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Abstract 

This research work is a contribution to develop a framework for cooperative simultaneous 

localization and mapping with multiple heterogeneous mobile robots. The presented research 

work contributes in two aspects of a team of heterogeneous mobile robots for cooperative 

map building. First it provides a mathematical framework for cooperative localization and 

geometric features based map building. Secondly it proposes a software framework for 

controlling, configuring and managing a team of heterogeneous mobile robots. Since mapping 

and pose estimation are very closely related to each other, therefore, two novel sensor data 

fusion techniques are also presented, furthermore, various state of the art localization and 

mapping techniques and mobile robot software frameworks are discussed for an overview of 

the current development in this research area. 

The mathematical cooperative SLAM formulation probabilistically solves the problem of 

estimating the robots state and the environment features using Kalman filter. The software 

framework is an effort toward the ongoing standardization process of the cooperative mobile 

robotics systems. To enhance the efficiency of a cooperative mobile robot system the 

proposed software framework addresses various issues such as different communication 

protocol structure for mobile robots, different sets of sensors for mobile robots, sensor data 

organization from different robots, monitoring and controlling robots from a single interface.  

The present work can be applied to number of applications in various domains where a priori 

map of the environment is not available and it is not possible to use global positioning devices 

to find the accurate position of the mobile robot. Therefore the mobile robot(s) has to rely on 

building the map of its environment and using the same map to find its position and 

orientation relative to the environment. The exemplary areas for applying the proposed SLAM 

technique are Indoor environments such as warehouse management, factory floors for parts 

assembly line, mapping abandoned tunnels, disaster struck environment which are missing 

maps, under see pipeline inspection, ocean surveying, military applications, planet exploration 

and many others. These applications are some of many and are only limited by the 

imagination. 
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Zusammenfassung 

Diese Forschungsarbeit ist ein Beitrag zur Entwicklung eines Framework für kooperatives SLAM 

mit heterogenen, mobilen Robotern. Die präsentierte Forschungsarbeit trägt in zwei Aspekten  

in einem Team von heterogenen, mobilen Robotern bei. Erstens stellt es einen 

mathematischen Framework für kooperative Lokalisierung und geometrisch basierende 

Kartengenerierung bereit. Zweitens schlägt es einen Softwareframework zur Steuerung, 

Konfiguration und Management einer Gruppe von heterogenen mobilen Robotern vor. Da 

Kartenerstellung und Poseschätzung miteinander stark verbunden sind, werden zwei 

neuartige Techniken zur Sensordatenfusion präsentiert. Weiterhin werden zum Stand der 

Technik verschiedene Techniken zur Lokalisierung und Kartengenerierung sowie 

Softwareframeworks für die mobile Robotik diskutiert um einen Überblick über die aktuelle 

Entwicklung in diesem Forschungsbereich zu geben. 

Die mathematische Formulierung des SLAM Problems löst das Problem der 

Roboterzustandsschätzung und der Umgebungmerkmale durch Benutzung eines Kalman 

filters. Der Softwareframework ist ein Beitrag zum anhaltenden Standardisierungsprozess von 

kooperativen, mobilen Robotern. Um die Effektivität eines kooperativen mobilen 

Robotersystems zu verbessern enthält der vorgeschlagene Softwareframework die 

Möglichkeit die Kommunikationsprotokolle flexibel zu ändern, mit verschiedenen Sensoren zu 

arbeiten sowie die Möglichkeit die Sensordaten verschieden zu organisieren und verschiedene 

Roboter von einem Interface aus zu steuern. 

Die präsentierte Arbeit kann in einer Vielzahl von Applikationen in verschiedenen Domänen 

benutzt werden, wo eine Karte der Umgebung nicht vorhanden ist und es nicht möglich ist 

GPS Daten zur präzisen Lokalisierung eines mobilen Roboters zu nutzen. Daher müssen die 

mobilen Roboter sich auf die selbsterstellte Karte verlassen und die selbe Karte zur 

Bestimmung von Position und Orientierung relativ zur Umgebung verwenden. Die 

exemplarischen Anwendungen der vorgeschlagenen SLAM Technik sind 

Innenraumumgebungen wie Lagermanagement, Fabrikgebäude mit Produktionsstätten, 

verlassene Tunnel, Katastrophengebiete ohne aktuelle Karte, Inspektion von 

Unterseepipelines, Ozeanvermessung, Militäranwendungen, Planetenerforschung und viele 

andere. Diese Anwendungen sind einige von vielen und sind nur durch die Vorstellungskraft 

limitiert. 
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Notations 

Following acronyms and notations are used throughout this text. Vectors are represented by 

lower subscripted letters (     ) where the matrices are represented by capital letters (A, B, C, 

K). The notation of    is used for the mobile robot pose instead of the x coordinate of the 

position. Sometime the term single robot is used instead of multiple robots just for bringing 

clarity and simplicity to the discussion.  

CDF Cumulative Distribution Function 

CUDA Compute Unified Device Architecture 

EKF Extended Kalman Filter 

FBM Feature Based Map 

FOV Field of View 

GPS Global Positioning System 

GPU Graphical Processing Unit 

GT Ground Truth 

HSM Hessian Scan Matching algorithm 

ICP Iterative Closest Point matching algorithm 

IMU Inertial Measurement Unit 

KF Kalman Filter 

LASER Light Amplification by Stimulated Emission of Radiation 

LIDAR/LADAR LIght Detection and Ranging 

MSRS MicroSoft Robotics Studio 

OGM Occupancy Grid Mapping 

PDF Probability Distribution Function 
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PF Particle Filter 

PSM Polar coordinate Scan Matching algorithm 

RBPF Rao-Blackwellised Particle Filter 

RFID Radio Frequency IDentification 

RGB-D Red Green Blue – Depth device such as Microsoft Kinect 

ROS Robot Operating System 

SIFT Scale Invariant Feature Transform 

SONAR SOund Navigation and Ranging 

SURF Speeded Up Robust Features 

TCP Transmission Control Protocol 

UDP User Datagram Protocol 
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Chapter 1.  

Introduction 

1.1. Motivation 

Mobile robots are finding a way more and more in our daily life from vacuum cleaners [1] to 

autonomous driving vehicles [2]. Furthermore navigate able industrial robots [3] are not very 

far away. Mobile robots can be used at warehouse, autonomous cargo handling at sea ports. 

Not to mention to operate in a hazardous environment for humans such as the site of 

Fukushima daiichi nuclear power plant for debris removal. There was not so much to actually 

help to overcome nuclear leakage problem due to the aftermath of the earthquake which 

resulted in the destruction of the plant. The DARPA urban challenge also promoted to develop 

vehicles capable of driving through traffics [4]. Many institutes have developed the mobile 

robots for infotainment of visitors [5] at museums and management at libraries [6]. The 

success of these applications depends highly on the accuracy and robustness of their SLAM 

implementation. 

Multiple robots with heterogeneous capability can mutually assist each other for working 

toward a common goal. To cooperate among multiple robots there is a need of an interface 

which addresses the various issues such as (a) Different communication protocol structure for 

mobile robots. (b) Different sets of capability (sensors) for mobile robots. (c) Sensor data 

organization from different robots. (d) Monitoring and controlling robots from a single 

interface. (e) Expansion of existing robot network. (f) Combined map building. In order to 

enhance the efficiency of a cooperative mobile robot system high modularity and scalability 

should be maintained. Apart from the above mentioned aspects other issues have also to be 

addressed in the ongoing standardization process of the cooperative mobile robotics systems. 

Controlling and managing cooperative multi-robot system is challenging because the system 

requires handling multiple robots with heterogeneous capabilities and set of sensors and 

flexible control architecture. One of many challenges in the field of cooperative robotics as 

stated by Smart [7] is standard software architecture. Robot system developers have to re-

implement basic control and communication mechanisms due to the non-interoperability of 

current implementations. Therefore, in order to enhance multi-robot system control and 

communication, a new type of multi-robot middleware or interface environment is necessary. 

The interface should be general enough to allow the addition of another robot within the 
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network with a different set of sensors and communication protocols. Furthermore, sensor 

data from different robots should be organized and managed in a structured way. The overall 

system should be flexible enough to be adopted for the need of robot control. 

It is exciting to know how the multiple robots can help each other to solve the SLAM problem, 

therefore the research work has two ambitions, first is to develop a framework where multiple 

robots can cooperative with each other. The second is to develop a mathematical SLAM 

framework for building a centralized geometric map cooperatively. Although many algorithms 

exist today to solve SLAM problems for single mobile robot in static indoor environment, there 

is still a challenge to perform cooperative SLAM especially the map merging part. The large, 

dynamic, sparse and outdoor environment makes the problem further interesting. This 

research work proposes a cooperative SLAM framework which addresses the issues of 

cooperative SLAM and building a software framework for cooperation among heterogeneous 

mobile robots. 

1.2. Problem Statement 

The cooperative SLAM problem can be formalized as   (    |        ) where     is the state 

of the robots at time step  ,    is the map,    is the robots measurements,    are the control 

inputs and    is the data association function. One of the goals in this research work is to 

formalize  (    |        ) for cooperative SLAM problem among a team of mobile robots, 

and the second is to develop a software framework where we can control, configure and 

manage different mobile robots for cooperative map building tasks. 

1.3. Research Work Scope 

This dissertation gives a brief introduction to the background and developments of SLAM 

problem. Various SLAM methodologies are discussed in the next section. An EKF based multi-

robot SLAM algorithm for heterogeneous features is formulated in this research work. EKF is 

used as the main estimation engine. The overall solution to SLAM consists of following parts; 

state estimation, observations, segmentation, feature extraction, measurement prediction, 

data association and then state and features update. From the implementation point of view 

the core modules which are mentioned above are also discussed and formulated.  

It would also be exciting to know which sensor technologies can be combined to enhance the 

map accuracy, but the evaluation of various sensor technologies for SLAM problem is not 

discussed here. Furthermore due to the limitation of available hardware, sensors and 

resources for validation, some simulations are performed to validate the algorithms. The 
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research work scope is also limited for indoor environment. The cooperative SLAM algorithm 

discussed in Chapter 4 assumes that the initial relative robot poses are known. 

1.4. Related Works 

SLAM in literature is often referred as chicken or the egg causality dilemma. Much research 

has been done on this topic over the past decades as Hugh Durrant-Whyte [8] states that a 

solution of SLAM problem is the Holy Grail for the mobile robotics community. SLAM is a hard 

problem because of big and dynamic robot environment, robot’s noisy sensors measurements 

and robot’s motion and control errors. A solution of the SLAM problem requires a big state 

vector consisting of robot pose and position of all landmarks, which represent the world 

around the mobile robot. This state vector is updated each time new measurement from the 

robot sensors are available, therefore, it requires a lot of computational power. SLAM can be 

performed either using environment features or using scan matching technique in which raw 

sensor measurements are used. The feature based SLAM is the earlier version of the SLAM 

which was realized using an EKF. In a scan matching technique one need’s to estimate a 

transformation which consists of a rotation and translation to find relative pose of the robot 

between two consecutive raw sensor measurements. Many scan matching techniques exists in 

the literature such as ICP [9], HSM [10] and PSM [11]. For a comparison among different scan 

matching techniques please refer [12]. 

The inception of the probabilistic SLAM problem occurred during mid-80’s [8]. The research 

work by Smith et al [13] and Durrant-Whyte [14] described probabilistic estimation technique 

for correlation among map features and robot pose.  The key insight of the high correlation 

among map features (landmarks) and robot pose described that, these correlations grows with 

successive continuous observations. Crowley [15] and Leonard [16] performed SLAM using 

sonar sensors. They used the line segments extracted from ultrasonic sensor data as features. 

Vandorpe [17] and Gonzalez [18] used laser data to perform SLAM. During that time Faugeras 

[19] and Ayache performed earliest work in visual navigation and mapping. Lenord [20] 

worked on to reduce the computational requirements by dividing the state vector into local 

sub parts. This idea was skipped when later on it was found that for the convergence of the 

SLAM problem, the huge state-vector is essential and more the correlation among features 

grows the better solution becomes. So far, the robots pose and landmarks were represented 

by univariate Gaussian noise model. Murphy [21] introduced a particle filter which is a 

discretized representation of a complex multi-model probability density function. Using 

particle filters the robot pose is represented by a set of discrete states, particles. He 
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furthermore proposed the discretization of the space around the robot in blocks which he 

termed as occupancy grid mapping. Later on, Montemerlo [22] extended the work to feature 

based maps, which is known as FastSLAM in which he used Extended Kalman filter to estimate 

the map where particle filter was used to represent robot pose. GMapping [23] is a grid based 

SLAM algorithm in 2D. The first working solution of the SLAM problem was based on extended 

Kalman filter (EKF-SLAM) and then later came the Rao-Blackwellised particle filter (FastSLAM). 

The main advantage of a particle filter is to represent a multi model belief about robot states. 

Many authors like [24] [23] [25] uses grid based maps with PF to address the SLAM problem in 

large dynamic outdoor environment. Grisetti [23] developed GMapping which is at the 

moment a very robust tool to build the grid map using a laser scanner and odometry. Haehnel 

[25] proposed GridSLAM algorithm and Eliazer [24] proposed DP-SLAM. GMapping and 

GridSLAM reduce the number of particles where DP-SLAM uses a tree based structure. Many 

of state of the art SLAM algorithm are available on OpenSLAM [26] website as open source 

packages, furthermore many of the algorithms are also available as ROS [27] packages. 

There are many challenges in cooperative SLAM such as a standard framework for data 

acquisition, robot and their sensor data management, global map representation and the 

mathematical framework for fusing multi-robot and multi-sensor data. In general cooperative 

slam can be performed in a centralized [28] [29] or decentralized [30] [31] [32] [33] manner. 

Jayasekara [34] proposed a method for cooperation based on external tracking of robots 

which is limited to visual range of the camera and laser scanner. Williams [35] proposed a 

decentralized cooperative SLAM methodology to manage computational complexity and 

improved data association. Andrew [31] proposed the method of decentralized cooperative 

SLAM based on FASTSLAM. The map merging part is performed only when one robot detects 

other and measures its pose relative to its own. This situation happens less frequent in 

practical scenarios. Lee [36] proposed the distributed cooperative SLAM using the ceiling 

vision. Using ceiling vision based data association technique the proposed algorithm detects 

the overlapping regions, an estimate of the transformation for map alignment. This technique 

is limited to indoor planer environment. Zhou [37] proposed an algorithm for multi-robot map 

alignment to build a joint map. Relative pose measurement between robots is used to find the 

transformation between maps. When there is an overlap between maps i.e. landmarks appear 

twice in two maps this information helps to increase the map alignment accuracy. Ming [38] 

proposed a cooperative SLAM technique using vertical lines and colored name plates as 

landmarks in an indoor office environment. 
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Figure 1.1 Simulation of Pioneer Robot in PSG Environment 

Regarding a standard framework for mobile robotics, many set of libraries and tools exist for 

handling mobile robots. Many of them focus on the single mobile robot while other targets a 

group of robots but usually such frameworks are application and platform dependent. The 

player project [39] is a popular open source robot software framework which handles the 

communication between robot hardware/simulation and the control software clients. PSG 

(Player Stage Gazebo) consists of a 2D simulator “Stage”, a 3D simulator “Gazebo” [40] as 

shown in Figure 1.1 and robot control interface software “Player”. Its client server architecture 

is based on TCP sockets. The mobile robot’s hardware is accessed through drivers and many of 

the drivers are already implemented in Player, furthermore, PSG can be used for simulating 

robots. For implementation of player drivers for a custom robot please refer to [41]. Few 

weakness of PSG systems are as follows. In order to function properly, Gazebo has many non-

documented dependencies that include specific versions of the third party libraries. Another 

important deficiency of Gazebo is that there is no online mesh generation and rendering 

capability which is important for creating online maps from mobile robots range sensors data. 

Unfortunately overall PSG system is difficult to install and run due to its complexity [42] and 

non-documented dependencies, furthermore, it does not provide online map making facility 

and no structured built-in scheme for storage of robots data. 

During STAIR project [43] at Stanford it was also required and realized such a software 

framework for hardware software integration of various mobile robot modules which later 

evolved into ROS [44]. ROS [27] is an open source project which provides a framework for 

communicating data within various running processes and uses existing source code and 

libraries for managing robot related tasks. It uses IPC (Inter Process Communication) 

methodology for peer to peer communication among various nodes (executable); therefore, 

modules do not require to be linked together in one executable. Messages among nodes are 

communicated through master node; therefore publisher (sender) and listener (receiver) both 
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are unaware of their existence. Nodes for ROS can be written either using C++ or Python. The 

ROS specifications are at messaging layer for cross-language development. ROS has various 

tools for managing, building and running various ROS components. It uses other open source 

projects code such as PSG for simulation, OpenCV for vision sensors, OpenNI for RGB-D 

camers, Eigen for matrix algebra libraries and many more. It also provides a data logging and 

playback mechanism which is missing in PSG system which is a very important aspect for a 

multi robot system during development. For a conceptual working about ROS system please 

refer [44]. A 2D planer map image of the second floor of Hölderlinstr F-block building is shown 

in the Figure 1.2 during the simulation of a robot in Stage-ROS. Figure 1.3 shows the graphical 

visualization component of the ROS, RVIZ, for displaying robot’s laser scanner measurements 

published as topic. 

 

 

Figure 1.2 Simulation of virtual robot in Stage-ROS 

 

Figure 1.3 Sensor measurement visualization in RVIZ-ROS 

CARMEN [45] is another open source robot control software toolkit developed at Carnegie 

Mellon University. It provides a consistent interface and basic modules for different 

commercial robots for research purpose. Its design consist of three layers, first layer is for 

hardware interfacing and control e.g. for low level linear and angular velocity control, 

integrate motion information from odometry. The second and upper layer provides high level 

tasks such as localization, tracking and motion planning. The third and the top most layer 

provides user level tasks which uses modules from second layer. USARSim [46] is an open 

source robot simulator which incorporates a simulation engine based on a first person shooter 

game unreal tournament which is used to host a robots competition within the robocup 

initiative. USARSim is based on the Unreal Tournament game engine. A simulation 

environment as shown in Figure 1.4 provides virtual ground and aerial robots in a map. The 
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robot’s sensors data are acquired through Gamebots [47] protocol over TCP connection with 

the game server.  

 

Figure 1.4 Simulation of aerial and ground robot in a virtual environment based on Unreal Tournament game 
engine 

MSRS [48] was a Microsoft initiative in 2006 to provide industry software standards for robot 

control. Figure 1.5 shows multiple Poineer robots and an NXT robot being simulated in a 

virtual environment. It provides visual programming tools, 3D simulation and methods to 

access the robot’s sensors and actuator data using C# as programming language. 

 

Figure 1.5: Microsoft Robotics Studio simulation of multiple robots 
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Marilou [49] is a commercial robot simulation tool which can be used for cooperative robotics. 

It provides a modeling environment to construct a virtual environment and the mobile robot 

with sensors, actuators and joints. The simulation runs within physics based engine and allows 

the user interaction during the simulation run. A test simulation environment is shown in the 

Figure 1.6. various programming languages such as C/C++/C#/VB/Matlab can be used to 

interface with the robot’s sensor and actuator’s data. 

 

Figure 1.6 Marilou based mobile robot simulation 

 

Figure 1.7 Webbot based simulation of Poineer mobile robot 

 

Webbots is a commercial robot modeling, programming and simulation software. Figure 1.7 

shows a pioneer robot within a Webbots virtual simulation environment. It also provides the 

multiple programming languages to interface through API with the running simulation. For a 

comparison among different robotics frameworks the reader may refer [50]. There exist other 

cooperative heterogeneous robot applications. For instance, Wei Li [51] uses a down looking 

monocular camera fixed on an aerial quad-rotor to track a mobile robot while Gaurav [52] 

achieved aerial robot localization using a single camera by observing the relative positions of it 

and two ground mobile robots with known location on the ground below it. Those works are 

more application oriented and self-contained. Therefore, they don’t explicitly define a 

framework of how multiple robots in a cooperative environment should be controlled, 

managed and configured.  

1.5. Methodology 

The mathematical formulation for cooperative SLAM is probabilistic in nature and its 

methodology is as follows. The robots pose and the geometric features in the environment are 

together represented as state vector. The state vector can be considered as the map. Because 

of the probabilistic nature of the robot motion and sensor errors the uncertainty of the map is 

also estimated and maintained at each time step. Kalman filter is used as core estimation 
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engine for maintaining the robots pose and environment features uncertainty.  Two novel 

sensor data fusion algorithms are also proposed which better helps to localize the robot. From 

the implementation point of view the SLAM algorithm, range sensor data segmentation, 

geometric features estimation and data association are also discussed. 

