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Abstract 

Navigation is the science and art that answers the questions of knowing where you are at the 

current moment and where you will be in the next moment. Modern navigation systems are based 

mainly on satellite and inertial sensors. Inertial sensor systems are becoming very popular in 

navigation systems because they are self contained sensors. The goal of this research is to develop 

novel approaches for improving the performance of inertial sensor systems and their integration 

algorithms with external sensors such as global positioning system (GPS) and magnetometers. The 

standalone inertial navigation system (INS) is dependent on the inertial measurement unit (IMU). 

An IMU is traditionally composed of three orthogonal gyroscopes and three orthogonal 

accelerometers. 

In the inertial sensors side, we focus on the use of distributed accelerometers for inferring the 

angular motion from the angular information contained in their measurements. There exists a 

variety of reasons for conducting this research. In short, high quality gyros have high cost, high 

power consumption, large weight and large volume. On the other hand, accelerometers are less 

costly, easier to manufacture, have less power consumption and less weight than gyros. We 

developed different fusion approaches for benefiting from the angular information vector (AIV) 

resulting from the distributed accelerometers to form a gyro-free IMU (GF-IMU) or to aid the GF-

IMU by conventional gyros. By improving the performance we mean reducing noise and bias level 

in the estimated inertial quantity. 

In the integrated navigation side, we present different approaches to implement the GPS/INS 

integration filters and the attitude and heading reference system (AHRS) algorithms. We use 

direction cosine matrix (DCM) based algorithms which implies estimating the elements of the 

DCM directly within the filter. The basis for this method is the ground alignment method for 

attitude and heading determination. The attitude update of the DCM is performed using angle 

rotation vector. The filter is able to detect the gyro bias vector and follow its variation and hence it 

fits low-cost sensors as well as high grade sensor. We validated the efficiency of the algorithms 

using proper simulations and real-time implementations. 
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Kurzfassung 

Navigation ist eine Wissenschaft und Kunst, die auf die Fragen, wo Sie zum gegenwärtigen 

Zeitpunkt sind und wo Sie im nächsten Moment sein werden, antwortet. Moderne 

Navigationssysteme basieren hauptsächlich auf Satellitensystemen und Inertialsensoren. 

Inertialsensoren sind in Navigationssystemen beliebt, da sie in sich geschlossene Sensoren sind. 

Das Ziel dieser Arbeit ist die Entwicklung neuartiger Konzepte für die Verbesserung der Leistung 

der Inertialsensoren und zur Sensordatenfusion mit externen Sensoren wie zum Beispiel das 

Globale Positionsbestimmungssystem (GPS) und Magnetometer. Ein Inertialnavigationssystem 

(INS) beinhaltet ein Inertiales Meßsystem (IMU). Ein IMU besteht traditionell aus drei 

orthogonalen Gyroskopen und drei orthogonalen Beschleunigungssensoren.  

Bei den Inertialsensoren konzentrieren wir uns auf die Verwendung von verteilten 

Beschleunigungssensoren zum Ableiten der Rotationsbewegung aus der Winkelinformationen, die 

in den Messungen enthalten ist. Es gibt eine Reihe von Gründen für die Durchführung dieser 

Forschung. Kurz gesagt, qualitativ hochwertige Gyroskope sind teuer und haben einen hohen 

Stromverbrauch sowie großes Gewicht und Volumen. Auf der anderen Seite, sind 

Beschleunigungssensoren weniger kostspielig, leichter herzustellen, und haben einen geringeren 

Stromverbrauch sowie ein geringeres Gewicht als Gyroskope. Wir entwickelten verschiedene 

Fusionsansätze um vom Winkelinformation Vektor (AIV) zu profitieren. Diese Information wird 

von den verteilten Beschleunigungssensoren geliefert und zu einer Gyroskop-freien IMU (GF-

IMU) geführt, die gegebenenfalls mit konventionellen Gyroskopen gestützt werden kann.  

Bei der integrierten Navigation präsentieren wir verschiedene Ansätze, um die GPS / INS-

Integration-Filter und die “Attitude and Heading Reference System (AHRS)” Algorithmen zu 

implementieren. Wir verwenden die Richtungskosinusmatrix (DCM) in den Algorithmen. Die 

Elemente der DCM werden innerhalb des Filters bestimmt. Die Aktualisierung der DCM erfolgt 

mittels Winkel-Rotationsvektor. Das Filter ist in der Lage, den Gyroskope-offset zu erkennen und 

seine Abweichung zu verfolgen und somit passt es zu kostengünstigen als auch zu hochwertigen 

Sensoren. Die Leistungsfähigkeit der Algorithmen wurde unter Verwendung geeigneter 

Simulationen und Echtzeit- Implementierungen demonstriert. 
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, ,b b b
x y zf f f  Measured acceleration components expressed in the body frame 

, ,x y z    Angular change components 

nr  Position expressed in the local navigation frame (NED). 

n  Velocity expressed in the NED frame 

n
ie  Earth’s turn rate expressed in the body frame 

n
en  Turn rate of the local navigation frame (transport rate) 

n
nb  Turn rate of the body frame with respect to the local navigation frame. 
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Chapter 1 

Introduction 

1.1 Subject of Research  

The advances in micro electro mechanical systems (MEMS) technologies reduced the size and the 

weight of inertial sensors and introduced many novel applications. Inertial sensors are classified into 

accelerometers and gyroscopes. They have introduced a wide range of navigation, aerospace, 

industrial, medical, communications, consumer and automotive applications with improved power 

consumption efficiency and robustness. Inertial navigation is a self-contained navigation technique in 

which measurements provided by the inertial sensors are processed to track the position and 

orientation of an object relative to an initial position, orientation and velocity. This dissertation 

consists of two main parts: the first part is concerned with improving the inertial sensors performance 

and the second part is concerned with developing new algorithms for the integration of inertial sensors 

with external sensors. Since we have different contributions, the corresponding literature survey is 

given in the beginning of the corresponding chapter. 

1.1.1 Inertial Sensors Part  

In the first part of this dissertation, we focus on approaches of using distributed accelerometers to infer 

the angular motion and to improve the performance of a standalone inertial navigation system. A 

conventional inertial measurement unit (IMU) consists of three gyros for measuring the rotational 

motion and three accelerometers for measuring linear acceleration. In contrast to a conventional IMU, 

a gyro-free IMU (GF-IMU) uses a configuration of accelerometers only, to measure acceleration and 

rotational motion of a rigid body in 3D space. In principle, it benefits from an effect known as lever-

arm effect. To have this effect the accelerometers must be distributed in distance over the body. In 

order to distinguish it from a conventional gyro IMU, researchers use other names interchangeably to 

describe its functionality. The most common used names are a GF-IMU [1-3], nongyroscopic inertial 

measurement unit (NGIMU) [4, 5], accelerometer based IMU and all-accelerometer IMU [6-8]. There 

exists a variety of reasons for using distributed accelerometers to estimate the angular velocity vector. 

Most of the GF-IMU publications list some of the justifications [1, 2, 4-6, 8-14]. In short, the 

gyroscope has typically the disadvantage of complicate manufacture technique, high cost, high power 

consumption, large weight, large volume, and limited dynamic range [11]. In addition, low-cost 
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MEMS gyroscopes have more inherent physical complexities than accelerometers [2]. On the other 

hand, accelerometers are smaller, less costly, and less power consuming than comparable gyros.  

1.1.2 Integrated Navigation Systems Part 

In the second part of this dissertation, we focus on new approaches for the integration of inertial 

sensors with external sensors such as global positioning system (GPS), magnetometers and 

barometers. The integration of the GPS with a strapdown inertial navigation system has been 

investigated for several years in different applications. The GPS is a global navigation satellite system 

that has been widely used in navigation applications in land, air and sea. The main advantage of using 

the GPS is obtaining absolute positioning information. The GPS position measurement accuracy is 

limited due to a combination of low signal strength, the limited length of the pseudo-random code, 

errors in the tracking loops, atmospheric delays and other errors. The inertial navigation system (INS) 

consists of an IMU configuration and a navigation processor that transforms the accelerometers and 

gyros readings into position, velocity, and attitude. The INS gives a navigation solution at higher rate 

as compared to the GPS but it suffers from the sensors accumulated errors caused mainly by sensors 

biases and noise. The INS error grows unbounded with time because of the accumulation of errors in 

the inertial sensors measurements. On the other hand, the GPS can provide low frequency navigation 

information with bounded error over time. Hence, it is commonly used to aid the INS. Due to the 

complementary nature of the inertial sensors measurements and the GPS measurements, intensive 

research efforts have been conducted to improve the integrated navigation performance. The 

integration of INS and GPS gives a position and attitude solution at higher rate with a bounded error 

due to the correction of INS error. The three categories of architectures used for GPS/INS integrations 

are loosely-coupled, tightly-coupled, and deeply-coupled. In this dissertation, we derive a total state 

loosely coupled GPS/INS integration algorithm based on the direction cosine matrix (DCM) as a state 

space vector to be estimated. Moreover, we develop a DCM based algorithm to estimate the attitude 

for attitude and heading reference system (AHRS) devices. Though the use of the DCM for attitude 

estimation is a subject of research, the advantages of using it for GPS/INS integration specifically have 

not been investigated. 

1.2 Main Contributions of this Dissertation 

The main contributions of this dissertation are: 
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 The analysis and development of a GF-IMU using a configuration of twelve fixed 

accelerometers and adopting a calibration procedure for the GF-IMU. 

 Deriving two Kalman filters for angular motion estimation (AME) using the angular 

information vector (AIV). The first filter uses a direct state model space based on Euler 

integration. The second filter model is based on dynamic models and it is capable of 

estimating the bias vector in the AIV due to accelerometers’ bias vector. 

 Using distributed accelerometers to aid conventional gyros to avoid the drawbacks of both 

types of sensors and to get the best of both. 

 The development of a GF-IMU using fixed and rotating accelerometers configurations and 

applying this principle to construct a north finding system. 

 Developing and analyzing a novel DCM based GPS/INS integration algorithm and a novel 

DCM based attitude estimation algorithm. 

The developed algorithms are verified by simulation results and a set of experimental implementations 

using low-cost IMUs, GPS and magnetometer triads. 

1.3 The Structure of this Dissertation 

The dissertation is structured as follows. In  Chapter 2 we describe the inertial sensors and list the 

common models used to describe their errors. In  Chapter 3 we describe the GF-IMU configuration of 

fixed accelerometers and present a calibration procedure for that GF-IMU. In that chapter we also 

derive a direct three state model for estimating the angular motion based on Euler integration. In 

 Chapter 4 we describe a configuration composed of fixed and rotating accelerometers and we present a 

fusion approach for fusing the different types of angular information. In  Chapter 5 we develop another 

model for estimating the angular motion based on the dynamic models. In that chapter we also derive 

the nonlinear constraints on the angular motion and show how to use those constraints in improving 

the estimation performance in constrained Kalman filtering. In  Chapter 6 we derive a DCM based 

attitude estimation algorithm. In  Chapter 7 we derive a DCM based GPS/INS integration algorithm. In 

 Chapter 8 we give a summary for the whole dissertation and list concluding remarks about the results 

achieved. Moreover, we present ideas for future work. 
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Chapter 2 

Inertial Navigation Sensors and Error Modeling  

In this chapter, we introduce the inertial navigation sensors of accelerometers and gyroscopes. We also 

present the different categories of IMU grades and describe the different common types of inertial 

sensors. Moreover, we describe the reference frames used in inertial navigation. The quality of the 

used inertial sensors determines the accuracy of the computed inertial position and attitude. 

2.1 Specifications and Grades of the IMUs 

2.1.1 IMU Specifications 

The important specifications parameters of the IMUs are bias error, scale-factor error, noise, and bias 

stability. The bias error either in gyroscopes or accelerometers is any nonzero finite measured output 

under the absence of rotation or acceleration. It consists of two parts: short-term deterministic offset 

and long-term random drift which is the bias stability. The noise level determines the minimum sensor 

output that is distinguishable from the background noise of the sensor or noise floor. It is dependent on 

the sampling frequency (bandwidth) and its density is specified in (inertial unit Hz ) . Allan variance 

is a tool used to measure frequency stability of clocks and to identify the stochastic errors existing in 

inertial sensors. For short averaging times, the Allan variance is dominated by the noise in the sensor. 

This gyro noise is referred to as angle random walk (ARW) and the accelerometer noise is referred to 

as velocity random walk (VRW). Bias stability or instability refers to changes in the bias measurement 

over long time. To find the bias stability, we need to know how the bias changes over time. Bias 

instability is found from the Allan variance plot of a long sequence of stationary sensor data. As the 

averaging time increases, the noise output decreases and slopes downward until it reaches a minimum 

point and begins to increase again and slope upward. Bias stability is defined as the minimum point on 

the Allan variance curve. The datasheets of IMU products have many other parameters such as range, 

bandwidth and linearity. Scale factor or sensitivity parameter is the ratio between the measured output 

and the change in sensed input and its error is the ratio of the output error over the input and is 

typically expressed as a percentage or parts per million (PPM)[15]. 
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2.1.2 IMU Grades  

IMUs are classified into different categories mainly based on specifications parameters and not on 

technology. A common mistake made by many researchers is the use of the term “MEMS grade” to 

describe MEMS based IMUs that mainly have poor performance parameters like consumer and 

automotive grades. MEMS should not be classified as a category because it is a technology and some 

MEMS based IMUs are already categorized under tactical grade IMUs, as HG1900 from Honeywell. 

Though it is common to find different categories of IMUs in inertial and integrated navigation 

literature, it is difficult to find authenticated resources that classify such categories according to 

performance parameters. We list in Table  2.1 all the available categories with performance parameters 

classified into five main IMU grades based on [16-18]. Reference [16] is based on a tutorial lecture 

[19] and a project report [20]. An interesting fact to mention here is that, many of the datasheets of 

IMU products focus on the gyro performance and not on accelerometer performance to classify the 

IMU. For example, the velocity random walk value is not given in the brochure of the HG1700 [21] 

IMU. 

Table  2.1 IMU grades 

S. Performance 

Parameter 

Consumer Automotive Tactical Navigation 

I 

Navigation 

II 

G
yros 

Bias Stability 

( h ) 

>200 10-200 1-10 0.1-1.0 <0.01 

Scale Factor 

(PPM) 

- >500 200-500 100-200 5-50 

Noise Floor 

ARW(  h ) 

( h Hz ) 

 

3 

180 

 

3 

180 

 

0.2-0.5 

12-30 

 

0.05-0.2 

3-12 

 

0.002-0.005 

0.12-0.3 

A
ccelerom

eters 

Bias stability 

(µg) 

2400 1200 200-500 50-100 5-10 

Scale Factor 

(PPM) 

- >1000 400-1000 100-200 10-20 

Noise Floor 

VRW(μg Hz ) 

1000 1000 200-400 50 5-10 
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The “automotive grade” or “consumer grade” categories are terms that describe the quality of inertial 

sensors because their primary application is in the automotive industry (active suspensions, skid 

control, etc.) or consumer hardware (camera stabilization, computer mice, etc.). The consumer grade 

parameters were first introduced by D. Gebre-Egziabher [17] as a fictitious model because it is simply 

a sensor package that it is two times worse than the automotive grade inertial sensors. This 

classification has been adopted by many other researchers. 

The units of the ARW are (  h ), ( h Hz ), ( sec Hz ) and ( sec ) and the conversion 

factor between them is 1 (  h ) = 60 ( h Hz ). The units of gyro bias stability are ( h ), (/sec), 

(rad/h) and (rad/sec) and the conversion factor between them is 1 ( h ) = 3600 (/sec). It should be 

noted that it is not necessary for all parameters of an IMU to lay under one category. For example, the 

KVH-5000 rate gyro triad has all parameters lie under tactical except the ARW lay under navigation I 

grade, but in the manufacturer website it is classified as a tactical grade. In both accelerometer and 

gyro, the scale-factor error will usually not be as large a contributor to total error as bias error is [15]. 

2.2 Reference Frames 

There are different Cartesian coordinate reference frames that can be used to describe the 

measurements of inertial sensors and their mechanization. Reference frames are important to be 

defined to facilitate the understanding of the developed algorithms within this dissertation.  

 

Fig.  2.1 Reference Frames 
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2.2.1 Earth Centered Inertial Frame (ECI) 

It has its origin at the center of the earth and axes which are fixed and non-rotating with respect to 

fixed stars. Its z axis passes through the earth’s axis of rotation and the x axis passes through the 

equator and is aligned to a fixed point in space, the first point of Aries. The y axis is orthogonal to the 

other two axes. This frame is important because inertial sensors measure motion of the body frame 

with respect to the inertial frame. However, it is inconvenient for terrestrial navigation because it does 

not account for the shape or rotation of the earth. 

2.2.2 Earth Centered Earth Fixed Frame (ECEF) 

The ECEF is similar to the ECI frame but it rotates at the same speed as the earth so that it remains 

fixed with respect to a point on the earth’s surface, making it more useful for terrestrial navigation. 

The frame is centered on the earth with the z axis through the axis of rotation, the x axis aligned with 

the Greenwich Meridian, and the y axis orthogonal to complete the set. Translating coordinates from 

the ECI frame to the ECEF frame is relatively simple, requiring only one rotation about the z axis as a 

function of time to account for earth rotation. 

2.2.3 Navigation Frame 

It is a local geographic frame which has its origin at the location of the navigation system and axes 

aligned with the directions of local east, north and vertical. This frame can have different variations 

such as north east down (NED) or east north up (ENU). The turn rate of the navigation frame with 

respect to ECEF frame is often referred as transport rate. 

2.2.4 Body Frame 

The body frame has a set of orthogonal axes which is aligned with roll, pitch and yaw axes of the 

vehicle. The body frame is important to be defined because inertial sensors have measurements 

expressed in the body frame. The body frame is referenced with a lower case letter “b”. 

2.3 Inertial Sensors 

We present briefly here a survey of the diverse applications of inertial sensors and highlight those with 

potential to benefit from our novel methods. Nowadays, there are more mobile devices such as smart 

phones and tablet computers which are equipped with inertial sensors and GPS receivers. 

Traditionally, the accelerometer is utilized for user interface control through switching from landscape 

or portrait views of the device's screen, based on the way the device is being held. Those devices are 
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good candidate to benefit from the novel approaches we developed in this dissertation because they 

contain the hardware and the software required for algorithms implementation. The hardware includes 

accelerometers, gyros, GPS receiver and the computer processor and the software includes the 

programming environment. Moreover, the size and the rectangular cuboid shape of those mobile 

devices allow them to accommodate for multiple distributed accelerometers. Hence, our developed 

algorithms can enhance the performance and introduce new applications for mobile devices. 

Inertial sensors are deployed for motion detection in remote controllers of entertainment devices. For 

motion capturing, there exist different approaches such as inertial suits or optical sensing of predefined 

markers. Movement and pose of human body is captured and analyzed by researchers in sport, medical 

and character animation applications. Motion capturing is investigated in details in [22]. An old safety 

application of the MEMS accelerometers in cars is to sense rapid deceleration for airbag deployment. 

A recent application for MEMS inertial sensors in the stability and control is the Anti-Lock braking 

system (ABS). For a detailed automotive applications of inertial sensors we refer the reader to [23, 

24]. The number of inertial sensors used can reach up to 15 accelerometers and gyros. Those 

redundant sensors can be used to produce angular information since they are distributed in distance 

[14]. 

2.3.1 Accelerometers  

The accelerometer measures the proper acceleration which includes the gravity. Since the local 

gravitational constant, g, is latitude dependant, knowledge of the exact value of g is required to use the 

accelerometer in navigation. An accelerometer can be broadly classified into mechanical, solid state 

device and MEMS accelerometers. For a complete survey of accelerometers, we refer the reader to 

[25]. Micro-machined silicon accelerometers use the same principles as mechanical and solid state 

sensors. There are two main classes of MEMS accelerometer. The first class consists of mechanical 

accelerometers that measure the displacement of a supported mass but with MEMS manufacturing 

techniques. The second class consists of devices which measure the change in frequency of a vibrating 

element caused by a change of tension, as in surface acoustic wave (SAW) accelerometers. They are 

small, light and have low power consumption and start-up times. Their main disadvantage is that they 

are not currently as accurate as accelerometers manufactured using traditional techniques, although the 

performance of MEMS devices is improving rapidly.  
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2.3.2 Gyroscopes  

Gyroscopes have different operating principles. They are used for measuring or maintaining 

orientation based on the principles of angular momentum. The mechanical conventional gyroscope 

measures the orientation and not the turn-rate as do other gyroscopes. Having moving parts causes 

friction and imbalance. Bearing system is used to reduce friction in the moving parts. Drift over time 

might result because of friction in the support bearings, external influences, and small imbalances in 

the spinning wheel. Optical gyroscopes are divided into two main types: the fiber optic gyroscope 

(FOG) and ring laser gyroscope (RLG). Mechanical and optical gyroscopes are characterized by high-

precision tolerances and complicated assembly techniques which increase the manufacturing costs. On 

the contrary, MEMS sensors built using silicon micro-machining techniques have simpler structure 

and are relatively cheaper to be manufactured. MEMS gyroscopes make use of the Coriolis force to 

extract the angular rate. The Coriolis force is a fictitious force exerted on a body when it moves in a 

rotating reference frame. Vibrating elements are used to measure the Coriolis acceleration. The main 

categories of MEMS gyroscopes are vibrating wheel, tuning fork, wine glass resonator and Foucault 

pendulum gyroscopes. For an overview of the technologies of MEMS inertial sensors, we refer the 

reader to [26]. 

