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Summary

In the present doctoral thesis, the reactive scattering for H− + H2 and H+ + H2 and its iso-

topologues were investigated using different methods to solve the equations describing classical

and quantum mechanics. The studies aimed at providing insights into elementary reactions,

and may even go beyond these to more complex chemical reactions. The main results in this

dissertation can be summarized as follows:

In Chapter 2 the equations solving problems in quasi-classical mechanics were described,

which led to the definition of energy dependent reaction probabilities Pr(Erel, v, j) = Nr

Ntot
and

reaction cross sections σR = πPr(Erel, v, j)b
2
max.

The formalism for time-dependent methods for the investigation of scattering processes was

presented in Chapter 3. In this section we discussed how to use the time-dependent quantum

wavepacket method to study the A-BC system. The dependence of the reaction probabilities

P J
reac(E) on the total angular momenta J was calculated to obtain information about the

integral reactive cross section σtot(E) = π
k2

vj

∑
J(2J + 1)P J

reac(E).

The potential energy surfaces (PESs) for H+
3 and H−3 were described in Chapter 4. For the

H+
3 system, a cut through the potential energy surface (PES) in the asymptotic region was

presented. For the H−3 system three available ab initio potential energy surfaces have been used

in the applications: a) Stärck and Meyer (SM-PES), b) Panda and Sathyamurthy (PS-PES),

and c) Ayouz et al. (AY-PES). The differences in the PESs were investigated.

In the beginning of Chapter 5 the H+ + H2(v=0–5, j=0) collision was investigated non-

adiabatically. By comparison of the reaction probabilities using adiabatic and non-adiabatic

representations of the potential energy surfaces, it was found that, at low collision energies,

the reaction preferentially occurs adiabatically, but at higher collision energies non-adiabatic

effects have to be taken into account.

Reaction probabilities and reaction cross sections for the collision H− with H2 and its isotopo-

logues using quasi-classical trajectories and quantum wavepackets were presented in the main

part of Chapter 5. It was found that, at low collision energies, the reaction probabilities

using SM-PES and AY-PES are very similar. The reaction probabilities based on the PS-PES

are lower than those based on the SM-PES and AY-PES. At lower collision energies the re-

action cross sections calculated with SM-PES are higher than those calculated with PS-PES.

The reaction cross sections investigated with quasi-classical trajectories are higher than those

calculated with quantum wavepackets (using the same potential).

The last section of Chapter 5 showed results for the collision of H− and D− with HD. The total
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reaction probabilities, the reaction cross sections, and the product ratios were determined using

quasi-classical trajectories. One can learn from these calculations that for the H− + HD(v=0–

1, j=0) reaction and low collision energies, the main product are H2 + D−. At high collision

energies, the product channel HD + H− is slightly dominant. For the collision of D− with HD

and low collision energies the product channel HD + D− is strongly favored, but in the high

collision energy range, the product channel D2 + H− dominates.
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Zusammenfassung

In der vorliegenden Doktorarbeit wurde die reaktive Streuung für H− + H2 und H+ + H2, sowie

dessen Isotopologe untersucht, indem die Gleichungen, welche die klassische Mechanik und die

Quantenmechanik beschreiben, mit verschiedenen Methoden gelöst wurden. Das Ziel dieser

Studien ist, neue Einblicke in elementare Reaktionen zu gewinnen und diese darüber hinaus,

auf komplexere chemische Reaktionen zu übertragen. Die Hauptergebnisse dieser Dissertation

können wie folgt zusammengefasst werden:

In Kapitel 2 werden die Gleichungen zum Lösen von Problemen mit Hilfe der quasi-klassischen

Mechanik beschrieben, welche zu der Definition der energieabhängigen Reaktionswahrschein-

lichkeiten Pr(Erel, v, j) = Nr

Ntot
und der Reaktionsquerschnitte σR = πPr(Erel, v, j)b

2
max führen.

Der Formalismus für zeitabhängige Methoden zur Untersuchung von Streuprozessen wird

in Kapitel 3 präsentiert. In diesem Abschnitt erörtern wir, wie die A–BC Systeme mit

Hilfe der zeitabhängigen, quantenmechanischen Wellenpaketmethode studiert werden können.

Die Abhängigkeit der Reaktionswahrscheinlichkeiten P J
reac(E) vom Gesamtdrehimpuls J wird

berechnet, um Informationen über den integralen Reaktionsquerschnitt σtot(E) = π
k2

vj

∑
J(2J+

1)P J
reac(E) zu erhalten.

Die potentielle Energieflächen (PEF) für H+
3 und H−3 werden in Kapitel 4 beschrieben. Für

das H+
3 -System wird ein Schnitt durch die PEF in der asymptotischen Region präsentiert.

Für das H−3 -System hingegen werden die drei verfügbaren potentiellen Energieflächen von

Stärck und Meyer (SM-PEF), Panda und Sathyamurthy (PS-PEF), sowie Ayouz et al. (AY-

PEF) verwendet. Die Unterschiede in den PEFn, die auf ab initio Energien basieren, werden

untersucht.

Zu Beginn von Kapitel 5 wird der (H+ + H2(v=0–5,j=0))-Stoß nicht-adiabatisch unter-

sucht. Beim Vergleich der Reaktionswahrscheinlichkeiten die mit Hilfe adiabatischer und nicht-

adiabatischer Darstellung der potentiellen Energiefläche berechnet wurde stellt man fest, dass

bei niedrigen Stoßenergien die Reaktion einen adiabatischen Prozess bevorzugt, während bei

höheren Stoßenergien auch nicht-adiabatische Effekte in Betracht gezogen werden müssen.

Die Reaktionswahrscheinlichkeiten und Reaktionsquerschnitte für den Stoß von H− mit H2 und

seine Isotopologe unter Verwendung von quasi-klassischen Trajektorien und quantenmechanis-

chen Wellenpaketen werden im Hauptteil von Kapitel 5 dargestellt. Es wurde herausgefunden,

dass bei niedrigen Stoßenergien die Reaktionswahrscheinlichkeiten für SM-PEF und AY-PEF

sehr ähnlich sind. Die Reaktionswahrscheinlichkeiten basierend auf PS-PEF sind hingegen

niedriger als die auf SM-PEF und AY-PEF basierenden. Bei niedrigeren Stoßenergien sind

III



die mit SM-PEF berechneten Reaktionsquerschnitte größer als die mit PS-PEF ermittelten.

Die Reaktionsquerschnitte, welche mit quasi-klassischen Trajektorien untersucht wurden, sind

höher als die mit quantenmechanischen Wellenpaketen berechneten (unter Verwendung des

gleichen Potentials).

Der letzte Abschnitt von Kapitel 5 zeigt Ergebnisse für die Stöße von H− und D− mit HD. Die

Gesamtreaktionswahrscheinlichkeiten, die Reaktionsquerschnitte und die Produktverhältnisse

wurden unter Verwendung von quasi-klassischen Trajektorien bestimmt. Aus diesen Berech-

nungen kann man lernen, dass bei niedrigen Stoßenergien für die H− + HD(v=0–1, j=0)

Reaktion, H2 + D− das Hauptprodukt darstellt. Bei hohen Stoßenergien dominiert der (HD

+ H−)–Kanal etwas. Für den Stoß von D− mit HD wird bei niedrigen Stoßenergien der

Produktkanal HD + D− stark favorisiert, während im hohen Stoßenergiebereich der (D2 +

H−)–Produktkanal dominiert.
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List of Symbols and Abbreviations

PES Potential Energy Surface

WP WavePacket

SF Space-Fixed (coordinate system)

BF Body-Fixed (coordinate system)

DVR Discrete Vabiable Representation

FFT Fast Fourier Transform

R, r, θ Jacobi coordinates

RC Reactant Jacobi Coordinates

PC Product Jacobi Coordinates

v vibrational quantum number of the diatomic (BC) molecule

j rotational quantum number of the diatomic (BC) molecule

J the total angular momentum quantum number of an A-BC system

Atomic units
The most important atomic units are summarised in the table below:1

Obervable Atomic unit

Energy 27.211835 eV (1 hartree - Eh)

Length 0.5291772 × 10−10 (1 bohr - a0)

Time 2.4188843 × 10−17 s

Mass 9.109382 × 1031 kg
1Latest (2010) values of the constants ’CODATA Internationally recommended values of the

Fundamental Physical Constants’ is available at

http://physics.nist.gov/cuu/Constants/
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1 INTRODUCTION

1 Introduction

Collisions involving hydrogen atoms, molecules, and their positive (H+, H+
2 ) and negative (H−)

ions play an important role in chemistry and the evolution of neutral or negatively-charged

hydrogen plasma such as laboratory hydrogen plasma, the interstellar medium (ISM), the

atmospheres of the sun and other stars [1] as well as in the atmosphere of the Earth.

The first calculation of the potential energy surface for the H3 molecule and the H+
3 ion was

performed by Hirschfelder et al. [2, 3, 4]. The activation energy for the reaction H + H2 → H2

+ H is 13.63 kcal/mol using the Heitler-London plus polar states. The experimental reaction

barrier is 5.5 kcal/mol [5].

In the 1910s, Thomson [6] discovered the H+
3 ion as a mass/charge = 3mp/e ray in the spectrum

which was called the mass spectrum in today’s language produced by an electrical discharge

through hydrogen gas. Five years later, Dempster [7] (1916) confirmed this observation using

electron-beam excitation of hydrogen. There is experimental evidence that the H+
3 ion is

formed whenever H2 is ionized at any but the lowest pressures [8]. The main processes which

can produce H+
3 ions are the following secondary processes:

H+
2 + H2 → H+

3 + H, (1)

H+ + H2 → H+
3 , (2)

H + H+
2 → H+

3 , (3)

in which the first process is usually the most important. In any event, the reaction H+
2 + H2

→ H+
3 + H should happen with a small amount of kinetic energy, and it is probable that it can

occur without any relative kinetic energy. Hirschfelder et al. [3] have calculated the potential

energies for linear symmetrical configurations of H+
3 . The reasons for why H3 should be linear

and H+
3 should be triangular has been discussed by Coulson [9]. There are two electrons in the

H+
3 ion, and so, in the ground state, only one type of orbital is filled; the two electrons will have

the same spatial wave function but opposite spins. One chooses the configuration of the nuclei

which gives the orbital the greatest bonding. If the three H atoms (see Fig. 1) are arranged

in a linear structure as [Ha−Hb−Hc]
+, then the lowest orbital will only represent resonance

between the atoms Ha and Hb and between the atoms Hb and Hc. The resonance between

the atoms Ha and Hc is too small to make any appreciable contribution to bonding. But, in

the triangular model, all three resonances contribute, and we may therefore expect greater

bonding. In the neutral molecule H3, however, a new type of orbital has to be introduced with

a node along the dotted line (see Fig. 1); this provides Ha–Hb and Hb–Hc bonding but Ha–Hc

repulsion and therefore a definite tendency for this molecule is open into a flat triangle or a

straight line.

Because of its fundamental importance, the H+
3 ion has been the subject of theoretical, ex-

perimental, and astrophysical investigations in recent decades [10, 11, 12], and a discussion
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1 INTRODUCTION

Figure 1: Linear and triangle model of H3 or H+
3 .

meeting entitled “Physics, Chemistry and Astronomy of H+
3 ” has been held by the Royal So-

ciety three times in 2000, 2006, and 2012. As discussed above, the H+
3 ion has an equilateral

triangular equilibrium geometry in its ground state. The linear symmetric configuration, 14299

cm−1 above the equilateral minimum, is a saddle point. The dissociation limit into H+ + H2

lies at 37170 cm−1 above the minimum. The H+
3 ion has no permanent dipole moment in the

equilibrium structure since it is symmetrical. There are two vibrational modes in the H+
3 ion:

the totally symmetric stretch mode ν1 and the doubly degenerate bending mode ν2, which

is the only one that is infrared active. Oka [13] found the first infrared ν2 → 0 lines in the

laboratory in 1980. Since then, numerous laboratory experiments have led to the detection

and identification of nearly 900 lines, which were compiled in 2001 [14], all of which involve

energies below the barrier to the linear configuration. Recently, some studies [15, 16] have

been done considering transitions to the states slightly above the linear barrier. Other exper-

iments [17, 18, 19] have concentrated on the predissociation of H+
3 near the upper bound of

the spectrum within 1100 cm−1 of the dissociation limit of H+ + H2.

Nearly at the same time, the H+
3 ion has been researched by astrophysicists in the universe

through its infrared spectra. H+
3 ion was fist identified by Drossart et al. [20] in the Jovian

atmosphere in 1989, and then it was found by Geballe and Oka [21] and McCall et al. [22] in

2
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E

R

H3

H3
+

+H3

H3
-

Figure 2: Energy of an H (H+, or H−) atom (ion) approaching H2 as a function of its separation

R.

dense interstellar clouds.

A large number of theoretical studies were essential in the identification and understanding

of the H+
3 ion. The investigation of the electronic potential energy surface (PES) is the first

essential ingredient. There are three kinds of PESs for the H+
3 ion. The first family is the

one containing local ab initio PESs. There are five PESs [23, 24, 25, 26, 27] of this family

that are available in the literature. The MBB [23] potential is an example of such a PES.

It was obtained from a full CI investigation at 69 points with a maximum energy of 25000

cm−1 above the minimum. This PES is not accurate at the dissociation region, so it cannot

be used to compute highly excited bound states or to study dynamic processes such as the

H+ + H2 inelastic charge exchange or reactive collisions. The RKJK [24] PES is of higher

accuracy. It relies on the highly accurate CI-R12-method, namely, a configuration interaction

method explicitly including an r12 linear term in the wave function. Even greater accuracy

was obtained in 1998 (JCKR [26]) using correlated Gaussian functions and including adiabatic

and relativistic corrections. An accuracy as high as 0.02 cm−1 has been claimed. In 2002,

the JCKR PES was improved by Jaquet [27]. The local region of the JCKR potential was

3



1 INTRODUCTION

extended to higher energies by a further 130 ab initio points obtained with the CI-R12 method

in addition to the initial 69 points obtained with correlated Gaussian functions. The second

family of PESs is the semi-empirical one obtained by iterative adjustment of the potential until

good agreement with the experimental spectroscopic data is obtained. The DMT-PES [28] is

an example of this family: it was obtained by the adjustment to 243 experimental energy levels

with a standard deviation of 0.053 cm−1. The third family of PESs includes global potential

energy surfaces. This kind of PES relies on ab initio calculations, usually performed on a large

number of points covering the entire configuration space. The third family of PESs provides

slightly lower accuracy than local PESs for the computational infrared spectra, but they are

also useful to compute highly excited rovibrational states and dynamic processes above the

dissociation threshold. Six PESs [29, 30, 31, 32, 33, 39] belong to this family. The sixth one

is the VAV-PES [39], which is a global PES for singlet H+
3 based on the method proposed by

Varandas [40].

For the singlet state of the H+
3 ion there are two PESs available in the literature that can be

used to study non-adiabatic processes. The first is the Preston and Tully surface [34] obtained

in 1971. The second one is the KBNN [35] PES, which gives a better description of the avoided

crossing.

Under the conditions in which H+
3 is present, additional H+

3 (H2)n complexes are also stable

[36]. Among these, the ion H+
5 plays a special role. While H+

3 is the prototype of a 3-centre-2-

electron bond, H+
5 represents a 5-centre-4-electron bond. While the bond between a proton and

a H2 molecule is particularly strong (De = 169 mEh = 444 kJ mol−1), the gain upon attaching

H+
3 to another H2 is relatively small (De = 13.7 mEh = 35.9 kJ mol−1 = 3007 cm−1). The

chemical reaction H+
3 + H2 → H2 + H+

3 had been studied in a hollow cathode plasma cell by

Crabtree et al. [37]. The ratio of the rates of the proton hop (kH) and hydrogen exchange

(kE) reactions α ≡ kH/kE has been found to decrease from 1.6 ± 0.1 at 350 K to 0.5 ± 0.1 at

135 K. Gómez-Carrasco et al. [38] investigated the H+
3 + H2 → H2 + H+

3 using quasi-classical

trajectories. The α value was in good agreement with the experimental results by Crabtree et

al. [37].

The negative ion H−3 has been investigated rather intensively experimentally and theoretically

in the past 50 years [42, 43, 44, 45, 46, 47, 48, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61,

62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76]. The potential energy surface of H−3 is

very similar to that of H3, including the anisotropy, barrier height, and other characteristics.

The reason is that the additional electron in the H−3 ion is located at a rather large distance

from all nuclei and, as a consequence, the main interaction is given by the three nuclei and

the three “inner” electrons (Fig. 2). There are differences between the H−3 ion and the H3

molecule. The first difference is the charge-induced dipole interaction that leads to a shallow

well in the H−3 molecule at greater H−–H2 distances. The PES by Stärck and Meyer [50] shows

a well depth of 0.048 eV at R = 6.183 Bohr and r = 1.413 Bohr. The second significant

difference between the neutral and the negative ion system is that the fourth electron gives

rise to additional reaction channels involving electron detachment, i.e., the H−3 PES includes

4



1 INTRODUCTION

the following additional reaction channel:

H− + H2 → H + H2 + e−.

The first study of the H−3 ion was performed by Stevenson and Hirschfelder [41] in 1937. They

suggested the existence of bound states of the H−3 ion in a linear configuration. The H−3
molecular ion was discovered experimentally by Hurley [42] in 1974. Aberth et al. [43] (1975)

reported the discovery of H−3 , H2D
−, HD−2 and D−3 ions, and claimed that these ions appear

stable. Subsequently, H−3 ions have been investigated in many experiments [44, 45, 46, 47, 48].

Collisions between H− with H2 should play a role in processes in tokamaks, which is a device

that uses a magnetic field to confine plasma in the shape of a torus [49]. Although experiments

started as early as 1974, it was only in the 1990s [50, 51] that the theory became precise enough

to confirm the stability of H−3 bound states. The H−3 molecule is composed of three identical

nuclei, described in principle within the CNPI (complete nuclear permutation inversion) group

D3h [52].

At present, there are three accurate potential energy surfaces (PESs) of H−3 available: the

PESs by Stärck and Meyer [50], by Panda and Sathyamurthy [53], and by Ayouz et al. [54]. In

addition, Belyaev, Tiukanov and others [55, 56, 57, 58, 59, 60] have obtained PESs of excited

electronic states of H−3 and their non-Born-Oppenheimer couplings with the ground state. The

excited electronic states are unstable with respect to electron autodetachment.

The collisions between H2 and H−, and of their isotopologues, have been studied in a number

of laboratory experiments since the 1950s [61, 62, 63, 64, 65, 66, 67]. Muschlitz et al. [61, 62]

improved an apparatus for the production of beams of negative ions and the measurement of the

elastic and inelastic scattering of negative ions in gases at low pressures. They found that the

inelastic cross section increases from 1 cm−1 at 7 eV to 8.7 cm−1 at 395 eV. Absolute total cross

sections for electron detachment were measured for collisions between H− and D− ions with H2,

D2, and HD by Huq et al. [63] in 1983. A crossed beam study of the rearrangement reaction

H− + D2(v=0) → HD(v′) + D− in the collision energy range Erel = 0.3–3 eV was reported by

Zimmer and Linder [64, 65]. These reports showed that the reaction has a threshold at Erel

= 0.42 ± 0.12 eV and the cross section rises to a maximum of 2 × 10−16 cm2 at 1.5 eV and

then rapidly decreases again. These studies showed that theoretical studies for this reaction

are needed. With the combined efforts of theory and experiment, the H− + H2/D2 system was

established as a benchmark system for the present class of processes, i.e., reactive processes

of negative ions including detachment channels. Crossed-beam measurements of rotationally

inelastic scattering of H− ions from H2 were reported for collision energies in the energy range

Erel = 1.66–2.79 eV by Müller et al. [66]. The experiment showed that the rotational levels j′

= 5, 7, 9 are dominantly excited. This striking behavior can be understood qualitatively from

the properties of the PES of H−3 . Integral cross sections for rotationally inelastic scattering

has been estimated and compared with those for reactive scattering and electron detachment,

which are competing processes in this energy range. Haufler et al. [67] determined the absolute

integral and differential cross sections for the two reactions H− + D2 → D− + HD and D− +

H2 → H− + HD in 1997.
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Collisions between H2 and H− have been investigated by quantum mechanical methods [68,

69, 70, 71, 72, 73, 74, 75, 76] which started around the 1990s. Ayouz et al. [77] investigated

the possibility of forming H−3 by radiative association (RA) of H2 and H− in low temperature

(< 150 K) environments.

Up to now, there have been no accurate classical trajectory studies for high vibrational

states. The main purpose of the present work was to investigate chemical reactions using

time-dependent quantum wave packets and quasi-classical trajectories for systems involving

three atoms. Time-dependent quantum mechanical wave packets have become a practical tool

in studying a wide variety of molecular processes due to their ease in implementation. The

first time-dependent quantum mechanical methods to solve the time-dependent Schödinger

equation were used for a collinear exchange reaction of the type A + BC → AB + C (1959,

Mazur and Rubin [78]). Later this method was improved by many theorists. The fast Fourier

transform (FFT) method was introduced by Kosloff and Kosloff [79]. This method is used

to compute the action of the kinetic energy as part of the Hamiltonian on the wave function.

The FFT method is an important development in the area of time-dependent quantum me-

chanics (TDQM). Light and coworkers [80, 81] developed the discrete variable representation

(DVR), which is used for calculating matrix elements. In 1984, a global propagation scheme,

based on the Chebyshev polynomial expansion of the evolution operator, was introduced by

Tal-Ezer and Kosloff [82]. This propagation scheme was improved by Mandelshtam and Taylor

in 1995 [83, 84]. A new algorithm for calculating only the real part of the wave function was

introduced by Gray and Balint-Kurti [85].

Whenever the dimensionality or the number of open channels becomes larger or the system

which should be studied becomes larger, quantum mechanical methods rapidly become in-

tractable. In such cases, a classical or quasi-classical approach should be used. The quasi-

classical method has been reviewed many times [86, 87, 88, 89, 90, 91, 92, 93, 94]. In the

case of classical methods, the nuclei are assumed to move classically on an adiabatic electronic

potential energy surface (PES). If the initial states of the collision are taken to be quantized, the

procedure is termed a quasi-classical trajectory method. Classical trajectories are frequently

used to investigate homogeneous gas-phase bimolecular processes. The quantities of interest

in such studies commonly include cross sections, thermal rates, activation parameters, product

energy partitioning, angular scattering, and the mechanism. Trajectories are also often used

to examine unimolecular dissociation reactions [95] and gas-surface phenomena [96]. In our

studies, the collisions between H2 and H− and its isotopologues have been fully investigated

with quasi-classical trajectories and then compared with quantum methods; the details are

provided in Chapter 5.

Molecular dynamics (MD), the numerical integration of the classical equations of motion de-

scribes the motions of atoms interacting on a multidimensional potential energy surface [97].

MD have proven to be extremely valuable for elucidating the dynamics of a very wide range

of elementary chemical processes including gas phase collisions of small molecules, reactions in

liquids, gas-surface interactions, materials properties, and protein dynamics. But even when
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accurate interaction potentials can be obtained, there may be significant limitations imposed

by the fundamental assumptions on which the molecular dynamics method is founded.

The first approximation is the Born-Oppenheimer (adiabatic approximation), in which it is

supposed that the nuclei, being so much heavier than an electron, move relatively slowly and

may be treated as stationary while the electrons move in their field. We can therefore think

of the nuclei as being fixed at arbitrary locations, and then solve the Schrödinger equation

for the wave function of the electrons alone. So the motion of the nuclei can be assumed to

be governed by a single adiabatic potential energy surface. The approximation is quite good

for ground-state molecules. However, it often fails to describe reaction involving electronic

transitions, e.g., photochemistry and laser-induced chemistry, electron transfer, reactions on

metal surfaces, electronic energy transfer, non-radiative transitions, and ion-molecule reactions.

The second fundamental assumption of the molecular dynamics method is that nuclei evolve

according to classical mechanics. This is inadequate in many cases.

In chemistry, the terms adiabatic and non-adiabatic imply a separation of coordinates into

two classes, which we will refer to throughout as fast and slow. Indeed, if all coordinates are

treated on an equal footing, the meanings of adiabatic and non-adiabatic become obscured.

Non-adiabatic transitions are formally indistinguishable from any other transitions between

quantum states. The treatment of all degrees of freedom on an equal footing is a good goal,

which means a full quantum mechanical description is required, so this method is only suitable

for very small systems. For large systems fast and slow coordinates should be designated from

the outset. For convenience, most of the “fast” coordinates are defined for electrons and the

“slow” ones for nuclei. However, distinguishing fast and slow nuclear degrees of freedom is also

considered.

Electronically non-adiabatic behavior is observed in a great number of fundamental molecular

processes [98]. These include:

1. Electronic energy transfer (the asterisk denotes electronic excitation)

A∗ + B → A + B∗ .

2. Charge transfer

A+ + B → A + B+ .

3. Quenching of electronic excitation

A∗ + B → A + B†,

where the dagger denotes internal (vibrational and rotational) excitation of molecule B.

4. Chemical reactions

A + B → C + D.

Although some chemical reactions can be described within the adiabatic hypothesis, others

cannot. Reactions involving electronically excited reactants or products are likely to exhibit

non-adiabatic transitions because of the expected proximity of neighboring excited state po-

tential energy surfaces. Similarly, ion-molecule reactions are frequently non-adiabatic due to

the possibility of charge transfer. But, electronic transitions are common even in reactions of

ground state species at room temperature. In some cases, the role of non-adiabatic coupling is

7
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readily apparent. Examples are spin forbidden reactions and reactions that are accompanied

by excitation transfer. There are some other more subtle cases where non-adiabatic effects

dramatically alter the chemical forces that determine the course of a reaction, but do not

reveal themselves explicitly in the products. For all these reasons, the non-adiabatic methods

are very important in theoretical chemistry.

The characteristics of the electronic structure that determine the reaction mechanisms un-

derlying the simplest atom-ion-molecule collision system of H+
3 and its isotopologues are not

simple [36, 99]. The ground electronic state 1A′ asymptotically and adiabatically correlates

with the reagent/product channel of H+ + H2, while the lowest excited 1A′ state correlates

with H + H+
2 . Electronic structure studies have also revealed that, in the entrance and the

exit regions far from the H+
3 equilibrium geometry, avoided crossings exist between the ground

1A′ potential energy surface and the lowest excited 1A′ surface. These avoided crossing re-

gions play a very important role in H + H+
2 collision dynamics due to effective electronically

non-adiabatic transitions, which open a pathway for charge transfer to form the molecular

ion. Thus, reactive and nonreactive chemical processes below the dissociation energy of H+
2

can take place with or without charge transfer in the H+
3 system, depending on whether

non-adiabatic transitions are involved or not. A three-dimensional “trajectory surface hop-

ping” treatment of the reaction H+ with D2 at a collision energy of 4 eV was first reported

by Tully and Preston [100]. In this report, the reaction cross sections were 0.33, 0.21, and

0.37 Å2 for the products D+, HD+, and D+
2 . These results were in good agreement with the

results of Holliday et al. [101]. Furthermore, the predicted value of 0.56 for the HD+/D+
2

ratio was in very good agreement with the value of 0.60 reported by Krenos and Wolfgang

[102]. Since the 1990s, the non-adiabatic charge transfer reaction of H+ + H2 and its iso-

topic variants has stimulated quasi-classical trajectory and quantum mechanical calculations

[103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115]. Driven by non-adiabatic

couplings between different electronic states, charge transfer is the key in both gas phase and

solvent reactions, and also plays a crucial role in many biological processes. Hence, investiga-

tions into non-adiabatic effects in the H+ + H2 reaction can provide insights into the associated

charge transfer processes.

