms can be handled similar to the scalar asymmetrical one,

and thus will bring not much additional enrichment to the work at hand.

As always let ρ > 0 be a fixed penalty parameter. In order to give an a priori

analysis of the error we define similar to the scalar case:

eρ := (eρu, e
ρ
p) := (E2u− uρh, E1p− pρh)

= (E2u− I∗u, E1p− J∗p) + (I∗u− uρh, J
∗p− pρh).

As usual let (u, p) ∈
(
VΓD(Ω)×L2(Ω)

)
∩
(
(H2(Ω))d×H1(Ω)

)
be the weak solution

of the original problem (2.55)-(2.57). Assume the FE function (uρh, p
ρ
h) ∈Wh to be

the solution of the discrete regularized problem (3.28).

The vector valued operator I∗ is defined to be I∗ := IhE2 with Ih being the standard

nodal interpolation. For the pressure component we set J∗ := JE1, where J is the

Zhang-Scott interpolation operator.

As we want to deal with the symmetric case, being an important specialization

often needed in applications, we set β = 0. Moreover, to keep things straight, we

eliminate the dependencies regarding the constant parameters ν > 0, σ0 > 0 by

simply setting ν = 1 and σ = 1. We define the expression

‖(v, q)‖2
ρ,h,sym := ρ

[
‖v‖2

1,Ω̃
+ ‖q‖2

1,Ω̃

]
+ |v|21,Ω + ‖v‖2

0,Ω + ‖q‖2
0,Ω +

+γdiv‖∇ · v‖2
0,Ω +

∑
K

δK‖∇q‖2
0,K∩Ω +

+
∑
ΓD,K

h−1
K ‖v‖

2
0,ΓD,K

+
∑
ΓD,K

γ∓1 h
−1
K ‖n · v‖

2
0,ΓD,K

,

stemming from the original expression ‖(·, ·)‖ρ,h. The next lemma gives informa-

tion about the approximation properties of the discrete space Wh with respect to

‖(·, ·)‖ρ,h,sym.
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3 Discretization

Lemma 3.9. Let the assumptions of Theorem 3.2 be true. Let (z1, z2) be an element

of (H2(Ω))d × H1(Ω). Then there exists a constant Csym > 0 not depending on h,

such that

‖(E2z1 − I∗z1, E1z2 − J∗z2)‖ρ,h,sym ≤ (3.34)

Csymh

(∑
K

(
ρ+ 1 + (ρ+ δK)h−2

K

) (
‖z1‖2

2,Ω∩K + ‖z2‖2
1,Ω∩K

)) 1
2

.

Proof. As similar results have already been shown in case of the scalar model prob-

lem, things are kept short in this proof. Again the standard interpolation properties

with respect to the underlying (non-fitted) discrete space come into play by using

the extension and interpolation operators given above. From this, not going much

into detail, we get:

‖(E2z1 − I∗z1, E1z2 − J∗z2)‖2
ρ,h,sym = ρ‖E2z1 − I∗z1‖2

1,Ω̃
+

+ρ‖E1z2 − J∗z2‖2
1,Ω̃

+ ‖E2z1 − I∗z1‖2
1,Ω + ‖E1z2 − J∗z2‖2

0,Ω +

+γdiv‖∇ · (E2z1 − I∗z1)‖2
0,Ω +

∑
K

δK |E1z2 − J∗z2|21,K∩Ω +

+
∑
ΓD,K

h−1
K ‖E2z1 − I∗z1‖2

0,ΓD,K
+
∑
ΓD,K

h−1
K ‖n · (E2z1 − I∗z1)‖2

0,ΓD,K

≤ C(γdiv, Ω̃,Ω)
∑
K

[
ρh2

K‖z1‖2
2,K∩Ω + ρ‖z2‖2

1,K∩Ω + h2
K‖z1‖2

2,K∩Ω +

+h2
K‖z2‖2

1,K∩Ω + δK‖z2‖2
1,K∩Ω

]
≤ C

∑
K

[
(ρ+ 1)h2

K‖z1‖2
2,K∩Ω + (h2

K + ρ+ δK)‖z2‖2
1,K∩Ω

]
.

Using this, the given estimate follows directly.

Now we give the a priori error estimate with respect to ‖(·, ·)‖ρ,h,sym, which controls

both the quantities ‖eρu‖1,Ω and ‖eρp‖0,Ω.

Lemma 3.10. Let ν = σ = 1, β = 0 and the assumptions of Theorem (3.2) be true.

Then for the solution of the discrete regularized problem (3.28) it holds the a priori

error bound

‖eρ‖ρ,h,sym ≤ Ch
[∑

K

(ρ+ 1 + (δK + ρ)h−2
K )(‖E2uh‖2

2,K + ‖E1ph‖2
1,K)

] 1
2
, (3.35)

with a constant C > 0 not depending on h and ρ.
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3.3 FD discretization of the Oseen problem

Proof. Employing Theorem 3.2, which clearly covers the case under consideration

as well, yields:

‖((uρh − I∗u, pρh − J
∗p))‖ρ,h,sym (3.36)

≤ β−1
s sup

(vh,qh)∈Wh

(ρB + A∓h )((uρh − I∗u, pρh − J∗p), (vh, qh))
‖(vh, qh)‖ρ,h,sym

.

As we deal with a regularized method, we lack the Galerkin orthogonality with

respect to the discrete spaces used for the purpose. Using relation (3.29) instead,

we are able to work around this problem, similar to the scalar case. Thus, in order

to derive an upper bound of the term on the right hand side of the latest equation:

(ρB + A∓h )((uρh − I∗u, pρh − J
∗p), (vh, qh))

= (ρB + A∓h )((E2u− I∗u, E1p− J∗p), (vh, qh))− ρB((E2u, E1p), (vh, qh))

=
∑
K

{
ρ
[
(E2u− I∗u,vh)1,K + (E1p− J∗p, qh)1,K

]
+ (E2u− I∗u,vh)1,K∩Ω +

−(E1p− J∗p,∇ · vh)K∩Ω + (∇ · (E2u− I∗u), qh)K∩Ω +

+γdiv(∇ · (E2u− I∗u),∇ · vh)0,K∩Ω +

+δK(−4(E2u− I∗u) + (E2u− I∗u),∇qh)K∩Ω +

+δK(∇(E1p− J∗p),∇qh)K∩Ω − 〈ν∂n(E2u− I∗u),vh〉ΓD,K +

∓〈ν(E2u− I∗u), ∂nvh〉ΓD,K + νγ∓Dh
−1
K 〈E2u− I∗u,vh〉ΓD,K +

+〈E1p− J∗p,n · vh〉ΓD,K − 〈n · (E2u− I∗u), qh〉ΓD,K +

+h−1
K γ∓1 〈n · (E2u− I∗u),vh〉ΓD,K − ρ

[
(E2u,vh)1,K + (E1ph, qh)K

]}
≤ C

[∑
K

(ρh2
K + h2

K + δK)‖E2u‖2
2,K∩Ω +

+(ρ+ h2
K + δK)‖E1p‖2

1,K + ρ
{
‖E2u‖2

2,K + ‖E1p‖2
1,K

}] 1
2‖(vh, qh)‖ρ,h,sym

≤ Ch
{∑

K

(ρ+ 1 + (ρ+ δK)h−2
K )(‖E2u‖2

2,K + ‖E1p‖2
1,K)

} 1
2‖(vh, qh)‖ρ,h,sym.

Using this bound together with relation (3.36), the claim follows now by splitting eρ

into approximation and method error, Lemma 3.9 and a simple triangle inequality.

63



3 Discretization

3.4 Time discretization

In order to handle non-stationary problems we will focus on Rothe’s method. This

means first a semi-discretization in time is carried out, using suitable finite difference

approximations for the time derivative. After that, we treat the spacial behaviour

by the finite element method. As we want to handle time-dependent domains and

local refinement, Rothe’s method is better suited compared to the classical method

of lines, where the spacial discretization by the FEM is carried out first. A review

on handling time-dependent problems by the finite element method can be found

e.g. in [Ran06,QV94,GR94,Glo03].

To fix the idea, let F be a non-linear differential operator in space, e.g. resulting

from the RDC subproblems given in the first chapter, and acting on an appropriate

function u, which may be time-dependent as well. Following Rothe’s method the

initial value problem

∂tu+ F (u) = 0, t ∈ (0, T ), u(0) = u0, (3.37)

will be discretized in time first, with u being an element of a suitable Hilbert space.

Let 0 = t0 < t1 < · · · < tN = T be a partition of the time interval [0, T ]. One family

of schemes for the semi-discretization in time is the so called one-step θ scheme. On

an appropriate function space V , with u0 = u(·, 0) ∈ V given, it can be written as:

For each time step n ∈ {1, . . . , N} solve the problem

un ∈ V :

(
un − un−1

τn
, v

)
Ω

+A(θun + (1− θ)un−1; v) = 0 ∀v ∈ V, (3.38)

where A is the semi-linear form resulting from passing over to the weak formulation,

τn := tn − tn−1 is the discrete nth time step size, un := u(·, tn) ∈ V and θ ∈ [0, 1] is

a continuous parameter.

By choosing θ = 1 respectively θ = 0, the implicit and explicit Euler schemes can

be obtained. The implicit Euler scheme is very stable and has good smoothing

properties in case of convection dominated problems, but is only of first order time

accuracy; moreover it is very dissipative, leading to unwanted damping effects for

example in flow problems. The explicit Euler scheme is also limited to first order

accuracy, and additionally to very small time steps necessary to ensure the stability
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3.4 Time discretization

of the resulting scheme. For this reasons the case θ = 0 is avoided in this work. The

choice θ = 1
2

gives a variant of the second order accurate Crank-Nicolson scheme,

which is semi-implicit and less dissipative than the implicit Euler scheme.