2.4 Inertial Sensor Error Modeling  

In this dissertation, a general sensor output model is used to describe the output of inertial sensors. The 

main errors are bias, noise, scale factor and misalignment. In a vector form the inertial sensor triad 

output z  is related to the reference input s  as 

ms s sz M s b v   . ( 2.1)

The matrix msM  is assumed to be a constant matrix and it contains misalignment and scale factor 

elements. The bias vector sb  is modeled as a random process and it includes the deterministic bias and 

the bias drift. The noise vector is usually assumed to be Gaussian white noise. For a detailed survey of  

the different models that can be used to model the inertial sensors errors, we refer the reader to [27]. 

Next, we describe different random models that are often used to model the bias in inertial sensors. 

2.4.1 Gauss Markov Process 

This process is a random process with correlated time steps. The continuous-time form of the process 
is given as 
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1
( ) ( ) ( )b t b t w t


    ( 2.2)

where ( )w t  is a noise driving the process and  the correlation time. The discrete-time form of this 

process is 

2

1 1
t t

k k b kb e b e u 
 

 

    . ( 2.3)

Considering a first order linearization for the exponential term, ( 2.3) can be approximated as  

1

2
1k k b k

t t
b b u

 

     
 

 ( 2.4)

where ku is a sample from a Gaussian random number generator with a unit variance. 

2.4.2 Random Walk Model 

A random walk (RW) is a random process with uncorrelated time steps. It can be considered as a 

special case of a Gauss-Markov process 

( ) ( )b t w t . ( 2.5)

The discrete-time form is given as 

1k k kb b w   . ( 2.6)

Considering a small initial value compared with the final value and large number of data samples, the 

random process can be approximated as 

1
1

i k

k i
i

b w





  . ( 2.7)

The mean of the RW process is computed as 

1
1 1

{ } { } { } 0
i k i k

k i i
i i

E b E w E w
 


 

    . ( 2.8)

The variance is computed as 

 
2

2

1
1

{ } { }
i k

k i
i

E b E w





 
  

 
 . ( 2.9)

Since we have time uncorrelated noise, the variance is simplified to 

2

2 2

1 1

{ } { }
i k i k

i i
i i

E w E w k
 

 

   
    

   
  . ( 2.10)

Therefore, the RW process is not stationary since its variance is changing linearly with the number of 

samples. 
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2.4.3 Random Constant 

The random constant process is a random process where bias remains constant so it is not time 

correlated model [28]. This model has the following continuous-time form 

( ) 0b t  . ( 2.11)

The discrete-time model is given as 

1k kb b  . ( 2.12)

2.5 Summary 

In this chapter we briefly introduced the inertial sensor grades, their error models and the navigation 

frames used for expressing the inertial measurements. This background is essential for understanding 

the following chapters. 
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Chapter 3 

Angular Motion Estimation Using Distributed Configurations of 

Fixed Accelerometers 

In this chapter, we present an extended Kalman filter (EKF) based solution for the estimation of the 

angular motion using a GF-IMU built of twelve separate mono-axial accelerometers. Using such a GF-

IMU produces an angular information vector, which was abbreviated as the AIV, that consists of 3D 

angular acceleration terms and six quadratic terms of angular velocities. We consider multiple 

distributed orthogonal triads of accelerometers that consist of three non-planar distributed triads 

equally spaced from a central triad as a specific case to solve.  

3.1 Literature Survey of Inferring Angular Motion from Accelerometers 

Using certain configurations of twelve separate mono-axial accelerometers produces the AIV that 

consists of a 3D angular acceleration vector and six quadratic terms of angular velocities, as it will be 

shown later. Unfortunately, the angular velocity vector is not expressed explicitly in the angular 

information vector. The motivation for this research is that less attention has been given to the sensor 

fusion of the angular information vector. The approach of using a double integration of the angular 

acceleration as described in [29] to achieve the orientation has been proven to be theoretically feasible 

but it has a faster error growth rate compared with a conventional INS. The advantage of only using 

the angular acceleration vector has a little value compared with the need for a double integrator. 

Another problem with such an approach is the need to initialize the angular velocity to be able to 

integrate the angular acceleration. Continuous research efforts have been conducted to benefit from the 

other components in the angular information vector. Recently, Park [2] aided the angular acceleration 

vector by three cross quadratic terms of angular velocity using an EKF, but his approach is not using 

all possible quadratic angular velocity terms as it is possible to get three more quadratic terms. 

Furthermore, such an approach suffers from an observability problem if one of the angular velocity 

terms is zero. Parsa [6] obtained the nine element angular information vector using the twelve 

accelerometers. Parsa’s solution used the complete angular information vector but his focus was on the 

optimal design of the IMU avoiding the use of tri-axial accelerometers and not on the fusion approach, 

which was in a least square sense. Zappa [30] listed the rules for using twelve separate mono-axial 

accelerometers to obtain the angular information vector without inhibiting singularity of the 
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coefficient matrix. Ying Kun [14] used the same configuration of twelve accelerometers which we use 

in this research to have GF-INS from accelerometers that already exist in automobile’s onboard 

control and safety systems. Again, his focus was not on sensor fusion approach; rather, he used a 

simple numerical approach, which might result in an imaginary solution. In our new EKF approach we 

use all of the six quadratic terms of angular velocity as suggested by Zappa [30] for the deterministic 

case but this time for the stochastic case which is the realistic one and we benefit from the angular 

acceleration vector at the same time. In other words, we will aid the integrated angular acceleration 

vector by six quadratic terms of angular velocities using an EKF.  

The choice of the EKF for the fusion of the AIV is a trivial choice because we get measurable terms 

that have nonlinear function of the angular velocity components. The recently developed 

modifications of the Kalman filter for nonlinear systems, like the unscented Kalman filter (UKF), are 

also applicable. 

3.2 Distributed Accelerometer Triad Definition 

Following [31] for the derivation of the lever arm effect, we assume that we have a rigid body with its 

body center at point [0 0 0]b To   as shown in Fig.  3.1. 

 

 

 

 

 

Fig.  3.1 A distributed orthogonal triad of accelerometers 

The measurable acceleration of a distributed orthogonal triad of accelerometers fixed at a rigid point 

that is aligned with the body frame can be expressed as 

b b b b b b b b b
p o ib ib ibo p

a a g g p p           ( 3.1)

where 

b
oa : The central acceleration vector, 

bp : Displacement vector from bo  to bp equals b bp o , 

y
b

x
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z
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y
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b b

o p
g g : Local gravity difference vector, 

b
ib : Angular velocity vector, 

b
ib : Angular acceleration vector, 

 : Cross product operation defined as skew symmetric form 

0

, 0

0

x z y
b b

y z xib ib

z y x

  
    

  

  
       
      

. ( 3.2) 

In, ( 3.1) and ( 3.2) the superscript b denotes that the quantity is expressed in the body frame. The 

gravitational difference vector can be ignored for relatively small distribution distance and hence ( 3.1) 

simplifies to 

b b b b b b b
p o ib ib iba a p p        . ( 3.3)

Since the angular velocity vector is not expressed explicitly in the above equation and in reality the 

equation is stochastic, extra efforts must be done to extract the angular velocity. One approach is to 

integrate the angular acceleration to get the angular velocity and to perform another integration to get 

the attitude. An example of such an approach, where a Kalman filter is used with external GPS 

observations, is given in [32]. The drawback of such an approach is that attitude and position errors 

grow quickly because of error growth with integration. In the following equations, we omit the body 

superscript as all equations in this chapter are given in the body frame. We rewrite equation ( 3.3) in 

matrix form as 

2 2

2 2

2 2

px ox y z x y z x z y x

py oy x y z z x y z x y

pz oz x z y y z x x y z

a a p

a a p

a a p

       
       
       

         
                 
               

 
 
 

. ( 3.4)

3.3 The Configuration of Multiple Distributed Accelerometer Triads 

We focus on configurations consisting of twelve mono-axial accelerometers that follow the rules listed 

by Zappa [30]. Without loss of generality, we consider the set of four tri-axial accelerometers shown 

in Fig.  3.2 as an example configuration that follows Zappa’s rules for extracting the AIV without 

inhibiting singularity of the coefficient matrix. 
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Fig.  3.2 A configuration of multiple distributed tri-axial accelerometers 

Mainly, we consider this configuration because a minimum of twelve accelerometers are needed to 

determine the magnitude of the angular velocity and its direction (algebraic sign can not be determined 

uniquely as explained in [30]). The most amount of angular motion information, which is in the nine 

angular terms that we show next in ( 3.8) - ( 3.10) can be extracted from this configuration. Moreover, 

this configuration has according to [12] a low geometric dilution of precision (GDOP) factor for both 

angular and translational acceleration without the central accelerometer triad. In [8] it is stated that a 

configuration of twelve accelerometers is the only known minimum number to both navigate and 

determine gravity in a gravitational field with uniform gradient. Finally yet importantly, it is the most 

practical configuration because IMUs exist in triads of gyros and accelerometers. This specific 

configuration was analyzed by Algrain [33] where he derived the following relations 
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. ( 3.7) 

The notation triad
axisa  refers to the distributed accelerometer measurement with superscript referring to 

the triad location and subscript to the axis index. Having a unique distribution distance d for every 

distribute triad to  
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 ( 3.8) 

 
 
 

2

2

2

B A C A
x y y y x x

B A D A
x z z z x x

C A D A
y z z z y y

a a a a d

a a a a d

a a a a d

 

 

 

   

   

   
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. ( 3.10) 

All of the previous equations are linear combinations of accelerometers measurements. 

3.4 GF-IMU Error Calibration 

A model that describes the sensor’s output related to the reference value to be measured can 

approximate the behavior of most of the inertial sensors. A proper model can be established based on 

the data sheets provided with sensor and using lab’s calibration equipments. The calibration issue of a 

GF-IMU has been addressed in literature before. Park [2] gives a detailed description of calibrating 

uni-axial accelerometers in a cube configuration GF-IMU. However, in our configuration we 

recommend calibrating each tri-axial independently for the following reasons: 

1. Uni-axial calibration does not take into account the cross-axis sensitivities and hence another 

calibration for misalignment must be performed. 
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2. In our derivation, we assumed that all accelerometers are aligned with one frame called the body 

frame. Therefore, the most convenient way is to find the misalignment of each of the four triads from 

that common body frame. 

The calibration of every accelerometer triad will be done faster because we benefit from the symmetry 

in the configuration by collecting measurements for the four-accelerometer triads in every flipping 

position. Accordingly, we suggest calibrating every tri-axial of accelerometers as a whole rather than 

calibrating every accelerometer independently.  

There are two types of errors result in the measurable AIV in the GF-IMU. The first type of error is 

due to the tri-axial accelerometers’ errors and the second type of error is due to errors in distributed 

triads locations in the geometric configuration. The error model of a tri-axial accelerometer is 

composed of different sources of error that can be generally classified into four parts: misalignment, 

scale factor, bias, and noise. We can calibrate for three sorts of errors: scale factor parameters, 

misalignment of accelerometers and three deterministic bias parameters in a single calibration 

procedure of each triad. We will find the 9-elements sensitivity matrix whose diagonal elements 

contain the scale factors and off diagonal elements contain misalignment parameters. Likewise, we 

will find the three bias elements. In a matrix form the accelerometer triad output is related to the 

reference specific force as 

x xx xy xz x ax ax

y yx yy yz y ay ay

z zx zy zz z az az

z m m m a b v

z m m m a b v

z m m m a b v

        
                  
                

. ( 3.11)

There are many methods to solve for m and b elements [34, 35]. Following a similar approach to the 

one given in [35], we rearrange ( 3.11) into the following form  

1

2
1 2 3

3

,  ,  ,  ,  , 

a

xx yx zx
T T

xy yy zy a ax ay az a ax ay az

xz yz zz
a

z O v

m
m m m

m
m m m m m m v v v v b b b b

m
m m m

b





 

 
     
                      
          

 

. ( 3.12)

The observation matrix for every measurement is given by 

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1

x y z

x y z

x y z

a a a

O a a a

a a a

 
   
  

. ( 3.13)
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We stack N observations matrices from N observations to form the total measurement vector and the 

total observation matrix shown next 

1 1 1

   
a

t t t
a

N N N
a

z O v

z O v

z O v

 
     
             
          

   . ( 3.14)

To have an observable system, we need a minimum of four measurements with proper values of the 

specific force values. To extract the m and b elements, we use least square estimation 

1ˆ ( )tT t tT tO O O z  . ( 3.15)

For separation distances calibration, a turntable is used to measure the separation distance from every 

distributed accelerometer triad to the central accelerometer triad. Hence, two options can be done here:  

1. Use the form of equations for the AIV that has different separation distances given in ( 3.5) - ( 3.7) 

with computing the corresponding error covariance to be used later in estimation. 

2. Instead of using different separation distances, we can adjust it manually for every distributed triad 

to be unique for all and validate it experimentally. Having a unique separation distance from every 

distributed tri-axial to the central tri-axial simplifies computations. For this reason, we consider the 

equally spaced triads configuration in the rest of this dissertation. 

3.5 AME Based on Three-State Model EKF 

Based on the previously derived AIV ( 3.8) - ( 3.10), we can formulate the EKF setup. We are interested 

in estimating the angular velocity component along each body axis in 3D. In reality, the continuous-

time angular velocity vector is replaced with the angular change vector as given next in ( 3.16) because 

the computerized implementation is discrete. The angular change is the sampled angular velocity 

multiplied by the sampling time is given as 

 1 2 3

TT

x y zx x x x        . ( 3.16)

3.5.1 Initialization 

The initial state vector can be set as 

0 0 0 0 0
ˆ { }

T

x y zx E x         . ( 3.17)

The initial estimate error covariance is given as 
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0 0 0 0 0ˆ ˆ{( )( ) }TP E x x x x     . ( 3.18)

3.5.2 Prediction 

In discrete-time, the actual output of each accelerometer is the velocity change, hence the output of 

( 3.8) is the angular velocity change vector  . The process model based on Euler integration is 

1 1 1

1 1 1

1 1 1

x x x x

y y y y

z z z z

k k k k

k k k k

k k k k

t w

t w

t w

  

  

  

  

  

  

   

   

   

. ( 3.19)

We define the following vector as the process input 

T

x y zu t t t t           . ( 3.20)

Using ( 3.20), the process given in ( 3.19) has the linear form of 

1 1 1 1 1

1 1 3 3

   k k k k k k

k k x

x F x G u w

F G I
    

 

  

 
. ( 3.21)

We assume the uncertainty in the process is mainly due to the uncertainty in the angular velocity 

change. In this work, we consider the error of each accelerometer as white Gaussian noise for 

simplicity. For an accelerometer error accounting for the a remaining bias, we developed a solution 

utilizing the dynamic models to estimate the bias parameters in the nine angular information terms 

given in [36]. In that solution, the bias parameters and the angular acceleration vector are appended to 

the state vector to form a 15-state model. For that process update, we used the Wiener process or 

simply the nearly constant acceleration model. When using such a model all the bias parameters in the 

AIV become observable under a condition that the angular acceleration has a nonzero magnitude. The 

three-state model has the advantage of simple calculations because only three states need to be 

estimated. Moreover, there is no need to make an assumption about the dynamics of the motion and 

hence such a solution fits most scenarios. Each accelerometer discrete-time measurement is composed 

of true value plus a white noise component given as 

meas true acca a w t   . ( 3.22)

The white noise accw  has the unit of g Hz  , where g is the gravity, or its equivalent derivatives. The 

discrete-time white noise depends on the square root of the sampling time t . The measured 

velocity change of each accelerometer is expressed as 
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meas true accw t      . ( 3.23)

The variance aR  of each accelerometer measurement of velocity change is 

   2 2( )a meas true accR E E w t      . ( 3.24)

All accelerometers are modeled with a common upper bound of the noise variance, as it would be in 

reality. The error corrupting the angular acceleration vector given in ( 3.8) is inherited from the 

accelerometers’ errors, as it is a linear combination of accelerometers. This combination results in a 

correlated process noise and its covariance is computed as 

2
1 2

1 1
1

4 4
1 1

=( ) ( ) 1
4 4
1 1

1
4 4

a
k

R
Q t

d

  
 
 
    
   
  

. ( 3.25)

The predicted or a priori estimation error covariance is updated as 

1 1 1 1
T

k k k k kP F P F Q 
     . ( 3.26)

The predicted or a priori state estimate is updated as 

1 1 1 1ˆ ˆk k k k kx F x G u 
     . ( 3.27)

3.5.3 Measurement Update 

We plug the measured velocity changes of accelerometers in the six quadratic terms in ( 3.9) and ( 3.10) 

and multiply the resulting sum by the sampling time to derive the measurement of the state vector. 

Considering the existence of a white Gaussian noise in each accelerometer measurement, the 

observation inherits also a white Gaussian noise v  vector 

 2 2 2
1 2 1 3 2 3 1 2 3 1 6( , ) ..

T T

k k kk
y h x v x x x x x x x x x v v     . ( 3.28)

The Jacobian of the measurement vector is computed as 
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The measurement is correlated and its covariance is computed as 
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. ( 3.30)

The process noise is correlated with the measurement noise and its cross covariance is computed as 

  2
1 2

1 1 1 1
0 0

4 4 2 2
1 1 1 1
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4 4 2 2

1 1 1 1
0 0
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T a
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      
   
  

. ( 3.31)

The Kalman gain is updated considering a cross covariance to have a better performance as shown in 

the literature covering the Kalman filtering, e.g., [37] as 

1( )( )T T T T
k k k k k k k k k k k kK P H M H P H H M M H R       . ( 3.32)

The corrected or a posteriori estimation error covariance is updated as 

( )T
k k k k k kP P K H P M     . ( 3.33)

The corrected or a posteriori state estimate is updated as  

ˆ ˆ ˆ( ( , 0))k k k k k kx x K y h x     . ( 3.34)
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3.6 Three-State Model Simulation Results  

3.6.1 The Trajectory profile 

In simulations, we consider the trajectory of stabilizing an object subject to parasitic vibrations in one 

dimension [38] combined with a constant angular rotation in the other dimension and no motion in the 

third dimension. The mathematical description of this angular motion is given as  

( ) [ 0 sin(2 )] ,  ( )T
x z k kt ft t t        . ( 3.35) 

The sampling time t  is chosen to be 0.01 s and the frequency of vibration f  is set to 0.1 Hz. The 

magnitudes of angular velocity components are set to 3.29 rad/s
x

   and 0.658 rad/s
z

  . The total 

simulation time is 20 s and the separation distance is set to 0.1 m. We seeded white noise error of 

50  g Hz (VRW) in each accelerometer measurement. The numerical values of simulation 

parameters are tabulated in Table  3.1. 

Table  3.1 Numerical values of the simulation parameters for three-state model 

Parameter 
(Unit) 

x  

(rad/s)  

z  

(rad/s)

f  
(Hz)

t  
(s)  

.accw  
( g Hz )

d  
(m)  

T  
(s)  

Value 3.29 0.658 0.1 0.01 50   0.1 20 

Fig.  3.3 shows a plot of the angular change profile. 
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Fig.  3.3 Angular change profile 
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We plotted the estimation errors for the trajectory as shown in Fig.  3.4. 
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Fig.  3.4 Angular change estimation errors 

3.6.2 Effect of Non-calibrated Bias 

To test the effect of non-calibrated bias, we added a random a constant bias generated from a Gaussian 

distribution with one standard deviation of 50 μg  to each noisy accelerometer measurements. We 

repeated the same setup as before and created a plot of the estimation errors shown in Fig.  3.5. 
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Fig.  3.5 Angular change estimation errors with bias in accelerometers 
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One important note here: at relatively high sampling rate (e.g., 0.01 s or more) the magnitude of the 

error due to white noise is about 10 times the magnitude of error due to remaining bias for a tactical 

grade accelerometer. Consequently, for this sampling rate, the noise error dominates the bias error in 

this accelerometer and for this scenario the EKF model works without big difference from the one 

without bias. Hence, the use of a white noise error model can be justified considering that the Kalman 

filter will tolerate such a small remaining bias error. 