The outline of the present work is as follows. The second chapter introduces the quasi-classical

trajectory method. The third chapter is devoted to a quite detailed insight into time-dependent

scattering theory. The H+
3 and H−3 potential energy surfaces (PESs) are presented in the fourth

chapter. The fifth chapter shows the results of H+ and H2 collisions studied using a non-Born-

Oppenheimer method, and the results of H− and H2 collisions and its isotopologues which were

investigated with quasi-classical trajectories and quantum wave packets.
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2 CLASSICAL MECHANICS

2 Classical mechanics

The nuclear motion can be solved by classical and quantum mechanics methods. In this chap-

ter we describe the solution of Newton’s equations which is a trajectory method. Classical

trajectory studies have been widely used in fundamental studies in many areas including the

calculation of reaction cross sections, angular distributions, and investigation of reactions as a

function of initial and final energy distributions and other observable reaction attributes. In

addition, classical trajectories are also applied to get insight into the actual reaction event.

Therefore, we can use this method to investigate atomic motions, calculate unobservable opac-

ity functions, and the dependence on features of the potential energy surface.

One of the most useful classical trajectory methods is the quasi-classical version. The term

“quasi-classical” is used to denote the manner in which molecules are prepared before collision

(i.e., using the correct initial vibrational and rotational quantum numbers as initial conditions).

With this the quasi-classical trajectory method assumes that each of the nuclei comprising a

chemical system move according to the laws of classical mechanics in the force field derived

from the adiabatic electronic energy of the system.

2.1 Specifying the initial parameters

(A) Calculation of internal energies.

From the one-dimensional Schrödinger equation we can determine the discrete eigenvalues and

eigenfunctions, and the related vibrational (v) and rotational (j) states for the internal energy

Ev,j. The Schrödinger equation is given as

− h̄
2

2µ

d2Ψv,j(r)

dr2
+ Vj(r)Ψv,j(r) = Ev,jΨv,j(r) , (4)

where µ is the reduced mass of the system, Vj(r) is the sum of the rotationless potential

V (r) and a centrifugal term. The centrifugal potential of a diatomic molecule has the form

[j(j + 1) − Ω2] h̄2

2µr2 , where Ω is the projection of the electronic angular momentum onto the

internuclear axis (see Level 8.0 [116], p. 2). We choose the program Level 8.0 [116] to calculate

the internal energies. Details will be shown in the result part.

(B) Calculation of turning points.

For the calculation of the vibrational turning points, we use the bisection method ([117], p.

142). The bisection method is a root-finding method which repeatedly bisects an interval

and then selects a subinterval in which a root must lie for further processing. The method

is applicable when we wish to solve the equation f(x) = 0 for the real variable x. For the

function f(x), the bisection method needs two starting values of x, which are named as x1 and

x2, and the root xr from the function should satisfy x1 < xr < x2.

The algorithm goes as follows:

1) the half-interval of x1 and x2 was firstly calculated and named as x3 (i.e., x3 = x1+x2

2
). At

the same time, the function was evaluated among these three points.
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2.2 The Monte Carlo method 2 CLASSICAL MECHANICS

2) If the sign of f(x3) and f(x1) is different, then the new root lies between x1 and x3.

Otherwise, the root lies between x2 and x3.

3) If the root lies between x1 and x3, this interval is bisected, x4 = x1+x3

2
. f(x1), f(x3), and

f(x4) should be evaluated. Similar calculations should be done for the cases that the root lies

between x2 and x3.

4) In the next step is one has to check for following root.

5) This procedure is continued until convergence is gained

xi + xj

xi

≤ ε . (5)

In Eq. (5) ε is an arbitrary convergence criterion.

(C) Calculation of the vibrational half-period.

In this part we follow the strategy of Truhlar and Muckerman [90] to calculate the diatomic

vibrational half-period 1
2
τ v,j
BC (see [90], p. 513)

1

2
τ v,j
BC = (

µBC

2
)

1
2

∫ r+

r−
[εv,j − VBC(r)− j(j + 1)h̄2

2µBCr2
]−

1
2dr . (6)

In Eq. (6) εv,j is the internal energy of the BC molecule with quantum values for vibrational

state v and rotational state j. µBC is reduced mass of atom B and C. r± are outer and inner

turning points, respectively. r is the internuclear distance between atom B and C. h̄ is a

convenient modification of Planck’s constant (h̄ = h
2π

= 1.05457 × 10−34 Js). VBC(r) is the

potential of the diatomic when the third atom is far away

VBC(r) ≡ VBC(R2) = lim
R1,R3→∞

V (R1, R2, R3) . (7)

2.2 The Monte Carlo method

The Monte Carlo method is a class of computational algorithms that rely on repeated random

sampling to compute the desired property. Details for this part are given in the book of Wong

[118], p. 383–406. Monte Carlo techniques are useful in solving a variety of problems in physics

in which one generates random numbers. The Monte Carlo method has the following features:

1) The generator is fast and simple to use.

2) It has the desired statistical properties.

3) A long repeated period is needed.

The repeated period has to be examined before the calculation of trajectories. Random values

x between 0 and 1 are generated. With these random numbers we calculate the initial values

of coordinates and momenta of the atoms, and the initial reaction impact parameter b.

2.3 The equations of motion

For the collision system A + BC we use the potential energy function as an analytic function

which depends on three internuclear distances, i.e., V ≡ V (R1, R2, R3). R1, R2 and R3 are

the AB, BC, and AC distances, respectively.
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At first, the coordinates of the three atoms system should be defined. The best way is to choose

a space-fixed cartesian system consisting of the nine coordinates x ≡ {xi; i = 1, ..., 9} of the

nuclei A, B, and C, respectively, and the nine momenta px ≡ {pxi
; i = 1, ..., 9} conjugate to

these coordinates. The Hamiltonian in this reference coordinate system is given as

H(x, px) = T (px) + V [R1(x), R2(x), R3(x)] (8)

with

T (px) =
3∑

i=1

(
1

2mA

p2
xi

+
1

2mB

p2
xi+3

+
1

2mC

p2
xi+6

) . (9)

Hamilton’s equations of motion for all nine degrees of freedom are given as

ẋi ≡
dxi

dt
=

∂H

∂pxi

=
∂T

∂pxi

(i = 1, ..., 9) , (10)

˙pxi
≡ dpxi

dt
= −∂H

∂xi

= −∂V
∂xi

= −
3∑

k=1

∂V

∂Rk

∂Rk

∂xi

(i = 1, ..., 9) . (11)

The relationship between the three internuclear distances and the reference coordinates is given

by the following relation:

R1 ≡ RAB = [
3∑

i=1

(xi−xi+3)
2]

1
2 , R2 ≡ RBC = [

3∑
i=1

(xi+3−xi+6)
2]

1
2 , R3 ≡ RAC = [

3∑
i=1

(xi−xi+6)
2]

1
2 .

(12)

Eq. (12) can be used to derive all the necessary terms for ∂Rk

∂xi
. The generalized coordinates

that are used for Hamilton’s equations are defined as

qi = xi+6 − xi+3 (i = 1, 2, 3) , (13)

Qi = xi −
1

(mB +mC)
[mBxi+3 +mCxi+6] (i = 1, 2, 3) , (14)

Si =
1

M
[mAqi +mBqi+3 +mCqi+6] (i = 1, 2, 3) . (15)

The total mass M is given as M ≡ mA + mB + mC . qi are the internal coordinates of the

diatomic molecule BC. Qi are the relative coordinates A to BC. Si defines the center-of-mass

coordinate.

Using the generalized coordinates [qi, pi, Qi, Pi, Si, PSi
, i = 1, 2, 3] the final Hamiltonian can

be obtained. pi, Pi, and PSi
are the conjugate momenta related to pi, Qi, and Si, respectively.

The new form of the Hamiltonian is given as

H(q,Q, p, P, Ps) = T (q, P, Ps) + V [R1(q,Q), R2(q,Q), R3(q,Q)] , (16)

T (p, P, Ps) =
3∑

i=1

(
1

2µBC

p2
i +

1

2µA,BC

P 2
i +

1

2M
P 2

Si
) , (17)
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µBC ≡
mBmC

(mB +mC)
, µA,BC ≡

mA(mB +mC)

M
. (18)

µBC and µA,BC are the reduced masses corresponding to internal and relative motion. The

conjugate internuclear distances are

R1 = [
3∑

i=1

(
mC

mB +mC

qi +Qi)
2]

1
2 , R2 = [

3∑
i=1

Q2
i ]

1
2 , R3 = [

3∑
i=1

mB

mB +mC

qi −Qi)
2]

1
2 . (19)

The new internuclear distances R1, R2, and R3 are independent of S1, S2, and S3. Ps1 , Ps2 , and

Ps3 are constants of the motion. Hence the term involving Ps1 , Ps2 , and Ps3 can be eliminated

from the Hamiltonian. So we get the following twelve equations:

q̇i =
∂H

∂pi

=
∂T

∂pi

(i = 1, 2, 3) , (20)

Q̇i =
∂H

∂Pi

=
∂T

∂Pi

(i = 1, 2, 3) , (21)

ṗi = −∂H
∂qi

= −∂V
∂qi

= −
3∑

k=1

∂V

∂Rk

∂Rk

∂qi
(i = 1, 2, 3) , (22)

Ṗi = − ∂H
∂Qi

= − ∂V

∂Qi

= −
3∑

k=1

∂V

∂Rk

∂Rk

∂Qi

(i = 1, 2, 3) , (23)

where Ri(q,Q), i = 1, 2, 3 are given by Eq. (19). Details for this section are discussed by

Truhlar and Muckerman in Ref [90], p. 508–515.

2.4 Initial conditions

Before integrating Hamilton’s equations of motion, the initial values of the coordinates and

momenta, i.e., {q0
i , Q

0
i , p

0
i , P

0
i ; i = 1, 2, 3}, should be specified. For the reaction system of

atom A colliding with molecule BC(v, j), where (v, j) are the selected vibrational and rotational

states of the molecule BC, the atom A and the center of mass of the BC molecule are defined

to lie initially in the yz plane on the −z axis, and the direction of the initial relative velocity

vector ~vrel is defined to lie along the +z axis.

Four collision parameters (b, θ, φ, η) are obtained by using the Monte Carlo method. b is the

impact parameter, θ is the initial azimuthal orientation angle of the BC internuclear axis, φ is

the initial polar orientation angle of the BC interuclear axis, and η is the initial orientation of

the BC angular momentum.

The initial phase angle ξ (ξ = 0: the inner turning point; ξ = π: the outer turning point) and

the initial separation between A and the center of mass of BC (ρ) should be specified before

the trajectory calculation starts.

The initial values are given as follows:

Q0
1 = 0, Q0

2 = b, Q0
3 = −(ρ2 − b2)

1
2 , (24)
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P 0
1 = 0, P 0

2 = 0, P 0
3 = (2µA,BCErel)

1
2 = P0 . (25)

Let r ≡ |q| then:

q0
1 = r0 sin θ cosφ , q0

2 = r0 sin θ sinφ , (26)

q0
3 = r0 cos θ , ρ = ρ0 +

ξ

2π
vrelτ

v,j
BC . (27)

r0 is initial internuclear distance. With v = p
m

, Eq. (27), we get for ρ

ρ = ρ0 +
ξ

2π

P 0τ v,j
BC

µA,BC

. (28)

1
2
τ v,j
BC is the half-period time, which is obtained from Eq. 6. The initial components of the

internal (BC) momentum ~p are

p0
1 = Jr

(sinφ cos η − cos θ cosφ sin η)

r±
, (29)

p0
2 = −Jr

(cosφ cos η + cos θ sinφ sin η)

r±
, (30)

p0
3 = Jr

(sin θ sin η)

r±
. (31)

r± is the inner or outer turning point, and Jr is the angular momentum of the BC molecule.

Details for this section are given in the book of Truhlar and Muckerman [90], p. 511–515.

2.5 The calculation of a single trajectory

After specifying the equations of motion and the initial conditions, the next step is to perform

one trajectory. This is accomplished by numerical integration of the equations of motion using

the given initial values of {qi, Qi, pi, Pi; i = 1, 2, 3}. The most popular integrator for

trajectory studies of chemical reactions is the fourth-order Runge-Kutta method (see [117],

p. 351, and [118], p. 499–502), where for the differential equation f(y, t) = dy
dt

the following

approximation is used

y(tk+1) ≈ y(tk) +
1

6
h(p+ 2q + 2r + s) (32)

with

p = f(y(tk), tk) , q = f(y(tk) +
h

2
p, tk +

h

2
) ,

r = f(y(tk) +
h

2
q, tk +

h

2
) , s = f(y(tk) + hr, tk + h) . (33)

In Eq. (33) tk is the given time, y(tk) specifies the given initial values of {qi, Qi}, h is a fixed

time step.
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2.6 Product analysis

Once the trajectory is completed and the product diatomic molecule is tentatively identified, a

new set of generalized coordinates and momenta, in which the Hamiltonian is asymptotically

separable, has to be analyzed:

H(~q′, ~Q′, ~p′, ~P ′) ∼ Trel( ~P ′) +Hint(~q′, ~p′) . (34)

~q′ and ~p′ are the coordinates and conjugate momenta for the product diatomic molecule and
~Q′ and ~P ′ are those for the relative motion of the products. The reactant coordinates can be

used to derive the product coordinates {q′i, Q′i, p′i, P ′i ; i = 1, 2, 3} through the following two

steps:

(i) The transformation matrices T and T ′ define the transformation from reactant to product

coordinates

 ~q′

~Q′

 = T’~x ,


~q
~Q
~S

 = T~x . (35)

(ii) The inverse of the transformation has to be calculated

~x = T−1


~q
~Q
~S

 , (36)

which leads to

 ~q′

~Q′

 = T’T−1


~q
~Q
~S

 . (37)

The new conjugate generalized momenta are obtained from

p′i = mq̇′i P ′i = µQ̇′i (i = 1, 2, 3) (38)

where

 ~̇q′

~̇Q′

 = T’T−1


~̇q
~̇Q
~̇S

 . (39)

and

q̇i =
1

µBC

pi Q̇i =
1

µA,BC

Pi Ṡi =
1

M
PSi

(i = 1, 2, 3) . (40)
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For the products AB + C m is µAB and µ is µC,AB. For the products AC + B m is µAC and

µ is µB,AC .

The detailed form of the product coordinates is listed below

AB + C:

q′i = − mC

mB +mC

qi −Qi (i = 1, 2, 3), (41)

Q′i = − mBM

(mA +mB)(mB +mC)
qi +

mA

mA +mB

Qi (i = 1, 2, 3) . (42)

AC + B:

q′i =
mB

mB +mC

qi −Qi (i = 1, 2, 3), (43)

Q′i =
mCM

(mA +mC)(mB +mC)
qi +

mA

mA +mC

Qi (i = 1, 2, 3) . (44)

The Hamiltonian in product coordinates and the internal energies are given as

H ′ =
1

2µ

3∑
i=1

P ′2i +
1

2m

3∑
i=1

p′2i + V (R( ~Q′)) , (45)

ε̃′int =
1

2m

3∑
i=1

p′2i + VD(r) , r ≡ [q′ · q′]
1
2 . (46)

The different angular momenta, internal angular momentum ~J ′r, relative angular momentum
~J ′rel, and total angular momentum ~J ′tot are listed below

~J ′r = ~q′ × ~p′ = (q′2p
′
3 − q′3p

′
2)êx + (q′3p

′
1 − q′1p

′
3)êy + (q′1p

′
2 − q′2p

′
1)êz (47)

~J ′rel = ~Q′ × ~P ′ (48)

~J ′tot = ~J ′r + ~J ′rel = ~q′ × ~p′ + ~Q′ × ~P ′ . (49)

The relative velocity ~v′rel and relative speed is given as

~v′rel =
1

µ
~P ′, ν ′rel =

1

µ
( ~P ′ · ~P ′)

1
2 =

1

µ
(

3∑
i=1

P ′2i )
1
2 . (50)

The scattering angle is defined as

θ = cos−1vrel · v′rel

νrelν ′rel

, vrel =
P 0

µA,BC

êz . (51)

vrel is the initial relative velocity. The diatomic vibrational and rotational energies of the

products are given as

ε̃′rot = min{VD(r) +
J̃ ′r · J̃ ′r
2mr2

} − VD(re), ε̃′vib = ε̃′int − ε̃′rot . (52)

This leads to the diatomic rotational “quantum number” j′ and diatomic vibrational “quantum

number” v′ of the products

j̃′ = −1

2
+

1

2
[1 +

4J̃ ′r · J̃ ′r
h̄2 ]

1
2 (53)

ṽ′ = −1

2
+

1

πh̄

∫ r+

r−
{2m[ε′int − VD(r)− J ′r · J ′r

2mr2
]}

1
2dr . (54)

Details for this section are given in Truhlar and Muckerman in Ref. [90], p. 530–534.
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2.7 Calculation of the reaction probability 2 CLASSICAL MECHANICS

2.7 Calculation of the reaction probability

After computing a series of trajectories Ntot, the reactive trajectory numbers Nr can be ob-

tained. The reaction probability Pr for the selected initial states (v, j), the initial collision

energy Erel and the total number of trajectories Ntot is defined by

Pr(Erel, v, j) =
Nr

Ntot

. (55)

2.8 Reaction cross section

The reaction cross section is defined as an effective area in a plane perpendicular to the initial

velocity ~v, such that the relative separation vector ~r has to be within that area for a collision

to take place. In terms of the opacity function P (b) (0 ≤ P (b) ≤ 1), which is defined as the

fraction of collisions with impact parameter b that lead to a reaction, the reaction cross section

σR is defined as

σR =
∫ ∞
0

2πbP (b)db . (56)

To account for steric requirements, the reaction probability for a realistic function can be

modified by the introduction of a steric factor p(< 1), such that

P (b) = {p, b≤bmax
0, b>bmax

. (57)

bmax is the maximum impact parameter b for which a reaction can occur. Substituting Eq.

(57) into Eq. (56), the following can be obtained:

σR =
∫ bmax

0
2πbPdb

= 2πP
∫ bmax

0
bdb

= πPb2max . (58)

From Eq. (58) we can conclude that the reaction cross section σR depends only on the value of

the product P ∗ b2max. In our calculation the maximum impact parameter bmax was identified

at first, then the reaction probability was determined. In this way the reaction cross section

should be reasonably accurate.

2.9 Nonadiabatic multi-surface classical mechanics

In this section the theory of nonadiabatic transitions will be discussed. The Hamiltonian for

a molecular system may be written as

H(R,r) = TR + He(R,r), (59)
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where R and r are the vectors of the nuclear and electronic coordinates, respectively. TR is

the nuclear kinetic energy operator, and He is the electronic Hamiltonian, which contains the

electronic kinetic energy operator and all Coulomb interactions.

Some chemical systems may be modeled adequately within the framework of the Born-Oppenhe-

imer (BO) approximation. In these systems the nuclear motion is governed by a single BO

potential energy surface V , which is the ground-state electronic potential energy surface. The

ground-state nuclear wave function ψ0 may be described with

[TR + V (R)− E]ψ0(R) = 0 , V (R) = 〈φ0|He(R,r)|φ0〉r . (60)

E is the total energy, φ0 is the ground state electronic wave function, and the integration in

Eq. (60) is for the electronic coordinates r.

For non-BO processes, the single ground state surface treatment, described by Eq. (60), is not

correct. A new theoretical framework may be developed in terms of a basis set of electronic

wave functions φi, where i labels the electronic states, and optionally one may choose this basis

so that φ0 has the same meaning as above. The potential energy surfaces of each electronic

state may be defined as

Vii(R) = 〈φi|He(R,r)|φi〉r, (61)

as well as non-zero off-diagonal matrix elements of the electronic Hamiltonian

Vij(R) = 〈φi|He(R,r)|φj〉r. (62)

By expanding the multi-state wave function ψ in terms of the electronic basis function

ψ(R,r) =
∑

i

φi(R,r)ψi(R), (63)

the following equation can be obtained

[TR + Vii(R) + T
(2)
ii − E]ψi(R) = −

∑
j 6=i

[T
(1)
ij (R) + T

(2)
ij (R) + Vij(R)]ψj(R), (64)

with

T
(1)
ij =

−h̄2

2µ
〈φi|∇R|φj〉 · ∇R =

−h̄2

2µ
dij · ∇R, (65)

T
(2)
ij =

−h̄2

2µ
〈φi|∇2

R|φj〉 . (66)

µ is the reduced mass for the nuclear system, and ∇R is the nuclear gradient operator, dij

represents the nonadiabatic coupling vectors. From Eq. (64) one can derive that the nuclear

motion in each electronic state is controlled by the potential energy surface associated with

that state as well as the various coupling terms in Eqs. (62)–(66).

For a given classical path, the electronic motion may be readily obtained by solving the solution

to the time-dependent electronic Schrödinger equation [140]. For a two-state system, the time

dependence of the electronic population P1 of the ground state is given by [141, 142]
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2.9 Nonadiabatic multi-surface classical mechanics 2 CLASSICAL MECHANICS

Ṗ1 = −2Re(a
∗
12~v · ~d12), a12 = c1c

∗
2 , (67)

where a12 is the electronic coherence of the states 1 and 2. ci are the complex-value expansion

coefficients, and ~v is the nuclear velocity of the trajectory. In the trajectory surface hopping

simulations trajectories are propagated in a single electronic state, and the single-surface prop-

agation is interrupted by sudden surface switches or hops to other surfaces. Monitoring the

quantum mechanical populations Pi one can determine the location of the surface switches

according to the “fewest switches” prescription of Tully [120]. Details for this section are given

in Ref. [120, 98].
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3 Quantum mechanics

Using quantum mechanics it is impossible to specify simultaneously, with arbitrary precision,

both the momentum and the position of a particle [121]. This is different to classical mechanics.

Reactive scattering can be investigated time-dependently or time-independently. Applications

of time dependent approaches to quantum reactive scattering are becoming increasingly pop-

ular [72]. In the present work the time-dependent wave-packet approach will be used.

3.1 The wavepacket propagation

The time-dependent Schrödinger equation will be used to describe the motion of the nuclei in

the reaction A + BC

ih̄
∂

∂t
ψ(~R, t) = Ĥψ(~R, t), (68)

where ~R is the ensemble of coordinates that define the position of the nuclei. Assuming Ĥ

being time-independent, then the solution of Eq. (68) will be given formally as

ψ(~R, t) = φ(~R)φ(t) = exp (−iĤ
h̄
t)φ(~R) . (69)

According to Eq. (69) the forward propagation of the wavefunction ψ(~R, t) by time τ is

ψ(~R, t+ τ) = exp(
−iĤ
h̄

(t+ τ))φ(~R) = exp(
−iĤτ
h̄

)ψ(~R, t) . (70)

The first part of the right hand side in Eq. (70) can be expanded by a Taylor series. Kosloff

[122] proposed a global propagator. The main idea is to use a polynomial expansion of the

evolution operator:

exp(
−iĤτ
h̄

) ≈
N∑

n=0

anPn(−iĤ
h̄
τ) . (71)

Within the Chebychev scheme one approaches this problem in analogy to the approximation

of a scalar function. Consider a scalar function F (x) in the interval [−1, 1]. In this case it is

known that the Chebychev polynomial approximation is optimal since the maximum error in

the approximation is minimal compared to most of all possible polynomial approximations. In

the present approximation of the evolution operator a complex Chebychev polynomial Pn(X̂)

is used, replacing the scalar function by a function of an operator. In making this change one

has to examine the domain of the operator and to adjust it to the range of the definition of

the Chebychev polynomial. The range of the definition of these polynomials is from −i to i

(i =
√
−1). This means that the Hamiltonian operator has to be renormalized by dividing by

4E

4E = Emax − Emin, Emax = Vmax +Kmax, Emin = Vmin, (72)
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3.2 Time evolution 3 QUANTUM MECHANICS

Kmax =
∑

i

π2h̄2

2mi(4qi)2
. (73)

mi and 4qi are the mass and grid spacing of the coordinate i, respectively. The Hamiltonian

should be limited, i.e., for V > Vmax we set V = Vmax. So the shifted Hamiltonian is

Ĥnorm =
Ĥ − Î(4E

2
+ Vmin)

4E
2

. (74)

The wavefunction will be approximated in the following way

exp(
−iĤτ
h̄

)ψ(R, t) = exp(
−i(4E

2
+ Vmin)τ

h̄
)

N∑
n=0

(2−δn0)Jn(
4Eτ
2h̄

)Pn(−iĤnorm)ψ(R, t) . (75)

The complex Chebychev polynomials Pn fulfil a recursion relation

Pn+1 = −2iĤnormPn + Pn−1 . (76)

The first term in the right-hand side of Eq. (75) is a phase shift compensating the shift in the

energy scale. The first three Chebychev polynomials are given as follows

P0(−ix) = 1 , P1(−ix) = −2ix , P2(−ix) = −4x2 + 1 . (77)

The Jn(α) are Bessel functions with

(2− δn0)Jn(α) =
∫ i

−i

exp(iαx)Pn(x)dx

(1− x2)
1
2

, α =
4Eτ
h̄

. (78)

The maximum expansion number term N is approximately N ≈ 4Eτ
2h̄

.

3.2 Time evolution

In 1998 Gray and Balint-Kurti [85] developed a new version of the Chebyshev expansion, where

only the real part of the wavepacket was used. The backward propagation can be expressed

by

ψ(R, t− τ) = exp(
iĤτ

h̄
)ψ(R, t). (79)

Combining Eq. (70) with Eq. (79) leads to

ψ(R, t+ τ) = −ψ(R, t− τ) + 2 cos(
Ĥτ

h̄
)ψ(R, t). (80)

Eq. (80) does not include i =
√
−1, so the real and imaginary parts of ψ can be propagated

independently. Using the notations

q(R, t) = Re[ψ(R, t)] , p(R, t) = Im[ψ(R, t)] (81)

we get for Eq. (80)
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q(R, t+ τ) = −q(R, t− τ) + 2 cos(
Ĥτ

h̄
)q(R, t). (82)

In the next step the real part of the wavefunction q(R, t), according to the initial condition

ψ(t = 0) = q(0) + ip(0), is obtained. Eq. (70) can be rearranged (t = 0)

q(R, τ) = cos(
Ĥτ

h̄
)q(R, t = 0) + sin(

Ĥτ

h̄
)p(R, t = 0) . (83)

Eq. (82) is repeatedly used to obtain q(t) for discrete time steps τ . In the calculation a

finite size of coordinates in r and R is used. Without taking any precautions into account the

wavefunction would be reflected at the boundaries of the grid. This had to be considered. One

approach to minimize the reflection is to periodically absorb the wavefunction in a small region

of the grid close to the boundary [123]. Absorption is carried out in both the reactant and

product channels at every time step τ , with τ not too large (τ < 1 fs). For Jacobi coordinates

the absorption form is

Ân,k,n′,k′ = δn,n′δk,k′ÂR(Rk)Âr(rn) (84)

with

ÂR(Rk) =

 exp[−CR
abs(Rk −Rabs)

2], Rk > Rabs

1, Rk ≤ Rabs

(85)

Âr(rn) =

 exp[−Cr
abs(rn − rabs)

2], rn > rabs

1, rn ≤ rabs.
(86)

The absorption can be formally included into Eq. (82)

q(R, t+ τ) = Â[−Âq(R, t− τ) + 2 cos(
Ĥτ

h̄
)q(R, t)]. (87)

3.3 The A–BC system

3.3.1 Jacobi coordinates

There exist several coordinate systems to describe triatomic molecules. In the case of scat-

tering Jacobi coordinates are appropriate to describe the arrangements A + BC (reactant

coordinates) and C + AB (product coordinates) (Fig. 3). These sets of coordinates can be

used simultaneously either during the complete propagation or by transforming the wavepacket

from one set of initial coordinates to another set of product coordinates. Miller [124] provided

a general expression that includes all the reactant and the product arrangements

ψγ1,n1 =
∑
v

φa
v(ra)fav←γ1v1(Ra) +

∑
v

φb
v(rb)fbv←γ1v1(Rb) +

∑
v

φc
v(rc)fcv←γ1v1(Rc), (88)

where γ1 = a(A + BC), b(B + AC), or c(C + AB) labels the different arrangements of the

atoms. {φa
v} , {φb

v} and {φc
v} are the vibrational eigenfunctions of the diatoms BC, AC, and

AB, respectively.

