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”Einfach reden, aber kompliziert denken - Nicht umgekehrt.“
Franz Josef Strauß

”I know that self-promotion happens a lot and if people want to do that, good luck to them,
but I do not regard it as a positive thing.“

Grigorij Perelman

”Genius is one per cent inspiration, ninety-nine per cent perspiration“
Thomas Edison





Abstract

Many gradient based optimization methods can be found in the literature. If the input
parameters of a cost function are subject to implicit constraints the adjoint method is often
the preferred method to obtain the gradient. The adjoint method provides an efficient way
for the computation of the gradient, where the computational time is independent of the
number of control variables of the cost function.

In this work the noise of a three dimensional turbulent subsonic jet is minimized. The
cost function is defined as an integral over the pressure fluctuations in the farfield and
thus gives an estimate for noise emission. The simulations are based on the compressible
Navier-Stokes equations, which act as implicit constraints for the minimization problem.
The adjoint variables are computed using different approximations of the adjoint equations
and the resulting gradient accuracy is investigated. Among other aspect the continuous
and discrete adjoint methods are compared in terms of accuracy. Furthermore, the effi-
ciency and effectivity of the optimization procedure is investigated in terms of gradient
accuracy and numeric resolution.

Keywords: Aeroacoustics, Adjoint Method, Flow Control, Noise Minimization, Continuous
Adjoint, Discrete Adjoint



Zusammenfassung

In der Literatur kann eine Vielzahl an Methoden zur gradientenbasierten numerischen
Optimierung gefunden werden. Für den Fall, dass die Parameter einer Kostenfunktion
impliziten Bedingungen unterliegen, wird häufig die Adjungiertenmethode zur Berechnung
des Gradienten herangezogen. Die Adjungiertenmethode erlaubt auch bei impliziten Be-
dingungen eine effiziente Berechnung des Gradienten, wobei die benötigte Rechenzeit un-
abhängig von der Anzahl der Parameter der Kostenfunktion ist.

Im Rahmen dieser Arbeit wird der Schall eines dreidimensionalen turbulenten unterschall
Freistrahles minimiert. Die Kostenfunktion wird definiert als ein Integral über die Druck-
fluktuationen im Fernfeld und ist somit ein Maß für die Lautstärke des Freistrahles. Die zu-
grundeliegenden Bewegungsgleichungen sind die kompressiblen Navier-Stokes-Gleichungen,
welche implizite Bedingungen aus Sicht des Optimierungsprozesses sind. Die Adjungierte
wird auf unterschiedliche Arten berechnet und die Genauigkeit des daraus resultierenden
Gradienten untersucht werden. Ein besonderes Augenmerk liegt hierbei auf Vergleichen
zwischen der sogenannten diskreten und kontinuierlichen Adjungierten. Desweiteren wird
die Effizienz und Effektivität der Optimierung in Abhängigkeit der Genauigkeit des Gra-
dienten und der numerischen Auflösung betrachtet.

Schlagwörter: Aeroakustik, Adjungierten Methode, Strömungskontrolle, Schallreduktion,
Kontinuierliche Adjungierte, Diskrete Adjungierte
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Nomenclature

Φ vector of state variables

R right hand side of equations of motion

·′ variation with respect to a control variation g′

·◦ variation with respect to a control variation g◦

γ ratio of specific heats

ℑ cost functional

λ heat conductivity

g vector of control variables

U vector containing the flow variables density, velocities and pressure

µ dynamic viscosity

· temporal average (sometimes also spatial average, see context)

ρ mass density

τij component of shear stress tensor

Θ Heaviside step function

·̂ Reynolds fluctuations

c speed of sound

Cp specific heat capacity at constant pressure



IV

Cv specific heat capacity at constant volume

D jet diameter in inflow plane

L Lagrangian

mi momentum density in direction i

Ma Mach number

p static pressure

Pr Prandtl number

R ideal gas constant

Re Reynolds number

T temperature or time interval length

Tsuth Sutherland temperature

ui velocity in direction i

Uj jet velocity in inflow plane

xi coordinate in direction i



Abbreviations

POD proper orthogonal decomposition

BPOD balanced proper orthogonal decomposition

DMD dynamic mode decomposition

ROM reduced order model

LQG linear model, quadratic cost function, gaussian noise

UQ uncertainty quantification

BC boundary conditions

CBC characteristic boundary conditions

NBC non-reflecting boundary conditions

RK Runge-Kutta

FD finite differences

LHS left hand side

RHS right hand side

PDE partial differential equation

LBFGS low storage BFGS

CG conjugate gradient

CGLin conjugate gradient for linear systems



VI

BFGS Broyden-Fletcher-Goldfarb-Shanno

NCGtrust Newton conjugate gradient with trust region

NCGline Newton conjugate gradient with line search

NLan Newton Lanczos

DNS direct numerical simulation

LES large eddy simulation

RANS Reynolds averaged Navier Stokes

DRP dispersion relation preserving

AD automatic differentiation

CFL Courant-Friedrichs-Lewy

SPL sound pressure level

I/O input/output

SAT simultaneous approximation term

SBP summation by parts



1. Introduction

1.1. Motivation

Flow control is an area with many fields of practical applications. Examples cover many
different areas of aerodynamics such as shape optimization [54, 1, 16, 19, 71, 85, 107, 68, 61],
boundary control [5, 22, 23, 24, 63, 64] or noise control [103, 84, 2, 50, 77, 78, 59]. In control
theory one can distinguish between closed and open loop control. In the latter case one
aimes to find an optimal control. In closed loop control one seeks an optimal feedback rule
between some measurement of the state space and the control.

Another categorization of control problems is based on the method used to identify effective
control parameters. Many different approaches have been investigated to influence flows
in a desired way. Parameter studies, often in conjunction with physical reasoning, play an
important role in optimization as its approach is quite simple [26, 106, 79, 9]. However,
parameter studies are usually time intensive and due to the complex nature of the Navier-
Stokes equations simple models based on physical reasoning are often not available. An
improvement over simple parameter variations are derivative free optimization methods,
e.g. surrogate management framework [61], simplex methods [74] or evolutionary strategies
[34]. Instead of controlling the complete flow system at hand a reduced order model (ROM)
can be derived. Due to the decreased state space dimension this ROMs are usually easier
to control. This method relies strongly on the capability of finding a basis small compared
to the state space dimension, but nevertheless capable of reflecting the relevant physical
effects of the original system. A prominent choice for such a basis are proper orthogonal
decomposition (POD) modes [4, 76, 55]. Several extensions of the POD approach exist
to make the resulting ROM more robust regarding parameter variations, e.g. balanced
proper orthogonal decomposition (BPOD) modes [3, 41], Taylor series expansion [41] or
stochastic parameter variation [63]. Another choice for a ROM basis could be based on
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dynamic mode decomposition (DMD) [81]. An interesting application for ROMs is the
linear model, quadratic cost function, gaussian noise (LQG) framework [24, 3]. LQG
leads to a Riccati equation, whose solution gives an optimal feedback estimate based on
a given flow measure. However, the linearization of the model equations restricts the
area of applicability of this approach. In uncertainty quantification (UQ) methods, such
as polynomial chaos [52, 35, 67] or others [28], instead of assigning a fixed value to all
parameters some parameters are left uncertain. Usually this uncertainty is interpreted
as stochastic noise of unknown or unquantifiable magnitude. However, UQ is capable of
delivering the response of a cost functional with respect to the variation of some parameters.
Thus, UQ methods might also be used to identify an appropriate control strategy.

Another control method is to exploit information about the derivatives of a given cost
functional for its optimization. Derivative based optimization is a topic well documented
in literature. Several classes of efficient and robust schemes are known. However, the com-
putation of derivatives can be implementationally challenging and computationally time
consuming. This holds especially for systems subject to conservation laws, as these con-
servation laws usually constitute implicit constraints for the control parameters. In the
presence of implicit constraints derivatives can be computed by solving the linearized state
equations resulting from the conservation laws or with finite differencess (FDs). A more
elegant way to deal with implicit constraints is the so called adjoint approach. In this case,
the constraints are added to the cost function via Lagrangian multipliers leading to the so
called Lagrangian. A variation of the Lagrangian with respect to the state variables leads
to the adjoint equations. Solving these adjoint equations, the derivative of the cost func-
tional can be computed with a computational effort independent of the number of control
parameters. In principle, adjoint based optimization is capable of identifying an optimal
control even for highly non-linear and time-dependent control problems. The solution
of the adjoint system can be computationally and implementationally complex, however.
One reason for this is that for non-linear systems the complete state space must be known
to obtain the adjoint solution. As the adjoint equations have to be solved backwards in
time this constitutes a severe memory demand for time dependent problems. Furthermore,
several approaches for the implementation of the adjoint system exist numerically, which
differ considerably in terms of accuracy, implementational effort and computational cost.
An important example is the choice of whether the adjoint system is derived before or
after the discretization of the partial differential equation (PDE), leading to the so called
continuous or discrete adjoint, respectively. The computational cost and the requirement
of knowing the complete state space of the adjoint method makes it impractical for ex-
perimental applications. Nevertheless, the knowledge of the optimal control might help to
identify effective control mechanisms, for example using the compressed sensing approach
[64].