The methodology for the cooperative framework in this work is as follows. First of all a 

universal control board is developed which can be used by different mobile robots. Then a 

modular firmware is developed which can be configured according to the specific robot’s 

sensor and features. Then a software framework is developed which proposes a general 

communication protocol interface, general format for configuration of robot’s modules 

features, organized storage of robots sensors data in database and other. The proposed 

software framework is a decentralized system which runs on multiple computers. 

1.6. Applications 

SLAM has been applied to number of applications in various domains where a priori map of 

the environment is not available and it is not possible to use global positioning devices to find 

the accurate position of the mobile robot. Therefore the mobile robot has to rely on building 

the map of its environment and using the same map to find its position and orientation 

relative to the environment. The environment which are perfect candidates for applying SLAM 

techniques are Indoor environments such as warehouse, mapping abandoned tunnels, disaster 

struck environment which are missing maps, under see pipeline inspection, ocean surveying, 

military applications, planet exploration and many others. These applications are some of 

many and are only limited by the imagination. Various research groups at Freiburg [53], 

Stanford [54], Zaragoza [55], Sydney [56] and many others [57] [58] [59] are working on the 

land, air and sea applications of the SLAM problem. 

Multi-robot systems can be used in cooperative planetary exploration (map building), 

firefighting, search and rescue in areas affected by natural disasters and in myriad of other 

fields which involves environmental dangers to human life. Other advantages are faster 

objectives completion time, in case of individual robot failure, task can be assigned to other 

robot; tasks can be done which are beyond the capability of single robot and many others. 

Furthermore, overall system robustness is increased because of the redundant sensor 

information. 
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1.7. Thesis Overview 

This thesis is structured as follows; Chapter 1 describes the background and motivation of the 

research work. It describes also the problem statement, research scope and the related work 

in this field in chronological order.  

Chapter 2 describes the required tools and techniques to solve the SLAM problem. It also 

discusses the individual components of the SLAM solution algorithm such as localization, 

mapping and navigation. Since the mapping is closely dependent on robot’s pose therefore, 

two novel pose estimation techniques are also discussed.  

Chapter 3 discusses the extended Kalman filter based SLAM approach and its core components 

in detail. These components are clustering or segmentation, geometric feature extraction, 

data association or map update and the augmentation of new features into the map. 

Chapter 4 discusses the EKF based SLAM process for multiple robots and heterogeneous 

features.  

In Chapter 5 a cooperative SLAM software framework for multiple robots is discussed. It 

describes the architecture and components of the system, firmware and hardware 

components for mobile robots. It also describes a simulation environment which can be used 

for the rapid development of the mobile robots related cooperative SLAM algorithms.  

Chapter 6 discusses the implementation of the proposed cooperative architecture on the 

robot. It discusses the implemented framework and the applied cooperative SLAM algorithm.  

Chapter 7 ends the thesis with a discussion about the research work and concludes with the 

future work direction. 
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Chapter 2.  

Theory and Background 

 

This chapter provides the theoretical bases, mathematical tools and techniques required for 

this research work. These theoretical backgrounds are not complete in it-self, therefore, for an 

in-depth understanding the reader is suggested to refer the corresponding references 

mentioned in the text.  

Here we will discuss the structure of the SLAM which is often implemented in Bayesian form. 

The Bayes rule can be represented in the following form: 

  (  |         )  
 (  |           )   (  |              )

 (  |           )
 Eq. 2.1 

Here,  (  |         ) represent the posterior probability,  (  |           ) represents the prior 

probability,  (  |              ) represents the conditional probability of        given 

   and     .  (  |           ) is the normalization constant which is often written as   in the 

literature. In the above equation    denotes the robot pose at time step t,      represents all 

the observations and      represents all the control commands, linear and angular velocity. 

The two important assumptions which play an important role in probabilistic robotics are 

Markov process model and the Independence assumption. According to Markov process 

model the current state    depends only on      , we silently assume the state vector is 

complete, which mathematically can be described as  (  |         )   (  |          ). 

According to second assumption we will treat that each observation    is independent from 

the other and previous observations     . After introducing the above mentioned assumption 

and simplification yields the following recursive Bayes law: 

 
 (  |         )  

 (  |           )   (  |  )

 (  |           )

     (  |           )   (  |  ) 

Eq. 2.2 

The term   (  |           ) is called the motion model where the term   (  |  )is called the 

observation or measurement model. For further information the reader can refer [8][49]. 
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2.1. Probabilistic Motion Model 

The robot motion model used in this research work assumes that the robots have holonomic 

constraints such as differential drive robots and each robot wheels are separated by a 

distance  . If a differential drive robot is given a motion command comprises of linear and 

angular velocity    ,  -   then the velocity for right and left motor velocity controller is 

calculated as follows 

        
   

 
 Eq. 2.3 

        
   

 
 Eq. 2.4 

Such that the positive angular velocity   induces an anti-clockwise rotation and positive linear 

velocity   induces a forward motion. Usually a simple kinematic motion model is used for a 

differential drive robot instead of a dynamic model because of the simplicity of kinematic 

model and the unavailability of various parameters required for a dynamic model.  

Motion model or probabilistic kinematic model for a mobile robot consists of states transition 

probability distribution  (  |       ). It predicts the posterior distribution of mobile robot 

states     , which robot assumes, after applying the motion commands    at prior distribution 

of robot states     . The states of a mobile robot consist of its pose or its configuration. 

Mobile robot kinematics describes the effect of control actions on its configuration. The 

configuration of a mobile robot in environment is known as its pose. The pose of a mobile 

robot in 3D is described by six Degree of Freedoms (DOF), Location described by 3D Cartesian 

coordinate and three Euler angles, i.e.  

    ,      -  Eq. 2.5 

For a mobile robot in a planar environment its pose is described by three DOF, location 

described by 2D Cartesian coordinate and an orientation, i.e. 

     ,   -  Eq. 2.6 

The robot motion model is called probabilistic because the uncertainties in the input and/or 

states are explicitly modeled into the system equations. Therefore, it is important to 

understand the nature of motion noise or uncertainties which affects the robot motion. The 

motion noise might be deterministic (systematic) or nondeterministic (random or non-

systematic) errors. Basically this noise is introduced because of un-modeled effects in to the 
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robot kinematics. As we know the wheel odometry is subject to two kinds of errors, systematic 

and non-systematic errors [60]. The kinematic model should be able to handle various error 

sources such as different wheel diameters, inaccuracy of the wheel attachment, ground 

unevenness and slip. Two systematic error sources are considered here, the difference in both 

robot wheel diameters and the wheel base distance. These errors can be modeled as scale 

factors and can be calculated by a calibration technique such as UMBmark [60] in an offline 

manner or in an online manner [61]. In the online calibration technique these calibration scale 

factors are included in the state vector and are also estimated at each time step, which is then 

used to correct the odometric information. During the experimentation the ground based 

mobile robot’s wheel odometry is calibrated in an offline manner by UMBmark method. The 

calibration process calculates the scale factors constants, due to non-deterministic errors, that 

are used to compensate the non-systematic errors in odometry information at each time step. 

The non-systematic errors are random in nature and mostly happen because of slip or because 

of surface morphology. These errors can be modeled as Gaussian distribution  (    ) noise 

with zero centered mean and standard deviation   and then added to each state variable.  

2.1.1. Robot Motion Model Using Wheel Odometry 

Wheel odometry is obtained by integrating the wheel encoder information from ground 

mobile robot. Similarly flying robot uses inertial odometry to estimate its pose which is 

obtained by integrating the information obtained from inertial measurement unit but this 

discussion is limited to wheel odometry. The robot’s wheel odometry information is given as 

an input     to the probabilistic motion model. This input can be described either by velocity or 

by displacement information obtained by the right and left wheel encoders.  Usually odometry 

information in the form of velocity is preferred in motion planning algorithms such as collision 

avoidance to predict the effect of motion in advance but here the odometry information in the 

form of linear and angular displacement is used. 

Figure 2.1 shows the kinematics of a differential drive mobile robot during a time step    from 

the robot pose      to robot pose   . Due to the linear and angular velocity command    

(   )  given to the robot, it will traverse a linear distance    and an angle of    during a 

sampling interval of   . The actual linear and angular displacements traversed by the mobile 

robot due to the commanded velocity can be calculated by using the left and right wheels 

encoder’s displacement measurements 
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 Eq. 2.7 

    
       
     

 Eq. 2.8 

Where the displacement measured by left and right wheel encoder is      and     

respectively. These displacements are calculated by the Eq. 2.10 and Eq.2.11.    is the 

nominal separation distance between the left and right wheel which is often known as wheel 

base.    is the correction factor found by the UMBmark calibration method. 

 

Figure 2.1 Mobile robot odometry process 

    
    
   

 Eq. 2.9 

              Eq. 2.10 

              Eq. 2.11 

   and    are the pulses measured by the left and right wheel encoders and    is the nominal 

diameter for the left and right wheels.   is the pulses per revolution constant for wheel 

encoders and   is the gear ratio between the motor shaft and the wheel.    and    are also the 

correction factors found by the UMBmark calibration method. The mobile robot’s motion 

model is calculated by numerical integrating of the odometric information (     ) is as 

follows 

               (   
  

 
) Eq. 2.12 
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               (   
  

 
) Eq. 2.13 

              Eq. 2.14 

Mathematically the complete probabilistic robot motion model using robot kinematics 

including the non-deterministic effects is defined as follows 
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] Eq. 2.15 

Usually one can move the robot in a predefined trajectory for calibration process. And then by 

measuring the difference between robot’s absolute pose by some means and the estimated 

pose using odometry process at end position during several runs, one could measure the 

standard deviation of pose due to non-deterministic errors. Here       is the standard 

deviation of the position error, difference between absolute and estimated position, and    is 

the standard deviation of robot orientation error.  

2.2. Probabilistic Observation Model 

A probabilistic observation model  (  |    ) describes a process by which a sensor 

measurements, landmark or feature are generated given the current robot pose and existing 

map. The terms features and landmarks are synonymous in the context of SLAM and will be 

used interchangeably in this text. The observation model is called probabilistic because it 

accommodate the different type of deterministic and non-deterministic errors such as 

measurement errors due to sensor accuracy and resolution, unexplained measurements, 

failure to detect objects and unexpected objects which are not present in the existing map. As 

statistically each noise source is modeled as a random variable corresponding to a particular 

distribution; therefore, the probabilistic observation model is a mixture of all such 

distributions. The probabilistic observation model is in fact a conditional probability which 

describes the set of observations    given the current robot pose    and the map  .  Because 

of independence assumption we can describe the probabilistic observation model as follows  

  (  |    )  ∏ (  
 |    )

 

   

 Eq. 2.16 

The observation model depends on the type of sensor modality. SLAM algorithms rely on the 

observation of the environment which is performed by various types of sensors such as range 
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sensors, camera images and RFID signals. The accuracy and robustness of SLAM algorithms 

depend on the sensor technology, further information regarding mobile robot sensors can be 

found in [20]. Recent sensor technologies such as laser range scanners, RGB-D cameras and 

time of flight cameras are being used now a day to map the environment of a mobile robot. 

Laser beam based range sensors yield the most exact results both in indoor and outdoor 

environment and therefore are commonly used. RGB-D cameras such as Microsoft Kinect [62] 

and ASUS Xtion Pro [63] are limited to indoor use while the time of flight cameras have limited 

field of view and range but has high frame rate therefore it is considered good candidate for 

obstacle avoidance but not for SLAM. Modern laser ranger scanners are able to distinguish 

among the readings which are affected while passing through the glass. We mainly used two 

types of sensors, a 2D laser scanner and 3D RGB-D camera for our mobile robots. Both sensors 

fall into the category of range sensors, therefore only beam based observation models will be 

discussed. 

The observation model also depends on the type of map; feature map or grid map. In the 

feature based map the environment map can compose of certain environmental features or 

location of objects in the environment. For grid based map there are three types of 

observation models, beam based range models, likelihood field range model and scan 

matching. Beam based range models depend mostly on the geometry and physics of the 

sensor which has two drawbacks, smoothness in cluttered environment and the 

computational complexity compared to the likelihood field range model. The difference 

between likelihood based sensor model and scan matching is that scan matching creates a 

local map of the robot to be compared with the global map which includes the free space and 

open space where the likelihood based observation model only includes the end point of 

range scans. All the above three sensor models are based on the raw sensor measurements. 

For feature based maps the raw sensor measurements are preprocessed to extract features 

along with its signatures if it is available. Mathematically we can describe the feature 

extraction process as a function which is operating on the measurements,  (  )  therefore, 

the observation model becomes  ( (  )|    ). There are a number of features which can be 

extracted from the environment. Usually the choice of feature is dependent on the choice of 

sensor and environment. Considering range scan sensors such as laser scanner and RGB-D 

cameras in partially structured indoor environment, lines, corners and planes are a good 

choice of features to be extracted from raw range sensor measurements. This research work is 

based on the feature based maps; therefore a simple observation model will be discussed in 

the next section. 
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2.2.1. Observation Model Using Range Sensors 

The most common and basic observation model for point feature is range and bearing model. 

In this model each point feature’s range and orientation relative to robot local frame are 

measured by the feature extractor function along with a feature’s unique identifier or 

signature. The unique identifier helps to solve the correspondence or data association 

problem. The probabilistic observation model for the point feature uses the geometric laws for 

range and bearing calculations, which is described by the equation 2.17 as follows 
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] Eq. 2.17 

Where (  
    

    
 )
 

is the expected range, bearing and signature of measurement respectively 

and (     ) is the robot pose. Each feature parameters are subjected to an uncertainty 

specified as Gaussian distribution (    ). The errors in each feature’s extracted parameters 

are because of the noise in the sensor measurements.  Each feature   is corresponds to a 

feature   in the map, this is called correspondence. Failure in correspondence leads to failure 

of the EKF base SLAM algorithm. In case of particle filter multiple hypotheses can be tracked 

simultaneously, therefore, it is more resilient to data association errors. If a measured feature 

doesn’t correspond to a feature in the map then it is considered a new feature and added to 

the existing map. 

In case of line features first the raw measurements, one complete range scan, from the 2D 

laser scanner is passed to a function for segmentation. Then the parameters of a line which is 

defined in hessian normal form is estimated from each segmented cluster of range readings. 

The line estimation process not only estimates the parameters of the line model but also the 

uncertainty in the parameters. For detailed discussion refer section 3. Similarly the 3D plane 

extraction process is described in section 3.3.2.2. The existing features are stored in a KD-tree 

data structure. Therefore each observed line is searched in the KD-tree to find its 

corresponding line. For the details of KD-tree data structure please refer section 3.3.3.2. 

2.3. Estimation 

Estimation techniques such as Extended Kalman Filter and Particle Filters are the main engine 

of SLAM process. They provide us a framework to keep track of the robot and map states and 

to update them as new information arrives from sensors. The estimation engines which is used 

for implementing SLAM process is discussed in the following sections. 
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2.3.1. Extended Kalman Filter 

EKF localization keeps a uni-modal belief  (  |       ) about the localization of a mobile 

robot and map features. This belief has a Gaussian distribution which can be described by its 

first and second moment i.e. robot could only be at one place defined by its mean with some 

uncertainty in its position defined by its variance. The uncertainty in robot position grows as 

the robot moves in the environment because of noise in robot motion model. In this research 

work feature based map consist of plane landmarks. The observation model for EKF which is 

used depends on the type of sensor and is discussed in the next chapter. The robot motion 

model used for EKF is defined in section 2.1.1. 

R. E. Kalman [32] proposed a novel recursive filter technique. His proposed solution can 

estimate the present, past or future states of a static/dynamic process. The Kalman filter 

algorithm is a two-step algorithm which requires an appropriate model of the system under 

investigation and the model of the measurements. The first step estimate the system states 

according to system model where in the second step the estimated states are refined using 

the observations. For in-depth knowledge about the Kalman filter and its various derivatives 

the reader can refer Simon [64]. Extended Kalman filter is very popular, efficient and 

computational inexpensive for a moderately small non-linear system with not so many states 

and assumes that the noise present in the system is a uni-model Gaussian. A system can have 

non-linarites in motion and/or observation model. Because of a non-linear robot motion 

model an EKF is used. The computational expensive part of the Kalman filter is the calculation 

of Kalman gains which requires an inverse of the innovation covariance matrix. This operation 

has a computational cost of  (    ) where   is the number of states in the system. The 

challenging part often in the implementation of Kalman filter is the choice of the process noise 

covariance matrix parameters. Initially the non-diagonal elements, cross covariance’s, of the 

covariance matrix are initialized to zero, that mean there is no correlation between robot pose 

and features but as the robot start moving and start making observations the covariance 

matrix becomes dense and both pose and features start becoming correlated. Correlation is 

very important for convergence. 

EKF follows the same cycle of prediction and correction steps. The EKF algorithm steps will be 

described here in details, for detailed derivation of EKF refer [64]. The prediction or state 

estimation step is described as follows 

   
   (    

      ) Eq. 2.18 
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  Eq. 2.19 

Where the Jacobian matrices    and    are the partial derivatives of motion model function 

 (        ) w.r.t. states and state noise respectively as follows:  

    
 

  
 (        ) Eq. 2.20 

    
 

  
 (        ) Eq. 2.21 

The functions is a parameter of state vector   , control vector    and noise vector   . The 

important thing to be note is that no noise is added into the state estimation. The uncertainty 

due to noise is added while propagating the state covariance from the previous step. The 

uncertainties in the states are modeled by the covariance matrix    and it is propagated by 

the motion model jacobian    with respect to state noise.  

The correction step of the EKF is as follows  

     (  
 ) Eq. 2.22 

         
    

  Eq. 2.23 

          Eq. 2.24 

          Eq. 2.25 

      
    

    
   Eq. 2.26 

   
    

        Eq. 2.27 

   
    

          
  Eq. 2.28 

   is composed of the partial derivatives of measurement model w.r.t. states which is defined 

as follows 

    
 

  
 (  ) Eq. 2.29 

Where    is the expected states and    is covariance of expected states.    is the innovation 

or the amount of new information which is brought into the system and    is the innovation 

covariance which is the sum of expected states covariance plus the covariance on the new 

measurements. Eq. 2.26 represents the Kalman gain which is the ratio of expected states gain 
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and the innovation gain. Eq. 2.27 and Eq. 2.28 represent the correction of the states and their 

corresponding covariances. During states correction an amount of new information 

proportional to Kalman gain is added to the existing states. The uncertainties of the states are 

decreased proportional to the amount of Kalman gain. 

2.3.2. Particle Filter 

Particle filter is a very powerful tool and used for many applications such as filtering, tracking 

and navigation where the system is very non-linear and state space is very large. A particle 

filter is an approximation of Bayes filter which represents the robot pose by an arbitrary 

multimodal probability distribution using a set of   particles     *  
    

    
      

 +. Each 

robot pose/state/particle   
  is associated with an importance weight/factor   

  which reflects 

the probability or likelihood of that particle and is updated after each new observation of the 

robot. The robot belief    which consists of set of particles and their corresponding 

importance weight is recursively updated from     . First the hypothetical state estimate 

  
, -
 of a sampled particle is made based on the motion model, previous particle     

, -
  and the 

control input   . The likelihood of the sampled particle is proportional to the observation 

probability i.e.   
, -
  .   |   

, -
/. The observation probability is based on the difference 

between the current measurement and the predicted measurement according to the stored 

map of the sampled particle   
, -

. Secondly a resampling step is performed which is very crucial 

and computationally time consuming. In this step a new particle set is created which reduces 

the variance of the underlying distribution. Particles with a higher weight will appear more 

often in the new list than ones with lower likelihoods which means a good hypotheses of robot 

poses will remain in the non-parametric representation of the state while others disappear. 

Various resampling techniques which are being employed are Multinomial Resampling, 

Residual Resampling, Stratified Resampling and Systematic Resampling. For a comparison of 

resampling strategies the reader is referred to [65]. For the implementation of particle filter 

one can refer [66]. Resampling could also be dangerous which could lead to 

deprivation/depletion problem, in which no particle exists in the vicinity of correct state. This 

problem occurs when numbers of particles are small and it may happen that during 

resampling good samples are replaced and the final particle distribution loses track of the 

correct state. The computational effort is proportional to the number of samples. Since the 

resampling step is crucial, therefore, if the robot stops or if no observations are made then it 

should be avoided. GMapping [23] and DP-SLAM [67] resample only, if the particle weight 
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variance is above a certain threshold. The particle weight variance can be calculated as 

follows: 

       ∑.  
, -/

 
 

   

⁄  Eq. 2.30 

The      coefficient is maximum for equal weights of the particles and resampling would not 

reduce the variance of the probability distribution. 