3.6.3 Effect of Improper Initialization 

Here, we investigated the effect of improper initialization on the filter performance. We simulated the 

previously described setup under initialization errors. The initialization error is set to be equal 0.01 rad 

in each of three angular change components. In general, a proper sign initialization is important to 

avoid convergence to the opposite sign. The filter converges to the reference angular change profile 

because of the availability of measurements of quadratic angular change as shown in Fig.  3.6 
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Fig.  3.6 Angular change estimation errors for improper initialization 

3.7 Three-State Model Experimental Results  

We built a GF-IMU using off-the-shelf components of accelerometers and processing board. 
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3.7.1 The Used Hardware 

We use the Beagleboard as the main processing board to collect and to process data from sensors. 

Beagleboard, as defined by its manufacturer, is a low-cost, fan-less single board computer. It is based 

on an OMAP3530 application processor featuring an ARM® Cortex™-A8 running at up to 720MHz 

and delivering over 1,200 Dhrystone MIPS of performance via superscalar operation with highly 

accurate branch prediction and 256KB of L2 cache. The Beagleboard has a high-speed USB 2.0 on-

the-go (OTG) port that can be utilized to provide power to the board or to deliver highly flexible 

expansion. By utilizing standard interfaces, the Beagleboard is highly extensible to add many features 

and interfaces. Among the different available ports, the I2C interface is selected to ease the reading 

process. The board is designed specifically to address the open source community which reduces the 

development costs. Some popular open source Linux distributions supported by Beagleboard are 

Debian, Ubuntu, Angstrom and Mamona. For implementation, we selected the Angstrom Linux which 

was installed on the SD/MMC card which boots from NAND memory. 

 

Fig.  3.7 The Beagleboard with wire connections  

We use four ADXL345 accelerometer triads from Analog Devices [39]. The accelerometers are 

mounted on sliding platforms to allow for easy change of spacing distance. The separation distance is 

set to 66 cm. The sampling time is set to 0.01 s. The specifications of the used accelerometers are 

listed in Table  3.2 and it belongs to the consumer grade accelerometers. 

 



26 

 

Table  3.2 Specifications of the used ADXL345 accelerometers 

Parameter (unit) Value 

Accelerometer noise 2(m s Hz  )  0.002 

Accelerometer bias stability 2(m s )  0.02 

Accelerometer range (g) 2,  4,  8,  16     
Update rate (s)t  0.01 

For comparison, we used the ITG-3200 gyro triad that has noise specifications of 0.03 s Hz  and 

bias specifications of ±40 s  as initial bias and ±40 s  as bias over temperature variation.  

 

Fig.  3.8 The realized GF-IMU structure 

3.7.2 Calibration Results 

Accelerometer triads should be calibrated for scale factor, misalignment and bias parameters according 

to the procedure described in section ( 3.4). From the different sets of experimental data collected for 

different small misalignments we find that, the calibration procedure works very well regardless of the 

unit of the accelerometer output or orientation. However, for getting excellent result, the triad frame 

misalignment from the main body frame should not be large. A good indication or test that the 

calibration is successfully performed is having identical calibrated measurements in all triads in static 

position regardless of the orientation. Before calibrating the accelerometer triads we have different 

orientations as shown in Fig.  3.9 and after calibration parameters are applied all accelerometers have a 

unique orientation as shown in Fig.  3.10. Instead of using 4-positions for calibration, we used 6-
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positions to achieve better calibration results. It is clear from Fig.  3.10 that the calibration is performed 

successfully as we see identical accelerometer outputs after calibration for the six positions 

symbolized P1-P6. 

0 50 100 150 200 250
−1000

0

1000

Time (s)

a x (d
ig

ita
l o

ut
pu

t) Components of accelerometer triads before calibration v.s Time

 

 
 P1  P2  P3  P4  P5  P6

Triad A Triad B Triad C Triad D

0 50 100 150 200 250
−1000

−500

0

500

1000

a y (d
ig

ita
l o

ut
pu

t)

 P1  P2  P3  P4  P5  P6

0 50 100 150 200 250
−1000

−500

0

500

1000

Time (s)

a z (d
ig

ita
l o

ut
pu

t)

 P1  P2  P3  P4  P5  P6

 

Fig.  3.9 Components of 6-positions calibration data  
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Fig.  3.10 Components of 6-positions calibration data (after calibration)  
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3.7.3 Free-Hand Motion Results 

We generated a trajectory profile by holding with hands the structure shown in Fig.  3.8 and moving it 

in arbitrary different directions. In Fig.  3.11 - Fig.  3.13, we plotted the estimated angular velocity and 

the gyro measured components for comparison. The gyro triad bias is calibrated by capturing the bias 

in static moments. 
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Fig.  3.11 X-component of estimated and gyro measured angular velocity (free-hand motion)  
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Fig.  3.12 Y-component of estimated and gyro measured angular velocity (free-hand motion) 
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Fig.  3.13 Z-component of estimated and gyro measured angular velocity (free-hand motion) 
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From the plots we see that proper fusion of the AIV in the GF-IMU gives a solution that is matching 

the gyro triad measurement for dynamic motion. 

3.7.4 Turntable Angular Motion Profile Results 

The turntable gives us the possibility to assign an angular motion profile with different settings like 

constant velocity or constant angular acceleration. We apply a profile of different angular speed as 

shown in Fig.  3.14 in the z-axis because it is a single-axis turntable. We programmed the turntable to 

rotate from 1 rad s  to 5 rad s  with either having 22 rad s in accelerating periods or 22 rad s  in 

decelerating periods. 
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Fig.  3.14 Z-component of estimated and gyro measured angular velocity (turntable profile) 

From Fig.  3.14 we see that the estimated output is able to track the programmed motion profile. It is 

also able to track the wobble introduced by the turntable at higher speeds as the measured gyro output 

has a similar behavior. 
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3.7.5 Effect of Varying the Angular Rate 

In this part we check the effect of varying the angular rate. Through computing the variance of the 

estimated angular speed we try to find a relation between the magnitude of the speed and the expected 

resolution of the estimation. Theoretically, the estimation performance should be improved for 

increasing the magnitude of the angular rate and the tabulated results are in agreement with this. 

Higher speeds are excluded from table because of the wobble effect. 

Table  3.3 shows the tabulated standard deviation errors of the steady estimated values for different 

speeds. Theoretically, the estimation performance should be improved for increasing the magnitude of 

the angular rate and the tabulated results are in agreement with this. Higher speeds are excluded from 

table because of the wobble effect. 

Table  3.3 Effect of varying the angular speed  

Angular rate ( rad s)  Std. dev. of steady estimated solution error 

0 42.8 10  

1 41.5 10  

2 58.05 10  

3 56.18 10  

3.8 Summary 

In this chapter, we presented a novel solution for estimating the angular motion from a multiple 

distributed tri-axial accelerometers measurements in a GF-IMU. The integration approach is 

performed using an EKF. In case of using tactical grade accelerometers or better, the error model is 

dominated by noise error and hence bias estimation is unnecessary and the model can be reduced to 

include only angular motion terms. Experimental results show that proper fusion of the AIV in the GF-

IMU can solve the sign indeterminacy problem for dynamic motion. The more accurate sensors we use 

the higher chances for avoiding sign indeterminacy problems. 
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Chapter 4 

Aiding Fixed Distributed Accelerometers by Rotating 

Accelerometers and Conventional Gyros  

In this chapter, we present a novel configuration of fixed distributed accelerometers combined with 

rotating accelerometers to infer the angular motion. The main advantage of using rotating 

accelerometer over fixed one is having direct measurements of the angular velocity. This configuration 

can be used to find a complete attitude solution. For the static case, the heading is computed from 

angular velocity resulting from the Earth rotation sensed by the rotating accelerometer while tilt angles 

are found from the projected gravity sensed by accelerometer triad. We also summarize the benefits of 

using conventional gyros to aid the GF-IMU. 

4.1 Motivation for Aid  

The external aid to the GF-IMU is necessary in certain scenarios as we explain next. 

4.1.1 Problem of Sign Indeterminacy 

Any fixed distributed accelerometer set gives an angular velocity vector with undetermined sign as 

shown by Costello [40]. This is mainly because the quadratic terms do not give a unique angular 

velocity vector solution. Instead, we get two solutions. For solving this problem, some researchers 

propose the fusion of the angular acceleration vector with quadratic terms of angular velocity to keep 

the solution in the right track of sign [6] but in reality there is no guarantee for such a solution to work 

in all scenarios specially when the angular acceleration components are very small. For the 

determination of algebraic sign in a completely GF-IMU, there exist solutions using accelerometers 

that vibrate in a known matter with respect to the body as proposed initially by Merhav [5] and 

recently by Costello [9] where he gave a solution that does not require integration. The conventional 

low-cost gyros can be used to insure a correct sign convergence in the GF-IMU as shown in [41]. 

Other possible integration approaches include GPS [13, 32] and tri-axial magnetometers [7] to have a 

non-drifting orientation estimate; however, they are non-inertial solutions. For simplicity, we focus on 

practical solutions for the sign-indeterminacy problem rather than having a completely GF-IMU. The 

use of low-cost gyros for aiding the convergence of the angular velocity vector to the correct sign 

value might be a realistic and cost effective solution. Aiding GF-IMU by conventional gyros is simpler 
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than using rotating accelerometers. The integration result will be determined by the quality of the 

accelerometers and gyros used. Theoretically, a mono-axial gyro is sufficient to give the complete 

correct sign solution if all the angular velocities have nonzero values in 3D. 

4.1.2 Increasing the Range of Measurable Angular Rate 

The range of measurable angular rate depends on the range of the used accelerometers and the 

distribution distance. One advantage of the GF-IMU over conventional IMU could be the possibility 

of extending the range of the measurable angular rate. Unlike the conventional gyros, in GF-IMU 

angular rate range is dependent upon distance from accelerometers to the axis of rotation known as the 

radius of curvature. 

4.2 Rotating Accelerometers and Conventional Gyros Aid 

4.2.1 Previous Research on the Use of Vibrating or Rotating Accelerometers 

There are intensive research efforts to deploy fixed accelerometers in inferring the angular motion, 

however a little attention was given to the use of rotating accelerometers. The fixed accelerometers 

have a simple setup; however, their use does not give an explicit expression for the angular velocity. 

The appearance of the quadratic terms introduces a sign indeterminacy problem as explained before. 

Through the use of fixed accelerometers and rotating accelerometers, we get non vanishing Coriolis 

force terms. A rotating accelerometer is an accelerometer that rotates at a known angular velocity 

around its sensing axis. The whole rotating accelerometer assembly is mounted rigidly to the IMU 

frame. The principle of using a moving accelerometer is used in commercial MEMS gyros. For 

example, the MEMS gyros from Analog Devices are based on a resonating mass that generates a 

Coriolis force [42]. One of the oldest approaches for inferring angular velocity from rotating 

accelerometers is to use only three rotating accelerometers but with many tricks like ignoring angular 

acceleration terms and solving using numerical integration as explained in [5]. Recently, a new 

approach for using a configuration of fixed and rotating accelerometers but with a larger number of 

rotating accelerometers, has been proposed in [9]. Our contribution is extracting the angular velocity 

with a less number of rotating accelerometers and without assuming any approximations which might 

degrade the quality of the measurements. Moreover, we still benefit from our previously described 

Kalman filters setups. 
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4.2.2 Previous Research on Gyro Aid to GF-IMU 

Apparently, it might be an inappropriate approach to combine a GF-IMU with traditional gyros; 

however, such approach has many advantages as we will show later. For simplicity reasons, we will 

call this IMU which uses both approaches to sense angular rate as the hybrid IMU. There are few 

publications considered this option [43] [41]. In [41], the aid was proposed to overcome the sign 

indeterminacy problem and to improve the AME in general. In that work, the bias vector of the gyro 

triad was not considered. New low-cost MEMS gyros and accelerometers sensors are characterized by 

having lower noise; however, bias is still a problem in MEMS specially the “turn on” to “turn on” bias 

and bias variation over temperature. Hybrid IMU can give a bias free solution by benefiting from both 

types of data. 

4.3 Configuration of Fixed and Rotating Accelerometers 

4.3.1 Preliminary Math  

We formulate our system based on the equation of motion of the measurable acceleration of a point 

moving in 3D within a body which also moves with respect to the inertial frame. The measurable 

acceleration b
ira  of a moving point at distance  br  from the body center bo  

2b b b b b b b b b b b b
ir io or ib or ib ib ibo r

a a g g a r r                ( 4.1)

where b
ioa  is the acceleration vector at a fixed point bo  with respect to the inertial frame 

Tb
io ox oy oza a a a    , b

ora  is the acceleration vector of moving point br  with respect to bo  

b
Tb ob

or bpx bpy bpz

b

d
a a a a

dt


     , b

or  is the velocity vector of point br  with respect to the body center 

b
T

bpx bpy bpz

b

d r

dt
      , b

ib  is turn rate of the body frame with respect to the inertial frame 

T

x y z
b
ib       , b

ib  is the angular acceleration vector 
T

x y z
b
ib          ,   is a cross product 

operation defined as a skew symmetric form and b b

o p
g g  is the local gravity difference vector 

between the two points. 

In ( 4.1), the superscript b denotes that the quantity is expressed in the body frame. The gravitational 

difference vector can be ignored for relatively small distribution distance and hence simplifies to 
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2b b b b b b b b b b
ir io or ib or ib ib iba a a r r             . ( 4.2)

We rewrite ( 4.2) in matrix form as 

2 2

2 2

2

0

2 0

0

rx ox bpx z y bpx y z x y z x z y

ry oy bpy z x bpy x y z z x y z x

rz oz bpz y x bpz x z y y z x x

a a a

a a a

a a a

w w u w w w w w w w w
w w u w w w w w w w w
w w u w w w w w w w

é ù é ù é ùé ù é ù - - - - +ê ú ê ú ê úê ú ê ú ê ú ê ú ê úê ú ê ú= + + - + + - - -ê ú ê ú ê úê ú ê ú ê ú ê ú ê úê ú ê ú - - + - -ê ú ê ú ê úë û ë û ë û ë û ë û

 
 
  2

x

y

y z

p

p

pw

é ù é ùê ú ê úê ú ê úê ú ê úê ú ê úê ú ë ûë û

. ( 4.3)

We consider the following configuration of rotating and fixed accelerometers shown in Fig.  4.1 where 

the fixed accelerometer triads are symbolized as , , ,  A B C D as described previously and the mono-axial 

rotating accelerometers are symbolized as , ,B C Dr r r . 

C

D

A

B

x

z

d

d

d

y
CrDr

Br

l

 

Fig.  4.1 Fixed and rotating accelerometers configuration 

The rotating accelerometers have the shown positions in Fig.  4.1 at time t=0 with Br  rotates around the 

y axis with sensing axis along the y axis, Cr rotates around the z axis with sensing axis along the z axis 

and Dr  rotates around the x axis with sensing axis along the x axis. For all rotating accelerometers, we 

assume they rotate at unique angular velocity rw  with unique radius of rotation r  and the center of 

rotation is placed at distance l  from the body frame center. The position vector of the rotating 

accelerometer Dr  on the traversed circular path is given as 

0

cos

sin
D

x

y r

z rr

p

p t

p t l

r w
r w

é ù é ù
ê ú ê ú
ê ú ê ú=ê ú ê ú
ê ú ê ú+ë û ë û

. ( 4.4)

The velocity is the time derivative of the position and hence the velocity vector is derived as 
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0

sin

cos
DD

bpx x

bpy y r r

bpz z r rrr

p
d

p t
dt

p t

u
u rw w
u w r w

é ù é ù é ùê ú ê ú ê úê ú ê ú ê ú= = -ê ú ê ú ê úê ú ê ú ê úê ú ë û ë ûë û

. ( 4.5)

The acceleration is the time derivative of the velocity and hence the acceleration vector is derived as 

2

2

0

cos

sin
D D

bpx bpx

bpy bpy r r

bpz bpz r rr r

a
d

a t
dt

a t

u
u rw w
u w r w

é ùé ù é ù ê úê ú ê ú ê úê ú ê ú= = -ê úê ú ê ú
ê úê ú ê ú -ê úê ú ê úë û ë û ë û

. ( 4.6)

Similarly for accelerometer Br , the position of the rotating accelerometer on the traversed circle is 

given as 

 

sin

0

cos
B

x r

y

z rr

p t l

p

p t

r w

r w

é ù é ù+ê ú ê ú
ê ú ê ú=ê ú ê ú
ê ú ê úë û ë û

. ( 4.7)

The velocity at point  Br  is derived as 

  

cos

0

sin
BB

bpx x r r

bpy y

bpz z r rrr

p t
d

p
dt

p t

u w r w
u
u rw w

é ù é ù é ùê ú ê ú ê úê ú ê ú ê ú=ê ú ê ú ê úê ú ê ú ê ú-ê ú ë û ë ûë û

. ( 4.8)

The acceleration vector at point  Br is the time derivative of the velocity and it is given as 

2

2
  

sin

0

cos
B B

bpx bpx r r

bpy bpy

bpz bpz r rr r

a t
d

a
dt

a t

u w r w
u
u rw w

é ùé ù é ù -ê úê ú ê ú ê úê ú ê ú= = ê úê ú ê ú
ê úê ú ê ú -ê úê ú ê úë û ë û ë û

. ( 4.9)

Similarly for accelerometer Cr , the position of the rotating accelerometer on the traversed circle is 

given as 

cos  

sin

0
C

x r

y r

z r

p t

p t l

p

r w
r w

é ù é ù
ê ú ê ú
ê ú ê ú= +ê ú ê ú
ê ú ê úë û ë û

. ( 4.10)

The velocity at point  Cr  is derived as 

sin

cos

0
CC

bpx x r r

bpy y r r

bpz z rr

p t
d

p t
dt

p

u rw w
u w r w
u

é ù é ù é ù-ê ú ê ú ê úê ú ê ú ê ú= =ê ú ê ú ê úê ú ê ú ê úê ú ë û ë ûë û

. ( 4.11)
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The acceleration vector at point  Cr is the time derivative of the velocity vector and it is given as 

2

2

  

cos

sin

0
C C

r rbpx bpx

bpy bpy r r

bpz bpzr r

ta
d

a t
dt

a

w r wu
u rw w
u

é ùé ù é ù -ê úê ú ê ú ê úê ú ê ú= = -ê úê ú ê ú ê úê ú ê ú ê úê ú ê úë û ë û ë û

. ( 4.12)

Since we are interested in the values of acceleration where the rotating accelerometers are mounted as 

shown in Fig.  4.1, we substitute the position, velocity and acceleration values given in ( 4.4) - ( 4.12) 

into ( 4.3) and form the following vector equation 

sin cos

2 sin cos

sin cos

( ) cos ( )(

                                  

D

B

C

r A
x x z r r y r r
r A
y y x r r z r r
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x y z r x z y

a a t t

a a t t

t taa

t

w w r w w w r w
w w r w w w r w
w w r w w w r w

w w w r w w w w r

é ù é ù é ù+ê ú ê ú ê úê ú ê ú ê ú= + + +ê ú ê ú ê úê ú ê ú ê ú+ê ú ê ú ê úë ûë ûë û
- + +  sin )

( ) cos ( )( sin )

( ) cos ( )( sin )

r

y z x r x y z r

x z y r y z x r

t l

t t l
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w
w w w r w w w w r w
w w w r w w w w r w

é ù+ê ú
ê ú- + + +ê ú
ê ú- + + +ê úë û

 
 

. ( 4.13)

Equation ( 4.13) can be simplified by sampling at the moment where sine terms are equal to zero. In 

such moments the cosine terms are equal to 1. The simplified equations becomes 

( ) ( )

2 ( ) ( )

( ) ( )

D

B

C

r A
x x y r x y z x z y
r A
y y z r y z x x y z

r A
x r x z y y z xzz

a a l

a a l

laa

w w r w w w r w w w
w w r w w w r w w w
w w r w w w r w w w

é ù é ù é ùé ù - + +ê ú ê ú ê úê úê ú ê ú ê úê ú= + + - + +ê ú ê ú ê úê úê ú ê ú ê úê ú - + +ê ú ê ú ê úë û ë ûë ûë û

 
 
 

. ( 4.14)

The angular rate components are extracted as 

( ( ) ( ) ) / 2

( ( ) ( ) ) / 2

( ( ) ( ) ) / 2

D

B

C

r A
y x x x y z x z y r

r A
z y y y z x x y z r

r A
x z z x z y y z x r

a a l

a a l l

a a l

w w w w r w w w w r

w w w w w w w w r

w w w w r w w w w r

= - - - - +

= - - - - +

= - - - - +

 

 

 

. ( 4.15)

It should be noted that, the angular velocity can be extracted using two rotating accelerometers since 

the three dimensional components of the angular velocity appear in any two combinations of the 

rotating accelerometers equations as shown in ( 4.13). 