Noise reduction constitutes a challenging subtopic in the area of flow control due to the large
separation of scales between the near field involving turbulent motion and the noise radiated
into the farfield. Many investigations were conducted to connect the farfield noise with the
turbulent motion found in the near field noise emitting area [25, 13, 44, 80, 95, 51, 92, 49]
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and to identify noise sources [31, 29, 32, 83, 36]. Nevertheless, there is still a lack of simple,
yet sufficient models for typical flow control applications, which could yield simplified
models for noise control.The separation of scales and the still incomplete understanding
of noise generating mechanisms makes the adjoint method an attractive method for noise
minimization, which is the topic of this work.

1.2. Review of Previous Work

This section will overview some of the previous work in the field of adjoint based flow
control. In [22] and [5] a channel flow could be relaminarized by controlling the turbulent
kinetic energy using adjoint method for direct numerical simulation (DNS) and large eddy
simulation (LES). Amongst other things, it could be observed that the efficiency of the
control framework decreased with increasing Reynolds number and control interval length.
In a similar approach the turbulent kinetic energy of two dimensional counter rotating
vortices interacting with a wall was controlled via boundary suction in [23].

In [103, 104] the continuous adjoint was used to control the noise of a two dimensional
shear layer. This work constitute one of the first examples of the application of adjoint
based optimization for noise minimization. In [84] the discrete adjoint approach was used
to investigate the noise sensitivity of a two dimensional mixing layer. The noise emission
of three dimensional round [50] and plane [59] jets was successfully reduced using the
continuous adjoint. In order to circumvent the computationally expensive direct simulation
of the farfield a flow/adjoint solver was coupled with a Ffowcs Williams and Hawkins
approach in [78]. This way the shape of a two dimensional NACA 0012 profile could be
optimized to minimize noise radiation.

The continuous adjoint was successfully applied to optimize the lift coefficient of different
profiles on unsteady and unstructured grids in [1, 16]. The two dimensional discrete adjoint
equations were used for shape optimization in [19] and different approximations to the dis-
crete adjoint were tested. [75] used automatic differentiation (AD) to compute the adjoint
for a time dependent two dimensional flow configuration. In [68] a shape optimization for
a tiltrotor configuration was performed. This is one of the first simulations computing the
discrete adjoint for a three dimensional unsteady setup. [20] compared adjoint eigenmodes
obtained using the continuous and discrete adjoint of a two dimensional jet using a low
Mach number code.

Adjoint optimization involves a computationally expensive iteration. Furthermore, the
flow field reconstruction during the adjoint solution can demand severe hardware require-
ments. Because of this, instationary adjoint solutions have largely been restricted to two
dimensional flows or rather small grids (e.g. ∼ 2 · 106 grid points in [22, 50]). The largest
continuous adjoint simulation known to the authors is reported in [82], which comprised
33.6 · 106 grid points. In [68] the discrete adjoint was computed on a grid with ∼ 5 · 106
nodes. Furthermore, questions remain regarding the accuracy of the continuous adjoint ap-
proach. This work will address these questions by computing adjoints of a plane jet with
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different resolutions and investigating the optimization efficiency as a function of gradient
accuracy and resolution.

Second derivative information can be obtained by solving the sensitivity equations of the
adjoint equations. In many cases optimization schemes exploiting information about the
Hessian have an improved performance compared to purely gradient based optimization
schemes. Examples for optimizations exploiting second derivative information can be found
in [102, 43, 42, 77, 93]. However, these works are restricted to rather small numerical
systems (at most 2 · 104 grid points in [77]) and a moderate number of control parameters
(6400 in [42] and at most a few dozen in [102, 43, 77, 93]). Thus, an open question is if
such optimization schemes are efficient for three dimensional flow cases including a high
number of control parameters.

This work is organized as follows. In chapter 2 the derivative based optimization algorithms
used in this work are introduced. Chapter 3 explains how to use the adjoint method to
obtain first and second derivative information. Next, the numerical methods used to solve
the flow and adjoint equations are explained in chapter 4. Details about the optimization
framework and several numerical parameters are given in chapter 5. In chapter 6 the
accuracy of different adjoint formulations is investigated in detail. The adjoint method is
used for the purpose of noise minimization of plane jets in chapter 7. Finally, the results
are summarized in chapter 8.



2. Unconstrained Optimization

Given a cost-functional ℑ (g) : G → ℜ the general unconstrained optimization problem
reads:

find min
g∈G

ℑ(g) (2.1)

In this chapter the most common optimization schemes are presented based on informa-
tion about the gradient dℑ

dg
and/or the Hessian d2ℑ

dg2 . The discussion will give only a brief
motivation of the methods and concentrates on the algorithms. There will be no complete
derivation of the methods, proof of convergence etc. The reader may refer to [70] for a
more detailed discussion. The conjugate gradient (CG) and Broyden-Fletcher-Goldfarb-
Shanno (BFGS) methods are also explained in some detail in [74]. A summary of Newton
Krylov methods can be found in [53]. The discussion of the various methods is necessary,
however, since we perform a detailed comparison of the performance of these algorithms
for our control problem in this work. To the best knowledge of the author, this has not
been done before for an unsteady flow optimization problem .

2.1. Line Search

In line search based optimization algorithms the control is updated iteratively as

gi+1 = gi + αipi, (2.2)

where pi is some search direction, αi is a step length and gi is the control at the ith

iteration. Algorithms for obtaining the search direction pi are given in section 2.2 and 2.3.
This section deals with the problem of determining proper step lengths αi.

Given the search direction pi the step length αi is often chosen such that the Wolfe condi-
tions

ℑ(gi + αipi) ≤ ℑ(gi) + c1αi
dℑ(gi)

dg
pi (2.3)
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dℑ(gi + αipi)

dg
pi ≥ c2

dℑ(gi)

dg
pi (2.4)

are satisfied for some constants c1 and c2 with 0 < c1 < c2 < 1. The sufficient decrease
Condition (2.3) ensures that the step length αi does not become too large, as it requires
a higher reduction with higher step length. On the other hand, the curvature condition
(2.4) prevents the step length from becoming too short as it requires that the gradient of
the new iteration point increases compared to the previous point.

It can be shown that every line search optimization following iteration (2.2) is globally
convergent if αi satisfies the Wolfe conditions and pi is a descent direction for all i and if
the sequence pi does not become perpendicular to the gradient.

Alternatively, the strong Wolfe conditions, which also satisfy the Wolfe conditions, are
used:

ℑ(gi + αipi) ≤ ℑ(gi) + c1αi
dℑ(gi)

dg
pi (2.5)

∣∣∣∣
dℑ(gi + αipi)

dg
pi

∣∣∣∣ ≤ c2

∣∣∣∣
dℑ(gi)

dg
pi

∣∣∣∣ . (2.6)

In opposition to the Wolfe conditions the strong Wolfe conditions guarantee that the step
length is sufficiently near to a local minimizer in the sense that the norm of the gradient
in the search direction has to decrease.

2.1.1. Backtracking

The Armijo backtracking algorithm, shown in algorithm 1, gives a strategy how to obtain
a step length satisfying the Wolfe conditions. Starting with some initial step length, this
step length is decreased until the sufficient decrease condition (2.5) is satisfied. Note that
the curvature condition (2.4) is not explicitly tested. Instead, the backtracking algorithm
1 avoids small step lengths implicitly, by decreasing the initial step length only as much as
necessary.

A prominent strategy for the updating of the step length is α = ραold with some ρ ∈ (0, 1).
Another method sets α to the extremum of the quadratic function defined by the function
values at 0 and αold and the directional derivative at 0. Note, that this extremum is
a minimum in (0, αold) as long as pi is a descent direction and the sufficient decrease
condition (2.5) isn’t fulfilled.