As an alternative, the A-stable backward differencing scheme of order two (BDF2)

is given: Instead of approximating the time derivative by the standard difference

quotient, the one sided difference quotient

∂tu ≈
3
2
un − 2un−1 + 1

2
un−2

τn

is used for approximation.

Following that, and again after (uniform) partition of the time-interval in each time

step n ∈ {2, . . . , N}, with un−1, un−2 ∈ V given, solve

un ∈ V :

( 3
2
un − 2un−1 + 1

2
un−2

τn
, v

)
Ω

+A(un; v) = 0 ∀ v ∈ V. (3.39)

The semi-linear form A again originates from the resulting weak formulation. This

scheme is little dissipative due to its A-stability. The one-step θ scheme given

above can be used in order to get an adequate second starting value, as noted

in [Glo03]. Moreover, the time step size is assumed to be constant during the whole

computation, but there are variants of the BDF2 scheme being able to handle varying

time steps as well.

With that in mind, for each time step an equation being discretized in time results,

which can now be handled by the finite element method after passing over to a

finite dimensional subspace and linearization (see Subsection 4.3) of the resulting

discrete weak formulation. The resulting equations, when stemming from flow or

RDC problems, in all cases will have the form discussed in the former sections of

this chapter.
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4 Numerical treatment

This chapter deals with the technical details in order to handle the numerical proce-

dures necessary for implementation of the techniques introduced in the former parts

of this work. The C++ program library deal.II (see [BHK07]) is used as a central

basis for this attempt. First one has to think about the way of getting a suitable

and accurate approximation of the original domain Ω under consideration. As we

have to deal with unfitted grids with respect to the boundary Γ = ∂Ω, suitable

quadrature rules have to be provided about to assemble the matrix and right hand

side entries of the linear equation systems resulting from the introduced methods.

Another aspect is the linearization of the underlying non-linear problems in a suit-

able way. At the end, various numerical tests of the methods proposed are presented

in order to confirm the theory and implementational methods.

4.1 Approximation of the domain Ω and local

integration

Providing Assumptions A1-A3 of Chapter 3 hold true, it is possible to approximate

the boundary zone, that is the set of local elements Ω ∩K, with Ω ∩ Γ 6= ∅, where

K is an element of the underlying triangulation of the hold all domain Ω̃, by shape

regular polyhedra. With that in mind, it is obvious to approximate the boundary

Γ = ∂Ω by a set of piecewise polygons

Γh :=
{

(x, y) ∈ R2 : φh(x, y) = 0
}
, φh = Ihφ,

in case of using the piecewise bilinear FE interpolant φh of the level set function φ,

describing the boundary with respect to the triangulation, see Figure 4.1.

In order to get an accurate approximation, preserving the asymptotic behaviour

of the overall method, first the intersection points of Γh with the underlying grid
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4 Numerical treatment

Γh
Γ

Figure 4.1: Example of a smooth domain Ω bordered by Γ and approximated piece-
wise polygonal domain Ωh bordered by Γh on two local neighbouring
elements in the boundary zone. The local domain Ωh is shaded grey.

have to be estimated. This is done element by element using the piecewise bilinear

approximation of the level set function φ, describing the boundary implicitly. A

suitable approximation of the original domain Ω then is given by the polygonal set

Ωh := {(x, y) ∈ R2 : φh(x, y) < 0}.

Each element K of the covering triangulation is marked whether it is part of Ω, being

part of the boundary zone (K ∩ Γ 6= ∅), or lying completely outside the domain of

interest, see Figure 4.2. According to that, there are three different cases to treat

with respect to numerical quadrature. The criterion is simply according to the signs

of the level set function, being evaluated at the vertices of an element. This can in

principle be generalized to the full three dimensional case, again by using for example

a nodewise interpolant of the original level set function, see [LN11]. However, the

local contributions to the stiffness matrix and right hand side are obtained regarding

the three possible cases.

Case 1:

The numerical integrations on the elements completely within Ω is handled the

standard way, using the deal.II routines for such tasks. The deal.II library provides

a whole zoo of quadrature rules. In particular we utilize Gaussian quadrature within

the implementations.

Case 2:

In the case of an element being part of the boundary zone, only the part lying within

the approximated domain, using the approximate polygonal boundary description

locally, is considered for integration regarding the weak formulation of the original

problem to be solved on Ω, see (3.2) and (3.28).
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4.1 Approximation of the domain Ω and local integration

case 3

case 2

case 1

Figure 4.2: Example of a grid partitioned into those cells lying inside Ω (case 1,
dark shaded), those in the boundary zone (case 2, white) and those cells
outside Ω (case 3, bright shaded). Ω

∗
h ⊂ Ω̃ from (4.1) below is the union

of white and dark shaded elements.

A C++ class LocalIntegrationData, developed for handling this case, provides the

infrastructure for giving the elementwise information regarding local intersections

with the boundary, splitting the local geometry into elementary units, being quadri-

laterals, and giving the quadrature data (quadrature points and weights) in order to

generate a suitable quadrature rule needed for integration. Examples for this kind

of splitting are given in Figure 4.3.

In older implementations the splitting into elementary units has been into quadri-

laterals and triangles, the quadrature formulas being generated according to [Str71]:

Starting with a simple trapezoidal rule up to nine-point Gaussian quadrature rule

for a local rectangle.

The final implementation introduces a splitting into quadrilaterals only. This has

the advantage of bringing the whole lot of two dimensional quadrature rules pro-

vided by the deal.II library into play directly (deal.II by itself is only able to handle

quadrilateral and hexahedral geometries). The analogous things are provided by

the member functions of the LocalIntegrationData class in the case of contributions

from local boundary integrals on Γh.
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Γh

1 2

3

Γh

1

Γh
1

2

Figure 4.3: Examples for splitting the local approximations K ∩Ωh in the boundary
zone (marked in grey colour) into quadrilaterals for ease of elementwise
cut-integration, required by the FD methods at hand. Left splitting
results in three, the right one into two quadrilaterals, while the one in
the middle can be treated directly.

Case 3:

The last situation, that is an element K lying completely outside the domain Ω,

can be handled in two ways. One is that integrations in order to fill the system

matrix are simply carried out for the bilinear form from regularization on that cell,

which is the standard way described in the former chapter. The other is handled

not exactly as in the original regularized method stated above. Instead of employing

the bilinear form b(·, ·) from (3.2), when dealing with an RDC system, or B(·, ·) for

an Oseen problem from Section 3.3, both ”living” on the whole grid, the forms

bh(uh, vh) := (∇uh,∇vh)Ω∗h
or Bh(uh,vh) := (∇uh,∇vh)Ω∗h

are used for regularization along with the standard deal.II routines for integration.

The set Ω∗h is defined as

Ω∗h := {K ∈ Th : K ⊂ Ω} ∪ {K ∈ Th : Γ ∩K 6= ∅}, (4.1)

see Figure 4.2. The obvious alternative choice Ω̃ = Ω∗h for the fictitious domain is

discussed and employed e.g. in [BH10a,BH10b].

Doing so, those degrees of freedom sharing no support with those lying in Ω
∗
h, are

constraint to zero. Note that this could be interpreted as an artificial jump of the

coefficients, but the convergence properties of the overall scheme is preserved, as on

the one hand we are only interested in the restriction of the solution to the domain

Ω and on the other hand the triangulation covers the interface describing the jump

exactly, see [Hac86]. However, we could have constrained the discrete solution of
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4.2 A geometrical regularization method

problem (3.2)/(3.28) to another value in the case of not directly involved degrees of

freedom, as the discrete solution (as well as the underlying continuous one) has no

physical significance in this part of the fictitious domain.

4.2 A geometrical regularization method

In order to ensure the stability of the discrete problems resulting form the regularized

ones, and to get a suitable error analysis, Assumptions A1-A3 have been made in

Chapter 3. In practice Assumption A2 and A3 are not fulfilled on an arbitrary shape

regular mesh in general, at least not locally. Especially the violation of Assumption

A3 results in local instabilities in the numerical solution, to be observed as needle-

like peak singularities lying slightly outside the domain Ω. This is due to arbitrary

small entries in the system matrix, stemming from cut-integration on elements in

the boundary zone. One possibility to handle this problem would be to vary the

shape of an element: If necessary, slightly shift the vertices of an element in the

interface zone, taking into account the position of the intersection points, in order

to get a local inequality (3.6) fulfilled.

While this is a good choice in case of a stationary domain Ω, this could lead to

problems in the case of Ω = Ω(t). Another possibility of handling the drawback of

Assumption A3 is not fulfilled would be to slightly shift the intersection points of

the discrete zero level set and underlying grid instead of the vertices (if necessary),

in order to preserve the mesh, which is a central desire of our methods at hand.

Clearly, these shifts have to be made in such a way that the asymptotic behaviour

of the overall numerical method is preserved.

The strategy realized in the implementation, if an additional geometrical regulariza-

tion is desired, in case of an element K with K ∩ Γ 6= ∅, is the following. It clearly

orients itself on the definition of hΓD,K , see (3.3) and Figure 4.4 for an example:

• First compute the two intersection points of approximated boundary Γh and

∂K,

• estimate the distances d1, d2 of the in each case closest grid-nodes within Ω to

the intersections,

• given a number l ∈ (0, 1): If min{d1, d2} < lhK , find this minimum and move

the affected intersection point(s), such that both points have a distance not

less then lhK to the closest inner node.

71
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The choice of the parameter l ideally should recover the O(h2)-error of the overall

geometrical approximation. Regularization methods in the same spirit have been

realized in [CB09,DBDV10].