4.4 Static Scenario Special Case (North-Finding System) 

For a complete static attitude finding system that finds heading by sensing Earth rotation, the required 

number of accelerometers can be reduced to an accelerometer triad and a rotating accelerometer as 

shown in Fig.  4.2. Reduction is possible because the angular acceleration terms become zeros and the 
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quadratic terms are extremely small that they can be ignored. One common approach is to use a mono-

axial rotating accelerometer that has its sensing axis along gravity to find the north [44-46]. Though 

the use of one accelerometer might sound to be very reasonable, the system is sensitive to errors in 

misalignment from horizontal position besides the need for leveling equipment. Considering that every 

IMU contains three accelerometers, we can benefit from those sensors to have a north finding system. 

 

Fig.  4.2 Reduced configuration of fixed accelerometer triad and rotating accelerometer 

4.4.1 System Equations  

As explained before, equation ( 4.13) is reduced for the rotating accelerometer Cr  to be 

2 ( sin cos )Cr A
z z r y r x ra a t trw w w w w= + + . ( 4.16)

The index pulse determines the initial position of the rotating accelerometer and accelerometer output 

is sampled at a constant sampling rate. For a local navigation frame NED, the gravity and Earth 

rotation vectors are given as 

0 cos

0 ,  0 0

sin

ie N
n n

ie

ie D

g

g

w w
w

w w

é ùé ù é ùFê úê ú ê ú
ê úê ú ê ú= = =ê úê ú ê ú
ê úê ú ê ú- Fë û ë ûë û

 ( 4.17)

where F  is the geodetic latitude angle; iew  is the Earth turn rate and g is the gravity of the Earth. The 

DCM which transforms from the body frame to the navigation frame is referred as n
bC . To transform 

from the body frame to the navigation frame, we need three separate rotations consisting of three 

angles known as Euler angles. The three sequential rotations are 

Roll f  about x axis. 
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Pitch   about y axis. 

Yaw j  about z axis. The resulting rotation matrix becomes 

3 2 1

1 0 0 0 0

0 0 1 0 0

0 0 0 0 1

( )

b
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n n T
b b

c s c s

C C C C c s s c

s c s c
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j q j q f j f j q f j f
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é ù- +ê ú
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 ( 4.18)

where xc , xs  and xt  represent the mathematical operations of cos( )x , sin( )x and tan( )x respectively. 

The element in the ith row and the jth column represents the cosine of the angle between the i-axis of 

the reference frame and the j-axis of the body frame [25]. The tilt angles can be extracted from the 

gravity vector according to the following relationship 

0

0
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b b
y n

b
z

f

f C
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é ù é ùê ú ê úê ú ê ú=ê ú ê úê ú ê úê ú ë ûë û

. ( 4.19)

The inverse of the DCM is its transpose since it is an orthogonal matrix. Hence the measured gravity 

vector expressed in the body frame is given as  

0

0
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. ( 4.20)

The matrix equation is simplified to the following three equations 

sin

cos sin

cos cos

b
x

b
y

b
z

f g

f g

f g

q

q f
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=- ⋅

= ⋅
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. ( 4.21)

The pitch angle is found as 

1sin ( )
b

xf

g
q - -= . ( 4.22)

The roll angle is found as 

1tan ( )
b
y

b
z

f

f
f -= . ( 4.23)
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Next, we present two solutions for finding the heading angle. The first solution is based on 

synchronized demodulation. The second solution is suitable for estimation based solutions. In other 

words, we can handle the problem as if it is a problem for estimating the DCM elements from the 

measurements of the accelerometer triad and the rotating accelerometer. It can be shown that, the 

knowledge of the accelerometer triad measurements besides the knowledge of two angular rate 

components are enough to make the DCM elements observable. 

4.4.2 The Leveled Case 

For the leveled case, we need only a rotating accelerometer to find the north since we have zero tilt. 

The measurable angular rate due to Earth rotation is 

0 cos

= 0 0 = sin

0 0 1

x N N

y N

z D D

c s

s c
j j

j j

w w w j
w w j
w w w

é ù é ù é ù é ù
ê ú ê ú ê ú ê ú
ê ú ê ú ê ú ê ú- -ê ú ê ú ê ú ê ú
ê ú ê ú ê ú ê úë û ë û ë û ë û

. ( 4.24)

Substitute ( 4.24) into ( 4.16) and using the following trigonometric identity 

cos( ) cos( )cos( ) sin( )sin( )u v u v v v =  . ( 4.25)

The rotating accelerometer output becomes  

2 ( sin sin cos cos )

2 cos( )

cos( )

C

C

C

r A
z z r N r N r

r A
z z r N r

r
z c r

a a t t

a a t

a g A t

w r w j w w j w

w rw w j

w j

= + - +

= + +

= + +

. ( 4.26)

Equation ( 4.26) shows that the measurable angular rate consists of a constant component combined 

with a sinusoidal signal. The sinusoidal signal holds the heading angle information in its phase angle. 

There are different approaches that can be used to extract the heading information. The synchronized 

demodulation approach is independent on bias and scale factor parameters as described in [5, 44, 45]. 

Assuming the accelerometer measurement has a scale factor and bias error model combined with 

white noise given as 

Cr
a z a aa s a b w= ⋅ + + . ( 4.27)

We use the signum function of the synchronized sinusoidal wave because it requires less computation. 

We compute the following integral term for the signum of the cosine function 
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The right side integral term vanishes if the bias combined with gravity remains constant and the white 

noise is considered to be considerably small. It can be approximated as 

4
cos( )i a c

r

c s A j
w

» ⋅ ⋅ ⋅ . ( 4.29)

We compute the integral for the signum of the sine function 

0

0

0

0

sgn(sin )

( ) sgn(sin )

( ( cos( )) ) sgn(sin )

4
sin( ) ( ).sgn(sin )

C

T

i r

T
r

a z a a r

T

a c r a a r

T

a c a a a r
r

s a t dt

s a b w t dt

s g A t b w t dt

s A s g b w t dt

w

w

w j w

j w
w

=- ⋅ ⋅

=- ⋅ + + ⋅ ⋅

=- ⋅ + + + + ⋅ ⋅

= ⋅ ⋅ ⋅ - ⋅ + + ⋅

ò
ò
ò

ò



. ( 4.30)

Similarly, the is  can be approximated as 

4
sin( )i a c

r

s s A j
w

» ⋅ ⋅ ⋅ . ( 4.31)

Now the azimuth angle can be extracted as 

1tan i

i

s

c
j -

æ ö÷ç ÷= ç ÷ç ÷çè ø
. ( 4.32)

Cleary, the computed value will not depend either on the scale factor or the bias. This is a great 

advantage because the signal is combined with harmonic signals due to vibration and using a finite-

duration impulse response filter (FIR) will scale the amplitude of the filtered signal greatly. 

The second approach does not require integration and it is based on our previously described method 

of synchronized sampling. By sampling ( 4.26), after filtering the constant component due to gravity 

and bias, at the instants when the accelerometer crosses the initial position as indicated by index pulse 

we get the cosine of the heading angle as 
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cos( )index ca A j= . ( 4.33)

We sample again after 90  from the initial position to get the sine of the heading angle 

90 cos( ) sin( )
2index c ca A A
pj j+  = + =- . ( 4.34)

The azimuth angle is extracted as 

01 90tan index

index

a

a
j - +

æ ö- ÷ç ÷= ç ÷ç ÷÷çè ø
. ( 4.35)

This method requires much less computation than the synchronized demodulation method and it can 

handle the scale factor error. The constant components will be removed by the FIR filter. This method 

can be used to calibrate the accelerometer output after filtering by finding the magnitude of the 

signal cA . 

4.4.3 The Non-leveled Case 

The following solution is similar to the derivation given in the leveled case as described in [45]. The 

measurable angular rate due to Earth rotation is 
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. ( 4.36)

Substituting the values of x and y components of the angular velocity in ( 4.16), the rotating 

accelerometer output becomes 

2 (( ( ) )sin ( )cos )Cr A
z z r N D r N D ra a c s s s c c s t c c s tj q f j f q f j q qrw w w w w w w= + - + + - . ( 4.37)

The following trigonometric identity is used to simplify ( 4.37) 

2 2sin( ) cos( ) sin( )

0 if  0
arctan

 if  <0

a x b x a b x

ab

aa

z

z
p

+ = + +
ìæ ö ³ïï÷ç= +÷ íç ÷ç ïè ø ïî

. ( 4.38)

Using the Earth components definition given in ( 4.17) and the trigonometric identity, the rotating 

accelerometer output becomes 
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( 4.39)

Equation ( 4.39) is used to extract the z  angle in a similar way to extracting the heading angle for the 

leveled case. The tilt angles can be found from ( 4.22) and ( 4.23) and then substituted in ( 4.39)to find 

the unknown heading as shown in [45] where a closed form solution was derived. Rewriting ( 4.39) as 
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We rearrange ( 4.40) as 
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Using ( 4.38) again, we can solve to find the heading angle in a similar way to finding the z angle. We 
rewrite ( 4.41) as 

2 2 sin( )

0 if J 0
arctan

 if J <0

I J K

I

J

j V

V
p

+ + =
ìæ ö ³ïï÷ç= +÷ íç ÷ç ïè ø ïî

. ( 4.42)

The heading angle is computed as  

2 2
arcsin K

I J
j V

æ ö÷ç ÷= -ç ÷ç ÷ç +è ø
. ( 4.43)

The second method using synchronized sampling has the advantage of less computation. Using ( 4.16), 

we find xw  by sampling at the initial position and yw  by sampling again after 90  from the initial 

position. Those two components are substituted in ( 4.36) to find the unknown heading. The nonlinear 

equations can be solved either numerically or handled as estimation problem for estimating the DCM 

elements [47]. 
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4.5 Experimental Results 

4.5.1 Rotating Accelerometer Design Example 

Before doing the experimental implementation of the system we give the numerical values for a design 

example to show the feasibility of using rotating accelerometers in detecting small angular rate values. 

We assign the parameters values based on specifications of accelerometers from the market and with 

distance parameters that give the system portability. 

Table  4.1 Numerical values for rotating accelerometer design example 

Parameter 
(Unit) 

l  
 (cm)  

r  
(cm)  

t  
(s)

.accw  

(μ g Hz )  
ab  

(μg)  
d  

(cm)  
rw  

(rad/s)  

Value 10 2 0.01 1 2400 15 50 
 

We compute the variance of the angular velocity component noise, which is also known as ARW, 

based on ( 4.14) as 

2 2 2 2 2 2 2 2 2(1 (2 ) 1 (2 ) (2 ))g a r r rR d l ds w r w w r= + + . ( 4.44)

Based on the parameter values given in Table  4.1, we get the following variance 

2 0.7311g aRs = . ( 4.45)

The computed standard deviation of the measurable angular velocity is 

8.38μ (rad/s Hz) 4808.38μ ( /s Hz) 1.7  ( h Hz)gs = =  =  . ( 4.46)

For different values of rotational speeds of the accelerometer we tabulated the computed standard 

deviation of measurable angular velocity as shown in Table  4.2. 

Table  4.2 Computed standard deviation of angular rate for different rotational speeds 

Rotational speed rw (rad/s)  50  100  500  

Measurable rate std. dev. gs ( h Hz)  1.7 0.85 0.17 

 

The tabulated values show the possibility of having measurable angular rate with extremely small 

ARW values. 

4.5.2 Technical Issues Regarding Implementation and Calibration  

The calibration procedure described in section  3.4 is applicable to fixed accelerometers. The rotating 

accelerometers are calibrated independently from the fixed accelerometers using a different approach. 
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The scale factor can be found as described previously in subsection  4.4.2. A constant turn rate of a 

rotating accelerometer is not necessary but an exact knowledge of the rotation rate is important. The 

measurement of the accelerometer’s rotation rate is achieved using an optical encoder. The rotation 

can be achieved using a rotating module built of a motor equipped with an encoder and supplied with a 

slip ring or using a vibrating accelerometer. The slip ring transmits the accelerometer’s output signal 

and power connections from the rotating part. 

4.5.3 Experimental Setup for North Finding System 

We implemented two experimental setups of using the rotating accelerometers as a north finding 

system. The sampled output of the accelerometer during rotation should represent a sinusoidal signal. 

We experiment with two configurations, one is using an ACUTRONIC single-axis turntable as shown 

in Fig.  4.3 and the other one is using a rotating module as shown in Fig.  4.4. Instead of using one 

accelerometer we used two accelerometers mounted on both sides of the rotating rod to increase the 

S/N ratio and to remove vibration. More using two accelerometers we get a balanced setup. A 

turntable is used to operate at different speeds. The used accelerometers are of the type SF1500S.A 

from Colibrys. 

 

Fig.  4.3 Reduced configuration of rotating accelerometers using turntable 
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Fig.  4.4 Reduced configuration of rotating accelerometers using a rotating module 

The separation distance is set to 28 cm. A DSP based platform with 24 bit analog to digital converter 

(ADC) is used to acquire data at a sampling rate of 512 Hz. The rotation speed is 200 rpm so the 

frequency of the sinusoidal signal should be f=3.333 Hz. The time series output is extremely noisy as 

shown in Fig.  4.5.  
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Fig.  4.5 Time series accelerometer output 
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Fig.  4.6 The corresponding single-sided amplitude spectrum 

Fig.  4.6 shows the corresponding spectrum of the accelerometer output. It shows that the harmonics 

have much higher amplitude than the desired signal. Though we use high quality turntable, such 

harmonics can not be avoided and we should filter out the signal. We tried to reduce vibration 

mechanically by balancing the rod during rotations; however, such harmonics are difficult to be 

filtered mechanically. From the spectrum, we can see that band pass frequency filtering is a suitable 

solution. 

4.5.4 Filtering the Signal 

FIR filters have many advantages such as phase linearity and stability. They can be realized in 

hardware or software. The filter simply performs a linear combination of current and previous values 

of the input signal 

0

( ) ( )
M

m
m

y n b x n m


  . ( 4.47)

The z transform is given as 

0

( )
M

m
m

m

H z b z



  . ( 4.48)

The filter order determines the filter complexity. 
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4.5.5  Successive Steps Experiment 

We rotated the turntable in 5 successive steps with the turn rate kept constant in every step and each 

step has roughly 10 degrees difference from the previous. We do so since in this case we do not need 

accurate reference of north. We check if north finding system is able to track the difference between 

successive steps. The signal is band-pass filtered using FIRLS function in Matlab. The filtered signal 

has initially overshot but shortly it converges as shown in Fig.  4.7 for one position for duration of 66 

seconds. Fig.  4.8 is a zoom window of the filtered signal to show the stable sinusoidal wave. 
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Fig.  4.7 Time-series of filtered accelerometer output 
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Fig.  4.8 Window of stable filtered time series signal  

The sinusoidal periods are averaged to produce one sinusoidal period to improve the accuracy of the 

computed heading angle as shown in Fig.  4.9. 
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Fig.  4.9 Filtered one period 
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Table  4.3 Estimated heading angle for different positions 

Order Azimuth (º) 
Order 2000 

Azimuth (º) 
Order 1000 

Azimuth (º) 
Order 200 

Step Syn. d. Syn. s. Syn. d. Syn. s. Syn. d. Syn. s. 

1 -42.076 
-42.282 

-40.859 -42.058 
-42.262 

-41.805 -42.119 
-42.290 

-49.616 

2 -51.560 
-51.761 

-49.986 -51.592 
-51.791 

-50.891 -51.563 
-51.742 

-53.798 

3 -64.745 
-64.902 

-62.844 -64.780 
-64.936 

-63.519 -64.651 
-64.772 

-69.221 

4 -73.859 
-73.967 

-71.715 -73.855 
-73.961 

-72.271 -73.660 
-73.751 

-75.406 

5 -82.375 
-82.425 

-80.156 -82.399 
-82.447 

-80.604 -82.216 
-82.245 

-83.744 

 

For digital integration, we use the rectangular and trapezoidal integration methods. Results of the two 

methods of integration are shown respectively in Table  4.3 in the “Syn. d.” column and compared with 

the synchronized sampling method in “Syn. s.” column. We compute the heading angle for three filter 

orders. The computed values show that increasing FIR order above 200 has little effect on improving 

the heading angle accuracy. Moreover, changing the integration method from trapezoidal to 

rectangular has small effect on the result. The computed heading angles are in harmony with the steps 

change. The synchronized demodulation method is more robust than synchronized sampling method 

especially for low-order FIR filter. The synchronized sampling method requires a higher sampling rate 

for efficient FIR filtering. 

4.6 Gyro Aided GF-IMU Using Three-state EKF Model 

The aid of conventional gyro triad to the GF-IMU constitutes a new type of IMU that we call a hybrid 

IMU to distinguish it from the GF-IMU and the conventional IMU. Next, we describe the filter briefly 

since it is similar to the one given in section  3.5 with state vector to be estimated given as 

 1 2 3

TT

x y zx x x x        . ( 4.49)

The only difference will be adding a vector measurement coming from the gyro triad. 
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4.6.1 Initialization and Prediction 

We can use the direct gyro measurement vector for initialization 

0 0 . .0 0 0
ˆ { }

T T

x y z x y zmeas meas meas
x E x                . ( 4.50)

The initial estimate error covariance is set to the gyro variance since it is the best available information 

2
0 0 0 0 0 3 3ˆ ˆ{( )( ) } ( )T

gP E x x x x t R I  
     . ( 4.51)

The predicted state vector and estimation error covariance are updated as given in the equation set 

( 3.19)-( 3.27). 

4.6.2 Measurement Update 

The measurement vector h  is composed of the directly measured angular change vector by a triad of 

gyros and the quadratic terms and it is corrupted with a white noise vector and it is given as 

 2 2 2
1 2 3 1 2 1 3 2 3 1 2 3 1 9( , ) ..

T T
k k kk

y h x v x x x x x x x x x x x x v v     . ( 4.52)

The measurement Jacobian matrix is computed as 

 
2 3 1

3 3 12 12 1 3 2ˆ
ˆ

1 2 3

0 2 0 0
( , )

,   = 0 0 2 0

0 0 0 2
k

k

Tk
k x x

x x

x x x
h x v

H I H H x x x
x

x x x



 



 
     

  

. ( 4.53)

The gyros’ measurements are uncorrelated with accelerometers’ measurements and hence the 

covariance of the measurement vector is computed as 

2
3 3 3 6

6 3 22

( ) 0

0
g

k

t R I
R

R
 



 
  
 

. ( 4.54)

where 22R  is as given in ( 3.30). The Kalman gain, the a posteriori estimation error covariance and the 

a posteriori state estimate are updated as given in the equation set ( 3.32)-( 3.34). 

4.7 Simulation Results 

4.7.1 Trajectory Profile 

Again we use the same angular velocity profile used before with the mathematical description as given 

in ( 3.35). The simulation parameters for the accelerometers are set as given in section  3.6.1 and the 

gyros triad has gyros noise of 3  gw h  . In simulations we compare the performance of the GF-
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IMU with the performance of the hybrid IMU. The state vector is initialized properly around the true 

state with initial state error of 5% of the true value for both cases. 