2.1.2. Exact Line Search

Given some step lengths α < β < γ it can easily be shown that a local minimizer of ℑ exists
in the interval (α, γ) if ℑ(α) > ℑ(β) < ℑ(γ). Here, the definition ℑ(α) ≡ ℑ(gi + αpi)
is introduced. Choosing a new step length δ ∈ (α, γ) it is always possible to choose a
triple of step lengths, depending on the function value ℑ(δ), such that the new step length
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initialize α > 0, c1 ∈ (0, 1)

check ℑ(g + αp) ≤ ℑ(g) + c1α
dℑ(g)
dg

p
αold = α

choose α ∈ (0, αold)

finish

yes

no

Algorithm 1: Armijo backtracking algorithm for choosing a step length α such that the
Wolfe conditions are satisfied.

triple contains a local minimizer and the new search interval is smaller than the previous
one. Repeating this procedure the position of the local minimizer can be hunted down
iteratively to an arbitrary precision.1 In this work the Brent line minimization algorithm
as described in [74] is implemented.

Exact line searches are usually quite expensive and only useful if a high precision of the
line search is necessary, as in e.g. CG methods.

2.1.3. Wolfe Line Search

One can also try to find a step length such that the strong Wolfe conditions (2.5)-(2.6) are
satisfied.

In a first phase a given step length is increased until an interval is found that, assuming a
smooth function, has to contain step lengths fulfilling the strong Wolfe conditions. In the
second phase the determined interval is decreased, such that the new chosen subinterval
still has to contain step lengths fulfilling the strong Wolfe conditions, until a satisfying step
length is found.

The implementation used in this work follows the Wolfe line search algorithm proposed in
[70] with the step increase and decrease strategies given in [66].

1This procedure is very similar to the bisection procedure used for determining the root of a function.
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initialize g0

set i = 0, I0 = ℑ(gi), ξ = −dℑ(gi)
dg

approximatly solve mina∈ℜ ℑ (gi + a ξi)

set gi+1 = gi + a ξ
i = i+ 1
Ii = ℑ(gi)

set ξ = −dℑ(gi)
dg

check ||ξ|| < threshold

finish

yes

no

Algorithm 2: The steepest descent algorithm for non-linear optimization.

2.2. Gradient Based Optimization

In this section the most common algorithms for obtaining search directions based on gra-
dient information are introduced.

2.2.1. Steepest Descent

As the negative of the gradient of the cost-functional is the direction of steepest descent
a very intuitive optimization method is to perform a line minimization along the gradi-
ent direction at every optimization iteration. This steepest descent algorithm is given in
algorithm 2.

Though this algorithm seems reasonable, can be shown to be globally convergent and is
very easy to implement, its performance is usually known to be poor. The reason for the
often poor performance of the steepest descent algorithm is closely connected with the
observation that, after an exact line minimization, the gradient at the new iteration point
is perpendicular to the previous search direction. Suppose the cost function has the shape
of a long narrow ”valley“ (ill-conditioned Hessian matrix). Then, due to the perpendicular
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Figure 2.1: Steepest descent optimization for the cost function ℑ = x2 +4y2 with an exact line
search. Dashed lines are iso-contours of the cost function and the dots show the iterations of the
steepest descent algorithm. Note, that the way to the minimum reveals a zigzag pattern.

search directions, the search direction can not be adjusted along this valley. This situation
is illustrated in figure 2.1. Because of this deficiency the steepest descent algorithm is not
discussed further.

2.2.2. Conjugate Gradient

The basic idea of the CG method is to choose the new search directions in such a way that
it does ”not interfere“ with the previous search directions. More mathematically speaking
this translates to the requirement that the gradient obtained after a line minimization
is perpendicular to all previous search directions. Expanding the cost functional to the
second order of a Taylor series expansion this condition leads to

uTHv
!
= 0 (2.7)

where u and v are search directions and H is the Hessian matrix of the cost functional.
Two vectors are said to be conjugate if they fulfill equation (2.7).

What makes the idea of CG practicable is that a set of conjugate search directions can be
constructed with the knowledge of the gradient of the actual and the previous iteration,
only, using algorithm 3. Note, that except for the updating step of the new search
direction the CG algorithm is identical to the steepest descent algorithm. Furthermore,
despite the control at the actual optimization iteration step only three additional fields ξ,
∇ and h have to be kept in memory. Refer to [70] for a proof that algorithm 3 produces
conjugate search directions.

The line minimization must be exact for the CG algorithm to produce conjugate search
directions. However, it can be shown that the search directions remain to be a descent
direction and global convergence is preserved if the strong Wolfe conditions are satisfied.
Nevertheless, the line search should be performed rather accurate for the CG algorithm to
produce improved search directions compared to the steepest descent direction.
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initialize g0

set i = 0, I0 = ℑ(gi), ξ = dℑ(gi)
dg

∇ = −ξ, h = ∇, ξ = h

approximatly solve mina∈ℜ ℑ (gi + a ξi)

set gi+1 = gi + a ξ
i = i+ 1
Ii = ℑ(gi)

set ξ = dℑ(gi)
dg

check ||ξ|| < threshold

finish

set γ = (ξ+∇)·ξ
∇·∇

∇ = −ξ
h = ∇+ γ h

ξ = h

yes

no

Algorithm 3: Illustration of the conjugate gradient algorithm for non-linear optimization.

2.2.3. BFGS

The change of the gradient of the cost functional for different controls contains second
derivative information. This observation leads to the idea to construct the Hessian of the
cost functional with the information given by the gradients obtained during the optimiza-
tion iterations. There are many schemes that explore this idea like the Broyden class or
SR1. However, in this work only the BFGS scheme is considered, which is a member of
the Broyden class.

The BFGS updating formulae are given by

Hk+1 = V T
k HkVk + ρksks

T
k (2.8)

where

ρk =
1

yT
k sk

(2.9)

Vk = I − ρkyks
T
k (2.10)
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initialize g0

i = 0, I0 = ℑ(gi)

∇ = dℑ(gi)
dg

, ξ = −∇, H0 = I

approximately solve mina∈ℜ ℑ (gi + a ξi)

gi+1 = gi + a ξ
i = i+ 1
Ii = ℑ(gi)
si−1 = a ξ

set ξ = dℑ(gi)
dg

check ||ξ|| < threshold

finish

yi−1 = ξ −∇
∇ = ξ
ξ = −∇

ρi−1 =
1

yT
i−1

si−1

if (i=1) H0 =
sT
0
y0

yT
0
y0
I

Vi−1 = I − ρi−1yi−1s
T
i−1

Hi = V T
i−1Hi−1Vi−1 + ρi−1si−1s

T
i−1

ξ = Hiξ

yes

no

Algorithm 4: Illustration of the BFGS algorithm for non-linear optimization.

sk = gk+1 − gk (2.11)

yk =
dℑ(gk+1)

dg
− dℑ(gk)

dg
(2.12)

The matrix Hk yields an approximation to the inverse of the Hessian and thus an approx-
imation to the Newton direction can be obtained by simply multiplying the gradient with
Hk. This approximation to the Newton direction can be used for optimization.

The only question remaining is how to choose the initial matrix H0. A common choice is

to initially optimize in the gradient direction and then set H0 =
sT
0
y0

yT
0
y0
I. The BFGS scheme

together with a line minimization is shown in algorithm 4.

2.2.3.1. LBFGS
Let N be the dimension of the control space G then the matrix Hk has N2 entries. As Hk

is usually not sparse this implies that the BFGS scheme can not be directly applied for
very large N as in the cases presented in this work.
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q = g

for m = k − 1, k − 2, . . . , k −M
αm = ρms

T
mq

q = q− αmym

end

q = H0
kq

for m = k −M,k −M + 1, . . . , k − 1
β = ρmy

T
mq

q = q+ (αm − β)sm
end

Algorithm 5: The LBFGS algorithm for computing the product of a vector with the BFGS
matrix without explicit usage of the matrix.

This gives rise to the necessity of low storage variants of the BFGS scheme. In this low
storage BFGS (LBFGS) scheme, instead of calculating Hk directly, the vectors sk and yk

are saved and the product of Hk with some vector is calculated by multiplying this vector
with sk and yk. To restrict the memory requirements only the last M appearances of sk
and yk are saved and information from older iterations are discarded.

The product of q = Hkg using the last M iterations can be computed efficiently with
algorithm 5. H0

k is an approximation to the BFGS matrix at iteration k − M − 1. A

common choice is H0
k =

sT
k−1

yk−1

yT
k−1

yk−1
I. Note, that the optimization algorithm 4 can be adopted

for LBFGS by exchanging the line ξ = Hiξ with algorithm 5.

2.3. Hessian Based Optimization

In this section optimization schemes based on information of the Hessian are presented.
It should be noted that the BFGS algorithm is often denoted as Hessian based in the
literature as it constructs an approximation to the Hessian. It is, however, Hessian free
in the sense that it does not use the exact Hessian explicitly. Note, that for a very
high dimension of the control space an exact computation or inversion of the Hessian is
impractical. Thus, this section is restricted to algorithms which require the computation
of a Hessian vector product, only.