Rao-Blackwellised particle filter is a combination of EKF and PF in which the created map of 

the environment consists of features (edges, corner or planes). In literature this technique is 

also known as FastSLAM [66] in which the robot pose is estimated by particle filter, which 

accommodate multiple hypotheses about robot position, and the features are estimated and 

maintained by EKF. Since each particle represent one hypothesis of a robot pose and contains 

its own set of map features describing the map. Since the map is estimated by Gaussian 

therefore, each feature has a mean and variance which are represented by   and 

  respectively. Therefore, the joint state vector for a particle is defined as follows: 
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] Eq. 2.31 

The RB-PF can also be divided into two phases for ease of understanding, in the first phase the 

particles are sampled using the motion model which is similar to simple PF approach. Then the 

correspondence among observation and map features is calculated and represented by 

correspondence variable   . The simplest data association strategy is nearest neighbor 

approach [68] with a defined distance measure. If a new feature is found its mean and 

variance is calculated and added to the feature map, mean is the transformation of feature 

measurement from robot local coordinate frame to global coordinate frame. Otherwise, using 

the standard EKF approach its mean and covariance is propagated and the importance weight 

is calculated from the innovation covariance of the feature. The resampling process is similar 

to the PF. The optimized version which is known as FastSLAM 2.0 [22] basically includes the 

different distribution which takes in account the current measurement into account. 

The particle motion model does not implement a drift and all particle position would remain 

the same while only heading angle is affected by the Gaussian noise. While in Gaussian 

probabilistic motion model the position is also affected. This behavior is requested to model 

the real robot kinematics. The real challenge in both cases is to find the appropriate noise 
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control parameters. For choosing noise control parameters factors such as robot architecture, 

sensor’s characteristics and environment factors should be kept in mind. In case of the particle 

filter the noise has a direct influence on the variance of particle weights. Other issue in particle 

filter is too often resampling which can be avoided by sampling based on the variance of the 

particle filters. 

2.4. Localization 

The use of absolute positioning system devices/sensors obviates the localization problem. 

Since the mobile robot pose cannot be determined directly because of the unavailability of 

sophisticated global positioning sensors or the noise in the observations and uncertainty in 

robot motion, therefore, robots pose has to be inferred from the noisy measurement 

measurements. The other problem which makes the localization problem hard is the 

incompleteness of a single measurement, e.g. consider a SONAR sensor can’t decide the object 

shape even from a single noise free measurement which might be necessary to determine its 

location with respect to that object. When there is error in the robot executed command and 

actual motion performed by the robot this uncertainty will affect the future observations of 

the robot because they are referenced according to robot’s local coordinate frame. Mobile 

robot localization deals with determining the pose of mobile robot given the robot controls 

(odometry), sensor measurement and map of the environment. Mathematically it is described 

as  (  |       ). The environment map could be a feature based map or location based 

(occupancy grid) map. A single observation is usually not enough to localize the robot within 

the map, due to feature correspondence; therefore, the robot has to integrate the 

observations over time to determine its pose. The severity of localization problem depends on 

various factors such as the knowledge of the mobile robot’s initial position, state of the 

environment, robots interaction with the environment and cooperative localization among 

multiple robots. The localization algorithms here are probabilistic in nature and we will 

assume the unknown correspondence, i.e. we don’t know the true identity of the detected 

landmark from the robot measurement.  

2.4.1. Pose Estimation 

Accurate pose estimation is fundamental to mobile robots’ navigation, guidance, localization 

and mapping. To compensate the characteristic deficiencies of individual sensor 

measurements and to merge measurements from redundant sensors, data fusion can be 

performed to get the optimal estimate of the mobile robot pose. The research work [69] 

describes a method for combining data from multiple on-board sensors to determine a mobile 
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robot pose. An error model for a gyroscope, a dual-axial accelerometer and wheel encoders 

are derived for estimating the mobile robot’s pose. A tri-axial magnetometer measures the 

magnetic field strength which is used as a criterion for acceptance of electronic compass 

readings to correct the azimuth of the mobile robot’s orientation. The errors in each sensor 

are estimated mutually rather than independently considering each sensor error model. 

Multi-sensor data fusion method reduces deterministic and stochastic errors during mobile 

robot operation hence provides a best estimates of a robot pose without the use of external 

positioning system for longer period of time. A robust data fusion algorithm must address the 

problems such as different sensors sampling rates, asynchronous sensors sampling and 

reliable availability of estimated data in the presence of sensor failures. Kalman Filter can be 

applied for the multi-sensor data fusion directly over the state vector or indirectly over the 

error in state vector. Therefore following Kalman filter data fusion schemes are possible: (1) 

Direct Pre-Filter, (2) Direct Filter, (3) Indirect Feed Backward Filter, (4) Indirect Feed Forward 

Filter. 

 

Figure 2.2 Direct Pre-Filtering 

 

 

Figure 2.3 Indirect Feed Backward Filtering 

 

 

Figure 2.4 Direct Filtering 

 

 

Figure 2.5 Indirect Feed Forward Filtering 

In direct pre-filter scheme dead reckoning measurement and inertial navigation system 

measurements are filtered separately and the errors between these filtered measurements 

are used to correct measurement from any one method as shown in Figure 2.2. The direct 

filter formulation uses the states such as position/velocity and orientation calculated from 

wheel encoders as state variables and the measurements are the inertial and other sensors 

outputs, Figure 2.4. In direct formulation Kalman filter is inside the navigation loop therefore 

filter has to suppress the noisy measurements from the INS as well as to estimate of mobile 

robots position/velocity and orientation. Due to accurate kinematics estimation and being 
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inside the navigation loop the filter has to be updated faster than the dynamics of the 

navigation system. This is off-course a computational burden because Kalman filter gain 

calculations require inverse and square operations on matrix which are very costly in term of 

computation. Another disadvantage is since encoder and gyroscope/accelerometer models are 

independent from each other therefore it suppress the errors exclusively according to 

respective sensor model. 

The indirect feedback Kalman filter feeds back the error estimates to one of the mobile robot's 

dead reckoning or inertial navigation algorithm to mutually compensate the errors as shown in 

Figure 2.3. The error models for the sensors are described in Appendix A. The filter estimates 

the systematic errors of encoder (wheel scale factor, wheel distances) and stochastic errors of 

gyroscope (scale factor, bias) mutually and explicitly. These scale factor errors are fed back to 

compensate the respective sensor output. Furthermore, the pose errors are feedback into 

navigation system. In indirect feed-forward formulation the signals measured from sensors are 

compared before fed into the Kalman Filter and the estimated error is added into one of the 

dead reckoning system or inertial navigation system as shown in Figure 2.5. 

 

Figure 2.6 Block diagram for multi-sensor data fusion for mobile robot's pose estimation 

The proposed multi-sensor data fusion algorithm is elaborated by a block diagram as shown in 

the Figure 2.6. It is based on the indirect feedback Kalman filter data fusion methodology. 

For the evaluation of the proposed methods an experiment is conducted in which TOM3D is 

commanded to move along a straight line at a speed of 28 cm/sec for 25 sec, for a linear 

trajectory of 700cm. Figure 2.7 shows the experiment environment in which the robot has 
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moved along a wall. The straight wall provided a reference for PMD camera distance 

measurement.

The nearby ferromagnetic materials and electronic sources effect the electronic compass. The 

implemented algorithm monitors the earth magnetic field strength measured by the 

magnetometer as a criterion to accept the compass measurements, which are used to correct 

the robot’s orientation. A set of waypoints trajectory is sent to the robot by wireless 

transceiver. During the execution of the linear trajectory along the wall, the robot acquires the 

earth magnetic field strength at the start point of the linear trajectory and then uses it as a 

criterion for acceptance of compass measurements if the field strength varies less than the 

threshold value calculated from the start point value. Figure 2.8 shows the trajectory of the 

TOM3D by wheel encoders, fusion algorithm and PMD camera. At the end of experiment a 

manual measurements of final robot position were taken which reported the final robot 

position is 4cm (Y-axis, toward wall) and 15cm (X-axis, along corridor) away from the desired 

end position. 

 

Figure 2.7 Experiment Environment with ferromagnetic 
interferences and reference wall for measurements 

 

 

Figure 2.8 Trajectory estimation by wheels encoders , 
PMD Camera and fusion algorithm 

 

Another research work [70] is performed to estimate the mobile robot’s orientation by using a 

novel combination of stereo vision and gyroscope. The temporal gyroscope drift and bias are 

the main source of errors. The proposed solution helps to eliminate the gyroscope unbounded 

drift errors. Since the gyroscope offers a higher bandwidth and availability of angular velocity 

it is corrected with the stereo vision system which has lower bandwidth and availability but 

bounded errors. The data fusion between gyroscope and stereo vision system is implemented 

by using Kalman filtering scheme as shown in Figure 2.10. Gyroscope and vision system 

samples are asynchronous and their sampling rates are different because of the processing 
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requirements of stereo vision system. Therefore, to accommodate the delayed measurements 

from the vision system the approach mentioned in [71] is used. 

 

Figure 2.9 Stereo Camera and Gyroscope Setup on 
TOM3D 

 

 

Figure 2.10 Stereo-Gyro Data Fusion Flowchart 

An experiment to evaluate the above mentioned fusion approach is conducted on the TOM3D 

mobile robot which was equipped with stereo camera and gyroscope as shown in Figure 2.9. 

 

Figure 2.11 Experiment trajectory for Stereo-Gyro data 
fusion experiment 

 

Figure 2.12 Stereo-Gyro data fusion experiment 
result 

 

Tom3D moved in a trajectory as shown in the Figure 2.11 during the experiment. To measure 

the absolute position of the robot the 3D measurement system V-Scope [72] is used. A more 

important result is the integrated angle, which is depicted in Figure 2.12, where all parts of the 

motion commands can be easily identified. It can be clearly seen that the estimated angle is 

very accurate compared to the non-filtered integrated angle and very close to the V-Scope 
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measurements. After the experiment the raw gyroscope value is reporting -334.1°, whereas 

the fusion process reports -355.6° and the angle calculated from the V-Scope measurement is -

358.3°. 

2.5. Mapping 

For localization of a mobile robot into an environment we need to have a map of the 

environment. One can create a map by composing set of features present in the environment 

or by decomposing the spatial environment of the mobile robot in to discrete units. The 

resulting map is usually called feature based map and grid based map respectively. Feature 

based maps consists of features such as corners, edges, planes and others. There are other 

types of maps but for SLAM implementation point of view they will not be discussed here, the 

interested reader may refer [66]. 

2.5.1. Grid Based Mapping 

An occupancy grid map discretized the whole spatial environment into small cells and uses raw 

data observations directly to estimate the robot trajectory. Each cell value can represent a 

Boolean value or a likelihood of cell being occupied. The accuracy of objects shape and 

position in the environment is a function of the sensor modality which is being used to sense 

the environment and the resolution of the cell which discretize the environment. There is a 

compromise between the accuracy of representing the objects shape and the grid cell size 

which affects the memory requirements.  

 

Figure 2.13 Manual occupancy grid map creation 

 

Figure 2.14 Automatic occupancy grid map creation 
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OGM is robust against outliers and very desirable for navigation and path planning. OGM for 

large environment, especially 3D, require a huge amount of memory. These maps are also 

limited to geometry information obtained from range sensors. Some efficient details of 

implementing OGM can be found in [23]. Grid maps are classical way of representing 

environment based on Cartesian location. Grid based map representation are costly in term of 

memory requirement but good for path planning and autonomous map building. 

Figure 2.13 and Figure 2.14 shows the creation of occupancy grid map manually and 

automatically respectively when a plan image of the environment is provided. In case of 

manual occupancy grid map generation process, a grid of desired size is overlaid over the plan 

image and then using the mouse left, right and middle button occupancy grid value are 

assigned either as occupied, free or unknown respectively to each grid cell. The final hand 

drawn occupancy grid map information along with some relevant information as header is 

stored in a XML file format which is described as follows 

<MAPINFO> 

<MAPORIGIN>0,0</MAPORIGIN> 

<MAPSIZE>3700,4223</MAPSIZE> 

<GRIDSIZE>50,50</GRIDSIZE>  

<GRIDDATA>1,1,1…0</GRIDDATA> 

</MAPINFO> 

Table 2.1 Occupancy Grid Map XML Output file's format 

In the above example the picture pixels are calibrated to cm and the grid cell size is  chosen as 

50cm x 50cm. The resultant XML file contains the grid cell data, 6250 values each of which is 

corresponding to the grid state. 0 means empty, 1 means occupied and -1 means unknown. 

One can also edit the already created grid map generated by automatic OGM generator 

application for fine adjustment of the artifacts. The application to generate the OGM 

automatically works as follows. It requires four arguments as input in addition to map file 

name. The first two arguments specify the grid cell width and height and the other two specify 

the thresholds to determine a cell as occupied, unoccupied and unknown. These two 

thresholds represents the percentage of block to be considered as unoccupied and unknowns. 

In the first step of automatic OGM generation the plan image is converted into a black and 
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white image. Then in the second step the plan image is processed block by block where each 

block size is specified as grid cell size. If the percentage of the non-zero elements are greater 

than or equal  to  unoccupied threshold then the cell is considered as unoccupied else if the 

percentage of non-zero elements are between unoccupied and unknown then they are 

considered as unknown otherwise if it is less than unknown threshold then the block is 

assumed as free. At the end the block information is stored as occupancy grid map in the same 

XML grid map file format as described above in Table 2.1.  

2.5.2. Feature Based Mapping 

Feature based map is an alternative approach to represent the environment in which only 

certain characteristics of the environment are used to model the map. FBM can handle 

arbitrary features such as planes, corners, edges, SIFT, SURF, barcodes etc. FBMs are very 

efficient regarding the data association, map update and memory requirements especially for 

large environments. FBM are not as robust to senor noise and outliers as the OGM because 

the model estimation uncertainty in the feature extraction process. This could lead to wrong 

data association which is very crucial to Kalman filter based SLAM implementation. The choice 

between FBM and OGM depends also on the sensors e.g. SONAR and 2D Laser scanner favors 

the OGM where vision based sensor favors FBM. Figure 2.15 shows the example map of 

environment as a plane image where the Figure 2.16 shows the FBM composed by extracted 

lines from the map image.  

If one has the map of the environment in the form of a planner image then he can create a line 

feature based map from the image. Similarly if one has the 3D point cloud he can create the 

plane feature based map from the image. The following application is used to extract the 2D 

lines defined in polar coordinate. The coordinate frame is assumed at the center of image. The 

application is used to create a feature based map for mobile robot localization. For the 

localization the robot uses its laser range scanner to estimate the lines from the raw 

measurements and then find a correspondence of the line with the existing line features.  

To extract the lines from an input intensity image, first a Canny [73] edged detection operation 

is applied over the input image. As a preprocessing step before implementing canny edge 

detection algorithm the input image is converted to a gray-scale image to reduce the 

computational requirements and simplification. The gray-scale image is in fact a matrix with 

rows and columns equal to image width and height in pixels respectively. The result of canny 

edge detection algorithm is a binary image which contains only the non-zero pixels value 
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corresponding to edges i.e. sudden changes in the image contrast.  The canny algorithm 

consists of the following four steps: 

 

 

Figure 2.15 Original map image of the environment 

 

Figure 2.16 Extracted line features from the map 
image 

 

Step 1: Gaussian filter is applied to remove the noise. The filter consists of a kernel or mask, a 

matrix, with a certain standard deviation. The resulting image is a blurred image which is a 

result of convolving or sliding the kernel across the gray-scale image from left to right starting 

from top to bottom. 

Step 2:  Since the edges are the gradient in the intensity of the image. The magnitude and 

direction of the gradient for each pixel in the smoothed image is determined using Sobel [74] 

technique. To get the edge intensity and direction, Sobel technique determines components of 

the gradient along the x and y axis by convolving a 3x3 X-kernel and Y-kernel respectively with 

the intensity image. The gradient magnitude is determined by using Euclidean distance 

measure. Manhattan distance measure can be used to reduce computational complexity. The 

gradient direction is calculated by using arctangent function. 

Step 3: The edges which are found in the previous step are thick; therefore, they must be 

narrowed. To thin down the thickness of edges the following algorithm is applied. Since there 
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are eight neighboring pixels of any pixels except the border pixels, therefore the gradient 

orientation is divided into eight regions of 45 each. The decision to keep the pixel gradient 

value is based on the following condition. If the gradient value of the current pixel is greater 

than the gradient values of the pixel in gradient direction and opposite of gradient direction 

then its value is kept otherwise set to zero. 

Step 4: The edges found in the image may be the true edges or it may be formed because of 

the noise or rough surface. Usually fake edges are short, disconnected and irregular. 

Distinction between true and fake edges can be made using thresholding. Using a single 

threshold short discontinuous edges are formed because of the noise in the discontinuous 

region. The canny edge detection algorithm discerns between true and fake edges using two 

thresholds T1 and T2. If the gradient intensity is above T1 it is considered as strong edge. 

Strong edges can be treated as true edge because it is unlikely to be caused by noise. If the 

magnitude of the gradient is between T1 and T2 it is considered as weak edge otherwise 

discarded. The weak edges may be true edges or because of color variation or noise. The weak 

edge is considered as the true edge only if it is connected with a strong edge otherwise 

discarded. Because if a weak an edge is connected with a true edge, it is likely to be a true 

edge but because of the noise it is suppressed and considered as weak edge. Where the 

disconnected weak edges are likely due to color variation or noise and therefore they are 

independent of the strong edges thus discarded. The Tracking of weak edges adjency with 

strong edges can be checked using Grass-fire, flood-fill, algorithm. 

After the edge detection probabilistic Hough transformation is applied over the binary image. 

Each non zero pixel in the image space is used for voting phase in Hough space. The voting 

phase is also known as Hough transformation. The Hough space or accumulator is the 

discretization of line's parameters space, i.e.  a 2D space where each axis correspond to a 

parameters of the line equation. Since one point can corresponds to many lines, therefore, 

one point in image space corresponds to many points in the Hough space. Similarly, one line 

can have correspondence with many points; therefore, each point in Hough space corresponds 

to many points into the image space. To reduce the computation requirements in standard 

Hough transformation, probabilistic Hough transformation uses two random non zero points 

to form a line which vote for a point in Hough space. After a certain number of iterations the 

Hough space points above a certain thresholds are treated as lines. The corresponding 

endpoints of the line are then extracted from the image space. The extracted line segments 

parameters   and   along with the line segment’s end points are stored in a XML file format 
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which later can be retrieved by the localization module during the loading of the map at 

startup.  

2.5.2.1 Plane Extraction and Map Building Using a Kinect Equipped Mobile Robot  

 

3D Map building is fundamental to the autonomous navigation of the mobile robots in real 

world environment. Furthermore it could help mobile robots to reason about environment. 

State of the art mobile robots use 3D range scanning devices such as laser scanner, time of 

flight cameras, stereo cameras and RGB-D cameras to sense the spatial environment and 

construct the map from acquired point clouds. Traditional computer vision solutions to 

construct 3D maps from multi-view videos or related images are computational resource 

demanding and time consuming. Geometric features such as lines and planes are prevalent 

into the manmade environments such as offices and factory floors. Mobile robots can use such 

geometric features to construct a map for collision free autonomous navigation and 

localization in such environments. 

This research work uses the plane detection algorithms to detect the planes from the raw 

Kinect data and registers them using octree data structure. During this experiment a geometric 

feature (3D plane) based map is created using a differential drive mobile robot equipped with 

a Microsoft Kinect camera in an indoor office environment as shown in Figure 2.17. To create 

the model of the environment several scans have to be fused. The fusing process is easy if the 

position of the scanner is known otherwise scan registrations have to be performed to 

estimate the pose of the scanner. This experiment does not concentrate on the scan 

registration process. It is also assumed that the mobile robot has been already localized thus 

an accurate mobile robot pose is available for mapping.  

Kinect is an inexpensive RGB-D camera which provides a color image stream and a depth 

image stream in an indoor environment in real time which can be very useful for dense 3D 

color mapping in cluttered indoor environments. Despite of the impressive acquisition rate the 

raw data is unsuitable for navigation and real-time 3D mapping because of the enormous 

amount of the data to be processed. Therefore, geometric features such as planes are 

extracted from the raw 3D point clouds. 

Since Kinect sensor acquires enormous amounts of data, 9.2 million 3D points in one sec, it is 

challenging to process the data in real time because of the limited amount of computation 

resources available on mobile robots, furthermore, raw 3D point clouds from Kinect sensor are 
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not directly useable. Some processing is required to reduce this amount of data to extract 

features information present in the raw 3D point cloud. The features could be point features, 

line features, color segmentations and shape detections. Extracting multiple geometric 

features from the range data is computationally demanding and directly related to the number 

of parameters required to represent the geometric model to be found in the raw point clouds. 

In this geometric mapping approach 3D planes as geometric features are used because a 

plethora of 3D planes are available in structured environments. Two algorithms namely 

RANSAC and Hough transformation are tested to extract the 3D planes from the raw point 

cloud so that we can compare the performance of real-time geometric map building from the 

Kinect equipped ground mobile robot. 

