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Zusammenfassung

Die Verfiigbarkeit von grofien Mengen von Fernerkundungsbildern mit einer Auflésung
im Meterbereich, wie sie die neueste Generation von Radar-Satelliten mit synthetis-
cher Apertur (SAR) erzeugt, bedingt auch neue Untersuchungen. Um zutreffende
Bilder in groflen Datenbanken zu suchen und daraus abzurufen, werden neue Ver-
fahren zur automatischen Analyse, Interpretation und Indexierung von SAR-Bildern
benotigt. Die bisher dazu entwickelten Methoden basieren auf dem Verstehen der
Speckle-Eigenschaften in SAR-Bildern. Der Schwerpunkt liegt dabei auf der modell-
basierten Schatzung von Texturparametern im Amplitudenraum von SAR-Bildern,
wie zum Beispiel bei parametrischen Gibbs-basierten Methoden in einem Bayes-
Modell. Diese Methoden haben sich als sehr erfolgreich erwiesen fiir SAR-Bilder mit
einer Auflésung im Bereich von 10 — 50 Metern unter der Annahme von stationéren
Signalen in einem Suchfenster mit passender Grofe.

Die Herausforderung bei SAR-Bildern mit einer Auflésung im Meterbereich liegt im
Vorhandensein von sehr vielen isoliert instationaren Details, wo eine modellbasierte
Parameterschiatzung ungenaue Ergebnisse liefert. Diese Einschrankung fithrt uns zur
Hinwendung auf nicht-parametrische Strategien mit Nutzung der Phaseninformation
zur Transformation von SAR-Bildern in einen geeigneten Raum. Ein grundlegender
Beitrag dieser Arbeit ist die Darstellung der Vorteile und der Bedeutung der Phasen-
information in komplex-wertigen SAR-Bildern gegentiber der Verwendung des reinen
Amplitudenraums fiir solche Strategien.

Wir untermauern die Bedeutung der Phaseninformation mit einem Vorschlag fiir eine
Methode zur Zerlegung von Bildern in mehrere Sub-Looks (MSLD). Diese Meth-
ode erzeugt Hyperbilder aus der spektralen Analyse von komplex-wertigen SAR-
Bildern und erlaubt die visuelle Untersuchung von Objekten. Darauf aufbauend wird
gezeigt, dass eine aus Chirplets abgeleitete Transformation die gebrochene Fourier-
Transformation (FrFT) - einen echten und fiir SAR bedeutsamen Multiskalenansatz
darstellt, bei der die Skalierung in der Phase durchgefiihrt wird. Ein vorgeschla-
gener nicht-parametrischer Deskriptor zur Merkmalsbeschreibung, der auf statistis-
chen Maflen zweiter Ordnung (logarithmischen Kumulanten) beruht und durch die
Grofle des Amplitudenraums der FrET-Koeffizienten geschéatzt wird, zeigt im Merk-
malsraum eine erh6hte Trennbarkeit fiir eine verbesserte Indexierung.

Zur Validierung des vorgeschlagenen nicht-parametrischen Verfahrens auf Grund-
lage der FrFT wurde zum Vergleich mit bereits existierenden Methoden eine exper-
imentelle Datenbasis fiir Leistungstests mit Single Look Complex (SLC) TerraSAR-
X-Bildern im Spotlight-Modus generiert. Zur Beurteilung und zum Vergleich der un-
tersuchten Algorithmen schlagen wir eine robuste methodologische Klassifizierungs-
Umgebung vor.






Abstract

Availability of large amounts of very high resolution (metric-resolution) remote sens-
ing images from the last generation synthetic aperture radar (SAR) satellites is at-
tracting new studies. In order to search and retrieve relevant images from large-scale
databases, new techniques for automatically analyzing, interpreting and indexing
SAR images are required. The methods developed for this purposes in the past were
based on the understanding speckle characteristics in SAR images. The focus has
been generally on the model-based textural parameter estimation in the amplitude-
envelope of SAR images, such as parametric Gibbs-based methods in the Bayesian
framework. Such methods were largely successful under the assumption of stationar-
ity of the signal in an analyzing window of convenient size on images with resolution
of the order of tens of meters.

The challenge we encounter in metric-resolution SAR images is the presence of a very
high order of details encapsulating a non-stationarity, where model-based parame-
ter estimation becomes inaccurate. This constraint encourages us to focus on non-
parametric strategies while employing phase information to transform SAR images in
a suitable space. Demonstrating the advantages and relevance of the phase informa-
tion embedded in complex-valued SAR images over the use of the mere amplitude-
envelope for such strategies is an underlying contribution of this thesis.

The importance of phase information is advocated with a proposed method of mul-
tiple sublook decomposition (MSLD). This method generates hyper-images from the
spectral analysis of complex-valued SAR images enabling the visual exploration of
targets. Subsequently, a chirplet-derived transform- the fractional Fourier transform
(FrFT) has been found to be a true SAR relevant multi-scale approach, where scal-
ing is carried out in the phase. A proposed non-parametric feature descriptor based
on the use of second-kind statistical measures (logarithmic-cumulants) estimated
over the amplitude-envelope of the FrF'T coefficients exhibits enhanced feature space
separability for improved indexing.

An experimental benchmarking database is generated on single look complex (SLC)
spotlight mode TerraSAR-X images for the validation of the proposed FrFT-based
nonparametric technique in comparison to the existing methods. A robust method-
ological classification framework has been proposed for the evaluation and compari-
son of the studied algorithms.
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Chapter 1

Introduction

One of the goals of signal processing is to extract information embedded in the signals by
various possible means. Choosing tractable techniques or developing new methods for analysis
and for information extraction from real world signals are not easy tasks. In a similar way,
the information extraction from images, which are two dimensional signals, is dependent upon
various characteristics such as sensor and resolution. For the case of remote sensing images, the
automated methods of information retrieval have always been a challenge. Tremendous amounts
of remote sensing images with ever increasing resolution from recent and upcoming synthetic
aperture radar (SAR) satellite has opened new challenges and new application areas. In order
to search and retrieve relevant images from large-scale databases, we require new techniques for
automatically analyzing, interpreting and indexing images, to be used in content based image
retrieval (CBIR) systems for SAR images. CBIR systems based on the spatial content of images
are already widely applicable in optical remote sensing images (Shyu et al. [2007]), as well as to
photography pictures (Smeulders et al. [2000]).

The problem of spatial content understanding in SAR is dealt differently than passive op-
tical remote sensing images and photography pictures, as SAR is not just an imaging sensor
but actually an active coherent device. SAR works on the principle of transmitting coher-
ent electromagnetic pulses and recording the amplitude as well as the phase information of the
backscattered signal. One peculiar characteristic of the SAR images is that they are corrupted by
multiplicative granular noise, called speckle (Touzi [2002]). The methods developed in the past
for SAR image processing have started from understanding the speckle characteristics. Devel-
opment of de-speckling algorithms lead to information extraction through model-based textural
parameter estimation, such as the parametric Gibbs-based method in the Bayesian framework.
These methods typically focused on the textural parameter estimation for amplitude-envelope
of SAR images.

Model-based textural parameter estimation

In the model-based texture parameter estimation in the Bayesian framework, the assumption
of the likelihood probability density function (pdf) is the speckle noise, and the prior pdf is
the underlying response from the scatterers. The likelihood pdf is generally characterized by
a Gamma distribution, while the choice of prior is a critical issue. The estimated model-
parameters can be used as a descriptor of the image, under the assumption that the assumed
prior pdf is accurate and plausible. In Walessa & Datcu [2000], Gauss-Markov random fields
(GMRF) has been proposed as prior pdf, whereas in Hebar et al. [2009] autobinomial model
(ABM) is advocated as a better prior pdf for amplitude SAR images. Both methods belong to



the family of Gibbs random fields (GRFs) methods. In this thesis we will do a critical analysis
of GMRF and ABM, for spatial content understanding in SAR images.

In general, an image is characterized by its primitive features such as texture (Tuceryan
& Jain [1998]), color, and shape (Jain & Vailaya [1996]) to describe its spatial content. This
general representation is applicable to multimedia images, as well as optical and SAR satellite
images. Gibbs-based parametric methods characterizes the textural information only in the
amplitude SAR images, ignoring the phase information. Such methods are successful under the
assumption of stationarity of the signal under consideration within a small analyzing window
on images with spatial resolution of the order of tens of meters. The challenge in metric-
resolution SAR images is their high amount of details encapsulating a non-stationarity, which
causes model-based parameter estimation to be inaccurate.

Image representation in a transformed domain

Understanding of SAR images is sometimes not possible using parametric approaches in its
spatial representation, as is the case with Gibbs-based methods. Some important features of
the SAR signals are more easily characterized in the frequency domain. In order to have more
flexibility, the joint use of time and frequency i.e. joint time-frequency analysis (JTFA) is
widely preferred. The classical examples of the JTFA may include linear algorithms such as
short-time Fourier transform, Gabor expansion or quadratic transforms such as Wigner-Ville
decomposition. The use of JTFA methods specific to SAR image analysis has been summarized
in Chen et al. [2003]. Generally such methods are also applied to amplitude SAR images only, but
the use of complex-valued SAR images for spectral analysis has also been discussed (Bertrand
& Bertrand [1996], Souyris et al. [2003], Colin et al. [2004], and Spigai et al. [2011], etc.).

Demonstrating the advantage and relevance of the phase information embedded in complex-
valued SAR images over the use of the mere amplitude-envelope for such strategies is an un-
derlying contribution of this thesis. The importance of phase information is advocated with a
proposed method of multiple sublook decomposition (MSLD Singh & Datcu [2012¢]). The
MSLD method is an extension of SAR relevant sub-look decomposition (Spigai et al. [2011]),
which generates hyper-images using the spectrum of the complex-valued SAR images in order
to provide a visual exploration tool for SAR analysts. Motivated by the simulation results of
MSLD, we extend the multi-scale approaches for complex-valued SAR images with the frac-
tional Fourier transform (FrFT) (Namias [1980], Ozaktas et al. [1996]), the use of which
has been up to now limited to moving target detection in SAR images (Sun et al. [2002]). The
FrET, which is a chirplet-derived linear transform, is found to be a true SAR relevant multi-
scale approach. Here the scaling is carried out in phase and the scale factor is controlled by
the transform order of the FrFT. This multi-scale approach characterizes not only the texture,
but also the backscattering behavior of scatterers on the ground dependent on the material’s
dielectric properties, its orientation on ground, and the size of the scatterers compared to the
wavelength of the transmitted electromagnetic wave.

In order to generate a compact feature descriptor on the different sub-bands in a multi-
scale approach, we then propose the use of second-kind statistical measures (logarithmic-
cumulants Nicolas [2002]), which provide a simple and efficient alternative to the moments with
an improvement in the feature space separability (Singh & Datcu [2013]). The limitation of the
traditional multi-scale approaches for the complex-valued SAR images will also be discussed in
the thesis.



Pixel-based classification versus patch-oriented image categorization

The spatial content understanding provides a general framework for analyzing, interpreting and
indexing SAR images. The applicability of the discovered knowledge is largely dictated by the
stationarity of the signal, i.e. the homogeneity of the texture over a considered analyzing window.
With relatively homogeneous regions, pixel-based classification is possible with good accuracy,
as in low-resolution SAR images. The final result in pixel-based classification/clustering is image
pixels classified /clustered into different regions such as water, snow/ice, urban areas or natural
areas, with supervised or unsupervised means for large-scale land-cover and crop monitoring,
sea-ice studies etc.

With the advent of high-resolution and very-high-resolution SAR images from satellites like
TerraSAR-X, TanDEM-X, COSMO-SkyMed, Radarsat-2, etc., interest is now on patch-oriented
image categorization (Popescu et al. [2012]). For patch-oriented image categorization, our ob-
jective is not to classify some regions of the image, but the whole image-patch into an object
category. The size of the image patch should be large enough to contain the contextual informa-
tion needed to define an object’s structure used to define a particular category. This application
area is gaining importance due to the increase in the details available in a SAR image patch.

These two general application areas, i.e. pixel-based classification and patch-oriented image
categorization will be discussed in detail in this thesis.

Evaluation strategy on a reference database

Apart from understanding the different techniques, it is important to have a quantitative analysis
of the relevant algorithms for the considered applications. Thus, we also propose a robust
methodological classification framework (Singh & Datcu [2012a]) under which a qualitative
and quantitative analysis of both existing and newly proposed algorithms will be carried out.

For quantitative analysis, an experimental database for pixel-based classification has been
generated from single look complex (SLC) spotlight-mode TerraSAR-X images consisting 12
homogeneous and well textured metric-resolution SAR sub-images. The k-nearest neighbors
(k-NN) supervised classification has been carried out with 1% and 10% training samples, with
an analyzing window (aw) of size 16 x 16, 32 x 32, and 64 x 64 pixels. A second database for
patch-oriented image categorization evaluation consist of 2000 image-patches belonging to 20
well-defined objects/texture categories, with 100 patches for each category. The size of each
image patch is 200 x 200 pixels, and each patch covers approximately 2002 m? of ground. The
k-NN supervised classification has been carried out with 10% training samples.

Discussion of results with important observations on selected existing methods and newly
proposed methods lead us to several important conclusions in spatial content understanding of
SAR images.






Part 1

Theoretical Background






Chapter 2

SAR Basics

The objective of this chapter is to provide a basic understanding of the signal pro-
cessing and statistical aspects in synthetic aperture radar (SAR) images, which are
essential to form a basis for spatial content understanding in SAR images. The basic
1maging principles of a side-looking radar and information about the data acquisition
geomelry along with the definition of these geometry related terms are presented. In
the geometrical perspective, the basic scattering mechanism occurring over the ground
depending upon the microscopic and macroscopic properties of the scatterers on the
1maged surfaces and the geometrical distortions inherent to SAR images due to the
side-looking geometry are discussed.

The topics related to signal processing in SAR i.e. range compression and syn-
thetic aperture by following an approximated rectilinear geometry are presented. The
basic overview to achieve an adequately high-resolution in range direction with pulse
compression and in azimuth direction by generation of the azimuth chirp in the syn-
thetic aperture is presented. With the discussion of the azimuth chirp, it is pertinent
to discuss the concept of azimuth splitting which becomes very prominent in case of
high-resolution SAR using broad bandwidth as in TerraSAR-X. This discussion will
form the basis for the time-frequency analysis methods proposed in this thesis. The
issue of Doppler phase de-ramping for Spotlight mode SAR is also presented.

Later, the statistical modeling of SAR images with the assumption of multiplica-
tive noise-like granular aspect i.e. speckle in SAR images is discussed. This forms
the basis of the statistical analysis methods discussed in this thesis. Simple proba-
bility density functions (pdfs) for amplitude and intensity SAR images are discussed
followed by a short discussion on the more accurate pdf characterization.

We will close this chapter as well as the following chapter in Part-1 and Part-I1
with a short summary as the last section.



2.1 Principles of SAR imaging

History of Radar (acronym for RAdio Detection And Ranging) can be traced back to 1904 when
a German inventor Christian Hiilsmeyer build a simple ship detection device ”telemobiloscope”,
intended to help avoid collisions in fog. Due to technological enhancements in the domain
of antenna design and signal processing, it gave birth to synthetic aperture radar (SAR), a
revolution in the field of remote sensing for several applications. Introduction of the concept
of synthetic aperture, first published by Carl A. Wiley in 1953, made it possible to achieve a
very-high-resolution in both azimuth and range direction as compared to real aperture radar.

SAR images has many merits over the optical images. An optical sensor, being a passive
sensor, has the limitation that it works only at daytime and when the environment is cloud free.
SAR has overcome these limitations of passive optical sensors, as it is capable of imaging at any
time and any season. Due to this, the use of SAR images has been increased tremendously in
several applications. Its sensitivity to target parameters such as dielectric properties and scene
characteristics such as large and small scale geometry gives it an edge over optical image data
in a number of applications (Curlander & McDonough [1992]).

SAR images are inherently bi-dimensional complex-valued signals and reveal structures both
in amplitude and phase. For the ease of interpretation, usually amplitude envelope of the
complex-valued image is utilized. Figure 2.1 shows an example of the amplitude, real component,
imaginary component and phase information for SAR images and its visual comparison with
an optical image of same area. The amplitude-envelope of the complex-valued spectrum of the
considered complex-valued SAR image is also presented.

Figure 2.1: An optical satellite image versus a synthetic aperture radar (SAR) satellite image. Clockwise:
Optical image for ground truth,(© Google Inc.; amplitude, phase, real channel and imaginary channel
of the complex-valued SAR image; amplitude-envelope of the complex-valued spectrum of SAR image.
The SAR image has been taken from a full-scene of very-high-resolution spotlight mode of TerraSAR-X.
Interesting scattering mechanisms taking place in this particular SAR image are demonstrated in Bamler
& Eineder [2008].



Application areas of SAR includes surveillance, target detection, navigation, change detec-
tion, interferometric applications, environment monitoring and planning etc. The advent of
high-resolution SAR has introduced a possibility of extensive target signature analysis, thus
opening new windows in automatic target detection and recognition. To understand target’s
backscattering behavior, an understanding of SAR image formation plays a vital role. So, this
chapter mainly comprises of the imaging system of SAR. An introduction to statistical perspec-
tive on SAR images is also presented.

2.1.1 Data acquisition geometry

A SAR sensor works by moving along its trajectory, transmitting coherent modulated electro-
magnetic pulses to the target in a side looking fashion, recording the backscattered signal and
then performing signal processing operations to generate a final image. Figure 2.2 shows a sim-
plified SAR data acquisition geometry and later the definitions of these geometry related terms
are presented.

Figure 2.2: A simplified SAR data acquisition geometry along with the description of geometry related
terms, some of which will be readily used in further discussions.

e Sensor The sensor is carried on a platform, which could be a satellite in the space-
borne case or aircraft in the air-borne case, which moves along its trajectory transmitting
electromagnetic pulses with side look angle, 8;, and recording the echoes in a coherent
manner.

e Beam footprint The area illuminated by the SAR sensor on the ground is called the beam
footprint. The position and shape of the antenna footprints depends upon the antenna
beam pattern as well as the geometry of the ground surface.

e Target Although the sensor illuminates an area on the ground, the target can be assumed
as a hypothetical point on the ground under consideration, used to simplify mathematical
computations.



e Nadir The nadir is the point directly below the sensor on ground. Nadir tracks the
azimuth direction with the motion of platform.

e Azimuth and range The coordinate aligned with the velocity vector of the sensor is
denoted by azimuth or slow time, whereas the across track coordinate is denoted by range
or fast time.

e Slant range and ground range Slant range is the line joining the sensor and the target,
ground range is the projection of slant range on the ground.
2.1.2 Geometrical perspective
2.1.2.1 Scattering mechanisms in SAR

Due to the side looking nature of the SAR sensor, several basic backscattering phenomena can
be explained. Depending upon the microscopic and macroscopic properties of the scatterers on
the imaged surface, some of the basic backscattering mechanisms in SAR are depicted in the

figure 2.3(a).
\Q& 7

\/N\\/

) Left to right: Surface scattering on plane surface and rough surface, Double bouncing reflection, Volume scattering.

Diffuse scattering

Double bounce

Volume scattering

(b) Depiction of basic scattering mechanism on real SAR images.

Figure 2.3: Different backscattering mechanisms in SAR depending upon the microscopic and macro-
scopic properties of the scatterers on the imaged surface. First row from left to right: surface scatter-
ing (plane surface), surface scattering (rough surface), double bouncing reflection and volume scatter-
ing. Second row: depiction of these basic scattering mechanisms on metric-resolution SAR images from
TerraSAR-X.

Surface scattering

Surface scattering mainly involves two phenomena. First is the surface scattering from smooth
surfaces, also called the specular reflection. If the incidence angle between the transmitted SAR
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signal and the imaged surface is not zero, very little energy is reflected back to the SAR antenna.
Thus the imaged surface appears dark in the SAR image. That’s why the flat rooftops of the
buildings, calm water in the river or sea surfaces, surfaces on the free-ways appear dark in SAR
images as very little energy is reflected back to the SAR antenna due to specular reflection. An
example of specular reflection from the rooftop of a building is depicted in the figure 2.3b(left).
The second phenomenon in surface scattering is scattering from the rough surfaces, also called
the diffuse scattering. In this case only a part of the transmitted SAR signal energy is received
back by the SAR antenna, such as from the crop-land, grass-fields, and sand dunes etc.. The
imaged surface is brighter than the areas that show specular reflection behavior. An example of
diffuse scattering from a grass-field is depicted in the figure 2.3b(right).

Single and double bouncing reflection

Single, double bounce reflection or multiple reflections occur from the edges or corners of strong
structures (e.g. buildings, metal or concrete bridges etc.). That’s why such objects appear very
bright in SAR images due to strong backscatter from sharp edges on the borders. An example
of double bounce from a wall of a building is depicted in the figure 2.3b(left).

Volume scattering

Volume scattering also occurs on the rough surfaces where the SAR signal partly penetrates
the scatterers. The depth of penetration is a function of the employed wavelength in the SAR
imaging signal. An example of volume scattering from the trees in a forest is depicted in the
figure 2.3b(right).

2.1.2.2 Geometrical distortions in SAR

Again, due to the side-looking imaging geometry of SAR, some geometrical distortions are also
intrinsic to SAR images depending upon the topography of the terrain (see figure 2.4). Here
simplified flat Earth is considered ignoring the curvature of Earth. If #; is the look angle which
increases from near range to far range, « is the local slope, then the local incidence angle becomes
0; — a. Depending upon the relation between look angle and local slope, normally, the following
three distortion cases are of interest (Franceschetti & Lanari [1999]):

Sensor Sensor Sensor

A B c

(a) Foreshortening (b) Layover

Figure 2.4: Geometrical effects in SAR images which arises due to the side-looking imaging geometry
of the SAR sensor. These effects essentially depends upon the topography of the terrain.
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Foreshortening —0; < o < 6;. The slant range distance A-B is shorter than the distance on
the ground, i.e. foreshortening causes dilation or compression of resolution cell.

Layover « > 6;. The top of the mountain B is imaged ahead of the lower edge A. Layover
results in the inversion of the imaging geometry. In special case, when 0; = «, the area is
compressed on slant range into a single pixel.

Shadow « < 6; —7/2. The region B-C in the radar shadow is not imaged, so no backscattered
signal is produced.

2.2 SAR signal processing

Radar equation establishes a physical correlation between power transmitted by the sensor and
the power received from the target after backscattering. Considering the case of radar with real
aperture, if P; is transmitted power, and P, is received power, then the following relation holds
for unfocused systems: , ,

Py )\*U Gi’

4t (4w R?)?

where ¢ is the radar cross-section, a measure of energy backscattered per unit surface area by the
target. The intensity observed in the radar image is proportional to o (Curlander & McDonough
[1992]). Here, A is the carrier wavelength of the signal, R is the distance between target and
sensor, GG is the gain factor of antenna. It is assumed that transmission and reception gain, Gy
and G, respectively, of the antenna are same, and in the other case G? is replaced by G;G, in
the equation 2.1.

We consider again the approximated SAR data acquisition geometry shown in figure 2.2,
where the curvature of Earth and curved flight trajectory have been ignored. These rectilinear
geometry approximations are sufficient for mathematical formulations (Bamler & Schaettler
[1993]). Further, a Start-and-go approach (Hein [2004]) assumes that the satellite position
does not change between sending and receiving of an electromagnetic pulse for a target under
consideration. The altitude and velocity of the trajectory are also to be assumed as constant
during acquisition time, and atmospheric attenuation or refraction have also to be ignored.
Under these assumptions, the SAR signal processing chain can be understood to explain the
limiting SAR resolution, which can be further extended to the real scenario. SAR resolution
is differentiated between range and azimuth resolution. SAR signal processing enables us to
achieve a better resolution as compared to conventional radar.

P = (2.1)

2.2.1 Range resolution

To understand the focusing in range, we refer to the figure 2.5a. Lets assume that we want to
resolve two point scatterers: Target-1 and Target-2 separated with a range AR. To get a perfect
resolution, we need to transmit a delta function pulse such that the time separation between
return pulses from these two target will be At = 2AR/c. It will be possible to separate these
two targets with a system with time-sampling finer than At¢. Unfortunately, it is not practical
to transmit a infinite-energy pulse like delta function to achieve a better resolution. The other
solution is to use a very short wave-train with a time window of length 7. In order to have no
overlap between the return pulses from two targets, the time window of wave-train 7 should
be less than 2AR/c. But as the short wave-trains have very low energy, a little energy will be
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Synthetic aperture

Sensor Sensor Sensor

Sensor position 1 position 2 position 3

Elevation
Platform

velocity
vector —

Nadir Target 1  Target 2 Target
Near range Far range <~ P00 * ¢full —_—
Range direction — Azimuth direction —
(a) Range resolution (b) Azimuth resolution

Figure 2.5: Resolution of SAR in range and azimuth directions. (a) SAR imaging geometry in range
direction. (b) SAR imaging geometry in azimuth direction.

reflected from the targets. This little reflected energy will be suppressed with noise, thus makes
the short wave-trains also impractical.

In order to circumvent this problem, the signal transmitted by the SAR sensor is a chirp
signal with the form: g(t) = rect(t/T) - exp(jnKt?). It is an ideal linear frequency modulated
signal, with time period T and linear frequency modulation rate (FM rate) K. The bandwidth
(B.W.) of this chirp signal is described as the product of |K| and T. Again, in just transmitting
the chirp and utilizing the returned chip signal without pulse compression, bandwidth governs
the resolution in range direction. The signal is transmitted from the sensor towards the target,
and the delayed backscatter is obtained with amplitude modified by the scattering coefficient of
the target. Two targets in range can only be resolved, if the distance between them is more than
T in time. Figure 2.6a displays backscattered signals from two targets in the non-compressed

case.

g(t —t1) g(t —t2 ' g'(t—t1) g'(t —t2)
it et 31 737
3 LR L O

Discrete time axis [s] — Discrete time axis [s] —

(a) Non-compressed backscatter (b) Compressed backscatter

Figure 2.6: Non-compressed backscatter (after demodulation) and compressed backscatter using pulse
compression technique, from two targets.

Pulse compression technique is used to improve the resolution in range. Pulse compression
is achieved by matched filtering operation, i.e. taking the correlation between transmitted and
received signal. A matched filter is used because it is the optimal linear filter in the sense of
providing the best signal-to-noise ratio (Curlander & McDonough [1992]). Figure 2.6b displays
range compressed signals received from two targets. In this case, it can be seen from the figure
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that: to = t; + 1/B.W.. So the range resolution in this case becomes:

C

AR = Rgant-range = m

(2.2)
It can be seen from the equation 2.2 that the range resolution does not depend upon the distance
between the SAR sensor and target. As the ground range is the projection of slant range on
ground, slant range resolution can be converted into ground range resolution using the look
angle information from the figure 2.5a, and is given by:

c
R - = )
ground-range = o~ |K|-T -sin(6;)

(2.3)

This signal processing in range direction, also denoted as focusing in range, enables us to achieve
a very good resolution in range direction. Further signal processing in azimuth direction is done
to improve the resolution in azimuth direction.

2.2.2 Azimuth resolution and azimuth chirp

In case of real aperture radar, azimuth resolution is related to beam-width of the main lobe of
antenna beam pattern. Figure 2.7 shows a typical beam pattern of a radar antenna with main
lobe in the center. With the antenna length - L , and transmitted wavelength - A, 3 dB-full

@D full

Figure 2.7: Antenna beam pattern.

width at half maximum of antenna’s main lobe is given as: ¢, =~ 0.88 - (A/L). In case of real
aperture, azimuth resolution is dependent upon the distance of target from sensor. At a distance
po, azimuth resolution is related to 3 dB-full width at half maximum as:

A
Razimuth RAR — ¢full * PO = 0.88 - <L> " Po- (24)

In order to achieve a good resolution, the physical length of the antenna needs to be increased,
which has operational constraints. This gives an unacceptably poor value for azimuth resolution
in the conventional radar case, i.e. the real aperture radar (RAR) case. It is evident from
equation 2.4 that in order to improve azimuth resolution, either wavelength of the transmitted
signal has to be reduced, or the size of antenna has to be increased. Wavelength of operation
cannot be changed as the backscatter characteristics of targets depend upon the wavelength.
Due to constructive limits, it is also not possible to increase the size of the antenna beyond
certain limits, so the concept of synthetic aperture comes into play.

Figure 2.5b describes the perception of synthetic aperture in SAR. A target is continuously
illuminated by the antenna beam during the trajectory of the sensor in azimuth direction over
an extended period of time, known as integration time, in order to synthesize a larger size of an
antenna. The backscatters of the target are stored into a sampling matrix along with the phase
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information. The duration in which the beam is illuminating a target during its travel is known
as synthetic aperture. Due to the change in distance between sensor and target during synthetic
aperture, the echo signal shows a Doppler frequency shift in relation to the transmitted pulse.
This Doppler shift stored in form of phase information is used later in signal processing and
thus helps in achieving an improved azimuth resolution. To focus a SAR image in azimuth,
the classical matched filter strategy is employed, i.e. the energy backscattered by the target is
concentrated in time by a proper integration of Doppler phase history.

Assuming the satellite platform velocity is vg4e, if a target is on ground at range and azimuth
coordinates (po, vsqt - (t —to)), where tg is the start time, then its overall instantaneous distance
from the sensor is given as:

v2, - (t—t)?
Plpot—to) = \/p% + 0l - (t—10)% = po <\/1 + % . (2.5)

Po

We denote (t — tg) = tq. as the azimuth time. Approximating the equation 2.5 using Taylor
series expansion, we can write:

vl t?
sat  “az
2po
For a particular instant in time, the difference between instantaneous range p(,, s,,) and mini-

mum range (or slant range) pg is called range migration, and can be written as:

Plpotaz) = PO T (2.6)

2 2
Vsat taz

o (2.7)

APy taz) = Plpostaz) — PO

The range migration has the form of parabola as shown in the figure 2.8(left), thus a two-way
path phase is introduced. The phase information extracted from this range variation follows

; > taz ‘

: > taz

A Sb(p()ytaz)
 faz =

Figure 2.8: Concept of range migration. Left: the variation of the distance between the sensor and target
Pposta.) With respect to azimuth time ¢,., Center: the generation of azimuth chirp as a quadratic phase
modulation range migration ¢(,, ...y, Right: a negative slope line for the linear frequency modulation
rate or the instantaneous Doppler frequency f,. of the azimuth chirp.

approximately quadratic behavior, as shown in the figure 2.8(center). In other words, a lin-
ear frequency modulation is generated by the range migration, called the azimuth chirp with
following form.

. 4 47 v2, 12,
= —— ~—— —saraz ) 2.8
P(postaz) 3 Poorta) /\ (po M (2.8)
Now the instantaneous Doppler frequency f,. can be given as:
1d 202
faz = %%(p(p()vtaz) = — )\;Zttaz = FMpotaz- (29>
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Here FM,, = —(2v%,)/(Apo) is the frequency modulation rate of the azimuth chirp. As a
consequence, the signal is a negative slope line with respect to azimuth frequency f,, versus
azimuth time t,., as shown in the figure 2.8(right). This instantaneous Doppler frequency at
antenna beam center, i.e. t,, = t., is called Doppler centroid fpc, and is denoted as:

202
Joc = faz(taz = tc) = _Aisattc- (210)
Po
In case of standard SAR mode (stripmap and no antenna squint), the Doppler centroid is at
the center of the azimuth spectrum. For the spotlight mode case resulting central frequency is
different for each one of the final azimuth lines in the Doppler coordinates, which needs to be
taken into consideration for further applications.

The range migration has to be corrected before performing focusing in azimuth, but the
Doppler history information available in range migration is also of significant importance for
focusing in azimuth and the information available in range migration is required for focusing
in azimuth, so focusing in range and azimuth is a coupled problem, and hence SAR imaging
becomes a two-dimensional and a non-separable problem (Bamler & Schaettler [1993]).

Now we will derive the formulation for the resolution of SAR in azimuth. Going back to
equation 2.9, the instantaneous Doppler frequency f,. can be rewritten as:

2Usat

faz ~ —Tpovsattaz. (211)

The magnitude of Doppler frequency for an short duration of time in azimuth Atf,, can be
written as:

| Af

2v t 2v t
w | T:UsatAtaz = A;‘; Apq:. (2.12)

Here, Ap,. = vsqtAt,. is the shortest distance resolvable in the azimuth direction, and hence
the azimuth resolution can be written as:

A o\
Razimuth( or Apgy) = ‘éaz’p
Vsat

(2.13)
Now, the frequency resolution of the generated azimuth chirp signal is equivalent to the reciprocal
value of time signal within the half-power bandwidth, i.e. | Af,. |= (0.88/T). The time period T
is the duration of azimuth chirp which is related to the distance between the transmitted pulses
S as T = S/vsqr. We recall the distance S between transmitted pulses from the equation 2.4 as
S = @ fuli - po, which is also the resolution for a real aperture radar. Now the frequency resolution
of the generated azimuth chirp signal can be written as follows (Hein [2004]):

088  0.88 0.8 g
T S/vsa  088(3)po

| Afaz ‘: (2.14)

Substituting the equation 2.14 in the equation 2.12, we obtain the azimuth resolution in SAR

as:
L

5.
It is evident again from the equation 2.15 that azimuth resolution is independent of antenna
distance from sensor.

Razimuth( or Apaz) = (215)
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Concept of azimuth spectrum splitting in SAR

After the discussion on azimuth chirp, it is pertinent to briefly discuss the concept of azimuth
splitting. The position and frequency information is interrelated in the SAR phase history,
which is utilized in the concept of azimuth spectrum splitting. Azimuth spectrum splitting (or
azimuth sub-band/sub-aperture in the complex spectrum of the SAR signal) corresponds to
the splitting of the full synthetic aperture in order to extract a specific viewing angle of the
sensor. Each Doppler phase term in the Doppler effect generated due to the radar-target range
variations during the SAR acquisition is related to a specific sensor position and hence to a
specific azimuth viewing angle. In the figure 2.9, a pictorial representation concept of azimuth
splitting by extracting 4 sub-apertures from the full synthetic aperture is demonstrated.

Full bandwidth / aperture

Sensor position
Start

Sensor position
End

Sub-aperture

Platform
velocity
vector —

Target
~—— PO Pfull —> Azimuth direction —

Figure 2.9: Concept of extracting azimuth sub apertures from the complex-valued spectrum. The
extraction of 4 non-overlapping consecutive sub apertures is demonstrated. The full bandwidth is the
consequence of the full synthetic aperture generated during the SAR image acquisition from Sensor
position Start to Sensor position End, where a particular target is visible in the half-power bandwidth of
the main lobe of the antenna beam.

Extracting the part of this spectrum is equivalent to selecting a sub-antenna with an partic-
ular azimuth squint angle, thus providing the information about the directivity of the objects,
their orientation and the material of the surrounding surfaces etc. Illustration of the backscat-
tering direction for a diedre and a coherent scatterer is presented in the figures 2.10a and 2.10b
respectively.
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(a) Non-coherent target (b) Coherent target

Figure 2.10: Backscattering from two different targets, (a) a diedre and (b) a coherent scatterer.
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In the figure 2.10a, the backscatters from a highly directive and non-coherent object will
not be visible in all of the sub-apertures of the synthetic antenna, whereas in figure 2.10b,
the backscatters from a coherent object will be visible in all sub-apertures. This phenomenon,
which is peculiar to the complex azimuth spectrum can also be extended to the range direction
to reveal some otherwise hidden information about the objects on ground.

Azimuth ambiguities

Azimuth ambiguities in SAR are caused by the aliasing of the Doppler phase history of each
target that is sampled according to the sensor azimuth sampling frequency, which equals the
pulse repetition frequency (PRF) (Li & Johnson [1983]). We refer to the figure 2.11 in order to
understand azimuth ambiguities in SAR images.

Sensor Azimuth direction —

Platform velocity vector, vsqr —

~
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N
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7 ‘\ N
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Target A Target B

Figure 2.11: Azimuth ambiguities in SAR images. The target B will be aliased with the target A if the
angular azimuth frequency corresponding to the angular displacement At is a multiple of the sampling
frequency (Guarnieri [2005]).

Antenna
footprint

The satellite is flying with velocity vsq; on a straight path, ignoring the curvature of the
Earth for time being, and two targets under consideration on a constant line of range are target
A and target B, with respective azimuth angle to be ¥4 and 1p. The contribution of the
target B will be displaced by an angular displacement of Ay = ¢ — 14 with respect to target
B. We recall the formulation for the azimuth frequency f,, = —(20sqt /) (Vsattaz/po) from the
equation 2.9. Now for a small bandwidth SAR and a smaller angle A, the term (vsattaz/po)
can be approximated as sin A or simply At. Thus we have the relation between the azimuth
frequency and the angle as follows:

2v 2v . 2v
faz = _ﬁvsattaz = - ;at S Aw = - ;at

Ap. (2.16)

The two contributions from the target A and target B become indistinguishable when the
azimuth frequency corresponding to the angular displacement At is a multiple of the sampling
frequency fs, = PRF (Guarnieri [2005)):

28¢ _ fa A

= Ay =—
A vsat 2vsat

fsa- (2.17)

These aliased contribution from B also have the quadratic phase history. After azimuth
focusing, these targets are somehow focused but have ghosts at the wrong position.
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2.2.3 Spotlight mode SAR and concept of Doppler phase de-ramping

For a conventional stripmode SAR, the theoretical possible azimuth resolution R,imutn iS range-
independent and depends upon the size of antenna L with Raimuth = L/2. The azimuth resolu-
tion cannot be increased arbitrarily by reducing the size of antenna L, as this would result in the
reduction in swath width and an increase in the risk of range ambiguities. This limiting factor on
azimuth resolution is overcome in spotlight mode SAR by sweeping the azimuth beam backward
during the imaging, by either mechanically rotating the SAR sensor (as in German military
satellite SAR-Lupe), or by steering a phase-array antenna electronically (as in TerraSAR-X,
and COSMO-SkyMed SAR satellites). A pictorial representation of sweeping the azimuth beam
backward is shown in the figure 2.12.

©DLR
5-10 km

Figure 2.12: Spotlight mode imaging geometry for TerraSAR-X.

In the figure 2.13(left) is shown the case of conventional stripmap.
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Figure 2.13: Effect of squint of the antenna onto the acquired Doppler frequencies f,.. As described
by the green area, the squinting of antenna backwards will result in the drift of the Doppler centroid
frequency. Thus the Doppler centroid in the generated Doppler chirp will not be centered in contrast to
the no-squint antenna, as in the figure 2.8 (right). Image source: Eineder et al. [2008].

Now in order to increase the resolution in azimuth, the illumination of the target is extended
in time by modifying the squint angle during acquisition, as shown in figure 2.13(right). With
this non-stationary squint angle, the azimuth chirp is acquired for a longer duration. On proper
integration this provides better resolution in azimuth. However, this non-stationary squint angle
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in spotlight mode SAR imaging results in a negative drift of the Doppler centroid frequency in
images, as shown by the green area in the figure 2.13(center). This negative drift of the Doppler
centroid frequency, i.e. fpc < 0, needs to be considered while dealing with the complex-
valued SAR images from the spotlight mode acquisition. The maximum illumination time for a
synthetic aperture in spotlight mode SAR is given as:

B.W.

YL (2.18)

tapert ure —

Here, faz is the Doppler rate caused by sweeping the antenna in the backward direction, B.W. is
the antenna Doppler bandwidth, and FM is the frequency modulation rate. Thus, the focused-
image azimuth time interval Atgcused Will be shorter than the recorded raw data time interval
Atgaw as shown in the figure 2.14(left). The relation between Atgycusea and Atgaw can be
written as follows (Eineder et al. [2009]):

B.W. — Atl'-{AVVfaz

At = At
focused RAW + FM

(2.19)
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Figure 2.14: Focusing (left) and sub sampling (right) of the SAR spotlight product. The negative drift
of the Doppler centroid frequency of the slope in the azimuth frequency f,. with respect to the azimuth

time t,, represents the Doppler rate f,, caused by the sweeping the antenna. Image source: Eineder
et al. [2008].

Now the bandwidth B.W .g,q1ignt in the case of spotlight mode SAR as a product of improved
aperture time taperture and FM can be expressed as follows:

B.W. B.W.
B-W~sp0tlight = tapertureFM = = FM

faz —FM N faz/FM -1 . (2‘20)

We notice that the bandwidth B.W.gt1ignt in spotlight mode is higher than the antenna Doppler
bandwidth B.W., which require sampling the image with a higher frequency than the PRF of
the raw data while focusing. Equations 2.18- 2.20 will describe the conventional stripmap mode
without squint angle, where there is no sweeping of the antenna resulting in fy, = 0.