2.3.1. Newton Conjugate Gradient

It is well known that the Newton direction ξN , defined as the optimizer of the quadratic
approximation of the cost function and given by

H|gi
ξN = − dℑ

dg

∣∣∣∣
gi

, (2.13)
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where H is the Hessian of the cost function, is a good search direction and can lead to fast
convergence. Unfortunately, the Newton direction cannot be used directly for minimization
as pure Newton direction based methods are usually numerically unstable. Furthermore,
the Newton direction leads to a maximum instead of a minimum for the case of negative
curvature (negative second derivative) of the cost function. Additionally, the Hessian may
not be invertible.

Nevertheless, the idea of the Newton direction can be exploited with the conjugate gradient
for linear systems (CGLin) algorithm. This algorithm is in principle the same as the CG
algorithm for non linear systems introduced in section 2.2.2. However, here the CGLin
algorithm is used for the solution of the linear system 2.13 and major modifications are
made to increase the efficiency of the CG algorithm for linear systems.

Minor but important modifications of the CGLin algorithm are necessary to adopt it to
Newton based minimization. As stated earlier, directions with a negative curvature lead
the solution away from a local minimizer. Furthermore, the CGLin algorithm converges for
positive definite matrices only. Thus, the CGLin algorithm is aborted as soon as a search
direction with negative curvature appears. In this case the last solution obtained by the
CGLin algorithm before the occurrence of a negative curvature direction is used as a search
direction for the minimization. Another modification is that the CGLin algorithm is always
initialized with ξ = 0 to avoid negative curvatures in the solution of the CGLin algorithm.
Furthermore, with this choice the first iteration gives the steepest descent direction, which
is improved in later iterations of the CGLin algorithm. We will refer to the modified
CGLin iteration in conjunction with a line search as the Newton conjugate gradient with
line search (NCGline) iteration.

2.3.2. Trust Region Optimizations

An alternative to the line search based minimization techniques are the so called trust
region algorithms [93]. The variant of the trust region algorithm implemented for this
work is depicted in algorithm 6. The basic idea is that, given some trust region ∆, one
tries to find an approximate solution to the trust region subproblem

min
ξ

(
dℑ
dg

∣∣∣∣
gi

(ξ) +
d2ℑ
dg2

∣∣∣∣
gi

(ξ, ξ)

)
subject to ||ξ|| < ∆, (2.14)

that is the minimizer ξ to the quadratic model of the cost function in the region that satisfies
||ξ|| ≤ ∆. This quadratic minimizer is used as a new trial point for the minimization of
the cost function.

The trust region ∆ must not be chosen too small to ensure an efficient behavior of the min-
imization iteration. On the other hand it must be small enough such that the quadratic
approximation to the cost function is valid. Because of this, at every iteration the new func-
tion value is compared to the value obtained by the quadratic model and the trust region
is updated depending on the agreement between real cost function value and quadratic
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initialize i = 0, g0

choose ∆, ν ∈ [0, 1
4
)

approximately solve

minξ ℑ (gi) +
dℑ
dg

∣∣∣
gi

[ξ] + d2ℑ
dg2

∣∣∣
gi

[ξ, ξ]

subject to ||ξ|| < ∆

ρ = ℑ(gi+ξ)−ℑ(gi)
dℑ
dg |gi [ξ]+

d2ℑ

dg2

∣

∣

∣

gi

[ξ,ξ]

check ||dℑ(gi)
dg

|| < threshold

finish

if ρ < 1
4

∆ = 1
4
∆

end

if ρ > 3
4
and ||ξ|| = ∆

∆ = 2∆
end

if ρ > ν
gi+1 = gi + ξ

else

gi+1 = gi

end

i = i+ 1
yes

no

Algorithm 6: The trustregion algorithm.

model. If the actual reduction of the cost function is close to or even higher than the
quadratic approximation guess, the trust region is increased for the next iteration. If the
cost function reduction is small (or negative) the new search point is rejected and the trust
region is decreased.

In most cases obtaining the exact solution to the trust region subproblem (2.14) is diffi-
cult and one must stick with an approximation. Furthermore, for very high dimensional
control spaces even obtaining the exact solution of the Newton equation (2.13) may be to
expensive. Therefore, approximate solution schemes to equation (2.14) like the dog leg or
two dimensional subspace methods, which require at least one solution to equation (2.13),
can not be used for our purposes and are not explained any further. The CGLin algorithm
can be modified to yield an approximation to the trust region subproblem (2.14). The
first observation is that the choice ξ = 0 in the CGLin algorithm ensures that the solution
vector is monotonically increasing with iteration number. Thus, it can be stated that if
the solution vector is outside the trust region for some iteration i it will be outside the
trust region for all iterations j > i. Hence, one might stop the CGLin iteration imme-
diately, as soon as the solution vector reaches the trust region and follow the last search
direction only to the trust region boundary. In case of directions of negative curvature the
iteration is stopped and one follows the last search direction to the trust region boundary.
The modified CGLin iteration in conjunction with a trust region will be referred to as the
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Newton conjugate gradient with trust region (NCGtrust) iteration. Note, that in contrast
to the NCGline algorithm in case of a negative curvature direction the information of this
direction is not discarded.

An alternative to the NCGtrust iteration is based on the observation that a basis to the
Krylov subspace of the Hessian Matrix is constructed during the CGLin iteration. So
instead of aborting the iteration when negative curvature is encountered or the solution
vector leaves the trust region, the iteration is resumed and the subproblem (2.14) is solved
exactly in the Krylov subspace obtained by the iterations so far. This is realized with the
Lanczos algorithm. This algorithm is very similar to the CGLin algorithm. However, in
contrast to the CGLin algorithm the Lanczos algorithm does not break down in case of a
search direction with negative curvature. We will refer to the trust region optimization in
conjunction with Lanczos iteration as the Newton Lanczos (NLan) algorithm and details
are given in [37].
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3. Constraint Optimization with Ad-

joint Method

Given some state variables Φ ∈ P , some control g ∈ G, a cost functional ℑ (Φ,g) :
P × G → ℜ and some constraints F(Φ,g) = ~0 with F(Φ,g) : P × G → V the general
constraint optimization problem reads:

find min
Φ∈P
g∈G

ℑ(Φ,g) such that F(Φ,g) = 0 (3.1)

In the following we will discuss the case where there are no constraints on the control g,
such that the state variables and the cost functional become functions of control g, only:

Φ ≡ Φ(g) (3.2)

ℑ ≡ ℑ(g) ≡ ℑ(Φ(g),g) (3.3)

However, one should keep in mind that Φ(g) and ℑ(g) are just formal representations, as
the functional dependencies are given implicitly through the constraints F(Φ,g) = 0.

3.1. Gradient through Adjoint Method

In order to understand the control approach applied later in this work, an efficient way
of calculating the gradient of the cost functional with implicit constraints is presented in
this section. The following is a short introduction, only. Refer to [40] for a more detailed
introduction and further insight or [46] for a more rigorous mathematical treatment.
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Given some control g0 the variation of the cost functional with respect to some variation
g′ of the control is given by:

dℑ
dg

∣∣∣∣
g0

[g′] ≡ lim
ǫ→0

ℑ (Φ(g0 + ǫg′),g0 + ǫg′)−ℑ (Φ(g0),g0)

ǫ

=
∂ℑ
∂Φ

[
dΦ

dg

∣∣∣∣
g0

[g′]

]
+

∂ℑ
∂g

[g′] .

(3.4)

To simplify the notation dℑ
dg

will be written in the following instead of dℑ
dg
|g=g0

. The variation

of the state variables or sensitivity Φ′ = dΦ
dg

[g′] can be determined with the so called
sensitivity equation, given by the variation of the constraints F:

dF

dg
[g′] =

∂F

∂Φ

[
dΦ

dg
[g′]

]
+

∂F

∂g
[g′] =

∂F

∂Φ
[Φ′] +

∂F

∂g
[g′] = 0. (3.5)

However, determining the gradient dℑ
dg

this way is not feasible for high dimensional control

spaces, as equations (3.4) and (3.5) have to be solved N times, if N is the dimension of
the control space.

This expensive calculation of dℑ
dg

can be circumvented by introducing the so called La-
grangian multipliers ξ ∈ V , which are defined as the solution of

∂ℑ
∂Φ

[Φ′]−
〈
ξ,

∂F

∂Φ
[Φ′]

〉

V

= 0 ∀ Φ′ ∈ P, (3.6)

where 〈·, ·〉X is a scalar product in the vector space X.