Table  4.4 Numerical values of the simulation parameters for the hybrid IMU 

Parameter 
(Unit) 

x  

(rad/s)  

z  

(rad/s)
f  

(Hz)  

t  
(s)  

.accw  
( g Hz )

gw  

( )h  

d  
(m)  

T  
(s)  

Value 3.29 0.658 1 0.01 50   3 0.2 10 
 

4.7.2 Results and Analysis 

The angular change profiles of true, gyros measured, GF-IMU estimations and hybrid estimations are 

plotted in Fig.  4.10 - Fig.  4.12 for the three dimensional components. The gyro measured output is the 

gyro triad measurement while the GF-IMU estimation is the solution given by GF-IMU. The hybrid 

estimation is the solution which combines the GF-IMU solution and the gyro measurement. 
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Fig.  4.10 X-component of estimated and measured angular velocity change 
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Fig.  4.11 Y-component of estimated and measured angular velocity change 
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Fig.  4.12 Z-component of estimated and measured angular velocity change  

Estimations and measurement errors of angular change are also plotted in Fig.  4.13, Fig.  4.14 and Fig. 

 4.15 to show the magnitude of error clearly  
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Fig.  4.13 Estimated and measured angular change error in x dimension 
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Fig.  4.14 Estimated and measured angular change error in y dimension 
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Fig.  4.15 Estimated and measured angular change error in z dimension 

From Fig.  4.13 - Fig.  4.15 we notice that the hybrid IMU has a faster convergence than the GF-IMU 

convergence. The low-cost gyro measurements follow the reference trajectory but with a high level of 

white noise. In the z component estimation, the hybrid IMU estimation benefited from the angular 

acceleration coming from GF-IMU hence its performance is much better than GF-IMU estimation. We 

see the superiority of the hybrid IMU estimation based on the AIV and the gyro measurement vector 

over the GF-IMU estimation based on the AIV.  

4.8 Robustness of the Direct EKF  

Not only the low-cost gyros help in the sign convergence, give more accurate estimate and prove 

smooth convergence but they also give robustness against improper initialization and robustness to 

detect smaller angular signals that can not be detected by either GF-IMU or low-cost gyros. 

4.8.1 Robustness to Small Angular Signal Detection 

In this part we reduce the magnitude of the trajectory described in ( 3.35) to be 0.0822 rad/sx   and 

0.0164 / sz rad  . Other parameters remain unchanged. 
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Fig.  4.16 X-component of estimated and measured angular velocity change  
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Fig.  4.17 Y-component of estimated and measured angular velocity change  
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Fig.  4.18 Z-component of estimated and measured angular velocity change  

From the previous figures it is clear that the hybrid IMU is more capable of detecting small signals 

than GF-IMU. Moreover, the estimated angular change of the hybrid IMU is less noisy than the gyro 

measured output. 

4.9 Summary 

In this chapter, we presented a novel configuration of fixed distributed accelerometers combined with 

rotating accelerometers to have direct measurements of the angular velocity. Experimental results 

show that a rotating accelerometer can be used to find the heading angle after filtering harmonics due 

to vibration. Also, we presented an EKF model for improving the angular motion knowledge by 

combining the AIV and the conventional gyro triad measurements. Simulation results show that both 

types of measurements have complementary nature and hence integration gives the advantage of both. 

Also, the aid of low-cost traditional gyros is recommended to avoid sign indeterminacy problem and to 

accelerate convergence smoothly. More complex dynamic models that enable us to estimate the 

drifting bias parameters in the MEMS gyros can be used. 
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Chapter 5 

Angular Motion Estimation Utilizing Dynamic Models and 

Constrained Kalman Filtering 

In this chapter, we present another novel solution for estimating the angular motion based on the 

dynamic models in a GF-IMU. During conducting research for the possible filter approaches, we 

derived nonlinear equality constraints. Hence, we incorporate the constraints in the filter to improve 

the accuracy of the angular motion estimation, which in turn improves the attitude accuracy. 

5.1 AME Using Dynamic Models in a GF-IMU 

In this section, we summarize the results of using dynamic models borrowed from tracking theory in 

describing the evolution of the state space in time to have an estimate of the angular motion in a GF-

IMU. Mainly, we use the dynamic models to have the appended bias parameters observable and hence 

have better angular motion knowledge. Moreover, a good model is useful to extract the maximum 

amount of information from the observation. Observability analysis is done to determine the 

conditions for having an observable state vector. For higher grades of accelerometers and under 

relatively higher sampling frequency, the error of an accelerometer can be dominated by noise error. 

Consequently, simulation results are given for two models, one with bias parameters appended to the 

state vector and the other without bias parameters. Bias parameters can be appended to the state space 

vector if it is desired to be estimated. 

5.1.1 Why Do We Need Sophisticated Models? 

We developed an integration filter for GF-IMU configurations that consists of twelve mono-axial 

accelerometers. In our filter design, we used the angular acceleration and the quadratic terms of the 

angular velocity of the GF-IMU. As a straightforward solution, we have used a direct three state model 

based on Euler first order integration. The advantage of using such a model is that there is no 

assumption needs to be made about the dynamics of the motion and hence such a solution fits most 

scenarios. Though the first order Euler integration model has a simple form, some of the bias 

parameters, which exist in most of the inertial sensors, will not be observable. Hence, it fits cases 

where white noise is corrupting accelerometers measurements. The importance of this research is that 

within a proper dynamic model, the drifting biases can be estimated and hence the quality of the 
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estimated angular velocity improved greatly. Moreover, any priory information about the motion can 

be applied in the model to get an improved performance of the AME filter. 

5.2 Dynamic Models to Be Considered 

In general, a good model is useful to extract the maximum amount of information from the 

observation. We will utilize the proper dynamic models in the AME in the GF-IMU. We focus on the 

dynamic models used for maneuvering targets tracking surveyed in [48]. Tracking theory dynamic 

models are used previously to model the angular acceleration evolution in  time [38, 49]. Here, we 

give a spatial motion extension to the planner motion case given in [38]. The constant angular velocity 

model makes no use of the measured angular acceleration measurements, so such a model is not a 

candidate to be considered in our work. Hence, we consider models in which the target angular 

acceleration that is chosen to be the descriptor of a target maneuvers and modeled as a random 

process. Next we describe the models that can be used for Kalman filter process update.  

5.2.1 Wiener-process Angular Acceleration Model 

This model assumes that the angular acceleration is a Wiener process, or more generally and precisely, 

the angular acceleration is a process with independent increments, which is not necessarily a Wiener 

process. This model is referred as a constant angular acceleration model (CAA) or a nearly constant 

angular acceleration model. It can be considered as a special case of a Gauss-Markov process. This 

model makes the angular acceleration a process with an increasing variance and it is given as 

( ) ( )t w t  . ( 5.1)

The discrete-time form is given as 

1 1k k kw     . ( 5.2)

Since we have time uncorrelated noise, the corresponding state space representation of the Wiener 

sequence angular acceleration model in 3D motion including angular velocity vector is given as 

3 3 3 3 1 3 3
1

3 3 3 3 1 3 30
k k

k
k k

I tI tI
w

I I

 
 

   


   

        
        

       
. ( 5.3)

5.2.2 First-order Markov Model (Singer Angular Acceleration Model) 

This model was initially used for modeling linear acceleration [50] and lately used for angular 

acceleration modeling as given in [49]. It has much wider coverage than a constant angular velocity or 

constant angular acceleration models. The singer model can be adjusted using the specifications of the 
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accelerometers used. The Singer model assumes that the target acceleration is a zero-mean stationary 

first-order Markov process. The time evolution of the angular acceleration in continuous-time is 

written as 

w    . ( 5.4)

where w  is a zero-mean white noise with variance 2
N  and   is the reciprocal of the time constant (or 

reciprocal of correlation time). The discrete-time form of this process is given as 

2
1 11t t

k k ke e u 
     

    . ( 5.5) 

where iu  is a unit variance samples from a Gaussian random number generator and   is the steady-

state variance. Since the correlation time 1  is much larger than sampling time t , the following 

approximation is used 

1te t      . ( 5.6)

Considering a first order linearization for the exponential term in ( 5.6), the process can be 

approximated as  

 1 1 2k k kt t u          . ( 5.7)

The autocorrelation function   is exponentially decaying and given as 

2{ ( ) ( )}E t t e  
         . ( 5.8)

The corresponding state space representation of the wiener sequence angular acceleration model in 3D 

motion including angular velocity vector is given as 
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. ( 5.9)

The variance is selected according to the ternary-uniform mixture as suggested in [49]. 

5.2.3 Other Models to Be Considered 

Angular jerk which is the derivative of the angular acceleration can be used in the same way we used 

the angular acceleration based models. Using angular jerk based models increases the dimension of the 

state space vector which increases the computational load.  
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5.3 Sensor Error Model and the Measured AIV and Calibration 

5.3.1 The Accelerometer Error Model to Be Used 

Each accelerometer measurement a  is assumed to be corrupted by a bias ab  error component and a 

continuous-time white noise error component accw . All accelerometers are assumed to have a common 

upper bound for the noise variance and bias instability. The discrete-time white noise depends on the 

square root of the sampling time t  and it is given as 

a acca a b w t t     . ( 5.10) 

The variance of the discrete-time noise component .discR  of each accelerometer measurement of the 

acceleration is 

2
. { }disc acc accR E w t R t    . ( 5.11) 

Every drifting accelerometer bias has the unit of g   or its equivalent derivatives and is modeled as 

random process driven by white noise. The previously described Markov model is used often to model 

the bias or we can use the simple model of random walk given as 

a bab w . ( 5.12) 

In discrete-time the random walk bias model is given as 

1 , 1ak ak ba kb b w   . ( 5.13) 

Using the accelerometer’s error model shown in ( 5.10), we rewrite the measured AIV with inherited 

accelerometers errors as 

1 1
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b w

b w
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  

  

 



 

( 5.14) 

where 1 9..b b represent the new bias parameters and 1 9..w w  represent the noise errors. 

5.3.2 Capturing the Bias in the AIV 

The GF-IMU configuration can be calibrated for exact value distribution distance using a turn table. 

Assuming the accelerometer’s error as described before, we need to calibrate for bias. The bias can be 

approximated as a nearly constant but slowly varying parameter as it changes with temperature and 

many other parameters. Initial bias calibration is very easy to be performed since leaving the GF-IMU 

in a static position means all angular information terms should be zero because the quadratic terms of 
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Earth’s turn rate are extremely small for a small separation distance. Hence, we can find the initial 

value of the nine bias parameters in the AIV. 

5.4 An EKF Solution Using Singer Model with Appending Bias Parameters 

Though we have twelve accelerometers and this means we have twelve unknown bias parameters, we 

are interested in estimating the resulting nine bias parameters 1 9..b b  in the AIV given in ( 5.14). The 

state vector is composed of the angular velocity vector, the angular acceleration vector and the nine 

bias parameters given as 

   1 2 3 4 5 6 7 8 9

,     ,    

,

2

2

T T TT T T T
x y z x y z

T T

x b b

b b b b b b b b b b b
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                    

 

  
. ( 5.15) 

5.4.1 Initialization 

The initial state vector and the initial estimate error covariance are set as shown in ( 3.17) and ( 3.18). 

5.4.2 Prediction 

Based on the previously described motion dynamic model and the accelerometer bias model, we can 

write the discrete-time space model as 
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. ( 5.16) 

The process covariance is computed as 

1 1 1 1 1    ,  { }T T
k k k k kQ G G E w w        . ( 5.17) 

The predicted state vector and estimation error covariance are updated as given in the equation set 

( 3.19)-( 3.27). 

5.4.3 Measurement Update 

The AIV that is composed of the angular acceleration vector and six quadratic terms of angular 

velocity combined with the nine bias parameters given as 
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The measurement Jacobian matrix is computed as 
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The measurement error covariance matrix is computed as 

2

2

.
2

. .
2 2

1 1 1
1 0 0

4 4 2
1 1 1

1 0 0
4 4 2
1 1 1

1 0 0
4 4 2  ,  ( )

1 3 1 1
0 0

2 2 2 2
1 1 3 1

0 0
2 2 2 2

1 1 1 3
0 0

2 2 2 2

1

41 1 4 1 4

=( ) 1 4 1 1 4 ,   ( )

1 4 1 4 1

disc
Tk

disc disc

R M R
R R

M R d

R R
R M

d d








 
 
 

 
 
 
             
 
   
 
 
   
  



  
    
   

1 1 1
0 0

4 2 2
1 1 1 1

0 0
4 4 2 2

1 1 1 1
0 0

4 4 2 2

 
 
 

  
 
   
   . 

( 5.20) 

The Kalman gain, the a posteriori estimation error covariance and the a posteriori state estimate are 

updated as given in the equation set ( 3.32)-( 3.34). 

5.5 An EKF Solution Using Singer Model without Appended Bias Parameters 

The state vector is reduced to the angular velocity and the angular acceleration vectors and it is given 

as 

,     ,    
T T TT T

x y z x y zx                         . ( 5.21) 
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5.5.1 Initialization 

The initial state vector and the initial estimate error covariance are initialized the same way as before 

in ( 3.17) and ( 3.18). 

5.5.2 Prediction 

Based on the previously described motion dynamic model we write the discrete-time space model as  
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. ( 5.22) 

The predicted estimation error covariance and state estimate are updated as in ( 3.26) and ( 3.27). 

5.5.3 Measurement Update 

The AIV that is composed of the angular acceleration vector and six quadratic terms of angular 

velocity combined given as 

2 2 2
4 5 6 1 2 1 3 2 3 1 2 3

T

k kk
h x x x x x x x x x x x x v    . ( 5.23) 

The measurement Jacobian matrix is computed as 
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. ( 5.24) 

The Kalman gain, the a posteriori estimation error covariance and the a posteriori state estimate are 

updated as given in the equation set ( 3.32)-( 3.34). 

5.6 Observability Analysis 

Using the dynamic model gives us the possibility to have all the bias parameters in the resulting 

angular terms observable under some conditions. In this section, we determine under which conditions 

is the state space observable. First, we remove the noise in this observability analysis which leaves us 

with the simpler homogeneous state- space system 

( )

x Ax

y h x





. ( 5.25) 

We follow the local observability test based on Lie derivatives [51] which is used in [38] for the one 

dimensional angular motion. We compute L which denotes the set of all finite linear combinations of 
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Lie derivatives of the measurement vector with respect to f for various values of constant input.  

0 ( )f i iL h h . ( 5.26) 

Higher order Lie derivatives are computed as  

( )k k
f i iL h h . ( 5.27) 

For our model which has n states, the higher order Lie derivatives starting from the third derivative are 

entirely zero vectors as shown next 
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The system is observable if the observability matrix  , defined next, has a rank of 15. The 

observability matrix is defined as 
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where p  is the number of measurements. In our case, we have nine measurements and fifteen states so 

the dimension of the observability matrix is 135x15. After removing the zero rows we get the 

following matrix with independent rows 
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. ( 5.30) 

Therefore, the condition to have an observable state space model is that the angular acceleration vector 

has at least one nonzero component in any of the three dimensions of motion or in other words the 

magnitude of the angular acceleration has a nonzero value. 

5.7 Simulation Results for the Augmented Model  

We consider a sinusoidal trajectory which is considered often in literature [2, 38, 49]. Moreover, such 

a trajectory satisfies the observability condition of a nonzero angular acceleration. 

5.7.1 Trajectory Profile and Parameters Setting 

In two dimensions we have a harmonic angular oscillation and in the third dimension we assume no 

angular motion. The mathematical description of the angular motion is given as  

( ) sin(2 )[1 1 0]T
mt ft   . ( 5.31) 

( ) 2 cos(2 )[1 1 0]T
mt f ft    . ( 5.32) 

For a practical value of the accelerometer’s noise and bias levels, we consider the specifications of the 

accelerometers manufactured by Analog devices. We want to have a portable IMU so we choose the 

separation distance to be 0.4 m . The duration time T  of the experiment is 20  seconds. 

Table  5.1 Numerical values of the simulation parameters 

Parameter 

(Unit) 

m  

(rad/s)  

f  

(Hz)  

t  

(s)  

.accw  

( g Hz )  

bias  

(g)  

d  

(m)  

T  

(s)  

Value 0.4112 0.5 0.01 200μ  2400μ 0.4 20 
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The state vector is initialized properly around the true state with initial state error of 5% of the true 

value. The bias values were selected randomly from a distribution with 1 standard deviation of 

2400μ g as shown in Fig.  5.1 and Fig.  5.2 show plots of the angular velocity and the angular 

acceleration profiles respectively. 
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Fig.  5.1 Angular velocity trajectory profile 
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Fig.  5.2 Angular acceleration trajectory profile 
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5.7.2 Results and Analysis 

Errors in the estimated angular velocity and the estimated angular acceleration vectors are plotted next 

in Fig.  5.3 and Fig.  5.4 respectively. 
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Fig.  5.3 Angular velocity estimation error 
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Fig.  5.4 Angular acceleration estimation error 

Clearly, we see a good convergence to the true angular velocity and angular acceleration. We see a 

small swing in the x and y components of the angular velocity and angular acceleration. This is 
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because we model the angular acceleration as random process driven by white noise while the true 

trajectory is sinusoidal one. From simulations, the magnitude of this swing increases as the frequency 

of oscillation of the trajectory increases and decreases incase of low frequency oscillation. So the CAA 

and the Markov model are not suitable for high dynamic oscillations. The estimation errors in the nine 

bias parameters are shown in Fig.  5.5 next. 
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Fig.  5.5 Estimated and reference bias parameters in the AIV 

The plots show the convergence of all estimated bias parameters in the AIV to their exact value with 

small steady state error. Moreover, from extensive simulations we find that reducing the noise error 

level of in accelerometers gives a smoother and a faster convergence of bias. 

5.7.3 Effect of Improper Initialization 

Since we use an EKF form which is a linearization of the Kalman filter, the proper initialization of the 

state vector is important to avoid filter divergence. However, limited level of initialization error can be 

tolerated by the filter because the nonlinearity is not high. If no information is available about bias 

parameters in the AIV from calibration process, the bias parameters can be initialized with a zero 

vector. Simulations show that the filter converges without problems but after larger time for the 
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previously mentioned bias stability. We show next in Fig.  5.6 and Fig.  5.7 the plots of the errors in the 

estimated angular velocity and acceleration vectors for the improper initialization case.  
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Fig.  5.6 Angular velocity estimation error with initialization error 
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Fig.  5.7 Angular acceleration estimation error with initialization error 
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5.8 Simulation Results for Non-Augmented Model  

In this part of simulations, we consider the same trajectory described previously but with bias 

parameters non-appended to the state vector which means we simply ignore them. The condition for 

ignoring bias parameters is explained previously in subsection  3.6.2. 

5.8.1 Trajectory Profile and Parameter Setting 

We repeat the previously used trajectory profile with same settings except for the noise and bias levels 

which are set to . 100 μg Hzaccw   and the bias selected randomly from distribution with 1 standard 

deviation of 100 μg . The chosen accelerometer specifications satisfy the criteria that the error is 

dominated by white noise error at the selected sampling rate of 0.01 s.  

5.8.2 Results and Analysis 

First, the execution time was much smaller than the previous model which has bias parameters 

appended because we have much simpler state model. Using a reduced model implies reducing 

computation load remarkably. The plots of errors in the estimated angular velocity and the estimated 

angular acceleration vectors are shown in Fig.  5.8 and Fig.  5.9 respectively. From figures we see a fast 

convergence to the true profile of angular velocity and angular acceleration. Again, we see a small 

swing in the x and y components of the angular velocity and the angular acceleration which is 

explained previously in section  5.7.2. 
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Fig.  5.8 Angular velocity estimation error for reduced model 
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Fig.  5.9 Angular acceleration estimation error for reduced model 

To see the effect of ignoring higher bias values, we repeated the simulation with the same parameter 

values used in section  5.8 and created a plot of the estimated angular velocity. Such parameter values 

do not meet the criteria that accelerometer’s error is dominated by white noise error and hence this 

results in a biased estimate of the angular velocity as shown in Fig.  5.10. 
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Fig.  5.10 Angular velocity estimation error for reduced model with non-calibrated bias 
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5.9 Constraints Derivation 

In this section, we derive the equality constraints that exist in the model because of orthogonal 

accelerations. For a non-coning motion, the centripetal acceleration vector b b b
ib ib p    and the 

tangential acceleration vector b b
ib p   in ( 3.3) are orthogonal. The two vectors are represented as 

2 2

2 2

2 2

( )

( )

( )

y z x x y y x z z

c x y x z x y y z z

x z x y z y x y z

p p p

a p p p

p p p

     
     
     

    
     
    

 ( 5.33) 

z y y z

t z x x z

y x x y

p p

a p p

p p

 
 
 

  
   
   

 
 
 

. ( 5.34) 

We use three vectors as basis set that spans all possible distributed positions 

1 0 0

0 , 1 , 0

0 0 1

x

y

z

p

p

p

        
                
                

. ( 5.35) 

Applying inner product on ( 5.33) and ( 5.34) with three different values of 
T

x y zp p p    as given in 

( 5.35), produces the following set of equations 

2 2( ) 0

0
y z

x y z

x z y

 
  
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    
       
     




 ( 5.36)

2 2( ) 0 0
x y z

z x

y z x

  
 
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   
        
     





 ( 5.37)

2 2

0

( ) 0

x z y

y z x

x y

  
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 

   
       
       


 . ( 5.38)

After computing the inner product on the above vectors, we get the following equations 



74 

 

0

0

0

x y z x z y

y z x x y z

x z y y z x
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 

 
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. ( 5.39) 

The last constraint is dependent on the first two. Therefore, the remaining two independent constraints 

are  

0

0

x y z x z y

y z x x y z

     
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 

 

 
 

. ( 5.40) 

5.10 Constrained EKF  

We derived two constraints that need to be integrated within the EKF algorithm. The constraints 

equations shown in ( 5.40) contain angular acceleration components. The derivation of the angular 

acceleration vector from angular velocity vector by differentiation would give a noisy value hence we 

append the angular acceleration to the state vector. Moreover, the derivation of the Jacobian of the 

constraints will be much easier. Using the angular change vector augmented with angular velocity 

change vector as a state vector, results in the following state vector 

 1 6..
TT

x y z x y zx x x           . ( 5.41) 

5.10.1 Initialization 

The initial state vector and the initial estimate error covariance are set as shown in ( 3.17), ( 3.18). 