Even after focusing the raw data to the single look complex (SLC) images in the spotlight
mode SAR, systematic Doppler centroid drift remains as shown in the figure 2.14(right). To
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remove the linear negative Doppler drift in the focused scene and to center the spectrum around
the start Doppler frequency, a phase de-ramping algorithm must be performed prior to other
operations on the complex-valued SAR images, by multiplying each azimuth line with a chirp
function parametrized with the Doppler drift rate (Eineder et al. [2009]):

C(t) = eXp(_jﬂ—(t - tstart)2faz)' (2.21)

Where, tgart is the zero-Doppler time of the first azimuth sample. All the SLC spotlight mode
products from TerraSAR-X used in this thesis have been first phase de-ramped using the equa-
tion 2.21. Essential Doppler centroid parameters needed for phase de-ramping are available in
the XML-formatted TerraSAR-X description file for each product.

2.3 Statistical analysis of SAR images

A SAR system works on the principle of transmitting a coherent modulated electromagnetic pulse
to the target in a side looking fashion, recording the backscattered signal and then performing
signal processing operations to generate a final image. The raw SAR image or the signal received
from the target is inherently a complex-valued signal. Even after focusing to obtain the final
image, the SAR images are complex-valued, i.e. it constitutes a magnitude and a phase term.
However for many application, this phase information is ignored and only magnitude term is
utilized. In order to derive some statistical properties of SAR images, we need to consider the
complex-valued SAR signals.
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Figure 2.15: Random walk in a complex plane. The complex return from a resolution cell in the imaged
surface is the superposition of N number of contributing backscattered waves with random phases.

The objective of statistical modeling is to address the problem of constructing a stochastic
model to predict the behavior of a random process. To explain a standard model for the
SAR images, a random walk phenomenon in the complex plane is employed. According to
this hypothesis, a resolution cell consists of N number of discrete scatterers. The resulting
backscattered complex signal E in a random walk is interpreted as the sum of all N individual
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scatterers, as shown in the figure 2.15. In particular, this resultant is the contribution of the
interference of the returns from corresponding IN scatterers and this interference phenomenon
motivates the usual noise-like granular aspect of SAR images, known as speckle (Oliver & Quegan
[1998]). This phenomenon of speckle essentially affects all coherent imaging systems, such as
laser (Goodman [1976]), acoustic and radar images.

If each scatterer provides a backscatter with magnitude FE; and phase term 6;, the total
returned modulation of the incident wave is given as:

N
|E e =" Bl (2.22)
=1

In a standard model for the statistical analysis of the complex signal, several assumptions are
made. E.g. the number of scatterers in a resolution cell are large, the scatterers are independent
and small (as compared with the ground area), the scattering instantaneous phases are inde-
pendent of the amplitudes and uniformly distributed in [0, 27], and there is no single scatterer
dominating the scene (Touzi [2002], Oliver & Quegan [1998]). Statistically, according to the
central limit theorem, if the number of scatterers N is large, in-phase and quadrature compo-
nents, i.e. the real and imaginary parts of E turn out to be independent zero-mean Gaussian
random variables with equal variances (Papoulis [1991]). Under the circumstances that all these
assumptions are met, which is the case of fully developed speckle, the statistical modeling of the
SAR images is rather easy. However in real scenarios, the situation is not that simple. In this
section we will consider the case of fully developed speckle for statistical understanding of SAR
images.

2.3.1 Statistics for amplitude, phase and intensity

With real and imaginary parts as zero-mean Gaussian random variables, it is straightforward to
derive the probability density functions (pdfs) for amplitude and intensity for E, i.e. for SAR
images. Lets denote the complex-valued SAR image pixel as:

y =yr+ jyr = re!’ = Jvel?, (2.23)

with, yr, y7, , v and 0 as its real component, imaginary component, the amplitude, the intensity,
and the phase of the complex signal y, respectively. The joint probability density function (pdf)
for real and imaginary components is given as:

YR Fyr*
(o2

1
Pyryr (YRYI) = Py (YR)Dy, (1) = o eXp{ } . (yr,yr) € R?, (2.24)

which is the circular Gaussian distribution, with variance o. The observed phase 6 is uniformly
distributed in [0, 27]. The corresponding marginal amplitude pdf for amplitude r = \/yr? + y>
can be written as:

2 2
pr(r) = / pro(r,0)do = r exp {_r} , >0, (2.25)
0

o o

which is a Rayleigh distribution with its expected value E[r] = /w0 /2 and standard devia-
tion: o4/1 — w/4. The intensity v, which is the square of amplitude r exhibits an exponential
distribution as follows:

1 v
= — —— >
po(v) = — exp{ U} , v>0, (2.26)
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with mean value and standard deviation equal to ¢. The distribution for log-amplitude SAR
images follows the Fisher-Tippet distribution. Figure 2.16 presents the experimentally derived
pdf in terms of its normalized histogram for a complex-valued SAR image from high-resolution
spotlight mode of TerraSAR-X which has been shown in the figure 2.1.
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Figure 2.16: SAR image distribution for a complex-valued SAR image (very-high-resolution spotlight
mode of TerraSAR-X). Normalized histogram of experimental distribution for (a) amplitude (Rayleigh
distribution), (b) log-amplitude (Fisher-Tippet distribution), (c) intensity (Negative exponential distri-
bution), (d) real channel (Gaussian distribution), (e) imaginary channel (Gaussian distribution), and (f)
phase (uniform distribution in the interval [—m, 7]).

The mentioned pdfs are of fundamental importance in handling SAR data, but are valid
only for single-look SAR images with homogeneous areas. As multilook SAR images are used
widely in practice, the Gamma distribution has been introduced as a model for a multilook SAR
intensity pdf. The Gamma distribution is a generalization of the exponential distribution by
averaging single-look exponentially distributed intensities, written as (Oliver & Quegan [1998)):

L L
(>‘ ) ULfle)\Lv

po(v) = T'(L) . v=>0; (2.27)

with L as the equivalent number of looks (ENL) defined as the number of independent intensity
values averaged per pixel (Oliver & Quegan [1998]), T'(+) is the standard gamma function (Rudin
[1976]), and A is a distribution parameter. This results into a Nakagami distribution for a
multilook SAR amplitude images, written as follows (Oliver & Quegan [1998], Tison et al.
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[2004]):

2()‘L) 2L—1_—ALr?

With again, L as the equivalent number of looks (ENL) and I'(+) is the standard gamma function.

More accurate pdf characterization

Coming back to the modeling of amplitude SAR images, where the assumption is that the real
component yr and the imaginary component y; are zero mean Gaussian distributed. However in
practice, in SAR images, the real component yr and the imaginary component y; often present
significantly non-Gaussian behavior. Thus the amplitude SAR data r is also deviated from the
Rayleigh empirical distribution. This issue necessitate a more accurate pdf characterization.
The non-Gaussian behavior of yrp and y; has been characterized by the symmetric a-stable
distribution in Kuruoglu & Zerubia [2004], leading to a heavy-tailed Rayleigh model of amplitude
SAR images:

“+00
pr(r) = 7"/ pe 7" Jo(rp)dp, 1> 0. (2.29)
0

With, «a,7 as the distribution parameters, and Jy(-) the zero-th order Bessel function of the
first kind. The non-Gaussian behavior of ygr and y; characterized by generalized Gaussian
distribution in Moser et al. [2006] results in a generalized Gaussian Rayleigh (GGR) model for
amplitude SAR images:

2 /2
Pe() = Szt /0 expl—(y) A (| cos 012 + [sin0]N]do, Ay > 05r =0, (2.30)
With, A,~ as the distribution parameters, and I'(:) the standard gamma function. In the same
way, with the help of two-sided generalized Gamma distribution, a generalized Gamma Rayleigh
has been derived in Li et al. [2010]:

y 2 /2
pr(r) = [} 7‘2""’1/ | cosfsin@ |1
nﬁyr(ﬂ) 0 (231)

xexp{— [;] (|cos€|”+|sin0]”)}d9, r > 0.

With, v, k,n as the distribution parameters.

In addition to this, several empirical models, without making any assumptions of the SAR
physical concept and mechanism have also been reported for SAR images with a certain type of
heterogeneous areas. For example, the well-known log-normal, Weibull, Fisher distributions etc.
These models are obtained by straightforward induction of the experimental analysis on actual
SAR images.

The log-normal distribution, with m and ¢ as distribution parameters, is written as fol-
lows (Oliver & Quegan [1998], Szajnowski [1977]):

1 Inr —m)?
pr(r) = exp {—( = Qm) ] . meR,0>0;r>0. (2.32)
ory2m 20

The Weibull distribution, with n» and p as distribution parameters, can be written as fol-
lows (Oliver [1993], Oliver & Quegan [1998]):

pr(r) = L exp [— (7«)”} M > 057 = 0. (2.33)
i U
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The Fisher distribution, with M and £ as the form parameters and p as the mean, can be
written as follows (Tison et al. [2004]):

20—1
() = 2V/LT(L + M) [\/EL]
VML (L)D(M)) 1+(\/§;>1

An alternative approach, to derive the theoretical parametric models for SAR images, is based
on the multiplicative model. The multiplicative model is a common framework used to explain
the stochastic behavior of data obtained with coherent illumination. The assumption made is
that the observed pixel y in a SAR images is an outcome of the product of two independent
random variables: one modeling the terrain backscatter x, which is generally considered real
and positive, and other modeling the speckle noise z, which could be complex (for complex-
valued SAR images) or positive real (for amplitude and intensity SAR images). So again with
the assumption of a fully developed speckle, the multiplicative noise model for SAR images is
written as follows (Touzi [2002]):

TV M>L;T‘ZO. (234)

y=2x-z. (2.35)

With, y as the observed image pixel, z is the noise free pixel, i.e. the backscatter information,
and z is the speckle noise. Most common models based on multiplicative noise model are X and
G distributions.

In the X distribution (Oliver [1984]), both the underlying backscatter and speckle are sup-
posed to have Gamma distributions, which lead to the following distribution for the amplitude,
with £, v and p as distribution parameters:

2 (Lvur = 1 Lvr
pr(r) = - (M) WKV,L (, / M) , r>0. (2.36)

where K is a modified Bessel function of the second kind. Here the backscatter follows a Gamma
distribution with mean 1 and shape parameter £. The speckle follows a Gamma distribution
with mean p and shape parameter v.

A more generalized formulation for X distribution was presented in Frery et al. [1997],
termed as G distribution. In this distribution, the backscatter is modeled as a generalized
inverse Gaussian law. The density function of amplitude SAR images for G has the following
form, with «, v and n as distribution parameters:

I'(n) 1 (v +nr? (a=n)/2
r = " Ko—n A 2 ) = 0;r > 0.
T e T CVAG T, oy 200> 0

(2.37)
The objective behind this short discussion in this section was to present an overview on
the state-of-the-art research efforts on modeling of the amplitude SAR images. However, it has

been demonstrated that a single density distribution can not characterize SAR images in all the
possible scenarios (Singh et al. [2012]).
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Summary

The following points have been discussed in this chapter.

SAR imaging systems work on the principle of transmitting coherent modulated electro-
magnetic pulses to a target in a side looking fashion and recording the backscattered signal
to generate a final image after signal processing. Due to the side looking geometry, all
the SAR images are affected by some distortions such as foreshortening, layover and/or
shadow.

The signal processing techniques such as pulse compression and synthetic aperture are
performed to achieve an adequately higher resolution. The formation of synthetic aperture
not only provides a better resolution in azimuth direction, but also leads to the development
of the concept of azimuth splitting which provides directivity of objects and the material
of the surrounding surfaces by looking into various sub-apertures in azimuth.

To achieve even higher resolution in spotlight mode SAR, sweeping of the azimuth beam
backwards during the imaging is carried out. Though it provides better resolution, it
also introduces a bias in the azimuth phase which needs to be de-ramped before further
processing of complex-valued images. Guidelines for the Doppler phase de-ramping have
been presented.

In the statistical analysis of SAR images, the phenomenon of speckle is of prime impor-
tance. Speckle is a multiplicative noise-like granular aspect in SAR images, which leads to
simpler SAR statistical models such as Rayleigh and Negative exponential for amplitude
and intensity images respectively.

Going from simpler models for SAR images, many advanced and more general models for
amplitude images have been proposed in literature such as generalized Gaussian Rayleigh,
X distribution, G distribution and so on. Normally even in advanced statistical models,
the assumption on the multiplicative nature of speckle is still preserved. However, its
difficult to arrive at a consensus on the density model which best fits the SAR images in
all scenarios.

After presenting the above introductory concepts of SAR images, in next chapter, chapter 3,
we will discuss the more specific issue of high-resolution SAR images. The main contributions
of this thesis will be highlighted.
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Chapter 3

SAR Image Content

The objectives of this chapter are to discuss the problem of spatial content under-
standing in low-resolution and high-resolution SAR images, and to highlight the main
contributions of this thesis. In the first section we discuss the issue of ever increas-
ing resolution from the recent SAR satellite missions. The image content in the low
and medium resolution SAR images could be described in terms of global classes by
characterizing the underlying texture by the assumption of fully developed speckle.
We present the examples of the high-resolution SAR images, where, apart from the
visibility of texture for homogeneous regions, it is possible to analyze the objects in
more detail.

As the information available in high-resolution SAR images is sometimes sufficient
for individual target analysis, in the second section we propose a method of visual
exploration of targets by extending the azimuth splitting technique, which we term as
the multiple sub-look decomposition (MSLD) method.

In the third section, we introduce the problem of spatial content understanding which
could be carried out using time-frequency analysis (TFA) methods or statistical meth-
ods. Based on the discussion from MSLD and TFA, we will analyze a proposed
method for information extraction using the fractional Fourier transform in the
following chapters. The statistical methods are mainly based on the multiplicative
speckle model which leads to the Bayesian inference applied to SAR images. Thus we
discuss a historical overview of speckle and speckle reduction filters to the Bayesian
information extraction.

In the fourth section, we discuss the issue of pixel-based classification and patch-
ortented image categorization, which leads us to a proposed methodological classifica-
tion for performance analysis of various methods. The methods, analysis and results
will be discussed in context to the proposed methodological classification in the coming
chapters. We will close this chapter with a short summary in the last section.
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3.1 SAR images: from low-resolution to metric-resolution

Seasat launched by USA in 1978, and maintained by JPL, was the first civilian Earth-orbiting
satellite with an on-board SAR sensor. The objective behind the design of Seasat was to test
various oceanographic sensors and demonstrate the feasibility of the monitoring of oceanographic
phenomena to gain a better understanding of the Earth’s seas. But this satellite had to be
terminated due to malfunctioning in its operation. Since then, a number of SAR satellites have
been launched. The choice of frequency band in which these satellites were/are operating is
closely related to the application area of the received image data. For example, American SIR-C
SAR satellite in L-Band (24.2 cm wavelength) and C-band (5.7 cm wavelength) could penetrate
to the forest floor and made moisture measurements possible. The short wavelength of 31 mm in
TerraSAR-X provides very-high-resolution of 1-meter on ground, which makes target detection
and recognition possible. Future satellite missions such as Sentinel-1 are also aimed at providing
enhanced revisit and coverage for surveillance, mapping and monitoring purposes, at the cost
of lower resolution, which provides an objective of continuity of data from ERS and Envisat
missions.
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Figure 3.1: Ever increasing resolution from SAR satellites with time. The increase in resolution is
changing the problem statement in SAR image understanding. The interest in metric-resolution SAR
images is for detecting objects rather than land-cover classification in contrast to the low-resolution SAR
images. The planned launch of Sentinel-1 in the near future with moderate resolution SAR images will
not let us ignore the methods developed for such kind of images in the past.
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Low-resolution images (~ 40m) are appropriate for large scale mapping and surveillance.
What we obtain is the backscatter information, such as in the study of sea ice in oceanography.
In a slightly better resolution, but still low (~ 20m), what seems to be visible is the textural
information. Different targets, or in other words, different regions seem to look different in terms
of spatial variability in neighboring pixels. In medium resolution images (~ 3—10m), the shapes
of the targets start to be more prominent. The recognition of smaller objects, however, still
remains challenging. With high-resolution and very-high-resolution satellite images (~ 0.5—3m),
it is even possible to do an individual target analysis in more details. The targets of interest
are then not just regions, but in several cases are objects. But this enhancement in resolution
comes at the cost of huge reduction in swath of full-scene. This makes large scale reconnaissance
difficult and rather specific geographical regions are emphasized.

TerraSAR-X, Acquisition: 11-OCT-2008

ERS-1, Acquisition: 24-JUL-1992

Figure 3.2: Example of the tremendous increase in details with growing resolution. ERS image of a part
of the city of Bucharest (Romania) at a resolution of 25 meter (512 x 512 pixels), (inset) TerraSAR-X
image at a resolution of ~ 1 meter (512 x 512 pixels) of the area marked by the white-rectangle in (left).
Both of the images are shown at the same scale in comparison to the respective resolution.

The two curves in the figure 3.1 summarize an important trend in the evolution of image
resolution from the past and future SAR satellite missions. The lower curve (— - —) which
represents the low-resolution images since the launch of ERS-1 and seems to continue with the
launch of Sentinel-1 in the near future is very important for large scale monitoring. Whereas
the second curve (- - -) signifies the quest for a better resolution in order to move from mere
large scale monitoring to detailed target understanding and recognition with an increase in
availability of details. Figure 3.2 shows an example of this tremendous increase in details with
growing resolution. Figure 3.2 (left) is an ERS-1 image of city of Bucharest (Romania), where
largely, only textural information was available. It is possible to make out the regions based
on urban area, river, grassland and so on. In the inset of the figure 3.2 is shown a very-high-
resolution image from TerraSAR-X, with the illustration of the scatterers over the building
(Parliament house, Bucharest (Romania)) in much greater details.
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3.1.1 SAR image content
3.1.1.1 Low-resolution and medium resolution SAR images

One of the biggest advantage of low-resolution SAR images is the huge area coverage due to a
large swath at the cost of reduced resolution. This leads to the possibility of land applications,
like soil moisture and vegetation monitoring and oceanographic applications. These were among
the earliest applications of SAR images since the launch of Seasat and the space shuttle mis-
sion. In the land applications, the intrinsic spatial variability, or texture, of the image, has been
used as a valuable feature in discriminating among different land-use types (Ulaby et al. [1986]).
Different land-use categories tend to exhibit different texture due to different backscattering
properties and varied backscattering phenomena occurring in a resolution cell as explained in
the section 2.1.2.1. Hence the texture originating mainly depends upon the scene under consid-
eration. Another important application area is the monitoring of ocean surface patterns. An
early study on mapping of oceanographic structural and topographic features and observation
of ocean surface waves, internal waves, current boundaries from the Seasat images have been
summarized in Elachi [1980].

SAR images, like any other coherent imaging systems, are affected by a noise-like granular
aspect, known as speckle. The understanding of fully-developed speckle where the assumption
of a large number of scatterers in a resolution cell to conform with the central limit theorem,
leads to many statistical models for the analysis of texture in SAR images as presented in the
figure 2.3.

Figure 3.3: Examples from low-resolution satellite SAR images, pixel size is 256 x 256.

In the figure 3.3 are presented some of the typical examples of texture visible in a low-
resolution SAR image. Each SAR image is of 256 x 256 pixels size extracted from a full-scene
of ERS-1 satellite image (by multilooking from type SAR.IMS_1P). Examples of rivers and
vegetation are presented in (a) and (b). As can be seen, rivers look very dark due to specular
reflection. Considering the example of (b), along with the river and vegetation, the other
interesting object is a bridge over the river, which looks exceptionally bright due to the strong
backscatter from the sharp-edged concrete structure. Airstrip in the middle along with urban
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set-up in the bottom left is presented in (¢). Again, the airstrip also looks dark due to specular
reflection from the smooth concrete layer on ground. In (d), layover and shadow effects over a
mountainous region are visible. We can draw similar observation about bright looking urban
set-up surrounded with land-cover typologies, both describing a specific texture in (e)-(g).

It must also be noted that apart from texture, it is also possible to carry out individual
target analysis, provided that the target is large enough as compared to the resolution cell and
relatively isolated from adjoining targets. For example the bridge in (b) and airstrip in (c) are
the objects of concern. These objects are surrounded with well textured vegetation and the river
in (b); and vegetation and urban area in (c). Similar observation can be made on an isolated
building surrounded by grass fields in (h).

3.1.1.2 High-resolution and very-high-resolution SAR images

Considering the cases of high-resolution and very-high-resolution SAR images, it is still possible
to detect a texture, specifically in a homogeneous region such as a uniform forest, grassland
and sandy plains. Here speckle can be still considered to be fully developed. Speckle tends
to be fully developed when the number of scatterers in a resolution cell is large and size of
scatterers is smaller as compared to the scale of the wavelength of the incident radar wave. In
this situation, when the size of scatterers / objects are much smaller than the wavelength of the
incident radar wave, many scatterers will be present in a resolution cell, and thus speckle will be
prominently visible in the image, degrading the image’s understanding possibilities. Statistical
characterization of speckle can be carried out by knowing the fact that speckle is nothing but
the interference between the coherent returns from numerous scatterers present in a resolution
cell. More importantly, it is this speckle phenomena which gives rise to a specific image texture.
Few such examples from very-high-resolution SAR are presented in the figure 3.4.

(a) Agriculture fields. (b) Forest.

£ ; |
(c) Water body and vegetation. (d) Densely populated urban setup.

Figure 3.4: Examples from high-resolution SAR images (left) in various categories with well behaving

texture along with their corresponding optical satellite images (right). SAR image type: very-high-

resolution spotlight mode of TerraSAR-X. Optical satellite images (©) Google Inc.. Geographical location-
Munich(Germany).
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Figures 3.4a and 3.4b present homogeneous textured regions from an agriculture field and
forest, respectively. Two different types of textures can be noticed in the figure 3.4a, mainly
due to bare-soil from the top-left corner and crop in the bottom right corner. Figure 3.4c shows
a forest region along a water body. The water surface also looks very dark like is low-resolution
SAR images, but as the size of resolution cell is comparatively larger in high-resolution SAR,
the roughness of water is visible. Figure 3.4d shows a densely populated urban area surrounded
with trees. On a larger scale, this also forms a kind of texture with vegetation cover embedding
the bright structure due to stronger backscatter from the buildings.

The situation is largely different when we consider the regions which contains objects of
relatively larger dimensions, as shown in the figure 3.5.

(a) Train station. (b) Bridge over train tracks fields.

(d) High-rise buildings.

(e) Traffic roundabout. (f) Freeway crossings.

Figure 3.5: Examples from very-high-resolution SAR images (left) in various categories with well defined
objects along with their corresponding optical satellite images (right). (SAR image type: very-high-
resolution spotlight mode of TerraSAR-X, Optical satellite images (©) Google Inc., Geographical location-
Munich(Germany)).

None of the very-high-resolution SAR images presented in the figure 3.5 exhibit a specific
texture on a broader scale, whereas they reveal even more detailed information about the scat-
terers on the ground. In the figure 3.5a as well as in the figure 3.5b, it is even possible to count
the number of train tracks at the train station. A closer inspection of the figure 3.5¢ provides
detailed information about the gates in the barrage of the embankment of a river. The strong
reflection from the multiple floors above ground in a high-rise building in the figure 3.5d can
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be used to determine the height of the building, provided the satellite sensor parameters are
available. The distinction between a traffic roundabout in the figure 3.5¢ and a free-way crossing
in the figure 3.5f is evident in the very-high-resolution SAR images.

With these examples, the need to reconsider the concept of speckle in such scenarios where
the size of scatterers in a resolution cell is relatively very large, must be questioned. It will not
be an overstatement if we say that there is no speckle in the images, whereas the observed pixels
are actually the true backscatter from individual scatterers through single, double or multiple
bounces. And even in the case of multiple bounces, the interference between various backscatters
will not be a nuisance parameter, but valuable information. So, it is time to redirect our focus
from the texture synthesis on a larger scale to individual target analysis.

Special examples in high-resolution and very-high-resolution SAR In the earlier
examples, we examined some typical texture and objects in high-resolution and very-high-
resolution SAR images. Now we will consider the case of some typical phenomena in SAR images
occurring because of the signal processing techniques applied in SAR synthesis to achieve a higher
resolution. These phenomena, specifically Doppler effects from moving targets and azimuth am-
biguities, were also present in low-resolution SAR, but become evidently more prominent in
the case of high-resolution SAR images. These phenomena lead to the formation of certain
signatures in the SAR image on the location where there was actually no structure present on
ground. To understand this we need to look into the complex-valued SAR images, i.e. into real
and imaginary components of SAR images.

i Doppler signature of the along-track moving vehicles

Figure 3.6: (Left) Amplitude, (center) real component, and (right) imaginary component from the
Doppler signature from the moving targets in (a) and (b), and azimuth ambiguities over a sea-surface
from high rise building at adjoining coastal area in (c), marked with a white arrow. It can be seen, its
not possible to discriminate these signatures from other targets in the amplitude image, so we should
consider analyzing them in complex-valued space by utilizing the embedded phase information.

The Doppler signature of the target moving along the track appears smeared in azimuth
(figure 3.6a), whereas the Doppler signature of the targets moving across track appears displaced

33



in azimuth from the actual target location (figure 3.6b), (Hinz et al. [2007]). Doppler chirp
can be seen in the real and imaginary components in both cases. Azimuth ambiguities in
SAR are caused by the aliasing of the Doppler phase history of each target that is sampled
according to the sensor azimuth sampling frequency, which equals the pulse repetition frequency
(PRF) (Guarnieri [2005]), briefly introduced in section 2.2.2. The ghosts at the wrong position
from the target, that are actually not present on that location on ground are shown in the
figure 3.6¢. A specific signature in real and imaginary components will make the analysis of such
ambiguities possible. It must be noted that though not in all, but at least in certain specific
cases, the phase information in the complex-valued SAR images is of significant importance.

3.2 Individual target understanding in SAR images

We noticed a variety of examples of targets (textures and objects) in sections 3.1.1.1 and 3.1.1.2
for low-resolution and high-resolution SAR, respectively. We also commented that it is possible
to carry out a more detailed individual target analysis in case of high-resolution SAR images,
as the information available for each target is sufficient enough for individual target analysis.
Nevertheless, methods of automatic information extraction and objects understanding are always
in demand, a large section in application area rely upon the visual interpretation of the targets
for a first hand analysis. In this section, we propose a visual exploration method (Singh &
Datcu [2012c]), with an underlying idea based on a kind of hyper-image (Bertrand & Bertrand
[1996]) generation in a 4-D space. This space represents the spatial coordinates (x,y) and the
frequency coordinates (f, fo), in range and azimuth, respectively. The proposed method aims
to assist image analysts in differentiating various SAR targets by looking into the details of the
spectrum, which might have different scattering behavior, but otherwise visually look similar in
spatial domain.

This method will not only provide an interpretation tool to SAR image analysts, but will
also help us understand the intrinsic properties of images with SAR systems with larger band-
width (such as TerraSAR-X) and forms a basis for further conclusion drawn in this thesis on the
SAR image understanding. During SAR imaging, in low-resolution SAR, response of targets can
be assumed to remain unchanged during illumination time and transmitted chirp bandwidth.
But in the high-resolution SAR, the backscattering from various targets varies in azimuth chirp
bandwidth and this variation is embedded in the raw data. This variation can be used as the
signature for various targets. Complex-valued SAR images, obtained after focusing of raw SAR
data also carry this information. As the availability and processing of raw SAR data is not very
convenient, we have considered and studied as methods to extract this information from focused
SAR images.

3.2.1 Theoretical background

We discussed the concept of azimuth splitting in section 2.2.2. Azimuth splitting (or azimuth
sub-band /sub-aperture in the complex spectrum of the SAR signal) corresponds to the splitting
of the full synthetic aperture in order to extract a specific viewing angle of the sensor. Each
Doppler phase term in the Doppler effect generated due to the radar/target range variations
during the SAR acquisition is related to a specific sensor position and hence to a specific azimuth
viewing angle. This concept is based on the principle exposed in Arnaud [1999] for ship detection,
using interferometric degree of coherence between two azimuth sub-looks of SLC, namely front
look and rear look. In Schneider et al. [2006], a method of detection of coherent scatterers
(CSs) is proposed using sub-look coherence (SC) and sub-look entropy (SE). Spectral correlation

34



is carried out only for azimuth sub-looks. Later SC and SE is compared with interferometric
coherence and polarimetry entropy respectively for characterization of CSs. In Kim et al. [2003],
a sub-look pyramid is defined, in order to model framework incorporating scatterer’s anisotropy.
In Tison & Fjortoft [2008], and Spigai et al. [2011], a continuous sub-band analysis is proposed,
which relies on splitting the full-aperture into continuous sub-looks both in range and azimuth
directions.

The concept of azimuth splitting method has been extended to range direction in a number
of studies. In Souyris et al. [2003], the two-look internal Hermitian product (2L-IHP) is defined
from a series of sub-looks generated from SLC image, in order to study the inherent speckle
effects. The study presented in this section is an extension of the principles of continuous sub-
look decomposition proposed in Tison & Fjortoft [2008], and Spigai et al. [2011]. It involves
simple band-pass filtering of a spectrum with a continuous displacement of the analyzing window
to obtain a 4-D array, as shown in the figure 3.7.

Sub-aperture or sub-look

= T(x,y.fr.fa)

Radar spectrogram

Azimuth direction, y —
<+ Full-aperture in azimuth, f, —

Continuous displacement < Full-aperture in range, f, —

of sub-aperture

. . Range direction, z —
in azimuth and range

Figure 3.7: Multiple sublook decomposition. The extension of azimuth splitting to the range direction
in order to generate a 4-D matrix 7, ., 1,), denoted as radar spectrogram in Spigai et al. [2011] .

This 4-D array is then visualized in 2-D. This visualization is similar to hyper-images pro-
posed in Colin et al. [2004]. Simple band-pass filtering preserves a direct analogy between
azimuth /range frequencies and antenna sub-look/chirp bandwidth (Tison & Fjortoft [2008]),
and a 2-D representation provides a physical interpretation of the scattering behavior of the tar-
get. Some important observations on the representation of a 4-D array in 2-D for high-resolution
TerraSAR-X are presented in Singh & Datcu [2010], leading to the proposed method of target
analysis based on a 4-D representation by means of slicing and animations for visual inspection
of the scattering behavior of the target under consideration.

3.2.2 Visual exploration based on 4-D representation of multiple sub-look
decomposition (MSLD)

Visual inspection of the targets in SLC images may provide incomplete and/or misleading in-
formation, as sometimes two targets having entirely different scattering behavior on ground,
might look similar in a SAR image. In this section, we provide the concept behind the pro-
posed method, which aims at providing additional information to image analysts, derived using
sub-look decompositions of a SLC image, for discrimination of targets. Realization of this 4-D
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representation method is based on studies carried out in Tison & Fjortoft [2008], Spigai et al.
[2011], and Singh & Datcu [2010]. In Tison & Fjortoft [2008], and Spigai et al. [2011] proposed
that TFA performs continuous sub-look analysis to generate a 4-D array r(,, 1. r,), termed as
radar spectrogram, which can be written as follows:

T(-'E,y,fr,fa) = FT_l [w(f’ﬁfa) X FT(S)] (.’E, y) (3]‘)

Here, (x,y) refer to spatial positions in range and azimuth, and (f,, f,) refer to range and
Doppler frequencies. Band-pass filter wy, 7,y is a Hamming filter cantered at (f;, f,) with
bandwidths bw, in range and bw, in azimuth. S is the complex-valued SAR image of size
N x N pixels containing the target of interest and contextual information. FT is the Fourier
transform and FT~! the inverse Fourier transform. The spectrum of S, i.e. FT(S) has full
aperture bandwidths BW, in range and BW, in azimuth. This process is a simple band-pass
filtering of the complex-spectrum in range and azimuth direction. In Tison & Fjortoft [2008],
and Spigai et al. [2011] radar spectrogram is computed for every pixel in the scene. A 2-D
image of radar spectrogram corresponding to the center pixel, i.e. r(xy ¢ 7,y With x = N/2 and
y = N/2 is used to generate a global classification. In our study we are mainly interested in
detailed analysis of particular targets by displaying 7, s r,) in the form of animations and
slices, where 7, 1, .) =| T(x.y.f,.f.) |-

We start with an SLC image. Doppler centroid is estimated (Madsen [1989]) and corrected
as a preprocessing step. As this is a visual exploration method, accuracy of Doppler centroid
estimation is not very critical. After Doppler centroid correction, 7, , 1. r.) is computed for the
selected area of interest using the equation 3.1. Computed 7, , 1, ) is stored in a 4-D matrix.
A 2-D image of data in the 4-D matrix can be created by the slice of any two dimensions while
keeping the other two dimensions fixed. This 2-D image can be animated by changing one of the
fixed parameters enabling visualization of three dimensions of the matrix. There are 12 possible
animations / slices, but only 6 are non-repetitive.

Table 3.1 summarizes the description of these possible slices. The abscissa and the ordinate
represent different parameters in every slice. We take TerraSAR-X high-resolution spotlight
mode data with the 300 MHz option for our experiments. The range chirp has a band-width
(BW,.) of 300 MHz. The carrier frequency of 9.65 GHz is modulated in azimuth by approximately
3 kHz (Mittermayer & Runge [2003], CAF-DLR [2009]). So azimuth chirp has a band-width
(BW,) of 3 kHz. We also assume that the time-variant Doppler spectrum ramp (Eineder et al.
[2009]) has already been corrected. The MSLD is carried out using Hamming filter with band-
widths bw, = BW, /2 = 150 MHz and bw, = BW,/2 = 1.5 kHz approx.. Selecting N = 128
pixels provide us a 4-D matrix of dimensions 65 x 65 x 65 x 65 pixels. Values for N, bw, and bw,
can be user specified, but the interpretation of results also needs to be adopted accordingly.

Slice; ('F(m7y7fr’fa)) is the low-resolution image seen from a particular sub-look (£, f,), anal-
ogous to range chirp and azimuth chirp. The animation will show all the low-resolution images
seen from all the sub-looks one after the other, thus providing an insight to how a particular
analyzing area is visible to different looks (range and azimuth) of the synthetic antenna. Highly
directive targets will not be visible in all frames of animation (i.e. in all sub-looks), whereas
coherent or isotropic targets will be visible in all the frames. The abscissa and the ordinate
represent the range and the azimuth respectively (both in meters). MSLD with a filter of band-
width half of the full-aperture band-width results in reduction of the resolution by half. With
original resolution of approx. 1 m, the abscissa represents x = 0,2,...128 and the ordinate
represents y = 0,2,...128.

Slices (f(x% ) fa)) shows how a particular point (x,y) on the ground is seen from all sub-
looks. The band-pass filter centered at (f,, f,) with band-widths bw, = BW,/2 and bw, =
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Table 3.1: Description of various slices

Slicer (4.6, fa), Sub-look image

(Low—resolution image seen from a particular sub-look)

Slicea  P(xy f.,1.)» Radar spectrogram

(Particular point on ground seen from all sub-looks)

Slices  7(4,y f.,f.)» Range line vs. Doppler frequency

(Behavior of a particular line at fixed azimuth seen from different azimuth sub-looks)
Slices 75y 1, f.), Range line vs. Range frequency

(Behavior of a particular line at fixed azimuth seen from different range sub-looks)
Slices  T(x,y,f,.t.)» Azimuth line vs. Range frequency

(Behavior of a particular line at fixed range seen from different range sub-looks)
Slices  7(x,y,8,1.)-Azimuth line vs. Doppler frequency

(Behavior of a particular line at fixed range seen from different azimuth sub-looks)

BW, /2 is applied in range and azimuth. Representing only the center frequency on the axes,
the extent of the abscissa ranges from 75 MHz to 225 MHz and the ordinate ranges from 0.75
kHz to 2.25 kHz.

Slices (f’(%y’fh fa)) shows the behavior of a particular line y of fixed azimuth in spatial
domain, seen from different azimuth sub-looks but at a fixed range sub-look, f.. The range on
the abscissa extend to 128 m and the center frequency of the band-pass filter applied to the
Doppler chirp on the ordinate ranges from 0.75 kHz to 2.25 kHz.

Slicey (f(xyy, fT’fa)) shows the behavior of a particular line y of fixed azimuth in spatial
domain, seen from different range sub-looks but a fixed azimuth sub-look, f;. The range on the
abscissa extend to 128 m and the center frequency of the band-pass filter applied to the range
chirp on the ordinate ranges from 75 MHz to 225 MHz.

Slices (f’(xj% fnfa)) shows the behavior of a particular line x of fixed range in spatial domain,
seen from different range sub-looks but a fixed azimuth sub-look f;. The azimuth on the abscissa
extend to 128 m and the center frequency of the band-pass filter applied to the range chirp on
the ordinate ranges from 75 MHz to 225 MHz.

Sliceg (f(x7y7fr7 fa)) shows the behavior of a particular line x of fixed range in spatial domain,
seen from different azimuth sub-looks but a fixed range sub-look f.. The azimuth on the abscissa
extend to 128 m and the center frequency of the band-pass filter applied to the Doppler chirp
on the ordinate ranges from 0.75 kHz to 2.25 kHz. Thus, if a target is varying in time on a
particular line of fixed range, then it will be seen differently by different parts in azimuth chirp,
in turn generating a special signature in this slice.

Slice; to Sliceg can be used in the form of images and/or animations to differentiate different
targets, presented in the next section.

3.2.3 Illustrations of examples

In this section we suggest methodologies to interpret and analyze targets by manual inspection.
However, because of high complexity of data and diversity of targets in the high-resolution
SAR, the user must learn about targets of interest a priori in order to apply this knowledge
to interpret and recognize unknown targets. We will demonstrate a few of the various possible
examples. We propose three methods to use 7, r, 1) for differentiating the targets. The first
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method is an animation visualization tool, the second is the radar spectrogram method. The
third method uses the slices of 7, r, r ) on different possible planes, i.e. using all the possible
2-D representations of 7'(, , 1. r,)- These three methods can be used in synergy or independently,
depending on the target of interest.

Visual interpretation using animated Slice;

Slicet (7(zy.f,.£.)) 15 the low-resolution image seen from a particular sub-look (fp, fa), analogous
to range chirp and azimuth chirp. The animation shows all the low-resolution images as seen
from all the sub-looks one after the other, providing an insight into how a particular analyzing
area is visible at different looks (range and azimuth) of the synthetic antenna at the cost of
resolution. Coherent targets are visible in all the frames of the animation.

SAR Single Look Complex RN A N Pl B ) e,y 0 fa) P,y fe Fa) o fe fa ) e, uFe fu)

Target 1, SLC Targes 1. Projection_l Target 1, Projection_1 Target 1, Projection_| Target 1, Projection_| Target 1. Projection_| Target 1, Projection_|
12 1 12 12 i

Acimuh im), ¥
Acimuh im), y

]

o4 W IR 2 4 % 128
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(1] 2 M W
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Figure 3.8: Visual inspection using animation of Slice; (7, y.¢, ¢.)). Here, (x,y) refers to spatial positions
in range and azimuth and (f.,f,) refers to fixed range and Doppler frequencies. Randomly selected 6
frames from Slice; (7(5,y ¢, ¢,)) for two targets are presented. First row: Target-1, marked by red crosses,
consisting of masts at oil-containers. The animation shows no spatial variation in signatures (enclosed
by white-circles in first row) of stable targets for different range and azimuth sub-looks. Second row:
Target-2, marked by a red cross, for a region with vertical wall like structures on a highway. Signatures
of targets can be seen moving in up-wards direction when seen in animation of Slice; for different range
and azimuth sub-looks (see the motion of signatures enclosed by white-circles in second row), thus this
target can be assigned as signature of Doppler shift due to a vehicle moving in Azimuth Direction.

In the first example, we analyze two targets shown in the figure 3.8. The bright spots in
the Target-1 are masts on the oil-containers, assumed to be coherent targets. Six arbitrarily
selected frames of the animation obtained from Slice; are presented in the figure 3.8. The
point targets are visible in all the frames and at the same spatial location. This implies that
the backscatter from these target is seen from all the sub-look of antenna at the same spatial
location. This confirms the assumption of assigning them as coherent targets. Target-2 is a
highway where vertical structures are seen. These are difficult to be discriminated as actual
structures on ground or ambiguities from moving vehicles. Animation in Slice; shows spatial
variations of the target response in case of ambiguity. As can be seen from the 6 arbitrarily
selected frames, in case of Target-2, signature moves spatially, while the stable targets remain
spatially stationary. This can support differentiation of actual structure and moving targets.
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Visual interpretation using Slices

This slice (7(x,y,f,,£,)) is similar to the radar spectrogram (Tison & Fjortoft [2008], Spigai et al.
[2011]) computed for a particular pixel (x,y). Slices here includes the effects of contextual
information because of larger analyzing window size (aw). However, aw should not be too large
to pollute the punctual target signal. It can be very effective in analyzing the isolated targets.

Visual interpretation using Slice; to Sliceg

Although Slice; and Slices provide information about the scattering variation of targets, in order
to get detailed physical interpretation, it is useful to go into the details of all the other slices too.
In the preceding section we have provided the physical significance of all the slices summarized in
the table 3.1. In some targets, the effects visible in Slice; animation can be interpreted directly
from one particular frame of the other slices, but these need to be interpreted differently as
explained later in this section. In the figure 3.9, various targets are compared using Slice; to
Sliceg. Targets can be seen marked by a red cross.