This approach is similar to the linear combination of atomic orbitals (LCAO) for molecular

orbitals. For example, the electronic diatomic molecular orbital χ(r) can be expanded as
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Figure 3: Reactant A–BC and product C–AB Jacobi coordinates systems.

χ(r) =
∑

i

aiφ
a
i (ra) +

∑
i

biφ
b
i(rb), (89)

where ra are the coordinates of the electron with respect to nucleus a and rb corresponding

to that of nucleus b. Eq. (88) shows an expansion of the wavepacket for the entrance channel

γ1 = a (A + BC) and for the exit channel coordinates b(B + AC) and c(C + AB).

3.3.2 Space-fixed and body-fixed Jacobi coordinates

For a triatomic system there are 9 degrees of freedom. The Jacobi coordinates are used only

for the internal degrees of freedom of the system, while the rotational and translational motion

(3 + 3 degrees of freedom) are described differently. Therefore, the molecule defined by three

Jacobi coordinates should be “inserted” into a three dimensional cartesian coordinate system.

In 1974 Pack [125] proposed an improved method. The coordinates are shown in Fig. 4.

At first, one has a laboratory-fixed system (“space-fixed coordinates”-SF) and expresses the

complete wavefunction by using this system. Second, one defines a body fixed coordinates

system BF in such a way that the “Z” axis lies along the R Jacobi coordinate (atom-diatom

distance) and has the origin in the centre of mass of the complete triatomic A–BC system.

We use ~l to express the relative angular momentum for the motion of atom A relative to

BC, and ~j to express the rotational angular momentum of BC. The total angular momentum

of the system is ~J ( ~J = ~l + ~j). If the eigenfunctions of the relative angular momentum ~l

are described by spherical harmonics Yl,ml
(R′) and the rotational motion is described by the

function Yj,mj
(r′) then the common set of eigenfunctions for the operators ~J2, ~Jz, and ~j2 can

be obtained [125, 126] as

yJM
jl (r̂′, R̂′) =

j∑
mj=−j

l∑
ml=−l

C(jlJ ;mj,ml,M)Yjmj
(r̂′)Ylml

(R̂′) . (90)

The complete wavefunction is
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Figure 4: A–BC space-fixed (SF) and body-fixed (BF) Jacobi coordinates systems.

ψJMjlv ≡
∑
j′′

∑
l′′

∑
v′′
R−1GJjlv

j′′,l′′,v′′(R)χj′′,v′′(r)y
JM
j′′l′′(r̂

′, R̂′) , (91)

including the radial channel wavefunctions GJjlv
j′′,l′′,v′′(R) and the diatomic vibrational wavefunc-

tions χj′′,v′′(r). Eq. (91) presents the space-fixed formulation of the wavefunction. The Wigner

rotation matrix D connects the space-fixed wavefunctions and the body-fixed wavefunctions

ψJMjlv =
∑
λ

DJ
λM(ω)

1

Rr
φJjλ

BF . (92)

λ is a body-fixed z component of the total angular momentum J and ω is the angle relating

space-fixed and body-fixed coordinate systems.

3.4 The Hamiltonian of the 3-atomic system

The action of the Hamiltonian operator on the wavefunction in Jacobi coordinates (R, r, θ) for

the body-fixed frame presentation leads to

ĤJφJλ(R, r, θ, t) = {h̄2{− 1

2µR

∂2

∂R2
− 1

2µr

∂2

∂r2
}

−(
1

2µRR2
+

1

2µrr2
)(

1

sin θ

∂

∂θ
sin θ

∂

∂θ
− λ2

sin2 θ
)

+
1

2µRR2
(J(J + 1)− 2λ2) + V (R, r, θ)}φJλ(R, r, θ, t)

+CJ
λ,λ−1φ

Jλ−1(R, r, θ, t) + CJ
λ,λ+1φ

Jλ+1(R, r, θ, t) . (93)

The last two terms in Eq. (93) present the Coriolis coupling [127], i.e., the coupling of the

rotational and vibrational wavefunction with
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CJ
λ,λ±1 = − h̄

2[J(J + 1)− λ(λ± 1)]
1
2 [j(j + 1)− λ(λ± 1)]

1
2

2µRR2
. (94)

The reduced masses µR and µr are

µR =
ma(mb +mc)

ma +mb +mc

, µr =
mbmc

mb +mc

. (95)

The complete Hamiltonian includes four independent parts. The first part computes the

contribution of the kinetic energy, the second part computes the contribution of the rotational

energy of the diatomic molecule, the third part computes the potential energy, and the fourth

part computes the Coriolis coupling.

3.4.1 The kinetic energy terms

In Jacobi coordinates, along the R and r coordinates, the kinetic energy operator is of the

form

T̂kin = − h̄
2

2µ

∂2

∂x2
, (x = r, R, µ = µr, µR) . (96)

The most convenient method for dealing with these radial terms is the Fast Fourier transform

method (FFT). The FFT calculation for the kinetic energy at the point x is performed in

3 steps. First, the Fourier transform of ψ(x) leads to the momentum representation of the

wavefunction ψ(k)

ψ(k) =
1√
2π

∫ ∞
−∞

exp(−ikx)ψ(x)dx = fft{ψ(x)} . (97)

In the next step, ψ(k) has to be multiplied with (h̄k)2

2µ
. This is a local operation at each grid

point for the momentum grid point. In the third step the momentum representation of the

wavefunction is transformed back to the space representation by an inverse FFT−1

φ(x) = − h̄
2

2µ

∂2

∂x2
ψ(x) = fft−1{(h̄k)2

2µ
fft{ψ(x)}} . (98)

3.4.2 The angular kinetic energy terms

In this section we present the angular part of the Hamiltonian operator (see Eq. (93)). The

rotational operator for the diatomic molecule is

T̂rot = − h̄
2

2
(

1

µRR2
+

1

µrr2
)[

1

sin θ

∂

∂θ
(sin θ

∂

∂θ
)− j2

z

sin θ2
] . (99)

The centrifugal potential is proportional to ( j2
z

sin θ2 ) and imposes a boundary condition that

ψ(R, r, θ) varies with θ as θjz at small θ and as (π− θ)jz at θ → π. The angular eigenfunctions

of the first part of the operator are the Legendre polynomials Pj(cos θ)

[− 1

sin θ

∂

∂θ
(sin θ

∂

∂θ
)]Pj(cos θ) = j(j + 1)Pj(cos θ) . (100)
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The rotational energy can be presented by the finite basis representation (FBR) as

T FBR
j =

1

2µ
j(j + 1)δjj′ . (101)

According to the discrete variable representation (DVR) method [128, 80, 81] the location of

the grid points can be defined by the Gauss-type quadrature rule for the associated Legendre

functions PΩ
l (cos(θ)i,Ω) = 0. The grid points (for cos(θ)i,Ω, i = 1, 2, · · · , nΩ, Ω = 0, 1, · · · , J)

are chosen as roots of the corresponding associated Legendre polynomials. nΩ are the number

of grid points in channel Ω. Light and coworkers [81] calculated the weights for the associated

Legendre quadrature using the Christoffel-Darboux formula

1

wi,Ω

δi,j =
nΩ∑
l=0

PΩ
l (cos(θi))P

Ω
l (cos(θj)) . (102)

For every channel the associated Legendre quadrature formula can be expressed by a grid

representation∫ 1

−1
f(cos(θ))d(cos(θ)) =

1

kΩ

∑
i

wi,Ωf(cos(θ)i,Ω) , kΩ =
∑

i

wiΩ . (103)

The DVR and FBR representations can be transformed to each other with the matrix U jl
Ω

U jl
Ω =

√
wj,ΩPl,Ω(cos(θj)) , j, l = 1, · · · , nΩ . (104)

3.4.3 The potential energy

The action of the potential energy operator on the wavefunction is calculated by evaluating

the potential at the grid points and multiplying it by the value of the representation of the

wavefunction at those points, i.e.,

V̂DV R|ψ >= VDV R(re, Rm, cos(θi))
√
wiψDV R(cos(θi)) . (105)

wi are the corresponding DVR weights.

3.5 Preparation of the initial wavepacket

Balakrishnan et al. [129] have shown that the initial wavepacket can be expressed as a Gauss-

function along the R coordinate multiplied by the initial state ro-vibrational wavefunction of

the diatomic molecule

ψ(R, r, t = 0) =
1

π
1
4
√
σ

exp(ik0R) exp(−(R−R0)
2

2σ2
)χ(r) . (106)

R is the distance between the separated atom and the reduced centre of mass of the diatomic

system. ri is the internal coordinate of the diatom and χ(r) is the initial wavefunction of the

diatomic molecule.
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As indicated by Heisenberg’s uncertainty principle relation ∆x∆p ≥ h̄
2
, we can evaluate for

Gaussian wavepackets the lowest value ∆x∆p = h̄
2
. The initial wavepacket should be chosen not

only suitable to the momentum but also to the space part. If the spreading of the momentum

is very narrow, then it needs a very large grid to install the complete wavepacket. If the energy

is very large, then the distance between two successive points of the grid should be very small.

This means that one needs a lot of points to store the wavepacket values.

3.6 Analysis of the propagated wavepacket

The scattering matrix (called S–matrix) Sj←i relates the initial state and the final state of

a physical system undergoing a scattering process. It is defined as the unitary [130] matrix

connecting asymptotic particle states in the scattering channels

Sj←i = 〈ψ+
out|ψ−in〉 . (107)

|ψ−in〉 is the quantum state of the system at an initial time in the entrance channel, and 〈ψ+
out|

is the quantum state of the system at a final time in the exit channel. There are several

methods for computing the S–matrix and reaction probabilities from complete wavepackets.

In all these methods the grid representation is separated into two pieces (see Fig. 5). The first

piece is the interaction region, i.e., in these parts the potential derivatives with respect to the

distance atom-diatom should be considered. The second piece is the asymptotic region where

the potential is nearly constant. In these regions the derivatives of the potential with respect

to the reactive coordinates are neglected. In the following section we mainly discuss the flux

analysis method.

3.6.1 The flux analysis method

The flux analysis method is widely used in wavepacket calculations [129, 133, 136]. The main

idea of this method is to calculate the flux of the wavepacket in the exit channel going through

an analysis line r = r0 in the product region (see Fig. 5). The reaction probability is given as

PR(E) =
h̄

µ
Im[〈Ψ(R, r0, E)|∂Ψ(R, r0, E)

∂r
〉] , Ψ(R, r0, E) = ψ(R, r0, E)/Ae . (108)

The wavefunction ψ(R, r0, E) is energy dependent and can be calculated from the Fourier

transform of the time-dependent wavefunction ψ(R, r, t) along the analysis line r = r0. The

potential energy in the analysis region is assumed to be constant. This Fourier transform leads

to

ψ(R, r0, E) =
1√
2π

∫ ∞
−∞

ψ(R, r, t) exp
iEt

h̄
dt|r=r0 . (109)

The Ae factor is given as

Ae = (
µ

h̄kn0

)( 1
2
)An0(kn0) , An0(kn0) =

1√
2π

∫ ∞
0

∫ ∞
0

Ψ(R, r, t = 0)φ(r) exp (−ikn0R)drdR .

(110)
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Interaction region Initial wavepacket Free force region

R

r Absorbing potential

Coutour lines
representation
of the PES

Figure 5: Analysis of the wavepacket propagation in Jacobi coordinates (R, r,θ) for fixed angle

θ. (note: R0 is the position of the analysis line in the reactant channel, r0 is the position of

the analysis line in the product channel).

µ is the reduced mass in the exit channel. kn0 is the wavenumber of the plane waves in the

entrance channel

kn0 =

√
2µ(E − ε0)

h̄
. (111)

E is the total energy of the wavepacket, and ε0 is the initial energy of the diatomic molecule.

The final expression for the reaction probability, using the flux formulation, is

PR(E) =
h̄2kn0

µ2|An0(Kn0)|2
Im[〈Ψ(R, r0, E)|∂Ψ(R, r0, E)

∂r
〉], J = 0 . (112)

For J > 0 this relationship should consider the coupling of the different Ω channels

P J
R(E) =

h̄2kn0

µ2|An0(Kn0)|2
J∑

Ω=0

Im[〈ΨΩ(R, r0, E)|∂ΨΩ(R, r0, E)

∂r
〉] . (113)

3.7 The cross section

In the classical trajectory part we have introduced the differential cross section as
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σR =
∫ bmax

0
2πbP (b)db =

∫ bmax

0
2πbP Jdb , (114)

where P J is the reaction probability corresponding to a given angular momentum J , which is

defined as

~J = ~r × ~p . (115)

Comparing the classical impact parameter b with the angular momentum J we can write in

quantum mechanics formally

bk ≈ J +
1

2
or b ≈ 1

k
(J +

1

2
) . (116)

k is the wave vector of the projectile (~p = h̄~k). As a result we can formulate the cross section

based on wavepacket calculations as

σtot =
π

k2

∞∑
J=0

(2J + 1)P J . (117)
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4.1 The H+
3 potential energy surface
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Figure 6: H+
3 : A cut through the three lowest adiabatic PESs at R(H++H2) = ∞. The

adiabatic potential curves of H2 and H+
2 , and the energies E(v, j) of the six lowest vibrational

states of H2 are presented.

There is a large number of theoretical studies which were essential in the identification and

understanding of the H+
3 ion. The study of the electronic potential energy surface (PES) is the

first essential ingredient in these models. To the best of my knowledge, there are three kinds

of PESs for the H+
3 ion. The first family is the one including local ab initio PESs. Meyer et

al. MBB [23] obtained one of these potentials in 1986. They used a full CI calculation at 69

points with the highest energy part 25000 cm−1 above the minimum of the PES. Because the

PES is a local fit of energy points, the dissociation region is not described highly accurate. The

RKJK PES [24] belongs to the same family as the MBB PES. It is a local potential using the

same geometric grid points. It relies on a configuration interaction method including explicitly

one r12 linear term in the wavefunction CI-R12, and the RKJK PES is more accurate than

the MBB PES. Later, a PES with even higher accuracy [25, 26] was obtained using correlated
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Gaussian functions and where adiabatic and relativistic corrections were included. Jaquet [27]

improved this PES in 2002 and improved the PES to regions of higher energy. The semi-

empirical fits of PESs are the second family. They are obtained by iterative adjustment of

the potential until a good agreement with the experimental spectroscopic data is achieved.

The DMT potential [28] is an example of this kind of PES. It is achieved by adjustment to

243 energy levels with a standard deviation of 0.053 cm−1. The third family of PESs presents

so called global ab initio potential energy surfaces. They dependent on a large number of

ab initio calculations which cover the whole configuration space. These PESs are useful to

calculate highly excited rovibrational states and dynamical processes above the dissociation

threshold: PPT [29], PPKT [30], ARTSP [31, 32], VLABP [33], VAV [39] PESs belong to this

family PES. The VAV PES which constructs partly a global, diabatic, multivalued PES for

singlet H+
3 is based on a method proposed by Varandas [40].

For the singlet state of the H+
3 ion there are two PESs available in the literature that can be

used to study nonadiabatic processes. The first PES is the one of Preston and Tully (1971)

[34]. It is qualitatively correct, but inaccurate even at low energies. The second PES is the

KBNN [35] surface, which introduces a better description of the avoided crossing.

For the investigation of the adiabatic and non-adiabatic H+ + H2(v, j) reaction, we selected

the KBNN [35, 143] potential energy surface. This system has two different electronic channels

in the energy range considered:

H2(
1Σ+

g ) + H+ → H2(
1Σ+

g ) + H+, (118)

→ H+
2 (2Σ+

g ) + H (charge transfer). (119)

Fig. 6 shows for the asymptotic region at R(H+ + H2) = ∞ the energy dependence along

r(H–H) for the ground and the two lowest excited singlet-states of H+
3 , which represent H2 and

the H+
2 cation. In addition, vibrational energies for H2 with initial vibrational states v = 0–5

and rotational state j = 0 are plotted.

The ground state PES of H+
3 has a deep minimum of 4.608 eV [33]. It has three asymptotic

valleys, each of them corresponding to three different arrangements, which correlate to the H+

+ H2(X
1Σ+

g ) potential. In Fig. 6 it is observed that there is a crossing between the surface

of the ground state and the first excited state. At the crossing point the Jacobi diatomic

coordinate is r = 2.50679 Bohr for the energy E≈ 2.21 eV. Near the crossing seam the electron

can “jump” between the adiabatic ground state and the first excited state, which we call a

non-adiabatic transition.

4.2 H−
3 PES

At present, there are three quite accurate ab initio potential energy surfaces (PESs) of H−3
available: the PES by Stärck and Meyer (SM) [50], by Panda and Sathyamurthy (PS) [53], and

by Ayouz et al. (AY) [54]. In addition, Belyaev, Tiukanov and others [55, 56, 57, 58, 59, 60]

have obtained PESs of excited electronic states of H−3 and their non-Born-Oppenheimer cou-

plings with the ground state. The excited electronic states are unstable with respect to electron
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Figure 7: Contour plots of the potential energy surfaces (SM, PS, and AY) in Jacobi coordinates

R, r for different angles γ as indicated in each box. The energy unit is eV.

autodetachment.

In 1993 Stärck and Meyer [50] determined an accurate ab initio potential energy surface for

the reaction H2 + H− based on MR-CI and CEPA(2) calculations. They defined modified

interatomic distances ri from which modified scattering coordinates R, r and γ are derived in

the usual way. For r1 < r2 < r3 the coordinates ri will be given as r3 = r3, r1 + r2 = r1 + r2,

and

r2 − r1 = ((r2 − r1)
2 + 4ε2)

1
2 , ε = P1 exp[−p2(

r2 − r1
2

)2], (120)

where p1 and p2 are fitting parameters.

The “Morse” coordinate is given as

r′ =
1− exp[p3(re − r)]

p3

(121)
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Figure 8: Contour plots of the differences of the potential energy surfaces SM, PS, and AY in

Jacobi coordinates R, r for different angles γ values as indicated in each box. The energy unit

is eV.
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Figure 9: The H2 potential curves in H−3 for the SM-PES,PS-PES, and AY-PES.

with re = 1.4 Bohr. R′ is defined as R′ = R− 3.0.

The long-range potential is given as

Vlr =
∑
n,l

Cnl(r)R
−n
Dn(R, r, γ)Pl(cos γ), (122)

where the damping function Dn has the form of an incomplete gamma function

Dn(x) = 0, x < 0,

= 1−
n∑

i=0

xi

i!
exp(−x), x ≥ 0,

x = R[p4 + p5r
′ + p6R

′ + p7P2(cos γ) + p8(n− 3)],

with non-linear parameters p4 to p8.

The exchange repulsion is cast in an exponential form as

Vex = Aex exp[R′(p9 + p10)P2(cos γ)], (123)

Aex = c1 + c2r
′ + c3P2(cos γ) + c4R

′ + c5r
′2 + c6P2(cos γ)R′ + c7R

′2 + c8r
′P2(cos γ). (124)

The chemical binding, responsible for the low barrier for linear structures, is assumed to stem

from resonance interactions between the σu orbital of H2 and the diffuse s orbital of H−. This

energy is written as

Vrs = (1− (1 + 4β2
rs)

1
2 )(c9 + c10 cos2 γ),

βrs = exp(p11R
′ + p12r

′)p13 cos γ. (125)
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The total potential energy is given as

V = Vlr + Vex + Vrs + Vas, (126)

where Vas represents the asymptotic energy.

We continued this work to get the derivatives of the potential energy with respect to the three

internuclear distances (r1, r2, r3)

∂V

∂ri

=
∂Vlr

∂ri

+
∂Vex

∂ri

+
∂Vrs

∂ri

+
∂Vas

∂ri

, i = 1, 2, 3, (127)

with ∂Vas

∂ri
= 0.

According to the chain rule the following equations can be obtained:

∂Vlr

∂ri

=
∂Vlr

∂R

∂R

∂ri

+
∂Vlr

∂r

∂r

∂ri

+
∂Vlr

∂ cos γ

∂ cos γ

∂ri

, i = 1, 2, 3, (128)

∂Vex

∂ri

=
∂Vex

∂R

∂R

∂ri

+
∂Vex

∂r

∂r

∂ri

+
∂Vex

∂ cos γ

∂ cos γ

∂ri

, i = 1, 2, 3, (129)

∂Vrs

∂ri

=
∂Vrs

∂R

∂R

∂ri

+
∂Vrs

∂r

∂r

∂ri

+
∂Vrs

∂ cos γ

∂ cos γ

∂ri

, i = 1, 2, 3, (130)

with

∂Vlr

∂R
=
∂Vlr

∂R′
∂R′

∂R
,

∂Vex

∂R
=
∂Vex

∂R′
∂R′

∂R
,

∂Vrs

∂R
=
∂Vrs

∂R′
∂R′

∂R
, (131)

∂Vlr

∂r
=
∂Vlr

∂r′
∂r′

∂r
,

∂Vex

∂r
=
∂Vex

∂r′
∂r′

∂r
,

∂Vrs

∂r
=
∂Vrs

∂r′
∂r′

∂r
, (132)

∂Vlr

∂ cos γ
=

∂Vlr

∂P2(cos γ)

∂P2(cos γ)

∂ cos γ
,

∂Vex

∂ cos γ
=

∂Vex

∂P2(cos γ)

∂P2(cos γ)

∂ cos γ
. (133)

P2(cos γ) is a Legendre polynomial. One should take into account the condition r1 < r2 < r3

when calculating theses derivatives.

Panda and Sathyamurthy [53] constructed a global analytical potential energy surface (PES)

for the ground state of H−3 in 2004. Their PES was generated using the suite of programs

MOLPRO [137] for a grid of energy points using the center-of-mass separation R ranging from

2 to 13 Bohr and intramolecular bond distances r ranging from 1.0 to 4.0 Bohr for the Jacobi

angle γ = 0, 30, 60, 90◦. The potential energy function for the triatomic system ABC will be

expanded as

VABC(R1, R2, R3) = V
(1)
A + V

(1)
B + V

(1)
C + V

(2)
AB(R1) + V

(2)
BC(R2) + V

(2)
AC (R3) + V

(3)
ABC(R1, R2, R3).

(134)

The diatomic potential for AB is given by

V
(2)
AB =

c0 exp(−αABR1)

R1

+
L∑

i=1

ciρ
i
1 . (135)
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For BC and CA the expressions are similar. The Rydberg type variables ρi are given by

ρi = Ri exp(−βiRi). (136)

The three-body term V
(3)
ABC is written as

V
(3)
ABC(R1, R2, R3) =

M∑
ijk

dijkρ
i
1ρ

j
2ρ

k
3. (137)

The long-range potential VLR for H−–H2 is expressed as

VLR =
qQ(r)P2(cos γ)

R3
− q2

2R4
[α0(r) + α2(r)P2(cos γ)], (138)

where q is the charge on the H− ion, and Q(r) is the quadrupole moment

Q(r) = (a0 + a1r + a2r
2 + a3r

3 + a4r
4 + a5r

5) exp(−a6r). (139)

α0(r) and α2(r) are defined by

α0(r) =

 (b0 + b1r + b2r
2 + b3r

3 + b4r
4) exp(−b5r), 0.4 ≤ r ≤ 4.0Bohr

b6 + b7 exp[−2.6(r − 4.0)], r > 4.0 Bohr
(140)

α2(r) = c0 exp[−c1(r − 3.2)2]. (141)

All parameters are fitted to ab initio energies with a least-squared-method.

The original fortran code of Panda and Sathyamurthy has supplied the derivatives of the po-

tential energy with respect to the three internuclear distances (r1, r2, r3). But these derivatives

were not correct because they did not include the long-range potential part. We modified this

in order to get the correct derivatives.

Ayouz et al. [54] determined a new potential energy surface for the electronic ground state

of the H−3 ion. The coupled-electron pair approximation (CEPA-2) method [138] was used

in the calculation of this PES. A large basis set, AV5Z with spdf/g basis functions, and in

comparison to the work of Stärck and Meyer, and Panda and Sathyamurthy a much larger

number of geometries (3024) were used in these studies.

In the present work these three PESs (SM, PS, and AY) have been investigated in detail. The

three potential energy surfaces are plotted in Fig. 7 using Jacobi coordinates R and r for three

angles γ = 0, 45, 90◦. Values for PS-PES and AY-PES are plotted at the three top panels in

Fig. 8. The left top panel in Fig. 8 shows for γ = 0◦ and r values in the range of 1.2–2.4 Bohr

that the difference of the PESs is lower than 0.8 eV. For r > 2.4 Bohr deviation is larger than

0.8 eV. For r in the range of 1.4–2.4 Bohr and R in the range of 4.5–6.5 Bohr, 4V (PS-AY)

is lower than 0.2 eV. The middle top panel shows that for r between 1.2 and 2.4 Bohr and R

in the range of 2–10 Bohr, 4V (PS-AY) is between 0.2 and 0.8 eV. For γ = 90◦ deviation is

similar to γ = 45◦. 4V (PS-AY) is mostly larger than 0.2 eV; some deviations are even larger

than 1.6 eV. For r larger than 2.5 Bohr 4V (PS-AY) is larger than 3.2 eV. All these results

indicate that there are large differences between PS-PES and AY-PES.
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A comparison of PS-PES and SM-PES is plotted in the three middle panels in Fig. 8. All

these three panels show that the difference of potential energy values are mostly larger than

0.2 eV. 4V (PS-SM) is smaller than 0.2 eV for r = [1.3–2.0] Bohr and R = [3.0–5.0] Bohr.

The three bottom panels in Fig. 8 show 4V (SM-AY) for the angles γ = 0, 45, 90◦. It can be

seen that in the interesting part (1.0 < r < 2.3 Bohr) 4V (SM-AY) is very small. 4V (SM-AY)

values are lower than 0.1 eV, especially in the area of r = [1.2–1.6] Bohr, i.e., near the energy

minimum of the H2 curve 4V (SM-AY) < 0.05 eV. This feature tells us that in these areas

the potential energy surface SM-PES and AY-PES are very similar. We see that for r > 2.5

Bohr the energy gap is larger than 3.2 eV. This results from an incorrect dissociation energy

of AY-PES (see Fig. 9).

From all the discussion above we can get the conclusion that the most interesting part of the

potential for SM-PES and AY-PES is very similar.
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5 Results

5.1 H+ + H2(v, j)

5.1.1 Non-Born-Oppenheimer investigations

In order to understand the influence of non-Born-Oppenheimer effects in reactive processes of

triatomic systems, the collision of H+ + H2 was chosen as a typical example, where one has

avoided crossings and conical intersections. The change from the electronic ground state to

the first excited state leads to a charge transfer.

The non-Born-Oppenheimer semi-classical trajectory method of Truhlar and coworkers (adia-

batic and non-adiabatic trajectory program ANT07 [139]) was used to investigate the collision

of a proton with different vibrational excited H2-molecules (H2(v=0–5, j=0)). For a better

understanding of the non-adiabatic effects, first adiabatic single-surface ground state calcula-

tions were performed using the CTAMYM program [147]. These results were then compared

with the multi-surface calculations.

The trajectory calculations were performed by running a batch of 104 trajectories at collision

energies 0.01–3.0 eV. The integration step-size in the trajectories was chosen to be 0.05 fs.

This guarantees conservation of total energy and total angular momentum. The maximum

impact parameter bmax was chosen as 4.1 Å. Each trajectory was integrated until one atom

was separated from the other two by at least 20 Å. The final electronic state and the molecular

arrangement could therefore be assigned unambiguously, and product branching probabilities

were obtained by counting trajectories. The 3×3 DIM-potential of Kamisaka et al. [35]

(KBNN) was used for both adiabatic and non-adiabatic calculations.

5.1.2 Reaction probabilities

The reaction probabilities for the collisions H+ + H2(v=0–5, j=0) → H2(v
′,j′) + H+ were

investigated in three different ways:

Method AD1: Ground state adiabatic surface calculations using the program CTAMYM [147].

The reaction probabilities are listed in Tab. 1.

Method AD2: Ground state adiabatic surface calculations using the program ANT07. The

reaction probabilities are listed in Tab. 2.

Method NAD: Non-adiabatic multi-surface calculations using the program ANT07. The reac-

tion probabilities are listed in Tabs. 3–8.