From the resulted 3D generated map by the RANSAC, Figure 2.19, and the Hough Transform, 

Figure 2.18, both produce a visually comparable result. The difference between the two 

resulted maps is in the top left corner, where the RANSAC fails to find the correct planes, 

because the corresponding point clouds contain a high number of invalid points. In term of the 

execution time RANSAC took on average 50 mSec to extract the first plane, whereas the 

Hough Transform took an average of 170 mSec to extract a plane. Since no loop closure was 

used the difference between start and end point in both maps was expected. 

 

Figure 2.17 Robot trajectory in the mapped environment 
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Figure 2.18 Geometric map created using Hough transformation 

 

Figure 2.19 Geometric map created using RANSAC algorithm 
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2.6. Navigation 

Navigation is not a part of SLAM process but it is an essential task to navigate a mobile robot in 

the environment and avoiding obstacles. A* is a path finding algorithm between two points on 

an OGM. It can work on rectangular, triangular, hexagonal or any other type of grid map. It is a 

deterministic algorithm which will find a path if one exists. Peter Hart, Nils Nilsson and 

Bertram Raphael of Stanford Research Institute first described the algorithm [75] in 1968 

which is an extension of Edsger Dijkstra’s algorithm [76] in 1959. For the further discussion it 

will be assumed that a rectangular grid map is available to the robot, given as input in case of 

localization scenario or build up by the robot in SLAM scenario, and each unoccupied grid has 

the same cost value. Furthermore, the starting grid cell position, current grid cell position and 

end grid cell position on the grid map are denoted by     and   respectively. A* combines the 

best of greedy best-first search algorithm and Dijkstra’s algorithm; furthermore one can tune 

algorithm speed versus shortest path. Greedy best-first algorithm takes into account the 

distance from current position to the target without considering the already travelled path 

distance, therefore, it reaches to the target as quickly as possible by using a heuristic function 

to guide its way toward the goal. But there is a caveat, the quickest path might be longer if 

there comes obstacles in the way and the algorithm has to re-plan the path. Therefore, the 

problem lies in looking only for shortest distance toward the goal and neglecting the already 

traversed distance from the start. Dijkstra’s algorithm takes into account only the distance 

travelled from start position to the current position, therefore, it try to reach to the target in a 

shortest path without considering the target direction which results it into longer time to find 

the shortest path.  

A* algorithm evaluates at current grid cell location (node) a heuristic function which consists 

of two parts as follows: 

   ( )   ( )   ( ) Eq. 2.32 

The first part  ( ) is a function which returns the length of the already traversed path from 

starting position to the current position  . The second part  ( )returns the estimate of an 

acceptable distance of the remaining path from current position to the target position. By 

acceptable distance means a distance which is close to optimal distance from current position 

to the destination. And this is the estimated one because we don’t know the path we will take 

to reach the end point. After evaluation of the above heuristic function for the current 

point  ’s neighbors the algorithm follows a path from point     neighbor with least heuristic 

function value. A* algorithm speed VS shortest path performance is depended on the chosen 
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heuristic functions. If  ( ) is zero then A* algorithm act like Dijkstra’s algorithm which results 

into the shortest path. On the other extreme if  ( ) is very high compared to  ( ) than it will 

try to find the path as quickly as possible without considering if it’s the shortest, therefore act 

like Greedy Best First algorithm. 

 

Figure 2.20 Visual comparison of three path finding algorithms in scenerio-1 

If  ( ) result’s less than the optimal path length from point   to the destination then the 

resultant path will be the shortest but other frontiers are also explored and thus make the 

algorithm runs slower. If  ( ) result is equal to the optimal path length from point   to the 

destination then the result will be the shortest path without exploring other frontiers. Basically 

what happens is that  ( ) matches with  ( ) so that  ( ) doesn’t change and the point on 

left and right of   are of higher distance value, therefore don’t explore other frontiers. If  ( ) 

result is greater than the optimal path length from point   to the destination than the 

resultant path may not be the shortest path but the one found quickly without exploring more 

frontiers. 

Use a distance heuristic function that matches the robot movement. On a square grid where 

robot movements are limited to front, back, left and right use Manhattan distance (  -Norm).  

  ( )  |       |  |       | Eq. 2.33 

If the robot can also move diagonal in addition to basic four movements then use the Diagonal 

or Chebyshev distance (  -Norm). 
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Figure 2.21 Visual comparison of three path finding algorithms in scenerio-2 

   ( )      (|       | |       |)  Eq. 2.34 

If the robot can maneuvers in any direction then use the Euclidean distance (  -Norm). One 

caveat to the Euclidean distance heuristic is that it takes longer to run the A* algorithm to find 

the shortest path because  ( ) will be smaller than  ( ). The Euclidean distance calculated by 

 ( ) is always smaller than the Manhattan or Chebyshev distance calculated by  ( ). 

  ( )  √(       )  (       )  Eq. 2.35 

If there are multiple end locations of same priority then A* algorithm can reach any one of the 

location by the following modification. Instead of evaluating the  (  ), evaluate 

   ( (  )    (  )) while rest of the algorithm remains the same. 

The performance of the A* algorithm also depends on one of the important detail i.e. in case 

of the different frontiers of the same   value which one to choose, there are different 

strategies which produces different results. One approach is to choose the point with lowest   

value. Another approach is to calculate the magnitude of the cross product between vectors 

formed from start point to end point and from the frontier point to the end point and 

selecting the frontier with smaller resultant area. 

Figure 2.20 and Figure 2.21 show the visual comparison of the three above mentioned 

navigation algorithm with same starting position while different end position. The colored 

gradient visually depicts the cost of reaching at that point. From Figure 2.20 it seems that 
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Greedy Best First algorithm is the best but one can see from Figure 2.21 that it traps within the 

obstacles and even the found path which is shown by thick bold line is not the shortest. Where 

the Dijkstra’s algorithm always find the shortest path if one exists but it will take longer to 

execute because it searches the path in all direction from the starting point. 

 

2.6.1. Implementation 

The A* algorithm uses priority list for its implementation.  A priority list is an data structure 

where each element stored has a priority value attached to it and when a data value is asked 

from the priority list then the data value with the highest priority is returned. Each grid cell is 

called a node in A* implementation. A node consists of following variables; grid cell location, 

grid cell state (Occupied, Unoccupied), a pointer to parent node and variables for storing     

and   value. There are two lists maintained by the algorithm, let’s call them FRONTIERS and 

VISITED. A FRONTIER is a priority list which contains the nodes that are the valid candidates for 

examining. The   value is used as the priority value of the FRONTIERS priority list. When the 

FRONTIERS list is queried then the node with minimum   value shall be returned. A VISITED list 

contains nodes which have been already examined; they are the interior of the frontiers cells.  

In the beginning both lists are empty; to start the algorithm the starting node is added to the 

FRONTIERS list. Then we start our search loop. A node from the FRONTIERS list is queried 

which is called current node. If the current node matches to the destination node then we add 

the current node to our resultant path list and backtrack all the nodes using the parent field of 

the nodes in the VISITED list until we reach to the starting node. Otherwise the current node is 

added to the VISITED list. The neighboring nodes, 8 in 2D or 26 in 3D, to the current node are 

examined; the nodes which are un-occupied and already not in the FRONTIERS or VISITED list, 

there     and   value are calculated and their parents field is set as current node and then 

added to the FRONTIERS list. The h value is calculated using the chosen heuristic value the   

value is the sum of current nodes   value plus moving cost from current node to the 

neighboring node. Then re-query the updated FRONTIERS list for the next current node. This 

process is repeated until there are no more nodes in the frontiers, in that case no path exists, 

or the destination node matches the current node which means the path is found. 
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2.7. Summary 

In this chapter the background concepts related to mobile robot SLAM and navigation are 

discussed. First of all the probabilistic motion model for differential drive robots and range 

sensor models are discussed. 

Then a Kalman filter and particle filter based probabilistic estimation techniques are 

introduced which are the core part of SLAM solution. 

 Afterwards the data fusion strategies are discussed which are used for the accurate mobile 

robot pose estimation.  

Both the grid based map and feature based map construction process are discussed which 

directly affect the SLAM algorithm implementation.  

And finally A* navigation algorithm is discussed which is very important for the autonomous 

mobile robot navigation. 
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Chapter 3.  

Simultaneous Localization and Mapping  

3.1. SLAM 

The knowledge of the environment and mobile robot’s pose is essential for autonomous 

navigation, obstacle avoidance, cooperation and path planning. The end product of SLAM can 

be seen as an accurate map of an unknown environment built by the robot(s). Accurate means 

while building the map the robot localizes itself using the same map, therefore, it results into 

an accurate map. Maps could be an occupancy grid map or feature based maps as described in 

section 2.5. Various state of the art SLAM methods were mentioned in the related work 

section 1.4. Despite past two decades efforts to find robust and general purpose solution to 

SLAM, the problem is not fully solved especially in case of large outdoor environment and 

multi map fusion. 

In general the probabilistic SLAM solution consists of two parts, prediction step and the 

update step. In the prediction step the robot states are updated using robot motion model 

and in the update step the estimated states are corrected using the observation or 

measurement made by the robot using its sensors. Observations can be the observations of 

new features or re-observations of the old features. In the case of re-observation of the 

existing features, this information is used to update the previous belief of the robot about its 

pose and existing features.  

 

Figure 3.1 Simulation of range-bearing based EKF SLAM 
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Figure 3.1 displays the result of an EKF based Range-Bearing SLAM algorithm for known data 

association. The robot’s pose uncertainty, shown by ellipse, increases as it moves as shown in 

the above figure. In the simulation shown above, fig. 3.1, the robot moves inside a cloister. 

The red stars represent the columns of the cloister which can be detected by a factitious 

Range-Bearing sensor system mounted on the robot. The factitious sensor can provide the 

range and bearing of the column with respect to the robot pose with some uncertainty in the 

measured range and bearing. These columns can be considered as landmarks or point 

features. The factitious robot sensor can also determine the unique ID printed on the column 

for resolving the problem of data association or ambiguity among the same columns. The 

small red squares represent the waypoints which the robot has to traverse. The red dotted 

line represents the nominal trajectory of the robot while the gray dotted line represents the 

estimated trajectory of the robot. The grey dotted ellipse represents the uncertainty in the 

position. Two important results can be seen. First the gray stars represent the map generated 

by the robot and the second is the robot pose uncertainty which never grows unbounded 

because it uses the map to localize itself. 

SLAM algorithms can be roughly classified by their estimation techniques and their map 

representation. This chapter discusses the implementation of an EKF based SLAM algorithm. 

The strength and weaknesses of the map representation have been discussed in section 2.5. 

EKF is used as estimation engine for robot pose and features position estimation. The EKF 

maintains and updates the mean and covariance of the states at each time step. The state 

vector consist of robot pose    and set of features parameters    which are considered as 

map 

   0
  
 
1 Eq. 3.1 

Where the covariance matrix is as follows 

   [
      
      

] Eq. 3.2 

The EKF-SLAM consists of two phases’ prediction and correction. 

3.2. Prediction 

The prediction phase estimates the robot pose and the map after the robot has executed a 

motion command or when motion data is available from odometry. The map or set of 

landmarks are assumed to be constant or time invariant, therefore 
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1  Eq. 3.3 

The kinematic motion model  (        ) of the differential drive robot to estimate the pose 

states is as follows: 

  (        )  
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 Eq. 3.4 

 

Where    (        )
 is the current robot pose,    (     )

 is the odometry inputs 

which consist of linear and angular distance measured by the robot wheel encoders. Here it is 

assumed that the robot pose error is due to the non-systematic errors because of robot wheel 

slip and interaction of the wheel with the ground. These errors    . (    
 )  (    

 ) 

 (    
 )/

 
are assumed to have a normal or Gaussian distribution and they are un-correlated. 

The systematic errors such as due to difference of left and right wheel diameters and 

difference of wheel base length from the nominal value are also assumed to be corrected by 

the odometry calibration procedure such as UMBmark [60].  

After estimating the state vector as a result of robot motion, the uncertainty of the robot and 

map features states are calculated as follows: 

 [
          
          

]  *
             

         
           

                 
+ Eq. 3.5 

Where             are the new robot and map uncertainties and       is the cross covariance 

between robot and map features.                         are the old robot uncertainties. It 

can be seen from above equation that the uncertainty of the robot pose       is propogated 

from the previous robot state uncertainty in addition to the uncertainty due to the noise. The 

uncertainty of the map features        remain the same but the covariance between the 

robot and map feature changes. Where    and    are the Jacobians of the robot motion model 

with respect the pose vector and noise vector. These Jacobians have the following values 
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]  Eq. 3.6 
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] Eq. 3.7 

In Eq. 3.5   is the covariance matrix of the non-systematic errors which is defined as follows: 

   [

  
   

   
  

    
 

] Eq. 3.8 

3.3. Correction 

The correction phase of the EKF based SLAM algorithm is very complex. It consists of 

clustering, feature extraction, expected feature prediction, map update and mapping new 

features. Each of these steps is described in details as follows. 

3.3.1. Clustering or Segmentation 

Segmentation is usually the first step after range sensor data acquisition, sometime it is 

followed by filtering. The real depth data from range measurement sensors contains more 

than one geometric model or features present in the real environment, therefore, as a 

preprocessing step to feature extraction clustering or segmentation is performed. 

Segmentation groups the related set of data so that the geometric model of the feature is 

estimated from the range data segment. 

The SICK PLS-101 laser-scanner is mounted on one of the robot, TOM3D. Because of the 2D 

range scan measurements provided by the SICK laser scanner line features are selected for 

performing SLAM. The laser-scanner has a CCW rotating mirror at 25 rpm (40msec/scan). It 

uses time of flight principle by the help of a 3 GHz counter [77] which results into range 

measurement accuracy of 5cm. The angular resolution of the laser scanner is 0.5° and the 

measurement range is from 7cm to 50m. During first half of 40msec interval the range 

measurement in a semicircle is done while during the next 20msec the mirror is rotated back. 

From the maximum linear (V) and angular (W) velocity the distance and angle traversed by the 

robot can be calculated. For our robots the V=0.5m/sec and W=10°/sec results into    =1cm 

and   =0.2° which is negligible compared to measurement error therefore, we can neglect 

the measurement delay during the robot motion.  
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A line segment is defined as when the difference between the two consecutive laser beams 

exceeds a certain threshold. In general the segmentation based techniques can be based on 

distance threshold method or can be in the form of line tracking method. In the later 

techniques the segmentation and line extraction are usually combined in to a single step. For 

the extraction of line segments from 2D laser range finder measurements various 

segmentation techniques have been evaluated in a simulated environment, which are briefly 

described as follows.  

 

 

Figure 3.2 Simulated environment for evaluating different segmentation algorithms 

Sequential Edge Following (SEF) works directly on the range measurement, therefore it does 

not require to transform laser scanner measurements from polar (raw laser scans) to Cartesian 

coordinates, although later on when we need to estimate the line parameters using linear 

regression we need the Cartesian coordinate of measurement points. SEF detect a line 

segment if the difference between two successive range measurements is greater than a 

threshold i.e. |       |     . One disadvantage of the SEF is if the immediate point is 

affected with noise then then a new line segment is produced. 

Line Tracking (LT) works sequentially on the laser scan measurements. LT produces a least 

square fit segment; segmentation and linear regression are in one step. At start a linear 

regression is applied on two points to estimate the line then the distance of the estimated line 

from the following third point is calculated, if the distance exceeds a certain threshold the 

estimated line segment is saved and new segmentation is performed from the third point 

otherwise the linear regression is performed once more including the third point until line-
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point distance exceed for next point or all the points are processed. The same disadvantage of 

distance threshold as in the case of SEF also applies to LT when the next point which decides 

the break of line is disturbed by the noise. The next point bias the estimate more when the 

linear regression set is smaller. Both SEF and LT depend on the distance of the point from the 

laser scanner. SEF and LET can be improved by using previous and last point information into 

account. 

Iterative End Point Fit (IEPF) [78] is a recursive algorithm which is executed when all data 

measurement points are available. As a pre-processing step it also requires the points to be 

converted into Cartesian coordinates. Then a line is estimated from first and last point 

afterward all the points’ distances from the line is calculated. In case when no distance exceed 

a threshold this is the estimated line (or to enhance the parameters linear regression is 

performed on the point sets) otherwise the point with the maximum distance is selected as 

dividing point for two line segments which are again recursively checked iteratively for line-

point distance. SEF and LT algorithms are fast compared to IEPF where IEPF is robust in both 

indoor and outdoor environments. 

The decision to create cluster is based on a criteria  (       )       where  (       ) is a 

Euclidean distance between two consecutive laser beam end points calculated by law of 

cosine i.e.  

  (       )  √  
      

             (  )  Eq. 3.9 

The distance can be approximated by the following equation because of the very small angles 

among laser beams i.e. 0.5° 

  (       )  |       |  Eq. 3.10 

The important point in clustering is how to choose the threshold? Dietmayer [79] uses the 

following threshold condition  

             (       ) Eq. 3.11 

Where    is a constant used for noise handling and  

    √ (      (  ))  
 (       )

  
 Eq. 3.12 
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The dependence of threshold on the range is because of radial measurement principle. Santos 

[80] included the parameter   aiming to reduce the dependence of the absolute distance of 

the point from the laser-scanner. 

        
     (       )

   ( ) .   .
  
 
/     .

  
 
//
  Eq. 3.13 

Lee [81] proposed a simple method for line segments extraction threshold 

     |
       
       

| Eq. 3.14 

Kalman filter has also been used for segmentation process; interested reader may refer [82]. 

3.3.2. Feature Extraction 

Features are distinguishable entities in mobile robot’s sensor data which provides valuable 

information regarding the location of the mobile robot and mapping of the environment. 

Features or landmarks correspond to physical objects in the mobile robot environment. They 

bring different kind of information of environment objects into the map which helps the 

mobile robot to navigate using that map. Furthermore, they compress the sensor data size by 

modeling them into entities which constituted the map. This is a very important aspect of the 

large scale environment. Features usually depend on the type of sensor being used for the 

mobile robot e.g. for 2D laser range scanner the features could be lines, corner and circles, for 

3D laser range scanner, TOF cameras or RGB-D cameras the features could be planes and for 

vision sensors features can be such as SIFT [83] or SURF [84].  

Geometric features such as corners, lines, circles, planes and cylinders are most common 

features which are being used to model the environment from range sensor measurements. 

The geometric features are estimated by fitting the range measurements to the mathematical 

model of the feature. The literature on model fitting can be categorized into two broad 

categories i.e. Clustering (Hough Transformation) and Least Square Methods. A general form 

for the linear least square estimation process is shown in the Appendix B. During geometric 

feature extraction process the measurements are compared with a geometric model such as 

line or plane, the inliers are then used to estimate the parameters of the model. The 

parameter estimation problem can be mathematically seen as an optimization problem 

because of the over-determined system and measurement errors. One can use the least 

square method, RANSAC or Hough transformation to estimate the single or multiple models 

from the measurements. Two different types of geometric features for modeling the robot 
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environment are used i.e. line and planes. The extracted features are then used in the feature 

matching stage.  A fitting function to a model must provide model parameters, error estimates 

on the parameters and statistical measure of goodness-of-fit. 

3.3.2.1 Probabilistic Line Extraction 

Among many primitive 2D geometric features line features are the prevalent in structured 

indoor environment. The Hessian normal form of line in polar coordinate is more desirable 

because it doesn’t have the problem of representing lines parallel to x or y axis as in slope 

intercepts form. This implicit representation also allows fast calculation of point to the line 

distance. Least square estimation technique is used to estimate the parameters of a line from 

the laser scanner measurement cluster. Least square estimation technique provides a 

maximum likelihood estimation of the fitted parameters if the measurement errors are 

independent and Gaussian. Weighted least square fitting is also known as chi-square fitting. 

The sum of squares of weighted residual are called chi-square, i.e. the sum of square of normal 

distributed quantities. Weighted least square line fitting is used to estimate the parameters of 

a line if each laser beam has different error variance. 

Laser range scanner takes   measurements of the environment in polar coordinates    

(     ) during one scan. We defined the line in Hessian normal form as follows 

     (   )      Eq. 3.15 

Here    is the shortest Euclidian distance of the line’s normal from the coordinate system’s 

center and   is its angle with abscissa. Since there is an uncertainty in each variable   and   

therefore we have to minimize the term on right hand side of the above equation. Each 

variable can be represented as a random variable which has its own probability distribution 

function. We assumed that both random variables measurements are independent, 

furthermore, the PDF of both variables are Gaussian. The error of each 

measurement (     ) can be specified by the minimum normal distance of the measurement 

point and the line i.e.      (    )      , from the estimated line (   ). This approach 

results into a non-linear least square estimation which is computationally expensive to 

compute but not results into a bias estimate. The parameters of the line can be found by 

minimizing the sum square error of all the measurement points with respect to line 

parameters i.e.  
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The above equations result into a non-linear least square estimation whose solution is 

calculated in [85]. The parameters of line’s model in hessian normal form are calculated as 

follows: 
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 Eq. 3.22 

And the uncertainties of the line’s model parameters (   ) are because of the uncertainties in 

measurements (   ) which are calculated using error propagation law in [85]. These 

uncertainties are calculated as follows, assuming    
  and    

  are independent and angular 

uncertainties (   
   ) is negligible: 
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 ] Eq. 3.23 
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 Eq. 3.30 

Position correction and map construction process can be speedup by storing other information 

regarding line segment such as direction vector (from one point to other), normal vector, 

length of segment, number of points in line segments and its normal distance to origin. 