ΓD,K

lhK

lhK

lhK

lhK

lhK

lhK

lhK

lhK

ΓD,K

lhK lhK

lhKlhK

lhK

lhK lhK

lhK

Figure 4.4: Example of the local geometrical regularization. The right intersection
point of approximate boundary and grid is slightly moved in order to
get a sufficiently shape regular artificial element K ∩ Ωh in terms of
Assumption A3, while the overall order of convergence is preserved.

4.3 Non-linear defect correction

In the stationary non-linear case, the resulting equation system will be solved using

fixed point defect correction iteration based on a Newton or Quasi-Newton method.

In particular the method is interpreted as a defect correction iteration based on the

standard Newton method. The Jacobian of the underlying non-linear residual R,

resulting from the non-linear regularized/penalized formulations, is substituted by

an adequate approximation DR̃ if necessary.

The original residual can be written out as follows:

R(u; v) =
N∑
i=1

Ri(u; v), (4.2)

with Ri = Ri
Ω̃

+Ri
Ω +Ri

Γ +Ri
stab and N being the number of component functions of

the solution u. The different terms of Ri, in order of appearance in the summation,

are the residual contributions in the weak formulation resulting from regularization,

the original problem on the domain Ω, the ones from weakly imposing the boundary
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4.3 Non-linear defect correction

condition and ensuring stability in case β 6= 0 and/or violation of the discrete inf-sup

condition by Galerkin least squares stabilization.

There are different kinds of pre-linearization in order to get efficient schemes for

different kinds of non-linear problems, taking the special behaviour of the underlying

problem into account. In all cases these methods have to lead to an approximate

Jacobian that is close enough to the original one in order to get an accurate scheme.

As such techniques are dependent on the special character of the problem, this will

be discussed in the application parts. Only a general procedure is described within

this section. Let i be an iteration index. The resulting fixed-point iteration then

writes:

1. Start with a predictor u0,

2. Find δui such that:

DR̃(ui; v)(δui) = −R(ui; v) ∀v ∈ V,

ui+1 := ui + αδui,

while ‖R(ui)‖ < tol.

In this procedure tol is a very small number, e.g. of order O(h2) at min while using

globally refined meshes, such that the error of the non-linear scheme is reduced

down to the approximation error, as bilinear FE are used for spatial discretization.

The parameter α is set to α := 2−k, with k being the smallest non-negative integer

such that ‖R(ui + 2−kδui)‖ < ‖R(ui)‖, in order to ensure the monotonicity of the

iteration scheme. In each iteration step the linear system for the next solution

update is solved via a CG solver in the symmetric, or a GMRES solver in the non-

symmetric case, in both cases preconditioned by a sparse LU or ILU decomposition

of the system matrix. The deal.II intern linear algebra module is utilized for that.

Moreover, the sparse direct solver UMFPACK, see [Dav04], can be used for solving

the resulting system or providing the LU decomposition.
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4.4 Numerical accuracy

Several numerical examples with Ω = B1(0) are presented in order to demonstrate

the methods introduced during the former parts of this work with respect to the

model equations. We will concentrate on the case of pure Dirichlet problems, as

these essential boundary conditions are much harder to impose in a weak sense

then the natural Neumann conditions. Besides that and at first, we will test the

LocalQuadratureData class.

Ω̃

Ω1

Ω2

Ω3

Figure 4.5: The rectangular hold all domain Ω̃ = (−1.2, 1.2)2 for test case
0 with given circle, ellipse and rectangle embedded for testing the
local integrator. The area meas

(
Ω̃ \ (Ω1 ∪ Ω2 ∪ Ω3)

)
along with

meas
(
∂ (Ω1 ∪ Ω2 ∪ Ω3)

)
have to be estimated by numerical integrations

using the LocalQuadratureData class member functions.

Test case 0

First, a non-trivial numerical test regarding the LocalQuadratureData class, used

for carrying out the cut-integrations in our FD method, is presented. The problem

at hand is: Estimate, by numerical integration, the area of Ω := Ω̃ \ (Ω1 ∪ Ω2 ∪ Ω3),

with Ω̃ being the rectangle (−1.2, 1.2)2 and

Ω1 := B0.25(−0.75,−0.75),

Ω2 :=

{
(x, y) ∈ R2 :

(
x− 0.75

0.2

)2

+

(
y − 0.75

0.25

)2

< 1

}
,

Ω3 :=
{

(x, y) ∈ R2 : |x|+ |y| < 0.3/
√

2
}
,

see picture 4.5. Moreover, the length of Γ := ∂ (Ω1 ∪ Ω2 ∪ Ω3) has to be estimated.

The tests are carried out starting with a four times up to ten times globally refined
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mesh covering Ω̃ = (−1.2, 1.2)2. In this globally refined case the order of convergence

is expected to be O(h2), which is reached as the results shown in Table 4.1 indicate.

Cycle h Error meas(Ω) Rate Error meas(Γ) Rate
4 0.2121 2.77e-02 - 6.32e-02 -
5 0.1061 6.86e-03 2.01 1.65e-02 1.94
6 0.0530 1.69e-03 2.02 4.04e-03 2.02
7 0.0265 4.43e-04 1.93 1.03e-03 1.98
8 0.0133 1.09e-04 2.03 2.54e-04 2.01
9 0.0066 2.73e-05 2.00 6.43e-05 1.98
10 0.0033 6.75e-06 2.01 1.59e-05 2.02

Table 4.1: Absolute errors for meas(Ω) and meas(Γ), with Ω := Ω̃ \ (Ω1 ∪ Ω2 ∪ Ω3)
and Γ := ∂ (Ω1 ∪ Ω2 ∪ Ω3), resulting from the approximate integration,
using member functions of the LocalIntegrationData class for test case 0.
The results show almost optimal order of convergence.

Test case 1

Test case 1 deals with a non-linear reaction-diffusion problem on Ω = B1(0) of the

form

u = (u1, u2) ∈ (C2(Ω) ∩ C0(Ω))2 :


−4u1 = sin(u2) + f1,

−4u2 = sin(u1) + f2,

u|Γ = g.

(4.3)

The equation data f1, f2 and g are defined, such that the analytical solution is

u = (exp(4x), x3−y3). Formulations (3.2)− and (3.2)+ have been employed in order

to compute a numerical solution to the problem, without additional geometrical

regularization, while the degrees of freedom without support in Ω ⊂ Ω̃ have been

constrained to zero.

The relative H1- and L2- errors with respect to Ωh are presented, the stabilization

parameter γ−D is calibrated to a value of 300 and γ+
D to 50 - only the sixth part

of γ−D, while ρ = h2. Parameter γ−D has to be set to such a huge value due the

unfitted grid, see also the discussion in Chapter 2. A four times globally refined

Cartesian mesh has been used as a starting grid for the calculations. As can be

seen from Table 4.2 the error-reduction rates are optimal in case of both variants

of Nitsches method. The resulting graphical output is given in Picture 4.6. As

linearization technique Newtons method has been used, while in each iteration step

a preconditioned CG solver served as a linear solver. However, the Newton iteration

converges to an absolute error of the non-linear residual of less than tol = 10−12 in
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h #Dofs ‖eρ1‖0,Ωh/‖u1‖0,Ωh Rate ‖eρ1‖1,Ωh/‖u1‖1,Ωh Rate
symmetric Nitsche method

0.2121 578 6.06e-02 - 1.57e-01 -
0.1061 2178 1.53e-02 1.98 8.21e-02 0.93
0.0530 8450 3.54e-03 2.11 4.12e-02 1.00
0.0265 33282 8.51e-04 2.06 2.09e-02 0.98
0.0133 132098 2.07e-04 2.04 1.05e-02 0.99
0.0066 526338 5.11e-05 2.02 5.29e-03 0.99

asymmetric Nitsche method
0.2121 578 6.03e-02 - 1.59e-01 -
0.1061 2178 1.53e-02 1.98 8.31e-02 0.94
0.0530 8450 3.57e-03 2.10 4.12e-02 1.01
0.0265 33282 8.66e-04 2.04 2.12e-02 0.96
0.0133 132098 2.12e-04 2.03 1.06e-02 1.00
0.0066 526338 5.23e-05 2.02 5.35e-03 0.98

h #Dofs ‖eρ2‖0,Ωh/‖u2‖0,Ωh Rate ‖eρ2‖1,Ωh/‖u2‖2,Ωh Rate
symmetric Nitsche method

0.2121 578 5.35e-02 - 1.28e-01 -
0.1061 2178 1.00e-02 2.42 6.03e-02 1.08
0.0530 8450 2.53e-03 1.99 2.98e-02 1.02
0.0265 33282 6.02e-04 2.07 1.49e-02 1.00
0.0133 132098 1.47e-04 2.04 7.47e-03 1.00
0.0066 526338 3.58e-05 2.03 3.73e-03 1.00

asymmetric Nitsche method
0.2121 578 5.25e-02 - 1.29e-01 -
0.1061 2178 9.89e-03 2.41 6.10e-02 1.08
0.0530 8450 2.52e-03 1.97 2.98e-02 1.03
0.0265 33282 6.06e-04 2.06 1.51e-02 0.98
0.0133 132098 1.48e-04 2.03 7.49e-03 1.01
0.0066 526338 3.63e-05 2.03 3.76e-03 0.99

Table 4.2: Relative H1(Ωh)- and L2(Ωh)-errors for test case 1, using both the sym-
metric and asymmetric Nitsche formulations (3.2)∓. Above: For solution
component 1, below: For solution component 2 - in all cases showing
optimal error-reduction rates.
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at most four steps, showing the quadratic reduction rate expected for the method.

As a pre-conditioner the LU decomposition of the Jacobian from the first iteration

has been used for all iteration steps.