Target-3 and Target-4 (first and second row of the figure 3.9) are taken from the same
parking lot and look similar in the SLC image. Ground truth using Google-Maps® demonstrates
an electrical pole existence at the center of Target-3, while no such target is present in Target-
4. In the animation of Slice; for Target-3, the signature remains spatially stationary, while
it is variable for Target-4. Slices for Target-3 represents the unmodified antenna pattern
while response of Target-4 modifies this pattern. Slices to Sliceg for Target-3 show uniform
variation, while slanted signature in Sliceg for Target-4 represents variation in response for a
fixed range but different azimuth sub-looks. These observations confirm the assumptions that
Target-3 is a meaningful structure, but Target-4 is ambiguous. Target-5 and Target-6 (third
and fourth row of the figure 3.9) are taken from two different highways, containing a wall like
structure along the azimuth direction, which could be a traffic separators at highway in both
the case. Analyzing all the slices in both cases, we find a unique slanted signature in Sliceg for
Target-5, with such phenomenon missing in Sliceg of Target-6. This slanted signature shows
that the response of the target is highly variable for the fixed range when seen from different
azimuth sub-looks. So we can confirm that the vertical structure in Target-5 is Doppler shift
due to a target moving in azimuth direction, and the vertical structure in Target-6 is a wall
like structure giving a strong backscatter. Target-7 (fifth row of the figure 3.9) is also taken
from a highway. Two bright points in SLC image of this area can be seen, but ground truth
from Google-Maps® confirms that there exists no such structure at that point of the highway.
Just by looking at the SAR image, it is not possible to find out the exact nature of these two
targets. But two slanted lines in Sliceg for Target-7 confirm that these targets are vehicles
moving in opposite direction in azimuth. The same is confirmed by looking at the animation
of Slice; where two broad points moving in opposite directions in different frames (the upper
one downwards and the lower one upwards) can be seen. Target-8 (last row of the figure 3.9)
is taken from sea area in order to better explain the strong ambiguities due to a side-lobe, as
its difficult to locate ambiguities in other regions. Typically a slanted signature in Slices and
Slices, and a blob like structure moving in horizontal direction in the animation of Slices and
Sliceg exists in case of such ambiguities.

3.2.4 Conclusion

The presented examples are special cases, but MSLD can be applied to a large set of targets
and objects in similar manner. The objective behind discussing this visual exploration approach
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Figure 3.9: Visual inspection using all the slices of 4-D array 7(y, ¢, 7). Slices are generated by
visualizing two dimensions on a plane keeping other two dimensions fixed. In above figure, (z,y) refers
to spatial positions in range and azimuth, (f,, f,) refers to range and Doppler frequencies, (x,y) refers
to fixed spatial positions in range and azimuth and (£, f,) refers to fixed range and Doppler frequencies.
Targets can be seen marked by a red crosses. Target-3 and Target-4 are similar looking target on a
same parking area with corresponding slices in first and second row. Slice; for Target-3 is similar to
antenna-pattern because of uniform response from target at center in all range and azimuth sub-looks.
Slanted signature in Sliceg of Target-4 represents the variation of response of target with azimuth sub-
look for a line of fixed range. Target-5 and Target-6 are similar looking target on highways with
corresponding slices in third and fourth row. Presence of slanted signature in Sliceg of Target-5 confirm
that its an indication of Doppler shift due to a target moving in Azimuth direction, however missing
of this phenomenon in Sliceg of Target-6 helps us assign it as an actual structure present on ground.
Target-7 is another target on a Highway with corresponding slices in the last row. Spatially varying
bright spots in animation of Slice; for this target as well as slanted signature in Sliceg help us to assign
the bright spots in SLC as moving vehicles on highway moving in opposite directions. Target-8 can
be assigned as an ambiguity due to side-lobes of SAR antenna by visualizing the slanted signature in
Slices and Slices. Ambiguities due to side-lobes also exhibits a specific moving blob-like signature in the
animation of Slice, and Sliceg.
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was to generate a motivation for the use of phase information in complex-valued SAR images,
which is otherwise ignored in many SAR applications, except for interferometric and polarimetric
purposes. The scattering behavior of targets, which is achieved by exploiting magnitude and
phase information of SLC jointly by sub-look decomposition has been addressed. So apart from
statistical analysis methods primarily based on the amplitude of SAR images, we need dwell
into the methods based on this spectroscopic like property of SAR.

3.3 Spatial content understanding in SAR images

We just discussed the huge diversity of images based on its content available in SAR images. Such
a huge diversity emphasize the need of information extraction to describe the content of image
in the form of a very compact intrinsic feature descriptor. This multidimensional feature
descriptor acting as a signature can be later used for categorization and indexing the image
content. An image is characterized by its primitive features such as texture (Tuceryan & Jain
[1998]), color, and shape (Jain & Vailaya [1996]). Specifically for the case of SAR images, we may
add one more important primitive feature, i.e. feature characterizing the backscattering behavior
on the ground depending upon the material’s dielectric properties, its orientation on ground
and the size of scatterers as compared to the wavelength of the transmitted electromagnetic
wave to image a surface. This property becomes even more evident with the availability of
phase information in the complex-valued images, specially for the case of high and very-high-
resolution SAR images where a chirp of broader bandwidth is used for imaging the surface. We
already discussed some related issues in the understanding of variety of target individual target
using a joint time-frequency analysis using MSLD in section 3.2. However the MSLD method
is very complicated to generate a compact feature descriptor for image content. Nonetheless,
this backscattering behavior will have a direct or indirect impact on the texture, color (in the
case of SAR images, the intensity of gray values) and shape. So we will classify the general
understanding of the spatial content to generate a feature descriptor for SAR images into two
major aspect: time-frequency aspects and statistical aspects.

Time-frequency analysis methods

Time-frequency analysis (TFA) methods are based on general image processing paradigms.
Specifically in SAR images, understanding time-frequency behavior is a direct consequence of the
signal processing techniques applied to achieve better resolution, named SAR synthesis (Mas-
sonnet & Souyris [2008]). In the literature, TFA relies on three main methods: Wigner-Ville
decomposition, Fourier transform or wavelet transform, by representing the images into a suit-
able transformation space.

The use of Wigner-Ville decomposition for the moving-target detection and imaging in SAR
images was demonstrated in Barbarossa & Farina [1992]. In Popescu et al. [2008], the use
of Wigner-Ville decomposition based on Renyi Entropy criterion was presented. But being a
quadratic transform, the Wigner-Ville distribution is influenced by cross-term interference when
more than one target is present (Qian & Chen [1999]).

We presented a method of spatial content understanding in SAR images based on the Fourier
transform in Singh et al. [2009], and Popescu et al. [2010]. The use of a spectral feature descrip-
tor motivated from the timbrel spectral features from music genre was developed. In Singh et al.
[2009], the applicability of this spectral feature descriptor was demonstrated for pixel-based clas-
sification and in Popescu et al. [2010] as a space-variant approach for structure indexing in SAR
images. Another example of the use of the Fourier transform for individual target understand-
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ing has been presented in section 3.2, but this method is very complicated for its applicability
to the spatial content understanding in broader sense. But based on the knowledge achieved
in MSLD methods, we later proposed the method of the fractional Fourier transform (Singh
& Datcu [2013]), which is actually a true scaling in phase to form the basis for a multi-scale
approach in complex-valued SAR image analysis. The use of fractional Fourier transform was
earlier limited largely to the moving-target detection only (Sun et al. [2002]). Here, the relation
between the fractional Fourier transform with the Wigner-Ville distribution is derived and its
advantages over the Wigner-Ville distribution demonstrated. The fractional Fourier transform
is a linear transformation free from cross-term interference. We proposed to transform a SAR
image in various multi-scale sub-bands with respect to a scaling in phase. Moments of these
sub-bands was proposed as an obvious choice for a feature descriptor in Singh & Datcu [2012D],
which was later enhanced by the use of log-cumulants as presented in Singh & Datcu [2013].

Apart from the utility of wavelets in major image compression standard (JPEG-Committee
[2013]), the wavelets have been extensively used in representing the images based on color and
shape. The general approach is to use the energy of the wavelet coefficients in several bands
with assumption that the energy distribution in frequency domain will identify texture. Another
kind of wavelet based methods such as Gabor filter banks have also been extensively covered
in literature. Gabor filter banks are suitable for the analysis of signals with sharp changes
but which stay for a small duration of time. The most essential property of Gabor coefficients
for extracting the geometrical shape information in the image to synthesis the texture is its
bandpass filter property, which has also been demonstrated in Farrokhnia & Jain [1991]. This
bandpass filter like operation is also the underlying mechanism in human visual systems, which
we try to imitate in the Gabor expansion of signals to understand the texture. In Bovik et al.
[1990], as well as in Manjunath & Ma [1996], the use of Gabor filter banks to characterize the
texture of images has been studied extensively. Again the moments of Gabor filtered images are
obvious choice for a feature descriptor, however we proposed the use of log-cumulants of Gabor
filtered images with enhanced performance over liner-moments (Singh & Datcu [2012d], Singh
& Datcu [2013]).

Statistical methods

Statistical aspects pertaining to the density parameters have been introduced briefly in sec-
tion 2.3. The knowledge on statistical aspects of SAR images eventually lead us to the under-
standing of underlying texture. We first consider a short overview on the texture synthesis,
which is of interest in SAR images, at least in the homogeneous region. Later we will dwell
into the applicability of more advanced Bayesian based approaches for texture synthesis, also
suggested in the scope of de-speckling. The principal approaches used to describe texture has
been divided into three broad categories: statistical, geometrical, and model-based in Tuceryan
& Jain [1998].

The gray-level co-occurrence matrix (GLCM) can be considered as one example of statistical
approach of texture characterization. The GLCM or the gray-tone spatial-dependence matrix
method is a way to extract second-order statistical texture features used in various image pro-
cessing applications proposed by Haralick in the 1970s (Haralick et al. [1973], Haralick [1979]).
In Baraldi & Parmiggiani [1995], the use of the GLCM texture parameters for the texture char-
acterization in optical satellite images (NOAA AVHRR) have been investigated. The texture
features generated using the GLCM have been successfully applied to the texture analysis for
mapping sea ice patterns in low-resolution ERS-1 SAR images in Soh & Tsatsoulis [1999]. The
use of the GLCM in efficient texture analysis in ENVISAT-ASAR images by introducing the
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notion of patch re-occurrences has been proposed in Kandaswamy et al. [2005]. The texture
features based on the GLCM generally outperforms other classical methods of classification, at
least in the case of low-resolution SAR and optical satellite images. For SAR images, the use of
the GLCM is largely limited to sea-ice mapping application only.

An example of texture synthesis on the basis of geometrical approach has been presented
in Tuceryan & Jain [1998]. Here, geometrical features of texture elements or primitives are
analyzed by generating texture tokens based on the shape and placement rules of the Voronoi
tessellation of a given image.

One of the model based approach is to first transform the image into wavelet domain in
order to simplify its statistical response and then compute the density parameters from a rather
simpler model, fitting the image within the transformation space (Do & Vetterli [2002]). The
other methodology is to work in the image domain by model based texture synthesis. The model
based texture synthesis works on the principle of modeling the scene reflectivity in the SAR image
to describe the spatial structure using some complex texture models, such as Markov Random
Fields (Hassner & Sklansky [1980]) and Gibbs Random Fields (Besag [1974]). An example of such
a methods has been demonstrated in Datcu et al. [1998] by characterizing the image content
using some stochastic models within a Bayesian framework. Here, the potential of using the
Gibbs Random Fields models in Bayesian framework for extracting spatial textural information
from remote sensing images have been focused. The applicability of Bayesian framework for
statistical understanding is basically based on the multiplicative model of noise. So in order
to lay a foundation of Bayesian based information extraction, it is rational to discuss some
historical overview over speckle considerations.

3.3.1 Speckle and de-speckling to information extraction

Statistical understanding of SAR images is largely based on speckle characterizations. Noise-
like granular aspect in SAR images, known as speckle, pose many limitations to the algorithm
developments and implementations to several applications of SAR images including land use
mapping, surveillance, automatic target detection and recognition etc. The presence of speckle
reduces the detectability of objects in the image and also the capability to separate and classify
distributed targets (Oliver & Quegan [1998]). In order to achieve a better accuracy in application
results, many efforts have been made to reduce this noise-like aspect by the process of de-
speckling. These de-speckling operations lay a foundation for further application of information
extraction in SAR images.

Let us recall the multiplicative speckle model, a common framework used to explain the
stochastic behavior of data obtained with coherent illumination. The assumption made is that
the observed pixel y in a SAR image is an outcome of the product of two independent random
variables: one modeling the terrain backscatter x, which is generally considered real and positive;
other modeling the speckle noise z, which could be complex (for complex-valued SAR images)
or positive real (for amplitude and intensity SAR images). Again with the assumption of a fully
developed speckle, the multiplicative noise model for SAR images is written as follows (Touzi
[2002]):

y=x-z. (3.2)

With, y as the observed image pixel, x as the noise free pixel, i.e. the backscatter information,
and z as the speckle noise. The objective of de-speckling is to obtain the most probable estimate
Z of the noise-free pixel z. Below we will discuss the de-speckling methods proposed along the
years, the evolution of spatial content understanding and information extraction methodologies.
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3.3.1.1 An overview on speckle reduction filters

One of the earliest methods for de-speckling was a multi-looking technique applied during the
image formation. In this process several statistically independent looks of the same scene are
averaged to reduce the speckle (Porcello et al. [1976]). Speckle is reduced but at the cost of
reduction in ground resolution that is proportional to the number of looks L, so later many
post-image formation de-speckling techniques have emerged.

The post-image formation de-speckling techniques can be classified into two groups, the
non-Bayesian and the Bayesian filters. The non-Bayesian speckle filters consider only the local
statistics of the scene computed with a continuous displacement of analyzing window. These
kind of filters use the minimum mean squared error (MMSE) as an estimator. The Bayesian
speckle reduction filters are based on models and an estimation of model’s parameters, which
determines how well the estimated data corresponds to the image data. The local adaptation
is enhanced by the use of a prior model, which adapts to the image structure and texture in
order to achieve de-speckling without loss in resolution. The local description of the structures
estimated during this de-speckling operation forms a building block in the information extraction
methods, analysis of which has been primarily carried out in this thesis.

Non-Bayesian speckle filters

The first category of non-Bayesian filters are very basic simple filters and do not take into account
any speckle statistics. These are the mean filter and the median filter. No consideration is
essentially given to exploit the most basic multiplicative model for speckle. Mean filtering or
box averaging filtering is nothing but a multi-looking approach in spatial domain. Mean filtered
gray-value for a given pixel is employed by taking the average value of a certain neighborhood
of the given pixel, typically 5 x 5 or 7 x 7 pixels around a given pixel. This process will however
suppress the speckle but also blur fine details such as edges and destroy the texture information
at the same time. Median filter is applied over a neighborhood to a certain given pixel. The
median value of this neighborhood will be a new gray-value for the given pixel. Median filter is
a non-linear filter but does not assume any statistical model for the speckle as in a mean filter.
But it preserves the edges and finer details better in the analyzing window, without introducing
any new gray-values in the image (Rees & Satchell [1997]).

Under the second category of non-Bayesian filters comes the statistical filters, which take
into account only the basic statistical properties of noise, i.e. mean and variance. Examples of
statistical speckle filters are Kuan, Lee, Frost, Modified Lee, modified Frost, and EPOS filters
ete.

The well known Kuan filter (Kuan et al. [1985]) and Lee filter (Lee [1980]) are adaptive
filters, in which first a linear approximation is made for the multiplicative noise model, by
first transforming the multiplicative noise model to a signal-dependent additive noise model,
y=x+ (n—1)z. Later a MMSE estimator in its simplest form is applied to obtain de-speckled
pixel, i.e. E[(# — x)?] is to be minimized, where Z is the estimate of actual noise-free pixel .
The speckle reduction filter can be written as:

& =Wy + (1—W)pn,. (3.3)

The Kuan and Lee filters differ from each other with the formulation for the weighting function
W computed from the local coefficients of variations, i.e. local mean p, and local variance 05
With L denoting the equivalent number of looks of the speckle noise, the weighting function W
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is given for Kuan and Lee filters as follows:

Wian = % Wiee = 0 (3.4)
uan — bl ee — . .
o3+ (u +03)/L o2+ /L

Here, 1, is the mean of the observed pixels in an analyzing window. The variance of the radar
reflectivity o2 is a function of coefficients of variations i, and o2 for the observed pixel and
equivalent number of looks L. The variance of radar reflectivity is derived as o2 = (Lag -
p2)/(L+1). It can be seen from the equation 3.4 that the Lee filter is a special case of the Kuan
filter because a linear approximation is made for the multiplicative noise model.

The Frost filter (Frost et al. [1982]) differs from the Lee and Kuan filters with respect that
the scene reflectivity is estimated by convolving the observed image with the impulse response of
the SAR system (Shi & Fung [1994]). With the assumption that scene reflectivity model obeys
an auto-regressive process, the simplified formulation for the impulse response can be written
as:

o2
m(r) = Ky exp (—ng | 7 \) . (3.5)
Ky
Here, X is the filter parameter, that controls the de-ramping rate of the impulse parameters,
thus determines the strength of the filtering. X; is a normalization factor and | r | is the
radial distance from the center pixel to be de-speckled. It can be considered as an adaptive
Wiener filter, which is the optimal filter in the sense of MMSE for stationary signals corrupted
by additive noise. But after many approximation in the impulse response as presented in the
equation 3.5, the overall performance is comparable to most other statistical filters.

In Lopes et al. [1990b], an enhanced formulation for Lee and Frost filters were presented. The
underlying idea in modified Lee filter and modified Frost filter was to divide an image into
three classes: homogeneous regions, heterogeneous regions and isolated point targets. Speckle
reduction in homogeneous regions was proposed to be carried out by a simple low pass filter,
while isolated point target regions were suggested to be preserved as it is. Now the speckle
reduction filter is forced to be applied only to the heterogeneous regions. This is achieved by
exaggerating the filter response by introducing a hyperbolic function to satisfy the requirement
that the more heterogeneous the region is, the less it has to be smoothed (Lopes et al. [1990D]).
It is similar to the observations made in Lee [1980] that images containing multiplicative noise
have the characteristic that the brighter the area the noisier it is.

Another method to guarantee an improved edge-preserving capabilities is called EPOS
(Edge Preserving Optimized Speckle-filter) (Hagg & Sties [1994]. EPOS filter is also
based upon the statistical properties of speckle noise. As an implementation point of view, the
image is divided into 8 even sized mutually exclusive triangular sub-windows. The assumption
in preserving the edges is that the relative standard deviation o7 (i) = (1,2,-- - ,8) in these sub-
windows remain nearly constant in the homogeneous areas, while it increases in the presence of
edges. Thus knowledge about the standard deviation 05 will inform us about the homogeneous
regions, heterogeneous regions or point targets in a given area. The mean of the most homo-
geneous region is considered as the estimate of the noise free pixel . One disadvantage is that
even though this filter preserves the edges, the texture is absolutely not preserved.

It is evident from the presented discussion that the mentioned adaptive non-Bayesian filter
will provide best accuracy in case of the Gaussian distributed noise. But this is certainly not the
case for SAR images (Oliver & Quegan [1998]). The other disadvantage is that no matter how
the multiplicative model is followed, only the statistical considerations on speckle are accounted
for without considering a model for the reflectivity of the scene. These disadvantages lead to
the concept of Bayesian filters.
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Figure 3.10: Tlustration of visual performance of various non-Bayesian and Bayesian despeckling algo-
rithm on very-high-resolution spotlight mode TerraSAR-X image. First row from left to right: original
SAR images, mean filtered image, median filtered image, Lee filtered image. Second row from left to right:
Enhanced Lee filtered images, Frost filtered image, Enhanced Frost filtered image, Kuan filtered image.
Third row from left to right (maximum a posteriori (MAP) filters): Gamma MAP filtered image, MBD
using GMRF prior, MBD using ABM prior, MBD using GMRF prior in wavelet domain. Analyzing
window size used for speckle suppression: 5 x 5 pixels.

Bayesian speckle filters

The important aspect of Bayesian speckle filters is the statistical understanding of the reflectivity
of the scene, along with the statistical understanding of the noise model, with the application
of maximum a posteriori (MAP) !. The MAP estimate is obtained by maximizing the Bayes
criterion (the MAP pdf) with respect to the posterior pdf p(z | y,0) = p(y | z)p(x | 0)/p(y | 6),
where p(y | ) corresponds to the pdf of the speckle (called likelihood) which is known to be
a Gamma distribution in the case of fully developed speckle and when speckle samples are
assumed to be independent of each other. A statistical model p(z | €) with model parameters 8,
concerning the underlying scene reflectivity is called prior model. The task in MAP is to search
for & which would maximize the posterior pdf, i.e. & = argmax, p(y).

The application of maximum a posteriori to de-speckling was first proposed in Kuan et al.
[1987] with the model for scene reflectivity, i.e. prior pdf, to be Gaussian distributed. Later
a modified MAP filter was proposed in Lopes et al. [1990a] by selecting the model for prior

!The Bayesian inference will be covered in chapter 4 in detail.
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as Gamma distribution as well. This filter is denoted as Gamma-Gamma MAP filter and is a
widely used de-speckling filter with following MAP estimate equation (Lopes et al. [1990a)):

(a—L—1)py,+ \/(a — L —1)2u2 + daLypu,

20

EMAP = , with a = (L+1)/(Lo,/ps—1). (3.6)
Here, L is the equivalent number of looks, and p, and 0?2 are the mean and variance of the
observed pixels in the analyzing window. This filter is more elaborate than the non-Bayesian
filters but as the parameter estimation is depending upon local mean and local variance only, it
is still not able to cater for the complexity of the scene reflectivity.

The demand for encapsulating more information than mean and variance was felt for more
complex parametric models (such as Markov Random Field and Gibbs Random Fields based
models) as scene reflectivity to describe the spatial structures. The use of Gibbs Random Fields
(GRFs) models as a prior model of the scene for de-speckling SAR images was introduced
in Geman & Geman [1984], by encapsulating more information than just mean and variance
in order to describe the spatial structures in the images. Use of Gauss-Markov random fields
(GMRF) and autobinomial (ABM) model as prior, both belonging to the category of Gibbs
Random Fields was introduced in Walessa & Datcu [2000] and Hebar et al. [2009], respectively,
for model based de-speckling (MBD). In both cases a neighborhood system around a central
pixel was used in order to give the value of the central analyzed pixel considering its spatial
relations with its neighbors.

Figure 3.10 illustrates only the visual de-speckling performance of a few of the discussed
non-Bayesian and Bayesian approaches. A quantitative analysis of de-speckling approaches is
not the goal of this thesis.

From de-speckling to information extraction

In the beginning of this section we mentioned that a very compact intrinsic feature descriptor is
needed to describe the content of image. The underlying principle of the presented de-speckling
method in Bayesian framework is the assumption of prior pdf as scene reflectivity to describe the
spatial structures and spatial content understanding in a broader sense. The model parameters
of assumed prior pdf can be used as an element of the parametric feature descriptors describing
the image content. Motivated from the impressive conclusion about the strength of complex-
valued SAR data in MSLD method, we also tried to extend the GMRF in the complex-valued
space (Singh et al. [2009], Soccorsi [2010]). Chapter 4 is dedicated to the guidelines in the
formation of model based feature descriptors.

3.3.1.2 Feature descriptor performance

To summarize the overview on spatial content understanding, we considered mainly two cate-
gories of feature descriptors. One based on the time-frequency analysis and the other based on
the model parameters. Without going into too many technical details, which will be explained
in the coming chapters, in the figure 3.11, some examples of the features descriptors generated
using some selected methods from both categories are presented.

At this stage its pertinent to mention that one of the main objective of this thesis is to
qualitatively examine the suitability of selected feature descriptors for two applications areas of
SAR images, namely, pixel-based classification and patch-oriented image categorization. In this
thesis, we will restrict ourselves to the eight methods, which are mentioned in the figure 3.11.
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(g) The fractional Fourier transform based feature. (h) Gabor filter banks based features.

Figure 3.11: Information extraction using several methods. (a) Gauss-Markov random fields as prior
pdf for MAP estimation at model order 3, left- model variance and right- first model parameter, 6*.
(b) Autobinomial model as prior pdf for MAP estimation at model order 3, left- model variance and
right- first model parameter, 0. (c) Gauss-Markov random fields as prior pdf in complex-valued SAR
images for MAP estimation at model order 3, left- model variance and right- first model parameter, '.
(d) Generalized Gaussian distribution (GGD) model parameters for the wavelet coefficients, number of
decomposition level- 3, left- shape parameter for H1 and right- scale parameter for H1. (e) The gray level
co-occurrence based features at offset=1 and orientation = 90°, left- variance and right- contrast. (f)
Non-linear features based on the spectral analysis, left- spectral centroid in azimuth and right- spectral
centroid in range. (g) The fractional Fourier transform based features at transform angle o = 45°, left-
first moment and right- first logarithmic cumulant. (h) The Gabor filter banks based features at stage-1
and orientation-1, left- first moment and right- first logarithmic cumulant. Analyzing window size used
for sliding window operation for all but (d) and (h) was 7 x 7 pixels, with step size of 1 pixel. For the
multi-scale case of (d) and (h), analyzing window of 16 x 16 pixels size was used.
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3.4 From pixel-based classification to patch-oriented image cat-
egorization

One among the earliest applications of SAR images, after the launch of Seasat and the space
shuttle mission was land-use segmentation and classification. With such low-resolution images,
the interest was always in global criteria. A problem statement in target detection was to detect
global classes, e.g. different kinds of vegetation, urban areas or water bodies etc. So the end
result usually was the image segmented into different classes / clusters, with supervised or unsu-
pervised means. Over a period of time and with the advent of other low and medium resolution
SAR satellites, many advanced algorithms have been developed for land use applications, due
to the visibility of so called texture. We noticed in the examples presented in the figure 3.5,
that the importance of texture was still relevant, and so is the pixel-based classification. An
example has been presented in the figure 3.12. The image under consideration in figure 3.12a is

(a) SAR image. (b) Classification map, 3 classes. (c) Classification map, 4 classes.

Figure 3.12: Example of pixel-based classification to generate a classification map. (a) SAR image of size
400 x 400 pixels. Texture features have been synthesized using Gauss-Markov random fields as prior pdf
at model order 3. Analyzing window used for texture parameters is 16 x 16. (b) Unsupervised k-means
classification into 3 classes. (¢) Unsupervised k-means classification into 4 classes.

an image of size 400 x 400 pixels from the stripmap mode TerraSAR-X with 3 meter resolution.
We have computed a parametric feature descriptor with an analyzing window of 16 x 16 pixels,
based on the prior Gauss-Markov random fields, with model order 3 and the speckle is modeled
as Gamma distribution. Cluster map in 3 and 4 clusters using k-means unsupervised clustering
method have been presented in the figures 3.12b and 3.12c, respectively. We notice that in the
figure 3.12b, the 3 global clusters corresponds to - airstrip (red), open fields (green), and man-
made objects (blue). In the figure 3.12¢, the 4 global clusters corresponds to: airstrip (red), open
fields (green), man-made objects (blue), strong scatterers in man-made objects regions (yellow).
There are many regions that does not match our given semantic meanings, such as the water
channel which is in the same class as airstrip and so on. This was the case of relatively lower
resolution, which was a perfectly good example of application area of lower resolution images
for large scale land-use mapping, monitoring of crops and urban area expansion, mapping of
disaster activities etc.

In the figure 3.5, we see a different perspective of the metric-resolution SAR images, where
instead of texture, objects are visible. This makes it possible to analyze individual targets. But
with individual target analysis using a small analyzing window in high and very-high-resolution
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SAR comes the problem of similarity in the backscatter from various scatterers, which otherwise
belongs to different categories. This statement can be understood by referring to the figure 3.13
which depicts two different target under consideration. Figure 3.13a is a part of an over-water
bridge and the figure 3.13b is a part of an urban area with relatively large building blocks.

(a) Bridge with a part of bridge in inset (b) Building with a part of building in inset

Figure 3.13: Importance of contextual information in case of metric-resolution SAR images. Without
the contextual information, a small part (in inset) of (a) bridge and (b) building structure will look
similar. A larger analyzing window incorporate relevant contextual information, which makes both the
objects comprehensible and provides a semantic meaning to the objects.

Considering a smaller analyzing window than the main object in both the cases (shown in
inset in both cases), they look very similar and even exhibits similar backscattering behavior.
But the meaning of the main object changes with the way even similar behaving scatterers are
arranged and largely on the contextual information between them. So the presence of water on
the upper and lower part of the analyzing window in the figure 3.13a will aid us to identify it
as an over-water bridge, and the regular arrangement of same objects as seen in the analyzing
window in the figure 3.13b will aid us to identify it as most likely an urban area. So the
semantic meaning of the objects will be largely different with different arrangement of same
objects. Thus in high-resolution and very-high-resolution SAR images, our focus is now on the
patch-oriented image analysis, which might contain similar kind of scatterers on a global scale
but differ significantly on a small scale due to the complicated arrangement of these scatterers
in a patch.

In high-resolution and very-high-resolution SAR images, we are now more importantly fo-
cused on patch-oriented image categorization in contrast to the pixel-based classification in
low-resolution SAR images. By patch-oriented image categorization, we mean that our objec-
tive is not to classify some regions of the image, but the whole image-patch into an object
category. The patch-oriented image categorization can be considered as a extension of the clas-
sical automatic target recognition (ATR) technique. The goal of ATR is to detect and recognize
objects, such as tanks, in images produced by a laser, a radar, a SAR, an infra-red or a video
camera (Novak et al. [1997]). Generally in ATR we deal with the targets of interest located on a
homogeneous background like vegetation or bare land. Prior models of the isolated targets are
generally available in the data set to ease the recognition of the object. Examples for ATR are
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shown in the figures 3.14(a,b,c). Here the objective could be to detect and recognize the type
of tank, electric pylon and aircrafts, respectively.

Figure 3.14: Examples from high-resolution SAR images, (a) size is 128 x 128 pixels and (b-h) size is
200 x 200 pixels. (a) a typical example of ATR image from MSTAR database (Ross et al. [1998]): T-72
battle tank, (b,c) potential candidates for ATR from a very-high-resolution spotlight mode of TerraSAR-
X, electric pylon and aircrafts respectively. (c-h) candidates for patch-oriented image categorization,
aircraft-stands, skyscrapers, stadium, stadium, train-lines, and train-lines respectively.

As an extension to ATR, we are now more interested in the categories which are formed with
the complex arrangement of objects, not necessarily present on a homogeneous background. Cat-
egories will be defined as groups of objects sharing the same semantic. For example, an objective
in patch-oriented image categorization will be to recognize the figure 3.14(c) in the category of
aircraft-stands, the figure 3.14(d) in the category of high-rise buildings, the figures 3.14(e,f) in
the category of sports-stadiums and the figures 3.14(g,h) in the category of train-stations. Such
an approach will find an application in the content-based image retrieval (CBIR) systems for
SAR images. CBIR system are already widely applicable in optical remote sensing images (Shyu
et al. [2007]) as well as in multimedia (Smeulders et al. [2000]). The task will be to retrieve
all the relevant image patches from a huge repository of image patches based upon the positive
and negative examples given to train a classifier. Positive example will belong to the desired
category and negative examples to all other categories. With the use of a look-up table with
meta-data of the retrieved patches, further post-retrieval operations can be performed.

However, while the main focus is on giving a semantic meaning to images based on the basis
of the arrangement of scatterers, the issue of texture in homogeneous area should not be ignored.
Thus a general framework of the application area can be defined on the basis of image content,
as shown in the figure 3.15. The number of total global classes has been found limited to 5 — 10
in every scenario, whereas its very easy to find more than 20 patch-oriented categories even in
a single sufficiently-diverse full scene of spotlight mode TerraSAR-X image.

As each application, pixel-based classification and patch-oriented image categorization, is
more important than the other depending upon the user requirement, we will consider both
cases for the performance analysis of the considered feature descriptors.
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Figure 3.15: Application framework based on the image content. It is suitable to carry out land-cover
pixel-based classification with prominent texture, whereas with objects visibility, patch-oriented SAR
image categorization is more suitable.

3.4.1 Proposed methodological classification for performance analysis

In this last section of the chapter, we propose a methodological classification, initially presented
in Singh & Datcu [2012a], which will form a basis of some of the conclusion drawn in this
thesis. In section 3.3, we noticed that some of the feature descriptor were the parameters based
on model assumed to fit the SAR images. Basically, all the feature descriptors were based on
Bayesian inference. However, a good fit of a particular model requires meeting many preliminary
assumptions to satisfy the multiplicative model of SAR speckle. This category can be called the
parametric approaches (or model-driven approaches). The other class of feature descriptor
was based on simple statistical measure, such as GLCM based features, or simple statistical
measures computed on the transformed SAR images, such as non-linear spectral features, the
FrF'T based features, and Gabor filter banks based features. No assumption is required to
be met in these scenarios and we can call these features to be based on the nonparametric
approaches.

This discussion leads to a methodological classification under parametric and nonparametric
approaches in images and images within a transformation space, as presented in the upper
part of the figure 3.16. No matter what kind of methodology we are adapting for generating a
feature descriptor, they can be put under this methodological classification. The success and
performance of a particular feature descriptor will depend upon the type of application and
image content of the image under consideration.

In this thesis, apart from suggesting a new nonparametric methodology based on the FrFT,
we will provide a quantitative analysis of selected methods presented in the lower part in the
figure 3.16.
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Figure 3.16: Proposed methodological classification under parametric and nonparametric approaches in
image and image within a transformation space Singh & Datcu [2012a]. This methodological classification
comes into existence because of the possibility of discovering a high diversity of texture as well as objects
in the high-resolution SAR images. In this thesis, we will mainly provide a detailed qualitative and
quantitative analysis of various state-of-the-art and few proposed methods for pixel-based and patch-
oriented image categorization applications. Acronyms- GMRF: Gauss-Markov random fields as prior pdf,
ABM: autobinomial model as prior pdf, C-GMRF: Gauss-Markov random fields as prior pdf for complex-
valued SAR images, W-GGD: generalized Gaussian distribution parameters for the wavelet coefficients,
GLCM: gray level co-occurrence matrix, FT: Fourier transform, FrF'T: The fractional Fourier transform,
Gabor: Gabor filter banks.
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3.5

Summary

The following points have been discussed in this chapter.

The ever increasing resolution from recent SAR satellite missions are changing the problem
statement in SAR image understanding. While the concern in earlier low-resolution image
was to identify global classes such as natural areas, urban area and water bodies etc., in
high and very-high-resolution images we are more concerned with patch-oriented image
categorization.

The spatial content understanding in SAR images depends upon the available resolution,
which also governs the underlying applications area. Even though many high and very-
high-resolution SAR satellites are planned for the future, satellite missions such as Sentinel-
1 will keep us involved in developing further algorithms in global classification, by analysis
and characterizing the texture especially for large scale mapping for land application,
vegetation and sea-ice monitoring.

In high and very-high-resolution images, the information available is sometimes sufficient
enough to even carry out individual target analysis. Based on the concept of azimuth
splitting, we proposed an approach of visual exploration of targets in complex-valued
SAR images, termed as multiple sublook decomposition (MSLD). This tool provides us
an insight into the complex-valued spectrum of SAR images to reveal some information
which is otherwise hidden in the spatial domain.

Motivated by the information retrieved from complex-valued spectrum in the MSLD ap-
proach, we proposed the use of a generalization of the Fourier transform (the fractional
Fourier transform) for a broader spatial content understanding, use of which was limited
to moving target analysis until now.

In order to develop and understand methodologies for spatial content understanding based
on the statistical analysis, it is pertinent to study the speckle and speckle reduction meth-
ods. Historical overview of de-speckling has been covered which eventually leads to the
application of the Bayesian approach for SAR image understanding.

Based on the visibility of texture or even more detailed information, we proposed a method-
ological classification as a guideline for adapting certain type of methodology for certain
kind of application. This leads us to a performance analysis strategy for various spatial
content understanding methods, which will be discussed in detail in the remainder of the
thesis.

Based on the methodological classification proposed in this chapter, the next part of this
thesis, which is Part-II, will deal with the implementation issues of the selected and proposed
parametric and nonparametric approaches for spatial content understanding. Theoretical un-
derstanding and selective results will be presented in Part-II. The parametric approaches are
discussed in chapter 4, whereas nonparametric approaches are discussed in the chapter 5, of
Part-II.
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Part 11

Information Extraction in SAR
Images
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Chapter 4

Information extraction in SAR
images: parametric approaches

The objective of this chapter is to discuss the parametric approaches for information
extraction in SAR images, which can be further classified into texture parameter es-
timation in the image domain or density parameter estimation for the image within
a transformation space such as wavelet domain. For both the cases, a particular
model is postulated for the data and later the parameters of the assumed model are
considered as the descriptor for the image.

In both the mentioned cases, the probability theory plays an important role, thus we
discuss the basics of probability theory in the first section. For the texture parameter
estimation, usually Bayesian inference is applied to SAR images as a consequence
of the multiplicative noise model for speckle. In second section, we present the the-
oretical understanding of Bayesian inference, along with the first level of Bayesian
inference for model fitting and parameter estimation, and second level of Bayesian
inference for model selection.

In the third section, we discuss the applicability of Bayesian inference to the SAR
images, by introducing the concept of neighborhood systems, cliques and potential
functions for prior pdf. The usual choice for the prior pdf are the Gibbs based models.
Two Gibbs based prior pdfs, namely, Gauss-Markov random fields and autobinomial
model will be discussed in detail. Guidelines for parameter estimation using maxi-
mum a posteriori (MAP) along with preliminary results will be presented. We also
propose the applicability of the Gauss-Markov random fields to the complex-valued
SAR data and parameter estimation methodology for this case is suggested.

In the last section, we briefly discuss a parametric approach applied in the wavelet
domain by characterizing the wavelet coefficients with generalized Gaussian distri-
bution (GGD). The parameters of the GGD for wavelet sub-bands can be used as
the tmage descriptor. We will close this chapter with a short summary in the last
section.
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4.1 Probability and Bayesian inference

As the name suggest, the parametric approaches for information extraction in SAR images are
based on the density or model-parameter estimation. Before going into the discussion on the
models and model-parameter estimation, it is important to briefly discuss the probability theory.
Probability theory is essential for the formulation of parametric models. During this discussion
we will also introduce the mathematical notations used in this thesis to describe the probability
measures.

Probability theory is nothing but common sense reduced to calculation (Pierre-Simon Laplace,
1812). The interpretation of the probability theory is generally divided into two notions. The
first one is the frequentist probability notion and the second one is the Bayesian notion of
probability. In the frequentist notion of probability, the probability represents long run frequen-
cies of events. Using this frequency interpretation, the probability P(A) of an event A is given
as follows: n

P(A) = lim 4 (4.1)

n—oo n

with, n 4 as the number of occurrences of the event A and n as the number of trials. For ex-
ample, flipping a coin many times i.e. many trials, we expect the occurrence of facing heads
or tails about half the time. The other interpretation of the probability notion is called the
Bayesian interpretation of probability, where probability is used to quantify our uncertainty
about something; hence it is fundamentally related to information rather than repeated tri-
als (Jaynes [2003]). In the Bayesian approach, the likelihood of occurrence of facing heads or
tails on the next trial of tossing a coin is equal.

e Fundamental axioms in the theory of probability

The probability P(A) of an event A, defined on the probability sample space €2, is usually chosen
in such a way that it satisfies the following three Kolmogorov axioms:

1. Positivity: 0 < P(A) < 1 for every event A.
2. Certainty: P(2) = 1.

3. Additive rule: P(AUB) = P(A)+ P(B), provided events A and B are mutually exclusive,
ie. P(ANB) =0.

Here P(A) = 0 means that the event will definitely never occur, i.e. the probability of an
impossible event is 0. P(A) = 1 means that the event will certainly occur. Similarly we can also

define P(A) to denote the probability of an event not A. Thus from the positivity and certainty

axiom, it can be be established that P(A) = 1 — P(A). All the subsequent rules and theorem
are the direct or indirect derivations of the above mentioned three fundamental axioms.

e Discrete random variables

The above discussion mainly dealt with the binary events, and can be extended by defining a
discrete random variable X, which can take any value in the probability sample space €. l.e.
X : Q1 — Ris a discrete random variable defined in space 2. We can also denote the probability
of this event X = z by P(X = z). In the subsequent sections we will also sometimes use a
short notation p(x) for P(X = z). In case of discrete random variables, p(x) is also denoted
as the probability mass function (pmf). The pmf also satisfies the fundamental properties:

0<p(xz)<land ) .qp(r)=1
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e Conditional probability and Bayes’ theorem

Apart from the three axioms, we can also define the product rule, which describes the joint
probability of two events A and B as P(A, B) = P(A | B)P(B). The product rule is also known
as the total probability theorem. Here, the probability P(A | B) is the conditional probability of
an event A, given the event B is true, which can be subsequently written as follows:

P(A, B)

P(A| B) = 55

provided P(B) > 0. (4.2)
The frequency interpretation of the conditional probability can also be derived. Denoting n 4,
np and n, p as the number of occurrences of the events A, B and (4, B), we have P(A) =n4/n,
P(B) =ng/n, and P(A, B) = n, g/n. Thus the conditional probability P(A | B) of an event
A, given the event B is true, is given as follows:

P(A,B) nup/n  nup

PATEY="pE) = g~ g

(4.3)

This above formulation means that if we discard all trials in which the event B did not occur and
we retain only the subsequence of trials in which B occurred, then P(A | B) equals the relative
frequency of occurrence of n 4 5/ny of the event A in that subsequence (Papoulis [1991]).