3.3.2.2 Probabilistic Plane Extraction 

State of the art mobile robots use 3D range scanning devices such as laser scanner, time of 

flight cameras, stereo cameras and RGB-D cameras to sense the spatial environment and 

construct the map from acquired point clouds.  3D Geometric features such as planes are 

prevalent in the man-made environments such as offices and factory floors. Mobile robots can 

use such geometric features to construct a map for collision free autonomous navigation and 

localization in such environments. Various research works [86] [87] [88] [89] have been done 

until now to extract the 3D planes from the point cloud data acquired from different range 

sensor devices and build the 3D map of the environment.  Asad [89] has proposed a mapping 

system for mobile robots which used height maps created from range images for path 

planning. Pathak [86] proposed a method for 3D mapping by a mobile robot, furthermore, his 

proposed method utilizes the uncertainty of the plane parameters to compute the uncertainty 

in the pose computed by scan registration. Weingarten et al. [88] proposed a method for 

plane fitting for laser range scanner data and fuses matching planes together to find a 

compact 3D model. Anderson et al. [90] uses an approach which fuses both color and range 

information to detect 3D planes. Apart from various mapping algorithms for mobile robots 

different sensors have also been used in combination with mapping algorithms to map 3D 

environments. Such sensors include laser scanners [91], stereo vision and monocular cameras 

[92] and time of flight camera [93]. A common approach for mapping is to align point clouds 
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by finding rotation and translation between consecutive 3D scans [94]. Henry [95] maps the 

environment using ICP and SIFT features. There exist numbers of other methods which extract 

the 3D planes from the raw point clouds.  Borrmann [96] uses the Hough transform to extract 

the 3D plane from the raw point clouds. Triebel [97] uses expectation maximization, Gallo [98] 

used RANSAC to extract the planes and Pathek [99] used the split and merge techniques to 

detect the planes. In [100] two algorithms namely RANSAC and Hough transformation to 

extract the 3D planes from the raw point cloud are tested to compare the performance of real-

time geometric map building from the Kinect equipped ground mobile robot. Recently most of 

the research work also used Kinect camera. The work in [101] [102] [103] has focused on 

extracted plane segmentation because of the sparsity, measurement range limitation and 

occlusion of the measurements. These research works have used the color image to 

complement the range limitation and sparsity of the depth measurement. The intensity 

information can help in segmentation of the 3D point cloud data by detecting edges in the 

intensity images corresponding to the area of interest in the 3D point cloud. 

2D laser scanners are limited in use for mapping environments which contains simple 

geometric shapes; furthermore the obstacles which are above or below the scanned planes 

cannot be detected e.g. downward stairs. Where the stereo systems are dependent on lighting 

conditions and cannot detect planes in homogenous regions. Kinect sensor has brought 

acquiring colored 3D point clouds cheaper and quicker which in the past require expensive 

time of flight cameras. Furthermore, to acquire colored point clouds the system consisting of 

time of flight camera and image camera must be setup and calibrated but Kinect combines the 

3D range finding capability and the color information. Since Kinect sensor acquires enormous 

amounts of data, 9.2 million 3D points in one sec, it is challenging to process the data in real 

time because of the limited amount of computation resources available on mobile robots, 

furthermore, raw 3D point clouds from Kinect sensor are not directly useable. Extracting 

multiple geometric features from the range data is computationally demanding and directly 

related to the number of parameters required to represent the geometric model to be found 

in the raw point clouds. In geometric mapping approach 3D planes can be used as geometric 

features because a plethora of 3D planes are available in structured environments. 

Hough transform is a well-known algorithm in computer vision society to detect multiple 

models in the data compared to RANSAC which in its basic form assumes there is a single 

model present in the data. It can detect lines, planes, spheres and other parameterizable 

geometric objects in the input data. In spite of the robustness of the method against noisy 
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data one drawback of this algorithm is its high computational requirement therefore many 

variations of the Hough transform exists to detect the desired model parameters. Apart from 

standard Hough transform other variations which exists are, probabilistic Hough transform, 

random Hough transform, adaptive probabilistic Hough transform and progressive 

probabilistic Hough transform. The plane equation in Hessian normal form can be defined by a 

point   on the plane with normal vector   to the plane which is at a distance   from the origin, 

which is collinear to normal vector as shown in Figure 3.3. The normal vector   makes an angle 

  with the z-axis and its projection in the x-y plane makes an angle   with the x-axis. 

Therefore, the equation of the plane can be defined as  

       ( )     ( )        ( )     ( )        ( )    Eq. 3.31 

 

The dimension of the Hough space is equal to the number of parameters of our plane model 

i.e. (      ). Each plane in    corresponds to a point in the Hough space and each point in    

corresponds to a surface in Hough space. The surface represents all the possible planes where 

the point could belong to. Therefore, the transformation of the points      from    to 

Hough space will generate surfaces in Hough space. The intersection of three surfaces in 

Hough space results in a point in Hough space which corresponds to a plane in    on which 

the three points which generates the surface lies on. All points whose surfaces in Hough space 

intersect at a point correspond to the same plane in   . Figure 3.3 describes the model 

parameters of the geometric plane along with the coordinate system. 

 

Figure 3.3 Plane definition in Hessian normal form 
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Random Hough transform is used to detect 3D planes in the raw 3D point clouds. Instead of 

generating surfaces for each point    in    into Hough space, which is very time consuming. 

The fact that a plane corresponds to a single point in Hough space is used, therefore, it is very 

fast to compute a plane from three random points from a small circular region and transform 

the estimated plane to Hough space, this results into a significant faster algorithm for real time 

implementation. The pseudo code of the randomized Hough transform is as follows: 

Do until DetectedPlanes < 8 and TotalPoints > 

MinPoints 

Randomly select (        ) from a random circular 

region 

Calculate plane from (        ) 

Transform the Calculate plane from    to Hough space 

If local maxima is found in Hough space 

Delete points corresponding to plane from input 

points 

Calculate plane boundries 

Reset Hough space 

End if 

End Do 

Table 3.1 Randomized Hough transform algorithm 

The discretization size of the Hough space depends on the accuracy required and the available 

memory. For the implementation purpose the Hough space was discretized into a step of 1cm 

for   which result into a range of 1cm to 500cm, 1° for   from -180° to 180° and 1° for   from 

0° to 180°. Using the above discretization the memory requirement for Hough space is found 

to be 125MB. We have found out that the predominant  part of the time required by the 

randomized Hough transform is required to reset the Hough space, therefore the choice of 

discretization for plane parameters has been chosen based on the possible orientation of the 

planes in the input raw 3D point clouds. 
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3.3.3. Feature prediction from map 

Feature prediction from the map or data association is an important and crucial step for the 

correct working of the EKF based SLAM algorithm. Basically in this step the expected 

measurements by the robot are generated. This step requires the sensor observation model. 

TOM3D robot is equipped with the laser scanner to detect the line features from the 

environment. The lines along with their parameters uncertainties are extracted as described in 

section 3. The correction phase in fact calculates the amount of new information brought up 

by the laser scanner measurements. The amount of new information or innovation brought up 

by observing the already existing line feature is calculated as follows: 
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+ Eq. 3.32 

Here   
  is the expected observation which is calculated by using the sensor observation 

model. The sensor observation model for the laser scanner system to extract the line feature is 

defined by the following equation 
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+ Eq. 3.33 

The sensor observation model takes as input the current robot pose    (        )
  and one 

of the already mapped line features   
  (  

    
 )
 
 described in global coordinate frame and 

map it to the robot’s local coordinate frame   
  (  

    
 )
 

. The covariance of the expected 

feature observation is calculated as follows 
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 + Eq. 3.34 

Where    is the Jacobian of the sensor observation model with respect to the robot pose and 

    is the Jacobian of the sensor observation model with respect to the     feature.  

    0
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1 Eq. 3.35 
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1 Eq. 3.36 

The crucial issue here is the data association of the measured feature with the     existing 

feature in the map. There are many different strategies for data association [68]. Here two 

strategies are being discussed namely Mahalanobis distance and K-D Tree. 
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3.3.3.1 Mahalanobis Distance 

Mahalanobis distance is a distance measure which is based on the correlation of two variables 

and scale invariant. It basically measures the similarity of a measured data to a known data. 

The Euclidean distance measure cannot be used here because of the two reasons. First, both 

parameters of the line features are of different scales and, second, it doesn’t takes into 

account the uncertainty of the parameters. The Mahalanobis distance criteria can be applied 

iteratively on all the features of the existing map to find out which expected feature from the 

existing map best matches to the measured feature. In other words we choose a feature with 

minimum Mahalanobis distance (Maximum Likelihood) below some threshold. Mathematically 

it is described as follows 

   
     

       
  Eq. 3.37 

Here    is the innovation and    is the covariance of the innovation and   is the squared 

Mahalanobis distance for a constant probability density curve with locus cantered at 

measured feature. The innovation covariance is found by adding the covariance of the 

expected measurement and the measured feature covariance i.e. 

        Eq. 3.38 

The covariance of the measured feature is found in section 3 is as follows 

   [
  
    

     
 ] Eq. 3.39 

 

3.3.3.2 KD Tree 

KD tree is a binary tree where K is the dimension of the data. It has storage requirements of 

 ( ) where   is the number of data point. It supports the nearest neighbor search scheme 

which is important for estimated feature extraction from the map. The nodes within the KD 

tree consist of two child pointers and a key. The number of item in the Key value represents 

the D or dimension of the data. Let’s consider a concrete example in case of our SLAM 

problem. After extracting number of line features from the range scan data the next step is to 

extract the expected lines from the map at the given robot position. Here we assume that the 

map consists of a set of lines or in other words a set of pair of values which define the 

equation of line. Since we need two parameters   and   to define the line in Hessian normal 

form therefore, we need a 2D-tree data structure to represent our feature based map. Each 
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line entry in this data structure will be a node in the binary tree data structure of the KD-tree. 

The first node is called the root node and the subsequent data which follows is divided into 

two regions. We could imagine a hyper plane which divides the space into two parts, left side 

and right side of the plane. Because it’s a binary tree, therefore, the child node could be on the 

left side or the right side. The decision to store the next line on left or right side is made as 

follows. If the   value of the given line is greater than or equal to the   value of the root node 

then the right side is further investigated otherwise the left side. Now if there no node exists 

at that position then the value is added as  child node otherwise the   parameter is compared 

with the grandchild   value, the decision to traverse left or right as before until the node is 

registered at the appropriate level.  

3.3.4. Map Update 

If the data association process succeeds to find a match between a measured feature and any 

one of the existing feature then the map update step is performed. This step is in fact like the 

normal Kalman filter measurement update step. First we have to calculate the Kalman filter 

gain and then we update the states and their covariances. Mathematically  
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   Eq. 3.40 

            Eq. 3.41 

               
  Eq. 3.42 

It is clear from the Eq. 3.40 that the measurement of     line feature will calculate the 

correction factor for all the line features in the map and the robot. The corrected state vector 

is calculated by adding a portion of innovation proportional to the correction factors as shown 

in Eq. 3.41. Similarly due to the availability of new information the uncertainty of the state 

vector is reduced by subtracting a portion of covariance proportional to the Kalman gain from 

already estimated state uncertainty as shown in Eq. 3.42. 

3.3.5. New Features 

In case if the measured feature failed to produce any match with existing feature a validation 

gate is performed i.e. if the feature is observed during last four or more observations then it is 

considered as a new feature and is need to be added to existing features. The validation gate 

is required because of the noise present in the sensor measurements. Similar to sensor 
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observation model we need an inverse sensor observation model to define the measured 

feature from sensor’s local coordinate frame to global coordinate frame. 

  (     
   )  *

  
   

  
   +  *

  
          (  

      )        (  
      )

  
      

+ Eq. 3.43 

The state vector is augmented with the new feature   
    (  

      
   ) and the state 

covariance matrix is also augmented and initialized with new feature covariance          , the 

new feature to old feature covariance and the new feature to robot covariance. These 

covariance matrices are calculated as follows 

                    
               

  Eq. 3.44 

         ,              - Eq. 3.45 

          
  Eq. 3.46 

Where    is the Jacobian of the inverse sensor model with respect to the robot pose and 

      is the Jacobian of the inverse sensor model with respect to the feature point. The 

covariance of the measured feature is the same as in Eq. 3.39. 
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] Eq. 3.47 
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] Eq. 3.48 

Therefore, the augmented state covariance matrix looks like this 
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] Eq. 3.49 
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3.4. Summary 

This chapter describes in detail the core components of the SLAM algorithm for 

implementation purposes. Active range sensors such as laser-scanner have advantage over the 

passive sensors such as stereo camera systems because they are independent from 

illumination and object reflection. Furthermore, they are accurate with long range 

measurement where the stereo system have error variance which squares with the distance.  

There are many other issues in the EKF based SLAM which are not discussed here but which 

are important for the practical implementation of the EKF-SLAM algorithm, such as features’ 

signatures (color, length etc.), intelligent update of only relevant features.  

The advantages of the EKF based SLAM algorithm lies in the simplicity of applying EKF 

algorithm to the SLAM problem and it works well for small number of unique features. There 

are few drawbacks of the EKF-SLAM algorithm. The computation requirements grow quadratic 

ally to the number of features. It relies very heavily on the data association assumption, 

therefore, errors in the data association results into divergence and ultimately explosion of the 

filter. And the solution would not be optimal in case of non-Gaussian noise and strong non-

linearity in motion and observation models. 

The topics which are important for the SLAM implementation are clustering, feature 

extraction and data association. Various data clustering techniques which are useful and 

applicable to range sensors are described. The techniques used for extraction of geometric 

lines and planes are also described. Lines are extracted by using the non-linear least square 

estimate technique. Where the planes are extracted by using Hough transformation process. 

Then the features prediction step is explained which can use Mahalanobis distance based 

technique for feature prediction or the KD-Tree based approach. And finally the map update 

and augmentation process is described. 
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Chapter 4. Cooperative SLAM (CSLAM) 

For mobile robots to act autonomously in their environment there are two fundamentally 

different approaches. One is the behavior based approach in which robots rely much on their 

sensory to take decision. The second approach is the model based approach in which the 

mobile robots model its surrounding environment. The model of the world around the mobile 

robot is in the form of a map. In chapter 2.5 we have seen the different representations of the 

maps which are useful to mobile robots. Mobile robots need the map to find their position in 

the environment and plan their actions in the environment. SLAM answers the localization and 

map building conundrum of the mobile robots in an unknown environment as both step 

depend on each other. Various working SLAM flavors exist now days such as GMapping, 

GridSLAM and DP-SLAM for research purpose. However no existing SLAM package is available 

for multiple robots up to the knowledge of the author. This chapter formalizes the cooperative 

SLAM strategy for multiple robots with different heterogeneous set of features. 

4.1. SLAM for Heterogeneous features 

The standard EKF based SLAM algorithm solution is for one type of features. In this section an 

EKF based SLAM algorithm is described for a single robot and heterogeneous features. By 

heterogeneous features means different kind of geometric features. One could extract and 

model different kind of geometric features such as corners, lines, circles and planes from the 

2D range scan data. Line features can easily be extracted from the 2D range scan 

measurements of the laser range scanner such as SICK Laser scanner while the plane features 

can easily be extracted from the 3D range measurements from the depth cameras such as 

Kinect. Two parameters (   ) are required to fully describe a line as shown in Eq. 4.1 and 

three parameters (     ) are required to fully describe a plane as shown in Eq. 4.2.  

       ( )        ( )      Eq. 4.1 

       ( )     ( )        ( )     ( )        ( )      Eq. 4.2 

The parameters of a geometric feature can be augmented to the state vector as a new feature 

on the discovery during the mobile robot moves in the environment. The set of features is 

defined as map. The re-observation of the existing features is used to correct the pose of the 

robot and helps to reduce the uncertainty of the robot pose and map. In the case of EKF based 

SLAM algorithm the state vector and covariance matrix can be described as follows 
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   ,                       -   Eq. 4.3 

   [

           
              

              

] Eq. 4.4 

Equation 4.3 show the state vector composed of robot states and the map features. The first 

three elements are the pose of a mobile robot while the next tuple of two parameters 

represent the geometric line features and at the end tuple of three parameters represent the 

geometric plane feature present in the environment.  Equation 4.4 shows the composition of 

state covariance matrix of robot and map features.  The EKF based state estimation technique 

to perform the SLAM is as usual except in the update step where each measured feature 

update the robot pose and the subset of map composed of corresponding type of features 

4.1.1. Prediction 

In case of heterogeneous set of features such as lines and planes the state vector can be 

estimated as follows 

      [

 (        )
  
  

]  Eq. 4.5 

Here  (        ) represents the states of the robot and    represents all of the existing line 

features and    represents the set of all existing plane features. It can be seen from the 

equation 4.5 that it is assumed the features remain static in the environment. The uncertainty 

in the robot states and the map features is propagated due to robot motion as follows 

      [

         
         

               
                 
                 

] Eq. 4.6 

 

The robot state uncertainty is propagated according to state transition model in addition to 

the uncertainty of the odometric inputs. The uncertainty due to robot motion also affect the 

cross-covariance’s between the robot and the map features. 

4.1.2. Update 

The update step of the SLAM process in case of heterogeneous set of features is different for 

each type of feature. The update step for the line feature is the same as in Eq. 3.32 – Eq.3.42. 
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The line features only update the portion of the map containing the robot and line features. 

While the update step for the plane features is as follows 
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]  [

  
 

  
 

  
 

]  Eq. 4.7 

In Eq. 4.7    is the innovation calculated by subtracting     expected feature   
 
 from the 

    measured feature   
 . The data association between the     measured plane feature and 

the     existing feature is found by using the Mahalanobis distance threshold as already 

described by the Eq. 3.37. The measured feature is in the robot local coordinates frame where 

the existing plane features are stored in the global coordinate frame, therefore, the following 

sensor observation model transform one of the plane feature described in the global 

coordinate system and return’s the plane feature parameter’s in the robot’s local coordinate 

frame 
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 Eq. 4.8 

The above equation assumes that the robot is moving in a plane at a height of    with 

pose    (        )
 . The expected feature’s covariance is calculated as follows 

    [     ]  *
       
         

+  *
  
 

   
 + Eq. 4.9 

Where    is the Jacobian of sensor observation model with respect to the robot pose and 

     is the Jacobian of the  (     
 
) with respect to the plane feature. 
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] Eq. 4.11 

The covariance of the innovation is measured by adding the covariance of the expected 

features and the covariance of the measured plane 
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          Eq. 4.12 

The covariance of the measured plane is as follows 
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] Eq. 4.13 

Therefore, the update process for the map consisting of plane features is as follows 
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   Eq. 4.14 

            Eq. 4.15 

               
  Eq. 4.16 

The Eq. 4.16 which is used to update the covariance is computationally expensive but gives 

good numerical stability. 

4.1.3. New Plane Features 

The plane features which are failed to associate with the existing features are considered as 

new features and therefore, augmented to the existing feature list. A feature is measured in 

the robot local coordinated frame assuming sensor coordinate frame and robot coordinate 

frame are coincident and therefore, is required to transform into the global coordinate before 

appending to the existing feature’s set. An inverse sensor model function is required which 

perform the local to global coordinate transformation. The inverse sensor model which 

transforms the featured defined in the hessian normal form and local spherical coordinate of 

the robot is as follows: 
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] Eq. 4.17 

The state vector is augmented with  (     
   ) feature. It is assumed that the robot is moving 

in a planer surface. The covariance matrix of the state vector is also augmented as follows: 
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] Eq. 4.18 
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  Eq. 4.19 

         ,              - Eq. 4.20 

          
  Eq. 4.21 

Where    is the Jacobian of the inverse sensor model with respect to the robot pose and  

     is the Jacobian of the inverse sensor model with respect to the plane feature point. 
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] Eq. 4.22 

    [
    (  

 ) (     (  
 
   )       (  

 
   ))     (  

 ) (     (  
 
   )       (  

 
   ))       (  

 )

   
   

] Eq. 4.23 

 

4.2. SLAM for Multiple robot with known initial poses 

When multiple robots are working together for the solution SLAM problem then first it is 

important to know how to setup the cooperative SLAM framework for multiple robots which 

can sense different kind of features. The following discussion limits the discussion to two 

differential drive based mobile robots moving in a planar environment which can be extended 

to multiple robots if required. The first robot is equipped with 2D laser range scanner so that it 

can detect the line features from the raw 2D point measurements. The second robot is 

equipped with a 3D range sensor device such as Kinect so that it can detect the plane features 

from the raw 3D point measurements. Here we assume that the initial pose of the each robot 

is known which is important for cooperative centralized map building.  