Figure 4.6: Finite element solution of test case 1, with Ω̃ := (−1.2, 1.2)2. Left
picture-row: Components of the finite element solution after five global
refinements. Right picture-row: Finite element solutions after eight
global refinements.
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Test case 2

Now a first example treating a convection dominated problem is considered using

the formulation (3.9)−:

−ε4u+ β · ∇u = f on B1(0),

u = 0 on S1,

where ε = 10−5, f = 1 and β = (1, 0). The right picture in Figure 4.7 shows the

solution resulting from the discrete regularized problem with additional SD enabled,

while the left one is obtained using the (regularized) standard Galerkin method. In

both cases it was γ−D = 300, ρ = h2, the SD stabilization parameters chosen due

to Chapter 3 with δ0 = 1. Both pictures show the discrete fictitious domain finite

element solution on a six times globally refined mesh, the fictitious domain being

(−1, 1)× (−1, 1). The right result is showing only small peaks next to the out-flow

boundary, which is due to the choice of Ω̃. The effect of the streamline diffusion

is clearly observable. The left one on the same grid shows the typical over- and

undershots applying in this situation, as no stabilization has been added.

Figure 4.7: Right: Finite element solution of the convection dominated problem
from test case 2, stabilised by SD - only small oscillations are observable.
Left picture: Finite element solution of the same problem based on the
standard Galerkin method, showing heavy over- and undershots.
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Test case 3

In order to show the accuracy of the stabilized method, now a linear scalar test-case

of a convection dominated RDC problem of the form

−ε4u+ β · ∇u+ u = f on B1(0),

u = gD on S1,

is presented, the stabilization parameters chosen as above. The data being defined

such that

u(x, y) =
1

2

(
1− tanh

( x

0.05

))
,

which is a smoothed step-function and ε = 10−5. Again it is Ω = B1(0), while

Ω̃ := (−1.2, 1.2)2, γ−D = 300 and ρ = h2, using formulation (3.9)−.

As in case of the first test, a four times globally refined Cartesian mesh has been used

as a starting grid. The results can be found in Figure 4.8 and Table 4.3, showing

optimal order of convergence with respect to both the H1(Ωh)- and L2(Ωh)-norms.

This is unless only O(h) can be granted a priori from (3.22), while in general O(h3/2)

can be expected from the common estimations found in the literature. A higher

order then expected is a circumstance often observed in case of the SD method,

see [Zho97].

h # Dofs ‖eρ‖0,Ωh/‖u‖0,Ωh Rate ‖eρ‖1,Ωh/‖u‖1,Ωh Rate
0.1945 289 1.81e-01 - 7.65e-01 -
0.0972 1089 3.55e-02 2.35 4.04e-01 0.92
0.0486 4225 8.76e-03 2.02 1.85e-01 1.12
0.0243 16641 2.04e-03 2.09 9.13e-02 1.02
0.0122 66049 4.79e-04 2.09 4.52e-02 1.01
0.0061 263169 1.15e-04 2.05 2.25e-02 1.00
0.0030 1050625 2.83e-05 2.03 1.12e-02 1.00

Table 4.3: Results for test case 3 using formulation (3.9)−, showing optimal order of
convergence measured in relativeH1(Ωh)- as well as relative L2(Ωh)-norm.
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Figure 4.8: Resulting FE solution using (3.9)− for test case 3. Left: Solution on
a five times globally refined grid. Right: Solution on an eight times
globally refined grid.

Test case 4

At the end a numerical example treating the stationary Navier-Stokes problem is

presented. It is Ω = B1(0) and:

(u, p) :


−4u+ (u · ∇)u+ u+∇p = f in Ω,

∇ · u = 0 in Ω,

u = g on Γ.

(4.4)

The equation data are chosen such that

u = (cos(x) sinh(y), sin(x) cosh(y)),

p = − sin(x) sinh(y)

is the resulting analytical solution of the problem. The numerical tests have been

accomplished using the FE formulations (3.28)− and (3.28)+, while Ω̃ = (−1.2, 1.2)2.

A direct solver based on the UMFPACK library has been employed for solving the

resulting system. A Quasi-Newton method based on an Oseen linearization has

been used in order to linearize the problem. The iteration has been carried out until

the non-linear residual was below h2

100
, which was reached in four steps at max. The

regularization and penalty parameters, after fitting by hand, have been set to ρ = h2

10
,
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while γ−D = 300 along with γ+
D = 50, γ−1 = 10 and γ+

1 = 1. The elementwise constant

least squares stabilization parameters have been set to δK := h2
K and γdiv = hK ,

which coincides with the choice in [RST08] for the case ν = 1.

Again starting point for the computations was a four times globally refined Cartesian

grid. The results regarding the usual error analysis in case of the symmetric and

asymmetric Nitsche method are shown in Table 4.4 and 4.5. A graphical output for

both velocity u and pressure p is shown in Figure 4.9 and 4.10.

It can be seen that both methods match each other regarding accuracy, while the

penalty parameter in case of the asymmetric Nitsche method can be chosen six times

smaller then in the symmetric Nitsche method. The reason again is the unfitted grid

along with the cut-integrations. The order of converge is almost optimal in case of

the velocity variable regarding both the L2- and H1-norm with respect to Ωh. The

order of convergence in the L2(Ωh)-norm for the pressure is suboptimal and about

1.7. As the a priori error bound in case of the linear symmetrical Stokes problem

(3.35) grants only an order 1, this still is a good result.

h # Dofs ‖eρu‖0,Ωh/‖u‖0,Ωh rate ‖eρu‖1,Ωh/‖u‖1,Ωh rate
symmetric Nitsche method

0.2121 578 5.67e-03 - 3.64e-02 -
0.1061 2178 2.57e-03 1.16 1.51e-02 1.27
0.0530 8450 7.89e-04 1.70 7.12e-03 1.09
0.0265 33284 2.13e-04 1.89 3.46e-03 1.04
0.0133 132098 5.46e-05 1.96 1.69e-03 1.03
0.0066 526338 1.38e-05 1.99 8.44e-04 1.00

asymmetric Nitsche method
0.2121 578 5.68e-03 - 3.53e-02 -
0.1061 2178 2.57e-03 1.15 1.50e-02 1.24
0.0530 8450 7.89e-04 1.70 7.08e-03 1.08
0.0265 33284 2.12e-04 1.89 3.45e-03 1.04
0.0133 132098 5.46e-05 1.96 1.69e-03 1.03
0.0066 526338 1.38e-05 1.99 8.43e-04 1.00

Table 4.4: Relative error-reduction rates for the velocity component for test case
4, measured in (L2(Ωh))

2- and (H1(Ωh))
2-norm. The results are show-

ing almost optimal order of convergence in case of the symmetric and
asymmetric Nitsche method, while using unfitted grids.
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h # Dofs ‖eρp‖0,Ωh/‖p‖0,Ωh rate

symmetric Nitsche method
0.2121 289 1.78e-01 -
0.1061 1089 6.93e-02 1.36
0.0530 4225 2.12e-02 1.71
0.0265 16639 6.34e-03 1.74
0.0133 66049 1.94e-03 1.71
0.0066 263169 6.19e-04 1.65

asymmetric Nitsche method
0.2121 289 1.76e-01 -
0.1061 1089 6.87e-02 1.40
0.0530 4225 2.11e-02 1.70
0.0265 16639 6.31e-03 1.74
0.0133 66049 1.93e-03 1.71
0.0066 263169 6.16e-04 1.65

Table 4.5: Relative L2(Ωh)-error-reduction rates for the pressure component for test
case 4. The result shows an order of convergence of about 1.7 both for
the symmetric and asymmetric Nitsche method. This is being less then
optimal, but still good and of higher order.

Figure 4.9: Numerical solution of the velocity variable for test case 4. Left: On a
five times globally refined grid. Right: On an eight times globally refined
grid. The degrees of freedom without support on Ω have been set to zero.
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Figure 4.10: Numerical solution of the pressure variable for test case 4. Left: On
a five times globally refined grid. Right: On an eight times globally
refined grid. As in case of the velocity the degrees of freedom without
support on Ω have been set to zero.
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This chapter is addressed to various application in order to confirm, test and explore

the possibilities of the new FD methods. The focus within the application chapter is

solely on the asymmetric versions of Nitsches method, as stability is preferred over

high accuracy in our case, while the accuracy tests from Chapter 4 suggest that in

practice the difference in error-reduction is not very big. The outline is as follows:

First, a benchmark example regarding steady laminar flow around a plain cylinder is

presented, followed by a related unsteady flow problem using the same geometrical

setting. Moreover, we treat Boussinesq equations on a series of differently shaped

stationary domains. In the end a moving boundary value problem, again from the

flow section, is presented.

5.1 Application I: Steady laminar flow around a plain

cylinder

The flow around a plain cylinder at low Reynolds number is a widely used benchmark

problem in fluid dynamics. This is for good reason, as it belongs to a class of standard

problems in order to explore and test the flow around a rigid obstacle. The following

test problem was originally launched by Turek et al. in [ST96] as test case 2D-1.

Experimental data are available for comparison with plenty of existing numerical

data, while the underlying geometry is relatively simple but complicated enough to

provoke effects due to non-linearity as well as non-symmetry.

85



5 Applications

ΓC

Γin Γout

Γ0

Γ0(0, 0) (L, 0)

(0, H) (L,H)

Figure 5.1: Geometry of the first application: Plain rectangular canal Ω̃ with inflow
boundary Γin, outflow boundary Γout, non-slip boundary Γ0 and plain
cylinder boundary ΓC . ΓC is described only implicitly by a characteristic
zero level set.