Substituting equations (3.6) and (3.5) into equation (3.4) one gets:

dℑ
dg

[g′] =
∂ℑ
∂Φ

[Φ′] +
∂ℑ
∂g

[g′]

(3.6)
=

〈
ξ,

∂F

∂Φ
[Φ′]

〉

V

+
∂ℑ
∂g

[g′]

(3.5)
= −

〈
ξ,

∂F

∂g
[g′]

〉

V

+
∂ℑ
∂g

[g′] .

(3.7)

Note, that in equation (3.7) the variation of the state variables Φ′ has vanished and thus
the gradient dℑ

dg
can be obtained directly if the adjoint variables ξ are known. At first sight

this does not seem to be an advantage as equation (3.6) does still contain Φ′.

Thus, we introduce the adjoint A∗ of an operator A with the definition

〈x, A[y]〉X
!
= 〈y, A∗[x]〉Y ∀ x ∈ X,y ∈ Y. (3.8)
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Using this definition equation (3.6) can be rewritten as
〈
1,

∂ℑ
∂Φ

[Φ′]

〉

ℜ

−
〈
ξ,

∂F

∂Φ
[Φ′]

〉

V

=

〈
Φ′,

(
∂ℑ
∂Φ

)∗

[1]

〉

P

−
〈
Φ′,

(
∂F

∂Φ

)∗

[ξ]

〉

P

=

〈
Φ′,

(
∂ℑ
∂Φ

)∗

[1]−
(
∂F

∂Φ

)∗

[ξ]

〉

P

= 0.

(3.9)

As the variation Φ′ is arbitrary not only the whole expression but every part in the scalar
product has to be zero, leading to the so called adjoint equations

(
∂ℑ
∂Φ

)∗

−
(
∂F

∂Φ

)∗

[ξ] = 0. (3.10)

Using equation (3.10) to determine the adjoint variables ξ and equation (3.7) to determine
the gradient dℑ

dg
, the computational cost for determining the gradient is now independent

of the dimension of the control space G. The adjoint system has therefore to be solved
only once and can be used for every change in the control variables.

3.1.1. Lagrangian

The relations illuminated in section 3.1 can be presented in a more compact way by defining
the Lagrangian as

L ≡ ℑ− 〈ξ, F 〉V . (3.11)

Setting the partial derivatives of the Lagrangian with respect to Φ, g and ξ to zero one
gets

∂L

∂ξ
= −F = 0 (3.12)

∂L

∂Φ
=

∂ℑ
∂Φ

−
〈
ξ,

∂F

∂Φ

〉

V

= 0 (3.13)

∂L

∂g
=

∂ℑ
∂g

−
〈
ξ,

∂F

∂g

〉

V

3.7
=

dℑ
dg

= 0. (3.14)

It can be observed that equation (3.12) are the constraints, equation (3.13) are the adjoint
equations (see equation (3.6)) and equation (3.14) is the gradient of the cost functional (see
equation (3.7)). With these considerations it is evident that the constraint optimization
problem (3.1) is equivalent to

∂L

∂(Φ,g, ξ)
= 0. (3.15)
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In equation (3.15) only partial derivatives are present, so it can be recognized that with
the introduction of the Lagrangian multipliers the constraint optimization problem (3.1)
is transformed into the system of equations (3.15).

3.1.2. Example

In this section the explicit mathematical procedure for obtaining the adjoint equations in
continuous space is presented. The chosen example is the viscid one dimensional burgers
equation with some forcing/control u

∂y(x, t)

∂t
+ y(x, t)

∂y(x, t)

∂x
= ν

∂2y(x, t)

∂x2
+ u(x, t) (x, t) ∈ (x0, x1)× (t0, t1) (3.16)

with boundary conditions

y(x0, t) = y(x1, t) = 0 t ∈ (t0, t1) (3.17)

y(x, 0) = y0(x) x ∈ (x0, x1). (3.18)

The goal is to choose the control u(x, t) such that the state variable y(x, t) matches a given
function Υ(x, t) best as possible, thus the cost functional is defined as

ℑ =

∫ x1

x0

dx

∫ t1

t0

dt (y(x, t)−Υ(x, t))2 . (3.19)

To simplify the notation the dependencies of the functions will be skipped from now on
and we will write y instead of y(x, t). With the above definitions and the L2-norm the
Lagrangian is

L =

∫ x1

x0

dx

∫ t1

t0

dt
[
(y −Υ)2

−λ
∂y

∂t
− λy

∂y

∂x
+ λν

∂2y

∂x2
+ λu

]

−
∫ t1

t0

dt λbcy|x0,x1
−
∫ x1

x0

dx λinit (y − y0)|t0 ,

(3.20)

where λ, λbc and λinit are Lagrangian multipliers. The variation of the Lagrangian with
respect to y is

∂L(y, u, λ)

∂y
[ỹ] ≡ lim

ǫ→0

L(y + ǫỹ, u, λ)− L(y, u, λ)

ǫ

=

∫ x1

x0

dx

∫ t1

t0

dt [2 (y −Υ) ỹ

−λ
∂ỹ

∂t
− λỹ

∂y

∂x
− λy

∂ỹ

∂x
+ λν

∂2ỹ

∂x2

]

−
∫ t1

t0

dt λbcỹ|x0,x1
−
∫ x1

x0

dx λinitỹ|t0 = 0.

(3.21)
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In order to obtain the adjoint equations we have to calculate the adjoint of equation (3.21).
This is achieved by integration by parts and leads to

∂L(y, u, λ)

∂y
[ỹ] =

∫ x1

x0

dx

∫ t1

t0

dtỹ [2 (y −Υ)

+
∂λ

∂t
− λ

∂y

∂x
+

∂λy

∂x
+ ν

∂2λ

∂x2

]

−
∫ t1

t0

dt

[
ỹ

(
λbc + λy + ν

∂λ

∂x

)
− ∂ỹ

∂x
νλ

]

x0,x1

+

∫ x1

x0

dx [ỹ (λ− λinit)]t0

−
∫ x1

x0

dx ỹλ|t1 = 0.

(3.22)

As the direction/variation ỹ can be chosen arbitrarily1 we can conclude that the different
parts under the integrals itself must be zero. So the adjoint equations become

2 (y −Υ) +
∂λ

∂t
− λ

∂y

∂x
+

∂λy

∂x
+ ν

∂2λ

∂x2
= 0 (x, t) ∈ (x0, x1)× (t0, t1) (3.23)

λ = 0 x ∈ (x0, x1), t = t1 (3.24)

νλ = 0 x ∈ {x0, x1}, t ∈ (t0, t1) (3.25)

λ− λinit = 0 x ∈ (x0, x1), t = t0 (3.26)

λbc + λy + ν
∂λ

∂x
= 0 x ∈ {x0, x1}, t ∈ (t0, t1). (3.27)

Note, that the Lagrangian multipliers λbc and λinit appear only in equation (3.26) and
(3.27). So these equations can always be fulfilled and can be skipped if one is interested in
λ, only. λ is determined by equations (3.23)-(3.25).

The variation of the Lagrangian with respect to the control gives

∂L(y, u, λ)

∂u
[ũ] ≡ lim

ǫ→0

L(y, u+ ǫũ, λ)− L(y, u, λ)

ǫ
=

∫ x1

x0

dx

∫ t1

t0

dtũλ

=
dℑ
du

∣∣∣∣
u

[ũ],

(3.28)

which leads to the conclusion

dℑ
du

∣∣∣∣
u

= λ (3.29)

1And at the boundaries the variation and its derivative can be chosen independently.
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I/O-Library MPI MPI fortran intrinsic HDF5
collective non-collective binary I/O collective

time/s 3.3 150 3.0 12.0

Table 3.1: Performance of I/O of different libraries tested on JUGENE for the writing of one
flow field comprising 148 Mio. grid points (2.96 GB).

#comp.-proc. #I/O-proc. I/O-freq titer
4096 0 200 2.5
4096 0 3 6.6
4000 96 200 2.6
4000 96 3 2.8

Table 3.2: Number of compute processes, number of I/O-processes, number of flow integrations
between savings of flowfield and time of one RK integration for different configurations. These
performance tests were performed on JUGENE with a flow case comprising 148 Mio. grid points.