The state vector and the uncertainty matrix estimated by the extended Kalman filter is as 

follows 
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] Eq. 4.24 
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 Eq. 4.25 
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Here     (           )
 
 is the state vector for the first robot and     (           )

 
 is the 

state vector for the second robot.    (     )
  is the subset of the total map   which 

consist of only line features extracted from the 2D range sensor and    (     )
  is the 

subset of   consists of plane features extracted from the 3D range sensor. 

4.3. Summary 

In this chapter a mathematical cooperative SLAM framework is formalized which is based on 

the extended Kalman filter. First an EKF based SLAM formulation is developed for the 2D 

geometric lines and 3D geometric planes. Each of the major implementation steps for the 

SLAM; prediction, update and the augmentation is described. 

Later the formulation considers multiple robots in the formulization. The state vector is 

composed of individual robot state vector, 2D line features and the 3D plane features. The 

formulization assumes the initial relative robot pose are known. 
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Chapter 5.  

Framework and Hardware Development 

A mobile robot system usually consist of hardware components such as sensors, actuators and 

control unit for low level tasks related to mobile robots. These sensors, actuators and control 

algorithms are controlled by a firmware running in the control unit. Usually this control unit 

communicates with the high level algorithms running on a desktop computer for their tasks 

management or tele-control. Carrying out the task by a mobile robot requires the integration 

of several modules. 

Therefore, a scalable cooperative multi-robot system is developed to address the current 

challenge of controlling, configuring and management of multiple ground and aerial robots 

with heterogeneous capabilities. The operation of the system for cooperative map building 

scenario is shown in Figure 5.1. Mobile agents can be created or configured dynamically at 

run-time in the existing team of mobile robots to perform tasks. Creation means assigning a 

unique ID, adding set of sensors and their poses via a graphical user interface for a physical 

mobile robot which is to be added into a team of mobile robots. Furthermore, to provide 

format for communication protocols of commands and reports between the mobile robot and 

computer control interface. Therefore, when sensor data is received from a mobile robot, it is 

parsed according to the robot’s report protocol format and then stored in to a database. The 

mobile robots sensors data in the database is categorized according to the sensor type. The 

structured logging of sensor data according to sensor type into the database enables mapping 

and localization modules to quickly process the relevant information.  

A mapping module which is a part of ground coordinator generates the online map and 

updates it automatically from the database. It makes the global map by using all range type 

sensors registered in the database from all mobile robots in the network. Based on the robot’s 

ID, range sensor’s data and pose from the database an online mesh is generated and rendered 

into the global map. 3D object models of robots along with their current pose are also 

rendered in to the map. 

Another aspect of the system is the modular firmware architecture and a universal hardware 

board for ground mobile robots. The firmware architecture consists of multiple modules which 

can be enabled, disables or configured on the fly. Modules are defined as behaviors, sensors 
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drivers, obstacles avoidance algorithm, navigation algorithm or any other firmware code 

written to perform a specific function. 

 

Figure 5.1 Heterogeneous mobile robots cooperation for map building in a partially structured environment 

Each module can be considered to consist of four phase; initialization, input, processing and 

output phase. During initialization phase the settings related to the module are loaded which 

are stored into the EEPROM such as the sensors poll duration, reports duration and others. 

The control board is designed in a way to provide interfaces for all common robot sensors 

hence can be used on all ground based mobile robots. Some subsets of mobile robot sensors 

are common among other robots; this redundancy increases the robustness of the system and 

augments the resilience of system failure in case of individual mobile robot failure. 

5.1. Overview of the system 

The cooperative robot network can consist of multiple mobile robots with heterogeneous 

capabilities. Each robot is specific to the environment morphology and therefore has a set of 

sensors according to the environment it is designed for. The main purpose of the overall 

system is to create a general purpose framework where multiple robots with heterogeneous 

capability can be controlled, configured and managed. The application for using the 

cooperative multi-robot framework is to build a cooperative map of an environment and 

localize the robots within the map simultaneously. The multi-robot network is a server-
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coordinator-agent based application. The server and the coordinators are the independent 

modules which can run concurrently on a computer or they can run on different computers to 

take advantage of computational efficiency. Information about the robots, there sensors 

configurations, data reports and control firmware settings are stored centrally into a database 

which is accessible to a server and coordinators. In general the hierarchy of multi-robot 

network is shown in Figure 5.2. 

 

Figure 5.2 Cooperative heterogeneous multi-robot network architecture 

The separation of the coordinators is based on the type of robots (ground or aerial) to ease 

the independent development and the nature of specific guidance and control requirements 

of the mobile robots. The following sections describes in detail the functionality and 

implementation for each of the overall system components; server, coordinates and agents. 

LAN 
WLAN 
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5.1.1. Control Center 

The control center (server) is responsible for the cooperative global map building, path 

planning and high level mission/task planning. The control center builds the global map by 

fusing the local maps which are constructed by the ground robot coordinator and the flying 

robot coordinator respectively. The map fusion is implemented when either the relative pose 

between the mobile robots is known or some common features in robots local map are found. 

The map fusion is therefore, a computationally intensive task which is to be performed by the 

server. The communication and cooperation between ground and aerial mobile robots 

coordinator are performed through the server. For instance, the server can command the 

ground mobile robots to explore an area which is not observable by aerial robot or command 

the flying robot to take the images of a planned path so that if there are some unforeseen 

dead-ends ahead that can be included before the mobile robots reach there. The control 

center and coordinator communicate to each other through UDP (User Datagram Protocol) 

hence they benefit from the interoperability, scalability, and standardization of the 

communication infrastructure. The UDP offers data throughput but don’t have error checking. 

Therefore, a communication protocol structure is designed which is implemented for 

communication between server and coordinator. The communication protocol is general 

enough to be implemented between agents and coordinator. The general communication 

packet layout is as follows: 

Packet Field Field Size [Bytes] Description 

Header 2 Communication packet’s beginning signature. 

DestinationID 1 Unique number to identify the destination device(s) for the 

contained data. 

PayloadSize 1 Number of bytes of data contained in this packet from next field 

onward excluding the checksum field. 

SourceID 1 Unique number to identify the source device which has 

transmitted the contained data. 

PacketType 1 Number to identify the type of data contained the packet. 

Payload 0   255 The actual data bytes to be communicated among devices. 

Checksum 1 Modulo 256 checksum 

Table 5.1 General communication  packet structure 
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The communication protocol is general enough to be implemented by all the robots, 

coordinators and the control center. The communication packets are divided into two broad 

categories  

 Reports 

 Commands 

Reports are the communication packets which are sent by the agents or the coordinators in 

response to some command or event. The command packet contains the data for performing 

some action at agent or coordinate side. Usually the report packets are sent from agents to 

the coordinators and the command packets are sent from coordinator to the agents. The 

report and command packets can be identified by the Header values. For the implementation 

purpose the bytes (0x2A, 0x2A) are used as report packets header and the bytes (0x23, 0x23) 

are used as command packets header. The destination ID field contains a number between 1 

and 255 as the destination device code. Zero is a special address which is reserved for 

broadcasting the communication packet to the entire network. At the moment the robust 

SLAM approach for single robot is GMapping, also known as Rao-Blackwellised particle filter, 

which required an accurate laser range finder and odometry data. Rao-Blackwellised filter is an 

efficient SLAM implementation which scales logarithmically with the number of landmarks. It 

uses an EKF of features estimate and a PF for robot state. The resampling process is crucial for 

PF. GMapping is the state of the art implementation of the SLAM algorithm. The research work 

can be extended to incorporate particle filter and extended Kalman filter like GMapping. 

Particle filter approach when implemented on GPU for cooperative SLAM problem can help to 

overcome the computational requirement which arises because of handling very large state 

vectors, the computational time increase quadratically with the number of features in the 

map, and multiple hypotheses about robot pose. Particle filters is implemented on a GPU 

using CUDA because of the presence of the inherited parallelism. The particle filter approach 

also helps because it can handle non-linear robot motion and observation model where EKF 

fails if the non-linarites are too strong. It is robust against wrong data association because of 

resampling step and the computation cost is proportional to the number of particles. A TOF 

camera with higher field of view and resolution can also be used for further investigation.  

In the case where GT data is not available, one could evaluate his method based on the 

qualitative impression of the resulting map. In the case when the blueprint of the experiment 

environment is available even the direct comparison among different algorithms is difficult as 
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different publications are evaluated with different dataset. The rawseeds project  funded by 

European Union is an effort to provide GT data for SLAM algorithms. The communication 

packets are received asynchronously at the destination device. The bytes in the incoming data 

buffer are processed until the header bytes are found. The next byte which is the destination 

address, if matches’ with the current device’s ID then the following bytes are processed 

otherwise skipped until next header signature is found. On successful match of the destination 

ID, or broadcast ID, the next byte is processed which provides us the information about the 

size of packet’s data in bytes which are extracted from the received bytes buffer and the 

modulo 256 checksum algorithm is performed over the data chunk. If the checksum 

calculation succeeds considering the transmitted checksum then the packet is processed 

further otherwise rejected. 

 

5.1.2. Coordinator 

Coordinators act as a middle layer between a command center (Server) and the mobile robots 

(Agents). The coordinator augments the hardware independence between the control center 

and agents. It translates the high level guidance commands from the control center to the low 

level commands, e.g. linear and angular velocities, then communicates to the agent over the 

available wireless hardware channel ( XBee / RS232 / ZigBee ). At the moment there are two 

separate coordinators which are designed for controlling a group of mobile robots. The first 

one is responsible for ground based mobile robots and the second for flying. Ground mobile 

robots coordinator, as shown in the Figure 5.3, can control configure and manage the ground 

mobile robots. The ground mobile robots coordinator can be used as a general purpose 

interface (middleware) to acquire data from any other custom made robot. Furthermore, it 

can create a cooperative local map which is built only by the ground robots; therefore, it can 

work independent of the control center. It can also send the ground mobile robot’s pose, map 

or other coordinator related information to the server on request. The high level commands 

such as to move to a waypoint(s), explore the area with a specified robot or with the group of 

robots can also be commanded by the server. 



Cooperative SLAM Framework 
 

 Page | 83 
 

 

Figure 5.3 Ground mobile coordinator graphical user interface 

The capability of each mobile ground robot is composed of different modules. Each physical 

module such as an ultrasonic sensor or a virtual module such as obstacle avoidance behavior 

can be configured by the coordinator. Apart from the module specific parameters each 

module is implemented in a standard format which is as follows 

Field Name Size [Bytes] Description 

EnableScan 1 Flag to enable/disable the module functionality 

ScanInterval 1 Number of System Ticks between processing module related tasks 

AutoReportSend 1 Enable/disable periodic transmission of module related reports 

AutoReportInterval 1 Periodic report transmission interval 

Table 5.2 General module related settings 

The first tab of the ground robot coordinator,” Robot Sensor Data”, groups the robot sensor 

data for the currently selected robot in the list of the robot as shown at left in Figure 5.3. The 

second tab groups the robot’s on-board module settings. Each physical or virtual module can 

be configured from the user interface. Figure 5.4 shows an interface for configuring the 

Robot’s  on-board 
sensors view 

Robot’s physical 
parameters and 

coordinator 
configuration 

Robot’s way points 
commands list 

Heterogenous 
Mobile robots 
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robot’s communication interface settings. The destination address for the robot’s reports and 

the acknowledgements to the command sent can be configured separately to take advantage 

of the distributed processing. The automatic acknowledgement report in response to the 

command packet can also be enabled / disabled to reduce the robot network traffic. 

 

Figure 5.4 Ground mobile robot's communication module setting interface 

Figure 5.5 displays the interface for configuring the electronic compass module. One can 

enable / disable the compass module for the currently selected robot and its poll time. The 

periodic interval for the compass module related report can also be configured in the 

interface. The module polling interval and the report interval are multiple of the system tick 

duration. E.g. assuming the system tick interval for the mobile robot is 20msec then a value of 

50 for report interval means the report will be sent after each sec. 

 

Figure 5.5 Ground mobile robot's  electronic compass settings 

Figure 5.6 shows the graphical interface for the motor controller module. Apart from the 

general module settings some MD03 motor control board related setting can be configured.   
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Figure 5.6 Ground mobile robot's  motor controller settings 

Figure 5.7 displays the settings related to the ultrasonic modules. One can specify the number 

of ultrasonic sensor’s present on the robot. The firmware then poll an ultrasonic sensor 

sequentially after the polling interval expiries.  

 

Figure 5.7 Ground mobile robot's  ultrasonic sensor settings 

There are some general set of commands which are implemented for each module which are 

Command Description 

Default ModuleSettings Apply  the default module settings which are stored into the robot’s EEPROM. 

UpdateModuleSettings Send the new module settings to the currently selected robot. 
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GetModuleSettings Request the current settings of the specified module related to the selected robot. 

GetModuleData Command to manually request the module related data report.  

Table 5.3 General module related commands 

Figure 5.8 shows the interface to update the PID controller settings for the velocity control of 

left and right motor of the currently selected differential drive mobile robot. 

 

Figure 5.8 PID controller settings for the left and right motors of the selected differential drive robot 

Figure 5.9 shows some coordinator related settings such as limit for the joystick control, 

robot’s sensor data view update rate, velocity of sound to get the ultrasonic sensor range and 

overall coordinator system’s tick interval. 

 

Figure 5.9 Settings related to ground mobile robot coordinator 

To overcome the difficulties of troubleshooting a large robot network a graphical interface is 

provided, as shown in Figure 5.10, which hierarchly displays each robot’s raw communication 

packets. This utility not only reveals the current module’s settings and data report but also 

shows the format of a specific communication packet for a mobile robot. 
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Each communication report when arrives at the coordinator is parsed to check whether it is 

destined for it and also the data integrity of the communication packet is not compromised by 

calculating and verifying the packet checksum otherwise it is rejected. After the successful 

packet reception the packet type and Source ID are extracted so that the packet parsing 

settings according to the source robot and the report type are used to translate the packet 

contents.  

 

Figure 5.10 Communication packet debugging interface 

The ground mobile robot coordinator not only configures and controls the existing mobile 

robots but also a new mobile robot can be added to the existing team of mobile robots. The 
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advantage is that the user only needs to add a robot to the database by the graphical wizard 

as shown in Figure 5.11. The user adds the sensor(s) available on the robot by specifying its 

pose(s) and some general settings which are common to a specific type of sensor type.  The 

custom communication protocol layout for sending/receiving commands to/from the robot is 

also specified by the graphical interface.  The sensor pose is useful for range sensors which 

require this information to build a map of the environment. Furthermore, a 3D model of the 

robot can also be specified which can be used to render on the combined map.  

 

Figure 5.11 Add/Edit Ground mobile robot configuration 

To ease in the creation of the cooperative map, the sensor’s data reports received from 

different ground mobile robots are stored in a database table of that sensor type. For example 

the laser scans reports from all the robots equipped with laser range scanner are stored into 

the laser range scan table of the database. The tables of the database are shown in the Figure 

5.12. This mechanism helps to fuse specific sensor information from different robots into the 

cooperative local map of the coordinator. To make an online map from the range 
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In the network 

Configure the 
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measurements acquired by ground mobile robots a separate add-in was developed which can 

generate the cooperative map. The application when runs query the robots poses and 

corresponding range sensor pose from the database and render them online. 

 

Figure 5.12 Structure of the database tables 
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The coordinator can also create and render a grid map of the environment which the team of 

mobile robots uses for navigation and there path planning.  

Figure 5.13 shows a utility which creates a grid map of the environment and renders the robot 

over the map for the visual feedback to the user. Furthermore, this program at start-up read 

an existing grid map if available. 

 

Figure 5.13 Online cooperative map generator utility 

Figure 5.14 displays the top view of the grid map used by the two ground mobile robots for 

navigating cooperatively within the mapped indoor environment.  

 

Figure 5.14 Ground mobile coordinator’s local grid map 

Ground mobile robots 
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The coordinator software is running on a PC with a wireless transceiver with RS232 port. The 

transceiver is configured into a point-to-multipoint configuration. When the communication 

packets are received at the coordinator, they are parsed, verified (checksum) and queued. 

Robots communication packets are queued and later processed for mapping and data storage 

into a database. Each mobile robot can be controlled either in autonomous, semi-autonomous 

or manual mode. In the autonomous mode the mobile robots has been given a set of 

waypoints and the mobile robot follow the way points and avoid obstacles during execution of 

waypoints based on the information of ultrasonic and/or infrared sensor. In the semi-

automatic mode the robots are given the set of way points but the robot trajectory execution 

can be overridden by the joystick. In the manual mode the robot follows the command from 

coordinator using joystick. The mounted RGB-D camera, Kinect, is connected to the embedded 

PC. A software utility is running on the embedded PC which parses the distance information 

and then sends the distance information via the WLAN to the ground based coordinator PC. 

5.1.3. Agents 

Agents are ground/aerial based mobile robots. They are responsible for the robots’ control 

system of the guidance tasks. Furthermore, they have the navigation system for their 

local/internal tasks.  

 

Figure 5.15 Tom3D ground mobile robot 

 

Figure 5.16 Tracked Merlin ground mobile robot 

The multi robot network consists of ground based mobile robots and aerial robots. At the 

moment the ground based robot system consists of two robots, TOM3D (Tele Operated 

Machine with a 3D PMD camera) as shown in Figure 5.15 and tracked MERLIN (Mobile 

Experimental Robot for Locomotion and Intelligent Navigation) as shown in Figure 5.16. 

Tracked MERLIN is a tracked based differential drive mobile robot designed for rough terrain 
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in an outdoor environment. TOM3D is a ground based mobile robot which is designed for 

indoor environment. Each robot is equipped with a different set of sensors e.g. TOM3D is 

equipped with gyroscope, accelerometer, digital compass, magnetometer, ultrasonic sensor, 

infrared sensor, bumper switches, a Kinect camera and a laser scanner. 

 For data processing of Kinect camera and laser scanner an embedded PC is mounted on 

TOM3D which runs a 1.8 GHz Pentium M processor and equipped with 1GB RAM. The wheels 

of TOM3D are integrated with high resolution quadrature encoders. The ground based tracked 

MERLIN mobile robot is equipped with digital compass, GPS, ultrasonic sensors and track drive 

motors integrated with quadrature encoders. Furthermore, it has front and rear wireless 

cameras and microphones. Both ground based robots are equipped with 2.4GHz, 802.15.4 

based 500mW RF transceivers which can be configured in a point-to-multipoint mode. The 

camera images from the TOM3D robot are transmitted by the built-in WiFi of the embedded 

PC. Where the camera images from the Tracked MERLIN robot are transmitted by a 5.8GHz 

transmitter which can be multiplexed to transmit the front or rear camera by the control 

board. 

5.2. Firmware and Hardware 

The control board and the firmware are also designed to be modular so that they can be used 

and customized by any robot requirement. The firmware is developed with in such a way that 

a variety of sensor’s drivers such as sonar, compass, IR, etc. are developed which can be 

enabled or disabled for a particular robot configuration. 

5.2.1. Firmware 

Each ground based mobile robot’s control board is running a control system firmware. The 

firmware is designed in a modular way so that each robot’s firmware can be reconfigured 

wirelessly to enable or disable a particular sensor and its configuration parameters for control 

and reports according to the availability of that sensor for that robot. Therefore the scalability 

was kept in mind while developing the firmware. Each module has some common general 

settings and communication packets which are described in Table 5.2 and Table 5.3. This 

format for the modules and communication packets was developed by keeping in mind that 

the future expansions to the existing features are easier to be implemented.  

Since each robot has a different set of modules, therefore, for the ease of implementation of 

the firmware for different robots, all the module settings for a specific robot are grouped 

together in a configuration file. To develop a firmware for a robot the user can use DaVE [104] 
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for generating the initialization code for the Infineon C167 MCU by the help of a graphical 

environment. DaVE can generate a Keil compiler based project which can be opened by in the 

Keil IDE. Then all the developed drives, modules and a template configuration file are added to 

the project. The configuration file is modified according to the desired requirement of each 

module. For example the dead reckoning module uses the wheel diameter, gear ratio, pulses 

per revolution and wheel base parameters which can be configured. The robot’s network id 

can be configured for communication module and the default value for report packet interval 

for each module can be configured. And then finally each of the modules can be inserted into 

the firmware at appropriate position in the main file. The control loop of the firmware 

architecture is divided into the three phases. During the first phase each modules acquire the 

sensor data and preprocess the data. If an error occurs during the sensor poll then the error 

report is prepared and added to the transmission queue.  Input phase acquire the data such as 

from encoders, ultrasonic sensors, inertial measurement units, analog channels and etc. 