The three axioms presenﬂed earlier form the basic algebra of the probability theory. As
mentioned earlier also that the other theorems can be derived from these fundamental axioms.
One important theorem obtained by combining the product and additive rule with conditional
probability can be defined as follows (Bayes [1763]):

PY=y|X=2)P(X=x)

PX=z|Y =y)= PY =) :

(4.4)

which describes the probability of an event X, given some data Y. The formal names for each
term in the Bayes’ Theorem are well defined, which will also be followed in the remainder of
the thesis. The left-hand side term P(X = z | Y = y), called the posterior probability, is
proportional to the probability of the observation given the hypothesis P(Y = y | X = x),
called likelihood function, multiplied with the prior information P(X = z). The denominator
term on the right-hand side, i.e. P(Y = y), is called the evidence, which is in the first level of
Bayesian inference treated as only a normalization constant. The Bayes’ theorem can be written

in words as follows:
likelihood x prior

posterior = (4.5)

evidence

Bayesian inference applied to the information extraction in SAR images, based on Bayes’
theorem allows us to select the most probable model, i.e. prior information for the SAR images.

e Continuous random variables and density functions

So far, we were only concerned in our reasoning with the uncertain discrete random variables.
A similar reasoning can be extended to the uncertain continuous random variables. Bayes’
theorem is very well applicable to continuous random variables as well. In this section, we are
interested in introducing the terms cumulative density function (cdf) and probability density
function (pdf) for a continuous random variables X. For this purpose, let us compute the
probability for a continuous random variable X, such that it lies between any interval a < X <b.
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Defining the events, A = (X <a), B= (X <b),and W = (X € (a,b]), using the fundamental
axioms and assuming A and W as mutually exclusive, we obtain p(B) = p(A)p(W), and hence:

p(W) = p(B) —p(4) (4.6)

Denoting F'(x1) = p(X < x1) as the cdf, which is a monotonically increasing function, it can be
written as follows:
p(X € (a,b]) = F(b) — F(a) (4.7)

The derivative of the cdf F(x) is called the pdf or simply the density function f(x) = %F (x)
of the random variable z, assuming that this derivative exists. Given a pdf, the probability of
a continuous random variable in a finite interval can be computed as follows:

b
P(X € (a,b]) = / F(w)da. (4.8)
For an infinitesimal small interval, we obtain:
P(X € (z,x+ Az |) = p(X = z)dy. (4.9)

The most important property of a distribution are it’s moments. The first moment is called
the mean, or expected value E[X], denoted by u. The second moment, variance E[(X — p)?],
denoted with o2 is a measure of the spread of the distribution. If we assume a specific functional
form for the densities, i.e. a specific distribution p(X = z | 8) for the data X, with @ as the
model parameter vector; the task of parameter estimation is to estimate the optimum model
parameters @ = 01,0s,--- ,0,, in order to obtain a good fit of the assumed model to the data.

In literature, notation p is used interchangeably for probability as well as for probability
density function, for both the discrete and continuous case. For the sake of simplicity, we will
also follow the same convention and meaning of p can be understood as per the context.

4.2 Bayesian inference preliminaries

4.2.1 Bayesian inference, level I: model fitting and parameter estimation

Denoting p(-) as probability, as well as the probability density function and assuming a certain
prior model (X = x) for a data, we can rewrite the Bayes’ theorem as follows:

p(Y =y | X =2)p(X =2)
p(Y =y) ’

The task of parameter estimation is to infer the parameter value & from the observation vy, i.e.
the task is to infer a variable X conditioned by another variable Y. There can be many ways to
estimate the value of . However, in this discussion we restrict ourselves only with the maximum
likelihood estimator (MLE) and maximum a posteriori (MAP) estimators for finding the value
of . To determine the most probable value for X, the task is to search for & which would
maximize the posterior probability P(X =z | Y =y), i.e.:

pX=z|Y=y) = (4.10)

z=argmaxp(X =z |Y =y). (4.11)
x

In case we do not have any further information about the prior model M, p(M) is taken to be
a uniform distribution. So we obtain an estimate for , as follows:

Iypp = argmaxp(Y =y | X = 2) =y, (4.12)
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which is called the MLE of X. For MLE, only the knowledge or assumptions about the likelihood
function is required (Kreyszig [1979]). However, if we have further knowledge about the prior
model, the task of parameter estimation is to maximize the posterior probability, similar to the
equation 4.12:

Iyap = argmaxp(X =z |V = y) = argmaxp(Y =y | X = z)p(M), (4.13)

which is called the maximum a posteriori (MAP) estimate, also termed as the first level of
Bayesian inference. We can state that the MLE is a special case of MAP estimator when the
prior model is assumed to be uniform distribution.

The first level of Bayesian inference, the problem of MAP estimation has been criticized
because of the choice of the correct prior distribution, i.e. correct model M, which is compensated
with the second level of inference (the model selection). On a philosophical view of the discussion,
it has also been said that all models are wrong, but some models are useful (Box & Draper [1987]).
In this thesis, we will also try to establish which models are useful in which circumstances for
information extraction the SAR images.

4.2.2 Bayesian inference, level II: model comparison and selection

We noticed in section 4.2.1, the first level of Bayesian inference employs the use of a prior
distribution, choice of which is a very critical issue. The second level of Bayesian inference, i.e.
the model selection process provides a framework to search for the most plausible model from the
different alternative models. Here, the evidence term plays a fundamental role, which has been
assumed just as a normalization factor in the parameter estimation or the first level of Bayesian
inference. The evidence term in the equation 4.4 is computed by marginalization (Papoulis
[1991]), i.e. by computing its integration over X as follows:

— 00

(Y =y | M) = /+ p(Y =y | X =2, M)p(X =z | M)da. (4.14)

The evidence term helps us to evaluate the quality of the assumed prior models, i.e. to access
how good the assumed model fits to the given data. Considering a family of different models
(My, My, -+, M,), the equation 4.14 will compute the likelihood of each model to facilitate
the selection of most suitable model for the data y. It must be noted that its possible that
more complex prior models will fit the data better. But at the same point Bayesian inference
encapsulate Occam’s razor (MacKay [1991]), which states that unnecessarily complex models
are not preferred to simpler ones. It can also be said that a more plausible hypothesis seems to
be simpler.

Bayesian image analysis makes use of explicit probability models to incorporate general
and scene-specific prior knowledge into the processing of images and aims to provide a unified
framework within which many different tasks can be considered (Besag [1989]).
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4.3 Bayesian inference applied to SAR images

In the earlier part of this chapter we discussed the general framework of the first level of Bayesian
inference for model-parameter estimation and the second level of Bayesian inference for model-
selection. This section deals with the application of this to the information extraction focused
on the SAR images. Our objective is to determine the model-parameters for different selected
models. The idea of a Bayesian-based information extraction method is to find a prior model,
which approximates the distribution of SAR image well and a likelihood model, which estimates
the speckle within the SAR images, in order to obtain the posterior pdf. If we assume that the
speckle is fully developed, the speckle corrupting the backscattered signal in the SAR image can
modeled as multiplicative noise (Touzi [2002]), which can be represented as follows

y=u-z, (4.15)

where y represents an observed noisy SAR image, x denotes an ideal noise-free reflectance, and
z stands for the speckle noise.

Now the Bayesian inference approach analogous to the multiplicative noise model for the
SAR images can also be formulated. We can rewrite the Bayes’ theorem shown in equation 4.4
in context to the SAR images as follows:

_ply|x)p(z | 6)
p($ ‘ y70> - p(y ’ 0) )

where y represents the SAR image, x is the noise-free image and 0 stands for the unknown model
parameters. The conditional pdf denoted by p(x | y, @) indicates the posterior pdf, which stands
for the ideal noise-free image, p(y | x) represents the likelihood pdf, p(x | @) denotes the prior
pdf. The evidence term, p(y | €), acts as a normalized constant in the first level of inference.

First level of Bayesian inference is used to obtain a model which fit the SAR data, estimating
the maximum a posteriori (MAP) of the noiseless image. It is expressed by the posterior pdf
and is obtained using the likelihood and prior pdfs together, as follows

(4.16)

#(y) = argmaxp(y | z)p(x | 6), (4.17)

where & represents the de-speckled image. The second order Bayesian inference enables an
estimation of parameter 6 using evidence maximization. This evidence characterizes how well
the estimated data fits the original data. Selecting the best model, taking into account the
speckle likelihood, the solution can be found by maximizing the evidence as a function of 0, as
follows

Py | 6) = / p(y | 2)p(x | 0)dz, (4.18)

While dealing with SAR images, likelihood and prior need to be defined accordingly. In the
subsequent discussion, the likelihood, or the noise which is speckle in case of square root intensity
SAR images is well-approximated by a Gamma distribution, written mathematically as follows:

o1 =2 (9 s (-4 2)) o

with L as the number of looks. For computation purposes, equivalent number of looks (ENL) is
used defined as the number of independent intensity values averaged per pixel (Oliver & Quegan
[1998]). The ENL over a homogeneous area can be expressed as: ENL = (Mean)?/Variance.
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The use of a Bayesian framework in image restoration and reconstruction, which we will apply
for information extraction requires the specification of a prior distribution for the image (Besag
[1974]). Now the critical issue is to construct this prior statistical models for SAR images, for
which generally two approaches were followed. In the first one, images are modeled as Markov
random fields (MRF's) (Chellappa & Jain [1993], Cross & Jain [1983]), and in the second, images
are modeled as Gibbs random fields (GRFs) models (Besag [1974], Hassner & Sklansky [1980]).
In both the MRFs and GRFs, a random field represents the ensemble of random variables in
the form of a lattice to describe the statistical dependence and correlations between neighboring
pixels. The image pixels in the SAR images (a 2-D signal) forms the basis for this lattice
structure in the random fields.

In this thesis we restrict our discussion to two models relating to the GRFs family only:
namely Gauss-Markov random fields (GMRF), and autobinomial Model (ABM). However, the
Hammersley-Clifford Theorem (Hammersley & Clifford [1971]) asserts that for a limited neigh-
borhood and discrete state of X, every Markov random field has an equivalent Gibbs random
field. Before going into the theoretical details of GMRF and ABM prior pdfs along with the re-
spective 0 parameters estimation methodology, we will briefly discuss the neighborhood systems
and cliques.

4.3.1 Image description, neighborhood systems and cliques

For a SAR image viewed as a 2-D stochastic process, the GRFs are defined on a rectangular
lattice L of a finite size M x N with image pixels as points in the lattice. The neighborhood
system, represented by Q7" around a given center pixel x4 is defined as (Li [1995]):

s ¢ Q,

(4.20)
t ey, then se€ Q.

QF = {t} with {

Here, {t} is a set of all pixels in the vicinity of site s, excluding s. The hierarchical order of the
sequence in image modeling follows a nearest neighborhood model, i.e. the closest four neighbors
of each pixels occur in the sequence first. The maximum limit to the structural complexity of
the GRF model is defined by the size of neighborhood system, i.e. the model-order. In the
neighborhood system €27*, the model order is denoted by m. The neighborhood system in the
lattice structure for model-orders 1 to 6, i.e. Q1 QL ... QS around a central pixel x5 are shown
in the figure 4.1(left). The neighboring pixels around x4 are denoted as x; ;, with ¢ as the model-
order. The index j is just a counting variable in neighborhood system. In the figure 4.1(center),
first and second model-order neighborhood systems are specifically illustrated. It should be
pointed out here that ¢ and j are not related to the Cartesian coordinates in any sense.

The clique, denoted by ¢, is a subset of L associated with a neighborhood, which specifies the
possible topology of the random structures in different realization of the stochastic process (Derin
& Elliott [1987]). The clique ¢ may consists of a single pixel or many pixels. Examples for
single pixel clique and two-pixel clique for first and second model order are illustrated in the
figure 4.1(right).

The length of the parameter vector 6 is determined by the model-order. The elements in 6
are represented as 6; j, with ¢ again as the model-order and j just a counting variable. It can be
seen from the figure 4.1(left), that the length of parameter vector  for the model-order 4 will
be 10, and for the model-order 6 will be 14.
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Figure 4.1: Neighborhood system and clique. (Left) Hlustration of neighborhood system Q7" with model
order m = 6 and corresponding model parameter vector §. For a given center pixel x, the neighborhood
pixels at order k are denoted with zj ;. (Center) First and second order neighborhood for a given center
pixel 2. (Right) One-pixel clique - C; and two-pixels clique - Cy configurations for corresponding first
and second model order

4.3.2 Energy and potential functions

Once the neighborhood system and clique for a certain model-order are assigned, we need to
define the equivalent assumed GRF on this lattice. The joint distribution of the GRF models
are given in the form of an exponential distribution as follows (Derin & Elliott [1987]):

p(X =x) = le*U(”). (4.21)

Here, U(z) is the the energy function and Z =Y e™Y (#) is the partition function, a normalizing
constant. Frequently, the exponent in the equation 4.21 is expressed as (1/T)U’(x), with T" as the
temperature - a scale hyper-parameter, and U’(z) as the energy function. The energy function is
represented in terms of the sum of potential functions V.(z) associated with clique ¢, as follows:

Ux) = Z Velique(®,0),  with 6 as parameter vector. (4.22)

all cliques

The potential function provides the parametric description of the type of interactions between
the samples of the respective random field inside the clique structure. The only condition on
the otherwise totally arbitrary clique potential Vejique(, 0) is that it depends only on the pixel
values in clique ¢ (Derin & Elliott [1987]).
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4.4 GRFs model parameters for information extraction in SAR
images

In literature, many GRFs models can be found (Li [1995]). As mentioned earlier, in this thesis
we will specifically discuss only two models: GMRF and ABM. A MAP estimate applied to
GRFs using evidence maximization was proposed initially as a framework for model-based de-
speckling (MBD) and information extraction in SAR images in Datcu et al. [1998], and Walessa
& Datcu [2000]. An extensive study of MBD performance of the GMRF and ABM was carried
out in Molina [2011]. However, our objective in this thesis is the implementation and evaluation
of the GRFs model for information extraction in SAR images for two specific applications: pixel-
based classification and patch-oriented image categorization. Adaptation of the GMRF to the
complex-valued SAR images presented in Singh et al. [2009], and Soccorsi [2010] will also be
discussed.

The parameter estimation using MAP, where the maximum of the product of prior and like-
lihood is estimated by optimizing the values of the model-parameters 8. This can be achieved
using expectation maximization, analytical parameter estimation, or iterative evidence maxi-
mization (IEM) etc. For our experiment, we will be using the IEM method for the parameter
estimation for GMRF and ABM prior pdfs. The IEM was proposed in Datcu et al. [1998], Wa-
lessa & Datcu [2000] by means of a GMRF model as prior, which was later adapted to the
ABM as prior in Hebar et al. [2009]. Before going into the details of MAPy — GMRF,
MAPgn — ABM, and adaptation of GMRF to the complex-valued SAR images, we will briefly
discuss the expectation maximization and iterative evidence maximization framework in context
to the MAP parameter estimation.

e Expectation maximization

If we can formulate the solution for the MAP estimate using the first level of Bayesian inference
(refer the equation 4.17), which is the estimate of the noise-free SAR image pixel &, the problem
remains how to choose the values of the model parameter vector 6. One popular method
in statistics is the expectation maximization (EM) method. The EM method is an iterative
method, where first, a function for the expectation of the log-likelihood is created (Dempster
et al. [1977]). This function is defined as follows:

Q0,6 = /log (p(é | X =2,Y = y)) p(X =2|Y =y,8dz. (4.23)

This integral is very complex and very challenging to have an analytical solution for the complex
models. In practice, an EM-type method is used with a simplification of the function ). The
method consists of two steps: (E)xpectation-Step and (M)aximization-Step. In the E-Step,
MAP estimate 2MAP is computed with current estimate of model parameters 6°. In the M-Step,
using this MAP estimate £MAP | ML estimate of 8 is computed by maximizing p(X = 2MAP).
The process is iterated until convergence is achieved.

e Iterative evidence maximization

To solve the problem of suitable 8 parameter estimation that best explains the noisy image
y for a given speckle noise level L, another method taking advantage of the second level of
Bayesian inference was proposed in Datcu et al. [1998]. This method, called the iterative evidence
maximization (IEM), works on the principle of maximization of an approximation of the evidence
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p(Y =y |0, M), with M as the selected prior pdf. The general IEM framework is shown in the
figure 4.2.

The objective is to search for suitable 8 parameters to have a good estimate of z. The IEM
framework is initialized with an initial guess of @ parameters, with #° = k for all i, where k is
equal to 0.5/ {size of @ vector}. In (I)nitial-step, using these initial values of @ parameters, a
first MAP estimate of Z is obtained using the first level of Bayesian inference. With the values
of @ and &, evidence is computed using the second level of Bayesian inference. In the (E)vidence
(M)aximization-Step, keeping & fixed, the value of @ parameters is modified iteratively in order
to maximize the approximation of the evidence. The EM-Step is repeated until convergence is
reached.

SAR Image, y
EI‘\VTL L
2/52 » MA Initial 6 parameters,
a » Estimator and Model order, m
Simultaneous
estimation of XMAP [-Step
xmar and 0 v
0 _| Approx. |
k > : »
Evidence
Z1 ARy p(y 10, xmar)
A
9k+1
Optimizer

xmar Estimates and
0 parameters

Figure 4.2: Tterative evidence maximization (IEM) framework for maximum a posteriori estimation. The
I-step stands for initial step, and EM-step here stands for evidence maximization, where an approximate
evidence term is used.

4.4.1 Gauss-Markov random fields model

GMRF was first introduced in Kashyap & Chellappa [1983] in the family of conditional Markov
(CM) models. This model is a rather simple image model with the energy function presented in
the equation 4.22 as:

2
Ts — s
U(zs | ©2s,6) = (202)7 (4.24)
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With, 6, o are the model parameters. The interaction of pixels in an image with its neighbors
is explained by the neighborhood system around the central pixel, ns, written as follows:

Ns = 291,]' (g + 775) (4.25)
]

The corresponding pdf of the stochastic GMRF model, following a Gaussian auto-regressive
(AR) model (Schistad Solberg & Jain [1997]), can be expressed as follows:

T — )2
p(zs | 0) = . 127Texp <—(820;78)> . (4.26)

The neighborhood system 7y will be defined by the model order m as demonstrated in the
section 4.3.1, which will also control the length of model parameter vector 6.

4.4.1.1 MAP estimation and iterative evidence maximization for GMRF

At the first level of Bayesian inference, the MAP estimates of the noise-free pixels in SAR
images can be obtained by finding the maximum of the product of the likelihood and prior,
while ignoring the evidence at this stage, as follows:

p(xs | ys) = p(ys | 25, 0)p(zs | 6). (4.27)

Our objective is to maximize this quantity, which is achieved by setting the first derivative of
p(zs | ys) to zero. For simplicity, the derivative of the logarithm of p(X =z | Y = y) is used.
This will not change the location of the maxima as it is a monotonic function. Assuming the
likelihood to follow the Gamma distribution from the equation 4.19, and the prior for GMRF
from the equation 4.26, we obtain the MAP equation as follows:

2L—1 L vs 2
0 logp(ws | ys) = 0 log [2 <ys> L e—L(g) ]

Oz Oz s sI(L
x x x xs'(L) (4.28)
n d ! [ 1 _(33‘;—/12.3)2:|
o e .
Ows & o\ 2T

Setting the left-hand side in the equation 4.28 to zero, a fourth-order polynomial is obtained
with four possible roots, as follows:

zt— pad 4+ 2L0%c% — 2Lo%y? = 0. (4.29)

Since the valid zpap estimate, i.e. x5 should be real-valued and positive, convergence of itera-
tive conditional modes (ICM) algorithms for relaxation can be employed to obtain the desired
solution for the maximum of the a posterior (Metropolis et al. [1953]). A few iterations of a
simple steepest descent algorithm with as initial guess provided good results (Walessa & Datcu
[2000]).

The above zpap in the I-Step shown in the figure 4.2, is obtained using some initial values
of @ parameters. The next issue is to obtain the values of @ parameters, which should explain
the SAR image better. This is achieved by using the second level of Bayesian inference, shown
as EM-Step in the figure 4.2 by IEM. Recalling the formulation of the evidence term from the
equation 4.18:

p(ys | 0) = / P(ys | 25, 0)p(zs | ). (4.30)
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The closed-form analytical solution of this integral can not be obtained. To make the problem
of computation of the evidence term tractable, several approximations have been proposed
in Walessa & Datcu [2000]. The integrand in the equation 4.30 is assumed to be a product of
mutually-independent random variables, thus its joint pdf can be expressed as the product of
pdfs of its components. Of course, we only assume the statistical independence which is a good
approximation when the size N x N of image under consideration is large enough. Now the
multidimensional pdf is approximated by a multivariate Gaussian pdf with a Hessian matrix
(H, which is centered around the MAP estimate of x, i.e., around the maximum of the posterior
distribution (MacKay [1991], Sivia [1996]). Consequently, the Gaussian-shaped multivariate
posterior gives the approximation of the evidence as follows:

p(ys | 0) = / p(Ys | zs,0)p(zs | O)dz, (4.31)
NxN ) AT
~ / [T plys | 224P)p( AP | 0) - e 2 ) H(x — xMAP )z, (4.32)
s=1
(%)\N;N\ INxN|
N I plus | 224 P)p( 4 | 6). (4.33)
s=1

Here, (N x N) represents whole set of pixels of the SAR image with its cardinal | N x N |,
and AP is the MAP estimate of x, obtained using the fixed parameter vector 6 obtained in
M-Step in the figure 4.2, computed by following the equation 4.29. The Hessian matrix H in
the equation 4.33 is the a square matrix of the second-order partial derivatives of an uni-variate
function written as follows:

NxN
H=-VV > log(p(y, | z"*")p(z)4" | 9)). (4.34)

s=1

The determinant of the Hessian matrix H, with A as its diagonal elements, can be approximated
as follows:

(4.35)

Another approximation for the diagonal elements of Hessian matrix can be written as follows:

6Ly> 2L 1 5
hss = 4MASP ~ovap T2 | 1T Z O (4.36)
Ts Ts g keQs

The above approximations in the evidence maximization step help us to obtain a feasible solution
for & and @ by avoiding a highly computational demanding Markov Chain Monte Carlo (MCMC)
method (von der Linden et al. [1999]). Starting with a set of initial € parameter, using the IEM
framework shown in the figure 4.2, will provide us the final estimate for noise free pixels &, and
the final @ parameter vector.

This Ogmrr parameter vector will be later used as a feature descriptor for classification or
categorization purposes assuming that it explains the texture and image content, provided our
assumptions of GMRF as prior pdf are plausible. An example of estimated Ognrr parameters
using MAP following IEM is presented in the figure 4.3.

68



Sub-image

3

5

a2

g

z

&

O

o

°

E

O

<

&

°

&

=

Sub-image 01 62 03 94 05 96 07 98 09 610
1. 0.2021  0.0067 -0.0333 0.0544 -0.0024 -0.0042 0.1135 0.0044 -0.0788 -0.0092
2. 0.2576  -0.0115 -0.0229 -0.0492 -0.0279  0.0258 0.1948 0.1162  0.0012  -0.0252
3. 0.1935 -0.0056 -0.0183  0.0930  0.0017 -0.0052 0.2821 -0.0252 0.0085 -0.0702
4. 0.2912  0.0003 -0.0083 0.0885  0.0239 -0.0383 0.3030 -0.0220 -0.0733 -0.0121
5. 0.3062  0.0421 -0.0974 0.0635 0.0162  0.0630  0.4539 0.0712 -0.0488 -0.0829
6. 0.2948 -0.0447 -0.0492  0.0553 -0.0256 0.0376  0.3258 0.0421 -0.0629 -0.0233

Figure 4.3: Parameter estimation for GMRF as prior pdf for various textures with analyzing window
of size 16 x 16 pixels and model order=>5. The values of texture parameters in the table are the 6 values
for the center pixel in each sub-image. The variation in 6 value shows that it captures the characteristic
spatial structures. The higher the model order is, the better is the texture discrimination that can be
achieved. The parameter computation using IEM is computationally very expensive. It took around 10
minutes to process one sub-image at presented settings on a standard laptop with Intel Core processor
(2.40 GHz) with 8 GB RAM.
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4.4.2 Autobinomial Model

The ABM model was originally presented in Cross & Jain [1983]. The use of ABM model for
remote-sensing images was investigated in Schroder et al. [1998]. The ABM is able to generate
blurry, sharp, line-like and blob-like textures which make the ABM generated texture more
natural than the GMRF. The assumption that the ABM would fit the SAR data better than
GMRF, and the ABM included into the MAP estimator would be able to estimate more textures
than GMRF, has been postulated in Hebar et al. [2009]. The energy function in ABM model is
defined as:

Uzs | Qs,0) = —log <f> — Tg - 7)s. (4.37)

Here, G is the maximum gray value in the analyzed image, with x; as the observed pixel.
The binomial coefficients are denoted as (:l) The term 7, denoting the effective influence of
neighboring pixels is defined as follows:
(i) + ;)
mmat Yy ) (4.39)
ij
The x;; and w;j are the neighboring pixels as shown in the figure 4.1. The corresponding pdf in
the equation 4.21 for the stochastic ABM is given as follows:

bl 10)= (7)o po (4:39)

Here, again the @ is the parameter vector, and ps is the function of model parameter vector
0 = (a, bij), written as p, =1 + exp(—ns) .

4.4.2.1 MAP estimation and iterative evidence maximization for ABM

At the first level of Bayesian inference, the MAP estimates of the noise-free pixels in SAR images
can be obtained by the finding the maximum of the product of the likelihood and prior, i.e.
setting the first derivative of p(zs | ys) = p(ys | zs,0)p(zs | @) to zero. Again, for simplicity, the
derivative of the logarithm of p(zs | ys) is used. The likelihood is again assumed to be Gamma
distribution as per the equation 4.19. We obtain our MAP equation for ABM by introducing

differentials of the logarithm as follows:
ys 2L—1 LL _L<yi) 2
2(— e \%s
T xs['(L)

A G
1 L1 —pg)P |
Ry, 08 [(%)ps (1= ps) ]
Setting the left-hand side in the equation 4.40 and solving the differentials will provide us the
zMAP estimates. In the equation 4.40, the analytical solution for the first term exists, but the

second term needs to be solved numerically by subtracting logp((zs + 1 | 05)) — log p(zs | 0s).
The result is given by the following simplified formulation (Hebar et al. [2009]):

2L y2 G_xs Ps
C2L oY oy 1 . 4.41
vandy s (S ) s (2 (an

A
1ng(xs | ys) = Ax log
s

Axg
* (4.40)

At the second level of Bayesian inference, we need to solve the integral p(ys | 8) = [ p(ys |
zs,0)p(xs | @)dx to compute the evidence. As the integrand is again very complex, similar
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to the GMRF case, we need to do several approximations. First we break apart the joint
pdf and express it in terms of the product of pdfs of its components, assuming there statistical
independence. Now again, the multidimensional pdf is approximated by a multivariate Gaussian
pdf with a Hessian matrix H, which is centered around the MAP estimate of z, i.e., around the
maximum of the posterior distribution. These approximations can be mathematically written
as follows:

0. 10) = [ plo. | 2. 0)p(a. | O)d (4.42)
NxN

~ / [T »(vs | 2)p(EMAF | 9)exp(—0.500THAT,) (4.43)
s=1

(NxN)/2 NxN
e 2T I pls | 24P (2P | ) (4.44)

TOVIH] 4

The Hessian matrix H is again the second order partial derivative of a uni-variate function,
written same as the equation 4.34:

NxN
H=-VV > log(p(y, | zy"*")p(z)4" | ). (4.45)

s=1
Another simplification is to use the logarithm form, to obtain:

NxN B 2L-1  rL ve )2
log(y | 0) = 3 [(N x N)log 21 — log has o <2 <y> L o) )
(4.46)

2 x
s=1 §

+ log <<f)p(1 - ps)G‘xSﬂ ,

where, hgs are the main diagonal elements of the Hessian matrix H, approximated as follows:

NXN
2L y? 1 1
hes ~ —6L—5— — — . 4.47
Ss ; <$§4AP2 .%'ISVIAP4 G — 1.1S\/IAP xls\/IAP + 1> ( )

Again, we use only the diagonal elements to obtain the determinant of the Hessian matrix H as

follows:
NxN

detH ~ [ g, (4.48)
s=1

With these approximations, we will obtain the final estimate for noise free pixels &, and the final
0 parameter vector after starting with an initial set of @ parameters using the IEM framework
shown in the figure 4.2.

This Oy parameter vector will be later used as a feature descriptor for classification or
categorization purposes. An example of estimated @apy parameters using MAP following IEM
is presented in the figure 4.4.
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5. Forest 4. Grassland 3. Garden

6. Mixed

Sub-image 01 0 03 04 05 Og 07 s Oy 010
1. 0.2467 0.2367 0.1167 0.1867 0.1667 0.2267 0.1167 0.2067 0.1667  0.1467
0.4067 0.2567 0.0967 0.1267 0.1067 0.1467 0.1567 0.1667 0.1467 0.1867
0.2067 0.2067 0.1867 0.1867 0.1867 0.1467 0.2067 0.1767 0.1367 0.1867
0.2267 0.2067 0.1767 0.2067 0.1967 0.2167 0.1567 0.1767 0.1967 0.1767
0.2267 0.1867 0.1867 0.1767 0.1767 0.1767 0.1867 0.1767 0.1367 0.2067
0.2067 0.2067 0.2067 0.2067 0.1967 0.1967 0.1867 0.1867 0.1767 0.1767

S G N

Figure 4.4: Model parameters for ABM model as prior pdf with analyzing window size of 16 x 16 pixels
and model order=>5. The values of texture parameters in the table are the 6 values for center pixel in
each sub-image. The variation in € value shows that it captures the characteristic spatial structures. In
comparison to the GMRF as prior pdf, ABM seems to capture the textural information better. E.g.
in sub-image 3, the variation in the garden texture at lower left corner is captured. As well as in sub-
image 5, the collection of trees in a forest forming detailed texture is also captured. But the parameter
computation for ABM using IEM is even more computationally expensive than GMRF. It took around
60 minutes to process one sub-image, on a standard laptop with Intel Core processor (2.40 GHz) with 8
GB RAM at the presented settings. 72



4.4.3 Gauss-Markov random fields model for complex-valued SAR images

A complex random process with its realization as a complex-valued random variable x = xp+jx;
can be represented through a pair of real vectors, with real xr and imaginary x; parts as its
components. Thus it is also possible to extend the GMRF model presented in section 4.4.1 for
amplitude SAR images to the complex-valued SAR images as proposed in Soccorsi [2010]. Let
us recall from the equation 4.24, the energy function for the GMRF model:

(@5 = 3055 05 - (xij +x;5))?
202 '

Ulzs | Q,0) = (4.49)

The corresponding pdf of the GMRF model, following a Gaussian AR model, can be expressed
as follows:

(s | 0) = ——exp <—<w_”)2> (4.50)

oV 2T 202

The associated complex auto-regressive process will have the form:

Xs = % Z 0(xs +xs5') + e, (4.51)
ij
with es = esp + jesr as the realization of the independent and identically distributed (iid)
Gaussian process (Picinbono & Bouvet [1984]). We represent the complex-valued SAR pixel as
Xs = Xsr + jxss, similarly the model-parameters are @ = g + j0;. Because of the isomorphism
between real and imaginary planes R? in the complex-valued space C, the formulation for x,
can be vectorially written as follows:

TsR 1 Or —0r| |Tijr + afij €sR
== 4.52
[:L’s[] 21'23' [9[ QR:| [wij[-l-l’;jl + €sT ( )

This allows us to represent the prior pdf of the GMRF model adapted to the complex-valued
SAR data as follows:

p(xs | 0) =

2
TsR
<Lﬁsl] - 773> 0r —0r] [Tijr + 2
exp | — , With'ns:Z[ ] [ J ”R].

o\2m 202 — |01 Or | [ @i + 2l

ij

(4.53)
With these formulations, we can compute model parameters for real and imaginary parts of the
complex-valued SAR images separately.

4.4.3.1 Model parameter estimation following a linear model approach

In case of the complex-valued SAR images, because of computational constrains, we are not
going to apply the ITEM framework as we did for the amplitude SAR image in section 4.4.1. Due
to symmetry and linearity of the model and exploiting the matrix formulation, we can express
the image pixels in accordance to the linear model from the equation 4.51 as follows:

zs = GO + e, (4.54)

with, x4 as the real part (xsg) or imaginary part (xs7) of the complex-valued pixel x = z3p +
jxsgr, the matrix G, a linear transformation, is matrix of cliques constructed from the image
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Figure 4.5: Architecture of formation of G matrix of cliques for the least square estimation of GMRF
model-parameter vector 6.

data as shown in figure 4.5 (Datcu et al. [2004]), and e, is again the realization of the iid
Gaussian process. Thus, the unknown parameter vector 8 is computed using the least-square
approximation methods (Ruanaidh & Fitzgerald [1996]) as follows:

0= (G'G) "G, (4.55)

With, (GrTGr)*1 as the pseudo-inverse matrix. The number of columns in G is equal to the size
of model parameter vector 8, and number of rows is equal to the number of element in x,. Here
the data x, forms a column vector consisting of the image pixels organized in a lexicographic
order. The model variance can be computed as follows:

o2 =E [(xs - Gé)ﬂ . (4.56)

The model variance is the expectation of the difference between the data x5 and the best fit GO
of the model over the data, 6 is the complex-valued model parameter estimates. The information
on the goodness of the model fit to the data is given by the model evidence, which can be written
as follows (Ruanaidh & Fitzgerald [1996]):

F—N/Qr(q/Q)I‘((n —¢)/2)det(GTG)™)

p(zs | Gre) =
k070" 5n—a

. (4.57)

Here, n is the number of image pixels, ¢ is the number of parameters in model parameter vector
0, k is a normalization constant, and I'() is the Gamma function.

However, along with @c_qgyvrr parameters, the model variance o2 from the equation 4.56 and
model evidence p(zs | G,e) from the equation 4.57 can also be utilized while forming a feature-
descriptor. We will be using only the model parameter vector 6, obtained using the least-square
estimation approach, with a linear model framework to generate a feature-descriptor for the
SAR image, renaming it as @c.gMRF-

This Oc.amrr parameter vector will be later used as a feature descriptor for classification
or categorization purposes. An example of estimated @c.gMmrr parameters is presented in the
figure 4.6.

74



Sub-image

5. Forest 4. Grassland 3. Garden 2. Buildings 1. Water

6. Mixed

Sub-image 01 0 03 04 05 Og 07 s Oy 010
1. 0.0250 0.0259 0.1140 0.0219 0.0603 0.0223 0.0334 0.0174 0.0246 0.0226
0.0255 0.0297 0.0548 0.0146 0.0441 0.1366 0.0630 0.0751 0.0573 0.0355
0.0575 0.0154 0.0582 0.0535 0.0476 0.1012 0.0925 0.0879 0.1107 0.0781
0.0643 0.0373 0.0443 0.0529 0.0839 0.1048 0.0591 0.0388 0.0637 0.0913
0.0861 0.0790 0.0811 0.0445 0.0970 0.0765 0.1013 0.0785 0.0495 0.1470
0.0115 0.0932 0.0845 0.1676 0.0272 0.0118 0.0558 0.0553 0.0465 0.0783

S G N

Figure 4.6: GMRF model as prior pdf for complex-valued images with analyzing window size of 16 x 16
pixels and model order=5. The value of texture parameters in the table are the | Oz + jO; | values for
center pixel in each sub-image. The visual texture separability by the 6 parameters using GMRF estimated
following a linear model approach for complex-valued SAR images are similar to the 6 parameters captured
by the GMRF applied to amplitude images computed using IEM method. However computationally this
method is very fast. It takes less than a minute to process one sub-image at the presented settings, on a
standard laptop with Intel Core processor (2.40 GHz) with 8 GB RAM.
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4.5 Density parameters of generalized Gaussian distribution for
wavelet coefficients of SAR images

In the previous section, we considered the cases of parametric approaches, where the texture
model parameters are computed for information extraction as feature descriptor. The texture
model parameters works in the Bayesian framework with assumption of a texture model (e.g.
Gibbs random fields) as prior pdf and (generally) Gamma distribution as likelihood pdf. These
methods are highly complex and therefore are very computationally expensive.

In the quest for a simpler and faster methods, it is often proposed to use directly the pdf pa-
rameters for information extractions. But generally, pdf modeling is also sometimes very complex
and the number of parameters are too small to completely represent the image content. Another
approach is to transform the images into a suitable space for simpler statistical modeling. This
transformation will make the statistical modeling easier in order to describe the image data with
simpler models. One of such effective transformation strategy is wavelet decomposition, which
has been used extensively in major compression standards (JPEG-Committee [2013]). Another
advantage to use wavelets is that via wavelet decomposition, temporal resolution is captured in
both the time and frequency domain. Thus, the decomposition will reveal some important infor-
mation in the sub-bands of the transformation space, which is otherwise hidden in spatial-image
domain. Wavelet has been used for texture synthesis as it provides multi-scale and oriented sub-
bands, which essentially captures the texture information. Traditionally, energy of the wavelet
sub-bands are used as the feature descriptor, which is a nonparametric strategy. But we are
more concerned here to search for a parametric approach for texture synthesis.

The simplest approach to exploit this property would be to simply characterize the texture
in the image via marginal distribution of their wavelet sub-band coefficients as proposed in Do
& Vetterli [2002]. This will be more precise compared to using the wavelet sub-band energies.
In practice, the 2-D discrete wavelet transform is computed by applying a separable filter-
bank to the image (Mallat [1989]). The image is decomposed into wavelet sub-bands, using
suitable wavelet decomposition such as Daubechies maximally flat orthogonal filters of length
8 (Dy filters) (Daubechies [1992]). Using this separable filter-bank, we will obtain a multi-scale
pyramidal decomposition. This conventional pyramid wavelet decomposition can be applied
up-to a suitable level to obtain the oriented multi-scale sub-bands. An example for the wavelet
decomposition for 3 levels is shown in the figure 4.7. A SAR image of size 512 x 512 pixels is
used. So the lowest band will have the image size of 64 x 64 pixels.

In order to generate a parametric feature descriptor for the image using wavelet coefficients,
we need to carry out the statistical modeling for the wavelet coefficients. The wavelet transform
has a property that the SAR image, which has the Gamma distribution, has generalized Gaussian
(GG) distribution in the wavelet domain (Daubechies [1992]). It has also been demonstrated
in Van de Wouwer et al. [1999] by fitting the estimated pdf curve with the actual histogram of
the coefficients to model the wavelet coefficients of texture images with GG distribution. The
pdf for GG distribution for a random variable z € (—o0, +00) is written as follows:

5 ()

«a

Pz, B) = me , a,BeRT,zeR. (4.58)

With, I'(-) as the Gamma function; u is the expected value of the distribution; «, and § are the
distribution parameters, also denoted as scale and shape parameters, respectively. The values
of the shape parameter 5 =1 and g = 2 lead to special cases of Laplacian and Gaussian distri-
butions, respectively. Except for the lowest band or the low-pass coefficients, which corresponds
to the approximation of the image, the GG distribution parameters a and 8 are computed for
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SAR image Wavelet decomposition to 3 levels

Figure 4.7: Various oriented sub-bands in wavelet decomposition at 3 frequency scales, on which later
parameter estimation is employed. H: Horizontal frequency scale, V: Vertical frequency scale, D: Diagonal
frequency scale.

all other sub-bands. In this way the statistical and multi-scale view on texture is combined. For
3 levels, we will obtain a feature descriptor of length 2 x 9 = 18.