3.1.3. I/O Issue

From equation (3.24) one can see that there is a boundary condition given at final time
t = t1, which implies that the adjoint equations (3.23)-(3.25) must be solved backward in
time. Because of the non-linearity of equation (3.16) the state variable y still appears in
the adjoint equation (3.23). As the equations that determine y are solved forward in time
this implies that y has to be saved or recomputed to be available for the backward in time
determination of the adjoint variable λ. A repeated recomputation of the complete flow
interval during the adjoint solution is too expensive. On the other hand for most practical
applications the storage requirement for saving the complete flow information is too high to
be kept in memory. This holds true even if hard-disk memory is used, too. Thus, a mixed
approach is adopted for this work, where the flow fields are written to/read from hard
disk after a fix number of Runge-Kutta (RK) iterations. The flow fields in-between are ei-
ther interpolated with a third order accurate interpolation scheme or recomputed on these
shorter subintervals. Note, that these subintervals should be short enough, such that the
complete flow field information of this interval can be kept in the working memory (RAM).
Special checkpointing strategies exist [38] to find an optimal compromise between storage
requirements and saving/loading/recomputation of variables. However, for the cases con-
sidered in this work enough memory was available to implement the simple checkpointing
technique of recomputation for subintervals with constant length. Note, that this strat-
egy is the most efficient in terms computational time as no flow information has to be
recomputed more than once.

Due to the usually low bandwidth of hard disk I/O the frequent saving/loading can signifi-
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cantly reduce the performance of the computations. Thus, special I/O-nodes were reserved
to perform the I/O-tasks asynchronously to the flow computations. The idea is that the
compute nodes, responsible for the flow solution, send/receive the flow fields non-blocking
to/from the I/O-nodes, while the IO-nodes actually read/write the data from/to hard disk.
Furthermore, each process writes its data into one separate binary file. This way no com-
munication between the processes is necessary for the I/O and the file handles have to be
opened and closed only once at the beginning and end of the simulation. This kind of I/O
proved to be more efficient than hard disk access with parallel-I/O libraries such as HDF
5 or MPI as can be seen in table 3.1, which lists the required time for writing a flow field
comprising 148 Mio. grid points leading to a data size of 2.96 GB (single precision). The
tests were performed on cluster JUGENE of Forschungszentrum Jülich. Similar findings
are reported in [68]. The effectiveness of the asynchronous I/O approach can be observed
in table 3.2, where the actual computation time is listed for different numbers of com-
pute and I/O nodes and different saving frequencies. It becomes apparent that with the
asynchronous I/O only a minimal loss of efficiency can be observed.

3.2. Hessian through Adjoint Method

With the adjoint method, introduced in section 3.1, gradient information can be obtained.
The first derivative gives information about the linear response of the cost functional, only.
As already discussed in section 2.3 second derivative/quadratic information can also be used
to yield efficient search directions. The question is if the additional implementational and
computational effort for determining second derivatives is compensated by the (eventually)
improved search direction. However, the efficiency of different optimization schemes vary
considerably for different test cases. To be able to study the efficiency for Hessian based
optimization schemes for the systems at hand a way of obtaining second order information
is introduced now.

The second derivative with respect to two control variations g′ and g◦ is

〈
1,

d2ℑ
dg2

[g◦,g′]

〉

ℜ

≡
〈
1,

d
(

dℑ
dg

[g′]
)

dg
[g◦]

〉

ℜ

=

〈
1,

d
(

dℑ
dg

[g◦]
)

dg
[g′]

〉

ℜ

(3.14)
=

〈
1,

d
(

∂L
∂g

[g◦]
)

dg
[g′]

〉

ℜ

=

〈
1,

∂
(

∂L
∂g

[g◦]
)

∂Φ

[
dΦ

dg
[g′]

]
+

∂
(

∂L
∂g

[g◦]
)

∂g
[g′] +

∂
(

∂L
∂g

[g◦]
)

∂ξ

[
dξ

dg
[g′]

]〉

ℜ

(3.30)

=

〈
1,

∂
(

∂L
∂g

[g◦]
)

∂Φ
[Φ′] +

∂
(

∂L
∂g

[g◦]
)

∂g
[g′] +

∂
(

∂L
∂g

[g◦]
)

∂ξ
[ξ′]

〉

ℜ
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=

〈
g◦,

∂
((

∂L
∂g

)∗
[1]
)

∂Φ
[Φ′] +

∂
((

∂L
∂g

)∗
[1]
)

∂g
[g′] +

∂
((

∂L
∂g

)∗
[1]
)

∂ξ
[ξ′]

〉

G

.

Note, that analogous to the procedure in chapter 3.1, the adjoint of the operators were
introduced to get rid of the dependency of the operators for some variation. From equation
(3.30) one can conclude that the second part of the scalar product equals an Hessian vector
product.

As the variation ξ′ of the Lagrangian multiplier ξ appears in equation (3.1) an equation
is needed for its determination. This equation is obtained by a variation of the adjoint
equation (3.10) with respect to the control g 2

〈
1,

d
(
∂L
∂Φ

[Φ◦]
)

dg
[g′]

〉

ℜ

=

〈
Φ◦,

d
((

∂L
∂Φ

)∗
[1]
)

dg
[g′]

〉

P

=

〈
Φ◦,

∂
((

∂L
∂Φ

)∗
[1]
)

∂Φ
[Φ′] +

∂
((

∂L
∂Φ

)∗
[1]
)

∂g
[g′] +

∂
((

∂L
∂Φ

)∗
[1]
)

∂ξ
[ξ′]

〉

P

=

〈
Φ◦,

∂
((

∂L
∂Φ

)∗
[1]
)

∂Φ
[Φ′] +

∂
((

∂L
∂Φ

)∗
[1]
)

∂g
[g′]−

〈
ξ′,

(
∂F

∂Φ

)∗

[1]

〉

V

〉

P

=0.

(3.31)

As the variation Φ◦ is arbitrary the term inside the inner product has to be zero and thus
gives an equation for the determination of ξ′.

To summarize, given some control variation g′ the product of the Hessian matrix with this
control variation can be obtained in the following way:

1. compute the state variables Φ from the constraints F = 0

2. compute the Lagrangian multipliers ξ from the adjoint equations (3.10)

3. compute the variation of the state variables from the sensitivity equations (3.5)

4. compute the variation of the Lagrangian multipliers from equation (3.31)

5. compute d2ℑ
dg2 [·,g′] from equation (3.30)

Note, that if only g′ changes and g stays the same only the last three steps have to be
recomputed.

2This procedure is analogous to the procedure in section 3.1 for obtaining the sensitivity equations.
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Figure 3.1: Illustration of the procedure to obtain zero, first and second derivative information
using either the sensitivity or adjoint approach. The thickly framed quantities, namely the PDE,
cost functional ℑ and control g together with their variations g′,g◦ must be given. ·′ and ·◦
indicates variations with respect to g′ and g◦ and ·∗ are adjoint variables. The arrows indicate
the information necessary to compute/calculate the particular quantities. Arrows marked with
”solve“ constitude the computationally expensive parts of the procedure that require a solution
of differential equations.

The above procedure introduces a way to calculate a Hessian×vector product. To obtain
the full Hessian one could compute this product for N different control variations g′, where
N is the dimension of the control space. However, such an approach is not feasible for high
N, for the same reasons it wasn’t feasible to compute the gradient through N solutions of
the sensitivity equation.
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non-linear PDE

linear PDE

linear adjoint PDE

non-linear discrete PDE

linear discrete PDE

discrete adjoint PDE

linearise

transpose

discretize

discretize

linearise

transpose

Figure 3.2: Illustration of the ways for obtaining the discretized adjoint equations of the partial
differential equations. Note, that the two ways are not equivalent.

The procedure for obtaining derivative information of a cost functional under implicit
constraints is illustrated in a flowchart in figure 3.1.

3.3. Continuous and Discrete Adjoint

The discretized adjoint equations of a PDE can be obtained in two different ways. The so
called continuous adjoint is obtained by calculating the adjoint equations of the PDE and
then discretizing these equations. The discrete adjoint is obtained by discretizing the PDE
and then calculating the adjoint of this discrete system. The two ways are illustrated in
figure 3.2. The ways for obtaining the discrete and the continuous adjoint do not commute
and the results may differ.

The continuous approach has the advantage that, given the adjoint equations of the PDE,
the discretization can be done using the same numerical schemes used for the discretization
of the PDE. Furthermore, the separate discretization of the flow and adjoint equations
makes the continuous adjoint approach more flexible, e.g. the flow and adjoint equations
could be solved using different grids. On the other hand, this flexibility implies ambiguities
and the optimal choice for the discretization of the continuous adjoint is often not clear.
Moreover, these ambiguities lead to inconsistencies between the discretized PDE and the
discretized continuous adjoint equations. Consequently, errors are introduced in the adjoint
solution. As the discrete approach gives the adjoint of the discretized system it is thus
exact in the discretized framework. On the other hand the implementation of the discrete
adjoint can become cumbersome.