5.10.2 Prediction 

We use a nearly constant angular velocity change state-space model, which is also known as Wiener-

sequence model, for the process update. It assumes that the angular velocity change increment is an 

independent (white noise) process. Other sophisticated models for target dynamics, which can be used 

for process update, are surveyed in [52]. As discussed previously using this model, we can estimate 

the bias parameters in the AIV when they are appended to the state vector. This model is expressed in 

discrete-time as 

1 1 1 1

3 3 3 3 3 3
1 1

3 3 3 3 3 3

   

,  
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k k k k k

k k

x F x G w

I tI tI
F G

I I

   
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 

  

  

    
     

   

. ( 5.42) 

This process noise covariance is computed as 
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1 1 1 1cov( ) T
k k k kQ G w G      . ( 5.43) 

The a priori estimation error covariance is updated as 

1 1 1 1
T

k k k k kP F P F Q 
       . ( 5.44)

The a priori state estimate is updated as 

1 1ˆ ˆk k kx F x 
  . ( 5.45)

5.10.3 Measurement Update 

The whole AIV given in ( 3.8) - ( 3.10) is used to derive the measurement of the new state vector. 

Considering the existence of a white Gaussian noise in each accelerometer measurement, the 

observation inherits also white Gaussian noise v  vector and it is written as 

 2 2 2
4 5 6 1 2 1 3 2 3 1 2 3 1 9( , ) ..

T T

k k kk
y h x v x x x x x x x x x x x x v v       . ( 5.46)

The Jacobian of the new measurement model '
kH  is expressed in terms of the Jacobian of three-state 

model H  given in ( 3.29) as 

3 3 3 3

6 3ˆ ˆ

0( , )

0
k k

k
k

x x x x

Ih x v
H

Hx  

 

 

        
. ( 5.47)

The measurement covariance '
kR  of the new model is computed based on the previously derived 

measurement covariance kR , cross correlated covariance kM  and covariance 1kQ  of the three-state 

model 

2
1 ( )k k

k T
k k

Q t M t
R

M t R
  

    
. ( 5.48) 

The Kalman gain is updated as  

1( )T T
k k k k k k kK P H H P H R       . ( 5.49) 

The a posteriori estimation error covariance and the a posteriori state estimate are updated as given in 

( 3.33)-( 3.34). 

5.10.4 Handling of the Nonlinear Equality Constraints 

There are many approaches for handling equality constraints in the Kalman filtering literature. 

Common approaches include pseudo measurement, projection and model reduction approaches. Due 

to the nonlinearity of the constraints, model reduction is not applicable in our system. In the 

pseudomeasurement approach, also known as pseudo-observation approach, each nonlinear constraint 
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is modeled as an observation with additive white Gaussian noise to relax the rigidity of the constraints. 

An example of that approach for the use of kinematic constraint is described in [53] with the 

decreasing covariance rationale which was introduced to relax the rigidity of the constraints. In 

projection approach, the unconstrained estimate is projected onto the constraints surface as developed 

by Simon [54] or using its second order nonlinear extension [55]. The UKF, which has proven to be 

superior to the EKF in case of significant nonlinearities, can be also applied to incorporate nonlinear 

constraints to achieve a better estimation performance either using pseudomeasurement approach or 

projection function [56]. However, we choose an algorithm, which might be computationally less 

demanding compared with other algorithms. In our simulations, we use the smoothly constrained 

Kalman filter (SCKF) developed by Geeter for applying nonlinear constraints because nonlinear 

constraints are different from linear constraints due to truncation and base point errors resulting from 

EKF linearization [56, 57]. Essentially the SCKF algorithm is classified as a pseudomeasurement 

approach combined with the iterated extended Kalman filter (IEKF), which iteratively applies 

nonlinear observations to reduce truncation errors. In every time step, each constraint is linearized 

with the last available estimate and applied iteratively with exponentially decreasing uncertainty. The 

smooth application of constraints is motivated by the fact that applying a measurement of variance   

is equivalent to applying the same measurement k  times each with variance k . The equality 

constraints function and its Jacobian matrix, considering the new state vector, are derived from ( 5.40) 

as 

1 2 6 1 3 5

2 3 4 1 2 6

2 6 3 5 1 6 1 5 1 3 1 2

2 6 3 4 1 6 2 4 2 3 1 2

( )
( ) 0 ,  E

0
     

0

c
c c

x x x x x x e x
e x

x x x x x x x

x x x x x x x x x x x x

x x x x x x x x x x x x

  
      

   
    

. ( 5.50) 

The following algorithm summarizes how to incorporate the constraints after measurement update 

using the SCKF 
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The function crow  finds the c-th row of ( )ce x  and cE  to apply constraints sequentially. The value of 

the fraction factor   for the initial variance needs to be verified by simulations. The relative strength 

s  compares the variance in the denominator, which is a sum of terms, to one of the largest terms 

forming that variance. The symbol ths  is a termination criterion for the application of constraints, 

which Geeter sets to be 100ths   as a practical value. To avoid any convergence problems, we should 

apply those constraints after sufficiently applying the observations. For rapidly changing angular 

velocity profile it would be difficult to estimate the angular velocity change, consequently in such 

situations the constraints are not applied. 

5.11 EKF Constrained Model Simulation Results and Analysis 

A similar setup to the one described in section  3.6 is repeated here for the constrained model. In the 

following plots, we compare the performance of the EKF constrained model with the EKF 

unconstrained model. We choose a constant angular velocity trajectory and we set the separation 

distance d to 1 m. The angular velocity vector is given as 

( ) [1 1 1]Tt  . ( 5.52)

The angular velocity along each component is set to 3.29 rad/s  . Three levels of white noise error 

are considered in the simulation, namely tactical, automotive and consumer grade as categorized as 

shown in Table  5.2. We evaluate the improvement in the estimation performance by computing the 
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root mean square error (RMSE) over Monte Carlo runs. Clearly, there will be an improvement due to 

the use of the dynamic model over the three-state model.  

Table  5.2 Accelerometers Categories 

Performance Parameter Consumer Automotive Tactical 

Noise Floor VRW (μg Hz ) 2000 1000 500 

 

The RMSE is computed over 500 Monte Carlo runs. Due to space limitations, we show here the 

simulation results in Fig.  5.11 - Fig.  5.14 using tactical accelerometers category only. We applied the 

constraints directly after passing 10 seconds to distinguish between the improvement due to use of 

dynamic model and the improvement due to the application of constraints. The RMSE of the angular 

change components and the angular change vector are tabulated in Table  5.3 for the three categories of 

accelerometers. 

Table  5.3 Comparison of steady state RMSE for different accelerometers categories 

D=1 m Tactical Grade Automotive Grade Consumer Grade 

Model Unconstrained Constrained Unconstrained Constrained Unconstrained Constrained 

Term 

 [ ]rad  54.09 10  68.54 10  58.44 10  -51.47 10  41.66 10  52.64 10  

 [ ]x rad  52.38 10  64.97 10  54.74 10  68.17 10  59.94 10  51.55 10
 

 [ ]y rad  52.29 10  64.87 10  54.84 10  68.53 10  59.32 10  -51.50 10  

 [ ]z rad  52.41 10  64.95 10  55.04 10  68.74 10  59.42 10  51.52 10  
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Fig.  5.11 RMSE of angular change vector 
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Fig.  5.12 RMSE of x  
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Fig.  5.13 RMSE of y  
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Fig.  5.14 RMSE of z  

For all categories of accelerometers, there was a clear superiority of the constrained model over three-

state model in the steady state RMSE and this superiority increases after applying the constraints. 

Typically, we should have a similar improvement reflected in the RMSE of each estimated angular 

change component due to the symmetry of the GF-IMU configuration, equal signal input in 3D 
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components and symmetry of the constraints. The simulation results are in agreement with that. 

5.12 Summary 

In this chapter, we presented another approach for AME utilizing dynamic models in 3D which is 

capable of estimating bias parameters in the AIV in the GF-IMU. Observability analysis shows that 

the state space model with appended AIV bias parameters is observable whenever the angular 

acceleration vector has non-zero magnitude. Simulation results show the filter ability to track the bias 

parameters in the AIV. Moreover, we derived nonlinear equality constraints and presented a filter 

approach to benefit from the constraints in improving estimation performance. This improvement is 

verified by simulation results. 
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Chapter 6 

DCM Based Attitude Estimation  

In this chapter, we describe an attitude estimation algorithm based on the DCM attitude representation 

and analyze its performance. This algorithm is appropriate for the implementation of a low-cost AHRS 

which is composed of MEMS IMU and magnetometer triad. To reduce the computational burden, we 

estimate only six elements of the nine elements of the DCM. Kalman filtering is used to fuse the 

angular rate, specific force and magnetometer triad measurements. The DCM model has an advantage 

over other attitude representations because it has linear measurement equations of accelerometer and 

magnetometer triads. For the DCM orthogonalization, we recommend a low computational burden 

algorithm within the integration filter. Finally experimental data is used to verify the efficiency of the 

algorithm. 

6.1 Attitude Estimation Using Inertial Sensors 

AHRS devices provide attitude and heading information for many applications. Attitude can be found 

using either vision systems, magnetic, and inertial sensors or using a combination of those systems. 

For the static case, an accelerometer triad can provide accurate tilt angles (roll and pitch) while the 

remaining heading angle can be found using the aid of a magnetometer triad in low-cost systems or 

using gyro-compassing in navigation grade inertial systems. Tilt angles are found by knowing the 

local gravity vector and measuring the projected gravity on the body frame axes. For the dynamic 

case, the angular rate vector of a gyro triad output is integrated over time to compute the new attitude. 

Since magnetometers and accelerometers give a direct measurement of attitude, Kalman filtering 

methods can correct for the accumulated error resulting from integrating the gyros’ outputs. Gyro 

errors play an important role in determining the quality of the attitude estimation for the dynamic case. 

Hence, having high quality angular information implies better attitude estimation. Unfortunately, low-

cost gyros are characterized by large errors; therefore, there is a need for algorithms that are capable of 

estimating the gyro bias vector effectively. 

6.2 Literature Survey of Common Attitude Representation Methods 

There are three common attitude representations that can be used in the implementation of the fusion 

filter, namely Euler angles, quaternion [58, 59] and DCM [60]. The DCM and quaternion attitude 
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based models have linear update models with respect to their parameters. One advantage of using a 

DCM based model is having a linear measurement model for accelerometers and magnetometers with 

respect to the DCM elements and hence avoiding the linearization errors and reducing computations. 

Another advantage over Euler-based attitude estimation is getting better results in preserving the 

singularity points which occur when the pitch angle reaches ±90 degrees [60].  

The direct estimation of the DCM elements has been investigated previously. A Kalman filter for the 

state matrix estimation was developed in [61] and used to estimate a general DCM with applying 

different DCM orthogonalization methods. The DCM which transforms from the body coordinate 

frame to the local navigation frame is the most common one and henceforth we use the abbreviation 

DCM to refer to that matrix. In [60], we see another approach for a DCM based  attitude estimation 

using two cascaded filters : one for estimating the tilt angles and the other for estimating the heading 

angle where the DCM elements to be estimated are reduced to the second and third rows. In that 

approach they do not apply the magnetometer triad measurements directly since they find the heading 

angle and then they create a pseudo-measurement for the second row of the DCM. Another example is 

given in [62], where the number of the estimated elements is reduced to the third row elements; 

however, that approach is limited only to roll and pitch angles estimation because the elements of the 

third row contain no trigonometric functions of the heading angle.  

The DCM has nine elements and it is a representation of three independent elements, therefore it has 

redundancy that can be translated into relations among the DCM elements. Because of this redundancy 

in the DCM elements, reduction of the number of elements of the DCM to be estimated is desirable to 

minimize the computations and to avoid applying the nonlinear orthogonality constraints. 

Theoretically, we can estimate only three elements of the DCM that contain trigonometric functions of 

three Euler angles. On the other hand, doing so makes improper use of the accelerometer and 

magnetometer triads measurements. Therefore, we estimate six elements of the DCM and the 

remaining three elements are found using DCM orthogonalization. The most suitable six elements of 

the DCM to be estimated are the first and third row because gravity and magnetic field of the Earth has 

no east component in the NED frame. Those six elements have been used previously in [63], where 

two Kalman filters were used to estimate the DCM elements and the gyro bias vector. In that 

approach, two DCM orthogonality constraints were used as pseudo-measurements along with 

measurements of a magnetometer triad and a mono-axial accelerometer corrected by wind speed. 

Actually, there are three constraints among six elements of the DCM since they represent three 

independent elements. In this thesis, we use triads of inertial sensors and magnetometers. Moreover, 
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we adopt a procedure to benefit from the measurements of the accelerometer triad in the dynamic case 

and a procedure for validating the magnetometer triad measurements. We use a central filter to 

estimate the DCM elements and the gyro bias vector. The remaining three constraints are handled 

using a simple pseudo-measurement approach to ensure the orthogonality of the DCM. 

6.3 Attitude Update Using Rotation Angle Vector 

6.3.1 Euler Angles Update 

The update of Euler angles is performed using the following equation 

1 , 1 , 1

1

0

0

n n n b
k k b k ib k

n
b

E t

s t c t

E c s

s c c c



q f q f

q q

q f q f

y y w- - -= + D
é ù
ê ú
ê ú= -ê ú
ê ú
ê úë û

 ( 6.1)

where n
bE  is the rotation rate transformation matrix,  is the Euler angles vector [ ]Ty f q j=  and 

xc , xs  and xt  represent the mathematical operations of cos( )x , sin( )x and tan( )x respectively. 

6.3.2 DCM Update 

The rotation angle vector is used to update the attitude DCM of the body frame with respect to a fixed 

the inertial frame. The update of the attitude DCM due to the rotation of the body frame with respect 

to the navigation frame has the following differential equation 

n n b
b b nbC C    ( 6.2)

where b
nb  is turn rate of the body frame with respect to the navigation frame expressed in the body 

frame and   represents the cross product operation as defined in ( 3.2). For low-cost gyros, the update 

will be mainly due to the turn rate of the body frame with respect to the inertial frame. The discrete-

time solution is given as 

11 12 13

, 21 22 23 , 1 1

31 32 33

n n
b k b k k

c c c

C c c c C A

c c c
 

 
   
  

.
 ( 6.3)

The matrix 1kA   is another DCM that transforms from the body coordinates at the kth computer cycle 

to the body coordinates at the k-1th computer cycle using the angle rotation vector as shown in [25, 64, 

65]. The matrix 1kA   based on gyro measurement vector is computed as 
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( 6.4)

Assuming that the angular velocity vector has little change during the update interval, we can 

approximate the angle rotation   as 

1

k

k

t
b b

ibib

t

dt t   


    . ( 6.5)

This matrix A  is computed as 

   2 2 2 2
1 2

sin 1 cos
,  k x y zA I

      
 


        . ( 6.6)

The matrix A  considering a second order approximation is given as 
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. ( 6.7)

6.4 DCM Based Attitude Estimation Algorithm  

The purpose of the attitude filter is to estimate the attitude through optimal fusion of angular rate, 

specific force and magnetometer triad measurements. In the AHRS, we aid a standard IMU, which 

encloses accelerometer and gyro triads, with a magnetometer triad. One important point which should 

be considered is the bias in inertial sensors. There are several approaches to tackle this problem such 

as augmentation of the bias to the state vector. The accelerometer bias vector has a small effect on the 

attitude estimation; hence, we assume it will not change significantly after being calibrated. We 

append the gyro bias vector to the six DCM elements. However, appending the gyro bias vector makes 

the process model nonlinear because it introduces state multiplication which can be handled using a 

pseudo-linear process model as shown in [61]. The state vector can be reduced to the six elements of 

the DCM if the gyro bias vector is captured using the zero attitude updates, known as zero velocity 

update (ZUPT), once the body is detected at reset. As mentioned before, we estimate the first and third 

row of the DCM since the elements of the second row are not observable by either accelerometer triad, 

at static moments, or magnetometer triad. The state vector consists of the six elements of the DCM 

appended with the gyro bias vector 
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6.4.1 Filter Initialization and Process Update 

The state vector and the estimate error covariance are initialized as shown in ( 3.17) and ( 3.18). The 

error model for the angular rate measurement vector is composed of Gaussian white noise error gw  

and bias error gb . Hence, the angular change is computed as 

b
ib g gt b t w t       . ( 6.9)

By substituting ( 6.9) in ( 6.7) and ignoring second order terms, the measured matrix A  can be written 

in terms of the exact matrix A  as 

1 1k k g gA A b t w t 
          

 . ( 6.10)

The DCM update part for the selected rows and considering the gyro bias vector correction based on 

( 6.3) is given as 
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The gyro bias vector can be modeled as a random process driven by Gaussian white noise vector bgw  

which is uncorrelated with the gyro noise vector gw  

7:9, 7:9, 1 , 1k k bg kx x w   . ( 6.12)

The process covariance 1kQ  is composed of two parts which are the DCM elements process 

covariance and the gyro bias vector process covariance and it is computed as 
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The a priori state estimate is updated as 
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The a priori estimation error covariance is computed as ( 3.26). 

6.4.2 Measurement Update 

The accelerometer measurement vector is used to update the tilt angles of the DCM when the AHRS is 

detected at static or nearly static phase. The accelerometer measurement model is assumed to be 

corrupted by a white Gaussian noise error. For static scenario, the only measurable acceleration is due 

to gravity 

,
Tb b n b b b b

n a x y za C g v   a a a a      . ( 6.15)

The Jacobian of this measurement is simply given as 

 3 3 3 3 3 30 0aH gI   . ( 6.16)

In practice, it is not always the case for the AHRS to be static. In fact, for the static case there is no 

need for a gyro update. Therefore, the variance of the accelerometer triad measurements is set to be 

dynamic. If the magnitude of the accelerometer triad measurements is close to the magnitude of the 

gravity for certain amount of time then the variance is set small. If the accelerometer triad 

measurement deviates much from the gravity, then the variance is increased as shown in [66-68]. This 

is true because the magnitude of the acceleration measurements due to gravity is always equal to g at 

static position regardless of the orientation. 

Through the use of a magnetometer triad, we can estimate the complete attitude including the heading 

angle. To use this measurement vector directly, we need knowledge of the magnetic field vector in the 

local navigation frame. The north and down components of the magnetic field depend on the 

inclination angle   of the Earth’s magnetic field [69]. This angle is the angle between the Earth’s 

magnetic field and surface of the Earth. The Earth’s magnetic field is given as 

 cos( ) 0 sin( ) 0
N D

TTn
m m m h h h       . ( 6.17)

The inclination angle can be found from tables or by transforming non-disturbed  magnetometer triad 

vector measurement into the local navigation frame [70]. The magnetometer measurement model is 
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assumed to be corrupted by a white Gaussian noise error. The magnetometer triad vector measurement 

is related to the magnetic field vector n
mh  in the NED frame as 

b b n
m n m mh C h v  . ( 6.18)

The Jacobian of this measurement is given as 

3 3 3 3 3 30
N D

n n
m m mH h I h I      . ( 6.19)

A validation test is be performed on the magnetometer triad’s measurements as described in [59, 71] 

in similar way to accelerometer handling. Therefore, the variance of the magnetometer triad 

measurements is set to be dynamic. If the magnetometer triad measurement deviates much from the 

unity magnitude, then the variance is increased. This is true because the magnitude of the 

magnetometer triad measurements should equal to unity since frame transformation does not change it 

magnitude. The accelerometer and magnetometer triads’ measurements constitute the total 

measurement vector ky  which has the Jacobian kH  given as 

,
b

a
k kb

mm kk

Ha
y  H =

Hh

   
    

  
. ( 6.20)

The measurement covariance matrices of both triads are assumed to be independent with Gaussian 

distribution 
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The Kalman gain is updated as shown in the literature covering the Kalman filtering, e.g., [37]. 