4.5.0.2 Density parameter estimation using maximum likelihood approach

The parameter estimation for the GG distribution for wavelet coefficients can be carried out using
the maximum likelihood (ML) approach presented in Do & Vetterli [2002], or using a globally
convergent and consistent method for parameter estimation proposed in Song [2006]. We will
just briefly outline the ML approach here, which we have also used in our experiments. For the
ML estimation of the parameters, we define a log-likelihood function for the GG distribution
with two parameters o and (8 as follows:

L
L(z;a, ) = long(mi; a, ). (4.59)

=1

Some more theoretical background over the ML estimation of density parameters has been
presented in Appendix-C. For GG distribution this maximum likelihood estimator will have the
following form (Varanasi & Aazhang [1989)]):

OL(x;a, B) L L B | x; |,B a P

Oa a Zz_l a 0 (4.60)
OL(x;a,p8) L  LY(1/B) L | z; | A | z; |

ap B g2 Zi:l « log ! 0 (4.61)
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With, U(-) as the digamma function. With shape parameter 3 > 0, the equation 4.60 will have
a unique, real and positive solution for the following scale parameter estimate ¢:

3 L 1/
& = <L§|xi |5> . (4.62)

SAubstitution of the equation 4.60 into the equation 4.61, the estimate for the shape parameter
B can be obtained by finding the solution of following the equation (Do & Vetterli [2002]):

L L
S P o | log(gzw)
_i:l + =1 0

14 2A/B) = = 0. (4.63)
B B

L ~
dolal
=1

Solution for the above equation can be obtained numerically, such as using Newton-Raphson
iterative procedure. We demonstrate the fitting of the GG distribution to the wavelet coefficients
in the figure 4.8, with parameters estimated from ML approach.
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(a) H3, @ =100.9418,3 = 0.8826  (b) V3, a = 100.8142, 5 = 0.8706 (¢) D3, a = 96.0567, 8 = 0.9662

Figure 4.8: Normalized histogram of the highest frequency scale sub-bands (H3, V3, and D3) fitted with
the generalized Gaussian distribution. Scale and shape parameters (a, and ) for each sub-band are also
presented.

Only the highest frequency scale sub-bands (H3, V3, and D3) in a wavelet decomposition to 3
levels for the image shown in the figure 4.7 are presented. The shaded gray area is the histogram,
and red-line is the experimental pdf for the GG distribution along with the corresponding a and
[ estimates in the figure 4.8. The corresponding density parameter estimates for all the sub-
bands (except the lowest sub-band which is an approximation of the image) are computed. For
number of levels = 3, the parametric feature descriptor will have following form with length 18:

Ow-cep = {an1, Bui, apt, Boi,avi, Bvi, -+, ays, Bys}. (4.64)

Here, Ow.ccp stands for generalized Gaussian distribution (GGD) model parameters for wavelet
coefficients.
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Sub-image

5. Forest 4. Grassland 3. Garden 2. Buildings 1. Water

6. Mixed

Sub-image | By adzhl Bp1 ¥p1 By Ay B P Bpa Xpa

1. 1.3632 31.345 1.3854 24.624 1.3012 19.024 2.1829 29.566 1.6986 20.962
0.6418 64.488 0.5170 37.032 0.6606 37.868 0.6638 31.150 0.7195 37.475
1.2757 104.40 1.0985 101.35 1.0070 66.759 1.8911 106.74 1.7301 94.119
1.1336  71.996 1.2930 82.682 1.7064 77.607 1.7644 70.647 2.9260 97.649
1.4782 127.88 0.6697 45.164 1.0148 70.327 1.3466 90.856  1.2971 74.625
0.8182 23.151 0.6191 13.933 0.6043 10.736 0.8604 20.210 0.7546 14.324

S G N

Figure 4.9: Generalized Gaussian distribution parameters for wavelet coefficients. Wavelet decomposi-
tion is carried out up-to 2 levels and analyzing window size used is 32 x 32 pixels. The density parameter
estimation in wavelet space using maximum likelihood approach are relatively fast. It takes around 1
minutes to process one sub-image at presented settings, on a standard laptop with Intel Core processor
(2.40 GHz) with 8 GB RAM. However, the texture separability is relatively poor.
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4.6

Summary

The following points have been discussed in this chapter.

The parametric information extraction approaches are methods where a specific model for
the given data set is assumed. The model parameters are used as a descriptor to describe
the image content. The parametric information extraction approaches for spatial content
understanding can be further classified into approaches applied to images in spatial domain
and approaches applied to images within a transformation domain.

The parametric approaches applied to images in spatial domain generally refers to the ap-
plication of Bayesian inference to SAR images which is a consequence of the multiplicative
speckle model. An introduction to two levels of Bayesian inference has been presented. The
knowledge of the prior pdf, which is assumed to be the model of texture of the underlying
backscatter reflectance, helps in improving the accuracy of the parameter estimation.

For parametric approaches applied in spatial domain, generally Gibbs based prior mod-
els, such as Gauss-Markov random fields (GMRF) and autobinomial (ABM) model are
used for texture synthesis in amplitude SAR images. Theoretical understanding of these
models has been presented. Guidelines for maximum a posteriori (MAP) parameter esti-
mation following an iterative evidence maximization approach has been presented along
with preliminary results of estimated parameters which will be later used for performance
evaluations.

We also extend the GMRF prior pdf to complex-valued SAR images. For the parameter
estimation of complex-valued SAR images, we proposed to follow a linear model approach
by taking the advantage of the symmetry and linearity of the model. With Gauss-Markov
random fields applying to the complex-valued SAR images, we dwell into the statisti-
cal texture analysis of the complex-valued SAR images, which is largely limited to the
amplitude images until now.

For parametric approaches applied to images within a transformation domain, we consider
the density parameters of generalized Gaussian distribution for wavelet coefficients of SAR
images. The inclusion of this method in our analysis is attempted to provide the evidence
of the advantage of transformation of image pixels, at least for the patch-oriented image
categorization application which will be evident in the analysis presented in Part-III.
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Chapter 5

Information extraction in SAR
images: nonparametric approaches

Parametric approaches deal with the problem of estimating a set a parameters, by
assuming a particular model for the set of given pizels in an image. Contrary to
this, nonparametric approaches are not postulating any particular model for a set of
pizels in image. The objective of this chapter is to discuss some of the selected and a
newly proposed nonparametric method for information extraction, with introductory
remarks about the nonparametric approaches in the first section.

The nonparametric analysis of images can be carried out in ‘spatial domain’ by view-
ing images as a collection of pixels, or in ‘spatial-frequency domain’ by viewing im-
ages as the sum of sinusoids of infinite extent. The analysis using the gray level
co-occurrence matrices (GLCM) is a method in ‘spatial domain’. The texture param-
eter estimation in GLCM is based on the computation of a set of spatial-dependence
probability distribution matrices, which is discussed in the second section of the chap-
ter.

The other approach in monparametric analysis is frequency analysis method which
can be carried out in the ‘spatial-frequency domain’. This leads us to introduction to
a non-linear spectral feature descriptor (NL-SFD) computed on the spectrum of the
SAR images, which is discussed in the third section.

However, it has been observed that both the cases (GLCM and NL-SFD) are two
opposite extremes of a continuum of possible joint space/spatial-frequency represen-
tation. In real life signals, such as SAR images, it is useful to carry out the analysis of
signals in joint space/spatial-frequency representation, which is also popularly known
as the joint time-frequency analysis (JTFA), such as using the fractional Fourier
transform (FrET). The FrFET is a generalization of the Fourier representation. The
FrFT is a type of JTFA where a complex-valued signal is decomposed in terms of
chirps. Another type of JTFA is the Gabor expansion, which is based on a filter-
band paradigm. The FrFT-based method and Gabor-based method are discussed in
third and fourth section of this chapter, respectively. We will close this chapter with
a short summary in the last section.
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5.1 Introduction to nonparametric approaches

An approach for information extraction and image processing applications which is widely ap-
plicable in multimedia images as well as remote-sensing images is the nonparametric analysis.
Actually the definition of nonparametric analysis is not very well defined. In contrast to the
parametric approaches which provide few parameters for the texture / pattern characterization
by postulating a certain model for the data, the nonparametric approaches may be classified into
a group of methods which provide a large number of kind-of-parameters without postulating a
certain model for the data. This provides more flexibility as the internal architecture parameters
are to be set by the user. The nonparametric approaches can be classified into two classes, first
is the histogram-based method and second is based on the statistical measures of intermediate
sub-images from the original image.

5.1.1 Histogram-based methods

The first class of nonparametric approaches uses the low-level feature, i.e. the histogram (or color
histogram) as a stable representation of the objects and texture in an image. The histogram of
the image serves as the feature descriptor which is very large in size. In case of gray level images,
naturally the size of feature descriptor (similar to the histogram) is equal to the number of gray
levels in the image. In case of colored images, a color histogram is used in similar fashion. This
large feature descriptor is given as input to the standard classification methods (unsupervised
such as k-Means, supervised such as k-nearest neighbor), or other sophisticated classification
routines such as artificial neural networks (ANN) or support vector machines (SVM). Indexing
colored multimedia images using the color-histogram has been presented in Swain & Ballard
[1990] and the use of histogram based segmentation in SAR images has been demonstrated
in Lee & Jurkevich [1989]. For the estimation of probability density function (pdf), several
nonparametric kernel-based estimation and regression architectures have been proposed in the
literature that have proved to be effective estimation tools, such as standard Parzen window
estimators (Parzen [1962] Moser et al. [2006]).

5.1.2 Sub-images based methods

The second class of nonparametric approaches generates some intermediate sub-images and
statistical measure on these sub-images are used to describe the image content. The size of
feature descriptor (which consists of the statistical measure of the sub-images) in this class is
much smaller than the histogram-based nonparametric approaches. The general architecture of
the nonparametric analysis is presented by a block diagram shown in the figure 5.1. To obtain a
feature descriptor for an image, popularly a two stage process is employed. The first stage refers
to the generation of the sub-images. In the second stage, feature extraction process is applied
to the obtained sub-images. Some of the steps in various stages in the figure 5.1 may be ignored
in some methods. In this section, we will illustrate only the general methodological framework,
keeping the SAR satellite images as our interest domain.

In the first stage, sub-images are generated from the original SAR images. The images
obtained from the SAR satellites are inherently the complex-valued images, but generally (not
always) feature extraction techniques only employ the use of amplitude SAR images. In the
first step, the input image I(j7x Ny, (amplitude or complex-valued, as the case may be) is first
preprocessed to obtain an approximate image Al (M xNp)- The preprocessing steps may involve
reduction in the geometrical resolution (down-sampling) or reduction in the radiometrical res-
olution (quantization) etc. Representing the size of original image as M x N pixels, with M
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Input Image
T oixn)

‘ Sub-Image Feature vector,
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Figure 5.1: Architecture of the sub-images based nonparametric analysis of images for information
extraction.

as the number of rows and N as the number of columns in the image, the approximate image
has the size of M} x N pixels, again with M}, as the number of rows and N} as the number
of columns. The size M} x N, pixels is typically smaller than or equal to the size M x N
pixels. This preprocessing step is employed to reduce the computational burden in next step
without compromising the overall accuracy of performance. The next step is the image trans-
formation. In this step, the image pixels are transformed into a suitable transformation domain,
thus representing them in various planes of this transformation domain in form of sub-images
ST(mxn), With & = 1,2,--- k. The advantage of this transformation is to reveal the texture
/ pattern specific information in different planes. The transformation parameter vector decides
the number k of generated sub-images. The size m x n pixels of sub-images is generally smaller
than or equal to the input image, i.e. the approximate image Al(ys, xn,). These sub-images
may be real-valued or complex-valued. The transformation process is usually the representation
of the spatial-domain image into frequency domain, or joint time-frequency domain in various
sub-bands. The other approach could be by applying various filter-banks (e.g. wavelet/ Gabor
filters) to obtain filtered sub-bands. Another approach is to generate base-images (or base-
matrices) with taking into consideration the interaction between neighboring pixels in certain
orientation, e.g. in gray level co-occurrence matrix (GLCM) based methods.

Once the sub-images Sy (%) have been generated in the first stage, a feature extraction
methodology is applied to the sub-images in the second stage. Normally, the features extracted
from these sub-images are the statistical sample moments up to certain order. However, in Julesz
[1981], it has been demonstrated that only linear mechanisms are not sufficient for texture dis-
crimination. So when the sub-images are originally complex-valued, a non-linearity is intro-
duced by computing the amplitude sub-images before texture feature extraction. In other cases,
when the sub-images are real-valued (e.g. in the case of GLCM based methods), non-linear
feature for these sub-images are computed. The feature descriptors fi, with k =1,2,--- |k, ob-
tained from sub-images, are sequentially concatenated to formulate the final feature descriptor
f =Af1,fa,--+, fx} for the input image I(j;. ). When the sub-images are highly correlated
with each other, a feature selection scheme may be employed: Alternatively an isotropic feature
descriptor may be generated using the individual feature descriptors from sub-images. In this
thesis we restrict our analysis to the the feature descriptor formulation shown in the figure 5.1.

83



The sub-images can be generated directly in the image domain by considering the interaction
between the pixels in its neighborhood. Omne example of such methods is the GLCM, which
will be analyzed in this thesis as a nonparametric approach for image domain. The other
approach is to transform the images into a suitable space. The projection of the image on
various planes in multi-dimensional transform space will be various sub-images. The examples
of such transformation can be Fourier transform, the fractional Fourier transform (FrFT), and
Gabor filtering (a kind of wavelet decomposition) etc. These methods will be analyzed in this
thesis as nonparametric approaches for image within a transformation space.

Unlike parametric approaches where the model parameters (texture or density parameter)
is used as feature descriptor, different methodologies are needed to be adapted to generate a
feature descriptor in nonparametric approaches. In the following we present the theoretical
background on the considered methods and guidelines to form a feature descriptor to describe
the spatial content of the images.

5.2 Gray-level co-occurrence matrix

The GLCM or the gray-tone spatial-dependence matrix based method is a way to extract second-
order statistical texture features used in various image processing applications proposed by
Haralick in the 1970s (Haralick et al. [1973], Haralick [1979]).

In Baraldi & Parmiggiani [1995], the use of GLCM’s texture parameters for the texture
characterization in optical satellite images (NOAA AVHRR) have been investigated. It has also
been commented that in certain cases gray level difference histogram (GLDH) outperforms the
GLCM when considering the overall texture measurement accuracy, along with computer storage
and computation time. The texture features generated using the GLCM have been successfully
applied to the texture analysis for mapping sea ice patterns in the low-resolution ERS-1 SAR
images in Soh & Tsatsoulis [1999]. The combined use of the GLCM texture parameters with
Markov random fields (MRF's) texture features have been suggested to improve the classification
of SAR sea-ice imagery in Clausi [2000], later extensive comparative study of GLCM and MRF's
based texture features have been presented in Clausi & Yue [2004]. The use of GLCM in efficient
texture analysis in ENVISAT-ASAR images by introducing the notion of patch re-occurrences
has been proposed and compared with the texture features obtained using Gabor expansion
in Kandaswamy et al. [2005]. The texture features based on GLCM generally outperforms
other classical methods of classification, at least in the case of low-resolution SAR and optical
satellite images. For SAR images, the use of GLCM is largely limited to the sea-ice mapping
and clustering application only. We will investigate the usability of GLCM to the land-cover
classification as well as to the patch-oriented image categorization to the very-high-resolution
SAR images only.

5.2.1 Computation of gray level co-occurrence matrix

The computation of the texture parameters from the GLCMs have been extensively discussed in
literature. Without going into much details in this section, we will briefly recall the theoretical
overview of the generation of the GLCMs and extraction of the textural parameters for SAR
image

The GLCMs P, jj59 have the number of rows and columns equal to the number of gray
levels, G, in the image. To generate texture features based on the co-occurrence probabilities,
statistics are applied to the probabilities (Clausi [2000]). The (4,7)" entry in the matrices of
gray-tone spatial-dependence frequencies, P; ;49 at orientation 6°, and offset d, is the statistical
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probability values of changes between gray tone ¢ and gray tone j at a particular orientation
angle # and a particular offset d. An example of computation of the GLCMs for an analyzing
window size of 4 x 4 pixels is demonstrated in the figure 5.2. Here the range of gray levels is
0 — 3, i.e. the size G of the GLCMs P j|¢ (figure 5.2c) will be 4 x 4 pixels. Each element (3, j)
of the GLCMs contains the number of total gray levels with respective ¢ and j neighbors in the
analyzing window for a particular orientation. In this example, we consider the offset value = 1
for four orientation, i.e. 0°, 45°, 90°, and 135°, as shown in the figure 5.2b. This computation
in each orientation results into 4 GLCMs, as shown in the figure 5.2d.

Oj111]3

1101310

010|112

1121310
(a) Example of an 4 x 4 analyzing (b) Geometry of measurement of
window, with gray level quantized gray level co-occurrence matrix for
to 4 levels. offset = 1 and four orientations.

Gray values

0 1 2 3
0 #0,0 | #0,1) | #0,2) | #0.3)
Gray 1| #00 | #a1) | #0.2 | #03)
values 2 | #0.0) | #@1) | #02) | #03)

3| #30) | #3.1) | #6.2) | #33)
(c¢) A general form of the gray level co-occurrence matrix for a particular ori-
entation, taking the quantization level to 4 gray levels. Here, #; ;) denotes
the number of gray levels with respective ¢ and j neighbors in the analyzing
window for a particular orientation.

1 2 0 1 1 10 1 1 2 1 1 1 300
11 2 1 21 0 0 2 0 0 1 100 0
Poe=10 00 1P =010 0'P=]2 00 0B =1 00 1
2.0 0 0 00 1 1 020 0 1100

(d) Computation of gray level co-occurrence matrices for four orientation: Pgo,P450,Pgoo,and Pisso,for the
analyzing window shown in (a), Later, the texture parameters have to be estimated for these matrices.

Figure 5.2: Example of generation of gray level co-occurrence matrices. The size of analyzing
window is 4 x 4, the number of gray level after quantization is 4 , and four orientations, i.e. 0°,
45°,90°, and 135° have been used

In practice, the number of gray levels is significantly reduced by quantization in the com-
putation of the GLCMs. In case we are supposed to use the full gray level range in an image,
the matrices on which texture parameters needs to be computed will be so voluminous that
the usability of this method for practical applications will not be feasible any more due to high
computational costs. For example, the radiometric resolution of TerraSAR-X images being 16
bits, will provide a GLCM of size 216 x 216, with G = 2'6. Whereas, even visually, quantization
into 2% gray levels is sufficient to discriminate the textures (Albgretsen [2008]). Thus in our
study concerning with the very-high-resolution TerraSAR-X images, we have also quantized the
images to G = 16 gray levels. There has been no rigorous study available which provide the
optimal selection of orientation angle @, but in literature the use of four orientations, i.e. 0°,
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45°,90°, and 135° has been advocated with demonstration of sufficient accuracy of classification
at these orientation angles (Barber & Ledrew [1991], Clausi & Yue [2004]). The offset value d
used is 4 pixels, which has been selected empirically. These settings will provide us a GLCM Py
of size 16 x 16 for each orientation #. On the resulting GLCMs, P, 12 parameters are computed
as summarized in Albgretsen [2008], which are presented in next part of this section.

Complex-valued
SAR Image
T oixn)

A 4

Amplitude envelope

extractionand | Preprocessing
. Feature
quantization GLCM, 0° > fmeien Feature vector, fi

Amplitude GLCM, 45° 7— Feature vector, f2
SAR Image, P extraction Feature vector,
16 gray levels ————| GLCMs g f= {f’/ f Sifa)
itxy) GLCM, 90° —» Fea’cu}‘e Feature vector, f5
T extraction
. . GLCM, 135° —+ Feature Feature vector, fi
Orientations, 0°, 45°, 90°, and 135° extraction
Offset=1
Stage - 1 Stage - II

Figure 5.3: Architecture of the sub-images based GLCM nonparametric analysis of images for informa-
tion extraction.

5.2.2 Feature descriptor based on the gray level co-occurrence matrix

On the GLCMs P jq9, with G = 16, following texture features have been computed. The first
and second statistical moments (mean and variance) are computed on gray level co-occurrence
matrices P ;40 as follows:

G
Z(Pm‘ — p)?

G G
1 1
1. Mean: p= E E P, 2. Variance: o2 = G x
i=1 j=1 j=1

G
GxG —

G

(2

In Albgretsen [2008], it was suggested to compute mean and variance in x and y direction
separately, whereas our experiments advocate that combined computation of mean and variance
in both direction will reduce the size of feature descriptor without compromising the classification
accuracy.

Next element in the feature descriptor is the entropy, which is a standard measure in texture
computation. Entropy suggests the degree of randomness and uncertainty associated with the
pixels in the image. As the elements of the GLCMs P, ;)49 are actually the statistical probability
values of the gray level change in the image, thus entropy can be computed as follows:

G G
3. Entropy: — Z Z P; jlogP; ;,
i=1 i=1

The angular second moment (ASM) or energy as well as the inverse difference moment (IDM)
are the measures of homogeneity of the image. The value of ASM will be high in case of a
homogeneous scene due to the relatively high contribution from some of the gray levels. The
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weighting factor 1+ (i — j)? in IDM will result a low IDM value of inhomogeneous areas. The
ASM and IDM are computed as follows:

4. ASM: ZZP”, 5. IDM: ZZHZ_J (5.1)

=1 1=1 =1 1=1

Correlation between the elements of the GLCM will provide the relative linear dependencies of
the pixels in image at specific positions, which is computed as follows:

P,
6. Correlation : ZZ” ij — Hiky
0i0
=1 j=1

Here, iz, {1y, 0, and o, are the first and second statistical moments of the marginal-probability

matrices P, and P,. With, P,(i) = ZJ-GZI P(i,j) and Py(j) = Z@G:1 P(i,7). Contrast and

dissimilarity measures the local intensity variations which favors the contributions from non-
diagonal elements of GLCM, computed as follows:

G G G G
7. Contrast: Z ZPZ'J'(i -3 8. Dissimilarity: Z ZPM i— g%

=1 i=1 i=1 i=1

The last two features, cluster shade (CS) and cluster prominence (CP) are measures of the
skewness of the GLCM, i.e. they are the measure of lack of symmetry (Ion [2009]), and computed
as follows:

G G G G
DY (45— pmi—p)’Pig, 10, CPr YN (i j — i — ) *Piy

i=1 i=1 i=1 i=1

It can be seen that many of the features are strongly correlated with each other, which need to
be computed for each orientation separately. Thus a feature selection criterion can be adapted
before classification procedure. Haralick proposed the use of angular mean, My, ., (d) and
range Ry, . (d) of all the presented features farom at d offset and Ny orientations for reducing
the size of feature descriptor to input to a classifier. Angular mean and range can be computed
as follows (Haralick et al. [1973], Albgretsen [2008]):

Moo (d) = J\179 > farom(d, 0), (5.2)
9
Rigron(d) = mgx[fGLCM(d, 0)] — mein[fGLCM<d, 0)]. (5.3)

However, our analysis suggests to use all the features in one feature descriptor for better classi-
fication results. Using four options of orientation, 0°, 45°, 90° and, 135°, provides us a feature
descriptor of length 40 (as shown with an example in the figure 5.4):

Jarem = {fGLemye {1 to 10} JGLOM,s0 {1 to 10} JGLCOMggo {1 to 10}> JGLOM 350 {1 to 10} }- (5.4)
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Sub-image Mean Variance Entropy ASM Corr. Contrast CS

5. Forest 4. Grassland 3. Garden 2. Buildings 1. Water

6. Mixed

Sub-image | Mean Variance ASM Corr. Contrast  Dissi. CS CP
1. 6.5077 19.165 6.18e-3 1.86e-2 3.67e+1 4.6709 2.09e+2  4.74e+3
2. 27.179 1923.9 3.45e-1  -1.49e-4 1.76e+2 21.793 -3.14e+5 1.36e+7
3. 9.7577 30.096 1.06e-2  -2.66e-2 5.14e+1 6.4924 -8.11e4+2 1.24e+4
4. 10.714 49.768 1.53e-2  -1.14e-2 5.49e+1 7.1250 -1.77e+3 2.87e+4
5. 8.8163 26.039 1.06e-2  -1.65e-2 4.78e+1 5.9719 -3.42e+2 6.48e+3
6. 10.982 85.314 5.27e-2  -6.02e-3  8.88e+1 10.809 -3.18e+3 5.14e+4

Figure 5.4: Gray level co-occurrence matrix based feature descriptor. The images have been
first quantized to 16 gray levels. GLCMs using four options of orientation and pixel offset 1 have
been computed before feature descriptor generation. The feature separability is good in several
regions, but due to quantization step overall accuracy will probably be poor. It takes around 5
minutes to process one sub-image at presented settings, on a standard laptop with Intel Core
processor (2.40 GHz) with 8 GB RAM.
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5.3 Non-linear feature descriptor based on the Fourier spectrum

The analysis of the images can be carried out in a transformation space, such as spatial-frequency
domain using the method of Fourier representation. Any real or complex-valued continuous
signal x(t) defined on the interval (¢, to+ 1) can be represented by following expansion (Ahmed
& Rao [1975]):

o0

z(t) = > catn(t), (5.5)

n=—oo

with, ¢, as the n'" coefficient of the expansion and wu,(t) as the set of real or complex-valued
continuous basis functions. In case of Fourier representation of a periodic signal, the set of func-
tions {u,(t)} is the exponential signals {e/"0t n = 0,4+1,42,---}. Here wy is the fundamental
angular frequency, related to the time period 7}, as wg = 277},. Thus the Fourier series expansion
for a continuous time periodic signal is given as follows:

(o]
z(t) = E Cne?™0 with ¢, = 7 ) x(t)e Imot gt (5.6)
P

n=—oo

The coefficients of expansion ¢, are termed as the Fourier coefficients, which are complex-
valued. The above expansion is possible as long as the Dirichlet conditions with strengthened
requirements are satisfied (Gaskill [1978]), i.e. the signal x(¢):

e has finite number of discontinuities in any period,

e has a finite number of maxima and minima in any period,

e is absolutely integrable on the interval (—oo, 00).
The transition from Fourier series to Fourier transform happens when we allow period to increase
without limit, i.e. signal becomes aperiodic. Thus the spectrum of xz(t) is obtained by taking
the limit in the equation 5.6 as T}, — co. Thus the Fourier transform pair for a continuous time
aperiodic signal z(t)are given as:

e}

x(t) = % /_00 X (w)e’dw,and X (w) = / x(t)e It dt. (5.7)

—00
Again the following Dirichlet conditions guarantee the existence of the Fourier transform:

e has finite number of discontinuities,
e has a finite number of maxima and minima,

e is absolutely integrable.

Up to now we discussed the case of continuous time or analog signals. In this case of continuous
time periodic signals, Fourier series representation can consist of an infinite number of frequency
components ranging from —oo to +o0o and frequency spacing between two successive harmoni-
cally related frequencies is 1/7}, (John G. Proakis [2006]). However, in the real-life situations,
we encounter the case with discrete time signals where the frequency range is unique over the
interval (—m,m) or (0,27). Consequently, the Fourier series representation for a discrete time
periodic signal will contains at most N frequency components, given as follows:

N N
) ) 1 »
x(n) — § CneJQWmn/N’Wlth Com = N § Ox(n)e ]27rmn/N. (58)
n=

m=0
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Where N is the fundamental period. Similar to the case of continuous time periodic signals, the
frequency analysis of discrete time periodic signals can be extended to the aperiodic case. As
now the signal is discrete in time, integral is replaced with summation. Moreover, the frequency
range is limited to (—m,7) or (0,27). Thus Fourier transform pair can be written as follows:

oo
z(n) = % X(w)e’"dw,and X (w) = Z x(n)e vm, (5.9)
n=—oo

Above formulations have been presented for the case of one-dimensional. These formulations
can be extended for a two-dimensional case z(r,a) by carrying out a sequential transform in
both directions, e.g. for a SAR image, with two variables r and a defining the range and azimuth
bins in spatial domain. The Fourier transform pair for a SAR image z(r,a) with two variables
of dimension M x N can be written as follows:

| MoN l M N
z(r,a) = N2 X (u,v) ]2“(ﬁr+ﬁa>, X(u,v) = ZZJJ (r,a)e _J% SR (5.10)
k=0 1=0 k=0 1=0

The Fourier transform of the image z(r, a), i.e. the spectrum X (u,v) is used for the generation
of the feature descriptor.

5.3.1 A non-linear feature descriptor for SAR images based on Fourier trans-
form

The use of spectrum in the analysis of speech signal has been extensively studied in literature.
Spectrum based standard features have been studied for speech recognition in Hunt et al. [1980]
and for music-speech discrimination in Scheirer & Slaney [1997]. Later these features have been
revisited in Tzanetakis & Cook [2002], and Li & Ogihara [2006]. We tried to adapt these spectral
features for the texture and structure analysis in the SAR images. We presented the use 7 fea-
tures motivated from the mentioned timbre texture features in Singh et al. [2009] for pixel-based
classification in very-high-resolution SAR images. In Popescu et al. [2010], we demonstrated the
same feature descriptor on the application to patch-oriented image categorization in very-high-
resolution SAR images. An extensive study on patch-oriented image categorization has been
later presented in Popescu et al. [2012].

No we will provide the theoretical details of these 7 non-linear features based on the spectrum
of SAR images. First two features (mean and variance) are based on statistical properties and
next four are motivated from timbre texture features used for music genre classification. The
mean, 4, is the average value of the amplitude of the spectral decomposition, and the variance,
o2, provides the information about the statistical dispersion of the data given as follows:

M N
1 N
:U’spcctrum = M x N ZZ X u 1})| s2pectrum = M %« N ZZ (|X ’LL v | - ) . (511)

u=1v=1

Where, M x N is the size of the sub-image, which is also the size of the estimated spectrum
X(u, v). Here, (r,a) are the spatial range and azimuth bins, and (u, v) are the range and azimuth
frequency bins respectively. Variance is the square of o, denoted as standard deviation.
Spectral centroid is the center of mass or centroid of the amplitude of the spectral decom-
position for a signal. Spectral centroid for an image is computed in range (SC") and azimuth
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Figure 5.5: Architecture of the sub-images based spectral nonparametric analysis of images for infor-
mation extraction. F'T stands for the canonical Fourier transform operator.

(SC?) directions separately as follows:

M N . M N .
SO 1K (w,0) + SN 1K (u,0)] + £

3. SC" = Tzlhfl . 4. SCo = u=le=l . (5.12)

N
> X (u,v)

r=1a=1 u=1v=1

Where, f" and f® denotes the magnitude of the frequency bin number in range and azimuth
direction respectively. Spectral centroid is the measure of the brightness of the spectrum.

Spectral flux measures how the local spectrum is changing with successive steps. It is nothing
but the square of the difference between magnitude of two successive spectra. Similar to spectral
centroid, spectral flux is also computed in range (SF”) and azimuth (SF?) directions separately
as follows:

M N M N
5. SFT =" (IX(u,0)] = [X(u—1,0)])% 6. SF*=>"> (|X(u,0)] - |X(u,0 - 1)[),
u=1v=1 u=1v=1
(5.13)
Spectral roll-off is a measure of spectrum energy and represents the frequency bins below
which a% of the spectrum energy is concentrated. We consider the value of o = 85. Larger
value of spectral roll-off corresponds to the higher frequencies in an image patch.

Rr M a M N
7. ZZSR(T,Q)ZEZZWU,U» (5.14)

r=1a=1 r=1a=1
In equations 5.11 to 5.14, the subscripts of summation running from » =1 to M and a = 1
to N are representing the range and azimuth bins respectively. We have taken M=N in all the
cases in our analysis. So the contextual feature descriptor based on the full spectrum of SAR
image has the following form with the length of 7 elements:

fxLsep = {p, 02, SC", SC, SF”, SF, SR}. (5.15)

An example of computed non-linear spectral feature descriptor fyi.gpp and visual inspection
for texture separability is presented in the figure 5.6.

91



2

g
= il
o =3
+ .
é“ o
g .
%) e
80
£ | i |
] ]
= ‘
m |
o
=}
o
T
2
]
O v i
)
el L
g -
% i
i . o
= e |
O
ﬁ; i
. '1
n
o
5
<9
%
ko] -
19
i
=
©

swvimage | 1 o2 SC, SC, SF, SF, SR

2.937e+2 3.117e+5 5.693e+5 5.540e+5 1.005e+0 8.227e-1  2.200e+2
8.983e+2 2.575e+6 1.736e+6 1.655e+6  5.505e-1 5.497e-1  2.230e-+2
1.289¢+3  6.748e+6 2.530e+6 2.446e+6  8.031le-1 7.655e-1  2.240e+2
8.516e+2 2.889e+6 1.652e+6 1.654e+6  8.656e-1 8.933e-1  2.220e+2
1.554e+3  7.358e+6 3.047e+6 2.943e+6  5.634e-1 7.378e-1  2.240e+2
7.730e+2 1.442e+6 1.490e+6 1.440e+6 4.845e-1 5.615e-1  2.290e+2

S otk W

Figure 5.6: Non-linear spectral feature descriptor. With visual assessment, we can expect to have a
good texture / category discrimination. E.g. in sub-image 1, the roughness of sea on the lower part is
distinctively visible in several features. As well as in sub-image 3, the variation in the garden texture
at lower left corner is also captured. The spectral roll-off seems to behave very good in discriminating
the spatial structures for man-made objects in sub-image 3. It takes less than a minute to process one
sub-image at presented settings, on a standard laptop with Intel Core processor (2.40 GHz) with 8 GB
RAM.
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5.4 The fractional Fourier transform

Whereas the GLCM presented in section 5.2 is a method in spatial domain, the method of
Fourier representation presented in section 5.3 is dealing the signals purely in frequency domain.
These are two opposite extremes of a continuum of possible joint space/spatial-frequency repre-
sentation. A more detailed insight of the signal can be achieved by expanding the signals jointly
in time and frequency domain, i.e. by carrying out the joint time frequency analysis (JTFA).
The JTFA can be carried out using the linear transformation such as the fractional Fourier
transform (FrF'T), filter-bank based approaches such as Gabor expansion, or using quadratic
transformation such as Wigner-Ville decomposition.

The use of Wigner-Ville decomposition for the moving-target detection and imaging in SAR
images was demonstrated in Barbarossa & Farina [1992]. Being a quadratic transform, the
Wigner-Ville distribution is influenced by cross-term interference when more than one target
is present (Qian & Chen [1999]). In Sun et al. [2002], use of the FrFT for moving-target
detection was proposed. The relation between the FrE'T with the Wigner-Ville distribution is
derived and its advantages over the Wigner-Ville distribution demonstrated. The FrFT is a
linear transformation free from cross-term interference. Thus we will restrict our discussion and
analysis only to the linear transformation, i.e. the FrFT and not to the Wigner-Ville distribution.

Based on these observations, in Singh & Datcu [2012b], we proposed a method to analyze
SAR images using the FrFT. Later extensive study on this method has been presented in Singh
& Datcu [2013]. The FrFT is applicable to any single-look complex (SLC) SAR image. In the
following, we will present a basic theoretical background of the FrFT. Later its applicability to
the SAR image analysis will be discussed in detail.

5.4.1 Note on the fractional Fourier transform of complex-valued signals

The FrF'T was first proposed in mathematical literature in Namias [1980] as a theory of fractional
powers for the Fourier transform. Later a formal rigorous study of the FrF'T was carried out
in Mcbride & Kerr [1987]. The FrFT of a signal z(t) is represented as:

Xo(u) = /_ (Kt u)dt, (5.16)

where o« = pm/2 denotes the transform angle, with p as a real number called the ‘order of the
FrET’. The transformation kernel in the equation 5.18 is defined as follows (Almeida [1994]):

- 12142 .
1—jcota e]t 'g“ cot a—jut csc o

2 ’
if a i t Itiple of
Ka(tﬂJ,) _ if o is not a multiple of 7 (517)
5(t — u) if a is a multiple of 7
5(t + u) if a + 7 is a multiple of 27

The inverse FrFT with transform angle « is the FrFT with the transform angle —«, as follows
oo

x(t) = / Xo(u)K_o(u, t)du, (5.18)
— 0o

Thus, the FrF'T can be assumed as the representation of the signal z(¢) in terms of a orthonormal
basis formed by a set of functions K_,(u,t), with u acting as the parameter for spanning the
set of basis functions (Almeida [1994]). This basis function is actually the chirps with a certain
frequency modulation rate (FM rate).
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It can be inferred from the equation. 5.17 that, for « = 7/2, the FrFT takes the form
of a canonical Fourier transform and, for a = 0 or a multiple of 27, it takes the form of an
identity-operator. The Fourier transform is based on the decomposition of signals into sinusoids.
Whereas, the FrE'T can be considered as a decomposition of signals in terms of chirps, with FM
rate of the chirp defined by the transform angle «. It can also be mentioned that the FrFT
satisfy following basic properties, with (F®[-]) as the FrFT operator (Sun et al. [2002]):

1. Linear operator: F%[a x1(t) + b x2(t)] = a F[x1(t)] + b F[x2(t)].
2. Identity operator: FO[z(t)] = F?™[2(t)] = z(t).

3. Consistency with the Fourier transform: F™/?[z(t)] = Xw.

4. Additivity of rotation: F¥8[z(t)] = Fz(t)]F?[z(t)).

On the implementation point of view, the slightly modified form presented in Almeida [1994]
and Capus & Brown [2003] changes the complex amplitude factor for computational simplicity,
by rewriting the FrFT as :

e_j(%ﬂ—Sgna_%a) 1.2 o0 . 1,2
Xa(u) = Wegju cot o X / e—]utcscaegjt COtax(t)dt. (5.19>
7| sin (o —00

Here, t and u can interchangeably represent time and frequency domains. The transform output
lies between the time and frequency domains, except for the special cases of « = 0 and o = 7/2.
Based upon the equation 5.19, the FrFT can be realized in a four step process as follows (Almeida
[1994], Ozaktas et al. [1996]):

1. Pre-multiplication of input signal by a linear chirp with frequency modulation (FM) rate
determined by the transform order.

2. Computation of scaled Fourier Transform with scaling factor of sin .
3. Post-multiplication by a chirp in transform domain.

4. Another multiplication by a complex amplitude factor.

Using the discrete FrF'T formulations presented in Bultheel et al. [2002], the N-point FrFT can
be computed with a computational complexity of O(N log N) with sufficient accuracy.

The advantages of the FrF'T can be understood by considering the case of a linear frequency
modulated (LFM) signal, i.e. a chirp signal with some FM rate. Chirp is a typical non-stationary
signal, whose instantaneous frequency rises linearly with time with FM rate (Sun et al. [2002]).
In the canonical Fourier transform (FT) domain, the signal can be regarded as the projection
of its time-frequency distribution only onto the frequency axis w. This leads to spread of the
spectrum for a chirp signal, as shown in the figure 5.7a. Whereas, the projection of this chirp
signal at a rotated time-frequency domain with suitable angle a will be highly concentrated, as
shown in the figure 5.7b. The projection of this signal on other possible planes between time-axis
and frequency axis will describe the signature of the signal as a whole.

5.4.2 SAR signal analysis using the fractional Fourier transform

In order to demonstrate the signal energy distribution within the rotated time-frequency plane
for fractional orders of the FrFT for SAR signals, the case of a 1-D complex-valued signal
extracted from one line in azimuth at a constant range from a SAR image will be considered.
We consider to separate examples with signal dimension of 100 pixels, shown in the figures 5.8a
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(a) Canonical FT domain (b) The FrFT domain

Figure 5.7: Projections of a linear frequency modulated signal on (a) Fourier transform (FT) domain
and (b) the fractional Fourier transform (FrFT) domain. Here, ¢ and w represents the time and frequency
coordinates. The time-frequency coordinate is rotated by an angle « relative to the original coordinates
(t,w) to obtain a set of new coordinates (u,v). This set of new coordinates (u, v) represents the fractional
Fourier transform space.

and 5.9a. The thin black line and the thin gray line represent the real and imaginary parts of
the signal, respectively. The thick black line is the amplitude of the signal.

The signal in the figure 5.8a constitutes a signal originated from the Doppler shift due to a
target moving in the azimuth direction. So its a very good example of a chirp signal with some
FM rate. The FM rate of the chirp signal is governed by the velocity of the moving vehicle. Now
as shown in the figure 5.8, we will try to find out how this chirp signal is behaving at different
planes in the joint time-frequency domain, i.e. at different transform angle in the FrF'T domain.
For a transform angle of a = 90° (figure 5.8c), which is also the canonical Fourier transform
representation of the signal, the signal energy is spread over the whole frequency domain. But,
when analyzing the signal using the FrF'T at a transform angle of o = 146.25° (figure 5.8d),
it can be pointed out that the signal energy is concentrated at a certain location. Figure 5.8e
provides an insight into the rotated joint time-frequency domain representation for this signal.

The signal in the figure 5.9a constitutes a signal originated from the azimuth ambiguities
visible on the sea surface due to large buildings located at nearby coastal region. The azimuth
ambiguity in SAR images occur when the contribution from the backscatter in the antenna
footprint to the main lobe of antenna, and the contribution from the backscatter outside of the
antenna footprint to the side-lobes of antenna become indistinguishable (Guarnieri [2005]). This
happens when azimuth frequency corresponding to both backscatters is equal to a multiple of
the sampling frequency or pulse repetition frequency. Now in our case this signal is somehow
a complex-valued sinusoidal signal, thus we can see a peak at a particular frequency in the
canonical Fourier transform domain (figure 5.9¢). Figure 5.9e provides an insight into the rotated
joint time-frequency domain representation for this signal.