During the processing phase the computation are performed such as processing of coordinator 

commands, motors velocity controllers, dead reckoning and etc. and finally during the output 

phase the velocity control commands are applied, navigation commands are processed and 

the reports which have be queued are processed.  

System peripheral initialization code generated by DaVE 

Module’s Initialization code 

 Load system settings from EEPROM  

 Initialize Commands Queue 

 Initialize Repors Queue  

 Send system boot-up report  

System Control Loop Start 

Input Phase 

 Specify modules which acquire sensor data 

 Send error reports accordingly. 

Processing phase 

Ouput phase 
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System Conrol loop end 

Table 5.4 Pseudo-code for modular robot firmware 

The overall structure of the main file is as follows. The firmware has the responsibility to 

acquire the information from various onboard sensors and external attached boards and then 

preprocess the raw information. Furthermore, the reports are sent to the coordinator. 

Commands (Linear/Angular Velocities, configuration parameters, and waypoints) are received 

from the coordinator and processed by the firmware and then forwarded to control 

algorithms running onboard. Since the robots are intended to finish their assignments 

autonomously, it is very important for them to know their accurate positions in the 

environment in order to make next decision. The sensors used for the localization of ground 

robots are incremental encoders and low cost Inertial Measurement Unit (IMU). Due to the 

complementary properties of odometry and IMU, a Kalman Filter based algorithm (Simon, 

2006) and its derivatives are used because of system motion constrains (Bruno, 2009). 

5.2.2. Hardware 

For all the ground based mobile robots, a multipurpose control board is developed based on a 

16-bit Infineon MCU. The board has various digital and analog I/O channels for common robot 

sensors such as ultrasonic, infrared, digital compass, inertial measurement unit, global 

positioning system, wheel encoders and various digital and analog inputs and outputs. The 

schematic for the general purpose control board is shown in the Appendix C. 

 

 

Figure 5.17 Hardware of general purpose ground robots control board 
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For the communication of the control board with the coordinator it is also equipped with a 

radio frequency modem as shown in . The radio frequency modem communicates with the 

control board via serial port and uses the IEEE 802.15.4 standard to communicate with the 

remote node. The communication modems are configured in a point to multi-point 

configuration. The master modem which is attached to the coordinator PC can receive the 

reports from all the slave modems mounted on the ground agents. Where the command 

transmitted by the master is received by all the slaves and the slave which is the destination of 

communication packet process it further where all the other reject and wait for another 

packet. 

 

Figure 5.18 Agents Communication Modem based on IEEE 802.15.4 

The communication packet uses module 256 checksum algorithms for transmission error 

checking. The wireless transceiver has the built-in error checking capability but this added 

error checksum mechanism ensures that the designed protocol remains independent from the 

hardware medium of transmission.  

5.3. Simulation Environment 

To overcome the difficulties of the hardware implementation, resources limitation and to 

reduce the algorithms development time a mobile robot simulation environment can be used. 

There are many commercial and open source mobile robot simulation softwares available in 

the market. Any mobile robot simulation software such as PSG, Webbots, USARSim or others 

can be used to simulate the robot’s sensor data. The presented research work proposes 

USARSim. USARSim [46] is a simulation environment used in the presented research work 

which is based on the Unreal Tournament game engine. The simulation environment as shown 

in the Figure 5.19  provides us virtual ground and aerial robots in a map. The ground robot 
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platform utilized in the simulation experiment is based on a realistic looking model of Pioneer2 

robot. The ground robot is equipped with a SICK laser scanner and wheel encoder for 

odometry. The quad-rotor used in this simulation environment is based on AirRobot UAV. The 

flying robot is equipped with an IMU and a downward looking camera. The top view of the 

simulation environment along with the ground robot trajectory is shown in the Figure 5.20. 

The ground robot is commanded to move in a square path inside the virtual environment and 

the flying robot is tracking the ground robot by downward looking camera. All the virtual 

sensors mounted on the ground and aerial robots are subject to random error.  

The processing unit on the aerial robot captures camera images, as shown in top left corner of 

the Figure 5.19, and get the position coordinates relative to the ground robot using Haar-like 

based method. The quad-rotor position controller then takes the absolute coordinate of the 

ground robot ,            - estimated by its SLAM algorithm, together with the relative 

position of aerial robot ,         - estimated form the camera and output the desired 

orientation angles (     )to keep tracking the ground robot. For the detail about the aerial 

and ground cooperation research work the interested reader can refer [105]. 

 

Figure 5.19 Aerial and Ground Robot Cooperative Localization In USARSim 

USARSim based robot simulation can be run either by the unreal tournament 2003/2004 game 

or by the free UDK (Unreal Development Kit) software. If one owns an unreal tournament 

2003/2004 game it also comes with a level editor called UnrealEd which can be used to create 

the environment map and robot models. The advantage is that the game can be run in Linux 

environment (with some patches) and many game related textures, models and maps are 
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already available. Where if one uses the UDK then it is missing the game related textures to 

model and maps, furthermore the simulation environment cannot be run in Linux 

environment because the development environment is targeted for windows. For a discussion 

about setting a simulation environment and acquiring robot’s sensor data in user program the 

reader can refer to Appendix D. ROS is a famous simulation environment for mobile robots, to 

setup a simulation environment in ROS environment is described in Appendix E. 

Figure 5.20 shows a plan view of a map for simulating mobile robots in a virtual environment. 

 

Figure 5.20 Plan view of simulation environment in USARSim 

A differential drive robot is equipped with wheel odometry and a laser scanner, the green lines 

show the laser scan of the device. A user program (Client) can communicate with the robot 

simulation engine (Server) by establishing a TCP socket connection. After a successful 

connection between client and server the user program can send robot motion commands. 

The robot’s laser scan and wheel encoder sensor data are periodically sent by the server which 

can be processed as required by the algorithm. 
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5.4. Summary 

In this chapter the architecture of a multi-robot system is described, which consists of 

heterogeneous capabilities aerial and ground mobile robots for making online map 

cooperatively. The overall system consist of three parts; Control center, Coordinators and the 

Agents. 

First the overall system architecture is described then other features such as communication 

protocol and ground Coordinator software interfaces are discussed for ground mobile robots. 

Afterwards, the hardware and firmware of ground and aerial mobile robots were introduced. 

And finally for rapid development of a multi-robot system a simulation environment based on 

USARSim is introduced. USARSim is a high-fidelity simulation environment for mobile robots 

based on the Unreal Tournament game engine. It is being interfaced to the proposed system 

so that it can acquire sensors data from multiple simulated robots with heterogeneous 

capabilities to generate the online map cooperatively 

The overall system is designed in such a way that the future scalability of the robot network 

and the system features can be assured. The ground based mobile robot coordinator can be 

used as a general purpose robot control interface to acquire mobile robot’s sensor data, so as 

to control the mobile robot using the joystick and remotely configure robot’s firmware 

features using the graphic user interface on a windows based PC. Another novel feature of the 

ground mobile robots coordinator is the online generation and rendering of the meshes 

created from the mobile robots range data cloud points for online creation of the map. 

  



Cooperative SLAM Framework 
 

 Page | 99 
 

Chapter 6.  

Experiment and Results 

In this chapter the results of cooperative feature based map built by a team of mobile robots 

and the results are discussed. The experiment is performed to test the cooperative SLAM 

formulization as described in Chapter 4. The experiment comprises of two differential drive 

robots. Both of the robots are equipped with a 2D laser range scanner for cooperative map 

building. To demonstrate the quick development the agents (ground mobile robots) are 

simulated in the USARSim environment. The agent’s sensor data is acquired by the ground 

mobile robot coordinator and is stored in the database for future analysis.  

6.1. Setup  

To perform the cooperative SLAM algorithm a virtual environment as shown in the Figure 6.1 

is used.  

 

Figure 6.1 Cooperative SLAM experiment's simulation setup 
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The advantage of using the virtual map is that it provides us ground truth. Two differential 

drive mobile robots equipped with odometry modules and laser range scanner are used to 

perform the cooperative SLAM algorithm. The laser range readings are set to perturbed with 

Gaussian noise with 1cm standard deviation. The odometry module is based on the wheel 

encoder readings. The simulator implements a simple drift model for the odometry module. 

Both robots are configured to send the odometry messages at a rate of 10Hz while the laser 

range scans are transmitted at 5Hz.  

The mobile robots are initialized at different initial poses. Each robot is programmed to follow 

a trajectory. The trajectory consists of many waypoints which the robot executes one after 

another. Each waypoint is in fact a robot pose (     ) which the robot has to acquire. The 

robots trajectories during the experiment are shown in the Figure 6.1. To reach a target pose 

   (        ) from the current robot pose    (        ) the robot execute a close loop 

position and orientation control in three steps. In the first step the robot is rotated from 

current robot orientation    toward the waypoint orientation  . The orientation control 

consists of a P-Control which generates the angular velocity   propotional to the difference 

of    . Once the error value reaches below a threshold value the orientation control phase 

is stopped. In the second step a position control is applied. The position control is 

implemented by using the state space controller as described in [106]. By considering the 

linear control law the closed loop system equation is as follows: 

 [

 ̇
 ̇
 ̇
]  [

         ( )

      ( )           

       ( )

] Eq. 6.1 

 

The above model moves a mobile robot from an initial pose    to a final pose    but the 

trajectory generated is non-linear which might get obstructed with the obstacles, furthermore 

the control doesn’t work to rotate the robot at the same position because the Jacobians are 

not defined at      . Therefore, the above controller is modified in such a way that     is 

set to zero and only       are used to drive the robot from (     ) to (     ). The position 

control is applied to calculate robot’s linear and angular velocity as long as   doesn’t become 

less than a threshold value during the positioning phase. During the third step orientation 

control is applied once again to rotate the robot from   to the final orientation  . Thus a 

mobile robot move from an initial pose to a final pose in three phases; orientation, positioning 

and another orientation phase. Figure 6.2 visually describes the waypoint navigation process. 
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Figure 6.2 Waypoint navigation for differential drive mobile robot 

The proportional gain for the orientation controller is chosen by experimentation. By 

increasing the gain we can control how fast the robot can rotate. For the position controller    

is directly proportional to the robot linear velocity. For the stability of the control loop the 

gains are selected such that      . 

6.2. Map Management and Feature Fusion 

As the cooperative SLAM algorithm experiment consists of two mobile robots, therefore, it is 

important to know how the state vector is organized, maintained and the map features are 

fused.  The state vector is organized in such a way that the first three elements of the state 

vector correspond to the first robot states, the next three elements are for the second robot. 

In the beginning of the experiment there are no line features are present in the map, 

therefore the state vector only consist of robot poses. The state vector is augmented with line 

features as new line features are discovered. For example when the first line is detected by 

any one the robots, it is assigned the state vector position number seven and eight for that 

line feature and so on. As described in chapter 3 a geometric line feature equation is described 

in Hessian normal form. The   and   parameters of a detected line segment are in robot 

coordinate frame, therefore, they are transferred to global coordinate axis using robot pose 

before storing in to the state vector. Apart from storing the line features in the state vector a 

separate list of line segments is also maintained which not only includes the line segment 

  and   parameters but also the end points of the line segment. The end points of a line 

segment are calculated by the clustering algorithm. The line segment features list is used by 

the data association algorithm for matching detected line with the existing lines. Since there 

can be two line segments with same   and    values but are apart as shown in Figure 6.3, 
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therefore, following strategy is used to detect if the detected line segment corresponds to the 

existing line segment or the new it’s a new line segment. 

 

Figure 6.3 Two non-overlapping line segments with same parameters 

To check whether the two line segments    and    overlaps as shown in Figure 6.4, the end 

points for one of the line segment (Say   ) is projected on to the other line segment (  ). By 

projection of the end point with in line segment means to check whether the end point   and 

  are within line segment   . The two line segments will overlap only if when at least one of 

the two end points is within the line segment   . 

 

Figure 6.4 Projection of line segment's end points for overlapping check 

To check whether the point   lies within the line segment formed by the point   and  . First 

the point   is projected on the line segment in case it does not exactly lie of the line segment. 

The point is projected in such a way that the projected    point is at a shortest distance from 

the point  . Then the projected point    is checked to see whether it lies between the point   

and  . The ratio of the projected point distance from point   to the distance between points 

  from   is calculated. The ratio can be used to find if the projected point lies within the line 

segment   . If the ratio is between 0-1 then the projected point lies within the line segment 
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otherwise not. If the ratio is negative then the projected point is away from point   else if 

ratio is greater than 1 the projected point is away from point  . Therefore, the line segment 

   overlaps with the line segment    only if one of ratio of the projected end point   or   is 

between zero and one. Mathematically the ratio is calculated as follows: 

    (               ) Eq. 6.2 

    (               ) Eq. 6.3 

    
                   

           
 Eq. 6.4 

 

6.3. Cooperative SLAM  

The overall cooperative SLAM algorithm based on the EKF in the pseudocode is as follows 

Initialize X, P, Q, R, FeatureList 

Establish TCP/IP Connection with the simulator 

Parse the received message from Robot1 

If the message contains odometry information then  

Perform Robot1 pose prediction using robot motion model  

Calculate and apply new motion commands (   ) for waypoint navigation 

Else if the message contains laser range scan information then 

Cluster the range scan using IEPF algorithm 

Apply the non-linear least square estimation to estimate line’s parameters and uncertainty 

Apply the Mahalanobis  distance based data association technique and validation gate 

If the data association successes then  

Perform the Map and Robots states correction 

Else if the data association failed 

Augment the state vector with the new feature 

Perform the above steps for the Robot2 

Table 6.1 Cooperative EKF-SLAM Pseudocode 

During the initializing phase the Kalman filter and the other system variables are initialized. 

Then a connection with the USARSim engine is created and the robots are spawned in the 

virtual map. After the robots are initialized in the simulation environment they start sending 

the sensor messages. The main Kalman filter loop keep processing incoming messages from 

the robots and update the state vector accordingly. The messages from each robots are 

processed one after another. 
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6.4. Resultant Map 

The resultant map generated by the cooperative EKF-SLAM algorithm is shown in the Figure 

6.5. The robot were initialized at opposite ends of the map and given different trajectories. 

 

Figure 6.5 Cooperative EKF-SLAM generated line feature map 

The line segments which are identified by the mobile robots are rendered as shown above. 

Many line segments are registered at the same location because of the noise in the laser range 

measurements, furthermore, during robot turning phase at the corners some new line 

segments are registered. By visual comparison the overall generated map quality is quite 

comparable to the ground truth map as shown in Figure 6.1. The cooperatively generated map 

by two robots was quickly generated as expected, furthermore the filter didn’t diverge. 

Although the filter became slower as more and more features are being added to the map. 

This is because the data association routine requires more computation time to match the 

detected feature with the known existing features. 
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6.5. Summary 

In this chapter the cooperative EKF-SLAM algorithm experiment and its results are discussed. 

To validate the cooperative EKF-SLAM algorithm a simulation environment is setup using 

USARSim setup. The simulation setup not only provides a ground truth data for result 

comparison but also it provides a fast method to experiment the Cooperative SLAM 

algorithms. To autonomously drive the robot in the modeled static environment a way point 

navigation controller is also implemented.  

The navigation controller moves the robot from the current robot pose to a target pose in 

three steps. First by rotating toward the goal, then move toward the goal and finally rotation 

toward the target orientation.  

The state vector is composed in such a way that searching for robot pose or features remains 

faster. The other characteristics of the line segments such as end points, length are stored in a 

separate list. The order of the line segments in the state vector is kept the same as in the state 

vector. Overlapping line segments are fused together while non-overlapping line segments 

with same parameters are detected also to avoid false data association. And finally the 

resultant map generated by the cooperative SLAM algorithm is discussed.  
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Chapter 7.  

Discussion 

In this thesis, a cooperative SLAM framework based on extended Kalman filter is formularized. 

Furthermore a cooperative software framework for heterogeneous mobile robots is 

developed. The background study related to the SLAM, the state of the art SLAM algorithms 

and the cooperative mobile robot simulation environments has been covered and the core 

topics for the SLAM implementations are discussed. SLAM is performed where a priori map of 

the environment is not available and it is not possible to use global positioning devices to find 

the accurate position of the mobile robot.  

The proposed cooperative SLAM framework can use multiple mobile robots equipped with 2D 

and 3D range sensors for building the environment map assuming initial relative pose between 

mobile robots is known. The framework can also provide a general purpose interface to 

configure, control and manage a team of mobile robots and the sensor data. 

In chapter 1 the motivation, research work scope and the related works regarding the SLAM 

problem and its solutions are discussed. In Chapter 2 Odometry based motion model for the 

differential drive mobile robots and the range sensor based observation model for mobile 

robots are discussed. Extended Kalman filter is used as the core estimation engine because of 

its simplicity for the Cooperative SLAM problem. The robot pose estimation is critical to the 

localization and mapping, therefore, two novel data fusion strategies are proposed. The 

geometric feature based map is selected for research work because it model the environment 

into the high level features which not only reduces the memory requirements but also helpful 

for semantic understanding of the environment.  

Chapter 3 discusses the major modules which are necessary for successful implementation for 

the SLAM. Different algorithms regarding range sensor data segmentation, feature estimation, 

data association, map update and new feature augmentation in to the existing map are also 

discussed. Non-Linear least square estimation technique is used to extract the 2D geometric 

lines from the range data. The non-linear estimate is not biased toward the minimization of 

error with respect to x or y axis, instead it minimizes the error of the measured points with 

respect to the linear distance perpendicular to the estimated line. Two algorithms namely 

RANSAC and Hough transformation are used to extract the 3D geometric planes from the 



Cooperative SLAM Framework 
 

 Page | 107 
 

point cloud. Hough transformation estimated planes more reliably while the RANSAC 

algorithm was comparatively little faster than Hough transformation to extract the planes. 

In Chapter 4 a mathematical cooperative SLAM formulation is described based on the 

extended Kalman filter. The cooperative SLAM assumes that the initial relative pose among 

the mobile robot is known. Each time when the estimated feature associate with the existing 

feature, the two features coordinates are fused. For example in case of the 2D line feature, the 

end coordinates the extracted line and the existing lines are merged in such a way that the 

longest line is archived.  

In Chapter 5 the software framework which is used to control, configure and manage the 

heterogeneous robots is discussed. Furthermore, for the rapid development of the algorithm a 

simulation environment which can be interfaced to the framework is also described. The 

framework is a step toward the standardization of the interfaces used for a team of mobile 

robots. Ground coordinator provides a general purpose interface to communicate with the 

mobile robots and manage their sensor data. The communication protocol provides a format 

which can be used to implement customized communication packets. The firmware is also 

designed in a modular way so that the customized modules can be developed and added later 

on. Each module implements some communication commands and reports protocol which are 

essential for configuring the module remotely. Similarly the Hardware board is designed to be 

as general purpose as possible so that hardware sensors can be attached as required. A 

simulation environment based on the USARSim is also introduced for the rapid development 

and prototyping of SLAM algorithms. 

Chapter 6 discussed the results of the cooperative SLAM experiment. Two ground mobile 

robots are simulated in the USARSim. Both robots are attached with a 2D laser range scanner 

and odometry. Both robots data is acquired by the coordinator software and then a combined 

map is generated by the mathematical framework similar to as discussed in chapter 4. 

7.1. Outlook 

Apart from different algorithms used for the individual components of the SLAM the output of 

implemented SLAM solution depends on the choice of the sensor used for the environment 

observation. Few draw backs regarding different range sensors are as follows. Range sensors 

such as TOF cameras and RGB-D cameras are sensitive to sunlight and distance to target 

object. TOF cameras are also sensitive to color of the surface and they are too noisy and 

sparse to build the map in outdoor environment.  Laser sensors measurements are corrupted 
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by the glass surface. Range measurement using stereo cameras can’t be used in very 

homogenous environments and on mirror surfaces. The laser range finder is the most accurate 

sensor for mapping in both indoor and outdoor environment. 

Feature based SLAM performance heavily depends also on data association technology. The 

simplest is the nearest neighbor approach. Neira proposed a joint compatibility approach to 

consider correlation among map features. For a feature map based SLAM approach a more 

sophisticated strategy is necessary such as octree. 

7.2. Contributions 

Following are the contribution of this thesis 

 Overview of the SLAM algorithms. 

 Overview of the start of art mobile robotics simulation software’s. 

 Two novel mobile robot’s pose estimation approach 

o Multi-sensor data fusion based on Indirect Kalman Filter 

o Data fusion between Gyroscope and Stereo vision. 

 Grid map and feature map creation utilities. 

 Development of the mathematical cooperative SLAM formulization based on extended 

Kalman filter. 

 Implementation of plane extraction and geometric map building technique toward 

SLAM implementation. 

 Sensor data fusion methodologies based on Kalman filtering. 