5.1.1 Problem setting

The steady Navier-Stokes equations, in Ω := (0, L)× (0, H) \ BR(Pm), in the form:

−ν4u+ (u · ∇)u+∇p = 0 in Ω,

∇ · u = 0 in Ω,

u = 0 on Γ0 ∪ ΓC , (5.1)

u = g on Γin,

ν∂nu− np = 0 on Γout,

H = 0.41, L = 2.2, R = 0.05, Pm = (0.2, 0.2),

Um = 0.3, g = (4Umy(H − y)/H2, 0), ν = 10−3,

have to be solved. The benchmarking geometry is sketched in Figure 5.1.
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5.1.2 Numerical details

The benchmarking geometry sketched in Figure 5.1 more exact shows the fictitious

domain

Ω̃ := (0, L)× (0, H)

for launching the FD method (3.28)+ based on regularization and the asymmet-

ric Nitsche method introduced in Section 3.3, but with the adjusted velocity and

pressure spaces

Vh :=

{
vh ∈

(
C0(Ω̃)

)d
: vh|K ∈ (Q1(K))d ∀K ∈ Th

}
∩
(
V 0

(
Ω̃
))
,

Qh :=
{
qh ∈ C0(Ω̃) : qh|K ∈ Q1(K) ∀K ∈ Th

}
,

with respect to a triangulation Th of the nearly Cartesian mesh. The inhomogeneous

inflow condition is enforced strongly in the first non-linear iteration step.

During the solution process, an Oseen linearization together with defect correction

takes place, substituting in the non-linear convection term the current solution by

the one from the last iteration step:

(ui+1
h · ∇)ui+1

h −→ (uih · ∇)ui+1
h .

For the numerical calculations we rely on the asymmetric Nitsche method (3.28)+

for its better stability properties. No further geometrical regularization (see Section

4.2) takes place during the computations.

While in the original problem the cylinder, or a geometrically approximation of the

latter, is cut out of the rectangular channel, the rigid obstacle is only represented

by a characteristic level set function describing the closed circle. However, under

normal circumstances, as the geometry is a relatively simple one, the usage of a

boundary-fitted grid, covering the inner boundary in an adequate way, is to be

preferred. But also it is a good test for a FD method.

The grids for numerical calculations stem from a standard rectangular triangulation

of the whole channel (see Figure 5.2 picture above), which then is three times (see

Figure 5.2 picture below), four and five times globally refined, while three local

refinement steps take place next to the inner cylinder boundary. More exact: An
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element is refined, if itself or its neighbour is cut by the boundary of the cylinder at

some level during refinement. That is also what naturally happens in a boundary-

fitted method, as the grid is much more refined next to the cylinder in order to give

better a approximation of the curved cylinder boundary.

Figure 5.2: Above: Coarse pre-refined rectangular mesh for the fluid benchmark
problem. Below: First computational mesh consisting of 4940 elements,
originating from the one above by three times global followed by three
times local refinement, in case an element or its neighbour is cut by the
cylinder boundary at some level during refinement.

5.1.3 Benchmark quantities

Typical benchmark quantities are the following ones, being functionally dependent

on the pressure p and the velocity u:

J4p(p) := p(0.15, 0.2)− p(0.25, 0.2), (5.2)

Jdrag(u, p) :=
2

U
2
D

∫
ΓC

((
2ν(∇u+∇uT )− pI

)
· n
)
· ex ds, (5.3)

Jlift(u, p) :=
2

U
2
D

∫
ΓC

((
2ν(∇u+∇uT )− pI

)
· n
)
· ey ds, (5.4)

where U = 0.3, yielding a Reynolds number Re = UD/ν = 20. It is D = 2R and

ex, ey are the standard unit vectors in x- and y-direction. The drag coefficient Jdrag

defined by the boundary integral (5.3) physically gives a measure for the resistance

of the body within the fluid environment, while the lift coefficient Jlift from (5.4) is

related to the lift force regarding the flow around the cylinder.
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5.1 Application I: Steady laminar flow around a plain cylinder

It is possible to represent the drag and lift coefficients by area integrals, which is

more robust and accurate compared to the boundary integral representation, see

e.g. [BR06].

In order to do so, and to treat things on the numerical level, we first migrate to the

discrete setting, i.e. ΓC is substituted by the piecewise polynomial approximation

ΓC,h, characterised by the nodewise Finite Element interpolant of a signed distance

function φcyl, describing ΓC by its zero level set, see Subsection 4.1.

Then, in the resulting weak formulation of (5.1) the test function is set to be

v̂d,h|Ω̃ := (1 + φcyl,h, 0), v̂d,h|∂Ω̃ := 0, (5.5)

v̂l,h|Ω̃ := (0, 1 + φcyl,h), v̂l,h|∂Ω̃ := 0. (5.6)

one after another.

Note that v̂d,h|ΓC,h = ex, v̂l,h|ΓC,h = ey and these test functions are contained in

(H1
0 (Ω̃))2. That along with backward partial integration, while utilizing consistency,

including the divergence-free constraint, gives alternatively:

Jdrag,h(u, p) := C
[(

2νε(u), ε(v̂d,h)
)

Ωh
+
(
(u · ∇)u, v̂d,h

)
Ωh
−
(
p,∇ · v̂d,h

)
Ωh

]
,

Jlift,h(u, p) := C
[(

2νε(u), ε(v̂l,h)
)

Ωh
+
(
(u · ∇)u, v̂l,h

)
Ωh
−
(
p,∇ · v̂l,h

)
Ωh

]
,

where C := 2

U
2
D

, ε(v) := 1
2

(
∇v + ∇vT

)
and Ωh is the polygonal implicitly given

approximation of Ω, see again Section 4.1.

From this the drag and lift coefficients are computed on the discrete level in all the

calculations.

5.1.4 Results and observations

The general behaviour of the fluid flow around the inner cylinder, along with the

resulting pressure and pressure isolines, both on the fictitious domain given above,

are shown in Figure 5.3. The pictures stem from numerical calculations on a mesh

with 137,133 degrees of freedom. As expected, the velocity magnitude is highest on

both sides of the inner boundary, while pressure maximum and minimum are to be

found on nearly diametrical points regarding the cylinder geometry in downstream

direction. A recirculation-zone is established downstream past the cylinder. Note

that due to the slightly non-symmetric geometry the solution is also slightly non-
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symmetric, while the solutions are smooth and the flow is laminar, as the Reynolds

number is low.

Figure 5.3: General behaviour of the solution from the fluid benchmark problem on
the fictitious domain (0, 2.2)×(0, 0.41). Above: Velocity profile including
streamlines; the resulting flow is laminar and slightly asymmetric due to
the implicitly given geometry. Below: Resulting pressure profile along
with pressure contours. Note that the velocity field as well as the pressure
variable is defined on the whole mesh, as can be seen from the pictures.
The cylinder is described by a characteristic level set function, with the
zero level set contour shown in the pictures.

In order to minimize the number of parameters stemming from regularization, sta-

bilization and penalization, first a lower bound for the parameter γD has to be

identified. It turns out that setting γD = 30, along with γ1 = 1, gives sufficiently

good results, such that in all calculations within this section the Nitsche parameters

are pinned to these values.

Next the choice δK := δ0 min{hK , h2
K/ν}, γdiv = δK is made, which is a possible

choice, with only one additional parameter δ0 originating from stabilization. Within

this configuration we first set ρ := h2
K/10, a choice being ideal in case of the sym-

metric Stokes problem, see error estimate (3.35), and alternatively ρ := h3
K . In order

to find a good value for the parameter δ0, several runs with δ0 ∈ {0.05, 0.1, 1} are

carried out.

As can be seen from Table 5.1, the results are in good agreement with the ones

published in the original paper [ST96] regarding accuracy and the number of degrees

of freedom to get a reliable result. Also the more recent results from [Win07] and
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5.1 Application I: Steady laminar flow around a plain cylinder

[SGW11] are matched. In [Win07] different FE pairings and continuous interior

penalty stabilization have been used, while [SGW11] can be assigned to the fictitious

domain context, using XFEM and domain decomposition.

The values of drag, lift and pressure difference coefficients are all together within

the lower and upper bounds given in [ST96] after three refinement cycles, in case the

parameters of the method are chosen well. While the choices ρ = h2
K/10 and ρ = h3

K

are sufficient along with δ0 = 0.1 or δ0 = 0.05, it can be seen from Table 5.1 that

δ0 = 1 gives no results within the claimed accuracy. Furthermore, the functional

values are quite sensitive especially regarding the choice of δ0, which is not a big

surprise.
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γD = 30, γ1 = 1, γdiv = δK = δ0 min{hK , h2
K/ν}

#Dofs hmin Jdrag Jlift J4p
Lower bound 5.5700 0.0104 0.1172
Upper bound 5.5900 0.0110 0.1176

15693 0.00253 5.77830 0.01368 0.11375
ρ = h2

K/10 43554 0.00126 5.66564 0.00913 0.11515
δ0 = 1 137133 0.00063 5.62323 0.01012 0.11657

470925 0.00032 5.60420 0.00996 0.11724
15693 0.00253 5.65120 0.00969 0.11761

ρ = h2
K/10 43554 0.00126 5.60955 0.01244 0.11735

δ0 = 0.1 137133 0.00063 5.58971 0.01070 0.11738
470925 0.00032 5.58307 0.01061 0.11742
15693 0.00253 5.64743 0.00962 0.11803

ρ = h2
K/10 43554 0.00126 5.60776 0.01265 0.11751

δ0 = 0.05 137133 0.00063 5.58848 0.01075 0.11746
470925 0.00032 5.58145 0.01052 0.11744

15693 0.00253 5.69177 0.01186 0.11335
ρ = h3

K 43554 0.00126 5.64366 0.00859 0.11499
δ0 = 1 137133 0.00063 5.61725 0.01004 0.11652

470925 0.00032 5.60258 0.00993 0.11723
15693 0.00253 5.57879 0.00742 0.11722

ρ = h3
K 43554 0.00126 5.59040 0.01184 0.11719

δ0 = 0.1 137133 0.00063 5.58415 0.01064 0.11734
470925 0.00032 5.58150 0.01058 0.11742
15693 0.00253 5.57540 0.00733 0.117641

ρ = h3
K 43554 0.00126 5.58869 0.01205 0.11735

δ0 = 0.05 137133 0.00063 5.58293 0.01067 0.11743
470925 0.00032 5.58067 0.01063 0.11744

Table 5.1: Results for the benchmark quantities Jdrag, Jlift and J4p on four grids
with increasing subtly; bounds taken from [ST96]. The Nitsche param-
eters have been fitted and pinned to γD = 30 and γ1 = 1, while ρ, γdiv
and δK are varied in order to find a reliable configuration of parame-
ters. As can be seen, the choices γdiv = δK = δ0 min{hK , h2

K/ν} with
δ0 ∈ {0.1, 0.05} give accurate results in case ρ ∈ {h2

K/10, h3
K}. The num-

ber of degrees of freedom noteworthy to get results within the claimed
accuracy is 137,133 using the grids described above. The minimal cell
diameter of a triangulation Th is hmin := min{diam(hK) : hK ∈ Th}.
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5.2 Application II: Non-steady flow around a plain cylinder

5.2 Application II: Non-steady flow around a plain

cylinder

Application II is addressed to non-steady flow around a plain cylinder. The general

ability of the developed methods for simulating problems from this field shall be

explored. In order to compare our results with reference solutions, known results to

be found on the FEATFLOW homepage by Turek (cf. [Tur98]) are used, utilizing

the same setting shown in Application I.