6.4.3 Other Approaches for Using Magnetometers 

We describe other approaches of using magnetometer triad vector measurements to find the heading 

angle for comparison purposes only. The first approach which is given in [72] requires knowledge of 

the tilt angles (roll and pitch); however, the knowledge of the magnetic field in local navigation frame 

is not required. This approach is summarized in the following equations 
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( 6.22)

Another simpler approach is given in [73] which requires knowledge of the magnetic field in local 

navigation frame and it is formulated as 
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From ( 6.22) and ( 6.23), we see clearly the advantage of using the DCM based attitude estimation in 

terms of linearity and simplicity over the use of Euler angles. 

6.4.4 Handling of Nonlinear Constraints of the DCM 

The goal of the application of the constraints is to have an orthogonal estimated DCM. The 

orthogonality of the DCM implies 

3 3( )n n T
b bC C = I  . ( 6.24)

The non-estimated row can be found using the following property of cross product of the rows 

2 3 1ˆ ˆc c c  . ( 6.25)

Equation ( 6.24) implies six nonlinear equations considered as constraints on the DCM. Since we 

estimate six elements, only three constraints are applicable given as 

2 2 2
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. ( 6.26)

There are several approaches for handling nonlinear constraints in the literature of Kalman filtering. A 

comprehensive survey of the approaches can be found in [74]. Proper handling of the constraints can 

improve the estimation performance. We use the pseudo-measurement approach [53] to get an 

orthogonal DCM. Each pseudo-measurement is modeled with additive white Gaussian noise. This 

approach has a decreasing covariance rationale to relax the rigidity of the constraints. The Gaussian 

noise covariance is initialized with a large value that decreases with time as given next 

, 3 3 3 3( )    0 1k
c k i ssR R I R I      . ( 6.27)

where ssR  represents steady state covariance and iR  represents the initial covariance. The values of 

ssR and iR  depend on the current estimation error and can be found from consistency checks. The 

value of the rationale   is set to 0.92  and its rule is to allow ,c kR  decrease with time. The constraints 

function and its Jacobian matrix are derived from ( 6.26) and it is computed with the available a 

posteriori state as 
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( 6.28)

The Kalman gain, the a posteriori estimation error covariance and the a posteriori state estimate of the 

constraints are computed according to the EKF equations. 

6.5 Experimental Results and Evaluation of the Performance 

We analyze the performance of the AHRS algorithm using experimental data collected from human 

hand motion of the AHRS.  

6.5.1 Specifications of Sensors and Parameter Settings 

We used the inertial sensors and the magnetometer triad of the older version of the Xsens MTi AHRS 

as a low-cost platform for testing our algorithm. The specifications of the accelerometers and gyros 

based on manufacturer datasheet are given in Table  6.1. A total of 12000 points of sensors’ 

measurements are collected at 0.01 s sampling time. 

Table  6.1 Specifications of the used inertial sensors 

Parameter (unit) Value 

Accelerometer noise 2(m s Hz  )  0.002 

Accelerometer bias stability 2(m s )  0.02 

Gyro noise ( s Hz )  0.1 

Gyro bias stability ( s)  5 

Magnetometer noise (mGauss Hz)  0.5 

Update rate (s)t  0.01 

 

Also, we used the ITG-3200 which is a more accurate gyro triad that has noise specifications of 

0.03 s Hz  to evaluate the filter. Both sensors were mounted to a common base and calibrated for 

misalignment and bias parameters using a turn table. We refer to Xsens MTi gyro triad as GT1 and to 

ITG-3200 as GT2 for simplicity.  
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6.5.2 Trajectory Profile 

We kept the common base static at the beginning of the experiment at a known attitude to have 

accurate reference of the initial conditions and the gyro bias vector then we moved the system using 

hand motion. Since the both gyro triads do not detect Earth rotation, the outputs of the gyro triads can 

be adjusted to zero at reset position. Within the trajectory profile, we positioned the base through the 

initial position to let the filter rest the accumulated errors. Also, we kept the base static at the end at 

the same initial attitude to have an accurate reference. The plots of the GT1 outputs are shown in Fig. 

 6.1. 
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Fig.  6.1 Angular velocity profile measured by the Xsens gyro triad GT1 

Fig.  6.2 shows the plots of proper acceleration measured by the Xsens accelerometer triad. 
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Fig.  6.2 Proper acceleration profile measured by the Xsens accelerometer triad 

The outputs of the accelerometer triad show a small value of the accelerometer bias vector which has a 

small effect on the estimation of the tilts angles. They also show the static moments which will be 

used for correction.  

6.5.3 Attitude Estimation Filter Results 

In Fig.  6.3, we plot the results of the Euler angles extracted from the estimated DCM elements, 

denoted as estimated Euler angles for simplicity for both gyro triads. We also plot Euler angles 

computed by accumulation of the biased GT1 measurement vector and the bias calibrated GT2 

measurement vector. The accumulated Euler angles are initialized correctly with the available 

accelerometer and magnetometer triads’ measurements. We do so to show the effect of the gyro bias 

vector on the computation of the Euler angles by direct accumulation. The non-biased accumulation of 

GT2 is used to show the effect of gyro noise on the error accumulation. 



93 

 

0 20 40 60 80 100 120
−100

0

100
Estimated and accumulated Euler angles v.s Time

R
ol

l (
°)

0 20 40 60 80 100 120
−100

0

100

P
itc

h 
(°

)

0 20 40 60 80 100 120
−200

0

200

Y
aw

 (°
)

Time (s)

Est. GT1 Est. GT2 Accum. Non−biased GT2 Accum. Biased GT1

 

Fig.  6.3 Estimated and accumulated Euler angles 

From Fig.  6.3, we see that the estimated Euler angles using both gyro triads are in agreement with 

those computed by the accumulation of the non-biased GT2 measurement vector. The accumulated 

Euler angles computed from the biased GT1 measurement vector diverge quickly due to the large gyro 

bias vector while the accumulated Euler angles computed from the non-biased GT2 measurement 

vector diverge at a much slower rate. The plots show the advantage of the accelerometer and 

magnetometer triads’ corrections for the estimated Euler angles. Fig.  6.4 shows the difference between 

the estimated bias and the mean of the gyro bias at static position for the three components of GT1. 

The estimated gyro bias vector converges quickly to the true vector value with small estimation error 

though it was initialized improperly to test the filter capability of convergence. 



94 

 

0 20 40 60 80 100 120
−2000

0

2000
Estimated X−Gyro Bias Error

X
 E

rr
or

 (°
 /h

)

Time (s)

0 20 40 60 80 100 120
−2000

0

2000
Estimated Y−Gyro Bias Error

Y
 E

rr
or

 (°
 /h

)

Time (s)

0 20 40 60 80 100 120
−2000

0

2000
Estimated Z−Gyro Bias Error

Time (s)

Z 
E

rr
or

 (°
 /h

)

 

Fig.  6.4 Estimation error of the gyro bias vector 

6.6 Summary 

In this chapter, we presented the algorithm and the experimental results for a reduced DCM based 

attitude estimation filter implemented using low-cost IMU and magnetometer triad. The gyro bias 

vector was appended to the state vector to be estimated. The DCM attitude estimation filer is 

characterized by its linear measurement model for accelerometer and magnetometer triads. The 

experimental results show the validity of the filter for low-cost inertial sensors and the capability of 

the filter in estimating the gyro bias vector. The results also show the divergence effect of non-

calibrated gyro bias vector in the accumulated Euler angles. Further research can be conducted to 

compare the performance and the computational load of the DCM algorithm with Euler and quaternion 

based attitude estimation algorithms.  
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Chapter 7 

DCM Based GPS/INS Integration 

In this chapter, we derive a GPS/INS integration algorithm based on the DCM attitude representation 

model and analyze its performance. The motivation for this work is to find an algorithm that is capable 

of tracking the variation of the gyro bias vector during operations and that benefits from the 

established DCM based attitude estimation algorithms. Filter performance is evaluated using a 

simulation based on an air vehicle trajectory profile and is compared with Euler angles based UKF. 

We investigate the effects of improper initialization of the state vector on the filter performance. These 

results are supplemented using experimental data collected along a car route with two different grades 

of IMUs. The DCM based model has some advantages over other attitude representations due to its 

relatively moderate computational load and applicability with different categories of inertial sensors. 

7.1 Literature Survey for DCM Based Integrated Navigation 

The direct estimation of the DCM elements has been investigated previously; however, it was not used 

with GPS/INS integration specifically. Most of the previous use focuses on the use of the DCM for 

AHRS implementation [60-62]. Little attention is given to combine the DCM elements attitude 

estimation within GPS/INS integration filter. One example for the use of the DCM in INS/GPS is 

given in [75]; however, the main integration filter is based on error model of Euler angles and the 

DCM based attitude estimation algorithm is used to estimate the roll and pitch by benefiting from 

accelerometer triad measurements. The estimated tilt angles are used as measurements in the main 

INS/GPS algorithm. In our approach, we use only the DCM as attitude representation. 

7.1.1 Current GPS/INS Integration Algorithms based on Euler Angles 

The Kalman filter is a linear recursive estimation tool that is used for GPS/INS integration. Most of 

the previous GPS/INS integration filters focus on the use of Euler angles based model which has less 

number of elements; however it has high nonlinearity due to the use of sinusoidal terms in the process 

model. Moreover, the direct measurements of magnetometers, which are used often with low-cost 

inertial sensors, are also nonlinear if it has been used to find Euler angles. Several approaches can be 

used to overcome the nonlinearity such as using EKF, which gives first order approximation, or using 

the UKF. Generally, the use of the UKF for the total state model gives good estimation results 

compared with other linearization methods but it is often highly computationally demanding. The 
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UKF approximates the distribution function using a certain number of samples instead of 

approximating the function itself. On the other hand, the linearized error model based on Euler angles 

attitude representation works well under the conditions of good calibration and alignment of inertial 

sensors. Under the assumption of small angular change within time update intervals, the error model 

based on Euler angles can be greatly simplified but that assumption is unlikely to hold when using 

low-cost gyros that are characterized by large time-varying bias. Low-cost MEMS inertial sensors are 

characterized by having a large random bias that drifts slowly with time due to its dependency on 

many parameters such as temperature and gravity sensitivity. Therefore, the bias parameters of MEMS 

inertial sensors should be calibrated in advance and during the flight for a proper GPS/INS integration 

using the simplified linearized error model. The on-the-fly bias compensation is needed since the bias 

components are not constant rather they drift over time. We refer the reader to [76], for a comparison 

between different Kalman filtering methods to overcome system nonlinearity based on Euler angles 

for low-cost sensors.  

7.1.2 Estimation of the DCM Elements within the GPS/INS Integration Algorithm 

The advantages of using DCM as attitude representation was detailed in section  6.2. Since the 

computation of the DCM is required in any integration approach in the strapdown mechanization 

equation, estimating it can reduce computations. Though the use of the DCM implies a larger state 

space model, its computational load is relatively moderate due to its simple time update model.  

7.2 The Strapdown Mechanization and DCM Based Filter Formulation 

The strapdown mechanization algorithms [25] are the basis for the GPS/INS integration approach. We 

use the local navigation frame mechanization given as 

(2 )

n n

n n b n n n n
b ie en

n n b
b b nb

r

C a g

C C



   





    

 





 ( 7.1)

where 

nr : Position expressed in the NED frame. 

n : Velocity expressed in the NED frame. 

ba : The true accelerometer measurement vector expressed in the body frame. 

ng : The gravity vector in the local navigation frame  0 0
T

g . 
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n
bC : A DCM that transforms the inertial measurements from the body frame denoted as b to the local 

navigation frame denoted as n. 

n
ie : Earth’s turn rate expressed in the body frame. 

n
en : Turn rate of the local navigation frame (transport rate). 

n
nb : Turn rate of the body frame with respect to the local navigation frame. 

 : represents the cross product operation defined as skew symmetric form 

0

, 0

0

x z y

y z x

z y x

  
    

  

  
       
      

. ( 7.2)

7.2.1 State Vector to Be Estimated 

We apply the integration approach here to a loosely coupled scenario; however, it is also applicable to 

other integration scenarios. The state vector is composed of the nine elements of the DCM, the gyros 

triad bias vector, the accelerometer triad bias vector and six states of position and velocity expressed in 

the local navigation frame. The elements of the state vector are ordered in the following form  

     

   

, ,
1 2 3

1 11 12 13 2 21 22 23 3 31 32 33 ,

, ,

TT T T T n T n T T
g a

TT T T

g gx gy gz

TT Tn n
N E D N E D a ax ay az

x = c c c b r b

c c c c   ,  c c c c   , c c c c  b b b b

r r r r   b b b b



   

  

      

     

. ( 7.3)

where 

ab : Accelerometer triad bias vector. 

gb : Gyro triad bias vector. 

7.2.2 System Modeling 

The process update is divided into four parts which are the update of the DCM elements, update of 

gyro bias vector, update of position and velocity vectors and update of acceleration bias vector. The 

rotation angle vector which is the turn angle of the body frame with respect to a fixed inertial frame is 

used to update the attitude DCM. Attitude update with respect to a local navigation frame is composed 

of two updates: one due to the body frame rotation with respect to the inertial frame and the other due 

to the rotation of the navigation frame with respect to a fixed inertial frame [64]. For low-cost gyros, 
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the craft rate can be ignored and the update will be mainly due to the turn rate of the body frame with 

respect to the inertial frame. The discrete-time solution is given as 

, , 1 1
n n
b k b k kC C A 

.
 ( 7.4)

The error model for the angular rate measurement vector is composed of Gaussian white noise error 

gw  and bias error gb . Hence, the gyro triad measurement vector is given as 

b b
ib ib g gb w t     . ( 7.5)

By ignoring the quadratic terms of gyro errors of bias and noise, the matrix A  can be approximated 

and written in terms of the exact matrix A  as 

1 1k k g gA A b t w t 
          

 . ( 7.6)

The DCM update part is given as 
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. ( 7.7)

The gyro bias vector can be modeled as a random process driven by white noise 

10:12, 10:12, 1 1 1, 1 10:12, 1 , 1f ( , )k k k k k k bg kx x u w x w        . ( 7.8)

The error model for the accelerometer triad measurement vector is composed of Gaussian white noise 

error accw  and bias error ab . Hence, the accelerometer measurement vector is given as 

,   
Tb b b b b b

a acc x y za a b w a a a a           . ( 7.9)

Using the strapdown local navigation frame mechanization given in ( 7.1), the velocity and position 

process update model can be simplified by ignoring the craft rate as 

1

13:15, 13:15, 1 1 1, 1 13:15, 1 16:18, 1

16:18, 16:18, 1 1 1, 1 16:18, 1 19:21, 1
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n b n
k k k k k k b kx

x x u w x x t

x x u w x C a x t g t


     

     

   

       . ( 7.10)

In a similar way to the modeling of gyro bias vector, the accelerometer bias vector can be modeled as 

a random process driven by white noise 

19:21, 19:21, 1 1 1, 1 19:21, 1 , 1f ( , )k k k k k k ba kx x u w x w        . ( 7.11)

Considering evaluating the following state transition matrix at 1ˆkx
 , the whole process can have a 

pseudo-linear form given as 
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7.2.3 Filter Initialization and Prediction 

The initial state vector and the initial estimate error covariance are set as 

0 0

0 0 0 0 0
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. ( 7.13)

The a priori state estimate can be updated either using the process model given in ( 7.7) - ( 7.10) or 

using the model given in ( 7.12) with the matrix 1kF   evaluated with last available state vector estimate 

1ˆkx
  as shown in [61] for the attitude part. It is clear that the process model defined in ( 7.7) - ( 7.10) 

has less computational load than the process model defined in ( 7.12) due to avoiding multiplications of 

zeros. Considering the model given in for clarity, the a priori state estimate is updated as 

1
1 1ˆ

ˆ ˆ
k

c
k k kx

x F x g


 
   . ( 7.14)

Assuming the elements of the process noise vector w  are uncorrelated, the process covariance is 

computed as 
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The a priori estimation error covariance is computed as 

1 1 1 1
T

k k k k kP F P F Q 
     . ( 7.16)

7.2.4 Measurement Update 

In the loosely coupled mode, an observation from a GPS receiver consists of the position and the 

velocity vectors and hence the measurement and the Jacobian matrix for GPS observables are given as 
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The measurement covariance matrix is set to be dynamic to adapt to improper GPS estimates. The 

covariance is decreased when the GPS solution is good and increased if it is not good. The Position 

dilution of precision (PDOP), which is computed based on the geometry of the satellites, is used as a 

measure for the estimated position and velocity accuracy.  

The accelerometer measurement vector can be used to update the tilt angles of the DCM when the 

accelerometer triad is detected at static or nearly static phase. For static scenario, the only measurable 

acceleration is due to gravity 
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b b n
n a acca C g b w   . ( 7.18)

The Jacobian of this measurement is simply given as 

 3 3 3 3 3 3 9 3 3 30 0 0aH gI I     . ( 7.19)

For AHRS applications, the variance of the accelerometer triad measurements is set to be dynamic. If 

the magnitude of the accelerometer triad measurements is close to the magnitude of the gravity for 

certain amount of time then the variance is set small. If the accelerometer triad measurement deviates 

much from the gravity, then the variance is increased as shown in [66-68]. This is true because the 

magnitude of the acceleration measurements due to gravity is always equal to g at static position 

regardless of the orientation. For the GPS/INS integration filter, the acceleration check might not be 

enough. To ensure correct update of this measurement, we additionally check the magnitude of the 

predicted speed for certain amount of time and if it is close to zero then the measurement is validated 

otherwise it will not be incorporated. Cross correlation, as a result of using the measurement of the 

accelerometer triad in the process and in the measurement update, can be ignored for simplicity. 

The magnetometer triad measurement can be used to estimate the attitude DCM in a linear form with 

respect to the DCM elements. To do so, we need knowledge of the magnetic field vector in the local 

navigation frame. The north and the down components of the magnetic field are dependent on the 

inclination angle   of the Earth’s magnetic field [69] 

 0 cos( ) 0 sin( )
N D

T Tn n n
m m m  h h h      . ( 7.20)

Considering a Gaussian white noise error model, the magnetometer triad vector measurement is 

related to the magnetic field vector n
mh  in the NED frame as 
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   

. ( 7.21)

A validation test is performed on the magnetometer triad’s measurements as described in [59, 71]. 

Other approaches to use the magnetometer vector measurements to find the heading angle are 

described in [72, 73] ; however they contain trigonometric functions of the Euler angles. In this work, 

we do not use the magnetometer triad output because we focus on GPS and inertial sensors. The 

Kalman gain, the a posteriori estimation error covariance and the a posteriori state estimate are 

updated as given in the equation set ( 3.32)-( 3.34). 
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7.3 Total State Euler Angles Based UKF 

For performance comparison, we select the total state Euler angles based UKF algorithm due to its 

superior performance over the EKF. Since we use a loosely coupled filter, the sigma points are applied 

to the nonlinear process model to extract the a priori estimates from the transformed state vectors and 

for linear measurement update part we use the normal Kalman filter.  For simplicity, we refer to the 

Euler angles based UKF as EAUKF and for DCM Based Kalman filter as DCMKF in the rest of this 

chapter. Next, we describe briefly the EAUKF model and its governing equations. 