The implementation of the discrete and continuous adjoint approach are explained in de-
tail in section 4.3 and 4.6.3, respectively. The differences between these two approaches
constitute a major topic of this work.



4. Numerics

4.1. Spatial Discretization

In this work FD [56, 94, 99] are used for the spatial discretization. Given a linear operator
L̂ (explicit choices for the linear operator will be discussed in the following sections) and
some function f(x) : ℜ → ℜ the basic idea is to express the value L̂f(x0) at some position
x0 as a sum of function values at N nearby positions xi

L̂f0 ≈
N∑

i=1

aifi, (4.1)

where the definition fi = f(xi) holds and ai are scalar factors chosen such that the behavior
of the linear operator is approximated as best as possible.

In this work two ways of defining ”best as possible“ are explained and explored further.
The first way stems from a Taylor series expansion and results in

fi =
M−1∑

n=0

(xi − x0)
n

n!
f
(n)
0 +O

(
(xi − x0)

M
)
, (4.2)

where f
(i)
0 indicates the i-th derivative of f at position x0. Substituting equation (4.2) into

equation (4.1) and neglecting terms with orders higher than M − 1 leads to

L̂f0 ≈
N∑

i=1

aifi =
N∑

i=1

ai

M−1∑

n=0

(xi − x0)
n

n!
f
(n)
0 =

M−1∑

n=0

f
(n)
0

N∑

i=1

ai
(xi − x0)

n

n!
. (4.3)

Assuming that we can write

L̂f0 =
∞∑

n=0

lnf
(n)
0 (4.4)
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one can see from equation (4.3) that the required coefficients ai must satisfy the following
linear system of equations to be accurate up to order M − 1

N∑

i=1

χniai = ln ∀ n = 1 . . .M, (4.5)

where

χni =
(xi − x0)

n

n!
. (4.6)

Note, that this system of equations is closed only for N = M .

Another way of investigating the accuracy of a FD approximation is the Von Neumann or
Fourier stability analysis, which is based on the Fourier transformation

f(x) =

∫ ∞

−∞

f̃(k)eikxdk (4.7)

f̃(k) = 1
2π

∫ ∞

−∞

f(x)e−ikxdk. (4.8)

Substituting equation (4.7) into equation (4.1) and exploiting the linearity of the operator
L̂ leads to

L̂f0 =L̂

∫ ∞

−∞

f̃(k)eikx0dk =

∫ ∞

−∞

f̃(k) L̂ eikx0dk

≈
N∑

i=1

aifi=
N∑

i=1

ai

∫ ∞

−∞

f̃(k)eikxidk=

∫ ∞

−∞

f̃(k)

(
N∑

i=1

aie
ik(xi−x0)

)
eikx0dk.

(4.9)

Equation (4.9) gives rise to the definition of the transfer functions for the linear operator
L̂ and its FD approximation

L̃(k) = e−ikx0L̂eikx0 (4.10)

L̃a(k) =
∑N

i=1 aie
ik(xi−x0). (4.11)

The transfer function or dispersion relation gives the amplification behavior of a linear
operator in dependence of wave number. By comparing the expressions in equation (4.9)
it becomes obvious that the coefficients ai must be chosen to satisfy

L̃(k) ≈ L̃a(k) (4.12)

to give an adequate approximation to L̂. Schemes optimized regarding equation (4.12) are
referred to as dispersion relation preserving (DRP) schemes [56, 94].
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For concreteness we choose equation (4.12) to be fulfilled in a least square sense

∫ ∞

0



gr(k)

[
Re(L̃(k))−

N∑

i=1

ai cos(k(xi − x0))

]2

+gi(k)

[
Im(L̃(k))−

N∑

i=1

ai sin(k(xi − x0))

]2
 dk

!
= min,

(4.13)

where some arbitrary weighting functions gr(k) and gi(k) were introduced and Re(x) and
Im(x) represent the real and imaginary part of x, respectively. Expanding equation (4.13)
and neglecting terms constant with respect to the coefficients ai as they do not affect the
resulting optimal coefficients leads to the equivalent condition

I ≡
∫ ∞

0

{
gr(k)

[
N∑

i,j=1

aiaj cos(k(xi − x0)) cos(k(xj − x0))

− 2Re(L̃(k))
N∑

i=1

ai cos(k(xi − x0))

]
+

gi(k)

[
N∑

i,j=1

aiaj sin(k(xi − x0)) sin(k(xj − x0))

− 2Im(L̃(k))
N∑

i=1

ai sin(k(xi − x0))

]}
dk

=
N∑

i,j=1

aiaj

∫ ∞

0

[gr(k) cos(k(xi − x0)) cos(k(xj − x0))

+gi(k) sin(k(xi − x0)) sin(k(xj − x0))] dk

−
N∑

i=1

2ai

∫ ∞

0

[
gr(k)Re(L̃(k)) cos(k(xi − x0))

+ gi(k)Im(L̃(k)) sin(k(xi − x0))
]
dk

=
N∑

i,j=1

aiΩijaj −
N∑

i=1

aibi
!
= min (4.14)

with

Ωij =
∫∞

0
[gr(k) cos(k(xi − x0)) cos(k(xj − x0))

+ gi(k) sin(k(xi − x0)) sin(k(xj − x0))] dk (4.15)

bi = 2
∫∞

0

[
gr(k)Re(L̃(k)) cos(k(xi − x0))
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+ gi(k)Im(L̃(k)) sin(k(xi − x0))
]
dk. (4.16)

The quadratic minimization problem in equation (4.14) can be solved by setting the deriva-
tive with respect to the coefficients ai to zero, yielding a linear system of equations.

However, before doing so let’s first combine the Taylor and the Fourier approach for ob-
taining ai. The idea is to fulfill the Taylor condition (4.5) up to some order M < N and
using the remaining N −M coefficients to optimize the transfer function.

This leads to a constraint optimization problem. Thus we define a Lagrangian (see section
3.1) as

L =
N∑

i,j=1

aiΩijaj −
N∑

i=1

aibi +
M∑

i=1

ξi

(
N∑

j=1

χijaj − li

)
, (4.17)

where ξi are Lagrangian multipliers. Differentiation with respect to the coefficient ai and
the Lagrangian multipliers ξi gives the optimality system

∂L

∂ak
=2

N∑

i=1

Ωkiai − bk +
M∑

i=1

ξiχik
!
= 0 ∀ k = 1 . . . N (4.18)

∂L

∂ξk
=

N∑

i=1

χkiai − lk
!
= 0 ∀ k = 1 . . .M (4.19)

where the symmetry of Ω has been used. Equations (4.18) and (4.19) can also be written
as

(
Ω + ΩT χT

χ 0

)(
a
ξ

)
=

(
b
l

)
(4.20)

which lightens the fact that the FD coefficients ai can be obtained by the solution of a
linear system of equations.

4.1.1. Derivatives

To obtain a FD scheme the linear Operator is now chosen to be the n-th derivative

L̂ =
∂n

∂xn
. (4.21)

Furthermore we choose

gr(k) = Θ (kr,0 − k) (4.22)

gi(k) = Θ (ki,0 − k) , (4.23)
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where Θ is the Heaviside step function. The idea behind these choices is to optimize the
coefficients for low wavelength only and ignore higher wavelength were FD are unlikely to
give valid results anyway.

From equation (4.4), equation (4.10), equation (4.15) and equation (4.16) it follows that

li = δi,n (4.24)

L̃(k) = (ik)n (4.25)

Ωij =
sin(kr,0(xi + xj − 2x0))− sin(ki,0(xi + xj − 2x0))

2 (xi + xj − 2x0)

+
sin(kr,0(xi − xj)) + sin(ki,0(xi − xj))

2 (xi − xj)
(4.26)

bi = − 2ki,0
xi − x0

cos(kr,0(xi − x0))
2

(xi − x0)2
sin(ki,0(xi − x0)). (4.27)

Table 4.1 lists the coefficients for the first derivative used in this work obtained with the
choices x0 = 0, x = (−4,−3,−2,−1, 0, 1, 2, 3, 4)T and kr,0 = ki,0 =

π
2
.