5.2.1 Problem setting

The non-steady Navier-Stokes equations, in Ω :=
(
(0, L)× (0, H) \ BR(Pm)

)
× I, in

the form:

∂tu− ν4u+ (u · ∇)u+∇p = 0 in Ω× I,

∇ · u = 0 in Ω× I,

u = 0 on
(
Γ0 ∪ ΓC

)
× I, (5.7)

u = g on Γin × I,

ν∂nu− np = 0 on Γout × I,

have to be solved, with the same parameters L,H,R, Pm and ν already used in

Application I, but setting Um = 3/2. This finally yields a maximum Reynolds

number Re = 100, which means leaving the laminar regime. The inflow condition

is weighted by min{1, t} in order to provoke a distinct phase of oscillating flow. In

addition we set I := (0, 5], as well as ”starting from rest” initial conditions.

We will compare our results with the ones from [Tur98], where Turek shows how

hard it is to get reliable solutions in case of flow problems even in case of such a

relatively low Reynolds number. The drag and lift coefficients defined by (5.3) and

(5.4) have to be computed in each time step.
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5.2.2 Numerical details

The common Oseen linearisation is used to treat the resulting non-linear system,

while utilizing the asymmetric Nitsche method (3.28)+. As we have to deal with a

time-dependent, non-linear problem, it is necessary to solve the resulting temporary

linear systems hundreds of times. During the solution process, assembling the matrix

and the LU-decomposition based pre-conditioner are the most time-consuming parts.

So in addition the system matrix is assembled completely new only as long as the

l2-norm of the non-linear residual is bigger than 10−5. This is a rather heuristic, but

economical strategy, in order to shorten the computational times along with getting

adequate solutions.

For time discretization the BDF2 scheme is used, with one implicit Euler step in

the beginning for construction of a second starting value. As a fully implicit scheme

is utilized, there are no too bad restrictions regarding the time step length. Never-

theless, the time step is chosen to be of about the same order of magnitude as the

smallest cell-diameter resulting from space discretization.

The coarse grid, on which the final one for the computations is based on, is shown in

Figure 5.4. The finer grids for the computations result from the coarse one by three

and four times global, followed by three time local refinement, similar to Application

I, while clearly the same definition for the discrete spaces is used in both cases. The

first grid then has 5964 cells and 18861 degrees of freedom, while the second has

18,036 cells and 56034 degrees of freedom. The smallest cell-diameter appearing is

hmin ≈ 0.00126, such that the time step is set to 4t = 0.001.

The parameters for regularization, stabilization and penalization are set to ρ =

0.1h2
K , γdiv = δK = 0.1hK , γD = 50 and γ1 = 5, based on the observations of

Application I. By choosing 4t = O(hmin), this is a feasible choice in case of the

stabilization parameter.

Figure 5.4: Pre-refined near Cartesian grid, used for testing the new methods.
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5.2.3 Results and observations

First thing the results show is that an unsteady flow develops in time, including the

effect of vortex shedding, see Figures 5.6 an 5.7.

We want to compare the solutions found by our FD based method on the grids

described above to solutions by Turek.

Following Turek, a grid consisting of 130 cells, with 702 degrees of freedom, called

the level-1 grid, while using non-conforming, non-parametric rotated bilinear FE, is

used, see Figure 5.5. This initial-grid then is k times uniformly refined, the resulting

mesh is called level-k grid. Turek used a fractional step theta scheme with adaptive-

time stepping. He concludes that the first qualitative reliable result can be found by

the level-4 solution, while higher level solutions roughly spoken yield more or less

the same qualitative reliable result.

Figure 5.5: Boundary-fitted coarse a priori grid (”level-1”) taken from [Tur98].

Picture 5.8 shows drag- and lift-coefficient over time plots, stemming from the own

computations, along with those found by Turek on the level-4 (8,320 cells / 42,016

degrees of freedom) and the level-7 grid (532,480 cells / 2,665,728 degrees of free-

dom). The latter serving as the reference solution.

It has to be said that this two solutions have been selected, because the level-4

solution is the first one giving at least qualitatively reliable results compared to the

reference solution, and at the same time being the one next to our own, taking into

account the spacial resolution. Thus, it would be desirable if our solution would be

at least in its range.

The results from our method slightly underestimate the drag compared to the ref-

erence solution, including a shift in the oscillation-frequency, see Figure 5.8. But
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after the development of the unsteady state is reached, they are better then level-4

result by Turek, which for itself overestimates the drag in time. In case of the lift vs.

time result, our results are between the level-4 and the reference solution after the

oscillations are fully developed, but being closer to the reference solution. Moreover,

the solution on the finer grid gives better results, which is not a big surprise.

In view of using a method from the fictitious domain context, where often mean

values in case of drag and lift over time are taken for comparison after the fully de-

veloped oscillations phase is reached (see e.g. [YMUS99] and the literature therein),

this is a very good result. In particular, it has been shown that the new methods

are able to deal with unsteady flow problems in principle.

Figure 5.6: Velocity close-ups in the near wake of the inner cylinder. Left: Stream-
lines and velocity magnitude short-time after the flow is fully developed,
showing a (nearly) laminar behaviour at first. Right: Instantaneous
streamline and velocity-magnitude plot; vortex shedding appears.
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5.2 Application II: Non-steady flow around a plain cylinder

Figure 5.7: Velocity magnitude (above) and pressure-contours (below) at final time
T = 5 in case of Application II.
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Figure 5.8: Drag and lift coefficient time plots indicate that the FD based meth-
ods give good results, without reaching the reference solution by Turek
(Turek 7). The drag coefficient is slightly underestimated compared to
the reference solution, but in a better range compared to the level-4
(Turek 4) solution by Turek. Here kru 5 indicates the result on the
coarser and kru 6 on the finer computational mesh, the latter being su-
perior to the kru 5 result by itself. Analogous things are valid in case of
the lift.
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5.3 Application III: Boussinesq equations on

multi-connected domains.

Another application is the numerical treatment of the so called Boussinesq equa-

tions, meaning without much going into detail, that the Navier-Stokes equations are

coupled with an equation for temperature.

At first we give a short review on what this system of equations is describing phys-

ically, followed by the illustration of a test case on the unit rectangle, in order to

show the standard solution of the problem on a very simple domain for increasing

Rayleigh numbers.

The highlight then is the presentation of results from exploring the possibilities of

the proposed methods on the field of Boussinesq equations on geometrically compli-

cated domains, i.e. placing obstacles inside the unit-rectangle, while changing the

boundary conditions.

5.3.1 Description of the problem

As a basis for the model treated in this part of the work we assume Ω̃ ⊂ R2,

with Γ̃ := ∂Ω̃ being partitioned into a Neumann- and a Dirichlet-part as usual. The

Boussinesq equations then can be written in the non-dimensional form (see [Ran08]):

∂tu−
1

Re
4u+ (u · ∇)u+∇p = − Ra

Re2Pr
gT in Ω̃× I, (5.8)

∇ · u = 0 in Ω̃× I, (5.9)

∂tT −
1

RePr
4T + u · ∇T = 0 in Ω̃× I, (5.10)

u = 0 on ∂Ω̃× I, (5.11)

T = TD on Γ̃D × I , ∂nT = TN on Γ̃N × I (5.12)

T = 0 , u = 0 in Ω̃× {0}. (5.13)

In this system, the triple of unknowns (u, p, T ) consists of the usual pair (u, p) de-

scribing the flow pattern, which is driven only by the right hand side and thus by

(normalized) gravity g = (0,−1) and the remaining unknown, the scalar tempera-

ture field T , as can be seen from equations (5.8),(5.11) and (5.13).
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The temperature T is described by the heat equation (5.10), where the velocity u

is part of the equation data driving the heat flow.

Besides the Reynolds number Re the relevant parameters appearing are:

- the Prandtl number Pr, being a material constant, more exact the ratio of

kinematic viscosity and thermal conductivity. We set Pr = 0.71, which is the

Prandtl number for atmospheric air,

- the Rayleigh number Ra, taking effectively the place of the Reynolds number,

as it is the relevant factor for stability of the system. It is known that in the

range Ra < 108 the resulting flow stays laminar, see [Has01]. Moreover, it can

be written Re =
√
Ra
Pr

.