The basic assumption underlying SAR synthesis is that the backscattering of each contrib-
utor is stable regarding the frequency bandwidth and the azimuth viewing angle (Massonnet &
Souyris [2008]). The material on ground and directivity of backscattering pattern from various
structures produces specific variations in the received signal, and these variations are integrated
in the amplitude and phase information in the single-look complex (SLC) SAR images. Such
variations are more prominent in the high and very-high-resolution SAR images as the processed
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Figure 5.8: The signal energy distribution for some transform angles using the fractional Fourier trans-
form. (a) 1-D signal obtained from a SAR image (one azimuth line of constant range, without Doppler
centroid estimation and correction (Madsen [1989], Long et al. [2011])), which can also be interpreted as
the FrFT at o = 0°. (c) the Fourier transform of the signal in (a), which can also be interpreted as the
FrFT at a = 90°. (d) The FrFT of signal in (a) at = 146.25°, at this transform angle, the energy of the
signal is localized at a certain location on the x-axis. (b) The FrFT of the signal at o = 180° is shown
only for understanding the FrFT characteristics. (a) to (d) The thick line: normalized magnitude of the
signal, the thin black line : real part, the thin gray line: imaginary part. (e) Pictorial representation of
signal amplitude variation with respect to transform angle.
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Figure 5.9: The signal energy distribution for some transform angles using the fractional Fourier trans-
form (FrFT). (a) 1-D signal obtained from a SAR image (one azimuth line of constant range, without
Doppler centroid estimation and correction (Madsen [1989], Long et al. [2011])), which can also be in-
terpreted as the FIFT at o = 0°. (c¢) The Fourier transform of the signal in (a), which can also be
interpreted as the FrFT at a = 90°. In this particular case, the signal energy is also localized at a certain
location on the x-axis for « = 90°. (d) The FrFT of the original signal at o = 146.25°, here the energy of
the signal is distributed over the complete x-axis, unlike the signal energy concentration for the example
presented in the figure 5.8. (b) The FrFT of the signal at a = 180° is shown only for understanding the
FrFT characteristics. (a) to (d) The thick line: normalized magnitude of the signal, the thin black line
: real part, the thin gray line: imaginary part. (e) Pictorial representation of signal amplitude variation
with respect to transform angle.
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bandwidths are larger (Spigai et al. [2011]). The projections of complex-valued backscattered
signal on the rotated time-frequency domain will discover these variations and will provide hid-
den information about the backscattering phenomenon occurring on ground.

In order to find a compact descriptor for SAR signals, we exploit the representation of a
signal at various transform angles to demonstrate signal characteristics. We can generate a
signal descriptor from projections of signals on various time-frequency planes. We extend this
assumption to 2-D signals for the SAR image patch case. The 2-D FrEF'T can be achieved by
two 1-D separable transforms on x and y domains. Apart from discovering the backscattering
information in various planes of the joint time-frequency domain, the statistical characterization
is simpler in case of the FrFT coefficients as compared to original image patch. The FrFT
algorithm behavior is shown in the figure 5.10 with example patches containing various objects.
It can be seen in the figure 5.10a, the pdf of the original patch is multimodal (shaded-gray),
which is transformed into unimodal at various transform angles in the FrFT space. For the
image patch in the figure 5.10b, the pdf for original image patch is heavy-tailed (shaded-gray),
which is transformed at various transform angles in the FrEF'T space into pdfs which are easier
to analyze.

5.4.3 Note on 2-D separable fractional Fourier transform

Being a linear transform, the FrF'T can be applied to x domain first and on this output FrFT can
be applied to y domain. The same approach is followed while computing the canonical Fourier
transform of 2-D signals, i.e. images. So, for an image I(z,y), the 2-D FrFT can be computed
by applying the transform first to the rows and then to the columns. However the sequence of
the transform can be reversed (i.e. first to the columns and then to the rows), without changing
the results as the FrFT is a linear transform. We demonstrate this concern by computing the
FrF'T for an image-patch using both the orders, as shown in the figure 5.11.

Some structures and objects in the SAR images have peculiar signal response when seen in
the fractional Fourier space. In the previous section, we demonstrated this with the help of
1-D signals extraction from SLC SAR images (figures 5.8 and 5.9). Now we will present similar
observations on the 2-D signals, i.e. on the SLC SAR images.

Figure 5.12 at p = 0 shows the 2-D azimuth ambiguities on the sea surface from large building
blocks on the nearby coastal region. The FrFT at certain transform angles with respective
real part (top row), imaginary part (middle row) and amplitude (bottom row) are presented.
The signatures of these signals in amplitude images may be perceived as ship like structure
and confused with ships in image information extraction. With the visualization of various
projections in fractional Fourier domain it is possible to suggest the true nature of target, as
can be seen in the figure 5.12.

Figure 5.13 at p = 0 shows an SAR image patch consisting of buoys on the sea surface. The
FrFT at certain transform angles with respective real part (top row), imaginary part (middle
row) and amplitude (bottom row) are presented. It has been pointed out earlier that the FrFT
can be perceived as the decomposition of signal in terms of chirps. This phenomenon can be
observed in the real and imaginary part of the various transform orders for this target. The
signal at various transform orders is spread in terms of chirps with FM rate of the chirp relative
to the transform angle.

98



p=0.375 p=0.75

Histogram
Histogram
Histogram

ha

Histogram

_ L V-
0 64 128 192 256 0 64 128 192 256 O 64 128 192 256 0 64 128 192 256
Greylevel Greylevel Greylevel Greylevel
p=0 p = 0.125 p = 0.375 p=0.75

(a) A SAR image patch (shown at p = 0) with multimodal density and its fractional Fourier trans-
form at selected transform orders along with corresponding densities. It is evident from analyzing
the histogram of the amplitude of the fractional Fourier transform coefficients, that the statistical re-
sponse turns into unimodal from multimodal of the original SAR image. This will make the statistical
analysis of the coefficients easier.
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(b) A SAR image patch (shown at p = 0) with heavy-tailed density and its fractional Fourier trans-
form at selected transform orders along with corresponding densities. It is evident from analyzing
the histogram of the amplitude of the fractional Fourier transform coefficients, that the statistical
response is not any more heavy-tailed as for the original SAR image. This will make the statistical
analysis of the coefficients easier.

Figure 5.10: The amplitude of the FrFT coefficients of SAR image patches (shown at p = 0) with (a)
multimodal density behavior and (b) heavy-tailed density behavior for the selected transform orders.
Here p is the transform order of the FrFT with o = pn/2 denoting the transform angles along with
normalized histogram of the corresponding amplitude FrFT coefficients.
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Figure 5.11: Computation of the 2-D fractional Fourier transform of a SAR image patch (shown at
p = 0) at transform order step Ap = 0.125. Top : first columns, then rows. Bottom : first rows, then
columns. Where p is the transform order of the FrFT with « = pr/2 denoting the transform angle.
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Figure 5.12: (Top) Real part, (Middle) imaginary part and (Bottom) amplitude-envelope of the SAR
image patch (shown at p = 0) at certain transform orders. Here p is the transform order of the FrFT
with o = pr/2 denoting the transform angle.
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Figure 5.13: (Top) Real part, (Middle) imaginary part and (Bottom) amplitude-envelope of the SAR

image patch (shown at p = 0) at certain transform orders. Here p is the transform order of the FrFT
with @ = pr/2 denoting the transform angle.
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5.4.4 Feature descriptors based on the fractional Fourier transform
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Figure 5.14: Architecture of the sub-images based FrF'T nonparametric analysis of images for information
extraction.

In reference to the figure 5.1, the architecture of generating a FrFT-based feature descriptor
is shown in the figure 5.14. Input is a complex-valued SAR image. As a preprocessing step, the
Doppler centroids in range and azimuth estimated and correcting with the use of appropriate
algorithms (Madsen [1989], Long et al. [2011]). The projections of this corrected complex-
valued SAR images on rotated joint time-frequency planes are computed using the methodology
presented by the equation 5.19 at certain transform angles. This provides us complex-valued sub-
images | m(z,y) | as shown in stage-I in the figure 5.14, on the amplitude | m(z,y) | of which
the feature descriptors are computed in stage-II in the figure 5.14. In the classical study by
Julesz in Julesz [1981], it has been demonstrated that only linear mechanisms are not sufficient
to explain how human visual system perceive the texture. These principles has been further
asserted in Malik & Perona [1990], as well as in Caelli [1985]. This was the reason to compute
first the amplitude of the complex-valued sub-bands, over which simple statistical measure are
computed to generate a feature descriptor. The obvious choice will be to compute the moments.

In Singh & Datcu [2012b], we proposed the use of first two moments (mean, u, and vari-
ance, o) of the amplitude of the FrFT coefficients for the patch-oriented image categorization.
Considering a suitable interval of Aa = 0.125, with {a = 0, Ao, 2A«, 3Aq, - - , 7}, the feature
descriptor in our analysis for patch-oriented image categorization also includes the third moment
(skewness, ), which has the following form, of length 51 at Aa = 0.125:

fFrFT - {,U'0> O—(Z)aFYOaMAa7O—2Aa77Aa7 oy Mo 072r?77r}' (520)

For pixel-based classification we exclude the third moment (skewness, 7) in the feature descrip-
tor, consequence of which the length of the feature descriptor reduces to 34 at Aa = 0.125. An
example of computed feature descriptor frmpr based on the moments of the amplitude of the
FrET coefficients and visual inspection for texture separability is presented in the figure 5.15.
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Figure 5.15: The fractional Fourier transform based feature descriptor. The value for Ao = 7/16.
Similarities can be seen in the texture separability using the FrFT-based feature descriptor with the
non-linear spectral feature descriptor computed in the Fourier domain. But we see enhancement on a
larger scale. E.g. the rough sea on the lower part in sub-image 1 is very well distinguishable. Similar
observation can be made for the specific texture for the lower-left region in sub-image 3. The computation
of the fractional Fourier transform coefficients is rather computationally expensive. It takes around 30
minutes to process one sub-image at presented settings, on a standard laptop with Intel Core processor
(2.40 GHz) with 8 GB RAM.
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5.5 Gabor filter banks

The use of the FrFT is limited to the complex-valued signals, whereas another joint time-
frequency analysis method, the Gabor expansion is applicable to the real-valued signals only.
Gabor expansion introduced by a Hungarian-born British physicist, Dennis Gabor, in 1946,
particularly suitable for analysis of signals with sharp changes but which stay for a small duration
of time. It suggests expanding a signal into a set of functions that are concentrated in both
time and frequency (Gabor [1946]). This set of functions, also called the Gabor coefficients,
plays the main role in analysis of signal’s local properties. Gabor expansion can be written
mathematically as follows (Qian & Chen [1993)):

s(t) = i i Grnhimn(t), With  f,n(t) = h(t — mT)e’™" (5.21)

m=—00 N=—00

Where, Gy, p, are called the Gabor coefficients. The set of elementary functions {h, ,(t)} consists
of a time-frequency shifted function h(t). In practice to describe the texture of an image i(z,y), a
filter structure is employed where image is filtered using the bandpass filters, also called Gabor
elementary functions h(x,y), to extract a specific frequency band from an image. Usually a
convolution operation (%) of GEF’s, h(x,y), with the original image, i(z,y), is employed to
obtain a Gabor filtered image, m(x,y), as follows:

m(x,y) = li(z,y) * h(z, y)]. (5.22)

5.5.1 Description of the Gabor elementary functions

Gabor coefficients or Gabor elementary functions (GEF’s) are not unique and can be described
in many different ways. GEF’s are sometimes also referred as Gabor wavelets, which are nothing
but the Gaussian modulated by a complex sinusoid as follows (Super & Bovik [1991], Bovik et al.
[1990]):

h(z,y) = g(z',y )&l UetVy) (5.23)

Here, (2',y") = (xcos¢ + jsing, —xsing + ycos @) are the rotated rectilinear coordinates in
spatial domain, and (U, V') are the particular 2-D frequency in the complex-sinusoid. The 2-D
Gaussian function g(z,y) with its corresponding Fourier transform G(u, v) is give as (Dunn et al.

[1994]):
9(@,y) = —— exp [—; <x2 + yQﬂ , (5.24)

2
2w L0y o; Y

G(u,v) = exp{—27° [(0 [u — U]")* + (o, [v — V]')?] }. (5.25)

Here, [(u —U), (v =V) ] =[(u—U)cosh + (v—V)sinf, —(u — U)sinf + (v — V) cos 0] are the
shifted and rotated rectilinear coordinates in the frequency-domain, with o, = 1/270,,0, =
1/2mo, characterizing the spatial extent and bandwidth of h(x,y). Filter parameters (o, and
o,) can be computed in several ways. The Gabor wavelets are non-orthogonal in nature unless
they are poorly concentrated in time or in frequency domain. While keeping a good time
and frequency domain concentration, non-orthogonality is allowed at the cost of redundant
information in the filtered image. In order to reduce this redundancy, following formulation to
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compute o, and o, has been proposed in Manjunath & Ma [1996]:

o (/U5 = 1)U,
(U/U) 5T +1)y/ZTog2 (5.26)

1
202 2log2)%c2] 2
o, = tan <%> [Uh—Zlog (UL:)] [210g2—(0?}# .
h

With, U, and U; are the upper and lower center frequencies of interest in the Gabor kernel, S is
the number of stages and O is the number of orientations used in the multi-scale/ multi-resolution
Gabor decomposition. The choice of Gabor coefficients is not restrictive but the foundations
for wide usage of Gabor filter banks for texture description were mainly laid in Manjunath &
Ma [1996] with the proposal of a homogeneous texture (HT') descriptor, and later advocated in
diverse fields studies (Kandaswamy et al. [2005], Riaz et al. [2012]). we also followed the same
formulation mentioned in the equation 5.26, with U; = 0.4, U; = 0.05.

In the figure 5.16, we illustrate the real and imaginary parts of the Gabor kernel at Stage
S = 1, and six different orientations O = 1,2,--- ,6. The SAR image under consideration, or
a analyzing window in SAR image is convolved with this complex-valued Gabor filter bank to
obtain a Gabor filtered image.

IN /2 28 =1 B0 BN\
Convolution

JO) . .
/| Z N |\
O0=1 O0=2 0=3 O0=14 O0=5 O=6

Real and imaginary part of Gabor kernel for stage S = 1

SAR Image

Figure 5.16: SAR image is convolved with the Gabor filter banks to get a Gabor filter image. Shown are
(top) the real part and (bottom) the imaginary part of the Gabor kernel for a particular stage S = 1, and
six different orientations O = 1,2,--- |6, using the variance formulation presented in the equation 5.26.
Here [(-) depicts the convolution operator.

Convolution of SAR image or analyzing window in SAR image with complex-valued Gabor
will provide us a complex-valued Gabor filtered output. The amplitude of this filtered output
is used to generate a feature descriptor.

5.5.2 Note on Gabor filter banks applied to complex-valued SAR images

We have seen that the most essential property of Gabor coefficients for characterizing the texture
in images is its bandpass filter property, which has also been demonstrated in Farrokhnia & Jain
[1991]. This bandpass filter like operation is also the underlying mechanism in human visual
systems, which we try to imitate in the Gabor expansion of signals to understand the texture.
Now we must emphasize here that Gabor filter banks applied to the complex-valued SAR images
will loose this true bandpass filter property. The reason is that carrying out a bandpass filtering
with Gabor like operation for complex-valued SAR data will lead to a kind of multiple sub-look
decomposition (Spigai et al. [2011], Singh & Datcu [2012¢]), which is not capturing the textural
information. Thus the Gabor filters applied to complex-valued SAR images provides a very
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poor accuracy in the classification. So it must be noted that the Gabor filters in our case have
been used for the amplitude SAR images. This concern is demonstrated in the figure 5.17, by
convolving the complex-valued and amplitude SAR image with Gabor filter banks.

Real-part S=1,0=1 S=1,0=2 S=1,0=3 S=1,0=4 S=1,0=5 S=1,0=6

Convolution of
complex-image
with
Gabor
filters

Amplitude

(a) Gabor filter applied to complex-valued SAR image.

S=1,0=1 S=1,0=2 S=1,0=3 S=1, 0=4

Amplitude

S=2, 0=4

Convolution of
amplitude-image
with
Gabor
filters

(b) Gabor filter applied to amplitude SAR image.

Figure 5.17: SAR image is convolved with the Gabor filter banks to get a Gabor filter image. Shown
are the amplitudes of the Gabor filtered images using 3 stages and 6 orientations, using the variance
formulation presented in the equation 5.26. The amplitudes of the Gabor filtered images corresponds to
the sub-images | m(z,y) | in the stage-I of the figure 5.19. Feature descriptors are extracted from these
sub-images in stage-II.

In the figure 5.17a, we apply the Gabor filter bank shown in the figure 5.16 to complex-
valued SAR image, and in the figure 5.17b, we apply this filter bank to amplitude SAR image.
It can be seen that whereas, the information about the texture is preserved in the 5.17b by
forming blob-like directional textures in accordance to the directivity of the corresponding filter
bank used, in figure 5.17a we see various multiple sub-looks filtered with rotated complex-valued
Gaussian. However this phenomena is not significantly visible at stage S = 1, but can be seen
at lower stages S = 2 and 3. Some selected enlarged filtered images for both cases are shown
in the figure 5.18. Thus the application of the Gabor filter banks to the complex-valued SAR
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images will not be accurately capturing the textural information. This will lead to an inaccurate
feature descriptor and in turn a reduced performance.

S=1, O=1 S=1, O=1

Gabor filter applied to Gabor filter applied to
complex-valued SAR image amplitude SAR image

Figure 5.18: Few selected enlarged Gabor filtered SAR image patches from figure 5.17. It is evident
from the filtered images generated from the amplitude images shows the oriented sub-bands. Whereas
filtered images generated from the complex-valued SAR images are a kind of sub-looks extracted from
the complex-valued spectrum.

5.5.3 Feature descriptors for SAR images based on Gabor filter banks

Even for the Gabor filters applied to amplitude SAR images, we will obtain complex-valued
filtered images. Again as it has been commented in Julesz [1981], that only linear mechanisms
are not sufficient to explain how human visual system perceive the texture, to further incorporate
non-linearity in the Gabor based approach, one idea is to work on the amplitude of the complex-
valued sub-images. In Bovik et al. [1990], as well as in Manjunath & Ma [1996], it has been
studied extensively that amplitude of the complex-valued sub-images can be used to characterize
the texture of images.

Now the obvious choice for a feature descriptor over the amplitude of the filtered images
are again the simple statistical measure, such as mean p and variance o2 etc. Thus, we also
compute the moments of the amplitude of the complex-valued Gabor filtered output at different
scales and orientations, which later constitutes the feature descriptor. The same hypothesis
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motivated us to propose the feature descriptor based on the moments of the amplitude of the
complex-valued FrET coefficient, which has been already discussed in section 5.4.

The invariance properties of Gabor filters along with the restrictions to the use of Gabor
filters for feature extraction has been demonstrated in Kamarainen et al. [2006]. Even though a
lot of study have been carried out since the Gabor expansion with the proposal of some recent
feature descriptor based on Gabor filters such as auto-correlation Gabor features (Riaz et al.
[2012]) etc., the use of moments of the Gabor filtered images are still widely accepted tool for
texture synthesis in multimedia as well as remote sensing images. The homogeneous texture
descriptor under the visual texture descriptor in the moving picture experts group (MPEG)-
7 standard (Sikora [2001]) also rely on this feature descriptor, thus can be considered as a
benchmarking tool for comparing alternative methodologies. In reference to the figure 5.1, the
architecture of generating Gabor-based feature descriptor is shown in figure 5.19.

Complex-valued

SAR Image
I oaxw

Amplitude Sub-Image, 1 || Feature vector,

envelope Preprocessing I m(xy)stor| extraction f
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Figure 5.19: Architecture of the sub-images based Gabor nonparametric analysis of images for informa-
tion extraction.

In our study, we have used 3 stages, and 4 orientations, with U, = 0.4, U; = 0.05 in Gabor
filter bank formation. The feature descriptor in our analysis for patch-oriented image catego-
rization also includes the third moment (skewness, ). Thus, for 3 stages, and 4 orientation, we
obtain a feature descriptor of length 36 as follows:

s 2 2 2 2
JGabor = {11,107 15, V1,15, H1,25 07 25 V1,25 11,3, 01 3, V1,35 41,45 01 45 V1,45 (5.27)

2 2 2 2
<. 131, 03,17 ¥3,1, 13,2, 0'3,27 V3,2, 13,3, 0-3,37 V3,3, 43,4, 03,47 7374}'

With, us.o, Ug,o and yg o are the first three moments (mean, variance and skewness, re-
spectively) of Gabor filtered image at stage-S, orientation-O. For pixel-based classification we
exclude the third moment (skewness, ) in the feature descriptor, consequence of which for 3
stages, and 4 orientation, we obtain a feature descriptor of reduced length 24. An example of
computed feature descriptor faapor based on the moments of the amplitude-envelope of the Ga-
bor filtered images and visual inspection for texture separability is presented in the figure 5.20.
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6. Mixed

. 2 2 2 2 2
Sub-image | [1g,0, 95,01 H$10; 95,05 Hs105 95,05 Hsi04 95,04 Hs,00 98,0,

1. 1.27 0.36 4.78 5.65 11.33 0.39 6.35 7.18 4.19 8.62
22.08 5.48 26.98 87.98 72.47 10.30 27.70 123.14 13.73 89.03
20.30 5.39 32.87  131.63 32.04 10.95 16.03 54.82 15.28 116.05
11.50 1.62 20.67 25.25 15.71 1.26 13.41 28.54 12.77 76.86
14.59 6.84 49.31  485.50 90.63 19.63 34.86  143.72 24.38  271.04
37.94 5.45 23.70 111.68 54.81 7.03 30.21  245.72 11.46 104.71

S Uk W

Figure 5.20: Gabor filter banks based feature descriptor. Analyzing window used is 16 x 16 pixels. Only
2 stages and 6 orientations have been used in the Gabor filter bank. Its evident that at lower analyzing
window, the performance in texture / category separability is relatively poor for Gabor-based methods.
However, its a very computationally inexpensive method. It takes less than a minute to process one
sub-image at presented settings, on a standard laptop with Intel Core processor (2.40 GHz) with 8 GB
RAM.
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5.6

Summary

The following points have been discussed in this chapter.

The nonparametric information extraction approaches are the methods where no specific
model for a given data is postulated, which provides us more flexibility in the spatial
content understanding. Similar to the parametric information extraction approaches, the
parametric information extraction approaches for spatial content understanding can also
be further classified into approaches applied to images in spatial domain and approaches
applied to images within a transformation domain. We have considered only the sub-image
based approaches in our analysis.

One of the very popular nonparametric approaches applied to images in spatial domain is
the statistical texture features computed on the gray level co-occurrence matrices. The-
oretical background and considered textural features have been presented for the sake of
completeness.

The other important nonparametric approaches applied to the images within a transfor-
mation domain generally are the time-frequency approaches. In time-frequency analysis
the processing on the spectrum of the SAR images is carried out to generate a descriptor
for the SAR images. The simplest approach would be to carry out the non-linear fea-
tures computed on the spectrum. We proposed few non-linear features computed on the
spectrum motivated from the timbrel texture features in music genre.

The other time-frequency approaches are generally multi-scale approaches, such as Gabor
filter banks. The Gabor filter bank has been extensively applied to the amplitude SAR
images for information extraction. We have discussed the reasoning of non-applicability
of Gabor filter banks like multi-scale approaches to the complex-valued SAR images.

Limitations of the Gabor filter bank like approaches for complex-valued SAR images mo-
tivated us to propose the use of fractional Fourier transform, which is actually a true
multi-scale approach for complex-valued SAR images where the scaling is carried out in
the phase. This will aid us to take advantage of the phase information for SAR information
extraction, which has been earlier demonstrated and discussed in the MSLD approach.

Preliminary results on information extraction for above considered methods have been
presented.

As a summary of the Part-II, the main focus of the discussion in the earlier chapter, chap-
ter 4, was on the parametric approaches and in the current chapter on the nonparametric
approaches. In next part, part-11I, we will analyze their respective performances in context to
the methodological framework proposed in chapter 3. In the following, the results, discussions
and conclusion will be presented in detail.
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Chapter 6

Illustrations and case-study

The objective of this chapter is to present the evaluation of the results. The accuracy
assessment for the pizel-based classification and patch-oriented image categorization
for considered feature descriptors will be carried out.

In the first section we present the overview of the framework in which the evalua-
tion will be carried out. In the second section, we will briefly describe the evaluation
criterion adopted, that includes details of the classification methodology and the eval-
uation measures.

Third section deals with the pixel-based classification accuracy assessment. The
database for pixel-based classification evaluation is presented which consists of 12 ho-
mogeneous well textured metric-resolution SAR sub-images from TerraSAR-X. Later
pizel-based classification results with the analyzing window of 16x 16, 32x32 and
64x 64 pixels for considered feature descriptors in context with the methodological
framework from the first section will be presented and discussed.

Fourth section deals with the patch-oriented image categorization assessment. The
overview of the database used is presented, which constitutes 2000 image-patches
also from the metric-resolution TerraSAR-X images. The presented experimental
database comprises of 20 well-defined objects / texture categories with 100 patches
of each category. The size of each image patch is 200x 200 pizels, thus each patch
covers approzimately 200°m? on ground. The qualitative analysis of the feature de-
scriptors is carried out by visualizing some of the planes from the feature space for
each method followed by the quantitative assessment.

In the last part of the section, we propose the use of logarithmic-cumulants for further
enhancing the accuracy of the FrET-based and Gabor-based methods. Improvement
in the category separability by using the logarithmic-cumulants is evident in the new
feature space diagram. Quantitative accuracy assessment is discussed in detail for
the FrFT-based and Gabor-based methods.
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6.1 Overview: discussion framework

In section 3.1.1.2 we presented examples of diverse categories of textures and objects as image
content in high-resolution SAR images. We also stated that depending upon the image content,
spatial content understanding and in turn the application area will be defined. Well defined
texture will be suitable to carry out pixel-based classification to achieve global classes, in the
range of a total of 5 — 10 global classes. Whereas, a complicated arrangement of objects in high-
resolution with larger objects will lead to a more suitable area of application, i.e. patch-oriented
image categorization. In each case, what is required is a very compact intrinsic multidimensional
feature descriptor which describes the spatial content of the image. This feature descriptor
can be obtained using parametric or nonparametric approaches, in image domain or an image
within a transformation domain.
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Figure 6.1: Qualitative performance of several feature descriptors from parametric and nonparametric
class of methods will be assessed in an application framework based on the image content.
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In this chapter, we will provide this parametric versus nonparametric feature descriptor
analysis for the pixel-based classification and patch-oriented image categorization. We made a
first attempt to carry out a comparative qualitative study of a parametric and a nonparametric
approach for pixel-based classification in very-high-resolution SAR images in Singh et al. [2009].
We will enrich that discussion with more approaches and also encapsulating the patch-oriented
image categorization issue. The considered parametric and nonparametric feature descriptors, as
shown in the figure 6.1, have been discussed in detail in chapters 4 and 5, respectively. Following
acronyms will be used hereafter in the graphical presentations of results for a better readability
of results.

Parametric approaches

GMRF : Gauss-Markov random fields model as prior pdf for amplitude images.
ABM : Autobinomial model as prior pdf for amplitude images.

C-GMRF : Gauss-Markov random fields model as prior pdf for complex-valued images.
W-GGD  : Generalized Gaussian distribution parameters for wavelet coefficients.

Nonparametric approaches

GLCM : Gray level co-occurrence matrix based statistical features for amplitude images.
NL-SFD  : Non-linear spectral features for amplitude images.

FrFT : The fractional Fourier transform based features for complex-valued images.
Gabor : Gabor expansion based features for amplitude images.

6.2 FEvaluation criterion

In this section, we present a general overview of the employed evaluation methodology (sec-
tion 6.2.1) and evaluation measures (section 6.2.2) for the quantitative analysis of presented
methodologies. A set of experimental database has been generated to quantify the pixel-based
classification and patch-oriented image categorization performance.

6.2.1 Classification methodology

The clustering / classification can be performed by unsupervised and supervised classifiers.
In the unsupervised clustering case, a conventional pattern recognition algorithm, e.g. k-
means (MacQueen [1967]) or modified k-means, with a pre-defined number of clusters (k) can be
used. In the case of supervised classification, the nearest neighborhood based pattern classifica-
tion technique, e.g. k-nearest neighborhood (k-NN), where the regions of interest corresponding
to the evaluated class are given can be employed (Cover & Hart [1967]).

Although the unsupervised clustering such as k-means are computationally less cumbersome,
but there is no control over the specific identity of the classes, thus in order to provide a
quantitative evaluation of various methods, we restrict ourselves to the supervised classification,
e.g. k-NN classification. The k-NN method, first mentioned in Fix & Jr [1951], is among the
simplest, however slow, instance-based learning method and very well accepted as a standard
tool of classification. In this method, k is the user defined distance metric, based on which
probability of class belonging to a class of labeled patterns is defined. Usually this distance
metric is the Euclidean distance or the Mahalanobis distance (Mahalanobis [1936]), however
some other metrics such as sum of absolute differences, or Cosine similarity measure may be
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employed. Given the set of labeled pattern (training samples), the unlabeled samples in data-
set are assigned the label which belongs to same category as its closest neighbors (Mitchell
[1997]). The choice of the values of k, i.e. the number of neighbors taken into consideration
while assigning a class label to an unlabeled sample is very empirical and depends upon the
data. The value of k = 1 results into nearest neighborhood algorithm, which is also what we
used in our experiments.

6.2.2 Confusion matrix and accuracy measures

The confusion matrix or the error matrix is frequently employed to organize and display infor-
mation used to assess the thematic accuracy of a results of classification. A numerous accuracy
measures have been proposed for summarizing the information contained in this confusion ma-
trix (Stehman [1997]).
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Figure 6.2: An example of a confusion matrix along with the row total and column total used
to calculate the user’s accuracy and producer’s accuracy

The general formulation of a confusion matrix is shown in the figure 6.2. For a data with n
number of classes, the confusion matrix will have the dimension of n x n. The row indexes j of a
confusion matrix correspond to actual or reference classes and the column indexes i correspond
to predicted classes produced by applying the model. Each element Wi j i) 11 the confusion
matrix represents the number of samples from class 7 that were misclassified as belonging to
class j, whereas the diagonal elements Wi j.li=7) in the confusion matrix represent the correctly
classified samples. The sum of diagonal elements of the confusion matrix, Zle We,c, provides
the total accuracy.

The confusion matrix provides a complete overview of accuracy of classification (both for
individual classes and overall accuracy). When considering a quantitative comparison of many
methods, the complete confusion matrix is not a very convenient tool to summarize the as-
sessment at a glance, but still confusion matrix can be used as a basic tool to compute more
descriptive accuracy measures. The total accuracy, which is the sum of the major diagonal
elements of the confusion matrix may provide a quick summary, but it fails to reveal if the
error was evenly distributed and it fails to quantify the performance of the feature descriptor
for the individual classes. Thus, other forms have been derived from confusion matrix, i.e. the
user’s accuracy (UA) and producer’s accuracy (PA) which are very descriptive and sufficient for
a analytical overview (Story & Congalton [1986]).
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The user’s accuracy for a particular texture class (or image category) c is given by the ratio
of the individual class (or category) accuracy w.. and the total of the ¢! row. The user’s
accuracy includes the error of commission and informs how well the classified results relates to
the reference data. The producer’s accuracy for a particular texture class (or image category) c
is given by the ratio of the individual class (or category) accuracy w.,. and the total of the cth
column. The producer’s accuracy includes the error of omission and informs how well a certain
class / category has been classified. Usually both the accuracy measures are presented in the
percentage and formulated for a particular class/category c as follows:

UA =100 x —°— c¢=1,2,....k. (6.1)
i=1 Wic
We,c

PAZlOOin’, C:].,Q,,k (62)
j=1 We,j '

It must be noted that all the accuracy measures are only the estimates of the actual accuracy
and are very much sensitive to the training samples used in generating the classification map.
The size of training sample also plays an important role in the accuracy estimates. Thus it
is always advocated to represent the accuracy assessment with variable sizes of the training
samples.

We will consider the quantitative analysis of considered feature descriptors for pixel-based
classification first. Later, qualitative as well as quantitative analysis of considered feature de-
scriptors for patch-oriented image categorization will be presented. As the focus is shifting on
patch-oriented image categorization increasing with the advent of high-resolution satellites, we
will suggest improvement to the standard feature descriptors for enhancement of patch-oriented
image categorization accuracies, specifically for Gabor filter banks and the fractional Fourier
transform based methods.

6.3 Pixel-based classification

6.3.1 Database for pixel-based classification evaluation

For the pixel-based classification, we selected 12 TerraSAR-X sub-scenes of metric-resolution
depicted in the figure 6.3. The size of each image is 256 x 256 pixels, i.e. approximately 256> m?
area covered on the ground. Each image in the database is complex-valued, i.e. the mosaic can be
used to test the algorithms specifically applicable to the complex-valued images. FEach sub-scene
covers a specific texture from man-made to natural land-cover typologies typically possible in the
metric-resolution SAR images. A great care has been taken to have a homogeneous area-cover
in each sub-scene, which is essential for the evaluation of pixel-based classification algorithms.
The various textures can be identified as TO1,T02,...,T12. Sub-scenes T01, T04, and TO08
cover different forest areas, sub-scenes T02, T05 and T12 are differently textured open-fields
/ grassland area. Four sub-scenes, T03, T06, T07 and T10 cover various regions with man-
made objects forming a texture, specific to the concerned locality / habitat. Sub-scene T09 is a
pure water class from the calm-sea region, and T11 is the rough water class close the a coastal
region. As the number of texture classes used is 12, the dimension of the confusion matrix for
pixel-based classification shown in figure 6.2 will be 12 x 12. The lengths of the user’s accuracy
(equation 6.1) and producer’s accuracy (equation 6.2) vectors will also be 12 each. The pixel-
based classification is carried out usually with continuous displacement of analyzing window
based operation, by computing feature descriptor on this analyzing window (aw). This small aw
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is assumed to have a homogeneous texture. There is no standard approach to optimally select
aw size, thus the analysis has been carried out on a variable aw size to measure the sensitivity of
the algorithms to the size of aw. The used aw sizes are 16 x 16, 32 x 32, and 64 x 64 pixels, with
a displacement step of 1 pixel in each case. The training size used for supervised classification
is 01% and 10% of the total unlabeled samples.

o)

Figure 6.3: Amplitude representation of the mosaic of 12 metric-resolution SAR image sub-
scenes covering various homogeneous textures. This includes textures in urban localities to
the land-cover typologies as well as calm and rough water classes. The database generated is
the complex-valued database, however amplitude images can be generated as specific to the
algorithm requirement.

6.3.2 Results and discussions

The k-NN supervised classification have been carried out on the database of 12 TerraSAR-X sub-
scenes of metric-resolution depicted in the figure 6.3. The size of aw has been chosen variably
with 16 x 16, 32 x 32, and 64 x 64 pixels. The training samples for supervised classification are
chosen to be 01% and 10%. So in each iteration, as a result of k-NN classification, a confusion
matrix of size 12 x 12 will be generated. As the analysis of confusion matrix is very complicated,
we will only present the user’s and producer’s accuracy. The average, and individual user’s and
producer’s accuracies at 01% and 10% training sample case has been shown in the tables in the
figures 6.4 and 6.5, respectively.