In the case of NAD-investigations several different product channels have to be taken into

account: reactive charge transfer (R-CT), nonreactive charge transfer (NR-CT), reactive no-

charge-transfer (R-NCT), and nonreactive no-charge-transfer (NR-NCT). In the following,

three product channels are considered:

R-CT: H+ + H2(v, j) → H+
2 (v′, j′) + H (A+ + BC → AB+ + C)

NR-CT: H+ + H2(v, j) → H + H+
2 (v′, j′) (A+ + BC → A + BC+)

R-NCT: H+ + H2(v, j) → H2(v
′, j′) + H+ (A+ + BC → AB + C+)
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Table 1: AD1: Total reaction probabilities PAD1 for different initial vibrational states H+ +

H2(v=0–5, j=0) → H2(v
′, j′) + H+ on the lowest adiabatic KBNN-PES using the CTAMYM

code.1

Ecoll[eV] P (v = 0) P (v = 1) P (v = 2) P (v = 3) P (v = 4) P (v = 5)

0.01 0.6402 0.6573 0.6437 0.6184 0.6391 0.5754

0.1 0.6539 0.6111 0.5675 0.5334 0.5128 0.4915

0.2 0.5416 0.5334 0.5090 0.4911 0.4927 0.4734

0.3 0.4234 0.4000 0.3983 0.4384 0.4556 0.4446

0.4 0.3249 0.3112 0.3368 0.3786 0.4142 0.4038

0.5 0.2543 0.2540 0.2918 0.3262 0.3613 0.3657

0.6 0.2086 0.2129 0.2518 0.2842 0.3115 0.3202

0.7 0.1687 0.1826 0.2145 0.2502 0.2773 0.2845

0.8 0.1410 0.1573 0.1839 0.2227 0.2506 0.2498

0.9 0.1263 0.1357 0.1585 0.1933 0.2214 0.2236

1.0 0.1094 0.1172 0.1348 0.1697 0.1992 0.1995

1.1 0.0933 0.1012 0.1231 0.1480 0.1743 0.1771
1 Ntot = 10000, b = 4.1 Å, ∆t = 0.05 fs

In Tabs. 3–8, PR
CT is the reaction probability for the channel R-CT; PNR

CT is the reaction

probability for the channel NR-CT; PR
NCT is the reaction probability for the channel R-NCT;

PR
CT,NCT is the sum over the reaction probabilities PR

CT and PR
NCT ; PR,NR

CT is the sum over the

reaction probabilities PR
CT and PNR

CT ; PR
tot is the total reaction probability, i.e., PR

NCT + PR,NR
CT .

In order to get a better overview of the differences in the reaction probabilities, obtained from

the different methods (AD1, AD2, and NAD) the reaction probabilities had been plotted in

Figs. 10–12.

Fig. 10 shows the reaction probabilities PAD1, PAD2, PR
CT,NCT for the methods AD1, AD2,

and NAD. From Fig. 10 it can be seen that when the systems is at low energy, the reaction

probabilities PAD1, PAD2, PR
CT,NCT are the same. For increasing collision energy the reaction

probabilities become different. For v > 3 the difference becomes even larger at low collision

energies (see panels E(v = 4) and F(v = 5) in Fig. 10). The reaction probabilities calculated

with the adiabatic single-surface using the two programs CTAMYM and ANT07 deviate from

each other at the low collision energy Ecoll = 0.01 eV (more than 40%, see panel E(v = 4) in

Fig. 10).

Fig. 11 shows the reaction probabilities PAD1, PAD2, and PR
tot for the three methods AD1,

AD2, and NAD. PR
tot is the total reaction probability calculated with method NAD, i.e., the

sum over PR
CT , PNR

CT , and PR
NCT . From Fig. 11 one can see that in the case that the reactant

H2 starts with a low vibrational state and at low collision energy, the reaction is adiabatic.

When the reactant H2 starts with a high vibrational state (normally v > 3), the total reaction
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Table 2: AD2: Total reaction probabilities PAD2 for different initial vibrational states H+ +

H2(v=0–5, j=0) → H2(v
′, j′) + H+ on the lowest adiabatic KBNN-PES using the ANT07

code.1

Ecoll[eV] P (v = 0) P (v = 1) P (v = 2) P (v = 3) P (v = 4) P (v = 5)

0.01 0.5270 0.3547 0.2926 0.2502 0.2135 0.5148

0.1 0.6539 0.6111 0.5675 0.5334 0.5128 0.4915

0.2 0.5416 0.5334 0.5090 0.4911 0.4927 0.4734

0.3 0.4234 0.4000 0.3983 0.4384 0.4556 0.4446

0.4 0.3249 0.3112 0.3368 0.3786 0.4142 0.3986

0.5 0.2543 0.2540 0.2918 0.3262 0.3613 0.3657

0.6 0.2086 0.2129 0.2518 0.2842 0.3115 0.3202

0.7 0.1687 0.1826 0.2145 0.2502 0.2773 0.2845

0.8 0.1410 0.1573 0.1839 0.2227 0.2506 0.2498

0.9 0.1263 0.1357 0.1585 0.1933 0.2214 0.2236

1.0 0.1094 0.1172 0.1348 0.1697 0.1992 0.1995

1.1 0.0933 0.1012 0.1231 0.1480 0.1743 0.1771
1 Ntot= 10000, b = 4.1 Å, ∆t = 0.05 fs

Table 3: NAD: Reaction probabilities P for the H+ + H2(v=0, j=0) collision using the diabatic

representation of the KBNN-PES.1

Ecoll[eV] PR
CT,NCT PR

NCT PR,NR
CT PR

tot PNR
CT

0.01 0.5252 0.5252 0.0000 0.5252 0.0000

0.1 0.6487 0.6487 0.0000 0.6487 0.0000

0.2 0.5402 0.5402 0.0000 0.5402 0.0000

0.3 0.4232 0.4232 0.0000 0.4232 0.0000

0.4 0.3249 0.3249 0.0000 0.3249 0.0000

0.5 0.2543 0.2543 0.0000 0.2543 0.0000

0.6 0.2086 0.2086 0.0000 0.2086 0.0000

0.7 0.1687 0.1687 0.0000 0.1687 0.0000

0.8 0.1410 0.1410 0.0000 0.1410 0.0000

0.9 0.1263 0.1263 0.0000 0.1263 0.0000

1.0 0.1094 0.1094 0.0000 0.1094 0.0000

1.1 0.0933 0.0933 0.0000 0.0933 0.0000

1.5 0.0658 0.0658 0.0000 0.0658 0.0000

2.0 0.0460 0.0453 0.0011 0.0464 0.0004

2.5 0.0335 0.0293 0.0074 0.0367 0.0032

3.0 0.0268 0.0212 0.0109 0.0321 0.0053
1 Ntot = 10000, b = 4.1 Å, ∆t = 0.05 fs, ANT07
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Table 4: NAD: Reaction probabilities P for the H+ + H2(v=1, j=0) collision using the diabatic

representation fo the KBNN-PES.1

Ecoll[eV] PR
CT,NCT PR

NCT PR,NR
CT PR

tot PNR
CT

0.01 0.3547 0.3547 0.0000 0.3547 0.0000

0.1 0.6111 0.6111 0.0000 0.6111 0.0000

0.2 0.5333 0.5333 0.0000 0.5333 0.0000

0.3 0.4000 0.4000 0.0000 0.4000 0.0000

0.4 0.3112 0.3112 0.0000 0.3112 0.0000

0.5 0.2539 0.2539 0.0000 0.2539 0.0000

0.6 0.2129 0.2129 0.0000 0.2129 0.0000

0.7 0.1826 0.1826 0.0000 0.1826 0.0000

0.8 0.1573 0.1573 0.0000 0.1573 0.0000

0.9 0.1357 0.1357 0.0000 0.1357 0.0000

1.0 0.1172 0.1172 0.0000 0.1172 0.0000

1.1 0.1012 0.1012 0.0000 0.1012 0.0000

1.5 0.0694 0.0676 0.0030 0.0706 0.0011

2.0 0.0475 0.0418 0.0141 0.0559 0.0084

2.5 0.0348 0.0283 0.0152 0.0435 0.0087
1 Ntot = 10000, b = 4.1 Å, ∆t = 0.05 fs, ANT07

Table 5: NAD: Reaction probabilities P for the H+ + H2(v=2, j=0) collision using the diabatic

representation of KBNN-PES.1

Ecoll[eV] PR
CT,NCT PR

NCT PR,NR
CT PR

tot PNR
CT

0.01 0.2926 0.2926 0.0000 0.5675 0.0000

0.1 0.5675 0.5675 0.0000 0.5675 0.0000

0.2 0.5090 0.5090 0.0000 0.5090 0.0000

0.3 0.3983 0.3983 0.0000 0.3983 0.0000

0.4 0.3368 0.3368 0.0000 0.3368 0.0000

0.5 0.2918 0.2918 0.0000 0.2918 0.0000

0.6 0.2518 0.2518 0.0000 0.2518 0.0000

0.7 0.2145 0.2145 0.0000 0.2145 0.0000

0.8 0.1841 0.1841 0.0000 0.1841 0.0000

0.9 0.1583 0.1579 0.0015 0.1594 0.0011

1.0 0.1349 0.1334 0.0031 0.1365 0.0016

1.1 0.1230 0.1200 0.0087 0.1287 0.0050
1 Ntot = 10000, b = 4.1 Å, ∆t = 0.05 fs, ANT07
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Table 6: NAD: Reaction probabilities P for the H+ + H2(v=3, j=0) collision using the diabatic

representation of the KBNN-PES.1

Ecoll[eV] PR
CT,NCT PR

NCT PR,NR
CT PR

tot PNR
CT

0.01 0.2502 0.2502 0.0000 0.2502 0.0000

0.1 0.5334 0.5334 0.0000 0.5334 0.0000

0.2 0.4911 0.4911 0.0000 0.4911 0.0000

0.3 0.4384 0.4381 0.0004 0.4385 0.0001

0.4 0.3784 0.3776 0.0022 0.3798 0.0014

0.5 0.3256 0.3230 0.0074 0.3304 0.0048

0.6 0.2833 0.2782 0.0152 0.2934 0.0101

0.7 0.2489 0.2402 0.0257 0.2659 0.0170

0.8 0.2200 0.2079 0.0378 0.2457 0.0257

0.9 0.1918 0.1794 0.0458 0.2252 0.0334

1.0 0.1676 0.1542 0.0558 0.2100 0.0426

1.1 0.1449 0.1302 0.0632 0.1934 0.0485
1 Ntot = 10000, b = 4.1 Å, ∆t = 0.05 fs, ANT07

Table 7: NAD: Reaction probabilities P for H+ + H2(v=4, j=0) collision using the diabatic

representation of the KBNN-PES.1

Ecoll[eV] PR
CT,NCT PR

NCT PR,NR
CT PR

tot PNR
CT

0.01 0.1876 0.182 0.0382 0.2202 0.0326

0.1 0.4451 0.4311 0.1030 0.5341 0.0890

0.2 0.4420 0.4208 0.1212 0.5420 0.1000

0.3 0.4012 0.3733 0.1455 0.5188 0.1171

0.4 0.3700 0.3413 0.1515 0.4928 0.1228

0.5 0.3282 0.2979 0.1893 0.4872 0.1598

0.6 0.2973 0.2658 0.2120 0.4778 0.1805

0.7 0.2594 0.2272 0.2436 0.4708 0.2114

0.8 0.2296 0.1978 0.2688 0.4666 0.2377

0.9 0.2043 0.1743 0.2894 0.4637 0.2594

1.0 0.1821 0.1535 0.3020 0.4555 0.2734

1.1 0.1664 0.1327 0.3221 0.4548 0.2884
1 Ntot = 10000, b = 4.1 Å, ∆t = 0.05 fs, ANT07
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Table 8: The reaction probabilities P for H+ + H2(v=5, j=0) collision using the diabatic

representation of the KBNN-PES.1

Ecoll[eV] PR
CT,NCT PR

NCT PR,NR
CT PR

tot PNR
CT

0.01 0.3159 0.2785 0.2365 0.5150 0.1991

0.1 0.3047 0.2654 0.2703 0.5357 0.2310

0.2 0.2928 0.2481 0.2917 0.5398 0.2470

0.3 0.2746 0.2305 0.3058 0.5363 0.2617

0.4 0.2448 0.2015 0.3186 0.5201 0.2753

0.5 0.2189 0.1758 0.3380 0.5138 0.2949

0.6 0.1970 0.1559 0.3452 0.5011 0.3041

0.7 0.1844 0.1411 0.353 0.4941 0.3097

0.8 0.1671 0.1272 0.3756 0.5028 0.3357

0.9 0.1541 0.1140 0.3775 0.4915 0.3374

1.0 0.1307 0.0978 0.3926 0.4904 0.3597

1.1 0.121’ 0.082 0.402 0.484 0.363
1 Ntot = 10000, b = 4.1 Å, ∆t = 0.05 fs, ANT07

probability calculated with a multi-surface is higher than that calculated with a single surface.

This means that the adiabatic calculation is not good enough to provide correct reaction

probabilities for high energies. In this case, non-adiabatic effects should be considered.

The reaction probabilities PR,NR
CT are listed in Tab. 9 and plotted in Fig. 12. From Tab. 9

and Fig. 12 one can see that the products can be found on the first excited surface only when

the system is at higher energies. In the case that the system is at low collision energies, the

products prefer to stay on the ground adiabatic surface. In the case that the H2 reactant starts

with rovibrational state v=0, j=0, and the H+
2 product is searched for, the collision energy

should not be lower than 2.0 eV. If the reactant H2 starts with a high initial rovibrational

state, e.g. v=5, j=0, the H+
2 product can be found even at low collision energies.

5.1.3 The surface hopping analysis

Figs. 13, 14, 15 show the number (index) of the three potential energy surfaces and the three

internuclear distances (r(A-B), r(A-C), r(B-C)). The number 1 (on the right side of each panel)

is the index of the ground adiabatic potential surface, the numbers 2 and 3 are the indices of

the first and second excited adiabatic potential surfaces. Panel A in Fig. 13 shows the reactant

H2(v=3) and the collision energy Ecoll = 0.90 eV; adiabatic surface hopping occurs once at

nearly the collision time T = 350 fs. The final product is on the first excited surface, namely,

this reaction is NR-CT (H+ + H2 → H + H+
2 ). Panels B and E in Fig. 13 show the reactant

H2(v=4) and Ecoll is 0.70 and 1.00 eV; from these two panels one can see that the product

is H2(v
′ < 4). There is no surface hopping in the whole process. These two reactions are
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Table 9: The reaction probabilities PR,NR
CT (v) for the charge transfer process H+ + H2(v=0–5,

j=0) → H + H+
2 (2Σ+

g )(v′, j′).

Ecoll[eV] PR,NR
CT (v=0) PR,NR

CT (v=1) PR,NR
CT (v=2) PR,NR

CT (v=3) PR,NR
CT (v=4) PR,NR

CT (v=5)

0.01 0.0000 0.0000 0.0000 0.0000 0.0382 0.2365

0.1 0.0000 0.0000 0.0000 0.0000 0.1030 0.2703

0.2 0.0000 0.0000 0.0000 0.0000 0.1212 0.2917

0.3 0.0000 0.0000 0.0000 0.0004 0.1455 0.3058

0.4 0.0000 0.0000 0.0000 0.0022 0.1515 0.3186

0.5 0.0000 0.0000 0.0000 0.0074 0.1893 0.3380

0.6 0.0000 0.0000 0.0000 0.0152 0.2120 0.3452

0.7 0.0000 0.0000 0.0000 0.0257 0.2436 0.3530

0.8 0.0000 0.0000 0.0000 0.0378 0.2688 0.3756

0.9 0.0000 0.0000 0.0015 0.0458 0.2894 0.3775

1.0 0.0000 0.0000 0.0031 0.0558 0.3020 0.3926

1.1 0.0000 0.0000 0.0087 0.0632 0.3221 0.4020

1.5 0.0000 0.0030 —— —— —— ——

2.0 0.0011 0.0141 —— —— —— ——

2.5 0.0074 0.0152 —— —— —— ——

3.0 0.0109 —— —— —— —— ——
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Figure 10: Reaction probabilities PAD1, PAD2, PR
CT,NCT obtained from the methods AD1,

AD2, and NAD as a function of collision energy Etot for different initial vibrational states (the

initial rotational state is j = 0).

NR-NCT (H+ + H2 → H+ + H2). Panels C, D, and F in Fig. 13 are similar to each other.

The common features in these panels are: first, the collision time of these reactions is short;

second, the final vibrational state of the products are greater than 4 resulting in many surface

hopping events in these reactions after collision. From panel D in Fig. 13 one can see that the

final product is on the first excited potential surface. This reaction belongs to NR-CT. The

reactions, which are shown in panels C and F in Fig. 13, belong to NR-NCT.

Fig. 14 shows the reactant H2(v=5) for Ecoll = 0.01–0.50 eV. Because the initial internuclear

distance r(A-B) of H2(v=5) can be greater than 2.5 Bohr, surface hopping occurs at a low

collision energy. In the case of low initial collision energies Ecoll < 0.4 eV, the separated atom

can take away some energy from the diatomic molecule, so the final vibrational state of the

diatomic molecule will be decreased (see panels G,F, I, J in Fig. 14). There is no surface

hopping after the collision. With an increase in Ecoll the final vibrational state of the diatomic

molecule will not be decreased. In this case, there is surface hopping after the collision (see

panels K and L in Fig. 14). Panels G and I in Fig. 14 show that the arrangements of

the atoms are different between the reactant and the product. These two reactions belong to
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Figure 11: Reaction probabilities PAD1, PAD2, and PR
tot obtained from the methods AD1, AD2,

and NAD as a function of collision energy Etot for different initial vibrational states (the initial

rotational state is j = 0).

R-NCT (H+ + H2 → H2 + H+). The reactions, which are shown by panels H, K, J , and L,

belong to NR-NCT.

Fig. 15 shows the reactant H2(v=5) for Ecoll = 0.60–1.10 eV. From Fig. 15 one can see

that with an increase in Ecoll, the time that the system stays on the first excited potential

surface becomes longer and longer. In these reactions, only one reaction (see panel R in Fig.

15) belongs to R-NCT; the other reactions (see panels M , N , O, P , and Q in Fig. 15) are

NR-NCT.

From all the discussions in this section we can conclude that in the case that the reactant H2

starts with a low initial rovibrational state, and we want to achieve the product on the first

excited potential surface, the reactants should be given higher collision energies. In the case

that the reactant H2 starts with the initial rovibrational state v = 0, j = 0, then the product

can be found on the first excited surface only if the collision energies are greater than 2.0 eV.

In the case of reactants H2(v=1, j=0) or H2(v=2, j=0), the corresponding collision energies

should be greater than 1.4 or 0.9 eV in order to get products on the first excited surface (see
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Figure 12: The reaction probability PR,NR
CT using method NAD as a function of collision energy

Ecoll. P
R,NR
CT is sum over the reaction probability for H+ + H2(v=0–5, j=0) → H + H+

2 (v′, j′)

(NR-CT) and H+ + H2(v=0–5, j=0) → H+
2 (v′, j′) + H (R-CT).

Tab. 9).
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Figure 13: Representative trajectories and adiabatic surface hopping for H+ + H2(v=3–4, j=0)

in different collision energies. The potential surface number and the internuclear distances r(A-

B), r(B-C), and r(A-C) are shown as a function of time.
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Figure 14: Representative trajectories and adiabatic surface hopping for H+ + H2(v=5, j=0)

in different lower collision energies. The potential surface number and internuclear distances

r(A-B), r(B-C), and r(A-C) are shown as a function of time.
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Figure 15: Representative trajectories and adiabatic surface hopping for H+ + H2(v=5, j=0)

in different higher collision energies. The potential surface number and internuclear distances

r(A-B), r(B-C), and r(A-C) are shown as a function of time.
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5.2 H− + H2(v, j)

The study of H− and its interaction with other species like H2 is of fundamental interest and

also of importance from the point of view of plasmas and interstellar media [73]. Reactions of

a hydrogen atom and its negative and positive counterparts with a hydrogen molecule are of

fundamental importance as they constitute prototype systems to test ab initio theories against

experiment. The neutral counterpart H3 and its isotopic analogs have been particularly studied

over the years [144, 145, 146]. These studies have shown that the potential energy surface has

a barrier of 0.4167 eV for the exchange reaction [146].

Qualitatively, the potential energy surface (PES) of H−3 is very similar to that of H3 in many

ways besides the barrier height. However, the PES of H−3 has special features. First, when the

H− atom is far away from the H2 molecule, the charge-induced dipole interaction between the

two collision parties can lead to a minimum; the depth is only 0.05 eV. Second, there is an

additional electron in the H−3 system. So, such a system has an additional reaction channel,

i.e., the electron detachment channel. The electron detachment reaction will occur at around

1.45 eV [50]. This reaction pathway looks formally like:

H− + H2 → [ H−3 ] 6= → H + H2 + e− .

A crossed beam study of the rearrangement reaction H− + D2(v=0) → HD(v′) + D−, with

collision energies between 0.3 eV and 3 eV, was reported by Zimmer and Linder (1995) [65].

From this experiment we know that the reaction has a threshold at Erel = 0.42 ± 0.12 eV.

The cross section rises to a maximum of 2 ∗ 10−16 cm2 at 1.5 eV and then rapidly decreases.

5.2.1 Quasi-classical trajectory investigations

The H− + H2(v=0–5, j=0) → H2(v
′, j′) + H− reaction was studied using the CTAMYM

[147] program for the potential surfaces of Stärck and Meyer (SM-PES) [50] and Panda and

Sathyamurthy (PS-PES) [53]. The trajectories start with the correct quantum mechanical

rovibrational states. On the other hand, in the analysis part of the trajectory calculations the

final vibrational energies can be below zero point energy. This can lead to a small effective

reaction barrier.

Initial parameter determinations :

(1) The maximum impact parameter bmax was gained by investigating batches of 104 trajec-

tories for different fixed impact parameters b. The value of b was stepwise increased. The

calculations are performed using the programs CTAMYM [147] and Venus-96 [148] for SM-

PES and PS-PES. The initial rovibrational state for the diatomic molecule H2 is v = 0, j =

0. The collision energies are Ecoll = 0.5 eV and 1.0 eV. Detailed results are shown in Tab.

10 and 11 and plotted in Fig. 16. As can be seen from Tab. 10 and 11 and Fig. 16, the

maximum impact parameter bmax is 1.3 Å for Ecoll = 0.5 eV and SM-PES (CTAMYM and

VENUS-96). For Ecoll = 1.0 eV the maximum impact parameter bmax is 1.5 Å (CTAMYM)

and 1.6 Å (VENUS-96) for SM-PES. For PS-PES and Ecoll = 0.5 eV the maximum impact
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Table 10: H− + H2: The reaction probabilities PC , PV for the SM-PES with Ecoll = 0.5 and

1.0 eV and for the initial state v = 0, j = 0 (using the program packages CTAMYM and

VENUS-96 with 104 trajectories).

Ecoll 0.5 [eV] 1.0 [eV]

b[Å] PC PV PC PV

0.1 0.7169 0.7158 0.8408 0.8381

0.2 0.7073 0.7045 0.8451 0.8418

0.3 0.6841 0.6841 0.8496 0.8454

0.4 0.6421 0.6407 0.8455 0.8454

0.5 0.6055 0.6019 0.8344 0.8455

0.6 0.5549 0.5574 0.8174 0.8355

0.7 0.4965 0.4990 0.7847 0.8148

0.8 0.4286 0.4295 0.7438 0.7859

0.9 0.3498 0.3504 0.6947 0.7469

1.0 0.2718 0.2717 0.6274 0.6999

1.1 0.1873 0.1865 0.5366 0.6359

1.2 0.1032 0.1037 0.3920 0.5406

1.3 0.0233 0.0232 0.2605 0.4000

1.4 0.0000 0.0000 0.1412 0.2709

1.5 0.0000 0.0000 0.0462 0.1423

1.6 0.0000 0.0000 0.0000 0.0481

1.7 0.0000 0.0000 0.0000 0.0000

PC : using CTAMYM; PV : using VENUS-96

parameter bmax is 1.2 Å; in case of Ecoll = 1.0 eV bmax = 1.4 Å has to be used.

From Tab. 10 and 11, and Fig. 16 we can see that the maximum impact parameter bmax

increases with an increase in the collision energy. We determined the reaction probabilities

P and the reaction cross sections σ for different maximum impact parameters bmax (see Tab.

12) and obtained similar reaction cross sections. In this way, the maximum impact parameter

bmax was specified for the other initial vibrational states v = 1–5 (see Tab. 13).

(2) The initial internal energies, turning points, and vibrational half-periods of H2 (using

SM-PES and PS-PES) are shown in Tab. 14 and 15.

Reaction probabilities :

In the present work the reaction probabilities for initial vibrational states v = 0–5 using PS-

PES and SM-PES were calculated. The quasi-classical trajectory (QCT) calculations were

performed by running batches of 105 trajectories at 0.01–3.5 eV collision energy. The integra-

tion step-size in the trajectories was chosen to be 0.05 fs. This guarantees conservation of total

energy and total angular momentum. The trajectories were started at a distance between the
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Table 11: H− + H2: The reaction probabilities PC , PV for the PS-PES with Ecoll=0.5 and

1.0 eV and with the initial state v = 0, j = 0 (using the program packages CTAMYM and

VENUS-96).

Ecoll 0.5 [eV] 1.0 [eV]

b [Å] PC PV PC PV

0.1 0.3891 0.5666 0.7829 0.7968

0.2 0.4031 0.5555 0.7760 0.7946

0.3 0.3675 0.5394 0.7645 0.7889

0.4 0.3385 0.5138 0.7452 0.7770

0.5 0.2990 0.4834 0.7209 0.7551

0.6 0.2508 0.4398 0.6829 0.7222

0.7 0.1883 0.3824 0.6336 0.6786

0.8 0.1350 0.3140 0.5754 0.6330

0.9 0.0856 0.2472 0.5077 0.5722

1.0 0.0429 0.1734 0.4222 0.4971

1.1 0.0187 0.1009 0.3186 0.4055

1.2 0.0013 0.0331 0.1768 0.2755

1.3 0.0000 0.0000 0.0800 0.1188

1.4 0.0000 0.0000 0.0109 0.0197

1.5 0.0000 0.0000 0.0000 0.0000

PC : using CTAMYM; PV : using VENUS-96

incoming atom and the center-of-mass of the diatomic molecule of 13 Å. These initial param-

eters are the same for the case of the H− + D2(v=0–5, j=0–1), D− + H2(v=0–5, j=0–1), D−

+ D2(v=0–5, j=0–1), H− + HD(v=0–1, j=0–1), and D− + HD(v=0–1, j=0–1) reactions.

Detailed results are shown in Fig. 17. The reaction probabilities using PS-PES are shown in

the left panels, and those using SM-PES are shown in the right panels. The important part is

enlarged in the same panel. The maximum impact parameter bmax [Å] is shown.

For the initial vibrational state v = 0 (see the panels a1 and a2 in Fig. 17, and panel d in

Fig. 18) the reaction probability P starts to increase beyond Ecoll > 0.3 eV. Total reaction

probability (Ptot) reaches its maximum when the collision energy reaches 1.5/1.2 eV for PS-

PES/SM-PES and then decreases with an increase in collision energy. Ptot for PS-PES and

SM-PES shows different maxima. At low collision energies Ptot for PS-PES is lower than for

SM-PES. The state-to-state results show that the largest reaction probability is found for the

H2 product in the final vibrational state v′ = 0. The H2 product with the final vibrational

state v′ = 1 will be produced for collision energies Ecoll > 0.5 eV; the probability reaches its

maximum for Ecoll = 2.0 eV. The products with higher final vibrational states can be observed

only for higher collision energies.