 Novel cooperative SLAM framework for controlling, configuring and managing a team 

of mobile robots 

 Development of standard communication interfaces for cooperating among team of 

mobile robots. 
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7.3. Future Works 

Despite of two decade research the SLAM problem is not fully solved. The SLAM is solved for 

indoor, structured, static and small environment. For outdoor and dynamic environment it still 

poses many challenges, furthermore the problem of loop closure and data associations are still 

required research works. The solutions to cooperative SLAM among many robots are still 

missing the map fusion part in case the initial relative robot pose are unknown. There is also a 

need of methods which run in real time with the available memory even for large maps with 

limited computational power.  

Various other issues need to be investigated such as map complexity, dynamic environment 

and computational requirements. The map fusion when the relative pose is not known also 

need to be investigated. At the moment the robust SLAM approach for single robot is 

GMapping, also known as Rao-Blackwellised particle filter, which required an accurate laser 

range finder and odometry data. Rao-Blackwellised filter is an efficient SLAM implementation 

which scales logarithmically with the number of landmarks. It uses an EKF of features estimate 

and a PF for robot state. The resampling process is crucial for PF. GMapping is the state of the 

art implementation of the SLAM algorithm. The research work can be extended to incorporate 

particle filter and extended Kalman filter like GMapping. 

Particle filter approach when implemented on GPU for cooperative SLAM problem can help to 

overcome the computational requirement which arises because of handling very large state 

vectors, the computational time increase quadratically with the number of features in the 

map, and multiple hypotheses about robot pose. Particle filters is implemented on a GPU 

using CUDA because of the presence of the inherited parallelism. The particle filter approach 

also helps because it can handle non-linear robot motion and observation model where EKF 

fails if the non-linarites are too strong. It is robust against wrong data association because of 

resampling step and the computation cost is proportional to the number of particles.  

A TOF camera with higher field of view and resolution can also be used for further 

investigation.  

In the case where GT data is not available, one could evaluate his method based on the 

qualitative impression of the resulting map. In the case when the blueprint of the experiment 

environment is available even the direct comparison among different algorithms is difficult as 

different publications are evaluated with different dataset. The rawseeds project [107] funded 

by European Union is an effort to provide GT data for SLAM algorithms.   
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Appendix A 

The error model for wheel encoders, accelerometer, gyroscope and electronic compass are 

derived using error perturbation method to estimate the errors. 

Encoder Velocity Error Model 

The real and ideal velocity equations for robot are as follows: 
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The error models of encoder velocities after simplification are: 
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The velocity scale factor errors (     ) and wheel distance error (  ) are assumed to very slow 
time invariant, therefore 

  (   )    ( ) (14)  

  (   )    ( ) (15)  

  (   )    ( ) (16)  

Accelerometer Velocity Error Model 

 The accelerometer error model for real and ideal linear velocities along with the scale 
(       ) and bias factors (       ) are as follows: 
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Gyroscope Error Model 

The gyroscope error model for real and ideal angular velocities along with the scale (   ) and 

bias factor (   ) are as follows: 

    (   )     ( )   ( )     ( ) (29)  

    (   )  .   ( )      ( )/   ( )  .   ( )      ( )/ (30)  

   (   )      (   )      (   ) (31)  

   (   )      ( )   ( )      ( ) (32)  

   (   )     ( ) (33)  

   (   )     ( ) (34)  

 

Compass Angle Error Model 

The compass error model for actual and ideal azimuth angle along with the bias factor (  ) are 
as follows: 
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Appendix B 

Least Square Estimation 

Let’s discuss an example of least square estimation which explains the Least Square Estimation 

(LSE) process. Consider a sensor outputs a signal   ( )  which is a function of time and 

described by the following mathematical equation 

 ( )        

Let’s say some periodically measured output signal of the sensor at discrete time steps   
  are 

available. This discrepancy between ideal and measured signal is because of the measurement 

errors induced by the sensor system or because of the other un-modeled effects of the sensor 

system in the signal. For the simulation purpose purpose we can generate the sensor 

measurements using the mathematical model of the sensor. For simulation of the sensor’s 

measurement error, the sensor output is contaminated with some random number generated 

by some noise model (Gaussian, Uniform, etc.). This random number must reflect the behavior 

of the discrepancies present in actual measurements. The simulated measurements can be 

produced by the following equation 

  
      (   

 )   (   )          (   
 )                                                  

In the above equation the random number is modeled by a Normal/Gaussian distribution 

which is described by a mean, µ, and standard deviation, σ. In linear least square estimation 

one thinks that the estimation  ̂   of the obtained measurements can be modeled as 

polynomial, which is mathematically represented as follows 

 ̂       ,(   )  -    ,(   )  -
      ,(   )  -

                               

Therefore the task is to calculate the coefficients of the above polynomial which can best 

represent, in least square sense, the measurements. Least square sense means that the sum 

of the square of the errors, between the measurements and selected polynomial, is the 

minimum. Mathematically it can be represented by the following equation 

     ∑( ̂    
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In the above example the sensor signal is represented by a first order polynomial, therefore, 

the polynomial chosen for estimating the sensor measurement is also of the first order, 

therefore 

    ∑(     ,(   )  -    
 ) 

 

   

 

The best estimate of the signal from the measurement is obtained only when the order of the 

polynomial matches the order of the signal. Overestimate (order of estimating polynomial is 

higher than actual signal polynomial) and under estimate (order of estimating polynomial is 

lower than actual signal polynomial) result in to sub optimal results in which the estimate 

diverges from the true/actual/ideal estimate. The minimum of the sum with respect to each 

parameter can be found by calculus, taking the derivative of the SSE with respect to each 

polynomial coefficient and equating it to zero.  
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Eq (A) and Eq (B) have two unknowns (      ), therefore, solving two equations for two 

unknowns 
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In this example we have estimated the parameters of equation which is a function of time. In 

general the estimation equation can be parameter of any independent variable or in other 

words the measurements can be a function of any variable. Mathematically it can be described 

as follows 
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Appendix D 

Create an C# based TCP/IP Client to communicate with a simulated 

robot in USARSim 

This guide will help to create an application in C# which can communicate with simulated 

robots in USARSim environment. USARSim provides a simulation environment for robots. 

Many commercial ground, aerial robot models environment maps and virtual sensors and 

actuators are included.  

Setting up a Simulation Environment 

This guide assumes that we are using a Windows-7 operating system with 8GB Ram and a 

graphics card. After we have downloaded and installed the Dec-2011 UDK release, we have to 

download the USARSim v1.3 and extract all the files in the same directory where we have 

installed the UDK. This process will copy the necessary maps, models and configuration files at 

the desired location. After extracting, e.g. the destination path C:\UDK\UDK-2011-12\, the 

USARSim related files one can execute the make file in the base UDK directory to compile the 

simulation entities. 

Running Simulation Environment 

After the simulation environment is setup we can run any one of the provided map in the 

C:\UDK\UDK-2011-12\USARRunMaps environment, a batch file which will load a map and run 

the game server. If everything was correct then the game server is started at the local machine 

(127.0.0.1:3000) and load the specified map. Initially the map is without any robots. The 

robots are spawned as bots in the game map. We can execute the game related commands by 

typing them at the command terminal (Appears by pressing TAB). 

Communication with game engine 

After the game engine is started and running we can send commands to spawn the robots and 

communicate robot sensors and actuators data. The communication between the game server 

and a client (user program) must be by using TCP/IP communication protocol format. The user 

must first establish a TCP/IP connection to already game server (IPAddress:Port) and then the 

navigation and actuators commands can be sent and sensors data can be received. For the 

detailed description of the command formats please refer to the documentation of the 

USARSim. For the communication, sensors parameters, and robots sensors settings look at the 

C:\UDK\UDK-2011-12\UDKGame\Config\DefaultUSAR.ini.  
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Client Application 

The client or user application to communicate with the simulated robot is developed using the 

C# application using visual studio 2010 development environment.  Follow the steps below to 

create an application which uses TCP/IP communication. First create a windows application. To 

perform TCP/IP communication we are provided with socket class in C#.  

 

Figure 0.1 An example client application receiving simulation data 

 

The methodology of the TCP/IP communication used to develop the application is as follows. 

We create a TcpClient class and assign it the game server IPEndPoint (IPAddress:Port). Then 

we create a thread which is passed a function to process the incoming data. 

System.Net.Sockets.TcpClient tcpConn = new System.Net.Sockets.TcpClient (“127.0.0.1”,3000); 

System.Threading.Thread tcpRxThread = new System.Threading.Thread(ProcessRxData); 

tcpRxThread.start(tcpConn); 

Here first a TCP connection is created with the game serve IP address and port number. Then a 

thread is created which will execute the specified function as its parameter. And finally the 

thread is started with the created TCP connection passed as its function argument.  

To capture the image data, connect to the image server at 127.0.0.1:5003 using another TCP 

connection. The image can be acquired by sending the request. At the moment two request 

commands are supported 
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 OK 

 U[X][Y][WIDTH][HEIGHT] 

The image stream data obtained is in the following format 

Byte[0] Image Formats(0=Raw[BGR],1-5=JPEG[BEST,GOOD,NORMAL,FAIR,BAD]) 

Byte[1,2,3,4] Image Size 

Byte[5,6] Image Width, if Image Format is Raw 

Byte[7,8] Image Height, if Image Format is Raw 

Byte*5…n+ 

Byte*9…n+ 

Image Data in case Image Format is JPEG 

Image Data in case Image Format is Raw 

ProcessRxData 

The description of the ProcessRxData function is as follwos: 

Void ProcessRxData ( object tcpConnection){ 

System.Net.Sockets.TcpClient conn = (System.Net.Sockets.TcpClient)tcpConnection; 

System.Net.Sockets.NetworkStream stream = conn.GetStream(); 

While ( conn!= null && conn.Connected==true){ 

If (conn.Available > 0){ 

try{ 

byte[] buff = new byte[conn.Available]; 

stream.Read(buff,0,conn.Available); 

DisplayData(Encoding.ASCII.GetString(buff).Insert(0,conn.Available.ToString(“*0+”))); 

} 

catch(Exception ex){ 

DisplayData(ex.Message); 

} 

} // end if 

} // end While 

DisplayData(string.Format(“Connection closed with ,0-\r\n”, conn.Client.RemoteEndPoint)); 

} // end ProcessRxData 
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DisplayData  

DisplayData is a utility function to display the data into a form control such as textbox. This 

function is required because the thread is running in other process wheres the textbox is on 

another thread. The function DisplayData is as follows: 

Void DisplayData( String data){ 

data = String.Format(“,-\r\n”,data); 

if(txtbox.Dispatcher.Thread!=Thread.CurrentThread){ 

txtbox.Dispatcher.Invoke(new Action(delegate(){txtbox.AppendText(data);}),null); 

} 

else{ 

txtbox.AppendText(data); 

} 

} 

Important Commands and Messages Format 

Following are the some of the commands which are useful for communicating with the 

existing Poineer3 robot. The robot sensors and actuators configuration are defined in the 

DefaultUSAR configuration file under [USARBot.P3AT] section. Each sensor and actuator 

configurations are also described in the same file under their respective section label. The 

communication protocol for commands and messages is based on Gamebots protocol. All 

messages and commands follow the following format: 

DATA_TYPE {SEGMENT1} {SEGMENT2} 

DATA_TYPE: INIT, STA, SEN, DRIVE etc. 

SEGMENT: Name/Value pair seprated by space e.g. “Loction 1.0 2.0 3.0” 

A message or command is composed of one DATA_TYPE and one or multiple SEGMENTS 

separated by space and ends with “\r\n”.  

Messages 

Following are some of the important communication packet format received from the 

USARSim. 

STA  

A state message tells about the robot or mission package’s state. It depends on the type of 

robot. The format of status messages for a ground robot is as follows: 
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STA {Type string } {Time float } {FrontSteer float } {RearSteer float }{LightToggle bool } 

{LightIntensity int } {Battery int } 

{Type string } "string' describes the vehicle type. In this case: "GroundVehicle".  

{Time float } "float' is the UT time in seconds. It starts from the time the UT server starts 

execution. {FrontSteer float } Current front steer angle of the robot, in radians.  

{RearSteer float } Current rear steer angle of the robot, in radians.  

{LightToggle bool } Indicate whether the headlight is turned on. 'bool' is true/false.  

{LightIntensity int } Light intensity of the headlight. Right now, it always is 100.  

{Battery int }" int ' is the battery lifetime in second. It's the total time remaining for the robot 

to run. 

SEN  

Sensor message contains sensor data. After it is an optional Time segment, {Time float }, that 

reports the current time in seconds in the virtual world. Whether the Time segment will 

appear or not is decided by the sensor's "bWithTimeStamp' variable  

Range Sensor  

SEN {Type string } {Name string Range float } {Name string Range float }  

{Type string }" string ' is the sensor type. It can be either "Sonar" or "IR" which means  it's a 

Sonar sensor or IR sensor. 

Laser Sensor  

SEN {Type string } {Name string } {Resolution float } {FOV float } {Range r1,r2,r3 "} 

{Type string }" string ' is the sensor type. It can be "RangeScanner" or "IRScanner".  

{Name string }" string ' is the sensor name.  

{Resolution float } float ' is the sensor's resolution in radians.  

{FOV float }" float ' is the sensor's field of view in radians. 

{Range r1,r2,r3 "} " r1,r2,r3 is a series of range values in meters. 

Odometry sensor  

SEN {Type Odometry} {Name string } {Pose x,y,theta }  

{Name string }" string ' is the sensor name.  

{Pose x,y,theta }" x,y ' is the estimated robot position relative to the start point in meters. 

theta is the head angle in radians relative to the start orientation. 
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GPS Sensor  

SEN {Type GPS} {Name string } {Latitude int , float , char } {Longitude int , float , char } {Fix 

int } {Satellites int } 

{Name string }" string ' is the sensor name, as given in the USARBot.ini robot's definition.  

{Latitude int , float , char } int, float, char provide the latitude degree, minute (as a decimal), 

and cardinal description (i.e. "N' or "S'), respectively. There are only two possible values for 

the char parameter: 'N' for North and 'S' for South.  

{Longitude int , float , char }" int ', float ', char " provide the longitude degree, minute (as a 

decimal), and cardinal description (i.e. "E' or "W'), respectively. There are only two possible 

values for the char parameter: 'E' for East and 'W' for West.  

{Fix int }" int ' indicates whether or not a position was acquired. The fix is the same as the GGA 

format. Namely, a value of 0 means that the GPS sensor failed to acquire a position and a 

value of 1 means that a position was acquired.  

{Satellites int }" int ' gives the number of satellites tracked by the GPS sensor. This number is 

an implicit source of accuracy. The more satellites are tracked, the higher the position 

accuracy. 

INS Sensor  

The Inertial Navigation Sensor is a sensor that provides estimates of the vehicles current 

location and orientation, based on measurements of angular velocity and linear acceleration 

relative to the vehicles current pose. 

SEN {Type INS} {Name string } {Location x,y,z } {Orientation r,p,y } "  

{Name string }" string ' is the sensor name. 

{Location x,y,z } "x,y,z', are float variables for estimated vehicle locations.  

{Orientation r,p,y } "r,p,y', are float variables for estimated vehicle orientation in radians. All 

radians are in the range [0,2PI]. 

Encoder sensor  

SEN {Type Encoder} {Name string Tick int } {Name string Tick int }  

{Name string Tick int }" string ' is the sensor name. " int ' is the tick count.  

Touch sensor  

SEN {Type Touch} {Name string Touch bool } {Name string Touch bool }  
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{Name string Touch bool } string ' is the sensor name. bool indicates whether the sensor is 

touching something. Value 'True' means the sensor is touching something. 

RFID sensor  

This sensor contains an integer id and a boolean bSingleshot variable that determines whether 

the tag is a single shot tag or a multi shot tag. They are deployed by placing them in UnrealEd. 

If the tag's id is set to -1 (the default), then the tag id will be set to a unique value 

automatically. Other values for the id will not be changed. If the tags are within the MaxRange 

of the RFID sensor mounted on the robot then the server sends the following message to the 

client: 

SEN {Type RFIDTag} {Name string } {ID int }{Location float, float, 'float }  

{Name string }" string ' is the sensor name. 

Commands 

In USARSim all the values in the commands are case insensitive. However, the data_type and 

names are case sensitive and the format must be exactly followed. The supported commands 

are: 

 INIT  

Add a robot to UT world, it has the following format: 

INIT {ClassName robot_class } {Name robot_name } {Location x,y,z } {Rotation r , p , y } 

{ClassName robot_class } robot_class is the class name of the robot. It can be USARBot.ATRVJr, 

USARBot.Zerg, USARBot.P2AT, USARBot.P2DX, USARBot.Hummer, and any other robots built 

by the user.  

{Name robot_name } robot_name is the robot's name. It can be any string you want. If you 

omit this block, USARSim will give the robot a name.  

{Location x,y,z } x,y,z is the start position of the robot in meters from the world origin. For 

different arenas, we need different positions. The recommended positions can be queried by 

the command GETSTARTPOSES, as described in Getting_Starting_Poses_From_Maps. Worlds 

are available in the "maps" file release area on sourceforge.  

{Rotation r , p , y } r,p,y is the starting roll, pitch, and yaw of the robot in radians with North 

being 0 yaw.  
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DRIVE  

Control the Robot. There are seven kinds of control command. The first kind controls the left 

and right side wheels of a skid steered robot. The second kind controls the front and rear 

wheels of an Ackerman steered robot. The third kind controls an underwater robot. The fourth 

kind controls an aerial vehicle. The fifth kind controls the wheels of an OmniDrive robot. The 

sixth kind controls a specified joint of the robot. The seventh kind controls the angle of 

multiple joints of a robot, which is convenient for flipper, leg, and arm control. 

DRIVE {Left float } {Right float } {Normalized bool } {Light bool } {Flip bool } 

{Left float } float is spin speed for the left side wheels. If we are using normalized values, the 

value range is -100 to 100 and corresponds to the robot's minimum and maximum spin speed. 

If we use absolute values, the value will be the real spin speed in radians per second.  

{Right float } Same as above except the values affect the right side wheels.  

{Normalized bool } Indicates whether we are using normalized values or not. The default value 

is "False' which means absolute values are used to control wheel spin speed.  

{Light bool } bool ' is whether turn on or turn off the headlight. The possible values are 

True/False.  

{Flip bool } If a robot rolls over or otherwise tips off of its wheels, this will "right" the robot. If 

bool ' is True, this command will flip the robot to its "wheels down' position.  
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Appendix E 

Simulation of Map Building in ROS with Mobile Robots Equipped with 

Odometry and Laser Range Scanner 

A simulation world is created in Stage (2D simulation system). The simulation environment 

consists of a map and two differential drive mobile robots. The robots are equipped with a 

laser range scan system and an odometry system. The map is in fact a top view (plan) of the 

building which is stored as a PNG file format. The simulation world file (simulation.world) of 

the Stage simulation system depends on the robot model files; TOM3D.inc, Trackedmerlin.inc 

and a map file (Map.inc). 

It is assumed that the following packages are already installed on the ROS system: 

 Stage 

 Rviz 

 Gmapping 
Furthermore, eclipse indigo c/c++ IDE for linux developers is also installed on the development 

system. The ROS system is installed under Ubuntu 10.04.4 is electric desktop distribution  

which is fully installed. The stage world files along with its dependent model files are displayed 

at the end of this document. 

The stage simulation system is publishing odometry and laser scanner data on /odom and 

/base_scan topics. While to control the movement of the robot another topic it is subscribed 

to a topic names cmd_vel. To communicate with the simulated system a ROS package has 

been created into as follows: 

roscreate-pkg simulation roscpp stage std_msgs nav_msgs sensor_msgs geometry_msgs 

cd simulation 

make eclipse-project 

Then import the above created project into eclipse and add the controller.cpp file which is 

displayed at the end of this document. After that modify the CMakeLists.txt file, at the end of 

the file write the following line rosbuild_add_executable(controller src/controller.cpp). Build 

the eclipse project. 

After successful compilation of the package. Create a launch file as shown at the end of the 

document. This launch file will run the roscore and load the stage simulation system along 

with the world file and also run the controller node which will communicate with the relevant 



Cooperative SLAM Framework 
 

 Page | 127 
 

topics to interact with the simulation. To create the map of the simulated envriornment run 

the following command at the command prompt: 

rosrun gmapping slam_gmapping scan:=base_scan 

To save a snapshot of the mapped environment one can use the following command 

rosrun map_server map_saver 

To visualize the map building process we need the rviz package to be installed. To run the rviz 

system type the following command at the terminal 

rosrun rviz rviz 

When the rviz system is successfully launched then add a map display into it and set its node 

to /map which is being published by the gmapping system. One can record also the simulation 

experiment by the following ros command  

rosbag record –o dataset /odom /base_pose_ground_truth /base_scan /cmd_vel 

To use the exsisting dataset (bag file) use the following commands 

rosparam set /use_set_time true 

rosbag play dataset.bag 
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