For these results we will not go into the details of individual texture accuracy assessment,
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[ FD: | [ AA [ Tol [ To2 | TO03 | T04 [ To5 | T06 | TO7 | TO8 [ T09 | T10 | Til [ Ti2 |

GMRF PA [ 37.18 [ 33.89 [ 30.98 [ 34.73 | 52.09 [ 28.45 [ 33.10 | 50.62 | 26.29 | 40.17 [ 54.54 | 30.33 | 30.97
UA | 37.81 | 3347 | 27.94 | 37.32 | 51.06 | 26.43 | 34.42 | 57.83 | 28.16 | 37.92 | 61.75 | 29.22 | 28.16

ABM PA | 39.44 | 40.95 | 36.45 | 25.40 | 41.14 | 33.87 | 27.50 | 35.36 | 29.42 | 74.37 | 57.57 | 28.76 | 42.52
UA | 40.18 | 38.29 | 35.54 | 27.04 | 39.39 | 31.38 | 26.88 | 33.74 | 28.52 | 77.68 | 72.22 | 34.61 | 36.87

C-GMRF PA | 16.13 | 12.82 | 13.54 | 11.31 | 18.08 | 13.42 | 12.28 | 17.37 | 12.34 | 36.84 | 18.19 | 13.48 | 13.92
UA | 16.35 | 12.01 | 12.73 | 12.09 | 17.42 | 12.82 | 12.47 | 20.05 | 11.99 | 37.45 | 21.49 | 12.63 | 13.00

W-GGD PA | 29.21 | 22.60 | 41.23 | 16.66 | 16.39 | 30.32 | 16.26 | 29.68 | 15.28 | 68.43 | 29.18 | 34.45 | 30.07
UA | 29.75 | 19.42 | 39.37 | 16.17 | 15.72 | 28.41 | 15.75 | 34.86 | 15.21 | 71.07 | 30.34 | 39.20 | 31.47

GLCM PA | 16.85 [ 12.95 | 17.10 | 14.65 | 11.74 | 15.35 | 15.09 | 29.47 | 10.48 [ 18.88 | 28.97 [ 11.65 | 15.87
UA | 16.91 | 12.79 | 16.23 | 14.72 | 11.58 | 14.39 | 14.99 | 29.56 | 11.01 | 19.80 | 30.49 | 12.20 | 15.20

NL-SFD PA | 49.41 | 37.87 | 55.56 | 24.26 | 45.20 | 41.83 | 23.36 | 56.52 | 29.59 | 90.23 | 43.38 | 79.45 | 65.64
UA | 49.28 | 35.63 | 53.49 | 24.39 | 46.19 | 41.47 | 24.12 | 59.02 | 31.82 | 90.41 | 42.40 | 78.58 | 63.86

FFT PA | 50.10 | 38.21 | 53.36 | 29.13 | 40.33 | 43.34 | 26.33 | 61.07 | 36.30 | 88.27 | 49.16 | 75.45 | 70.27
UA | 50.26 | 36.77 | 54.83 | 30.81 | 38.77 | 42.57 | 25.84 | 64.15 | 25.86 | 88.02 | 48.97 | 75.38 | 71.13

Gabor PA | 49.09 | 34.35 | 49.01 | 30.91 | 37.74 | 34.09 | 29.65 | 67.90 | 33.08 | 91.89 | 52.65 | 74.40 | 53.41
UA | 49.09 | 33.01 | 44.20 | 33.64 | 39.79 | 32.66 | 30.21 | 71.14 | 33.79 | 86.86 | 54.89 | 78.44 | 50.42

(a) Analyzing window size: 16 x 16

[ FD: [ [ AA [ Tol | TO2 | TO3 | To4 | TO5 | TO6 | TO7 [ TO8 [ T09 [ T10 [ Til [ Ti12 |
GMRF PA [ 67.19 [ 70.90 | 49.95 [ 71.83 | 92.21 [ 50.29 | 67.59 | 87.89 | 58.03 | 69.08 | 87.33 | 52.33 | 48.86
UA | 65.04 | 62.58 | 48.68 | 70.04 | 85.48 | 45.53 | 67.55 | 85.65 | 58.50 | 69.77 | 89.16 | 50.65 | 46.94

ABM PA | 53.88 | 51.84 | 45.26 | 49.01 | 62.33 | 33.38 | 41.42 | 46.23 | 56.39 | 77.99 | 67.18 | 79.79 | 35.73
UA | 53.77 | 53.26 | 46.51 | 44.49 | 67.27 | 30.85 | 42.91 | 50.17 | 56.07 | 63.81 | 66.56 | 79.59 | 43.74

C-GMRF PA | 40.72 | 31.52 | 34.43 | 31.48 | 52.53 | 32.17 | 32.20 | 40.18 | 31.40 | 93.03 | 37.12 | 36.97 | 35.64
UA | 41.34 | 27.96 | 30.04 | 36.22 | 50.61 | 29.56 | 35.96 | 52.11 | 31.41 | 90.16 | 47.03 | 35.00 | 30.01

W-GGD PA | 50.82 | 41.35 | 55.12 | 23.52 | 57.74 | 43.75 | 24.47 | 70.73 | 33.96 | 86.37 | 49.79 | 78.36 | 44.63
UA | 51.29 | 37.13 | 51.95 | 24.20 | 56.94 | 42.42 | 23.75 | 74.20 | 31.52 | 86.34 | 55.32 | 80.86 | 50.87

GLCM PA | 28.19 [ 24.87 | 30.30 | 24.56 | 19.11 [ 24.76 | 29.57 | 44.14 | 17.50 | 37.27 | 41.38 | 20.10 | 24.72
UA | 28.43 | 23.55 | 28.40 | 24.66 | 18.39 | 24.17 | 28.07 | 42.85 | 18.17 | 41.52 | 46.06 | 21.70 | 23.60

NL.SFD PA | 70.84 | 67.29 | 62.70 | 48.66 | 68.92 | 60.13 | 47.44 | 76.32 | 64.13 | 99.28 | 62.69 | 98.22 | 94.28
UA | 70.89 | 64.97 | 62.10 | 47.27 | 69.54 | 60.15 | 47.03 | 76.22 | 66.88 | 98.50 | 65.46 | 99.12 | 93.41

FFT PA | 74.59 | 74.04 | 67.89 | 60.55 | 72.92 | 62.11 | 52.13 | 7824 | 61.22 | 99.42 | 70.78 | 98.11 | 97.70
UA | 74.59 | 71.18 | 66.08 | 62.04 | 71.71 | 64.22 | 51.60 | 80.68 | 62.07 | 98.64 | 70.57 | 98.90 | 97.40

Gabor PA | 77.64 | 70.84 | 73.98 | 69.34 | 74.88 | 56.51 | 65.80 | 89.28 | 64.32 | 99.62 | 80.42 | 97.87 | 88.76
UA | 77.72 | 64.57 | 70.88 | 73.51 | 76.30 | 55.67 | 66.76 | 90.26 | 69.57 | 98.28 | 84.58 | 99.08 | 83.12

(b) Analyzing window size: 32 x 32

[ FD: [ [ AA [ Tol1 | To2 | To3 | To4 | To5 | T06 | T0O7 [ TO8 [ T09 [ T10 [ Til [ T12 |
GMRF PA | 88.67 [ 93.18 [ 81.01 | 91.61 | 99.68 | 78.71 [ 91.28 [ 98.39 | 89.27 [ 92.61 [ 96.56 | 79.93 [ 71.85
UA | 88.76 | 90.69 | 76.85 | 92.78 | 99.57 | 76.65 | 91.58 | 97.52 | 91.13 | 95.29 | 98.38 | 82.37 | 72.32

ABM PA | 53.88 | 51.84 | 45.26 | 49.01 | 62.33 | 33.38 | 41.42 | 46.23 | 56.39 | 77.99 | 67.18 | 79.79 | 35.73
UA | 68.68 | 64.58 | 58.78 | 61.80 | 77.74 | 42.66 | 65.35 | 72.14 | 66.66 | 87.69 | 84.49 | 81.91 | 60.37

C-GMRF PA | 75.60 | 71.31 | 75.36 | 62.39 | 92.85 | 72.17 | 65.70 | 68.65 | 70.75 | 100.0 | 67.55 | 81.71 | 78.75
UA | 75.96 | 63.99 | 69.05 | 72.88 | 83.90 | 69.18 | 74.56 | 83.65 | 70.22 | 99.76 | 81.19 | 74.80 | 68.35

W-GGD PA | 75.33 | 64.10 | 64.65 | 58.23 | 88.88 | 60.53 | 44.89 | 91.65 | 66.27 | 95.26 | 89.40 | 92.92 | 87.20
UA | 75.62 | 55.38 | 64.59 | 60.50 | 88.61 | 59.62 | 48.42 | 92.80 | 63.32 | 96.23 | 91.35 | 96.50 | 90.07

GLCM PA | 55.63 | 57.80 | 63.12 [ 52.10 | 50.36 | 51.94 [ 58.32 [ 71.01 | 38.68 | 70.35 | 65.74 | 40.67 | 47.50
UA | 55.78 | 55.34 | 56.43 | 55.11 | 50.71 | 48.03 | 52.43 | 66.23 | 40.78 | 77.34 | 72.94 | 45.61 | 48.39

NL-SFD PA | 87.93 | 89.97 | 77.32 | 71.91 | 87.78 | 74.26 | 75.29 | 96.22 | 86.84 | 99.99 | 95.75 | 99.90 | 99.98
UA | 87.93 | 86.74 | 75.03 | 73.48 | 86.26 | 76.60 | 74.82 | 96.38 | 89.88 | 99.90 | 96.15 | 99.99 | 99.99

FFT PA | 92.85 | 96.10 | 88.87 | 82.87 | 95.62 | 86.29 | 83.59 | 94.91 | 89.87 | 100.0 | 96.09 | 100.0 | 100.0
UA | 92.87 | 92.59 | 86.64 | 86.02 | 94.06 | 88.58 | 81.17 | 96.41 | 94.38 | 100.0 | 94.59 | 100.0 | 100.0

Gabor PA | 96.60 | 97.87 | 93.14 | 95.07 | 95.77 | 89.43 | 94.78 | 98.03 | 97.39 | 100.0 | 98.27 | 100.0 | 99.50
UA | 96.62 | 97.74 | 92.11 | 96.68 | 96.88 | 87.69 | 95.14 | 98.66 | 97.44 | 100.0 | 97.63 | 100.0 | 99.50

(c¢) Analyzing window size: 64 x 64

Figure 6.4: Accuracy assessment of various feature descriptors for pixel-based classification.
FD: Feature Descriptor, AA: Average accuracy, UA: Users’ accuracy, PA: Producers’ accuracy.
Training sample size used: 01%.
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[ FD: [ AA [ Tol1 | To2 | To3 | To4 | To5 | To6 | TO7 [ To8 [ T09 [ Ti0 [ Til | Ti2
GMRF PA | 64.81 [ 65.01 | 58.57 | 65.44 | 76.63 | 55.72 | 63.21 | 76.04 | 57.66 | 65.62 | 77.87 | 57.89 [ 58.03
UA | 65.21 | 62.56 | 55.57 | 69.27 | 76.26 | 53.20 | 65.77 | 81.62 | 58.91 | 62.94 | 84.89 | 56.55 | 55.00

ABM PA | 87.57 | 87.70 | 86.62 | 84.43 | 87.75 | 86.34 | 85.16 | 87.22 | 85.44 | 95.27 | 91.78 | 85.17 | 87.94
UA | 87.59 | 86.44 | 86.94 | 85.42 | 87.53 | 84.50 | 85.69 | 86.17 | 84.86 | 95.55 | 94.18 | 87.88 | 85.96

C-GMRF PA | 29.11 | 24.81 | 25.27 | 25.11 | 30.17 | 25.47 | 25.78 | 33.60 | 24.53 | 49.39 | 33.15 | 25.99 | 26.01
UA | 39.38 | 23.88 | 24.22 | 26.57 | 29.90 | 24.50 | 26.52 | 36.73 | 24.41 | 48.50 | 36.94 | 24.77 | 24.37

W-GGD PA | 38.85 | 32.33 | 48.56 | 24.99 | 26.00 | 38.10 | 25.13 | 40.47 | 24.79 | 78.33 | 36.68 | 49.39 | 41.44
UA | 39.55 | 27.33 | 46.97 | 24.40 | 24.27 | 36.40 | 24.47 | 47.64 | 24.10 | 79.97 | 40.23 | 55.29 | 43.55

GLCM PA | 24.80 [ 20.82 | 24.69 | 22.69 | 19.90 | 22.61 | 22.89 [ 35.77 | 19.46 | 27.67 | 37.43 | 20.35 | 23.32
UA | 24.83 | 20.76 | 23.95 | 22.79 | 20.05 | 22.12 | 22.88 | 36.03 | 19.54 | 28.23 | 38.03 | 20.84 | 22.72

NL-SFD PA | 55.21 | 42.73 | 59.11 | 32.39 | 53.32 | 47.37 | 31.84 | 64.03 | 38.41 | 92.19 | 49.71 | 82.59 | 68.79
UA | 55.10 | 42.17 | 58.34 | 32.93 | 53.98 | 47.34 | 32.02 | 64.15 | 39.39 | 92.21 | 49.64 | 81.66 | 67.35

FFT PA | 57.92 | 47.26 | 60.03 | 42.06 | 47.71 | 48.87 | 37.83 | 70.50 | 35.01 | 91.52 | 60.17 | 78.36 | 75.75
UA | 57.91 | 45.21 | 59.49 | 42.19 | 48.37 | 49.28 | 38.69 | 71.93 | 35.18 | 90.17 | 59.35 | 79.06 | 75.93

Gabor PA | 61.17 | 48.20 | 59.04 | 47.02 | 51.25 | 48.17 | 46.19 | 78.86 | 48.16 | 94.14 | 64.49 | 82.47 | 65.99
UA | 61.04 | 47.99 | 56.54 | 50.59 | 52.86 | 45.67 | 48.09 | 78.47 | 50.24 | 90.79 | 67.31 | 83.25 | 60.67

(a) Analyzing window size: 16 x 16

[ FD: [ AA | To1 T02 [ T03 [ T04 [ TO5 [ T06 [ TO7 | T08 | T09 | Ti0 | Ti1 T12
GMRF PA | 86.39 [ 90.26 | 77.34 | 89.06 | 97.61 | 76.72 | 88.08 | 97.66 | 83.52 | 87.77 | 96.64 | 76.16 | 75.81
UA | 86.06 | 85.42 | 76.34 | 90.50 | 95.93 | 74.64 | 89.09 | 96.57 | 84.54 | 89.09 | 97.46 | 77.67 | 75.47

ABM PA | 79.46 | 76.02 | 71.69 | 83.46 | 89.28 | 56.62 | 80.91 | 84.51 | 86.82 | 89.54 | 90.93 | 94.35 | 49.40
UA | 79.38 | 81.12 | 72.72 | 82.05 | 91.45 | 54.93 | 83.08 | 86.39 | 82.52 | 71.90 | 89.19 | 92.64 | 64.56

C-GMRF PA | 69.77 | 62.93 | 66.21 | 63.13 | 77.14 | 66.03 | 66.25 | 69.73 | 65.26 | 98.01 | 67.52 | 69.35 | 65.70
UA | 70.22 | 59.09 | 60.86 | 70.32 | 75.26 | 62.20 | 70.10 | 79.94 | 64.76 | 96.03 | 79.03 | 65.95 | 59.11

W-GGD PA | 58.94 | 49.36 | 61.83 | 33.63 | 66.99 | 51.69 | 34.15 | 76.34 | 41.78 | 90.04 | 60.71 | 83.99 | 56.71
UA | 59.27 | 43.72 | 60.82 | 34.91 | 65.80 | 51.57 | 34.08 | 79.44 | 39.63 | 90.57 | 64.09 | 85.99 | 60.64

GLCM PA | 37.58 [ 32.81 | 37.39 [ 34.80 | 28.85 [ 33.53 | 38.11 | 51.91 | 28.19 [ 47.20 | 53.32 | 31.49 | 33.30
UA | 37.70 | 32.27 | 36.81 | 34.54 | 28.31 | 32.79 | 37.37 | 51.51 | 28.56 | 49.13 | 55.94 | 32.68 | 32.44

NL.SFD PA | 76.14 | 72.00 | 66.46 | 57.63 | 75.59 | 65.61 | 58.76 | 81.11 | 71.35 | 99.46 | 70.90 | 98.92 | 95.86
UA | 76.17 | 71.09 | 66.94 | 57.38 | 75.72 | 65.12 | 57.46 | 81.50 | 72.32 | 99.08 | 72.80 | 99.32 | 95.26

FFT PA | 84.52 | 82.31 | 74.61 | 7853 | 84.16 | 73.06 | 73.26 | 90.19 | 73.64 | 99.76 | 86.75 | 99.21 | 98.73
UA | 84.53 | 79.63 | 74.56 | 78.96 | 83.50 | 73.44 | 71.92 | 91.51 | 76.28 | 99.46 | 86.92 | 99.54 | 98.62

Gabor PA | 93.30 | 91.78 | 91.97 | 90.46 | 93.02 | 85.75 | 89.19 | 97.64 | 87.54 | 99.95 | 95.22 | 99.70 | 97.38
UA | 93.32 | 88.00 | 89.21 | 93.36 | 92.87 | 85.84 | 90.35 | 97.78 | 91.81 | 99.78 | 96.43 | 99.90 | 94.51

(b) Analyzing window size: 32 x 32

[ FD: [ AA [ To1 T02 [ T03 [ T04 [ T05 [ T06 [ To7 | To8 | To9 | Tio | Ti1 T12
GMRF PA [ 96.67 | 98.19 [ 93.28 [ 97.87 | 99.86 [ 93.11 | 97.81 [ 99.74 | 97.09 [ 98.50 | 98.32 | 93.81 [ 91.41
UA | 96.68 | 97.31 | 92.61 | 98.29 | 99.93 | 92.82 | 98.06 | 99.58 | 97.32 | 99.04 | 99.81 | 95.14 | 90.20

ABM PA | 88.79 | 84.38 | 83.45 | 92.66 | 94.10 | 61.45 | 91.82 | 92.07 | 92.27 | 97.33 | 98.66 | 97.69 | 79.58
UA | 88.75 | 90.27 | 78.66 | 90.71 | 96.18 | 66.51 | 90.56 | 94.87 | 91.97 | 95.17 | 97.23 | 97.08 | 75.83

C-GMRF PA | 94.70 | 95.40 | 96.14 | 89.17 | 99.14 | 95.69 | 91.70 | 89.43 | 95.11 | 100.0 | 91.07 | 96.89 [ 96.71
UA | 94.75 | 91.78 | 93.03 | 94.77 | 95.83 | 92.96 | 95.10 | 96.67 | 93.87 | 99.96 | 95.89 | 94.64 | 92.47

W-GGD PA | 82.65 | 73.81 | 73.16 | 70.08 | 94.67 | 72.05 | 61.33 | 94.74 | 73.62 | 96.86 | 93.76 | 94.63 | 93.11
UA | 82.85 | 65.78 | 74.38 | 72.34 | 95.10 | 70.94 | 63.58 | 95.53 | 72.12 | 97.72 | 94.40 | 97.90 | 94.38

GLCM PA | 66.91 [ 67.28 [ 69.35 | 64.57 | 62.93 | 62.39 | 68.09 | 78.29 | 55.35 | 78.87 [ 79.36 | 56.20 | 60.27
UA | 66.97 | 65.88 | 66.76 | 66.21 | 62.89 | 59.75 | 65.18 | 77.70 | 56.41 | 82.51 | 81.10 | 59.51 | 59.81

NL-SFD PA | 91.79 | 91.61 | 80.32 | 84.83 | 92.91 | 79.87 | 85.84 | 97.73 | 90.71 | 100.0 | 97.71 | 100.0 | 100.0
UA | 91.80 | 90.62 | 79.96 | 84.66 | 92.88 | 80.23 | 85.98 | 98.07 | 91.60 | 100.0 | 97.55 | 100.0 | 100.0

FFT PA | 97.22 | 98.04 | 94.04 | 95.38 | 98.81 | 92.74 | 94.43 | 98.24 | 96.22 | 100.0 | 98.72 | 100.0 | 100.0
UA | 97.22 | 96.80 | 92.83 | 95.24 | 98.43 | 93.96 | 94.67 | 98.93 | 97.65 | 100.0 | 98.15 | 100.0 | 100.0

Gabor PA | 99.50 | 99.81 | 98.55 | 99.42 | 99.65 | 98.08 | 99.63 | 99.86 | 99.29 | 100.0 | 99.77 | 100.0 | 99.99
UA | 99.50 | 99.46 | 98.27 | 99.65 | 99.71 | 97.98 | 99.50 | 99.89 | 99.76 | 100.0 | 99.83 | 100.0 | 99.99

Figure 6.5: Accuracy assessment of various feature descriptors for pixel-based classification.
FD: Feature Descriptor, AA: Average accuracy, UA: Users’ accuracy, PA: Producers’ accuracy.

Training sample size used: 10%.

(c¢) Analyzing window size: 64 x 64
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AW=16 x 16 AW=32 x 32 AW=64 x 64

66.91%

C-GMRF
41.34%

C-GMRF
39.38%

NL-SFD
55.10%

Users’s accuracies. First row- training samples: 01%, second row- training samples: 10%.
)

Figure 6.6: Polar chart depicting the user’s and producers’s accuracies in the case of pixel-based
classification for each feature descriptor at various analyzing window (AW) sizes. Left column-
16 x 16 pixels, center column- 32 x 32 pixels, and right column- 64 x 64 pixels.
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but we will restrict ourselves only to the average accuracy assessment. The average accuracies
(user’s and producer’s) are presented in form of polar charts for a clear understanding in the
figure 6.6. The upper semi-circle in each polar chart depicts the parametric approaches, and
lower semi-circle depicts the nonparametric approaches. We notice that there is no significant
difference between user’s accuracy and producer’s accuracy in the results.

The user’s accuracy includes the error of commission and is more complete representation
of the confusion matrix, so lets assess only the user’s accuracy. A quick glance at the polar
charts shows that the accuracy improvement is achieved by increasing the number of training
samples from 01% to 10%, but that is very obvious in well behaving features descriptors for
supervised classification. Another important observation is that almost in every case, accuracy
improvement is achieved when the analyzing window size is increased from 16 x 16 to 64 x 64,
be it the parametric approaches or nonparametric approaches.

We first consider the case of nonparametric approaches, i.e. GLCM, NL-SFD, FrFT, and
Gabor, depicted in the lower semi-circle in every polar chart. We see that GLCM based feature
descriptor, a nonparametric approach in spatial-image domain, provides the poorest accuracy.
The reason for this is the quantization of gray values in preprocessing step, as shown in the
figure 5.3. We have quantized the images to 16 gray levels to achieve a computationally feasible
analysis. Using fewer gray level is equivalent to looking at the image at a coarser level, which
however seems to destroy the textural information in case of high-resolution images. But for
a smaller window, it is important to restrict the number of gray-levels to obtain a statistically
reliable estimate of the joint probability distribution in the co-occurrence matrices. This can be
achieved by using a relatively large window, that’s the reason why we obtain better accuracy at
the aw size of 64 x 64 pixels than 16 x 16 pixels at same quantization level of gray levels. But
increasing the window size even more will risk into uncertainties and errors as the texture changes
over the large window, this issue will be evident in the patch-oriented image categorization in
next section. It is not a practical alternative to increase the number of gray levels due to
computational constraints. So we can conclude that its not advisable to use GLCM based
method for pixel-based classification in high-resolution SAR images, and we will exclude GLCM
in further discussions.

We observe that the accuracy enhancement is not considerable in case of nonparametric
approaches (NL-SFD, FrFT, and Gabor) when increasing the training sample size from 01%
to 10% for the case of 16 x 16 analyzing window size. All these methods work on the image
within a transformation space. In the case of NL-SFD, for the aw of size 16 x 16 pixels, the
sample size for the computation of the spectrum is too small for an accurate frequency estimate.
Similar is the case for the FrFT, here also sample size at the aw size of 16 x 16 pixels is too
small for an accurate joint time-frequency representation. In case of Gabor, going down in the
stages of Gabor kernel, the sample size becomes even smaller and accurate bandpass filtering
is not achieved. This observation is justified by the better accuracies in the aw of size 32 x 32
and 64 x 64 pixels. So with a sufficiently large window size, these nonparametric approaches
applied on image within a transformation space are advisable for the texture analysis in the
high-resolution SAR images for performing pixel-based classification.

Now we consider the case of parametric approaches, i.e. GMRF, ABM, C-GMRF, and W-
GGD, depicted in the upper semi-circle in every polar chart. First three are based on texture
model parameter estimation within spatial-image domain using Bayesian framework, selecting
the model order 5. The fourth one, W-GGD, is based on the density parameter estimation for
image within a transformation space, i.e. the Wavelet domain. For W-GGD, the number of
levels used in the wavelet decomposition are 1, 2, and 3 for the aw of size 16 x 16, 32 x 32 and
64 x 64 pixels, respectively. Similar to earlier transformation domain methods in nonparametric
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approaches, the performance of W-GGD also depends upon the sample size use. The aw of size
16 x 16 pixels seems to be very small to have enough number of samples for an accurate parameter
estimation for assumed generalized Gaussian distribution for wavelet coefficients. This fact is
again emphasized with better accuracies in the aw of size 32 x 32 and 64 x 64 pixels. But
the accuracies at the aw of size 64 x 64 pixels for W-GGD is still significantly lower than the
other well performing feature descriptors. The reason is again that the wavelet based multi-scale
approach reduces the size of the image at successive levels, leading to risk of inaccurate density
parameter estimation.

As far as the Bayesian inference based texture model parameter methods are concerned, the
accuracies for each method are encouragingly good. It is certain that the higher the model order
is, better the model can represent the spatial interaction between the pixels in an analyzing
window leading to a better texture synthesis. But it must also be mentioned that the parameter
computation is very computationally expensive task with the successive increase at the model
order. Thus it might not be practically viable to go for a very high model order, so we restrict
our analysis to model order 5. ABM provides best performance at the aw of size 16 x 16 pixels,
followed by GMRF approach which are even better than the nonparametric approaches. Thus
the Gibbs random fields based methods applied directly in the image domain are potentially
very good methods for discriminating texture even at smaller analyzing window sizes. The
requirement of a minimum number of samples for an accurate transformation in a suitable
domain for nonparametric approaches applied on the images within a transformation domain is
not existing in the Gibbs based methods, leading to a better accuracy even at smaller analyzing
window sizes. The accuracy remains in the same range with increase in the aw size from 16 x 16
to 64 x 64 pixels at 10% training samples case.

Summary If we look at a overall scenario, following conclusions can be drawn with the demon-
strations on experimental database used, in context to the methodological framework presented
in the figure 6.1:

e Considering the case of the aw of size 64 x 64 pixels at 10% training samples, there is no
significant difference in accuracy assessment in parametric and nonparametric approaches,
excluding the case of GLCM. At a smaller aw of size 16 x 16 pixels, it is possible to
achieve good accuracy in Gibbs random fields based parametric approaches employed at
spatial-image domain, even at model order 5. Increasing the model order in parametric
approaches will certainly improve the accuracy but at very high computational cost. A
trade off must be made while selecting the model order for an appropriate method.

e At a smaller aw size of 16 x 16 pixels, the methods working on images within a trans-
formation space are not very accurate due to a small sample size for accurate feature
extraction.

e Methods based on image in transformation space perform better with a sufficiently large
size of aw. But increasing the size of the aw will lead to heterogeneity in area of interest
for texture synthesis and the case will be closer to an patch-oriented image categorization
application.

e On the other hand, increasing the size of aw for Gibbs based parametric methods re-
quires the use of higher model order, which is certainly not a viable choice considering
exceptionally high computational cost for practical applications.
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6.4 Patch-oriented image categorization

6.4.1 Database for patch-oriented image categorization evaluation

For the patch-oriented image categorization accuracy assessment, we generated a database of
2000 image-patches also from the metric-resolution TerraSAR-X images. The size of each image
patch is 200 x 200 pixels, thus each patch covers approximately 200% m? of ground. This size can
be generally used to define a particular category, as it is large enough to contain the contextual
information needed to define an objects’ structure in the case of very-high-resolution (Singh &
Datcu [2012d], Popescu et al. [2012]).

The presented experimental database comprises of 20 well-defined objects / texture cate-
gories with 100 patches of each category. Care has been taken to generate the database with
diverse textures. Examples of one patch from each category are shown in the figure 6.7. These
categories include land-cover typologies (CO01- Grassland, C02-Forest, C03- Mized vegetation, C04-
Mixed vegetation with a water-channel and C18-Sandy plains), urban area with a particular tex-
ture (C05, C06, CO7 and CO8-Urban- type 01, 02, 03 and 04 ), urban and natural water channel
(C09 and C10), regions with strong scatterers along with the surfaces exhibiting specular re-
flection (C11-Urban coastline and C12-Aircraft stands), regions with very-strong scatterers with
multiple bounces (C13-Skyscrapers and C14-Industrial complex), other special categories such
as C15-Airstrip, C16-Highway and C17-Train tracks. Two categories from the sea-water region
(C19-Buoy in sea and C20- Ambiguities) are also considered. As this database has been generated
manually, so it can be used as a ground-truth for the assessment of various algorithms. Similar
to the database for pixel-based classification, this database is also complex-valued, whereas on
amplitude representation is shown here. In order to demonstrate the diversity of objects and
texture in various categories, more examples from each category have been presented in the
appendix in Fig. B.1.

The number of object categories used is 20, so the dimension of the confusion matrix for
patch-oriented image categorization shown in the figure 6.2 will also be 20 x 20. The lengths of
the user’s accuracy (equation 6.1) and producer’s accuracy (equation 6.2) vectors will also be
20 each. In patch-oriented image categorization, feature descriptor is computed for the whole
SAR image patch. In other words, the size of analyzing window (aw) is same as the size of SAR
image patch. The training size used for supervised classification is 1% and 10% of the total
unlabeled samples.

6.4.2 Patch-oriented image categorization: results and discussion

Qualitative analysis: Before going into the quantitative analysis of results, we will perform
a qualitative analysis by viewing some selected planes in the feature space for each feature
descriptor. Figure 6.8 shows the feature space diagram for the parametric approaches and the
figure 6.9 shows the feature space diagram for the nonparametric approaches. The feature
space is essentially multi-dimensional, with dimensionality equal to the length of the feature
descriptor. However, various feature descriptor will behave differently in other planes in the
feature space, visual inspection of at least few planes in feature space diagram will provide an
intuitive information about the performance of particular feature descriptor. In the figures 6.8
and 6.9, only a selected plane (i.e. only selected two dimensions) for each feature descriptor are
shown to demonstrate the category-separability potential of each method. Normalized feature
descriptors by limiting all of them to [0, 1] for better visual inspection are presented.

It can be seen that, even if its a parametric or nonparametric approach, the feature descrip-
tors generated on the SAR image within a transformation domain (W-GGD, NL-SFD, FrFT,
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C01-Grassland CO02-Forest C03-Mixed  vegeta- C04-Veg. and a
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Figure 6.7: Examples of the SAR image patches (of the size 200x 200 pixels) in different objects / texture
categories. Image patches have been obtained from single-look complex very-high-resolution Spotlight
TerraSAR-X images from different areas in order to include the diversity of objects / textures when

analyzing feature descriptors.
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Figure 6.8: Feature space diagram demonstrating the potential of the considered parametric feature
descriptors for category separability. Selected 2-D planes in the feature space for all feature descriptors
are presented, however, it must be noted that the actual feature space is multi-dimensional. The dimen-
sionality of feature space is same as the length of respective feature descriptor. Some features have very
large positive or negative numerical values, thus for a better interpretation, all the features have been
scaled between 0 and 1.
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Figure 6.9: Feature space diagram demonstrating the potential of the considered nonparametric feature
descriptors for category separability. Selected 2-D planes in the feature space for all feature descriptors
are presented, however, it must be noted that the actual feature space is multi-dimensional. The dimen-
sionality of feature space is same as the length of respective feature descriptor. Some features have very
large positive or negative numerical values, thus for a better interpretation, all the features have been
scaled between 0 and 1.
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and Gabor) are showing better separability of categories in the feature space. Whereas, in case
of the feature space of the feature descriptors generated directly on the SAR image (GMRF,
ABM, C-GMRF, and GLCM), its very difficult to discriminate between various categories. This
is first hand analysis to expect a better quantitative accuracy in case of W-GGD, NL-SFD,
FrFT, and Gabor methods.

Quantitative analysis: Similar to the earlier case of pixel-based classification, we will only
consider the user’s accuracy for the quantitative analysis, as its a more complete representation
of the confusion matrix. We will consider only the case of k-NN classification with 10% training
samples. Apart from mean accuracy assessment, we will also carry out the individual category
accuracy assessment. Polar charts depicting the mean accuracy (first polar chart) and individual
category accuracies (further polar charts) are presented in the figure 6.10.

It can be noticed from the first polar chart in the figure 6.10 that the best mean accuracy
is obtained in the W-GGD, followed by FrFT, Gabor, and NL-SFD. We also comment on
the case of methods with considerably poor accuracies. The accuracies are very poor for the
methodologies GMRF, ABM, C-GMRF and GLCM. These results are in coherence with the
visibility of class separability in the various planes of the features spaces shown in the figures 6.8
and 6.9. The reason for poor accuracy in GLCM is again the same that the 16 quantization
level to make the feature descriptor generation a practically viable task, essentially leads to a
loss of most of the information. The other methods with poor accuracies, i.e. GMRF, ABM
and C-GMRF are based on the texture parameter estimation with an assumption of a prior
pdf. This assumed prior pdf is suitable for homogeneous regions, but fails to capture the
heterogeneity in case of image-patches with a complex arrangement of objects. Moreover, these
methods are based on an assumed multiplicative speckle noise model, with representing a SAR
image as y = x X z. Where y represents a SAR image, = denotes an ideal noise-free image,
and z stands for speckle. Here we would also like to question the applicability of multiplicative
speckle noise model, in case of image patches containing a large number of strong scatterers.
So the situation is not such simple at the regions in SAR image patches with strong scatterers
where the definition of speckle needs to be restated. Here speckle is not noise any more but
the actual useful signal. So particularly for such areas, SAR image should be represented as
y = x + n, where n is the noise (not speckle) which can be ignored for further considerations.
For such scenarios we need to reconsider the utility of the Gibbs based methods. So we will
ignore these 3 Gibbs based methods, i.e. GMRF, ABM, and C-GMRF, as well as the GLCM
in further discussions. However, we would like to mention very good performance of C-GMRF,
particularly for the categories 18, 19, and 20. The use of complex-valued data leads us to achieve
better accuracies in these cases due to importance of the phase information in these category,
which will be evident in further discussion on FrFT.

The difference between the accuracies of W-GGD, followed by FrFT, Gabor, and NL-SFD
is very marginal. Thus we cannot arrive to a general agreement on an overall best analysis
method that outperforms all the others on various tasks such as texture-based or backscattering
behavior-based retrieval, segmentation, or classification, the notion earlier also discussed in
literature Kandaswamy et al. [2005]. This leads to a need to carry out the individual category
accuracies for each category for several feature descriptors. As mentioned in chapter 5, the
feature descriptors for FrFT and Gabor constitutes the moments of the sub-bands achieved in
each case, which is a very obvious choice. In the next section, along with the detailed analysis of
individual category accuracies, we will propose an enhanced feature descriptor which constitutes
the log-cumulants of the sub-bands to improve the overall accuracy over moments.
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Figure 6.10: Polar charts depicting the individual category user’s accuracies in the case of patch-oriented
image categorization for each feature descriptor at 10% training samples. The feature descriptor with
highest accuracy in each category has been highlighted with an bold arc on the outer circle representing
100% accuracy level. First polar chart on the previous page represents the overall mean accuracy. It
is evident from the overall mean accuracy assessment that the methods employed directly in the image
domain (parametric (GMRF,ABM, and C-GMRF) as well as nonparametric(GLCM)) provides sig-
nificantly poor overall accuracy than the methods employed on the image within a transformation domain
(parametric (W-GGD) as well as nonparametric(NL-SFD, FrFT, and Gabor)). Individual accuracy
assessment suggests that no feature descriptor outperforms all other in each individual category scenario,
thus makes it difficult to arrive at a general consensus on a best performing method.
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6.4.3 Use of ‘logarithmic-cumulants’ for accuracy enhancement

We noticed that the methods pertaining to image within a transformation space (NL-SFD,
FrFT, Gabor, and W-GGD) were providing better accuracies than the methods employed
directly in the spatial-image domain (GLCM, GMRF, ABM, and C-GMRF). One important
reason for this is that images represented in suitable transform space reveals certain latent
information, otherwise difficult to exploit in spatial-image domain. Such as the FrFT method
provides information about the backscattering behavior and Gabor filter banks ease texture
synthesis. A feature descriptor have been generated by computing the moments of the amplitude
of the FrF'T coeflicients as well as Gabor filtered images in each case respectively. In this section,
we will suggest a methodology to further improve the overall accuracy particularly for these two
cases, which has been motivated from the method of logarithmic-cumulants.

Second important reason for working in transformation space is that normally via the trans-
formation of the image’s pixel value into a suitable space, it is possible to obtain a more uniform
statistical response that is easier to analyze (Do & Vetterli [2002]), such as wavelet coefficients
in each sub-band can be approximated well with generalized Gaussian distribution. This makes
the parameter estimation an easier task. Parameter estimation for the models of image pdf
or transformed image pdf can be carried out using the classical maximum likelihood (ML) or
the method of moments (MoM) approaches. The method of logarithmic-cumulants (MoLC) has
also been proposed for efficient parameter estimation with pdfs defined on R, which is also
the case for the amplitude of the FrF'T coefficients. The MoLC method is based on the analyt-
ical computation of logarithmic-moments and logarithmic-cumulants as a function of unknown
parameters. The logarithmic-moments and logarithmic-cumulants have been introduced as ‘sec-
ond kind statistics’ for SAR image analysis where the characteristic function is defined in terms
of the Mellin transform instead of the Fourier transform. A detailed introduction to MoLC
is presented in appendix C. The first three ‘logarithmic-cumulants’ are same as the first three
respective ‘logarithmic-moments’. Even though the MoLC provides an excellent method for pa-
rameter estimation, the problem associated with image patches in high and very-high-resolution
SAR images persists even after the transformation (such as in case of FrFT, and Gabor), as it
is hard to predict which pdf model fits the data in order to carry out parameter estimation.

Motivated from MoLC, we suggest to use the logarithmic-cumulants instead of moments to
generate a feature descriptor for FrFT (Singh & Datcu [2012d]), and Gabor (Singh & Datcu
[2012d]). Important to mention that we do not postulate any particular model for the distribu-
tion of the amplitude of the FrE'T coefficients or Gabor filtered images, unlike the generalized
Gaussian distribution modeling for the wavelet coefficients. We restrict ourselves only to the
first stage in the MoLC, i.e. computation of sample logarithmic cumulants. This avoids the
problem of selecting a pdf with sufficient goodness of fit. The first three logarithmic-cumulants
(logarithmic-mean &1, logarithmic-variance, ko, and logarithmic-skewness, k3 estimates) for an
image or image in transformation domain I = {ry,re, - ,rN} are given mathematically as (Li
et al. [2010], Papoulis [1991]):

1 & - N al
= —S 1 Fop = ——— Inr, —7)%, fy3=—-—"" (Inr, — 7> (6.3
Rl N; nry, Ao N—l;(nrk k1), Rs (N—l)(N—2);(nrk k1)°. (6.3)

With In as the natural logarithm. The origin of these formulations with their background and
importance is discussed in following sub-sections.
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6.4.3.1 Why logarithmic-cumulants ?

Now the question arises, why the logarithmic-cumulants should be preferred over the moments
? If we denote m; as the i** order logarithmic-moments for a random variable v with prob-
ability density function p,(u), following the traditional terminology from the moments and
cumulants (Stuart & Ord [1987]), first three logarithmic cumulants can be written as follows:

Ry =1y (6.4)
Fo = Ty — M3
Rz = My — 31, 1My + 2mS3

Thanks to the relation of logarithmic cumulants to the moments of logarithms of u defined
in Tison et al. [2004], we get the empirical expressions for the logarithmic cumulants as we
earlier mentioned in the equation 6.3 as follows:

k1 =mq = E[ln u] (6.7)

fo =y —mt = E[(In u — #)?]

Ry = 1y — 311y + 23 = E[(In u — &)

So in other words, the first three logarithmic-cumulants can be called logarithmic-mean, logarithmic-
variance and logarithmic-skewness. The computation of first three sample logarithmic-cumulants
is simply carried out by first taking the natural logarithm of the data and then computing the
mean, variance and skewness. The expressions logarithmic-moments and logarithmic-cumulants
and their definitions are based on the Mellin transform. The use of Mellin transform becomes
possible in case of the SAR images as radar amplitude or intensity is intrinsically positive. Even
for the complex-valued data, when we apply some linear transformations to achieve a multi-scale
representation such as the FrF'T (multi-scale in phase) or Gabor filter (oriented sub-bands), their
respective amplitude values will also be intrinsically positive. So from the classical statistical
understanding which the moment generating function given by the Fourier transform of the
probability density function should be replaced by some transform defined only of the positive
values, such as Mellin transform. We know that Fourier transform represents an integral over a
set of all real values, where its counterpart in the R space, i.e. the Mellin transform provides
a natural way to define the distribution of products of independent random variables (Tupin
[2011]). Which is a more plausible formulation specifically for SAR images.

Now we discuss general properties of the moments, which will lead us to the demonstrating
importance of the logarithmic-cumulants for SAR relevant feature descriptors over moments.
For a probability density function p,(u) of set of random variables wu, considering the case of
moment generating function, the distribution is multiplied by u’ while computing the ¥ order
moment p; as follows:

+0o0
1 :/ u'py (u)du. (6.10)
—0o0

So the importance of tail is more emphasized in higher moments when 4 increases. In such case
the moments are not correct representation of the statistical response of the data as they are
influenced by strong scatterers found at the tail of the distribution. So in case of the SAR images,
where the targets of importance are not those strong scatterers which appear at the tail of the
distribution, the moments are not the correct statistical representation of the data. While when
using the Mellin transform instead, and computing the logarithmic-cumulants, both the tail and
head of the distribution are taken into account. Thus the importance of Mellin transform is
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even more justified given the fact that mostly the SAR images have heavy-tailed distribution.
Lets demonstrate this concept with an example presented in the figure 6.11.
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Figure 6.11: Interest of logarithmic-cumulants for an improved feature descriptor. Solid line indicates
the distribution, p,(u). Dashed line (- - -) indicates the computation of i** moment, u’p, (u). Dotted
line (---) indicates the computation of i** order logarithmic-cumulants, (In u)’p, (u). First, second and
third order cases are shown in (a), (b) and (c), respectively. In case of the moments, the distribution
is multiplied by u!, u2, and u? for the first, second and third moments. So for higher moments tail
plays deciding factor, which could be corrupted by strong scatterers. Whereas in the case of logarithmic-
cumulants, first the logarithm of the data is computed and later over this moments are estimated. Its
evident from the shown plots that both the head and tail of the distribution are taken into account, thus
logarithmic-cumulants is a better statistical representation of the images for heavy-tailed distribution
cases.

The figure demonstrates a Rayleigh distributed p,(u) for scale parameter 0.5. It can be
seen from the figure 6.11 that for the computation of moments, the tail of the distribution is
taken a lot into account. Tail of the distribution play an important role in statistical char-
acterization for higher moments as here the distribution p,(u), the distribution is multiplied
with u’ before integration in the computation of i moment. But this could lead to an erro-
neous statistical characterization in the heavy-tail case, which is very common in SAR images.
Now the contribution of head of the distribution is enhanced in the statistical characterization
with logarithmic-cumulants. Different logarithmic-cumulants have certain interpretations for the
amplitude and intensity SAR images. The first logarithmic-cumulant (logarithmic-mean: rq)
obviously measures the amount of backscatter, the second logarithmic-cumulant (logarithmic-
variance: kg) can be related to the amount of texture (deviation from Gaussian statistics) and the
third logarithmic-cumulant (logarithmic-skewness: k3) measures the type of texture (negative
K-distribution-like skew or positive G9-distribution-like skew, measure relative to the Gaussian
scale). At least for a linear transformation such as the FrFT or Gabor filters, the interpretations
of the logarithmic-cumulants of the transformed coefficients essentially remains the same.

6.4.3.2 Logarithmic cumulants as feature descriptor

Logarithmic cumulants for FrFT coefficients Let FrF'T,(-) be the 2-D fractional Fourier
transform operator at a transform angle . For an image I(x,y) of size M x N, the first three
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logarithmic-cumulants (%1, k2, and k3, ) for the amplitude-envelope of the fractional Fourier
transform coefficients at a transform angle « are estimated as follows:

1 M N
Fle = 31N D In([FrFTo(I(z,y)), (6.11)

u=1v=1

Fo, = AN N_1 XZZ In (|[FrF Ty (I(z,y))|) — 71,)?, (6.12)

u=1v=1

M-N

Fg, = AN DN 3 XZZ (In (|[FrFTo(I(x,y))|) — 71,)3, (6.13)
u=1v=1

with o = 0, Aa, 2Aa, 3Aa, -+ - , 7. So for Aa = /16, the feature descriptor of the length 51
has the following form:

TerT & = {F1gs Ko, R8s Rlpns Ronas R3any "+ By F2, s K3, ) (6.14)

Logarithmic cumulants for Gabor filtered images Let Gaborg o(-) be the Gabor filtered
image at a stage S=S, and orientation O=0. For an image I(x,y) of size M x N, the first three
logarithmic-cumulants (K1, , k2, and &3,) for the amplitude-envelope of the Gabor filtered image
at at a stage S=S, and orientation O=0 are estimated as follows:

M N
N 1
Flso =3[ N D ) In(|Gabors o(I(z,y))]), (6.15)
u=1v=1
M N
Rogo = MN"T N —5 > > ) (n(|Gabors o (I(x,))|) — fi1g )7, (6.16)
u=1v=1
M. N M N
S i K 3 6.17
K3s.0 (M-Nfl)(M-NfQ) Xuz::lvz:; ln |Gabors O(I(x’y)”) Hls,o) ’ ( )

Thus, for 3 stages, and 4 orientation, we obtain a feature descriptor of length 36 as follows:

JGabor 7 = {Kll,lﬂ K211y 31,15 Rl1,25 B2y 95 K31 05 K1y 35 K21 35 K31 35 K11 45 K21 45 K31 45 (6 18)

<+ K131y R2315 K331 R13,95 K23 99 K33,25 K133, K23 3, K33 35 K13 45 R23 45 "4133,4}'

Before carrying out the mean and individual accuracy analysis of proposed logarithmic-
cumulants based method and earlier discussed well performing methods, we have a look at
the feature space of the logarithmic-cumulants based feature descriptor in comparison to the
moments based feature descriptor for the FrF'T and Gabor case. It can be seen in the figure 6.12,
that the category separability is enhanced in the feature space of the logarithmic-cumulants over
the moments feature space. In the further discussions, the feature descriptor for FrF'T and Gabor
based on logarithmic cumulants will be denoted as FrFT, and Gabor,, respectively.