Panels b1 and b2 in Fig. 17 show the reaction probabilities P for the collision H− with H2(v=1,
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Table 12: Reaction probabilities P and reaction cross sections σ for H− + H2(v=0, j=0) using

the potential energy surface SM and the CTAMYM program for Ecoll = 1.0 eV.

bmax [Å] P σ [Å2]

1.6 0.46038 3.70072 (100000 trajectories)

1.7 0.40827 3.70489 (100000 trajectories)

3.0 0.131405 3.71351 (400000 trajectories)

3.0 0.13037 3.68426 (100000 trajectories)

4.1 0.06943 3.66475 (100000 trajectories)

4.1 0.07060 3.72627 (900000 trajectories)

Table 13: The maximum impact parameter bmax for H− + H2(v=0–5,j=0).

v v = 0 v = 1 v = 2 v = 3 v = 4 v = 5

bmax [Å] 2.0 2.2 10.2 10.3 10.6 10.8

Table 14: Internal energies, turning points, and vibrational half-periods of H2 for different

rovibrational (v,j) states (using SM-PES).

v j Ev,j[cm
−1] r− [Å] r+ [Å] τ [fs]

0 0 2170.466 0.633568 0.884114 3.9078109

0 1 2288.792 0.634635 0.885349 3.9128834

1 0 6324.044 0.570934 1.013968 4.1239307

1 1 6436.612 0.571954 1.01530 4.1304337

2 0 10253.076 0.534689 1.120114 4.3690675

2 1 10359.922 0.535683 1.12154 4.3751542

3 0 13954.735 0.508917 1.219146 4.6473761

3 1 14055.848 0.509894 1.22065 4.6548451

4 0 17426.018 0.489099 1.316244 4.9686883

4 1 17521.355 0.490065 1.31789 4.9776270

5 0 20663.851 0.473215 1.414357 5.3431723

5 1 20753.343 0.474175 1.41615 5.3531415
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Figure 16: Comparison of different reaction probabilities P as a function of the impact param-

eter b [Å] for the PESs PS and SM with 104 trajectories.

j=0) on PS-PES and SM-PES. P starts to increase at low collision energy (Ecoll = 0.01 eV).

For SM-PES and collision energy Ecoll ≈ 0.4 eV the Ptot reaches a maximum value of ∼48%,

and then decreases with increasing Ecoll. For PS-PES, the maximum value of the reaction

probability is ∼51%, the corresponding collision energy is 0.1 eV. The different vibrational

state product distributions show that H2(v
′=1) is the main product at low collision energies.

With an increase in Ecoll the H2 product with the vibrational state v′ = 0 becomes more and

more favored. For PS-PES the H2(v
′=1) is the most favored product when Ecoll are in the

range of 0.01–0.9 eV. For SM-PES and Ecoll = 0.01–0.3 eV, the main H2 product has the final

vibrational state v′ = 1. For Ecoll > 0.3 eV the main product H2(v
′=0) is favored. The reaction

probabilities are different when the H2 reactant starts with the initial vibrational state v =

1 and v = 0: (1) The reaction probabilities for the H2(v=1) reactant are much higher than

for the H2(v=0) reactant. (2) The final vibrational state distributions for the products are

different.

For other initial vibrational states (v = 2–5) the features of the reaction probabilities are

similar (see panels c1, c2, d1, d2, e1, e2, f1 and f2 in Fig. 17). All these reactions have the

maximum reaction probability reached for collision energies Ecoll≈0.01 eV; then the reaction

probabilities decrease rapidly with increasing Ecoll. For Ecoll > 0.5 eV the reaction probability

decreases slowly with an increase in Ecoll. For the H2 reactant with initial vibrational state

v = 2, the main vibrational states of the products are v′ = 0, 1, 2. For Ecoll = 0.01 eV, the

highest reaction probabilities for the H2 products are gained for the final vibrational state v′ =

1; similar features were calculated for PS-PES and SM-PES. For PS-PES the second and the
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Table 15: Internal energies, turning points, and vibrational half-periods of H2 for different

rovibrational (v,j) states (using PS-PES).

v j Ev,j[cm
−1] r− [Å] r+ [Å] τ [fs]

0 0 2177.105 0.634755 0.88479 3.8983459

0 1 2295.095 0.635807 0.88602 3.9037283

1 0 6332.546 0.572421 1.01553 4.1302492

1 1 6444.565 0.573432 1.01686 4.1360314

2 0 10250.778 0.536292 1.12242 4.3849765

2 1 10357.021 0.537283 1.12385 4.3910821

3 0 13937.241 0.510476 1.22188 4.6673761

3 1 14037.825 0.511457 1.22341 4.6746746

4 0 17394.291 0.490475 1.31900 4.9858152

4 1 17489.288 0.491452 1.32065 4.9951029

5 0 20623.042 0.474298 1.41654 5.3517626

5 1 20712.465 0.475276 1.41833 5.3615919

third important product is H2 with final vibrational states v′ = 2 and v′ = 0, but for SM-PES,

the second important product is H2 with a final vibrational state v′ = 0. The product H2(v
′=2)

is not important at low collision energies. If the reactant H2 starts with the initial vibrational

state v = 3, the highest reaction probability is found for the product H2(v
′=2). The other

products H2(v
′=0,1,3) have lower probabilities using PS-PES. For SM-PES the most important

product is H2(v
′=2); the products H2(v

′=0,1) have lower probabilities. At low collision energies

the product H2(v
′=3) have quite low probabilities. For the reactant H2(v=4,5) the important

products are H2 with the final vibrational states v′ = 0, 1, 2, 3, 4. In these products, the

largest reaction probability is found for H2 with the final vibrational state v′ = v−1 for PS-

PES. For SM-PES and the reactant H2(v=4, j=0), the important products are H2 with the

final vibrational states v′ = 0, 1, 2, 3. For H2(v=5, j=0), the important products are H2 with

the final vibrational states v′ = 0, 1, 2, 3, 4. In these two cases, the largest reaction probability

was found for H2 with the final vibrational state v′ = v−2.

In Fig. 17, we can see that, at low collision energies, the total reaction probabilities using

SM-PES are much higher than those using PS-PES. The vibrational state distributions of the

products are different for PS-PES and SM-PES.

Reaction cross sections :

The reaction cross sections σ for H− + H2(v=0–5, j=0) was calculated for collision energies

Ecoll in the range of 0.01–3.5 eV. Results for σ [10−16 cm2] are plotted in Fig. 18; panels b1

(b2) are the enlargement of panels a1 (a2). In order to compare the different reaction cross

sections for PS-PES and SM-PES, the reaction probabilities and reaction cross sections σ for

the H− + H2(v=0–1, j=0) reaction are plotted in the same panel (c and d).

Fig. 18 demonstrates that the total reaction cross section σ for the reactant H2(v=0, j=0)
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Figure 17: H− + H2(v=0–5, j=0) → H2(v
′, j′) + H− (CT): Different reaction probabilities

P (Ptot, Pv′ : see abbreviation tot or v′ = ··) as a function of collision energy Ecoll for various

initial rovibrational states v,j and different impact parameter bmax using the potential energy

surfaces SM and PS (Pv′ =
∑

j′ P (v′, j′), Ptot =
∑

v′ Pv′).
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Figure 18: H− + H2(v=0–5, j=0) (CT): Reaction cross sections σ [in 10−16 cm2] and reaction

probabilities P as a function of collision energy Ecoll for PS-PES and SM-PES.

increases dramatically with an increase in Ecoll near the threshold, and the maximum of the

reaction cross section is reached for Ecoll = 1.5/1.2 eV for PS-PES/SM-PES. After the max-

imum, σ decreases slowly with an increase in Ecoll. This feature is similar for PS-PES and

SM-PES, but at low collision energies the cross section σ for SM-PES is much higher than that

for PS-PES.

In the case of the H2(v=1, j=0) reactant the internal energy Ev,j∼0.785 eV is higher than the

reaction barrier Ebar = 0.46 eV. At very low collision energy (0.01 eV), the reaction cross section
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Table 16: Parameters used in the wave packet calculations (see the expressions in chapter 3).

NR, Nr, Nθ 128,128,80 number of grid points for the J = 0 reaction

NR, Nr, Nθ 128,64,32 number of grid points for the J 6= 0 reaction

Rmin, Rmax 0.001,17.5 extension of the grid in R

rmin, rmax 0.501,9.0 extension of the grid in r

Etrans 1.0 translational energy

R0 12.0 initial location of the center of the WP

σ0 0.4 initial width of the WP

Nt 25000 number of time steps

A,∆rabs,∆Rabs 0.015,5.0,13.5 parameters for the absorbing potential

σ is already high (σ = 3.82 and 3.44*10−16 cm2 for PS-PES and SM-PES), then σ becomes

different with an increase in Ecoll. For PS-PES σ shows a sharp peak (σ = 7.66*10−16 cm2) for

Ecoll = 0.1 eV; σ reaches an intermediate minimum at Ecoll = 0.3 eV. After this intermediate

minimum σ increases again and reaches another maximum. Beyond this maximum, σ decreases

with an increase in Ecoll. For SM-PES, σ shows a different trend. σ increases with an increase

in Ecoll, and at Ecoll = 0.3 eV, σ reaches its highest value (σ= 7.43*10−16 cm2); subsequently,

the reaction cross section decreases again with an increase in the collision energy. At low

collision energies (0.2 < Ecoll < 2.0 eV), the reaction cross section for PS-PES is much lower

than for SM-PES.

For the H2(v=2–5, j=0) reactants the internal energies Ev,j are much higher than the reaction

barrier; the features of the reaction cross sections are similar to those systems without a

reaction barrier, i.e., σ ∝ ( 1
Ekin

)
1
2 . The reaction cross sections monotonically decrease with

an increase in the collision energy. For PS-PES and Ecoll = 0.01 eV the total reaction cross

sections are between 92 and 112*10−16 cm2. For SM-PES and Ecoll = 0.01 eV the reaction

cross sections lie between 167 and 188*10−16 cm2.

5.2.2 Wave packet calculations for H− + H2(v, j) → H2(v
′, j′) + H−

This section presents the results of wave packet (WP) (using the real wave packet code of

S. Gray [149]) calculations for reaction probabilities. The reaction system is the ion-neutral

molecule collision H− + H2(v, j) → H2(v
′, j′) + H− for total angular momenta J = 0 and J 6=

0. The parameters used in the calculations are listed in Tab. 16.

Time-dependent quantum dynamics of H− + H2(v=0–5, j=0) → H2(v
′, j′) + H− for total

angular momentum J = 0:

Theoretical investigations were performed for the dynamics of reactive scattering processes

using time-dependent wave packets for the ion-neutral reaction H− + H2(v=0–5, j=0) using the

potential surfaces PS, SM, and AY. For the inelastic investigations, reactant Jacobi coordinates

(PC) are used so that a state-to-state inelastic analysis is possible and energy-dependent total
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reaction probabilities Ptot can be calculated (see right panels in Figs. 19, 20, 21). In order to

make sure that the results for the reaction probabilities are converged, firstly, reactant Jacobi

coordinates (RC) are used to calculate the total reaction probabilities and then these are

compared with those calculated using product Jacobi coordinates (PC) (see left panels in Figs.

19, 20, 21). These panels show that the reaction probabilities, which are calculated using

PC-coordinates and RC-coordinates, are the same if the H2 reactant starts with the initial

rovibrational states v=0–2, j=0. But for the H− + H2(v=3–5, j=0), reaction the reaction

probabilities, using different coordinates, deviate. In the following part, we will mainly discuss

the title reaction for the H2 reactant starting with initial rovibrational states v=0–2, j=0.

The right top three panels in Fig. 19 show the total reaction probabilities Ptot and state-

to-state reaction probabilities Pv′ for the H− + H2(v=0, j=0) → H2(v
′, j′) + H− reaction

using PS-PES, SM-PES, and AY-PES. The state-to-state reaction probabilities Pv′ (summed

over rotational states) are calculated using product coordinates (PC) (J = 0). For the other

reactions the H2 reactant starts with initial rovibrational states (v=1–5, j=0); similar results

are given in the right panels in Figs. 19–21.

In the case of the H2(v=0, j=0) reactant and J = 0 the total reaction probabilities are increased

immediately at total energy Etot = 0.5 eV up to 0.7 eV with a maximum value of ∼80%, which

is followed by a slower increase up to Etot = 1.3 eV with a magnitude of ∼87%. For Etot

> 1.5 eV the total reaction probabilities slowly decrease with an increase in Etot. If the H2

reactant starts with the initial vibrational state v = 0, the highest reaction probabilities are

found for the H2 product in the final vibrational state v′ = 0. The other vibrational states of

the products become populated when the state-to-state probability for v′ = 0 is decreasing and

leveling off (this starts at Etot ≈ 1.7 eV). In the case of the H2(v=1, j=0) reactant (see right

bottom three panels in Fig. 19), the H2(v
′=1) product is strongly favored for Etot = 0.7–1.6

eV. For the reactants H2(v=2) or H2(v=3), the final vibrational state of the H2 product is

favored for v′ = 2 at low Etot. For the H2(v≥2) reactants, accurate reaction probabilities near

the threshold are difficult to obtain using the time-dependent wave packet method. At this

point, the reaction probabilities lead to a sharp and numerically erroneous peak.

In order to see differences in the total reaction probabilities which are calculated using PS-PES,

SM-PES, and AY-PES, results for the total reaction probabilities are plotted in the same panel

in Fig. 22. The left panels in Fig. 22 are the total reaction probabilities with total energies

up to 3.5 eV. The right panels in Fig. 22 show the total reaction probabilities with Etot up to

2.0 eV. Fig. 22 shows that for the H2(v=0–2, j=0) reactants the reaction probabilities, using

SM-PES and AY-PES, are the same for Etot < 2.0 eV. For low total energies the reaction

probabilities, which one gets from PS-PES, are much lower than those using SM-PES and

AY-PES.

Time-dependent quantum dynamics of H− + H2(v=0, j=0)→ H2(v
′, j′) + H− for total angular

momenta J 6= 0.

Fig. 23 shows the reaction probabilities P for the collision of H− and H2(v=0, j=0) with total
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Figure 19: H− + H2(v=0–1, j=0) → H2(v
′, j′) + H− (WP): Different reaction probabilities

(Ptot, Pv′ : see abbreviation tot or v′ = ··) as a function of total energy Etot for various

initial vibrational states v and two different Jacobi coordinate systems (RC and PC) using the

potential energy surfaces SM, PS, and AY (Pv′ =
∑

j′ P (v′, j′), Ptot =
∑

v′ Pv′).
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Figure 20: H− + H2(v=2–3, j=0) → H2(v
′, j′) + H− (WP) :Different reaction probabilities

(Ptot, Pv′ : see abbreviation tot or v′ = ··) as a function of total energy Etot for various

initial vibrational states v and two different Jacobi coordinate systems (RC and PC) using the

potential energy surfaces SM, PS, and AY (Pv′ =
∑

j′ P (v′, j′), Ptot =
∑

v′ Pv′).
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Figure 21: H− + H2(v=4–5, j=0) → H2(v
′, j′) + H− (WP): Different reaction probabilities

(Ptot, Pv′ : see abbreviation tot or v′ = ··) as a function of total energy Etot for various

initial vibrational states v and two different Jacobi coordinate systems (RC and PC) using the

potential energy surfaces SM, PS, and AY (Pv′ =
∑

j′ P (v′, j′), Ptot =
∑

v′ Pv′).
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Figure 22: H− + H2 (v=0–5, j=0) (WP): Total reaction probabilities P as a function of total

energy Etot for the three different potential energy surfaces (PS-PES, SM-PES, and AY-PES)

using product coordinates (PC).
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Figure 23: H− + H2(v=0, j=0) (WP): Total reaction probabilities P (using reactant coordi-

nates (RC)) as a function of total energy Etot for different total angular momenta J = 0, 5,

10, 15, 20, 25, 30, 35, 40, 45.

angular momenta J = 0, 5, 10, 15, 20, 25, 30, 35, 40, 45 using reactants coordinates (RC)

for PS-PES (left panel a1) and SM-PES (right panel a2). The total energies are in the range

of 0.3–3.5 eV. From Fig. 23, it can be seen that the reaction barrier for each total angular

momentum J is the same, whether investigated on PS-PES or on SM-PES. For low total

angular momenta (J ≤ 20), the curves for the reaction probabilities look similar for PS-PES

and SM-PES. For J = 0, a maximum is reached for Etot = 1.2–1.5 eV. For the same J values,

the maxima of the total reaction probabilities are higher for SM-PES than for PS-PES. For J

> 20 and higher total energies, the total reaction probabilities for PS-PES are higher than for

SM-PES.

Fig. 24 shows the reaction cross sections σ calculated with the wave packet (WP) method

(J up to 50) and quasi-classical trajectories (QCT), using the code CTAMYM (CT) for two

different potential energy surfaces (PS-PES and SM-PES) for the collision H− + H2(v=0,

j=0). It can be seen from the lines a, c, e, and f in Fig. 24 that the results using WPs exhibit

the same threshold for both PS-PES and SM-PES. When the total energy Etot is larger than

the reaction barrier, the total reaction cross section σ increases with an increase in the total

energy. For SM-PES and Etot ' 1.8 eV, σ reaches its maximum at 3.5*10−16 cm2 using WPs.

For PS-PES and WPs, σ is monotonically increases with Etot in the range of 0.3–3.0 eV. Jaquet

and Heinen [71] have calculated the total reaction cross section σ (J up to 20) using the J-

shifting approximation for SM-PES. For SM-PES and Etot between 0.6 and 0.9 eV our results

are in quite good agreement with Jaquet and Heinen [71] (see lines a and e), but for total

energies higher than 0.9 eV, our results are significantly lower than those calculated by Jaquet

and Heinen [71]. Panda et al. [150] (see line f) have calculated the total reaction cross section

σ using centrifugal sudden approximation for PS-PES. Using PS-PES, the results of Panda et

al. [150] (see line f) is lower than our results (see line c) for the negligence of the Coriolis
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Figure 24: Reaction cross sections σ [in 10−16 cm2] for H− + H2(v=0, j=0): Comparison of

reaction cross sections using quantum mechanical wave packets and quasi-classical trajectories

(CTAMYM) for different potential energy surfaces (SM and PS). a: σ based on wave packets

for SM-PES(J = 0–50). b: σ calculated with CTAMYM for SM-PES. c: σ based on wave

packets for PS-PES(J = 0–50). d: σ calculated with CTAMYM for PS-PES. e: σ calculated

by Jaquet and Heinen, J = 0–20 with J-shift [71] for SM-PES. f: σ calculated by Panda and

Sathyamurthy [150] for PS-PES.

coupling. At low energies and using the same potential energy surface, the total reaction cross

sections σ calculated using QCT (see lines b and d) are larger than those calculated using

wavepackets (see lines a and c). For Etot > 1.6 eV, the results using QCT are lower than those

using WPs. Li and Wang [151] got the same characterics. The similar characterics are found

by Jambrina et al. [152] for the H+ + D2 reaction system. They found that as J increases, the

QCT reaction probabilities decrease more rapidly with total energy than do those obtained

using the WP. For the case of using the same method, σ for SM-PES is slightly higher than for

PS-PES. This is because the reaction barrier for PS-PES (Ebar = 0.469 eV) is slightly higher

than that for SM-PES (Ebar = 0.465 eV).
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5.3 H− + D2(v, j)

5.3.1 Quasi-classical trajectory calculations

The H− + D2(v=0–5, j=0–1) → HD(v′, j′) + D− reaction was studied with quasi-classical

trajectories (QCT), using the code CTAMYM for the potential energy surfaces of Stärck and

Meyer (SM-PES) [50] and Panda and Sathyamurthy (PS-PES) [53].

Initial parameter determinations :

1) The maximum impact parameter bmax was calculated in the same way as in the case of H−

+ H2(v, j). The results are listed in Tab. 17.

Table 17: The impact parameters bmax for H− + D2(v=0–5, j=0–1).

v v = 0 v = 1 v = 2 v = 3 v = 4 v = 5

bmax [Å] 2.0 2.2 10.2 10.3 10.6 10.8

2) We investigated the initial internal energies, turning points, and vibrational half-periods for

D2 using SM-PES and PS-PES. The results are shown in Tab. 18 and Tab. 19.

Table 18: Internal energies, turning points, and vibrational half-periods of D2 for different

vibrational (v) and rotational (j) states (using SM-PES).

v j Ev,j[cm
−1] r− [Å] r+ [Å] τ [fs]

0 0 1538.832 0.649029 0.85892 0.5483902

0 1 1598.489 0.649568 0.85953 0.5489402

1 0 4522.894 0.593099 0.96191 0.5695584

1 1 4580.505 0.593618 0.96256 0.5699135

2 0 7395.162 0.559756 1.04352 0.5920615

2 1 7450.742 0.560263 1.04420 0.5925734

3 0 10154.712 0.535462 1.11750 0.6168351

3 1 10208.266 0.535960 1.11821 0.6173034

4 0 12800.540 0.516340 1.18797 0.6440391

4 1 12852.066 0.516832 1.18871 0.6446697

5 0 15331.599 0.500647 1.25691 0.6741609

5 1 15381.089 0.501134 1.25770 0.6746304

Reaction probabilities :

For the H− + D2(v=0–5, j=0–1) → HD(v′, j′) + D− reaction the energy dependence of the

total and state-to-state reaction probabilities (Ptot, Pv′) were calculated using the potential

energy surfaces SM and PS (see Fig. 25 and 26). All the left panels in these figures are
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Table 19: Internal energies, turning points, and vibrational half-periods of D2 for different

vibrational (v) and rotational (j) states (using PS-PES).

v j Ev,j[cm
−1] r− [Å] r+ [Å] τ [fs]

0 0 1544.245 0.650129 0.859522 0.5465750

0 1 1603.748 0.650661 0.860128 0.5470078

1 0 4533.322 0.594471 0.963108 0.5695768

1 1 4590.686 0.594985 0.963753 0.5697452

2 0 7402.132 0.561286 1.04532 0.5932492

2 1 7457.410 0.561789 1.04600 0.5937764

3 0 10153.783 0.537057 1.11982 0.6189461

3 1 10207.010 0.537553 1.12053 0.6195836

4 0 12789.895 0.517917 1.19068 0.6467493

4 1 12841.086 0.518409 1.19142 0.6472422

5 0 15311.739 0.502129 1.25984 0.6769037

5 1 15360.888 0.502620 1.26062 0.6774299

the reaction probabilities P using PS-PES, and the right panels are the reaction probabilities

P using SM-PES. Some important parts are enlarged and plotted in the same panel. The

maximum impact parameters bmax [Å] used in the calculations are shown as well. For D2(v=0)

(see panels a1 (j = 0 using PS-PES), a2 (j = 0 using SM-PES), b1 (j = 1 using PS-PES),

and b2 (j = 1 using SM-PES) in Fig. 25) the reaction barrier is Ebar = 0.3 eV. For collision

energies Ecoll > Ebar, the total reaction probability Ptot steeply increase with an increase in

Ecoll. For D2(v=0, j=0) the total reaction probability Ptot reaches its maximum at Ecoll =

1.5 eV (PS-PES) and Ecoll = 1.3 eV (SM-PES). For D2(v=0, j=1), i.e., rotationally excited,

the maximum is reached at Ecoll = 1.6/1.5 eV (PS/SM). The maximum value for the reaction

probability is lower for the D2(v=0, j=1) reactant compared to the D2(v=0, j=0) reactant.

These results mean that the reaction for the D2(v=0, j=0) reactant is more favored than

for the D2(v=0, j=1) reactant. At low collision energies, the total reaction probabilities for

PS-PES are lower than those for SM-PES.

The state-to-state reaction probabilities Pv′ for the H− + D2(v=0, j=0–1) reaction have similar

features as in the reaction H− + H2(v=0, j=0–1). At low collision energies, the highest reaction

probabilities are found for the HD product with final vibrational state v′=0. The HD products

with the vibrational state v′=1 will be found only for Ecoll > 0.5 eV. In order to get HD

products with the vibrational state v′=2 the corresponding Ecoll > 1.0 eV is needed.

The features of the total reaction probabilities Ptot for H− + D2(v=1, j=0–1) → HD(v′, j′)

+ D− reaction are similar to the H− + D2(v=0, j=0–1) → HD(v′, j′) + D− reaction. At the

same collision energies Ecoll, Ptot for the D2(j=1) reactant are lower than that for the D2(j=0)

reactant. Total reaction probabilities Ptot, using PS-PES, are lower than those using SM-PES.

Panel c1 in Fig. 25 shows the state-to-state reaction probabilities Pv′ for the H− + D2(v=1,
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Figure 25: H− + D2(v=0–2, j=0–1) → HD(v′, j′) + D− (CT): Different reaction probabilities

P (Ptot, Pv′ : see abbreviation tot or v′ = ··) as a function of collision energy Ecoll for various

initial rovibrational states v, j and different impact parameters bmax using the potential energy

surfaces SM and PS (Pv′ =
∑

j′ P (v′, j′), Ptot =
∑

v′ Pv′).
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Figure 26: H− + D2(v=3–5, j=0–1) → HD(v′, j′) + D− (CT): Different reaction probabilities

P (Ptot, Pv′ : see abbreviation tot or v′ = ··) as a function of collision energy Ecoll for various

initial rovibrational states v, j and different impact parameters bmax using the potential energy

surfaces SM and PS (Pv′ =
∑

j′ P (v′, j′), Ptot =
∑

v′ Pv′).

69



5.3 H− + D2(v, j) 5 RESULTS

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

Ecoll[eV]

80

60

40

20

0

σ

0

v=2

2

4

6

8

10
0
20

160

140

60

v=0

v=1v=2
v=3
v=4v=5

a1(PS:v=0-5,j=0)

b1(PS:v=0-5,j=0)

a2(SM:v=0-5,j=0)

b2(SM:v=0-5,j=0)

v=5
v=4

v=3
v=2

v=1
v=0

v=5
v=4v=3v=2v=1

v=0

v=5
v=4

v=3

v=2

v=1

v=0

100

c1(PS:v=0-5,j=1)
70

50

30

10
0

100

80

60

40

20

0

c2(SM:v=0-5,j=1)

v=0

d1(PS:v=0-5,j=1) d2(SM:v=0-5,j=1)

0
2

4

6

8

10

v=5

v=5 v=5

v=5v=4

v=4
v=4

v=4
v=3

v=3 v=3

v=3

v=2

v=2

v=2v=2

v=1

v=1

v=1v=1

v=0
v=0

v=0

Ecoll[eV]
Figure 27: H− + D2(v, j) (CT): The total reaction cross section σ (in 10−16 cm2) as a function

of collision energy Ecoll using PS-PES and SM-PES. Plot b1(b2, d1, d2) is an enlargement of

plot a1(a2, c1, c2).
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Figure 28: H− + D2(v=0–1, j=0–1) (CT): Comparison of reaction cross sections σ (in 10−16

cm2) and reaction probabilities P as a function of collision energy Ecoll for different potential

energy surfaces (SM, PS).

j=0) → HD(v′, j′) + D− reaction using PS-PES. In this case, HD(v′=1) is produced at low

collision energies (Ecoll ≤ 0.5 eV), but at higher collision energies Ecoll > 0.5 eV, HD(v′=0) is

strongly favored. For SM-PES (see panel c2 in Fig. 25) HD(v′=0) is the main product over

the entire energy range. HD(v′=1) is a minor product at low collision energies. The panels

d1 and d2 in Fig. 25 show that for the H− + D2(v=1, j=1) → HD(v′, j′) + D− reaction, the

main product is HD(v′=0). Similar feature are seen for SM-PES and PS-PES.

For the D2(v=2) reactant (see panels e1, e2, f1 and f2 in Fig. 25) and low collision energies

(Ecoll ≤ 0.8 eV) the main product is HD(v′=1), but at higher collision energies Ecoll = 0.8–3.0

eV the main product is HD(v′=0).

Fig. 26 shows the total and state-to-state reaction probabilities (Ptot, Pv′) for reactants

D2(v=3–5). In these cases Ptot is high at low collision energies (Ecoll = 0.01 eV), which

decreases with increase of collision energy. For Ecoll > 0.3 eV, Ptot decreases slowly with an

increase in collision energy. For PS-PES and the state-to-state reaction probabilities for the

H− + D2(v=3–4, j=0–1) → HD(v′, j′) + D− reaction, the most favored vibrational state for

the HD product is v′ = 2. For H− + D2(v=5, j=0–1) → HD(v′, j′) + D− and low collision
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energies, the most important vibrational state of the HD product is v′ = 3. For SM-PES the

H− + D2(v=3, j=0–1) → HD(v′, j′) + D− reaction leads to the most favored vibrational states

of the HD product with v′ = 1. For the D2(v=4–5, j=0–1) reactants and low collision energies,

the main vibrational state of the HD product is v′ = 2.