The Boussinesq equations in this form circumstantiate a slowly evolving temper-

ature field with constant density, while the temperature differences are relatively

small, such that the overall description of the in general far more complicated heat-

transfer process can be simplified, as several non-linear terms can be skipped for

being (nearly) constant or very small. Besides that we are treating a form of so

called natural convection, i.e. external sources influencing the system, besides the

ones already given, are neglected. For more information see e.g. [Ran08].

What happens from the physically point of view is, that due to thermal expansion

next to a heat source a buoyancy force appears, acting on the gas or fluid, transport-

ing material upward, while next to a heat sink the material is transported downward.

This interaction together with gravity causes a flow, in our case modelled by system

(5.8)-(5.13).

In order to demonstrate and explore the ability of the proposed methods to deal

with multi-connected domains, the Boussinesq equations and other akin ones, we

concentrate on the following basic setting, see Figure 5.9: The (in general fictitious)

domain Ω̃ is the unit rectangle Ω̃ := (0, 1)2, with its left and right hand sides

being heated or cooled, while no-heat-flux (perfect thermal insulation) conditions

are supposed on the upper and lower sides. Such configurations are very common in

the heat transfer community, and besides show a lot of interesting effects although

the underlying geometry is very simple.
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g
Ω̃

T = TH

u = 0

T = TC

u = 0

∂nT = 0, u = 0

∂nT = 0, u = 0

Figure 5.9: Original geometry and boundary conditions of the third application, it
is Ω̃ = (0, 1)2. The left boundary is heated, while the right one is cooled.
Perfect insulation takes place at upper and lower boundary.

5.3.2 Numerical details

The whole system is treated in a fully implicit monolithic manner, meaning that a

non-linear defect-correction iteration, see Section 4.3, is applied in order to get an

approximate solution for the whole system describing (uh, ph, Th), while using the

techniques developed in this work.

The common Oseen linearisation, introduced in the last subsections, together with

substituting ui+1
h · ∇T i+1

h by uih · ∇T i+1
h in case of the heat equation, was used. In

all cases i being the iteration index of the non-linear scheme. The system matrix is

assembled completely new only as long as the non-linear residual is bigger than 10−3

in order to spare computation time, while getting adequate numerical solutions.

Time discretization happened by using the BDF2 scheme, with one implicit Euler

step in the beginning for construction of a second starting value.

After experimentations with four, five and six times globally refined grids, with

additional local refinement next to the Dirichlet boundaries, we choose a nearly

Cartesian grid with 4480 elements and 18956 degrees of freedom for discretization

in space as a basis for all computations, see left picture of Figure 5.10. As rather big

temperature gradients appear on the left and right side of the domain, the elements

on these sides are refined one time more then the rest, in order to avoid possible

numerical oscillations due to the boundary layers, as well as for better resolution of

the discontinuities in the boundary conditions. For the more complicated implicitly

given domains the meshes are based on the original one, but one time locally re-
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finement took place next to the inner boundary components additionally, see Figure

5.10, right picture, for the case of Application III.2 as an example. In all cases it is

hmin =
√

2/27 ≈ 0.011 and the time step is set to 4t = 2/100.

As criterion for reaching the steady-state we define:

‖(unh, pnh, T nh )− (un−1
h , pn−1

h , T n−1
h )‖∞

4t · ‖(unh, pnh, T nh )‖∞
≤ 2 · 10−6,

where as always n is the time step number.

Figure 5.10: The heuristic refined rectangular meshes for the computations regard-
ing Application III. Left: Grid for computations on the simple domain
consisting of 4480 elements, refinement took place next to the left and
right sides in order to prevent oscillations due to mild boundary lay-
ers. Right: Computational mesh for computations due to the multiple-
connected domain of Application III.2, consisting of 5659 elements,
originating from the left one by a single additional refinement next to
the inner boundaries. These boundary components are described only
by a characteristic level set function.

The FE formulations (3.28)+ and (3.2)+ with the underlying adjusted discrete spaces

Vh :=

{
vh ∈

(
C0(Ω̃)

)d
: vh|K ∈ (Q1(K))d ∀K ∈ Th

}
∩
(
H1

0 (Ω̃)
)d
,

Qh :=
{
qh ∈ C0(Ω̃) : qh|K ∈ Q1(K) ∀K ∈ Th

}
∩ L2

0(Ω̃),

Wh :=
{
Th ∈ C0(Ω̃) : Th|K ∈ Q1(K) ∀K ∈ Th

}
∩ V0(Ω̃),
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with respect to the triangulation Th described above, are used for the numerical

solution process.

The complicated multi-connected domains Ω := Ω̃ \ ω can be seen in the results-

section: A set of convex obstacles ω in each case is cut out of the fictitious domain

Ω̃, but only by describing these sets by characteristic level set functions.

In the standard case the regularization-terms in (3.2)+ and (3.28)+ are suppressed,

along with setting Γ := ∂Ω = ∅.

The author is aware of a potential mass-conservation problem due to the utilization

of stabilized FE, but this factor shall be not addressed here.

5.3.3 Results and observations

The grids described above are sufficient to resolve the instabilities within the given

range of laminar non-steady problems, while qualitative good solutions result from

the method. Streamline diffusion was disabled during the computations in case of

the temperature equation.

In case of the Navier-Stokes part the Galerkin least squares stabilization was used

nevertheless, as the discrete inf-sub condition still has to be circumvented, while

the divergence-free constraint has to be resolved most properly. By using a space

and time step of approximate the same order, an equal choice for the stabilization

parameters δK and γdiv, as in the steady case, has been made, along with the well

established choice δ0 = 0.1.

Now the results regarding several tasks are presented, first in text-form, followed by

graphical output of the steady-state solutions found by our solver. The Rayleigh

number is varied in case of the simple domain, while being fixed to Ra = 105 when

treating the complex domains.
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Application III.1

At first a look upon the ”trivial domain” problem, that is ω = ∅, see Figure 5.9.

This on the one hand serves as a qualitative check whether the solver gives sufficient

results, and on the other hand to get a feeling for effects appearing in context

of the Boussinesq equations. Boundary conditions for the temperature are set to

TH = 1/2 and TC = −1/2. Steady-state results are presented in Figure 5.11 in form

of streamlines and temperature contours, with Ra ∈ {103, 104, 105}. The pictures

show the typical behaviour in case of the chosen Rayleigh numbers, as can be seen

from the literature (see e.g. [Ran08, Has01, KVL03]). The more Ra increases, the

more complex the flow pattern gets, along with the temperature contours getting

more and more distorted in flow direction.

Figure 5.11: Results for velocity field (streamlines and magnitude, first line) and
temperature distribution (contours and magnitude, second line) are
presented in case of Application III.1 with Ra = 103, 104, 105 (from left
to right column). Flow and temperature distribution show an increasing
complexity for growing Rayleigh number Ra. The results shown are in
very good qualitative agreement to those found in the literature.
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Application III.2

This is the first task in order to deal with a complex multi-connected domain. The

updated configuration is sketched in Figure 5.12. The original boundary conditions

on ∂Ω̃ are adopted from Application III.1, but a number of obstacles, described by

the techniques developed in this work, have been placed within the domain. On each

inner boundary component ∂nT = 0 and u = 0 are imposed weakly. The results are

shown is Figure 5.13.

Velocity field and temperature contours are presented, showing the expected be-

haviour. The velocity field shows a more complex, mainly clockwise, rotation com-

pared to the standard case in the first subapplication; including a shift of the recir-

culation zones. The obstacles are resolved well, while the weakly imposed non-slip

conditions for u can be observed. The temperature contours show the influence of

the perfect insulation at the implicitly given inner boundaries.

Application III.3

The next task deals with a non-slip/heated inner boundary, see Figure 5.14. The

original boundary conditions of Application III.1 on ∂Ω̃ are adopted again. The

steady-state results can be observed in Figure 5.15.

What we see is a pretty symmetrical flow pattern as expected, along with two

recirculation zones next to the inner boundary, and near the area of maximal velocity

magnitude. The zero-boundary conditions u = 0 are matched very good. The

same is true for the inner Dirchlet conditions T = 1/10, which in interplay with

the strongly imposed conditions on ∂Ω̃ drive the flow, for his part deforming the

temperature field.

Application III.4

At last we take a look on a situation where both left and right boundaries are cooled

to zero, with perfect insulation on the upper and lower sides. The main task is that

the only heat source now is at the implicitly given inner boundary. So the flow caused

by the inner boundary conditions has to drive the system mainly. The situation is

sketched in Figure 5.16, with three elliptical boundaries heated to +1/10.

The steady-state solution shows the expected slightly asymmetric flow behaviour

caused by the heated inner boundary, with recirculation zones resulting from the in-

terplay with the cooled outer boundary components, also reflected by the asymmet-

ric temperature contours. At the inner ellipses the Dirchlet conditions are matched

with high accuracy in case of both the temperature and the velocity.
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T = 1/2

u = 0

T = −1/2

u = 0

∂nT = 0, u = 0

∂nT = 0, u = 0

Figure 5.12: Geometry and boundary conditions of Application III.2, it is still Ω̃ =
(0, 1)2. The left boundary is heated, while the right one is cooled.
Perfect insulation takes place at upper and lower boundary, as well as
on the inner boundary components. The latter are indicated by dashed
lines.

Figure 5.13: Velocity field (left) and temperature (right) at steady-state are pre-
sented in case of application III.2. The flow shows a more complex
behaviour than in the undisturbed case, with the obstacle placed in
the domain being flown around. The temperature contours show the
influence of the perfect insulation at the inner boundaries, while the
weakly imposed non-slip conditions for u can be observed.
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u = 0
T = 0.1

T = 0

u = 0

T = −1/2

u = 0

∂nT = 0, u = 0

∂nT = 0, u = 0

Figure 5.14: Geometry and boundary conditions of Application III.3. The left and
right boundary components are cooled, while the inner boundary is
heated. Perfect insulation takes place at upper and lower boundary.
Non-slip conditions in case of velocity and a heated boundary for the
temperature are imposed weakly at the inner boundary component.