7.3.1 State Vector to Be Estimated  

The state vector is composed of the position and velocity vectors expressed in the local navigation 

frame, three Euler angles, the gyros triad bias vector and the accelerometer triad bias vector 
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7.3.2 Filter Initialization Prediction 

The simplified mechanization model in discrete-time can be expressed in the navigation frame as 
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The initial state vector and the initial estimate error covariance are computed as given in ( 7.13). The 

UKF equations are formulated as given in [37]. For n dimensional state model, we choose 2n sigma 

points vectors as follows 

   ( ) ( )
1 1 1 1ˆ ˆ,   1,..,

T T
i i n

k k k k
i i

x x nP x x nP i n    
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.
 ( 7.24)

The a priori estimate is computed from the mean of the transformed sigma points 

2
( )

1
1

1
ˆ f ( )

2

n
i

k k
i

x x
n






  .
 ( 7.25)



103 

 

The a priori error covariance is computed from the transformed sigma points as 
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where nP  is the matrix square root of nP  such that    T

nP nP nP which can be obtained 

from the Cholesky factorization ‘CHOL’ in MATLAB and  
i

nP is the ith row of nP . The matrix 

1kQ   is the covariance matrix of the system process noise. 

7.3.3 Measurement Update 

The Kalman gain, the a posteriori estimation error covariance and the a posteriori state estimate are 

computed according to ( 3.32)-( 3.34). 

7.4 Simulation Result of Air Vehicle 

7.4.1 Trajectory Profile and Simulation Parameters 

In this part, we use a 3D trajectory profile of air vehicle as shown in Fig.  7.1 to evaluate the 

integration performance of the filters.  

 

Fig.  7.1 Trajectory profile in 3D 

The velocity profile has a highly varying dynamics in the three dimensional components as shown in 

Fig.  7.2. This trajectory is a mechanization of a high quality inertial data. For that reason, it is used as 

a reference for generating the GPS measurements of position and velocity at 2 Hz frequency. Due to 

the high dynamics, only measurements from the GPS are used in the measurement update part of the 
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filter. The generated GPS measurements have a seeded Gaussian error of one standard deviation equal 

to 3 m for the position vector and 0.5 m /s for the velocity vector measurements.  

0 10 20 30 40 50 60
−40

−20

0

20

40
Velocity Components vs. Time

N
or

th
 (m

/s
)

0 10 20 30 40 50 60
−40

−20

0

20

40

E
as

t (
m

/s
)

0 10 20 30 40 50 60

−10

0

10

D
ow

n 
(m

/s
)

Time(s)  

Fig.  7.2 Velocity profile in 3D 

The Euler angles profile is shown in Fig.  7.3. 
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The specifications of the seeded noise and bias errors of the inertial sensors and the GPS 

measurements are given in Table  7.1. The total time of the flight is 68 seconds. 

Table  7.1 Numerical values of the simulation parameters  

Parameter 

(Unit) 

p  

(m)  

v  

(m/s)  

GPSf  

(Hz)  

t  

(s)  

.accw  

(g Hz )  

gw  

( h )  

gb  

( h)  

ab  

( g)m  

Value 3 0.5 2 0.02 100μ  3 1500 1 

7.4.2 Results for Proper Initialization 

In this part, we initialized both filters with accurate values of the DCM and the bias parameters. The 

position and velocity were initialized with the available measurement from the GPS and hence we set 

the initial position and velocity error covariance according to the values in Table  7.1. In Fig.  7.4, we 

plot the estimated Euler angles errors extracted from the estimated DCM elements, denoted as the 

estimated Euler angles for simplicity and those directly estimated by the EAUKF. 
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Fig.  7.4 Estimated Euler angles errors 

In Fig.  7.4 both estimated Euler angles vectors components have a bounded error of 0.5. The errors in 

the estimated position vectors are plotted in Fig.  7.5, which shows a bounded error of less than 2 

meters in every dimension for both filters.  The estimated gyro bias vectors are nearly identical to 

reference bias vector and hence we do not plot them here. From Fig.  7.4 and Fig.  7.5, we see 
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comparable performance of both filters and in some instants we have nearly identical behavior though 

both filters have different approaches. One explanation for this similarity is that the nonlinearity in the 

DCM is largely reduced by avoiding the sinusoidal terms. 
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Fig.  7.5 Estimated position errors 

7.4.3 Computational Burden of Both Filters 

The analytical approach to evaluate the computational burden is performed by counting the number of 

multiplications and additions used in the filter implementation. However, in our case we have two 

different models with different mathematical functions. The Euler angles based model contains 

sinusoidal terms while DCM model has no such terms and this complicates the analytical approach. 

One solution for a rough comparison is to use Matlab timing function which shows that DCMKF 

requires 4.61 seconds while the EAUKF filter requires 14.84 seconds. Though the dimension of the 

DCMKF state vector is larger than that of the EAUKF, the processing time of the DCMKF is much 

less than that of the EAUKF. This feature of the DCMKF makes it suitable for real-time applications.  

7.4.4 Results for Improper Initialization 

In this part, we initialized both filters with inaccurate values of the bias parameters to investigate the 

filters’ capability of converging to the true values. Clearly, we will not have a smooth behavior as we 

would have for the properly initialized filters as shown before. However, after both filters converge, 

they tend to have smooth behavior. Again, we plot the estimated Euler angles errors and the estimated 
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position errors. We see relatively large errors for the estimated Euler angles at the beginning and 

during the convergence as shown in Fig.  7.6 and after the filter converges the errors become much 

smaller. 
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Fig.  7.6 Estimated Euler angles errors for improper initialization 

The estimated position errors are also limited and tend to be lower after the filters converge as shown 

in Fig.  7.7.  
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Fig.  7.7 Estimated position errors for improper initialization 
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The true gyro bias vector is T[1000 500 -1500] ( h)  and the filters were initialized with [0 0 0] ( h)T   

which is far from the true vector value. Both filters converge to the true gyro bias vector in short time 

for the three components as it can be seen from Fig.  7.8. Again, we see comparable performance in 

both filters for the improperly initialized case. 
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Fig.  7.8 Estimated gyro bias vector errors for improper initialization 

7.5 Experimental Results Using Car Collected Data 

7.5.1 Route Profile and Sensors’ Specifications 

The goal of this part is to test the applicability of the DCMKF algorithm with different categories of 

inertial sensors. We investigate its navigation performance using experimental data collected during 

car navigation in the city of Siegen, NRW, Germany. We used two different IMUs: the first IMU is 

the LandmarkTM20 eXT MEMS-based IMU and the second one is Xsens MTi. The IMUs and Ublox 

GPS antennas are mounted on the car roof away from each other to avoid interference to the IMUs’ 

magnetometers as shown in Fig.  7.9. The synchronized data from IMUs and GPS are recorded using a 

digital signal processing (DSP) based platform. We refer the reader to [77] for details of the complete 

hardware description and the adopted data synchronization solution. The specifications of both IMUs 

based on manufacturer datasheet are given in Table  7.2. We select a total of 160000 points of sensors’ 
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measurements from the collected 30 minutes experimental data at 0.01 s sampling time. The GPS is 

updated at 1 Hz rate. 

 

Table  7.2 Numerical values of specifications and parameters of the IMUs 

Parameter (unit) Landmark Xsens 

Accelerometer noise 2(m s Hz  )  0.0007 0.002 

Accelerometer bias 2(m s )  

 

In-run stability = 0.005 

Over Temperature < 0.03 

0.02 

Gyro noise ( s Hz)  0.035 0.1 

Gyro bias ( h)  

 

In-run stability = 30 

Over Temperature < 360 

18000 

Operating Temperature ( C)  -40 …+85 -40 …+85 

 

For the XSENS IMU, the bias stability is temperature compensated and it represents the deviation over 

operating temperature range.  

 

 

Fig.  7.9 Mounted IMUs and GPS antenna on car roof  
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The 3D Positional dilution of precision (PDOP) and number of observed satellites during the 

experiment are plotted in Fig.  7.10 which shows two short-time periods of GPS outage due to passing 

through a tunnel two times. 
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Fig.  7.10 PDOP of GPS solution and number of satellites in view  

Plots of the outputs of gyro and accelerometer triads for both IMUs are shown in Fig.  7.11 and Fig. 

 7.12 respectively. 
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Fig.  7.11 Angular velocity profile measured by the gyro triads 
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Fig.  7.12 Proper acceleration profile measured by the accelerometer triads  

The inertial data of the landmark IMU is less noisy than that of the Xsens IMU. The car remained 

stationary at the beginning of the experiment to have accurate reference of the initial conditions and 

the gyro bias vector. Both gyro triads are not sensitive to Earth rotation. Within the route, the car 

experienced still moments which can be used to infer the gyro bias vector and to correct for tilt angles 

using the accelerometer triad measurements. 

7.5.2 Integration Results and Analysis 

We do not have a true reference so we show the results of both IMUs for comparison purpose. In this 

part, we initialized the filter with accurate values of the DCM and the gyro bias parameters for both 

IMUs. The initial gyro bias vector was found by averaging the gyro triad measurements when the car 

was at reset. The position and velocity vectors were initialized with the available measurements from 

the GPS. In Fig.  7.13, we plot the estimated Euler angles for both IMUs. It should be noted that we 

used the accelerometer triad to update the tilt angles of the DCM when the car experiences static 

moments for the Xsens IMU as described before. The estimated Euler angles in both IMUs are in 

agreement with each other. Better performance can be achieved using a tightly coupled filter. 
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Fig.  7.13 Estimated Euler angles 

In Fig.  7.14, we plot the estimated gyro bias vectors for both IMUs. Since we do not have exact 

references for the gyro bias vectors, we use the extracted values from the moments while the car is 

static as a reference. The filter is able to track the bias variation of the gyros of both IMUs as the 

estimated values are compatible with those recorded at the end of the experiment when the car 

stopped. 
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Fig.  7.14 Estimated gyro bias vectors 
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Fig.  7.15 Estimated trajectories 

In Fig.  7.15, we plot the estimated 2D trajectories for both IMUs. We see that the estimated 

trajectories are following very close track. Moreover, the plot shows that the filter is capable of filling 

short-time gaps of GPS outages without experiencing divergence.  

7.6 Special Forms of DCM Based GPS/INS Integration 

The kinematics or dynamics of many moving vehicles can be modeled. Most of the current GPS/INS 

integration approaches do not consider the available information from dynamic models in the 

integration algorithm. Moreover, modernized GPS and the new European positioning system Galileo 

promise a better positioning accuracy. This presents new opportunities extending the use of dynamic 

models in GNSS and inertial sensors integration. Performance improvement can be increased by 

modeling of the dynamics if the model describes the dynamics sufficiently. This integration approach 

is based on the ground alignment method for attitude and heading determination. Attitude accuracy is 

an important issue for many applications including synthetic aperture RADAR (SAR) [78]. Most of 

the low-cost commercial MEMS based IMUs provide attitude solution based on ground alignment 

method. For static scenarios the low-cost tri-axial accelerometers operate effectively in determining tilt 

angles. Ground alignment relies on measuring the gravity vector in the body frame and on the 

knowledge of the gravity vector in the local navigation frame. As the body accelerates, the ground 

alignment method becomes improper because tri-axial accelerometers measure not only the gravity 
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vector but also the acceleration of the body. This promotes the idea that, if the acceleration of the body 

can be computed in the local navigation frame then the same procedure can be applied for the dynamic 

case. Proper dynamic models are important for an improved GPS/INS integration. A dynamic model is 

used to update the process part of position, velocity, and acceleration to get an accurate estimate of the 

acceleration expressed in the local navigation frame while the rotation vector is used to update the 

elements of the DCM in the state vector. The complexity of the dynamic model is chosen to fit the 

trajectory profile. The aid of the GPS for the dynamic model might be enough to have a solution for 

the position estimation for some applications. Using a simulation example, this approach has shown to 

be sufficient to keep filtered navigation position solution limited within one standard deviation of GPS 

measurements and the attitude solution limited by less than one degree standard deviation error when 

using low-cost inertial sensors. More results and details about this special case can be found in [79]. 

7.7 Summary 

We presented a novel GPS/INS integration method based on the DCM attitude representation model. 

The filter is able to detect the gyro bias vector and follow its variation and hence it fits low-cost 

sensors as well as high grade sensor. Simulations were conducted to compare its performance with the 

performance of Euler angles based UKF. The DCMKF is showing comparable performance of the 

EAUKF for position and attitude estimation with much less computational time. Experimental 

validation of the filter is conducted using different categories of IMUs. Further research can be 

conducted to reduce the number of the DCM elements to be estimated and to find computationally 

efficient DCM orthogonalization approaches for improving the filter performance. The DCM based 

integration approach can be extended to sophisticated approaches of GPS/INS integration.  
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Chapter 8 

Conclusion 

8.1 Summary 

In this dissertation we developed different novel approaches for improving the performance of inertial 

sensor systems and their fusion with external sensors. In the inertial sensors side, we focused on the 

use of distributed accelerometers for inferring the angular motion from the angular information 

contained in their measurements. We developed different fusion approaches for benefiting from the 

AIV to form a GF-IMU or to aid the GF-IMU by conventional gyros. We presented two novel 

solutions for estimating the angular motion from a multiple distributed tri-axial accelerometers 

measurements in a GF-IMU. The integration approach is performed using an EKF. Also, we presented 

another approach for AME utilizing dynamic models in 3D which is capable of estimating bias 

parameters in a GF-IMU. Also, we derived nonlinear equality constraints and presented a filter 

approach to benefit from the constraints in improving estimation performance. We also showed the 

benefits of using the hybrid IMU over the GF-IMU. 

In the integrated navigation side, we presented different approaches to implement the GPS/INS 

integration filters and the AHRS algorithms based on DCM attitude representation. The attitude update 

of the DCM is performed using angle rotation vector. The experimental real-time implementations 

validated the efficiency of the algorithms and were in harmony with simulations. They also revealed 

their importance to the inertial sensors market. 

The main contributions of this work, with emphasis on their novelty and where they have been 

published, are listed as follows: 

 The development of a GF-IMU using a configuration of twelve fixed accelerometers and 

adopting a calibration procedure for the GF-IMU. This configuration benefits from the AIV 

with a simple calibration procedure. This contribution has been published in [80]. 

 Deriving two Kalman filters models for AME using the AIV. The first model is a direct model 

based on Euler integration. The second model is based on dynamic models and it is capable of 

estimating the bias vector in the AIV due to accelerometers’ bias vector. This is a novel 

solution to have a bias-free IMU. Those contributions have been published in [36, 80]. 
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 Using distributed accelerometers to aid conventional gyros to avoid the drawbacks of both 

types of sensors and to get the best of both. This contribution has been published in [41]. 

 The development of a GF-IMU using fixed and rotating accelerometers configurations and 

applying this principle to construct a north finding system. 

 Developing a novel DCM based GPS/INS integration algorithm and a novel DCM based 

attitude estimation algorithm. Those contributions have been published in [81, 82]. 

8.2 Conclusion 

After working and conducting research on improving inertial sensor systems and information fusion 

for long time we list the following concluding remarks: 

1. Proper fusion of the AIV in the GF-IMU can solve the sign indeterminacy problem for 

dynamic motion as shown by experimental results. The more accurate sensors we use the 

higher chances for avoiding sign indeterminacy problems. 

2. Euler integration based EKF model fits all scenarios of motion and has minimum 

computational load; however, largely biased accelerometers downgrade its performance. 

3. The CAA dynamic model employed in GF-IMU works well for free-hand motion; however, it 

does not fit sharp rotations. 

4. The hybrid IMU has many advantages over classical IMU and GF-IMU such as possessing 

increased range, bias-free and smoother convergence. 

5. The rotating accelerometers are difficult to build mechanically; however, there is a special 

case for north finding system under static scenario. In this case, rotating accelerometers show 

efficient use without having vibrations problems because of digital filtering. 

6. DCM based AHRS algorithm is either linear or pseudolinear and the computational load can 

be reduced by reducing the number of DCM elements to be estimated. 

7. DCM based GPS/INS can be realized and used effectively with off-the-shelf low-cost sensors 

and processing boards. 

8. Dynamic models can be deployed in DCM based GPS/INS integration for improving 

integration performance if the model describes the dynamics sufficiently. 

8.3 Suggestions for Future Work 

We managed to tackle many problems within this dissertation; however, there are many future steps 

which can be added in this field. 



117 

 

8.3.1 Estimation of Bias Parameters in a GF-IMU 

We developed an algorithm capable of estimating the bias vector in the AIV. Further research can be 

done to estimate the remaining bias parameters in the accelerometers. We used dynamic models and 

specifically the CAA model. Complicated model with that combines the linear acceleration with 

angular motion can be investigated for finding the complete bias. For constrained angular motion 

estimation we used the SCKF; however, other less complex approaches should be investigated since 

the nonlinear constrained Kalman filtering topic itself is an open research topic. 

8.3.2 Exploring More Complex Configurations 

We focused on twelve distributed accelerometers configuration that requires distribution in distance. It 

is known that even small distribution distance might be a problem in certain applications. The relation 

between using more complex accelerometers configurations and reducing the distribution distance can 

be investigated to a chive smaller size system. 

8.3.3 Improving the Acceleration Knowledge 

The focus use of distributed accelerometers in this dissertation was to improve the angular rate 

knowledge. Redundancy of distributed accelerometers is used to improve the accelerometers 

knowledge by back projection of acceleration to the central position. More complex and optimum 

approaches can be investigated in the future to improve both angular rate and acceleration. One 

approach can be a Kalman filter that combines linear acceleration with angular velocity in the same 

filter. 

8.3.4 Improving DCM Based Attitude Estimation and GPS/INS Integration 

As a result of redundancy in the DCM elements we have orthogonality constraints which were 

nonlinear. Handling of the nonlinear constraints of the DCM in a computationally efficient approach 

could be a future research topic. Another direction for future work is to develop dynamic models that 

are suitable to be deployed for GPS/INS integration for different scenarios of motion. 
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Appendix A  

Derivatives of Matrices and Vectors 

A.1 The Gradient of a Scalar Function 

Let f( )x be a real valued scalar function of a n-vector x , the gradient of f( )x with respect to x  is 

defined as  

1 2

f( ) f( ) f( )
...

n

x x x

x x x

   
      

. ( A.1) 

The derivative of f( )x  is defined as a row vector with dimension 1 n . 

A.2 The Partial Derivative of a Vector Function 

Let f( )x  be a m-dimensional vector-valued function of a n-vector x, the gradient of f( )x with respect 

to x  is defined as 
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A.3 The Partial Derivative of Vector Dot Products 

Suppose x  and y  are n-element column vectors. The scalar product is defined as 

1 1 ....T
n nx y x y x y   . ( A.3)

The partial derivative is defined as 
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        =y

    
  

     
 . 

( A.4)
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Likewise, 

T
T

x y
=x

y




. ( A.5)

A.4 The Lie Derivatives 

We compute L, which denotes the set of all finite linear combinations of Lie derivatives of the 

measurement vector with respect to f ( )x  for various values of constant input. For the ith row scalar 

measurement ih  of the measurement vector, the Lie derivative of a scalar measurement is defined as  

( ) f ( )i
f i

h
L h x

x


 


. ( A.6)

The zeroth-order Lie derivative of the measurement is the measurement itself, i.e., 

0 ( )f i iL h h . 
( A.7)

Higher order Lie derivatives are computed as 

( )k k
f i iL h h . 

( A.8)
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Appendix B  

Special Matrices 

B.1 Symmetric Matrix 

A symmetric matrix has the property that the transpose of the matrix equal the matrix itself, i.e., 

TA A . ( B.1) 

B.2 Diagonal Matrix 

A matrix is diagonal if  

( , ) 0   if  ( , ) 1,2,3,...,a i j i j i j n    . ( B.2)

Identity matrix is a special case of the diagonal matrix. The identity matrix , I, has 

0   if 
( , )  ( , ) 1,2,3,...,

1   if 

i j
a i j i j n

i j


   

. ( B.3)

B.3 Skew Symmetric Matrix and Cross Product Properties 

The cross product operation converts a vector to a squared matrix with skew symmetric form 

0

, 0

0

x z y

y z x

z y x

a a a

a a a a a

a a a

  
       
      

. ( B.4)

A skew symmetric has the property that the transpose of the matrix equal its negative, i.e., 

TA A  . ( B.5)

The following identities are true for cross product operations  

( )

( )

( )

( )

A a

B b

C c

a b b a

BAc Ab c ABc

BAc Ba c ABc

Ab AB BA

a b AB BA

 
 
 
   

  
  
  

   

. ( B.6)



121 

 

B.4 Orthogonal Matrices 

The orthogonal matrices are those square matrices which have columns and rows with unity 

magnitude. This implies 

TA A I  ( B.7)

where I is the identity matrix. Equivalently, a matrix is orthogonal if its transpose is equal to its 

inverse 

1 TA A  . ( B.8)
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