Table 20: H− + D2(v, j=0) (CT): Energy dependence of the total reaction cross sections σ

[10−16 cm2] using PS-PES for different initial vibrational states v of D2.

E[eV ] v = 0 v = 1 v = 2 v = 3 v = 4 v = 5

0.01 0.00000 0.00000 28.2759 95.8713 94.0293 93.1661

0.10 0.00000 0.01490 7.44567 17.8177 27.8261 38.0359

0.20 0.00000 0.81227 4.49421 9.48881 14.6420 20.2015

0.30 0.00000 1.51050 4.70993 8.45894 11.9310 15.5625

0.40 0.16022 1.99676 4.79164 7.93900 10.7132 13.8292

0.50 0.46169 2.30056 4.64783 7.31242 9.88723 12.6420

0.60 0.75788 2.50736 4.46152 6.84914 9.22008 11.4181

0.70 0.99425 2.56939 4.42230 6.42919 8.44351 10.6596

0.80 1.19644 2.67218 4.20004 6.07924 7.99874 9.95605

0.90 1.33769 2.66960 4.10198 5.77928 7.64928 9.27448

1.00 1.44073 2.67492 3.99412 5.64929 7.13038 8.73582

1.10 1.52744 2.69925 3.89280 5.20935 6.83034 8.30343

1.20 1.60498 2.64937 3.82416 5.14935 6.57266 7.98829

1.30 1.63149 2.61607 3.69342 4.97271 6.45265 7.47895

1.40 1.64682 2.58749 3.65420 4.83273 5.91963 7.29939

1.50 1.64821 2.56270 3.53653 4.62275 5.80315 7.00258

1.60 1.66366 2.53716 3.37964 4.47944 5.74667 6.85601

1.70 1.66957 2.47603 3.34042 4.37279 5.55605 6.63614

1.80 1.65022 2.44319 3.30447 4.38612 5.36544 6.50789

1.90 1.62383 2.41080 3.22602 4.25947 5.21718 6.21108

2.00 1.61063 2.36731 3.20968 4.17614 5.16423 5.92160

2.10 1.58663 2.33766 3.19987 4.01283 4.98421 5.78968

2.50 1.49678 2.21648 2.85668 3.66621 4.42649 5.35729

3.00 1.37262 2.03629 2.65730 3.37624 4.13351 4.76000

3.50 1.20323 1.84562 2.42851 3.05628 3.58284 4.01613

Reaction cross sections :

First, the reaction cross sections σ for the reaction H− + D2(v=0–5, j=0–1) → HD(v′, j′) +

D− were calculated with quasi-classical trajectories using SM-PES and PS-PES. The results

are shown in Fig. 27 and Tabs. 20–23. The collision energies Ecoll were chosen in the range of

0.01–3.5 eV. The left panels in Fig. 27 show the reaction cross sections σ for different initial
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Table 21: H− + D2(v, j=1) (CT): Energy dependence of the total reaction cross sections σ [in

10−16 cm2] using PS-PES for different initial vibrational states v of D2.

E[eV ] v = 0 v = 1 v = 2 v = 3 v = 4 v = 5

0.01 0.00000 0.00000 0.15689 31.0061 62.8709 74.5805

0.10 0.00000 0.00000 1.04919 5.14269 11.7333 19.8534

0.20 0.00000 0.13958 1.69963 5.17935 9.73192 14.5987

0.30 0.00000 0.67770 2.77170 5.75261 9.44600 13.1293

0.40 0.04411 1.26615 3.46789 6.08257 9.05065 12.2316

0.50 0.25661 1.71242 3.72937 6.15590 8.58117 11.0480

0.60 0.50743 2.03462 3.81109 5.99258 8.19288 10.4250

0.70 0.76605 2.20371 3.84377 5.72595 7.73400 9.87543

0.80 0.99237 2.37355 3.78821 5.61596 7.43043 9.19753

0.90 1.17119 2.44562 3.77186 5.40932 7.13391 8.86774

1.00 1.29346 2.50781 3.66727 5.20601 6.67856 8.58192

1.10 1.40505 2.52165 3.57902 4.99271 6.63973 8.12387

1.20 1.47579 2.53199 3.52346 4.96938 6.43853 7.87103

1.30 1.53724 2.51359 3.48423 4.84273 6.16319 7.33970

1.40 1.58010 2.50401 3.50711 4.65275 5.96199 7.24443

1.50 1.59417 2.48500 3.40906 4.53943 5.67254 7.01357

1.60 1.60661 2.45642 3.31427 4.40611 5.57723 6.79371

1.70 1.60234 2.42509 3.23910 4.21614 5.39368 6.58118

1.80 1.60058 2.38845 3.21622 4.23614 5.32308 6.35765

1.90 1.59015 2.37324 3.15412 4.14948 5.11835 6.17077

2.00 1.57884 2.32565 3.14431 4.13615 4.95950 6.00588

2.10 1.55961 2.30984 3.14758 4.01950 4.88890 5.81167

2.50 1.49464 2.19337 2.89917 3.74953 4.37001 5.20705

3.00 1.36169 2.01714 2.58213 3.33292 4.06291 4.58044

3.50 1.19896 1.83437 2.42524 3.01296 3.54754 4.16271

vibrational states using PS-PES. The panels b1 and d1 are the enlargement of panels a1 and

c1. The right panels show the total reaction cross sections σ using SM-PES; panels b2 and d2

are the enlargement of the panels a2 and c2.

Fig. 27 demonstrates that for the H− + D2(v=0, j=0) → HD(v′, j′) + D− reaction the

total reaction cross section increases dramatically when the collision energy increases up to

the threshold. The reaction cross section reaches its maximum at collision energies Ecoll =

1.7/1.3 eV using PS-PES/SM-PES. After the maximum the reaction cross section decreases

slowly with an increase in Ecoll. The results are quite similar for PS-PES and SM-PES; at

low collision energies the reaction cross sections, using SM-PES, are much higher than those

using PS-PES. For the D2(v=0, j=1) reactant, as shown in Fig. 27 and Tabs. 21 and 23,
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Table 22: H− + D2(v, j=0) (CT): Energy dependence of the total reaction cross sections σ [in

10−16 cm2] using SM-PES for different initial vibrational states v of D2.

E[eV ] v = 0 v = 1 v = 2 v = 3 v = 4 v = 5

0.01 0.00000 0.00000 22.2291 152.340 172.460 170.289

0.10 0.00000 0.00608 7.24956 22.3971 36.6191 48.6296

0.20 0.00000 1.35510 7.77252 14.5781 21.9277 28.6222

0.30 0.00000 2.26939 6.83446 12.3017 16.9787 22.0117

0.40 0.24756 2.98830 6.86715 10.8853 14.7620 18.4463

0.50 0.77673 3.38242 6.55664 9.99875 13.0676 16.6031

0.60 1.24319 3.54968 6.03041 9.02887 12.0898 14.7087

0.70 1.56904 3.55150 5.82122 8.30896 10.7979 13.5837

0.80 1.78040 3.55348 5.41919 7.65237 10.0496 12.3342

0.90 1.90858 3.43838 5.27211 7.20576 9.22008 11.3558

1.00 1.97682 3.38516 4.94199 6.72582 8.57764 10.5899

1.10 2.04229 3.32738 4.68705 6.33254 8.17170 9.97071

1.20 2.06352 3.21516 4.43210 6.04591 7.74106 9.34777

1.30 2.06667 3.13351 4.33732 5.79927 7.40572 8.75781

1.40 2.04266 3.05277 4.09872 5.61263 6.74563 8.40236

1.50 2.03676 2.98404 4.03335 5.21601 6.60796 8.13853

1.60 2.01389 2.91805 3.87972 5.02937 6.44206 7.76843

1.70 1.98674 2.83229 3.69996 4.93272 6.24085 7.40932

1.80 1.93195 2.77254 3.67381 4.81940 6.01141 7.21878

1.90 1.89149 2.71673 3.57902 4.61942 5.72196 6.96594

2.00 1.85241 2.65378 3.56268 4.48277 5.60547 6.56652

2.10 1.81383 2.60756 3.49731 4.32946 5.41839 6.32834

2.50 1.66555 2.39696 3.04625 3.90618 4.79360 5.70540

3.00 1.47001 2.15368 2.75863 3.56289 4.33118 5.00551

3.50 1.26405 1.92742 2.54290 3.20960 3.61814 3.86223

the reaction cross section increases for Ecoll > 0.4 eV. The maximum of the cross section is

reached at Ecoll = 1.6 and 1.4 eV using PS-PES and SM-PES. The maxima of these reaction

cross sections are lower than those for the H− + D2(v=0, j=0) → HD(v′, j′) + D− reaction.

For the D2(v=1) reactant the cross section starts to increase at Ecoll = 0.1 eV and at Ecoll =

0.2 eV for the D2(j=0) and D2(j=1) reactants. The maximum of the reaction cross section,

using PS-PES, is reached at Ecoll = 1.10 and 1.20 eV for the D2(j=0) and D2(j=1) reactants.

When using SM-PES the maximum of the reaction cross section is reached at Ecoll = 0.8 and

0.9 eV for the D2(j=0) and D2(j=1) reactants. All the collision energies corresponding to

these maximum values are lower than those for the D2(v=0) reactant.

For the D2(v=2) reactant, the reaction cross sections are much different for different initial
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Table 23: H− + D2(v, j=1) (CT): Energy dependence of the total reaction cross sections σ [in

10−16 cm2] using SM-PES for different initial vibrational states v of D2.

E[eV ] v = 0 v = 1 v = 2 v = 3 v = 4 v = 5

0.01 0.00000 0.00000 0.00000 37.6219 100.587 106.621

0.10 0.00000 0.00000 1.17340 12.3284 23.9468 34.9982

0.20 0.00000 0.08652 3.19007 9.34216 16.3716 22.7409

0.30 0.00000 1.06635 4.52689 9.14885 14.1584 19.0546

0.40 0.03732 1.97030 5.04658 8.74224 12.7146 16.9549

0.50 0.42097 2.55647 5.20674 8.33562 11.6204 15.1521

0.60 0.82222 2.89844 5.19367 7.88901 10.5296 13.6277

0.70 1.19305 3.08044 5.14137 7.37908 9.85899 12.4331

0.80 1.48484 3.14948 4.90604 7.07245 9.12477 11.5390

0.90 1.64469 3.15738 4.75569 6.60917 8.67295 10.6706

1.00 1.77073 3.13914 4.53996 6.40586 8.17170 10.1502

1.10 1.86636 3.12515 4.37000 5.99258 7.81871 9.56030

1.20 1.89878 3.05247 4.21638 5.83260 7.49749 9.13890

1.30 1.93472 2.97842 4.10525 5.59930 7.17627 8.52329

1.40 1.94251 2.94633 4.03008 5.37266 6.86211 8.25579

1.50 1.93359 2.90087 3.87646 5.24601 6.51971 8.05059

1.60 1.92379 2.83883 3.79474 5.01604 6.31145 7.73545

1.70 1.88747 2.75687 3.64766 4.80606 6.11378 7.42398

1.80 1.87578 2.70609 3.57248 4.73607 5.96199 7.15648

1.90 1.83255 2.66245 3.49077 4.56609 5.67960 6.86333

2.00 1.80704 2.59798 3.50711 4.45278 5.45722 6.63614

2.10 1.77224 2.56331 3.47770 4.36612 5.31955 6.26238

2.50 1.64330 2.36914 3.13777 3.99950 4.69829 5.70906

3.00 1.46536 2.14136 0.00219 3.48290 4.28176 4.78931

3.50 1.25827 1.90963 2.52983 3.09961 3.57578 4.07843

rotational states j = 0 and j = 1. For the D2(v=2, j=0) reactant and low collision energies

the reaction cross sections are high. The reaction cross section decreases with an increase

in collision energy. But in the case of the D2(j=1) reactant and low collision energies, the

reaction cross sections are low.

For the D2(v=3,4,5) reactants the reaction cross sections look similar; the reaction cross sec-

tions are high at low collision energies Ecoll = 0.01 eV. With an increase in Ecoll from 0.01

to 0.5 eV the reaction cross section decreases rapidly. For Ecoll > 0.5 eV the reaction cross

section decreases slowly with an increase in collision energy.

In order to compare the different reaction cross sections for PS-PES and SM-PES for the H− +

D2(v=0–1, j=0–1) reaction, the energy dependence of the reaction cross sections and reaction
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probabilities are shown together in the same figure (see Fig. 28). For the D2 reactant, starting

with the same initial rovibrational states, the reaction cross sections using SM-PES are higher

than those using PS-PES. For the D2 reactant, starting with the same initial vibrational states,

the reaction cross sections for the D2(j=0) reactant are higher than those for the D2(j=1)

reactant. At higher collision energies, the differences in the reaction cross section become

small.

5.3.2 Wave packet calculations for H− + D2(v, j) → HD(v′, j′) + D−

Reaction probabilities P for the ion-molecule collisions H− + D2(v, j) for total angular mo-

menta J = 0 and J 6= 0 were investigated by time-dependent wave packets (WPs) using the

real wave packet code of S. Gray [149]. The parameters used in the calculations are the same

as those for H− + H2(v, j) → H2(v
′, j′) + H−, as shown in Tab. 16.

Time-dependent quantum dynamics of H− + D2(v=0–1, j=0) → HD(v′, j′) + D− for total

angular momentum J = 0 :

The ion-molecule reaction H− + D2(v=0–1, j=0) → HD(v′, j′) + D− for total angular mo-

mentum J = 0 was investigated for the dynamics of reactive scattering processes using WPs

for PS-PES, SM-PES, and AY-PES. In order to make sure that the results for the reaction

probabilities are converged, firstly, reactant Jacobi coordinates (RC) are used to calculate the

total reaction probabilities and then these are compared with those calculated using product

Jacobi coordinates (PC) (see left panels in Figs. 29). These panels show that the reaction

probabilities, which are calculated using PC-coordinates and RC-coordinates, are the same if

the D2 reactant starts with the initial rovibrational states v=0–1, j=0. The total and state-

to-state reaction probabilities (Ptot, Pv′) are determined by using product Jacobi coordinates

(PC) for PS-PES, SM-PES, and AY-PES, as shown in the right panels of Fig. 29. For the

D2(v=0, j=0) reactant, the total reaction probabilities Ptot for the three PES are increased

immediately at 0.5 eV up to 0.7 eV, with a maximum value of ∼40%, ∼55%, and ∼55% using

PS-PES, SM-PES, and AY-PES, respectively; this is followed by a slow increase up to 1.4

eV with a magnitude of ∼60%, ∼70%, and ∼70%. For Etot = 1.5–2.7 eV, the total reaction

probabilities decrease slowly with an increase in total energy. At low energies, the largest

reaction probability is found for the HD(v′=0) product. The other vibrational states become

populated with an increase in Etot. For the D2(v=1, j=0) reactant the reaction probability

characteristics are the same as those for the D2(v=0, j=0) reactant, i.e., at low Etot, there

is a steep increase in the total reaction probabilities up to the maximum. Thereafter, the

total reaction probabilities decrease with an increase in Etot. For Etot = 0.5–0.8 eV, the main

products are HD(v′=0). When the total energies are in the range of 0.8–1.2 eV, the main

product HD is found with the vibrational state of v′ = 1. At higher total energies Etot > 1.2

eV, HD(v′=0) is the main product again. HD products with the higher final vibrational state

will be found one by one with an increase in Etot.

In order to show the differences in the total reaction probabilities using the three potential

76



5.3 H− + D2(v, j) 5 RESULTS

0.0

0.2

0.5 1.0 1.5 2.0 2.5 3.0 3.5 0.5 1.0 1.5 2.0 2.5 3.0 3.5

Etot[eV]

P

0.2

0.0

0.4

0.6

0.8

0.0
0.2

0.6

0.8

0.0

0.2

0.6

0.8

0. 0

0.4

0.8

1.0

a2(SM: v=0, j=0)

a3(AD: v=0, j=0)

tot

v‘=0

v‘=1

v‘=2 v‘=3 v‘=4

c1(PS: v=1, j=0)

b1(PS: v=0, j=0)

b2(SM: v=0, j=0)

b3(AD: v=0, j=0)

c2(SM: v=1, j=0)

c3(AD: v=1, j=0)

d1(PS: v=1, j=0)

d2(SM: v=1, j=0)

d3(AD: v=1, j=0)

P(react-coord)

P(react-coord)

P(react-coord)

P(react-coord)

P(prod-coord)

P(prod-coord)

P(prod-coord)

P(prod-coord)

0.6

0.4

0.4

0.4

0.6

0.2

0. 0

0.4

0.8

0.6

0.2

v‘=0

v‘=1

v‘=2 v‘=3 v‘=4

tot

v‘=0

v‘=1

v‘=2
v‘=3 v‘=4

tot

v‘=1

v‘=0

v‘=2
v‘=3 v‘=4 v‘=5

tot

tot

v‘=1
v‘=0

v‘=2
v‘=3 v‘=4 v‘=5

tot

v‘=1
v‘=0

v‘=2
v‘=3 v‘=4 v‘=5

a1(PS: v=0, j=0)

P(react-coord)

P(prod-coord)

a2(SM: v=0, j=0)

a3(AY: v=0, j=0)

b1(PS: v=0, j=0)

v‘=0

v‘=1

v‘=5v‘=1

v‘=0

v‘=2 v‘=3 v‘=4

tot

b2(SM: v=0, j=0)

b3(AY: v=0, j=0)

c1(PS: v=1, j=0)

c2(SM: v=1, j=0)

c3(AY: v=1, j=0)

d1(PS: v=1, j=0)

d2(SM: v=1, j=0)

d3(AY: v=1, j=0)

P(prod-coord)

P(prod-coord)

P(prod-coord)

P(prod-coord)

P(prod-coord)

P(react-coord)

P(react-coord)

P(react-coord)

P(react-coord)

P(react-coord)

tot

tot

v‘=2 v‘=3 v‘=4 v‘=5

v‘=0

v‘=1 v‘=2 v‘=3 v‘=4 v‘=5

tot

v‘=0

v‘=1

v‘=2 v‘=3 v‘=4 v‘=5

tot

v‘=1

v‘=0

v‘=2 v‘=3 v‘=4 v‘=5

v‘=1

v‘=0

v‘=2 v‘=3 v‘=4v‘=5

Etot[eV]
Figure 29: H− + D2(v=0–1, j=0) → HD(v′, j′) + D− (WP): Different reaction probabilities

P (Ptot, Pv′ : see abbreviation tot or v′ = ··) as a function of total energy Etot for various

initial vibrational states v and two different Jacobi coordinate systems (RC and PC) using the

potential energy surfaces SM, PS, and AY (Pv′ =
∑

j′ P (v′, j′), Ptot =
∑

v′ Pv′).
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Figure 30: H− + D2(v=0–1, j=0) (WP): Comparison of total reaction probabilities P as a

function of total energy Etot for three different potential energy surfaces (PS-PES, SM-PES,

and AY-PES) using product coordinates (PC).

energy surfaces (SM, PS, and AY), results of the reaction probabilities are plotted in the same

panel in Fig. 30. For the reaction H− + D2(v=0–1, j=0) → HD(v′, j′) + D− and Etot < 2.0 eV,

the total reaction probabilities Ptot using SM-PES and AY-PES are similar. Using PS-PES,

Ptot is much lower than for SM-PES and AY-PES. For Etot > 2.5 eV, the reaction probabilities

using AY-PES are much lower than those using SM-PES and PS-PES.

Time-dependent quantum dynamics of H− + D2(v=0, j=0)→HD(v′, j′) + D− for total angular

momenta J 6= 0.

Fig. 31 shows the total reaction probabilities using the wave packet (WP) program for H− +

D2(v=0, j=0) and total angular momenta J = 0, 5, 10, 15, 20, 25, 30, 40 for PS-PES and

SM-PES. The trend of the curves and the threshold energy in the calculations are similar.

The reaction probabilities are different using PS-PES and SM-PES. For each total angular

momentum the maxima of the reaction probability using SM-PES are much higher than those

using PS-PES.
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Figure 31: H− + D2(v=0, j=0) (WP): Total reaction probabilities P (using reactant coordi-

nates (RC)) as a function of total energy Etot for different total angular momenta J = 0, 5,

10, 15, 20, 25, 30, 40. In the right panel: (a) are Morari and Jaquet (2005) [72] results, (b) are

present results.

Fig. 32 shows the total reaction cross sections σ [10−16 cm2] for PS-PES and SM-PES compared

with the experimental results by Zimmer and Linder [65], Haufler et al. [67], and Huq et al.

[63]. In Fig. 32 line a is cross section σ using SM-PES based on wave packets (WPs) (J = 0–

50). Line b is σ using SM-PES for quasi-classical trajectories (QCT) using the code CTAMYM.

It can be seen that when Etot are in the range of 0.3–2.0 eV, σ, shown by line b, is slightly

higher than in the case of line a. For Etot in the range of 0.5–0.7 eV, the results of σ, calculated

with QCT, are in good agreement with the experimental results by Haufler et al. [67]. At

higher energies (1.2≤Etot≤2.0 eV), the results of σ using QCT are in good agreement with

the experimental cross sections of Zimmer and Linder [65]. As shown by line a, the results

calculated with WPs in the present work are closer to the experimental results by Haufler et

al. [67] than others. For Etot≥1.2 eV, the results in the present work are in good agreement

with the results of Zimmer and Linder [65]. The values showed by line a are slightly lower

than the results of Morari and Jaquet [72] (see line c).

Line d shows σ based on wave packets (WPs) (J = 0–50) using PS-PES. Line e shows σ

calculated with quasi-classical trajectories (QCT) using PS-PES. The characteristic trends of

σ are similar to those using SM-PES, i.e., at low total energies (Etot < 1.5 eV), σ calculated

with QCTs is higher compared to WP-calculations. For Etot < 1.0 eV, σ shown by line e, is

in good agreement with the experimental results of Haufler et al. [67] (see line i). For Etot

> 1.5 eV, the results of σ using PS-PES are greater than the experimental results of Haufler
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Figure 32: Reaction cross sections σ [in 10−16 cm2] for H− + D2(v=0, j=0): Comparison of

theoretical (quantum and classical) and experimental results. a: σ based on wave packets

(WPs) (J = 0–50) for SM-PES. b: σ calculated with quasi-classical trajectories (QCT) using

SM-PES. c: Morari and Jaquet (2005) [72] (σ based on WPs: Ω = 8 (J = 0–60)) using SM-

PES. d: σ based on WPs (J = 0–50) using PS-PES. e: σ calculated with QCTs using PS-PES.

f: σ of Panda et al. [150] using PS-PES. g: σ of Yao et al. [153] using PS-PES. h: Zimmer

and Linder (1995) [65]. i: Haufler et al. (1997) [67].

et al. [67]. As shown in Fig. 32, the results shown by line d are closer to the experimental

results by Haufler et al. [67] than others, but σ based on WPs using PS-PES is smaller than

the experiment results for Etot < 0.8 eV. For Etot > 1.2 eV, σ, shown by line d, is much higher

than the experimental results. The reason that at higher energies the theoretical results are

higher than the experimental results will be discussed in the D− + H2 chapter.

Fig. 32 shows that the present results of σ based on WPs using PS-PES are lower than the

theoretical results of Panda et al. [150] (see line f) (they calculated the total reaction cross

section without the Coriolis coupling). The present results of σ are higher than those of the

theoretical work of Yao et al. [153] (see line g). A possible explanation for this finding is that

in the present work the integral cross section was calculated up to Ω = J , whereas Yao et al.
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used a maximum value of Ωmax = 9 (J =0-65).
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5.4 D− + H2(v, j)

A detailed study of the proton exchange reaction D− + H2(v, j) → HD(v′, j′) + H− on its

ground potential energy surface was carried out using wave packets (S. Gray [149] program)

and quasi-classical trajectories (QCTs) (CTAMYM program). The energy dependence of the

total reaction probabilities Ptot, state-to-state reaction probabilities Pv′ and reaction cross

sections σ for the D− + H2(v, j) → HD(v′, j′) + H− reaction were calculated. The results in

the present work will be presented in comparison with previous experiments.

5.4.1 Quasi-classical trajectory investigations

The D− + H2(v=0–5, j=0–1) → HD(v′, j′) + H− was studied by QCTs using the potential

energy surfaces SM and PS.

Initial parameter determinations :

The initial parameters for D− + H2(v, j) were calculated in the same way as in the case of H−

+ H2(v, j). The maximum impact parameter bmax is shown in Tab. 13. The internal energies,

turning points, and vibration half-periods are shown in Tabs. 14 and 15.

Reaction probabilities :

The total and state-to-state reaction probabilities (Ptot, Pv′) for D− + H2(v=0–5, j=0–1)

→ HD(v′, j′) + H− were calculated using PS-PES and SM-PES. The results for total and

state-to-state reaction probabilities are shown in Figs. 33 and 34. All the left panels in

these figures show the reaction probabilities using PS-PES, and the right panels show the

reaction probabilities using SM-PES. Some important parts are enlarged in the same panel.

The maximum impact parameters bmax [Å] used in the calculations are shown as well.

Panels a1, a2, b1, and b2 in Fig. 33 show the different reaction probabilities for the H2(v=0)

reactant. It can be seen that these reactions have reaction barriers Ebar. For Ecoll > Ebar the

total reaction probabilities steeply increase with an increase in collision energy Ecoll. Beyond

the maximum, the total reaction probabilities decrease slowly with an increase in Ecoll. The

maximum of the reaction probability using SM-PES is higher than that using PS-PES. It can

be seen that the maximum of the total reaction probability for D− + H2(v=0, j=0) is larger

than that for D− + H2(v=0, j=1). The state-to-state reaction probabilities show that for the

H2(v=0) reactant and Ecoll = 0.3–3.5 eV the main final vibrational state for HD products is v′

= 0. With an increase in Ecoll HD products with higher final vibrational states can be found.

The total reaction probabilities for D− + H2(v=1, j=0) → HD(v′, j′) + H− using PS-PES are

similar to using SM-PES (see panels c1 and c2 in Fig. 33). For Ecoll = 0.01 eV the total reaction

probabilities are ∼40%. The total reaction probabilities increase with an increase in collision

energy; beyond its maximum the total reaction probabilities decrease slowly with increase of

Ecoll. The differences between calculations using SM-PES and PS-PES are pronounced near

the maximum of Ptot at Ecoll = 0.4/0.1 eV for SM-PES/PS-PES. In the case of using PS-PES,
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Figure 33: D− + H2(v=0–2, j=0–1) → HD(v′, j′) + H− (CT): Different reaction probabilities

P (Ptot, Pv′ : see abbreviation tot or v′ = ··) as a function of collision energy Ecoll for various

initial rovibrational states v,j and different impact parameters bmax using the potential energy

surfaces SM and PS (Pv′ =
∑

j′ P (v′, j′), Ptot =
∑

v′ Pv′).
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Figure 34: D− + H2(v=3–5, j=0–1) → HD(v′, j′) + H− (CT): Different reaction probabilities

P (Ptot, Pv′ : see abbreviation tot or v′ = ··) as a function of collision energy Ecoll for various

initial rovibrational states v,j and different impact parameters bmax using the potential energy

surfaces SM and PS (Pv′ =
∑

j′ P (v′, j′), Ptot =
∑

v′ Pv′).
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the state-to-state reaction probabilities show that for Ecoll < 1.3 eV, the products are mainly

HD with a final vibrational state v′ = 1. For 1.3 < Ecoll < 2.2 eV, the HD(v′=0) product

is strongly favored, and for even higher energy (Ecoll > 2.2 eV) again the HD(v′=1) product

predominates. For SM-PES and Ecoll < 0.9 eV, the HD products mainly have a final vibrational

state v′ = 1; for Ecoll > 0.9 eV the favored products are HD(v′=0). The characteristic of the

total reaction probabilities for D− + H2(v=1, j=1) → HD(v′, j′) + H− are similar to D− +

H2(v=0, j=1) → HD(v′, j′) + H−. For Ecoll > Ebar, the total reaction probabilities increase

quickly with an increase in Ecoll. The trend in the state-to-state reaction probabilities for the

H2(v=1, j=1) reactant is similar to that for D− + H2(v=1, j=0) → HD(v′, j′) + H−.