Figure 5.15: Steady-state velocity field (left) and temperature contours (right) are
presented in case of Application III.3. The flow shows a mainly clock-
wise circulation as expected, with small recirculation zones next to
the right side of the heated cylinder. The temperature contours are
distorted in flow direction; the temperature 0.1-isoline matches nearly
perfect with the cylinder boundary, while the weakly imposed non-slip
conditions for u can be observed.
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u = 0
T = 0.1

T = 0

u = 0

T = −1/2

u = 0

∂nT = 0, u = 0

∂nT = 0, u = 0

Figure 5.16: Geometry and boundary conditions of Application III.4. Heated inner
boundaries and cooled left and right outer boundaries, the upper and
lower components, as in all cases, being supposed as perfectly insulated.

Figure 5.17: Steady-state results in case of Application III.4. Three heated ellipses
within the domain and cooled left and right outer boundaries causing
a flow and temperature variation in time, with the slightly asymmet-
ric steady state shown in this picture. As always the complex flow
pattern to the left and the temperature distribution to the right. The
results make sense from the physical point of view, along with the inner
boundary conditions regarding velocity and temperature are imposed
with high accuracy.
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5.4 Application IV: Incompressible viscous flow

around a moving plain cylinder

As a non-steady application and experiment dealing with moving inner boundary,

and thus in essence with a time-dependent domain, we estimate numerically the

incompressible viscous flow around a moving plain cylinder in a box.

5.4.1 Problem setting

We follow Glowinski et al. [GPP96,GPP98], where the same configuration has been

used in order to test fictitious domain techniques based on boundary and volume

distributed Lagrange multipliers. The box is given by

Ω̃ := (−0.35, 0.9)× (−0.5, 0.5),

the center (xc(t), yc(t)) of the disk

ω = ω(t) :=
{

(x, y) ∈ R2 : (x− xc)2 + (y − yc)2 ≤ R2; R = 0.125
}
,

representing the cylinder, is moving between (0, 0) and (0.5, 0) with period four

along an a priori specified trajectory defined by

xc(t) := 0.25

(
1− cos

(
πt

2

))
, yc(t) := −0.1 sin

(
π

(
1− cos

(
πt

2

)))
. (5.14)

The geometry is sketched in Figure 5.18.

The mathematical formulation of the problem at hand on Ω = Ω(t) := Ω̃ \ ω(t) can

be stated as:

∂tu− ν4u+ (u · ∇)u+∇p = 0 in Ω× I,

∇ · u = 0 in Ω× I,

u = 0 on Γ0 := ∂Ω̃× I, (5.15)

u = g on Γ := ∂ω × I,

u = 0 in Ω× {0}.
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ω

Ω̃

Figure 5.18: Geometry of the fourth application: Plain rectangular box Ω̃ :=
(−0.35, 0.9) × (−0.5, 0.5) with moving disk ω inside. The given pe-
riodic trajectory of the disk midpoint between (0, 0) and (0.5, 0) is in-
dicated by dashed lines. The plain cylinder boundary is described only
implicitly by a characteristic zero level set.

The inhomogeneous Dirichlet boundary-condition is given by

g =
(
ẋc, ẏc

)
+
(
− (y − yc)π, (x− xc)π

)
on Γ, (5.16)

where ẋc, ẏc indicate the time derivatives, such that u|Γ coincides with the disk

velocity while rotating counterclockwise at angular velocity π. This together with

setting ν = 1/100 gives a maximum Reynolds number of about 25.6. The only

sources causing a non-trivial solution are disk movement and the time-dependent

condition on the moving inner boundary.

5.4.2 Numerical details

For obvious reasons the FD techniques described in this work based on the asym-

metric Nitsche method (3.28)+ are used for the simulations. More exact, we will use

formulation (3.28)+ with the underlying FE spaces

Vh :=

{
vh ∈

(
C0(Ω̃)

)d
: vh|K ∈ (Q1(K))d ∀K ∈ Th

}
∩
(
H1

0 (Ω̃)
)d
,

Qh :=
{
qh ∈ C0(Ω̃) : qh|K ∈ Q1(K) ∀K ∈ Th

}
∩ L2

0(Ω̃),

with respect to a Cartesian mesh based triangulation Th, where the pressure space

has been adjusted to the problem at state.

109



5 Applications

We prefer the asymmetric Nitsche method for its better stability purposes compared

to the symmetric version, as the inner boundary of the cylinder cuts the unfitted

grid in an uncontrolled manner, while moving in time. No additional geometrical

regularization has been used. This approach is closer to the first mentioned pa-

per [GPP96], where boundary distributed Lagrangian multipliers have been used in

order to enforce the boundary condition on Γ.

A more adequate description would be to enforce the rigid body motion on the whole

domain covered by the cylinder in each time step, which in fact is done for example

in [GPP98], using a second moving triangulation of the disk.

More on volume Lagrange multiplier based fictitious domain methods can be found

for example in [Glo03] and the literature therein. Alternatively, in Bönisch [Bön06]

a single mesh is used along with a projection technique, after solving suitable er-

satz problems with discontinuous coefficients on the whole domain, and adaptive

refinement in each time step.

5.4.3 Results and observations

Several computations took place on four and five times globally refined grids, using

adequate time steps. The implicit Euler and BDF2 2 schemes have been utilized for

semi-discretization in time. The common defect correction based Oseen linearisation

was used in order to solve the problem in each time step. For stabilization, after

some experiments, the parameters for stabilization and penalization have been set

to γdiv = δK = 0.1 min{h, h2/ν}, γD = 40, γ1 = 5 and ρ = 0.1h2. This is next to

the choice in Application I, and in case of the stabilization parameter feasible, as

the time step is chosen to be an O(h)-term.

The results are in very good qualitative agreement to the ones in [GPP96], using this

problem in order to get a feeling for such kinds of tasks, and to the ones in [GPP98],

where volume and boundary distributed Lagrangian multiplier based methods have

been compared on the same test configuration.

Thus, again following Glowinski [GPP96, GPP98], results in form of pressure con-

tours along with the streamlines for the discrete times 4.5, 5, 5.5, 6, 6.5, 7, 7.5, 8 are

shown within the next figures, resulting from computations using the implicit Euler

scheme with a time step 4t = 1/64 ≈ 0.0156 on the five times uniformly refined

grid, with h ≈ 0.041. In case of the higher order time stepping scheme, the time

parameter was doubled, while the results look similar to the ones from the Euler

scheme.
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5.4 Application IV: Incompressible viscous flow around a moving plain cylinder

Figure 5.19: Resulting pressure contours (left column) and streamlines (right col-
umn) at times t = 4.5, 5, 5.5, 6 (from top to bottom) in case of Applica-
tion IV. The disk is moving from left to right. The colour scale is from
blue (low pressure/velocity magnitude) to red (high pressure/velocity
magnitude).
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Figure 5.20: Resulting pressure contours (left column) and streamlines (right col-
umn) at times t = 6.5, 7, 7.5, 8 (from top to bottom) in case of Applica-
tion IV. The disk is moving from right to left. The colour scale is from
blue (low pressure/velocity magnitude) to red (high pressure/velocity
magnitude).
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6 Discussion and Outlook

New methods belonging to the fictitious domain context based on the results and

ideas of Glowinski et al. have been introduced and analyzed, both from the continu-

ous and the discrete numerical level. In two dimensions, symmetric and asymmetric

variants of Nitsches method have been used in order to impose essential boundary

conditions in case of the discrete methods.

The level set method was utilized in order to describe the underlying geometry the

equations are defined on. The new methods are able to handle very general non-

linear, time-dependent and asymmetric problems of second order, including saddle

point problems in form of Stokes and Navier-Stokes equations.

Numerical analysis took place regarding different special cases, separated with re-

spect to the typical aspects causing trouble, as to mention dominant convection

and circumventing a discrete inf-sub condition in case of the Stokes and Navier-

Stokes equations. Streamline diffusion/Galerkin least squares stabilization was used

to resolve such kind of problems.

From the practical point of view, the asymmetric versions of Nitsches method turn

out to be preferable in view of their better stability properties, when used in the FD

context, while numerical tests suggest, that not too much loss regarding the error

reduction rates happens compared to the symmetrical versions.

The methods have been utilized successfully in view of several applications, after

the task of numerical accuracy was addressed. In the field of laminar and unsteady

plain flow problems, slow thermal convection on multi-connected domains, as well

as in rigid body motion, the methods seem to have a lot of potential; at least in two

dimensions, while it of course would be possible to generalize the method to three

dimensions as well.

Among the advantages of the developed methods are the usage of standard FE

spaces, along with the usage of Cartesian and near Cartesian grids, and high flexi-

bility regarding the underlying geometry.
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6 Discussion and Outlook

Drawbacks should be mentioned also: A lot of parameters for stabilization, regu-

larization and so on have to be fitted. Besides that, the condition of the resulting

discrete problems requires special care by a good pre-conditioner, in case of using

an iterative solver.

Obvious possibilities for extensions and interesting future tasks would be in the

field of three dimensional problems. In view of the last point, but also independent,

exploration in the area of better local refinement strategies would be desirable.

Especially strategies based on dual weighted residual techniques, in order to produce

economical grids, could be a great enrichment.

Moreover, economical pre-condition techniques, for example from the multi-grid

section, would be of interest.

Another obvious task to be mentioned is the exploration of fluid-structure interaction

problems, like numerical simulation of glacier motion or droplet evaporation, using

the methods at hand. In addition to that, fictitious domain approaches similar to

the ones used in this work could potentially be applied to other common fields of

continuum mechanics besides the Navier-Stokes equations.
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