134



— i i
o0 o0 o0
a S =) a S
® 9 19 )
g =S g
S < T 2 <
Rl g g3
é% [a] E [a\] E N
-3 S -3
0 02 04 06 08 1 0 02 04 06 08 1 0 02 04 06 08 1
Mean, p Skewness, v Skewness, v
(a) The FrFT (The first kind statistics), o = /8
PR g A . AN
£ S ' £
< o % o < o
E© z <@ E©
s g < o =
o O T O a0 O
o &0 9
— N o N — N
T3 oS T S
= 2 g -
§ o : v i LE o | SIRY % O L
20 02 04 06 08 1 0 02 04 06 08 1 20 02 04 06 08 1
First log-cumulant, k1 Third log-cumulant, k3 Third log-cumulant, 3
(b) The FrFT (The second kind statistics), a = /8
— 'y — A — A
® ® @«
a O o a O
s L9 ° o
g oS g
g < S < g <
B S é’ <) £
S N N T N
-3 - S =
o AR o [ SR © L -
0 02 04 06 08 1 0 02 04 06 08 1 0 02 04 06 08 1
Mean, p Skewness, 7y Skewness,

(c) Gabor (The first kind statistics), Scale: 1, Orientation: 2

N
A - — 4 ) z‘_'l

0 0.204 0.6 0.8
0 0204 0.6 0.8

First log-cumulant,

0 02 04 06 08 1 0 02 04 06 08 1 0 02 04 06 08 1
First log-cumulant, k1 Third log-cumulant, k3 Third log-cumulant, x3

Second log-cumulant, ko
0 02040608 1
Second log-cumulant,

(d) Gabor (The second kind statistics), Scale: 1, Orientation: 2

Co1 €02 C03  Co04 C05 €066 Co7 C08 C09} C10

C11 G119 C20

Category color-index

Figure 6.12: Feature space diagram demonstrating the potential of the considered nonparametric feature
descriptors while using the logarithmic-cumulants for category separability. Selected 2-D planes in the
feature space for corresponding feature descriptor is presented, however, it must be noted that the actual
feature space is multi-dimensional. The dimensionality of feature space is same as the length of respective
feature descriptor. Some feature have very large positive or negative numerical values, thus for a better
interpretation, all the features have been scaled between 0 and 1.
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6.4.4 Detailed assessment of individual category accuracies

On a methodological point of view, we can keep W-GGD, and Gabor/Gabor, in one group, and
NL-SFD, and FrFT/FrFT, in another. The first group contains methods which are multi-scale
/ multi-resolution methods. These methods are very successful in texture synthesis, and even
for very intricate arrangement of objects in an image patch. The second group corresponds
to methods based directly on Fourier transform or generalization of Fourier transform. These
methods are not only capturing the texture information but more importantly the information
on the backscattering behavior of the objects on ground. Actually second group must be termed
as a true multi-scale approach in case of SAR images, where the scaling is carried out in the
phase.

Analyzing the first polar chart in the figure 6.13 for mean accuracy, we notice that the
logarithmic-cumulants based FrFT, provides best accuracy of 81.23%, improvement of about
12% over moments based FrFT method, and about 14% better than NL-SFD. The second best
mean accuracy could be achieved by logarithmic-cumulants based Gabor,, improvement of about
10% over moments based Gabor method, and about 06% better than W-GGD. The moments
(mean: g, variance: o2, and skewness: ) and logarithmic cumulants (logarithmic-mean: 1,
logarithmic-variance: ks, and logarithmic-skewness: k3 or simply logarithmic-cumulants: k)
are sometimes referred as ‘first kind statistics’ and the ‘second kind statistics’, respectively.
The highest accuracy has been highlighted with an bold arc on the outer circle representing
100% accuracy level for respective feature descriptors in the polar charts in the figure 6.13.
The individual category accuracy assessment in these polar charts suggest that best individual
accuracy is achieved either in FrFT/ FrFT, or Gabor, based methods. Thus it is sufficient to
discuss these two methodologies in detail, as done in following.

6.4.4.1 On the accuracy of the Gabor/Gabor, based feature descriptors

In many image retrieval systems, Gabor filter-bank based texture feature extraction algorithms
measure the weighted energy of filtered images, regarded as feature descriptors, assuming that
the energy distribution within the frequency domain describes the texture. Alternatively, the
‘first kind statistics (moments)’ of filtered images can be considered as a texture measure. The
most essential property of Gabor coefficients for characterizing the texture in images is its
bandpass filter property, which has been demonstrated in Farrokhnia & Jain [1991]. This is
also the underlying mechanism in humans’ visual system, which we try to imitate in the Gabor
expansion of signals to understand the texture. The homogeneous texture descriptor under the
visual texture descriptor in the moving picture experts group (MPEG)-7 standard (Sikora [2001])
also relies on the moments of Gabor filtered images, and can be considered as a benchmarking
tool for comparing alternative methodologies. The Gabor wavelets used in Gabor filter banks
are non-orthogonal in nature, unless they are poorly concentrated in time or frequency. While
keeping a good time and frequency domain concentration, non-orthogonality is allowed at the
cost of keeping redundant information in the filtered image. To reduce this redundancy, the
Gabor kernel parameter should be carefully selected (Manjunath & Ma [1996]). The results
in the figure 6.13 suggest that the use of logarithmic-cumulants of the Gabor filtered images
outperform traditional strategies (i.e. the moments of Gabor filtered images) with substantial
improvement in accuracy in majority of categories. Overall mean accuracy enhancement is about
about 10%.
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Figure 6.13: Improvement in the accuracy of patch-oriented image categorization with the use of log-
arithmic cumulants (k’s) for the amplitude envelope of the fractional Fourier transform coefficients and
Gabor filtered images. The feature descriptor with highest accuracy in each category has been high-
lighted with an bold arc on the outer circle representing 100% accuracy level. First polar chart on the
previous page represents the overall mean accuracy. Overall accuracy assessment suggests that FrFT,
provides best overall mean accuracy, followed by Gabor,. The accuracies of all other methods are more
or less similar. However, here again individual accuracy assessment suggests that no feature descriptor
outperforms all other in each individual category scenario, thus makes it difficult to arrive at a general
consensus on a best performing method. But the deeper analysis of image content in individual categories
will explain the performance of the respective feature descriptor. This knowledge will aid us to decide
and select a particular feature descriptor depending upon the desired application.
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6.4.4.2 On the accuracy of the FrFT/FrFT, based feature descriptors

Unlike Gabor-based methods, where the texture of the images plays an important role, the frac-
tional Fourier transform based methods mainly discriminate the images based on the underlying
backscattering phenomenon on the ground. The fractional Fourier transform is the projection
of the signal on the rotated time-frequency plane, which essentially uses the phase information
embedded into the complex-valued SAR images. The signal at each plane, i.e. at each trans-
form angle, represents its decomposition in terms of chirps. Here the frequency modulation
rate (FM rate) of the chirp is determined by the transform angle. As the FrFT based method
uses the complex-valued data, the full information (amplitude and phase) is exploited while
forming sub-bands at different transform angles (a’s). The FrFT is actually the true multi-scale
transform for the SAR images, where the scaling is carried out in the phase, and scale factor
is controlled by the transform angle ov. The FrF'T can be viewed as a Radon transform on the
time-frequency Wigner-Ville distribution (Cohen [1989]), i.e. WV marginal distribution on a
straight line parametrized by « in the time-frequency plane. So the WVD rotated by « in the
time-frequency plane is essentially equivalent to the FrFT.

The use of logarithmic-cumulants for the FrF'T coefficients performs better than the moments
of the FrF'T coefficients based feature descriptor in the majority of the categories with a higher
dynamic range. The logarithmic-transformation induces symmetry by reducing the dynamic
range. However the categories, C18-Sandy plains, C19-Buoy in Sea and C20- Ambiguities on the
sea surface seem to perform better for moments case. It is very important to understand these
results for which we refer again to the figure 6.11. We noticed there that in the estimation of the
logarithmic-cumulants, both the head and tail of the distribution is taken into account, whereas
in the estimation of the moments, the importance of tail of the distribution is understandable.
Now in these three categories, the targets which actually describes the content of the image lies
on the tail of the distribution. E.g. in category C19-Buoy in Sea, the strong scattering buoys
are essentially at the tail of the distribution which is the actual information content in this
category. As well as in category C20-Ambiguities on the sea surface, the ambiguities from the
nearby building have stronger response. Similarly, in category C18-Sandy plains, where there is
a lot of clutter due to sandy surface, only the small strong scatterers are actually differentiating
it from other smooth surfaces with diffused scattering such as CO1-Grassland.

6.4.4.3 The FrFT-based feature descriptors versus the Gabor-based feature de-
scriptors

The Gabor filters are normally more suitable for strongly textured images, however the FrF'T
coefficients captured the signals’ behavior efficiently relevant to the SAR images. In this section,
we will provide reasoning for poor accuracy for each category, in order to better understand the
strengths and weaknesses of the FrFT-based (FrFT/FrFT, ) and Gabor-based (Gabor/Gabor,,)
methods in general.

The texture in the categories C13-Skyscrapers and Cl4-Industrial complez is quite distinct,
but the backscattering phenomena on the ground for both is very similar, as it is characterized
by multiple bounces from very-strong scatterers. That’s why the FrFT-based method groups
many patches into the same category, leading to a lower accuracy for C13-Skyscrapers and
Cl4-Industrial complex. Similar is the case for categories C11-Urban coastline and C12-Aircraft
stands. Both categories contain regions with strong scatterers (urban structures in C11 and
structures of aircraft-stands in C12) and specular reflection regions (calm water in C11 and
concrete surface in C12).

In the case of CO06-Urban-02, and CO8-Urban-04, the texture is very distinct, however the
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scattering mechanism is similar due to the similar type of material used in constructing building-
blocks, as well as due to the presence of vegetation in-between. Thus, the Gabor-based method
performs better than the FrFT-based methods. The situation is different in C05- Urban-01, and
CO7-Urban-03, in which the backscattering behavior is different whereas the texture is very much
the same; thus FrFT-based method outperforms the Gabor-based methods.

The uniform textured land-covers, i.e. CO1-Grassland, C02-Forest, and C18-Sandy plains are
grouping with each other in case of the Gabor-based method, whereas the FrF'T-based method
is able to better discriminate between them. The similarity in the texture for the categories
C04- Vegetation and a water-channel, C10-Natural water-channel, C15-Airstrip, and C17-Train
tracks also leads to false-alarms if Gabor-based methods are applied. In spite of the similarity
in texture between C04, C10, C15, and, C17, these categories exhibit different backscattering
properties due to different materials on the ground, therefore the FrFT-based method is more
suitable. The category C09- Urban water-channel also contains false-alarms from CO07- Urban-03
for the case of Gabor-based methods.

The last two categories, C19-Buoy in Sea and C20-Ambiguities on the sea surface, are the
categories with very distinct signatures visible only in the fractional Fourier transform domain.
Thus the FrFT-based methods outperforms Gabor-based methods.

Summary For the patch-oriented image categorization, the following conclusions can be drawn
with the demonstrations on experimental database used, in context to the methodological frame-
work presented in the figure 6.1:

e The model parameter methods applied in Bayesian framework are not found to be very
much suitable for the patch-oriented image categorization. The reason is increase in het-
erogeneity in a larger patch leads to an inaccuracy in the model parameter estimation. It is
not possible to describe a larger patch with diversity of objects with few model parameters.

e In general, methods applied on the image in a suitable transformation space, provide better
accuracy. The reason is that in various sub-bands some information about the objects and
intrinsic texture is revealed which is otherwise hidden in spatial domain representation of
the image.

e A newly proposed method based on the fractional Fourier transform essentially proven to
be a true multi scale approach. This method captures the important primitive feature, i.e.
the backscattering behavior on ground better than the wavelet-based parametric method
and Gabor-based nonparametric methods which are suitable for very well textured images.

e Apart from the standard moments based feature descriptor, the use of logarithmic-cumulants
provides substantially enhanced overall accuracy. The logarithmic transformation balances
the influence of head and tail of the distribution leading to a better statistical character-
ization of the distribution. However, in FrFT-based methods, the categories where the
target of interest essentially lies on the tail of the distribution, the moments should be
preferred over the logarithmic-cumulants.
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6.5 Summary

The chapter provides critical evaluation of the traditional, state-of-the-art and proposed methods
to generate a primitive feature descriptor, in context to the methodological framework presented
in the figure 6.1. Following is the summary of the results presented in this chapter:

e Pixel-based classification

Gibbs based parametric approaches are capable of discriminating the textures even
at the smaller window sizes of 16 x 16 pixels for pixel-based classification. These meth-
ods are certainly useful for the land-cover mapping and monitoring of the regions with
underlying homogeneous textures. Although such regions can be found in high and very-
high-resolution SAR images from satellites such as TerraSAR-X, TanDEM-X etc., but
this will find more applications in upcoming lower-resolution satellites such as Sentinel-1
for large scale mapping. The only limitation is the computational cost in texture model
parameter estimation in Gibbs based methods. This should be overcome with efficient
implementation of the algorithms and improved hardware.

With larger analyzing window sizes of 64 x 64 pixels, the methods applied to the
images in transformation domain also start to perform better in comparison to the lower
analyzing window of 16 x 16 pixels. But further increasing the analyzing window will lead
us to a risk of heterogeneity in the texture, which should be rather considered as a case of
patch-oriented image categorization.

e Patch-oriented image categorization

For the patch-oriented image categorization, the Gibbs based methods are not as
successful as for the pixel-based classification. The approaches applied on the image in
transformation domain, be they parametric or nonparametric, perform very good.

The proposed use of logarithmic-cumulants essentially enhances the accuracy in the
sub-bands based methods (i.e. for the FrFT and Gabor filter banks) traditionally using
the moments as simple statistical measures of the sub-bands. The reason behind this
improvement is that logarithmic-cumulants emphasizes the contribution of the head and
tail of the distribution, whereas the tail of the distribution is taken into account a lot in
the computation of the higher moments. The presence of strong scatterers at the tail of
the distribution, which actually might not be the true representation of the image leads
to inaccurate statistical characterization with moments. However, it must be noted that
the images where the most important targets are the strong scatterers, the moments are
still the better choice.

Although no single feature descriptor performs the best in all categories, but the
proposed fractional Fourier transform based methods outperforms all other methods in
terms of overall mean accuracy.

In summary, we can again comment that it is difficult to arrive a general consensus over a
method performing best in all the scenarios. But in general, the Gibbs based parametric methods
are certainly powerful tool for pixel-based classification. Feature descriptors computed on images
in transformation domain should be preferred for the patch-oriented image categorization. The
presented study, experimental database and critical evaluation can be considered as a benchmark
while developing further algorithms for various applications for spatial content understanding
in SAR images.
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Chapter 7

Summary and conclusions

This thesis analyzes both existing and newly proposed algorithms for the primitive feature ex-
traction in synthetic aperture radar (SAR) images. We propose a methodological classification
framework (Singh & Datcu [2012a]) for the qualitative and quantitative evaluation and compar-
ison of the studied methods. This study was motivated by the availability of metric-resolution
SAR images from last generation satellites such as TerraSAR-X, TanDEM-X, COSMO-SkyMed,
Radarsat-2 etc., where the information available in a resolution cell is large enough to carry out
individual target analysis. The statistical characterization of such SAR images also demands
new approaches.

The earlier statistical algorithms were based on the understanding of speckle characteristics
in SAR images. The focus has been generally on the model-based textural parameter estimation
in the amplitude SAR images, such as parametric Gibbs-based methods in the Bayesian frame-
work. Two Gibbs-based methods, namely, the Gauss-Markov random fields (GMRF) and the
autobinomial model (ABM), have been evaluated in this thesis. In certain cases, the assump-
tion of fully developed speckle, necessary for applying Gibbs-based methods to SAR data, is not
fulfilled in some or all of the regions in the image. In order to handle this problem, we suggest
to evaluate also nonparametric approaches which do not make any assumption on the adapted
data model.

To be able to understand the content of high and very-high-resolution SAR images, we
presented some examples of the metric-resolution spotlight mode TerraSAR-X images and com-
pared them with the low resolution ERS images. In certain scenarios, where the homogeneous
texture is visible, it is still possible to carry out pixel-based classification with parametric meth-
ods, even in high-resolution SAR images. This can be applied only for small scale mapping and
monitoring, as the swath width reduces substantially with the increase in resolution. But when
the details available in a small region of the image too large, the pixel-based classification loses
its advantages. In that case we proposed the patch-oriented image categorization, meaning that
our objective is not to classify some regions of the image, but the whole image-patch into an
object category.

For practical applications, we need to generate a compact feature descriptor which is defined
with a set of primitive features describing the spatial content of the image. The results pre-
sented in this thesis demonstrated the importance of a SAR-relevant primitive feature, termed
as the ‘backscattering response’. Traditional primitive features such ‘texture, shape and color’
which are generally used to characterize an image are found insufficient especially for the case
of very-high-resolution SAR images. The information on the ‘backscattering response’ is better
understood with analysis of the complex-valued SAR images, rather than using just its am-
plitude information. We demonstrated this notion with a proposed methodology for the visual
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exploration of individual targets in complex-valued SAR images based on the concept of azimuth
splitting. This methodology, termed as multiple sublook decomposition approach (MSLD Singh
& Datcu [2012¢]) generates hyper-images, utilizing the phase information, which is not available
in the amplitude SAR images. The MSLD motivated us to consider the complex-valued SAR
images for information extraction, the use of which is generally limited to interferometric or
polarimetric applications only.

The exploitation of the phase information in complex-valued SAR image can be carried out
using a chirplet-derived linear transformation, e.g. the fractional Fourier transform (FrFT).
In literature, the use of the FrFT is restricted to moving targets detection. The analysis and
experiments suggested the suitability of the FrFT for a broader spatial content understanding in
SAR images (Singh & Datcu [2012b]). The advantage of the FrFT is its multi-scaling property,
where the scaling is done in the phase. Now the task even in the case of FrF'T-based method is to
generate a compact feature descriptor. The general choice will be to compute simple statistical
measure such as moments up to certain order on the amplitude-envelope of the FrFT coefficients.
We suggested to enhance the performance of this method by introducing the use of logarithmic-
cumulants as an alternative to the moments (Singh & Datcu [2013]). The distribution of the
amplitude of the FrFT-coefficients is heavy-tailed like the original SAR images, so the moments
are not providing the correct statistical characterization of the distribution of the coefficients.
The reason is the importance of tail of the distribution in the higher moments, which may
contain many strong scatterers which are not essential for describing the spatial content of the
data. On the contrary, the logarithmic-cumulants provide a balanced contribution of the head
as well as the tail of the distribution, which in turn seems to better represent the spatial content
of the image under consideration.

Summary of results and conclusions

The evaluation of various techniques has been carried out under a proposed robust methodolog-
ical classification framework, motivated by increase in the diversity of the targets and objects in
the high and very-high-resolution SAR images. In order to evaluate the performance of the con-
sidered parametric and nonparametric approaches, we used an experimental database generated
from metric-resolution spotlight mode TerraSAR-X images.

For pixel-based classification, the database includes 12 sub-images of size 256 x 256 pixels
containing distinctive homogeneous texture regions, ranging from various vegetation types, ur-
ban areas to calm and rough water. The k-nearest neighbors (k-NN) supervised classification
has been carried out with 1% and 10% training samples, with an analyzing window (aw) of size
16 x 16, 32 x 32, and 64 x 64 pixels. Considering the case of the 64 x 64 pixels analyzing window,
at 10% training sample size, there is no significant difference in the accuracy of parametric and
nonparametric approaches. At a smaller analyzing window (16 x 16 pixels), it is possible to
achieve good accuracy with Gibbs-based parametric approaches applied to the image domain.
These methods are therefore useful for the land-cover mapping and monitoring of regions with
underlying homogeneous textures. The limitation of the computational cost in Gibbs based
methods can be overcome via an efficient implementation of the algorithms and by improving
the hardware.

For patch-oriented image categorization, the database constituted 2000 image patches from
20 well-defined categories, with 100 patches in each category. The k-NN supervised classification
has been carried out with 10% training samples. In general, approaches applied on the images
within a transformation domain, parametric as well as nonparametric, outperformed the others.
A substantial accuracy enhancement has been noticed when using logarithmic-cumulants of the
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Gabor filtered images, instead of the moments. The proposed method of logarithmic-cumulant of
the FrE'T coefficients outperforms other traditional and state-of-the-art methods in overall accu-
racy. The presented results on the FrFT-based techniques motivate us to dwell into the analysis
of complex-valued SAR images, in which the valuable phase information is present. The MSLD
method of visual exploration of targets from the complex-valued SAR images further confirms
our assumptions on the utility of the phase information in future algorithm developments.

Outlook and future work

The motivation to use complex-valued SAR images, the use of which was usually limited to
interferometric and polarimetric applications, has been demonstrated in this thesis. A critical
analysis of Gibbs-based parametric methods has also been carried out in this thesis. It is difficult
to achieve a general consensus on best methods, as in our assessment no algorithm outperforms
all others for every considered scenario. Thus, in the future, we propose to employ an automatic
method selection technique, so that the parametric methods and nonparametric methods can
be used in synergy, for practical applications with an enhanced overall accuracy.

The evaluation presented in this thesis provides a baseline study for parametric and non-
parametric approaches. The selection of the most suitable method depends on the applications
specific requirements. The proposed use of complex-valued SAR images is the underlying con-
tribution of this thesis. This has been motivated by successful experiments carried out using
MSLD and FrFT-based methods.
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Appendix A

TerraSAR-X

TerraSAR-X, the first German national remote sensing satellite in a public-private partnership
between German Aerospace Center(DLR) and EADS Astrium Gmbh, was launched in June 2006
on a Russian/Ukrainian DNEPR-1 launch vehicle from the Baikonur cosmodrome in Kazakhstan.
The objective of this satellite is to provide high quality radar image data to satisfy the data
requirement for scientific research as well as data needs for commercial applications. It is the
first commercial satellite in the world providing SAR images with metric resolution.

’——-\
_~TerrASAR ™K

i
= 3

EADS

ASTRIUM

Figure A.1: TerraSAR-X

The satellite

The satellite, approximately weighing 1.3-ton, is based on the Flexbus-concept from EADS. This
Flexbus-concept, which was also used successfully in CHAMP and GRACE missions before,
greatly reduces the cost in comparison to conventional design. The satellite has a structure
of hexagonal cross section with 5m long and 2.4m wide satellite bus, with one of the six sides
carrying the bm long and 80cm wide radar antenna. The enery requirements of the satellite are
met by means of gallium arsenide solar cells. The downlink antenna which transfer the data
recorded by radar antenna is secured to a 3.3m long mast in order to prevent the interference
from radar antenna. Thus the acquisition of data and transmission of the data to ground station
can be done simultaneously. On board GPS receiver is used for precise determination of the
satellite orbit and star sensor ensures the antenna alignment accuracy as high as 65 arcsecs.
Alongside the SAR instrument as primary payload, The Laser Communication Terminal (LCT)
and The Tracking, Occultation and Ranging Experiment (TOR) are also flying on TerraSAR-X
as secondary payloads.
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SAR system and imaging modes

Primary payload, the SAR system has an active antenna which can be utilized in different
modes. TerraSAR-X is operated in the X-band (frequency of around 9.65GHz, corresponding
to the wavelength of about 3cm). The radar antenna which is 4.80m long and 80cm wide
can operate in two polarizations, H (Horizontal) and V (Vertical). TerraSAR-X operates in 4
different modes depending upon the user requirements with following technical specifications:

High resolution spotlight mode Scene extension - 5km (azimuth) x 10 km (ground range),
ground range resolution 1.48m - 3.49m (for incidence angle of 55° - 20°), azimuth resolution
1.1m(single polarization) and 2.2m (dual polarization), 91 full performance and 122 data access
elevation beams, azimuth steering angle up to + 0.75 °, possible polarizations HH or VV (single
polarization) and HH/VV (dual polarization).

Spotlight mode Scene extension - 10km (azimuth) x 10 km (ground range), ground range
resolution 1.48m - 3.49m (for incidence angle of 55° - 20°), azimuth resolution 1.7m (single polar-
ization) and 3.4m (dual polarization), 91 full performance and 122 data access elevation beams,
azimuth steering angle up to +0.75°, possible polarizations HH or VV (single polarization) and
HH/VV (dual polarization).

Figure A.2: TerraSAR-X imaging modes

Stripmap mode Swath width (ground range) of 30km with 4 sub-swaths, ground range res-
olution 1.70m - 3.49m (for incidence angle of 45° - 20°), azimuth resolution 3.3m (single polar-
ization) and 6.6m (dual polarization), 12 full performance and 27 data access elevation beams,
possible polarizations HH or VV (single polarization) and HH/VV, HH/HV, VV/VH (dual
polarization).

ScanSAR Mode Swath width (ground range) of 100km with 4 sub-swaths, ground range
resolution 1.70m - 3.49m (for incidence angle of 45° - 20°), azimuth resolution 1.85m, 27 full
performance elevation beams.

High resolution spotlight data

Figure A.3 depicts the spotlight mode imaging in SAR. The phased array beam is steered in
azimuth direction in order to increase the illumination time, thus increasing the size of syn-
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thetic aperture CAF-DLR [2009]. A better azimuth resolution is obtained at the expense of
reduced azimuth scene size. TerraSAR-X products are available in two different ranges of az-

© DLR

5-10 km

Figure A.3: Spotlight mode imaging

imuth resolution and azimuth scene size for spotlight mode, named as Spotlight (SL) and High
Resolution Spotlight (HS). We have used HS data for our experimentation because it provides
the best possible resolution from TerraSAR-X. The detailed characteristic values of HS mode

are as follows CAF-DLR [2009]:

Table A.1: Parameters of high resolution spotlight mode

Parameter

Value

Scene Extension

Full performance incidence angle range
data access incidence angle range
Number of elevation beams

Number of azimuth beams

Azimuth steering angle

Azimuth resolution

Ground range resolution

Polarizations

5km (azimuth) x 10km (ground range)

20° - 55°

15° - 60°

91 (full performance), 122 (data access)

up to 125 out of 229

up to £+ 0.75°

1.1m (single polarization)

2.2m (dual polarization)

1.48m - 3.49m (at 55° - 20° incidence angle)
0.74m - 1.77m (with 300 MHz bandwidth option
and reduced swath extent in range)

HH or VV (single), HH/VV (dual)
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Appendix B

Experimental data base

For the evaluation of feature descriptor performance in patch-oriented image categorization, a
database of 2000 image-patches from the metric-resolution TerraSAR-X images has been gen-
erated. The size of each image patch is 200 x 200 pixels, thus each patch covers approximately
2002 m? of ground. The considered experimental data base comprises of 20 well-defined objects
/ texture categories with 100 patches of each category. Example of one image-patch has been
shown in the figure 6.7. Care has been taken to generate the database with diverse textures and
objects in each category. In order to demonstrate this diversity, we present here 10 arbitrary
selected image-patches from each category. The geographical locations from which each cate-
gory originates is also presented, describing that the image-patches are from all over the world
to include diversity and make them independent of local criteria.

(a) CO1- Grassland. Gilching and Munich (Germany), Stockholm (Sweden).

(b) CO02- Forest. Paris (France), Gilching (Germany).

(c) C03- Mixed vegetation. Gilching (Germany), Stockholm (Sweden).

(d) C04- Vegetation and urban with a water-channel. Maribor (Slovania).
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(e) C09- Urban water-channel. Venice (Italy).

i

(i) C13- Skyscrapers. Tokyo (Japan), Vancouver (Canada), Bangkok (Thailand).
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(a) C14- Industrial complex. Anshan (P.R. China).

(b) C15- Airstrip. Hong Kong (P.R. China), Stockholm (Sweden), Gilching (Germany).

(c) C16- Highway. Stockholm (Sweden).

(d) C17- Train tracks. Tehachapi (USA).

(e) C18- Sandy plains. Giza Necropolis (Egypt).

(f) C19- Buoy in Sea. Venice (Italy).

(g) C20- Ambiguities. Venice (Italy), Hong Kong (P.R. China), Singapore.

Figure B.1: Examples of the SAR image patches (of the size 200 x 200 pixels) in different objects /
texture categories. The total number of image-patches in each category is 100. The above shown images
demonstrates the diversity of structures and objects in each category. It can be seen in C09, C10, the
orientation of water channel is varying. Similar is the case with the C04, C15 and C17, where the texture
is similar with objects oriented at different angles as well as exhibiting different backscattering behavior.
The geographical locations from which various image-patches for each category are extracted is also
mentioned.
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Appendix C

Method of logarithmic-cumulants

In chapter 6, we introduced the use of logarithmic-cumulants as a statistical measure to generate
a feature descriptor from the amplitude-envelope of the fractional Fourier transform coefficients
as well as Gabor filtered images. This idea been motivated from the method of logarithmic-
cumulants (MoLC) proposed in Nicolas [2002], as an alternative to the the maximum likelihood
estimation (MLE) and method of moments (MoM) to solve a problem of parameter estima-
tion for densities defined on R*. The MLE approach has already been introduced in sec-
tion 4.2.1 in perspective to texture modal parameter estimation in Bayesian inference. In this
appendix, we present a basic overview on MLE on the perspective of probability density function
(pdf)parameter estimation, as well as the MoM. Later the MoLC is introduced.

The maximum likelihood estimation The MLE is a standard approach to the parameter
estimation and inference in statistics. The MLE method chooses the parameter values that
provides the highest value of the likelihood function by finding the root of the derivative of the
likelihood function. Let us assume a set of random variables, X = {x1,z9,- -, 2}, which has
a pdf p(X|0) with model parameter vector 8 with number of parameters = p. If all of the k
individual observations, x; are statistically independent of each other, the pdf of the given data
X can be expressed as multiplication of the pdfs of the individual observations as follows (Myung
[2003]):

k
p(X = (z1, 29, ,21)|0) = p1(1|0)pa(ws | 0) -+ pr(a | 6) = | [ poli). (C.1)
=1

Now the likelihood function is defined by reversing the role of the observation vector X and the
parameter vector 6 in p(X|0) as follows:

k
L(O | L1, T2, 7$k) :p(X = (Zlfl,xg,"‘ ,I'k) | 9) = Hpiﬁ(xl) (CZ)
i=1

Here L£(-) represents the likelihood of the parameter vector 6, given the observed data X. In
MLE approach, one seeks to maximize this likelihood function. In practice, its more convenient
to work with the logarithm of the likelihood function. Taking the natural logarithm of this
likelihood function, the log-likelihood function can be equivalently written as:

k
InL(0|xy, z0,- -+ ,xp) = Zlnpx(xi). (C.3)
i=1
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To maximize this log-likelihood function, partial derivative for the each element in 6 parameter
vector is taken, to obtain a system of p equations with p unknowns can be obtained, as follows:

k
d (Z lnpx(xi)>
=1

a0,

= 07 j: 1727"' > D- (C4>

The solution relies on the existence of the partial derivatives of the log-likelihood function. This
approach attain the Cramer-Rao boundary, when feasible to apply (Nicolas [2002]). But it is
difficult to obtain the partial derivative for complicated SAR-relevant distribution such as X
distribution (Oliver [1993]).

The method of moments The MoM is a parameter estimation method which matches the
theoretical moments with the sample moments. Let’s assume X as a set of random variables
with cumulative distribution function (cdf) F(z) and the pdf p(x). With dF(z)/dz = p(x), its
moments of order n (i.e. pu,) are defined by its mathematical expectation E(X™) as follows:

“+oo +00
E(X™) = / "dF(x) = / x"p(x)dx. (C.5)
—0o0 —00
Now the sample moments of the observation in the random variable X are equated with the

unobservable population moments of the distribution to solve for the unknown variables.

To illustrate the parameter estimation using the MoM, we consider the case of a simple and
well-known two parameter Gamma distribution (§[3, L]) widely used in characterizing speckle
pdf in SAR images. Here the unknown parameters are: (3, the scale parameter and L, the shape
parameter. Its pdf is given as follows:

1 L (Lx
p(el8,1) = 18,11 (0) = iy s

Substituting the equation C.6 in the equation C.5 will provide the the first two population
moments (analytical expression for the moments), which can be written as follows:

L—1 La
) e, with L > 0. (C.6)

py= LB, py=B°L(L+1). (C.7)

A system of equations is obtained by equating the sample moments (m; and mg) and the
analytical population moments (u1 and u2). Solving this system of equation will provide us the
estimates for the unknown parameters (5 and L) as follows:

9 2
8= QEL41217 L = 4412L4§' (C.8)

mi mo — M

The use of MoM is justified when it is not possible to obtain the parameter estimates by the
MLE approach. However, the variance of the estimates is higher in MoM as compared to the
MLE.
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The method of logarithmic-cumulants In the chapter 5, we presented the use of Fourier
transform as an important signal processing tool for feature-descriptor generation. That includes
the direct use of Fourier transform (section 5.3), the generalization of the Fourier transform
(i.e. the fractional Fourier transform) (section 5.4), and in Gabor filter bank based approach
(section 5.5) for computing the multiplication of signal by means of convolution in Fourier
domain. However, the Fourier transform is just not a widely applicable signal processing tool,
but it is also a fundamental notion in probability theory and statistical analysis.

In the classical statistical approach (Stuart & Ord [1987]), to define a random phenomenon
by a pdf p;(u), the moment generating function or the first characteristic function ®,(v) is given
by its Fourier transform J(-), given as follows (Métivier [1972]):

o0

©.0) = F[p()] (1) = [ e (u)du (C9)
—00
This moment generating function determines the moments when they exists. The moments i,
of order n can be generated by differentiating this function to n* order, written as follows:

oy AP, (V)

pn = (=) ——

1
Jon (C.10)

v=0

The fundamental theorem of the theory of characteristics function, i.e. the inversion theorem,
proves that a pdf p,(u) can be uniquely determined by its first characteristic function (Stuart &
Ord [1987]). The cumulative function, also termed as the second characteristic function W, (v)
is defined as the logarithm of the first characteristic function:

W, (v) = log(®,(v)). (C.11)

It generates cumulants in the same way as the first characteristic function generates the moments.
Thus the cumulants k, of order n are generated by differentiating the second characteristic
function to nt" order, written as follows:

ki = (=J)" "% (v)

dom

(C.12)

v=0

We consider again the case of the Gamma distribution (§G[3, L]) for analyzing its distribution
with the help of moment generating function. Here § is the scale parameter and L is the shape
parameter. Same as equation C.6, its pdf is given as follows:

L-1 Lu
S8, L] (u) = r(lL)g (L;) e B, with L > 0. (C.13)

Now, the first characteristics function of Gamma distribution will be given by the Fourier trans-
form of its pdf as follows:

L L ejLarctan(%
) =(2) —— C.14
32

In order to estimate the 2 parameters v and L, we should obtain a system of equations formulated
by the moments as a function of unknown variables v and L by carrying out the differentiation
of the equation C.14 to the first and second order. This should lead us to the equation C.7.
Even in case of simple model such as Gamma distribution, this system of equation generates
rather complicated expressions.
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An alternative approach to obtain an easier solution to such problem was proposed in Nico-
las [2002], by introducing the concept of second-kind statistics. That is why, we can refer to
the statistical approach presented in earlier part of this section as the first-kind statistics. The
approach second-kind statistics, can also be termed as the method of log-cumulants (MoLC), es-
sentially proposes the expression for ‘second kind characteristic functions’, ‘second kind moments
(log-moments)’ and ‘second kind cumulants (log-cumulants)’. In the second-kind statistics, for
the generation of the first characteristic function ¢,(v) (of second-kind), Mellin transform M(-)
of the pdf is used instead of the Fourier transform F(-). This approach is applicable only to set
of positive-valued random variable, X, with the pdf p,(u) defined for u € RT. With the use of
Mellin transform, the first characteristic function of second-kind, can be defined as:

+oo
balv) = M [p(u)] (5) = /0 w1, (u)d, (C.15)

provided the integral in the above equation converges. Here, s = a + b denotes the complex
variable, bounded to the strip [ delimited by two parallel lines on the secondary axis where the
Mellin transform is defined. For s = 1, the fundamental property ¢.(s)|,_; = fooo pa(u)du =1
is satisfied (Li et al. [2011]). With these conditions, it is also possible to write the relations for
the inverse Mellin transform, in order to determine the probability density function from the
first characteristic function of second-kind as follows:

1 c+joo
pu) = / u *py(s)ds, c¢>1. (C.16)
27TJ c—joo
The equations C.15 and C.16 are also called the Mellin transform pair. Analogous to the
equation C.10, the second kind moments, [i, of order n can be defined by differentiating the first
characteristic function of second-kind to n** order as follows:
_ d" . (s)

n= —2 C.17
fi i | (C.17)

Staying with the analogy in classical statistics, or the first kind statistics, the second character-
istic function of second-kind can be defined as the logarithm of the first characteristic function
of second-kind:

%(8) = log(¢m(3))' (0'18)
The n'" order derivatives of the second characteristic function of second-kind, evaluated at s = 1
will provide us the equations for the n'* order cumulants:

- d"%(S)

Fp= ——+ C.19

" ds™ |, ( )

Now, again considering the case of the Gamma distribution for the random variables defined
on R, e.g. amplitude SAR images, the second characteristic function of second-kind for this
distribution can be written, by the use of Mellin transform as follows (Oberhettinger [1974]):

sflr(L +s— 1)

Pa(s) = 1) (C.20)

The following system of equations for the cumulants of second kind can be derived from the
equation C.20, by taking its first and second order derivative, with ¥(v,-) as the v*" order
polygamma function as follows:

fii=0(0,L) +In(y) — In(L), Fs=(1,L). (C.21)
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Here, k1 and Ry are the estimates of the first two cumulants of second-kind (or simply the
logarithmic-cumulant, in this case, the logarithmic-mean and the logarithmic-variance). The

first two logarithmic-cumulants for a given data, I = {ry,r9,--- ,7n} can be estimated as follows:
1 & -
Rl = N kz_l Inrg, ko= N1 2 (In7r, — K1), (C.22)

After obtaining these logarithmic-cumulants estimates, the system of equation given in equa-
tion C.21 is rather easier to solve than the case of the classical statistical approach of moments,
to obtain the estimates for the unknown parameters p and L for the Gamma distribution.
Based on the MoLLC, it is possible to carry out the parameter estimation for many other com-
plicated SAR-relevant pdfs mentioned in section 2.3.1. In some of the mentioned distribution, it
is not possible to define the moments of certain order and also the maximum likelihood approach
is very cumbersome to be applied to the practical applications. Thus the MoLC provides an
efficient alternative to tackle the problem of parameter estimation for complicated distributions.

161






Nomenclature

ABM Autobinomial Modal

ANN Artifical Neural Networks

ASM Angular Second Moment

BW Bandwidth

CP  Cluster Prominence

CS  Cluster shade

DLR German Aerospace Center

EM Expectation Maximization

EPOS Edge Preserving Optimized Speckle-Filter
ESA European Space Agency

FM Frequency Modulation

FrFT The Fractional Fourier Transform
FT  Fourier Transform

GEF Gabor Elementory Functions

GGD Generalized Gaussian Distribution
GLCM Gray Level Co-occurence Matrices
GMRF Gauss markov Random Fields
GRF Gibbs Random Fields

ICM Tterative Conditional Modes

IDM Inverse Difference Moment

IEM TIterative Evidence Maximization
JPEG Joint Photographic Experts Group

JTFA Joint Time Frequency Analysis
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K-NN K-Nearest Neighbours

LFM Linear Frequency Modulation
MAP Maximum a posteriori

MCMC Markov Chain Monte Carlo
MLE Maximum Likelihood Estimatior
MMSE Minimum Mean Squared Error
MoLC Method of Logarithmic-Cumulants
MoM Method of Moments

MPEG Moving Pictues Experts Group
MSLD Multiple Sub-Look Decomposition
PA  Producer’s Accuracy

PRF Pulse Repetition Frequency
RAR Real Aperture Radar

SAR Synthetic Aperture Radar

SLC Single Look Complex

STFT Short Time Fourier Transform
SVM Support Vector Machines

TFA Time Frequency Analysis

UA  User’s Accuracy

VHR Very High Resolution

WYVD Wigner-Ville Distribution

XML Extensible Markup Language
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