In the case of D− + H2(v=2–5, j=0–1), the trends in the total reaction probabilities are

similar. The total reaction probabilities are higher at Ecoll = 0.01 eV, then the total reaction

probabilities steeply decrease with an increase in collision energy, and for higher collision

energies Ecoll > 1.0 eV, the reaction probabilities decreased slowly with an increase in Ecoll.

Using PS-PES and Ecoll = 0.01 eV for D− + H2(v=2–4, j=0–1) → HD(v′, j′) + H−, the main

products are HD(v′=v). For the H2(v=5, j=0) reactant the largest reaction probability is

found for HD(v′=5). For the H2(v=5, j=1) reactant the main products are HD(v′=3, 4, 5).

Using SM-PES and Ecoll = 0.01 eV for D− + H2(v=2–5, j=0–1) → HD(v′, j′) + H− the main

final product is HD with a final vibrational state of v′=v−1.

Reactive cross sections :

Energy dependence of the reaction cross sections σ [10−16 cm2] for the D− + H2(v=0–5, j=0–1)

→ HD(v′, j′) + H− are calculated with Eq. (58) as shown in Fig. 35. The collision energies

were chosen in the range of 0.01–3.5 eV. Left panels in Fig. 35 show σ for the H2 reactant

with different initial vibrational states using PS-PES. Panels b1 and d1 are the enlargements

of a1 and c1. Right panels show σ using SM-PES, and panels b2 and d2 are the enlargements

of a2 and c2.

Panels a1, a2, b1, and b2 in Fig. 35 demonstrate that, in the case of the H2(v=0, j=0) reactant,

σ increases dramatically with an increase in Ecoll near the threshold. For Ecoll≈1.3/1.4 eV,

σ reaches its maximum at 4.827 and 4.048*10−16 cm2 using SM-PES/PS-PES. After these

maxima, σ slowly decreases with an increase in Ecoll. At low collision energy σ for SM-PES is

much higher than in the case of PS-PES. In the case of the H2(v=0, j=1) reactant, as shown

in panels c1, c2, d1, and d2 in Fig. 35, the reaction barrier is Ebar = 0.5 eV. For Ecoll > Ebar,

σ steeply increases with an increase in Ecoll. The maxima of the cross sections are 4.030 and

3.550*10−16 cm2 using SM-PES and PS-PES. These values are much lower than those for the

H2(v=0, j=0) reactant.

The reaction cross sections for D− + H2(v=1, j=0) are shown in panels a1, a2, b1, and b2 in

Fig. 35. Using PS-PES σ shows a very sharp peak at Ecoll = 0.1 eV with σ = 8.530*10−16

cm2. σ for SM-PES is different from the one for PS-PES, i.e., σ ≈ 6*10−16 cm2 at Ecoll = 0.01

eV. At Ecoll = 0.4 eV, σ reaches its maximum (σmax = 8.197*10−16 cm2). For D− + H2(v=1,

j=1) (see panels d1 and d2 in Fig. 35), the trends of the reaction cross sections are similar
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Figure 35: D− + H2(v, j) (CT): The total reaction cross sections σ [in 10−16 cm2] as a function

of collision energy Ecoll using PS-PES and SM-PES. Plot b1(b2,d1,d2) is an enlargement of

plot a1(a2,c1,c2).
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Figure 36: D− + H2(v=0–1, j=0–1) (CT): Comparison of reaction cross sections σ [in 10−16

cm2] and reaction probabilities P as a function of collision energy Ecoll for different potential

energy surfaces (SM, PS).

for D− + H2(v=0, j=1) (see panels a1 and a2 in Fig. 35), i.e., σ increases with an increase in

Ecoll. For Ecoll = 1.30 eV and PS-PES σ reaches its maximum (σmax = 5.597*10−16 cm2). The

corresponding maximum is 6.407*10−16 cm2 at Ecoll = 1.10 eV for SM-PES. These maxima

are lower than those for D− + H2(v=1, j=0).

For D− + H2(v=3–5, j=0–1), the characteristics of the reaction cross sections are similar. The

reaction cross sections are quite high (σ > 100*10−16 cm2) at Ecoll = 0.01 eV; with an increase

in the collision energy from 0.01 to 0.5 eV, σ decreases rapidly. When the collision energies are

in the range of 0.5–3.5 eV, σ decreases slowly with an increase in Ecoll. It should be pointed

out, however, that the reaction cross sections for D− + H2(v=2, j=1) are much lower than

those for D− + H2(v=2, j=0) if the collision energies are in the range of 0.01–0.5 eV.

In order to understand the differences in the reaction cross sections for PS-PES and SM-PES,

reaction cross sections and reaction probabilities for D− + H2(v=0–1, j=0–1) are shown in the

same figure (see Fig. 36). One can see that the reaction barriers are the same using PS-PES

and SM-PES, but for the same initial rovibrational state, the reaction cross sections using
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SM-PES are higher than those using PS-PES. In the case of the H2 reactant using the same

initial vibrational state, the reaction cross sections for D− + H2(v, j=0) are higher than those

ones for D− + H2(v, j=1).

5.4.2 Wave packet calculations for D− + H2(v, j) → HD(v′, j′) + H−

Total and state-to-state reaction probabilities (Ptot, Pv′) for the ion-neutral molecule collisions

D− + H2(v=0–1, j=0) → HD(v′, j′) + H− with total angular momentum J = 0 were investi-

gated by wave packets (WPs) using the real wave packet code of S. Gray [149]. For the total

angular momenta J 6= 0, the reaction probabilities, including all total angular momenta up to

Jmax = 50, were calculated in the total energy range Etot = 0.3–2.0 eV. In addition, integral

cross sections are presented for Etot = 0.3–2.0 eV. The parameters used in the calculations are

the same as in the case of H− + H2(v, j) → H2(v
′, j′) + H−, as shown in Tab. 16.

Time-dependent quantum dynamics of D− + H2(v, j) → HD(v′, j′) + H− for angular momen-

tum J = 0 :

The ion-neutral molecule collisions D− + H2(v=0–1, j=0)→ HD(v′, j′) + H− were investigated

using time-dependent wave packets (WPs) for PS-PES, SM-PES, and AY-PES. In order to

obtain accurate results, the total reaction probabilities were calculated with reactant Jacobi

coordinates (RC) and product Jacobi coordinates (PC), as shown in the left panels of Fig. 37.

The total reaction probabilities are similar for Etot = 0.3–2.5 eV.

Right panels in Fig. 37 show the total and vibrational resolved reaction probabilities (Ptot, Pv′

for D− + H2(v=0–1, j=0) → HD(v′, j′) + H− and total angular momentum J = 0. The

total reaction energies (Etot) are chosen in the range of 0.3–3.5 eV. All these calculations are

determined using product Jacobi coordinates (PC). It is evident from panels b1, b2, and b3 in

Fig. 37 that in the case of the H2(v=0, j=0) reactant the total reaction probabilities steeply

increased beginning from a total energy of 0.48 eV to 1.0 eV followed by a slow increase up

to ∼1.16 eV with a maximum value of ∼86%, ∼91%, and ∼91% using PS-PES, SM-PES, and

AY-PES. For Etot = 1.2–2.7 eV the total reaction probabilities slowly decrease with an increase

in Etot. The state-to-state calculations show that at low total energies (0.3 < Etot < 0.6 eV)

the HD product have the final vibrational state v′=0; the other vibrational states of the HD

product become populated with an increase in Etot. In the case of Etot < 1.5 eV the main

product is HD(v′=0), the other vibrational states are minor products.

In the case of the H2(v=1, j=0) reactant (see panels c1, c2, c3, d1, d2, and d3 in Fig. 37),

accurate reaction probabilities near the threshold are difficult to get and lead to a sharp,

numerically erroneous peak using product Jacobi coordinates (PC); therefore, there are some

differences between the results using reactant Jacobi coordinates (RC) and those using product

Jacobi coordinates (PC) at low total energies (0.7 < Etot < 1.5 eV). The vibrational distribu-

tions of the products are shown in panels d1, d2, and d3 in Fig. 37. It is evident that at low

energies the main product is HD(v′=1). The HD(v′=0) product is the minor one at low total

energies. For Etot > 1.1 eV, products with final higher vibrational states (v′≥2) can be found.
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Figure 37: D− + H2(v=0–1, j=0) → HD(v′, j′) + H− (WP): Different reaction probabilities

P (Ptot, Pv′ : see abbreviation tot or v′ = ··) as a function of total energy Etot for various

initial vibrational states v and two different Jacobi coordinate systems (RC and PC) using the

potential energy surfaces SM, PS, and AY (Pv′ =
∑

j′ P (v′, j′), Ptot =
∑

v′ Pv′).
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Figure 38: D− + H2(v=0–1, j=0) (WP): Comparison of total reaction probabilities P as a

function of total energy Etot for the different potential energy surfaces (PS-PES, SM-PES, and

AY-PES) using product coordinates (PC).

Fig. 38 shows the comparison of the total reaction probability results using PS-PES, SM-PES,

and AY-PES for D− + H2(v=0–1, j=0). For Etot = 0.3–2.0 eV the reaction probabilities using

SM-PES are similar to those using AY-PES. For Etot < 1.4 eV the total reaction probabilities

using PS-PES are much lower than those using SM-PES and AY-PES.

Time-dependent quantum dynamics of D− + H2(v, j) → HD(v′, j′) + H− for angular momenta

J 6= 0 :

Fig. 39 shows the total reaction probabilities using wave packets (WPs) for D− + H2(v=0,

j=0) and the total angular momenta J = 0, 5, 10, 15, 20, 25, 30, 40 for SM-PES and PS-PES.

The total energies were chosen in the range of 0.3–2.0 eV. It is evident that the trend of the

total reaction probabilities and the maxima are quite different between SM-PES and PS-PES.

For low total angular momenta J , such as J = 0–5, the trend of the total reaction probabilities

is similar. The maximum of the reaction probability using SM-PES is larger than that using

PS-PES. For the total angular momenta J = 20 and 25 and at high total energy, the deviations

of the reaction probabilities are large.

In Fig. 40 the reaction cross sections σ [10−16 cm2] are presented for PS-PES and SM-PES for

collisions of D− + H2(v=0, j=0) with WPs. σ includes the summation of reaction probabilities

for all J values up to 50 in the total energy range of 0.3–2.0 eV. These results are compared

with the results of the quasi-classical trajectories (QCTs), experimental results, and other

theoretical results. For the case of using the same potential energy surface, σ calculated with
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Figure 39: D− + H2(v=0, j=0) (WP): Total reaction probabilities P (using reactant coordi-

nates (RC)) as a function of total energy Etot for different total angular momenta J = 0, 5,

10, 15, 20, 25, 30, 40.

QCTs is larger compared to WPs, and in the case of using the same method, σ for SM-PES

is slightly higher than for PS-PES. In the case of WPs, the deviations between SM-PES and

PS-PES are not greater than 0.5*10−16 cm2. It shows that at lower total energies (0.5 < Etot

< 0.7 eV), σ of QCTs using PS-PES and SM-PES (see lines b and d in Fig. 40) is in good

agreement with the experimental results by Haufler et al. [67] (see points g in Fig. 40). For

Etot in the range of 0.8 < Etot < 1.2 eV, the present results of using WPs (see line a and c in

Fig. 40) are closer to the experimental results of Haufler et al. [67] than using QCTs results.

For Etot > 1.2 eV, the present results are much higher than the experimental results. There

are two reasons for these differences. First, higher rotational excited states might be included

in the experiment, while in our calculations, we only considered the pure initial rovibrational

state v = 0, j = 0. If the other excited rotational states are taken into account, the computed

cross section should be closer to the experimental results. Secondly, for total energies greater

than 1.2 eV, the coupling to higher electronically excited states (i.e., ionization to DH2 plus one

free electron) has to be included in the dynamics, which would explain why, experimentally, a

decrease in the cross section occurs before 2.0 eV.

For Etot in the range of 0.5–1.3 eV, the present WP results of σ using PS-PES are similar to

σ of Yao et al. [153] using PS-PES (see line f in Fig. 40). For Etot > 1.4 eV, the present

results of σ are slightly higher than those of Yao et al. [153]. This may be because the integral

cross sections are also calculated up to ω = 9 (J=0-65) in the same way as in case of H− +

D2 in Ref. [153]. Panda et al. [150] investigated this reaction using the centrifugal sudden
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Figure 40: Reaction cross sections σ [10−16 cm2] for D− + H2(v=0, j=0): Comparison of

theoretical (quantum and classical) and experimental results. a: σ based on wave packets

(WP) using SM-PES(J = 0–50). b: QCT calculations using SM-PES. c: σ based on wave

packets (WP) using PS-PES(J = 0–50). d: QCT calculations using PS-PES. e: σ of Panda et

al. (2005) [150] using PS-PES. f : σ of Yao et al. (2006) [153] using PS-PES. g: Haufler et al.

(1997) [67].

approximation for PS-PES (see line e in Fig. 40). From Fig. 40, one can see that in the low

energy range (0.5 < Etot < 0.8 eV), the present results of σ are similar to those of Panda et

al. [150]. For Etot > 1.6 eV, the results of Panda et al. [150] are significantly higher than the

present results. This might be related to the neglect of Coriolis coupling.
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5.5 D− + D2(v, j)

The D− + D2(v, j)→ D2(v
′, j′) + D− reaction was theoretically investigated by time dependent

wave packets (WPs) and quasi-classical trajectories (QCT). The energy dependence of total,

state-to-state reaction probabilities and reaction cross sections for the title reactions were

calculated.

5.5.1 Quasi-classical trajectory investigations

D− + D2(v=0–5, j=0–1) → D2(v
′, j′) + D− was studied using the CTAMYM program for the

potential energy surfaces of Stärck and Meyer (SM-PES) [50] and Panda and Sathyamurthy

(PS-PES) [53].

Initial parameter determinations :

The maximum impact parameter bmax was calculated in the same way as in the case of H− +

H2(v, j). The results are listed in Tab. 24.

Table 24: The maximum impact parameters bmax for D− + D2(v=0–5, j=0–1).

v v = 0 v = 1 v = 2 v = 3 v = 4 v = 5

bmax [Å] 1.6 1.9 6.7 10.2 10.3 10.4

Reaction probabilities :

The total and vibrationally resolved reaction probabilities (Ptot, Pv′) were calculated for the

D2(v=0–5, j=0–1) reactants using SM-PES and PS-PES. The results are shown in Figs. 41

and 42. All the left panels in these figures show the reaction probabilities using PS-PES, while

the right panels show the reaction probabilities using SM-PES. Important parts are enlarged in

the same panel. The maximum impact parameter bmax [Å] used in the calculations are shown.

As shown in panels a1, a2, b1, b2, c1, c2, d1, and d2 in Fig. 41 the trend of the total

reaction probability is similar for the D2(v=0–1, j=0–1) reactants, i.e., for Ecoll > Ebar, the

total reaction probabilities Ptot steeply increase, reaching a maximum with an increase in

Ecoll. However, for different initial states, the maxima are different. The maximum reaction

probabilities using SM-PES are higher than those using PS-PES. In case of using the same

potential energy surface, the maximum reaction probabilities for the D2(j=1) reactant are

lower than those for the D2(j=0) reactant.

The state-to-state reaction probabilities Pv′ for D− + D2(v=0, j=0–1) → D2(v
′, j′) + D−

have the same features as those for H− + H2(v=0, j=0–1), D− + H2(v=0, j=0–1), and H−

+ D2(v=0, j=0–1), as discussed in previous chapters. At low energies, the highest reaction

probabilities are found for the D2(v
′=0) product. The D2(v

′=1) product will be found only at

Ecoll > 0.5 eV. If one wants to find the D2(v
′=2–4) products, the initial collision energy should

be greater than 1.0, 1.2, and 1.5 eV.
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Figure 41: D− + D2(v=0–2, j=0–1) → D2(v
′, j′) + D− (CT): Different reaction probabilities

P (Ptot, Pv′ : see abbreviation tot or v′ = ··) as a function of collision energy Ecoll for various

rovibrational initial states v,j and different impact parameters bmax using the potential energy

surfaces SM and PS (Pv′ =
∑

j′ P (v′, j′), Ptot =
∑

v′ Pv′).
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Figure 42: D− + D2(v=3–5, j=0–1) → D2(v
′, j′) + D− (CT): Different reaction probabilities

P (Ptot, Pv′ : see abbreviation tot or v′ = ··) as a function of collision energy Ecoll for various

rovibrational initial states v,j and different impact parameters bmax using the potential energy

surfaces SM and PS (Pv′ =
∑

j′ P (v′, j′), Ptot =
∑

v′ Pv′).
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For the D2(v=1, j=0) reactant (see panels c1 and c2 in Fig. 41), the state-to-state reaction

probabilities using PS-PES show that, at low energies, (Ecoll≤0.8 eV) the main product is

D2(v
′=1). For Ecoll > 0.8 eV, the D2(v

′=0) product is strongly favored. The features of the

state-to-state reaction probabilities using SM-PES are similar for PS-PES, i.e., for Ecoll < 0.4

eV the main product is D2(v
′=1). For Ecoll > 0.4 eV D2(v

′=0) is the most important product.

In the case of the D2(v=1, j=1) reactant (see panels d1 and d2 in Fig 41), the features of the

vibrational state distributions for the products are different between SM-PES and PS-PES.

For PS-PES and Ecoll = 0.2–0.8 eV, the main product is D2(v
′=1); for Ecoll = 0.8–3.0 eV,

the D2(v
′=0) product is strongly favored; for even higher energies (Ecoll > 3.0 eV), again the

D2(v
′=1) product is the most important one. For SM-PES and Ecoll = 0.2–0.6 eV the reaction

probabilities of the D2(v
′=0) and D2(v

′=1) products are nearly the same. For Ecoll in the

range of 0.2–0.4 eV, the reaction probabilities for the D2(v
′=0) product are slightly higher

than those for D2(v
′=1); for Ecoll = 0.4–0.6 eV, the D2(v

′=1) product is slightly dominating;

for Ecoll in the range of 0.6–3.5 eV, the D2(v
′=0) product is strongly favored.

It should be pointed out that in the case of the D2(v=2) reactant, the total reaction probabil-

ities, using PS-PES, are higher than those using SM-PES, and the total reaction probabilities

for the D2(v=2, j=1) reactant are much lower than those for the D2(v=2, j=0) reactant. This

is totally different from H− + H2(v=2, j=0–1), H− + D2(v=2, j=0–1), and D− + H2(v=2,

j=0–1). The state-to-state reaction probabilities show that using PS-PES and low collision

energies (Ecoll < 0.3 eV), the main products are D2(v
′=1) and D2(v

′=2). D2(v
′=0) is a minor

product. In the case of using SM-PES and low collision energies (Ecoll < 0.5 eV), the most

important product is D2(v
′=1).

Fig. 42 shows the total and vibrationally resolved reaction probabilities for the D2(v=3–5, j=0–

1) reactants using PS-PES and SM-PES. In these reactions, the total reaction probabilities

are high at Ecoll = 0.01 eV; then, the reaction probabilities steeply decrease with an increase

in Ecoll. For Ecoll > 0.3 eV, the total reaction probabilities decrease slowly with an increase in

Ecoll. For PS-PES, the main product is D2(v
′=v−1). For SM-PES with the D2(v=3, j=0–1)

reactant, the main product is D2(v
′=2). At low energies with the D2(v>3) reactants, the

product D2 is mainly produced with the final vibrational state v′=v−2.

Here, we should point out that the total reaction probabilities for D− + D2(v=3, j=1) using

SM-PES are rather low. At higher energies, the corresponding reaction cross sections are even

lower than those for the D2(v=0–2) reactants (we will discuss this in the following section).

Reaction cross sections :

The reaction cross sections σ [10−16 cm2] for the D− + D2(v=0–5, j=0–1) reaction were

investigated with quasi-classical trajectories (QCT) using Eq. (58) as shown in Fig. 43.

Collision energies were chosen in the range of 0.01–3.5 eV. σ for different initial vibrational

states using PS-PES is shown in the left panels of Fig. 43. In these panels, b1 and d1 are the

enlargements of panels a1 and c1. σ using SM-PES is shown in the right panels of Fig. 43. In

these panels, b2 and d2 are the enlargements of panels a2 and c2.
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Figure 43: D− + D2(v=0–5, j=0–1) (CT): The total reaction cross sections σ [in 10−16 cm2]

as a function of collision energy Ecoll using PS-PES and SM-PES. Plot b1(b2,d1,d2) is an

enlargement of plot a1(a2,c1,c2).
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Figure 44: D− + D2(v=0–1, j=0–1) (CT): Comparison of reaction cross sections σ [in 10−16

cm2] and reaction probabilities P as a function of collision energy Ecoll for different potential

energy surfaces (SM, PS).

For the D2(v=0, j=0) reactant, σ increases dramatically in the case of Ecoll > Ebar. For Ecoll =

1.50/1.20 eV σ reaches its maximum at 2.72/3.38*10−16 cm2 using PS-PES/SM-PES, and then

σ slowly decreases with an increase in Ecoll. A similar result is obtained with H− + H2(v=0,

j=0), D− + H2(v=0, j=0), and H− + D2(v=0, j=0) at low collision energies. σ for SM-PES

is much higher than for PS-PES. The trend of the reaction cross section for the D2(v=0, j=1)

reactant is similar to those one for the D2(v=0, j=0) reactant. The corresponding maxima

are 2.59 and 3.11*10−16 cm2, which are much lower than those for D− + D2(v=0, j=0).

For the D2(v=1) reactant, the features of total reaction cross sections are similar to those for the

D2(v=0) reactant. The maximum reaction cross sections are 4.24 and 3.85*10−16 cm2 for the

D2(v=1,i j=0) and D2(v=1, j=1) reactants using PS-PES. Using SM-PES, the corresponding

σmax are 5.43 and 4.72*10−16 cm2 for the D2(v=1, j=0) and D2(v=1, j=1) reactants.

The trend for σ is very different between D− + D2(v=2, j=0) and D− + D2(v=2, j=1). In

the case of the D2(v=2, j=0) reactant, the reaction cross sections are high (56.575*10−16 cm2

using PS-PES, 50.477*10−16 cm2 using SM-PES) at Ecoll = 0.01 eV; beyond these maxima,

the reaction cross sections decrease with an increase in Ecoll. For the D2(v=2, j=1) reactant,
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however, the reaction cross sections are low (2.797*10−16 cm2 using PS-PES, 0.004*10−16 cm2

using SM-PES) at Ecoll = 0.01 eV; then the cross sections increase with an increase in Ecoll,

and the reaction cross sections reach its maxima 5.51 and 7.16*10−16 cm2 at Ecoll = 0.8/0.7

eV using PS-PES/SM-PES.

In the case of the D2(v=3–5, j=0–1) reactant, the characteristics of the reaction cross sections

are similar. σ is high at Ecoll = 0.01 eV. For Ecoll = 0.01–0.5 eV σ decreases rapidly with an

increase in Ecoll. For Ecoll > 0.5 eV the reaction cross sections decrease slowly with an increase

in collision energies.

Here, we should point out that, as shown in panel d2 in Fig. 43, σ is quite low for Ecoll > 0.2

eV for the D2(v=3, j=1) reactant using SM-PES. At higher collision energies σ is even lower

than for the D2(v=0, j=1) reactant. This is quite an abnormal feature in all our calculations.

5.5.2 Wave packet calculations for D− + D2(v, j) → D2(v
′, j′) + D−

The ion-molecule collisions D− + D2(v, j) → D2(v
′, j′) + D− for total angular momenta J =

0 and J 6= 0 were investigated using wave packet (WP) program [149]. The parameters used

in the calculations are the same as in the case of H− + H2(v, j) → H2(v
′, j′) + H−, as shown

in Tab. 16. The total integral reaction cross sections σ were calculated.

Time-dependent quantum dynamics of D− + D2(v, j) → D2(v
′, j′) + D− for total angular

momentum J = 0 :

The total and vibrationally resolved reaction probabilities for D− + D2(v=0–1, j=0) →
D2(v

′, j′) + D− for total angular momentum J = 0 were calculated using the three poten-

tial energy surfaces PS, SM and AY. The total energies are in the range of 0.3–3.5 eV. Details

are shown in Fig. 45. In order to get accurate results, one calculates the total reaction proba-

bilities using reactant Jacobi coordinates (RC) and product Jacobi coordinates (PC). As shown

in the left panels of Fig. 45 for the total energies Etot < 2.5 eV, the total reaction probabilities

using RC-coordinates are similar to those using PC-coordinates.

The right panels in Fig. 45 show the energy dependent total and state-to-state reaction

probabilities (Ptot, Pv′) using product Jacobi coordinates (PC) for PS-PES, SM-PES, and AY-

PES. For the D2(v=0, j=0) reactant (as shown at panels b1, b2, and b3 in Fig. 45), the

total reaction probabilities increase immediately at Etot = 0.5–0.7 eV with maxima of ∼50%,

∼61%, and ∼61% for PS-PES, SM-PES, and AY-PES; for PS-PES, there is a slow increase

up to 1.6 eV with a magnitude of ∼80%, but for SM-PES and AY-PES and Etot = 1.3 eV,

the maximum is ∼83%. In the case of the D2(v=0, j=0) reactant, the trend features for the

vibrationally resolved reaction probabilities are similar for PS-PES, SM-PES, and AY-PES.

At low energies (Etot < 1.5 eV), the final vibrational state v′ = 0 is strongly favored in the D2

product. D2(v
′=1), as one of minor products, can be found at Etot > 0.8 eV.

In the case of the D2(v=1) reactant accurate total reaction probabilities, which were calculated

for product Jacobi coordinates (PC) near the threshold are difficult to obtain and lead to a

sharp, numerically erroneous peak. Panels c1, c2, and c3 in Fig. 45 for Etot = 0.75–2.5 eV
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Figure 45: D− + D2(v=0–1, j=0) → D2(v
′, j′) + D− (WP): Different reaction probabilities

P (Ptot, Pv′ : see abbreviation tot or v′ = ··) as a function of total energy Etot for various

vibrational initial states v and two different Jacobi coordinate systems (RC and PC) using the

potential energy surfaces SM, PS, and AY (Pv′ =
∑

j′ P (v′, j′), Ptot =
∑

v′ Pv′).
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Figure 46: D− + D2(v=0–1, j=0) (WP): Comparison of total reaction probabilities P as a

function of total energy Etot for the different potential energy surfaces (PS, SM, and AY) using

product coordinates (PC).

show accurate total reaction probabilities using product Jacobi coordinates (PC). The total

reaction probabilities steeply increase at Etot ≈ 0.7–0.93 eV with a sharp maximum of ∼70%,

∼85%, and ∼90% for PS-PES, SM-PES, and AY-PES, followed by a slow decrease in total

reaction probabilities with an increase in Etot. For Etot in the range of 0.75–1.5 eV, the D2

product mainly has the final vibrational state v′ = 1. For 1.5 < Etot < 2.0 eV, the D2(v
′=0)

product is slightly dominating.

For D− + D2(v=0–1, j=0) and Etot > 2.5 eV, the reaction probabilities increase with an

increase in Etot, and for even higher energies (Etot > 3.0 eV), the total reaction probabilities

are even higher than 100%.

Fig. 46 shows a comparison of the total reaction probabilities using PS-PES, SM-PES, and

AY-PES. The right two panels are enlargements of the left two panels. From these panels, it

is evident that for Etot < 1.6 eV the total reaction probabilities for D− + D2(v=0–1, j=0) →
D2(v

′, j′) + D− using SM-PES and AY-PES are similar, but in case of PS-PES these are much

lower.
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Figure 47: D− + D2(v=0, j=0) (WP): Total reaction probabilities P (using reactant coordi-

nates (RC)) as a function of total energy Etot for different total angular momenta J = 0, 5,

10, 15, 20, 25, 30, 40, 50.

Time-dependent quantum dynamics of D− + D2(v=0, j=0)→ D2(v
′, j′) + D− for total angular

momenta J 6= 0 :

Fig. 47 presents total reaction probabilities for D− + D2(v=0, j=0) for the total angular

momenta J = 0, 5, 10, 15, 20, 25, 30, 40, 50 using wave packets (WPs) program for PS-PES

(left panel a1) and SM-PES (right panel a2). The total energies were chosen in the range of

0.3-2.5 eV. Fig. 47 shows the trend of the total reaction probabilities; the maxima for SM-PES

are different from those for PS-PES. In the case of total angular momenta J = 0, 5, 10, 15, the

maxima of reaction probabilities using SM-PES are higher than those using PS-PES, but the

trend in the reaction probabilities is similar. In the case of total angular momenta J > 15 and

Etot > 1.5 eV, the total reaction probabilities using PS-PES increase faster with an increase

in Etot compared to SM-PES. For the total angular momenta J = 25 and 30 and Etot = 2.5

eV, the total reaction probabilities using PS-PES are much higher than those using SM-PES.

In Fig. 48, the total cross section σ, which was calculated with wave packets (WPs) (J up to

50) and quasi-classical trajectories (QCT) (using the CTAMYM program), is presented using

PS-PES and SM-PES for D− + D2(v=0, j=0). Fig. 48 shows that the reaction barriers using

WPs and QCT are similar for PS-PES and SM-PES. Using SM-PES the curve for σ using

QCTs is similar to the one using WPs, i.e., for Etot > Ebar σ increases with an increase in Etot.

The reaction cross sections reach their maxima 3.4/3.2*10−16 cm2 at Etot = 1.4/1.6 eV for

QCTs and WPs. Beyond the maximum σ decreases slowly with an increase in total energy. In

the entire energy range, σ using QCTs is higher than in the case of using WPs. For PS-PES
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Figure 48: Reaction cross sections σ [in 10−16 cm2] for D− + D2(v=0, j=0): Comparison of

quantum and classical calculations using the potential surfaces SM and PS.(WP: quantum

wave packets, QCT: quasi-classical trajectories.)

and Etot < 1.6 eV, σ using QCTs is larger than in the case of using WPs, but at higher total

energies (Etot > 1.6 eV), σ using WPs is much higher than in case of using QCTs. If this

reaction is investigated classically for Etot = 0.3–2.0 eV, using PS-PES σ is lower than in case

of using SM-PES. The reason has been discussed in H− + H2 chapter. Similar results are are

seen for quantum investigations. In case of WPs and high total energies (Etot > 2.1 eV), σ

calculated for PS-PES is higher than σ calculated for SM-PES.
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5.6 H− + HD(v, j) and D− + HD(v, j)

The collisions of H− and D− ions with HD(v=0–1, j=0) were theoretically investigated by

quasi-classical trajectories (QCT) (CTAMYM program). The energy dependence of reaction

probabilities and reaction cross sections were calculated in this work.

The maximum impact parameters bmax were calculated in the same way as in the case of H−

+ H2(v, j). The results are listed in Tab. 25. The initial internal energies, turning points, and

Table 25: The maximum impact parameters bmax for H− + HD(v=0–1, j=0) and D− +

HD(v=0–1, j=0).

v H− + HD(v=0) H− + HD(v=1) D− + HD(v=0) D− + HD(v=1)

bmax [Å] 1.6 2.2 1.3 2.2

vibrational half-periods for HD using PS-PES and SM-PES were investigated. The results are

shown in Tabs. 26 and 27.

Table 26: Internal energies, turning points, and vibrational half-periods of HD for different

vibrational (v) and rotational (j) states (using SM-PES).

v j Ev,j[cm
−1] r− [Å] r+ [Å] τ [fs]

0 0 1881.954 0.640233 0.87299 0.4497670

0 1 1971.038 0.641036 0.87391 0.4501622

1 0 5505.399 0.580393 0.99077 0.4711845

1 1 5590.735 0.581163 0.99175 0.4715536

2 0 8960.776 0.545307 1.08572 0.4946460

2 1 9042.390 0.546058 1.08676 0.4952437

3 0 12246.302 0.520085 1.17313 0.5210709

3 1 12324.196 0.520823 1.17424 0.5216948

4 0 15360.070 0.500482 1.25770 0.5509608

4 1 15434.228 0.501212 1.25888 0.5515796

5 0 18300.107 0.484596 1.34185 0.5846259

5 1 18370.498 0.485320 1.34311 0.5852997

5.6.1 Reaction probabilities for the collision of D− and H− with HD(v=0–1, j=0)

The total reaction probabilities and different product reaction probabilities for D− + HD(v=0–

1, j=0) were calculated using PS-PES and SM-PES. The results are shown in Fig. 49. Panel A

in Fig. 49 shows the reaction probabilities PA for D− + HD(v=0, j=0) → D2(v
′, j′) + H− and

PB for D− + HD(v=0, j=0) → DH(v′, j′) + D−. Ptot (Ptot = PA + PB) is the total reaction

probability. From panel A in Fig. 49, one can see that the total reaction probability starts

to increase for total energy Etot ∼0.5 eV; beyond this energy, the total reaction probability

steeply increases up to a maximum at Etot ∼1.5 eV. Beyond the maximum, the total reaction
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Table 27: Internal energies, turning points, and vibrational half-periods of HD for different

vibrational (v) and rotational (j) states (using PS-PES).

v j Ev,j[cm
−1] r− [Å] r+ [Å] τ [fs]

0 0 1887.800 0.641389 0.87361 0.4485961

0 1 1976.608 0.642182 0.87453 0.4489100

1 0 5514.388 0.581841 0.99214 0.4715738

1 1 5599.287 0.582604 0.99313 0.4720051

2 0 8962.651 0.546893 1.08779 0.4962249

2 1 9043.729 0.547641 1.08884 0.4967419

3 0 12237.645 0.521673 1.17577 0.5232049

3 1 12314.920 0.522412 1.17687 0.5238182

4 0 15342.305 0.501950 1.26069 0.5531688

4 1 15415.733 0.502686 1.26186 0.5537849

5 0 18278.913 0.485836 1.34492 0.5865315

5 1 18348.399 0.486572 1.34615 0.5872678
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Figure 49: A: D− + HD(v=0–1, j=0) → DH(v′, j′) + D− and B: D− + HD(v=0–1, j=0) →
D2(v

′, j′) + H− (CT): Different reaction probabilities P (Ptot, PA, and PB) as a function of

total energy Etot for various vibrational initial states v and different impact parameters bmax

using the potential energy surfaces SM and PS (Ptot(SM) = PA(SM) + PB(SM), Ptot(PS) =

PA(PS) + PB(PS)).

probability decreases slowly with an increase in Etot. The results for Ptot using SM-PES are

higher than those using PS-PES in the entire energy range. For Etot in the range of 0.5–1.1

eV, the reaction probabilities PB(SM, PS) are higher than PA(SM, PS). This means that, in

the given energy range, the main product is HD(v′, j′) + D−. With an increase in Etot the

D2(v
′, j′) + H− product is dominant and more important for D− + HD(v=0, j=0). For Etot

> 3.0 eV, the reaction probabilities PA(SM, PS) are nearly double the reaction probabilities

PB(SM, PS). Panel B in Fig. 49 shows the reaction probabilities PA for D− + HD(v=1, j=0)
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Figure 50: C: H− + HD(v=0–1, j=0) → HD(v′, j′) + H− and D: H− + HD(v=0–1, j=0) →
H2(v

′, j′) + D− (CT): Different reaction probabilities P (Ptot, PC , and PD) as a function of

total energy Etot for various vibrational initial states v and different impact parameters bmax

using the potential energy surfaces SM and PS (Ptot(SM) = PC(SM) + PD(SM), Ptot(PS) =

PC(PS) + PD(PS)).

→ D2(v
′, j′) + H− and PB for D− + HD(v=1, j=0) → DH(v′, j′) + D−. In the case of using

SM-PES and Etot ≈ 0.7 eV, Ptot(SM) increases immediately up to its maximum of ≈ 45%. In

the case that Etot are in the range of 1.5–3.5 eV, Ptot decreases with increasing Etot. In the

case of using PS-PES, Ptot(PS) has a sharp maximum at Etot = 0.9 eV. For Etot = 1.0 eV,

Ptot reaches a minimum. The reaction probability increases again with increasing Etot; after

the second maximum, Ptot decreases slowly with an increase in Etot. For Etot < 2.5 eV, the

reaction probability for the DH(v′, j′) + D− product is much higher than that for the D2(v
′, j′)

+ H− product. For Etot > 2.5 eV, the reaction probabilities are nearly the same for the two

products.

Fig. 50 shows the reaction probabilities of the total and different products for H− + HD(v=0–

1, j=0) using PS-PES and SM-PES. Panel C in Fig. 50 shows the total and different product

reaction probabilities for the HD(v=0, j=0) reactant. In panel C, one can see that the total

reaction probabilities Ptot(SM) and Ptot(PS) start to increase for Etot > 0.5 eV. At Etot ≈ 1.5

eV, the total reaction probability reaches its maximum Ptot(SM) ≈ 37% and Ptot(PS) ≈ 29%

using SM-PES and PS-PES. For Etot > 1.5 eV, the total reaction probabilities decrease with

an increase in Etot. In the low energy range 0.5 < Etot < 1.2 eV, the reaction probabilities

of channel H2(v
′, j′) + D− are slightly higher than those of the channel HD(v′, j′) + H−. For

Etot > 1.5 eV, the reaction probabilities of the channel H2(v
′, j′) + D− are much lower than

those of the channel HD(v′, j′) + H−. The total and different channel reaction probabilities

for H− + HD(v=1, j=0) are shown in panel D of Fig. 50. In the case of Etot > Ebar, the

total reaction probability steeply increases with an increase in Etot. At Etot = 1.3 eV, the total

reaction probabilities reach their maxima Ptot(SM) ≈ 37% and Ptot(PS) ≈ 28% using SM-PES

and PS-PES. For Etot in the range of 0.6–2.0 eV, the main products are HD(v′, j′) + H−. For

106



5.6 H− + HD(v, j) and D− + HD(v, j) 5 RESULTS

Etot > 2.0 eV, the reaction probabilities of the channel HD(v′, j′) + H− and H2(v
′, j′) + D−

are similar.

5.6.2 Reaction cross sections for the collisions of D− and H− ions with HD(v=0–1,

j=0)
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Figure 51: D− + HD(v=0–1, j=0) and H− + HD(v=0–1, j=0) (CT): Reaction cross sections

σ [in 10−16 cm2] as a function of total energy Etot calculated with quasi-classical trajectories

for the potential energy surfaces SM and PS.

The reaction cross sections σ for D− + HD(v=0–1, j=0) and H− + HD(v=0–1, j=0) were

investigated with quasi-classical trajectories (QCT) using SM-PES and PS-PES. The results

are shown in Fig. 51. The product branching ratios were calculated using the same method.

The results are shown in Fig. 52. Panels C and D in Fig. 52 are enlargements of panels A

and B. Total energies were chosen in the range of 0.0–3.5 eV. Panels E and G in Fig. 51 show

σ for D− + HD(v=0–1, j=0) using PS-PES and SM-PES. In the case of the HD(v=0, j=0)

reactant and Etot > Ebar σ steeply increases up to its maximum, then σ decreases slowly with

an increase in Etot. σ for SM-PES is higher than for PS-PES in the whole energy range. For

Etot < 1.2 eV, σ for the DH(v′, j′) + D− product is larger than for the D2(v
′, j′) + H− product.

From panel A in Fig. 52, one can see that when case Etot are in the range of 0.53–1.2 eV, the

ratio σHD/σD2 is greater than 1.0. It should be pointed out that at the fixed total energy of

Etot = 0.53 eV, the value of the product ratio σHD/σD2 is 90.9 (using PS-PES) and 39.5 (using
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Figure 52: D− + HD(v=0–1, j=0) and H− + HD(v=0–1, j=0) (CT): Product branching ratios

calculated with quasi-classical trajectories for the potential energy surfaces SM and PS.

SM-PES). This means that, in the given total energy range, the HD product is remarkably

preferred over the D2 product. The product ratio decreases sharply with an increase in Etot. At

higher energies, the product ratio σHD/σD2 is nearly equal to 0.6. In the case of the HD(v=1,

j=0) reactant (as shown at panel G in Fig. 51 and panel C in Fig. 52) and Etot < 2.5 eV, the

HD(v′, j′) + D− product is favored. For Etot > 2.5 eV, the product ratio σHD/σD2 is nearly

equal to one. These two products are of equal importance in this given energy range.

Panels F and H in Fig. 51 show σ for H− + HD(v=0–1, j=0) using PS-PES and SM-PES.

The characteristics of σ are similar to those of D− + HD(v=0–1, j=0). In the case of the

HD(v=0, j=0) reactant (see panel F in Fig. 51 and right panels in Fig. 52) and Etot < 1.3

eV, the main product is H2(v
′, j′) + D−. In this energy range, the product ratio σH2/σHD is

greater than 1.0. For Etot = 0.53 eV, the product ratio is 137.5 and 27.9 using PS-PES and

SM-PES. With an increase in Etot, the product ratio decreases sharply. For Etot > 1.4 eV, the

product ratio is lower than 1.0. At even higher total energies of Etot > 3.0 eV, the product

ratio nearly equals 0.6, meaning that in the higher total energy range, the main product is

HD(v′, j′) + H−. In the case of the HD(v=1, j=0) reactant and at a fixed total energy of 0.78

eV, the product ratio σH2/σHD is 4.8 and 8.3 using PS-PES and SM-PES (see the panel D

in Fig. 52). The product ratio decreases sharply with an increase in Etot. For Etot > 2.1 eV,

the product ratio σH2/σHD is less than 1.0. In this total energy range, the HD(v′, j′) + H−
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product is slightly dominates.
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6 Appendix

6.1 Associated Legendre functions

The first associated Legendre functions are listed below:

P 1
1 (cos(θ)) = (1− cos2(θ))

1
2 = sin(θ) (142)

P 1
2 (cos(θ)) = 3 cos(1− cos2(θ))

1
2 = 3 cos(θ) sin(θ) (143)

P 2
2 (cos(θ)) = 3(1− cos2(θ)) = 3 sin2(θ) (144)

P 1
3 (cos(θ)) =

3

2
(5 cos2(θ)− 1)(1− cos2 θ)

1
2 =

3

2
(5 cos2(θ)− 1) sin(θ) (145)

P 2
3 (cos(θ)) = 15 cos(θ)(1− cos2(θ)) = 15 cos(θ) sin2(θ) (146)

P 3
3 (cos(θ)) = 15 cos(θ)(1− cos2(θ))

3
2 = 15 sin3(θ) (147)

6.2 Legendre polynomial

Legendre polynomials are defined by

Pn(x) =
dn

2nn!dxn
[(x2 − 1)n] . (148)

The first five Legendre polynomials are

P0(x) = 1,

P1(x) = x,

P2(x) =
1

2
(3x2 − 1),

P3(x) =
1

2
(5x3 − 3x),

P4(x) =
1

8
(35x4 − 30x2 + 3). (149)

6.3 Fortran code for calculation of turning point and vibrational

period of a diatomic molecule

PROGRAM TURNING

C

C PROGRAM TO CALCULATE TURNING POINTS OF A MOLECULE

C PROGRAM TO CALCULATE THE HALF−PERIOD OF A MOLECULE

C

IMPLICIT DOUBLE PRECISION(A−H,O−Z)
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COMMON /EVIB/ EVIBROT,IROT

WRITE(6 ,∗ ) ’V J EV, J (cm−1) TURNIN(AU) TURNOU(AU) T (AU)

1 T(FS) ’

NUE=0.0

READ(5 ,∗ ) NMAX,NROTMAX

WRITE(6 ,∗ ) ’NMAX,NROTMAX’

WRITE(6 ,∗ ) NMAX,NROTMAX

READ(5 ,∗ ) XMIN,XMAX

WRITE(6 ,∗ ) ’XMIN,XMAX’

WRITE(6 ,∗ ) XMIN,XMAX

WRITE(16 ,∗ ) ’ IVIB , IROT, XMAXIN ,YMINN’

DO 100 N=1,NMAX !SM−H3−MINUS HAVE 14 STATES.

READ(5 ,∗ ) IVIB

101 DO 10 M=1,NROTMAX ! J MAX DELETE TO 32

READ(5 ,∗ ,ERR=20,END=30) IROT,EVIBROT

IF (IROT.GT. 0 ) GO TO 102

C FIND MINIMUM AND CALCULATE XMAXIN

CALL ZERO(XMIN,XMAXIN,YMINN,IROT)

WRITE(16 ,∗ ) IVIB , IROT,XMAXIN,YMINN

102 CONTINUE

CALL BISECTION(XMIN,XMAXIN,TURNIN)

CALL BISECTION(XMAXIN,XMAX,TURNOU)

XMAXIN=TURNOU

CALL VIBPER(TURNIN,TURNOU,HALFPE)

WRITE(6 , ’ ( 2 I6 , F12 . 3 , 4 F13 . 8 ) ’ )

∗IVIB , IROT,EVIBROT,TURNIN,TURNOU,HALFPE,HALFPE∗2.41888436505D−2

CALL FLUSH(6)

10 CONTINUE

20 CONTINUE

WRITE(6 ,∗ )

IVIB=IROT

GOTO 101

100 CONTINUE

30 CONTINUE

END

C

C THE FOLLOWING PROGRAM CALCULATES THE TURNING POINT

C TURNIN IS THE INNER TURNING POINT

C TURNOU IS THE OUTER TURNING POINT

C

111



6.3 Fortran code for calculation of turning point and vibrational period of a diatomic
molecule 6 APPENDIX

SUBROUTINE BISECTION(XMINO,XMAXO,XMID)

INPLICIT DOUBLE PRECISION(A−H,O−Z)

C COMMON FWERTE,TURN, I , J

EXTERNAL FWERT

XMIN=XMINO

XMAX=XMAXO

ITMAX=1000

ACCU=1.d−7

C MIDDLE POINT

XMID=(XMIN+XMAX)∗0 . 5D0

FMIN=FWERT(XMIN)

FMAX=FWERT(XMAX)

FMID=FWERT(XMID)

IF (FMIN∗FMAX.FT. 0 . 0 d0 ) THEN

WRITE(6 ,∗ ) ’XMIN,XMAX,XMID’

WRITE(6 ,∗ ) XMIN,XMAX,XMID

WRITE(6 ,∗ ) ’FMIN,FMAX,FMID’

WRITE(6 ,∗ ) FMIN,FMAX,FMID

STOP ’ MIST’

ENDIF

ITER=0

100 PMIN=FMIN∗FMID

C PMAX=FMAX∗FMID

ITER=ITER+1

IF (PMIN.LT. 0 . 0 d0 ) THEN

XMAX=XMID

FMAX=FMID

ELSE

XMIN=XMID

FMIN=FMID

ENDIF

XMID=(XMIN+XMAX)∗0 . 5D0

FMID=FWERT(XMID)

XX=ABS( (XMAX−XMID)/XMID)

IF (XX.LE . 1 .D−7.AND.FMID.LE . 0 . d0 ) RETURN

IF (ITER.GT.ITMAX) WRITE(6 ,55 ) ITMAX

GOTO 100

55 FORMAT(// ’ SORRY, FAILED TO CONVERGE IN ’ , I6 , ’ TRIES . ’ / )

RETURN

END
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C

C THE FOLLOWING SUBROUTINE IS A FUNCTION GET THE POTENTIAL ENERGY

C

FUNCTION FWERT (X)

IMPLICIT DOUBLE PRECISION A−H,O−Z)

COMMON /EVIB/ EVIBROT,JROT

DIMENSION RR(3 ) ,GRAD(3)

AMA=1.00727646688D0 !ATOM H

AMB=1.00727646688D0 !ATOM H

AMA=AMA∗1822.888427181D0

AMB=AMB∗1822.888427181D0

C 1AMU=1.6605402D−27KG

C AMA=AMA∗1.6605402D−27

C AMB=AMB∗1.6605402D−27 !CHANGE AMU TO KG

UAB=(AMA∗AMB)/(AMA+AMB)

C ENERGIES IN HARTREE

EFACT=219474.6313705D0 ! TRANSFORM CM−1 TO AU(HF)

RR(1)=X

RR(2)=3000.D0

RR(3)=3000.D0

KEY=1

KION=0

CALL POTH3M(RR,E,GRAD,KEY,KION,VH3)

POT=E∗1 .D−3

C NOW POTENTIAL INCLUDING ROTATIONAL PART

POTROT=(POT + JROT∗(JROT+1)/(2.D0∗UAB∗X∗X))∗EFACT

FWERT=POTROT−EVIBROT

RETURN

END

SUBROUTINE VIBPER(TURNIN,TURNOU,HALFPE)

IMPLICIT DOUBLE PRECISION(A−H,O−Z)

COMMON /EVIB/ EVIBROT,JROT

DIMENSION RR(3 ) ,GRAD(3)

EFACT=219474.6313705D0

C INPUT DATA UNITS IS AU(LENGTH) ,AMU(MASS) ,AU(ENERGY)

C I SHOULD CHANGE THE LENGTH TO METER THE ENERGY TO JOULE,THE MASS TO KG.

J=JROT

ENJ=EVIBROT/EFACT

KEY=1

KION=0
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RR(2)=3000. d0

RR(3)=3000. d0

EPS1=1.D−7

EPS2=1.D−6

AMA=1.00727646688D0

AMB=1.00727646688d0

AMA=AMA∗1822.888427181D0

AMB=AMB∗1822.888427181D0

UAB=(AMA∗AMB)/(AMA+AMB)

DD0=0.D0

DD1=0.D0

DD2=0.D0

DD3=0.D0

N1=1.D−2/EPS1

R=TURNIN−EPS1

DO l =1,N1 !THIS IS THE FIRST PART FROM RIN TO 1 .D−2

R=R+EPS1

RR(1)=R

CALL POTH3M(RR,E,GRAD,KEY,KION,VH3)

C !H. STCK W. MEYER, CHEM. PHYS. 176 , 83 (1993)

VAB=E∗1 .D−3

EROT=J∗( J+1)/(2.D0∗UAB∗R∗∗2)

DD=EPS1∗ ( 1 .D0/DSQRT(ENJ−VAB−EROT))

DD1=DD1+DD

END DO

R=TURNOU−1.D−2

DO l =1,N1−1 !THIS IS THE SECOND PART FROM ROUTER TO ROUTER−1.D−2

R=R+EPS1

RR(1)=R

CALL POTH3M(RR,E,GRAD,KEY,KION,VH3)

VAB=E∗1 .D−3

EROT=J∗( J+1)/(2.D0∗UAB∗R∗∗2)

DD=EPS1∗ ( 1 .D0/DSQRT(ENJ−VAB−EROT))

DD2=DD2+DD

END DO

R=TURNIN+1.D−2−EPS2

N2=(TURNOU−TURNIN−2.D−2)/EPS2

DO L=1,N2 !THIS IS THE THIRD PART FROM RIN+1.D−2 TO ROUTER−1.D−2

R=R+EPS2

RR(1)=R
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CALL POTH3M(RR,E,GRAD,KEY,KION,VH3)

VAB=E∗1 .D−3

EROT=J∗( J+1)/(2.D0∗UAB∗R∗∗2)

DD=EPS2∗ ( 1 .D0/DSQRT(ENJ−VAB−EROT))

DD3=DD3+DD

END DO

DD0=DD1+DD2+DD3

HALFPE=DSQRT(UAB/2 .D0)∗DD0

RETURN

END

C

C CALCULATE THE LOWEST ENERGY POINT.

C

SUBROUTINE ZERO(XMINA,XMAXIN,YMINN,JROT)

IMPLICIT DOUBLE PRECISION(A−H,O−Z)

DIMENSION RR(3 ) ,GRAD(3)

XMIN=XMINA

EPS=1.D−5

DEREPS=1.D−5

DEREPS2=1.D−1

PASOEPS=1.D−4

AMA=1.00727646688D0

AMB=1.00727646688D0

AMA=AMA∗1822.888427181D0

AMB=AMB∗1822.888427181D0

C 1AMU=1.6605402D−27KG

C AMA=AMA∗1.6605402D−27

C AMB=AMB∗1.6605402D−27 !CHANGE AMU TO KG

UAB=(AMA∗AMB)/(AMA+AMB)

KEY=1

KION=0

RR(2)=300.D0

RR(3)=300.D0

YMIN=1.D11

RR(1)=XMIN

CALL POTH3M(RR,E,GRAD,KEY,KION,VH3)

Y=E∗1 .D−3

DO 20 J=1 ,999999

RR(1)=RR(1)+EPS

CALL POTH3M(RR,E,GRAD,KEY,KION,VH3)
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Y2=E∗1 .D−3+JROT∗(JROT+1)/(2.D0∗UAB∗RR(1)∗RR(1 ) )

IF (Y2 .LT.YMIN) THEN

YMIN=Y2

XMIN=RR(1)

ENDIF

RR(1)=RR(1)−2.D0∗EPS

CALL POTH3M(RR,E,GRAD,KEY,KION,VH3)

Y3=E∗1 .D−3+JROT∗(JROT+1)/(2.D0∗UAB∗RR(1)∗RR(1 ) )

IF (Y3 .LT.YMIN) THEN

YMIN=Y3

XMIN=RR(1)

ENDIF

RR(1)=RR(1)+EPS

DER1=(Y2−Y3) / ( 2 .D0∗EPS)

DERDER=(Y2−Y)/EPS

DERIZQ=(Y−Y3)/EPS

DER2=(Y2+Y3−2.D0∗Y)/(EPS∗EPS)

PASO0=−Y/DER1

PASO1=−DER1/DER2

IF (DABS(DER1) .GT.DEREPS2) THEN

PASO=PASO0

ELSE

PASO=PASO1

ENDIF

RR(1)=RR(1)+PASO

CALL POTH3M(RR,E,GRAD,KEY,KION,VH3)

Y=E∗1 .D−3+JROT∗(JROT+1)/(2.D0∗UAB∗RR(1)∗RR(1 ) )

IF (Y.LT.YMIN) THEN

YMIN=Y

XMIN=RR(1)

ELSEIF(DABS(PASO) .GT.PASOEPS) THEN

DO 100 K=1,2

RR(1)=RR(1)−PASO

PASO=PASO∗0 .1D0

RR(1)=RR(1)+PASO

CALL POTH3M(RR,E,GRAD,KEY,KION,VH3)

Y=E∗1 .D−3+JROT∗(JROT+1)/(2.D0∗UAB∗RR(1)∗RR(1 ) )

IF (Y.LT.YMIN) THEN

YMIN=Y

XMIN=RR(1)
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ENDIF

100 CONTINUE

ENDIF

RR(1)=XMIN

Y=YMIN

DIF=0.D0

DERI=0.D0

DIF=DIF+DABS(PP0−RR(1 ) )

PP0=RR(1)

DER1=DABS(DER1)

CWANG IF (DIF .LT.PASOEPS.AND.DER1.LT.DEREPS) THEN

IF (DIF .LT.PASOEPS) THEN

YMINN=YMIN

XMAXIN=XMIN

RETURN

ENDIF

20 CONTINUE

PRINT∗ , ’ WARNING: NUMBER OF ITERATIONS EXCEDED’

RETURN

END

C

C INPUT FOR H2

C

C 999 ,32 : NMAX, NROTMAX

C 0.1 d0 , 1 0 0 . d0 , 1 . 4 d0 : XMAXIN,XMIN,XMAX

C 0

C 0 2170.466

C

C OUTPUT FOR H2 USING SM−PES

C

C V J EV, J (CM−1) TURNIN(AU) TURNOU(AU) T (AU) T(FS)

C 0 0 2170.466 1.19727041 1.67073370 161.5542 3 .9078

C
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