In principle, the same methodology could be applied to obtain high order FD schemes near
the boundary. However, non central FD schemes obtained with the methodology described
above tend to become unstable. Thus, the boundary and inner coefficients are chosen such
that the first derivative operator fulfills the so called summation by parts (SBP) property
[91]. The SBP property is a formal numeric representation of the integration by parts rule
and leads to a stable boundary closure for the first derivative operator. To be able to
fulfill the additional SBP rule without increasing the stencil the order of the schemes has
to be decreased at the boundaries, thus, accuracy is sacrificed for numerical stability at the
boundaries. The boundary coefficients used in this work are listed in table 4.1 and can also
be found in [48]. The application of boundary conditions change the effective FD operator.
Thus, boundary conditions can flaw the SBP property, eventually leading to a unstable FD
operator for the overall numerical scheme [18]. This observation leads to the development
of simultaneous approximation term (SAT) schemes, where the boundary conditions (BC)
are not applied directly, but imposed implicitly through a forcing term [18]. This forcing
has to be chosen weak enough to obtain a stable numerical scheme. On the other hand it
has to be strong enough to fulfill the BC within an desired precision. A similar approach
is realized for the characteristic boundary conditions (CBC) introduced in section 4.7.1.
However, no proof of stability for the SBP scheme described above in conjunction with
the CBC will be given in this work. Nonetheless, numerical experiments indicate stability
of the underlying numerical system, at least for the numerical and physical setup in this
work.

4.1.2. Filtering

The FD scheme used in this work is unstable due to aliasing errors. Thus, the solutions
have to be regularized from time to time with a filter which reduces small scales (low pass
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central coefficients
α−4 = 0.0059398042783167 α1 = 0.8331572598964345
α−3 = −0.0523054923365671 α2 = −0.2331572598964345
α−2 = 0.2331572598964345 α3 = 0.0523054923365671
α−1 = −0.8331572598964345 α4 = −0.0059398042783167
α0 = 0.0

boundary coefficients
α00 = −1.585514266533103 α01 = 2.008723732799078
α02 = −0.01308559919861748 α03 = −0.65794293386758834
α04 = 0.24781906680023041 α05 = 0
α10 = −0.4546274514421262 α11 = 0
α12 = 0.21294118108792919 α13 = 0.40745097115747494
α14 = −0.18058822836810620 α15 = 0.01482352756482832
α20 = 0.00663862172240287 α21 = −0.4773187801117445
α22 = 0 α23 = 0.30708203333605406
α24 = 0.25236237527323959 α25 = −0.07920868033033617
α26 = −0.00955556988961586 α27 = 0
α30 = 0.1664613995014180 α31 = −0.4554757153982624
α32 = −0.15314238751322896 α33 = 0
α34 = 0.48145586721457543 α35 = −0.07649738506727780
α36 = 0.04196360193662286 α37 = −0.00476538067384707
α40 = −0.08600120227144731 α41 = 0.2769005367876363
α42 = −0.17262754851385544 α43 = −0.66039073916329220
α44 = 0 α45 = 0.84767356821082549
α46 = −0.25657769423135097 α47 = 0.05755953138801333
α48 = −0.00653645220651922 α49 = 0
α50 = 0 α51 = −0.02035922973188162
α52 = 0.04853261495732707 α53 = 0.09398672096440634
α54 = −0.75928366872272205 α55 = 0
α56 = 0.82124427608462746 α57 = −0.22982343710396821
α58 = 0.05155759693498167 α59 = −0.00585487338277167

Table 4.1: Finite difference coefficients for computation of first derivative. For the central
coefficients the index in αi indicates the difference to the grid point where the derivative is to be
calculated. For the boundary coefficients the indices in αij indicate the coefficient for point j for
the derivative at point i.

filter).

In this work such filters are constructed by interpolating from adjacent grid points to the
grid point to be filtered with the highest possible order. This interpolated value is averaged
with the grid points value such that even odd waves are removed completely. Even odd
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central coefficients
α−5 = 1/1024 α1 = 210/1024
α−4 = −10/1024 α2 = −120/1024
α−3 = 45/1024 α3 = 45/1024
α−2 = −120/1024 α4 = −10/1024
α−1 = 210/1024 α5 = 1/1024
α0 = 772/1024

boundary coefficients
α00 = 15/16 α01 = 4/16
α02 = −6/16 α03 = 4/16
α04 = −1/16 α05 = 0
α10 = 1/16 α11 = 12/16
α12 = 6/16 α13 = −4/16
α14 = 1/16 α15 = 0
α20 = −1/16 α21 = 4/16
α22 = 10/16 α23 = 4/16
α24 = −1/16 α25 = 0
α30 = 1/64 α31 = −6/64
α32 = 15/64 α33 = 44/64
α34 = 15/64 α35 = −6/64
α36 = 1/64 α37 = 0

(a) 10th order filter

central coefficients
α−3 = 1/64 α1 = 15/64
α−2 = −6/64 α2 = −6/64
α−1 = 15/64 α3 = 1/64
α0 = 44/64

boundary coefficients
α00 = 15/16 α01 = 4/16
α02 = −6/16 α03 = 4/16
α04 = −1/16 α05 = 0
α10 = 1/16 α11 = 12/16
α12 = 6/16 α13 = −4/16
α14 = 1/16 α15 = 0
α20 = −1/16 α21 = 4/16
α22 = 10/16 α23 = 4/16
α24 = −1/16 α25 = 0

(b) 6th order filter

central coefficients
α−2 = −1/16 α1 = 4/16
α−1 = 4/16 α2 = 1/16
α0 = 10/16

boundary coefficients
α00 = 1/2 α01 = 1/2
α10 = 1/4 α11 = 2/4
α12 = 1/4 α13 = 0

(c) 4th order filter

Table 4.2: Finite difference coefficients for (a) 10th-order, (b) 6th-order and (c) 4th-order accurate
filter. The meaning of the indices is the same as in table 4.1.

waves are waves where every grid point has the same amplitude but different sign than its
neighboring grid points. The coefficients for filters of different orders together with their
boundary coefficients are listed in table 4.2. The filter coefficients for the boundary closure
can also be found in [56].
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1th step
α β t

∆t

0 0.2687454388871343849 0
−0.60512264332862261228 0.8014706973220802933 0.26874543888713438496
−2.04375640234761394333 0.5051570426942272253 0.58522806929524303469
−0.74069990637544192841 0.5623568037900029640 0.68270664478424678821
−4.42317651302968168941 0.05900655127758823335 1.1646854837729261436

2nd step
α β t

∆t

0 0.1158488818128556168 0
−0.4412737715387738256 0.3728769905165286498 0.11584888181285561688
−1.073982008079781868 0.7379536892143529568 0.32418503640412806853
−1.706357079125675880 0.5798110936631103958 0.61932082035177792368
−2.797929316268244305 1.031284991300145194 0.80344726663359079059
−4.091353712091916045 0.15 0.91841664452065965078

Table 4.3: Coefficients for the RK scheme for time integration used in this work together with
the time of substeps.

4.2. Temporal Discretization

In this work a two step explicit RK scheme is used for time integration. The substeps of
this scheme are given by

ki+1 = αiki +∆t R (Φi) i ∈ {1 . . . aj} (4.28)

Φi+1 = Φi + βiki+1 i ∈ {1 . . . aj}, (4.29)

where a1 = 5 and a2 = 6 for the first and second RK step, respectively. ui are the flow
variables at the i-th substep and R(ui) is the right hand side (RHS) of the Navier Stokes
equations. The coefficients αi and βi can be reviewed in [86, 7] and are given together with
the time position of the substeps in table 4.3. Note, that α1 = 0 for both RK steps and
thus the scheme in (4.28)-(4.29) is explicit.

Both RK steps have fourth order accuracy and the coefficients are optimized in Fourier
space leading to a so called low-dissipation low-dispersion Runge Kutta (LDDRK) scheme.
The amplitude and phase related errors for this RK scheme are shown in figure 4.1. See
[45] for further details and the definitions of the dissipation ratio and phase error.
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Figure 4.1: (a) Dissipation ratio and (b) phase error for the RK-coefficients shown in table 4.3.
The dotted lines represent the exact solution.

4.3. Implementation of Discrete Adjoint

In order to calculate the adjoint of a discrete system AD tools [39, 6] can be used. These
AD tools are either manipulating the source code in a precompiler step or keep track of the
computations and obtain derivative information by applying chain/product rule to each
computation.

However, as within this work a code was developed that derives the adjoint system of
a given system of equations it was more practical to use this program to implement the
discrete adjoint. Nevertheless, some parts had to be implemented ”by hand“ and the
details of this implementation are described in the following.

4.3.1. Discrete Adjoint of a Runge-Kutta Step

The complete series of N Runge-Kutta substeps together with filtering and control can be
written as [45]

k0 = 0 (4.30)

Φ0 = Φinit (4.31)

ks = αs−1ks−1 +∆t

[
R (Φs−1) +

M∑

i=0

γs−1,igi

]
s ∈ {1 . . . N} (4.32)
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Φs = Fs [Φs−1 + βs−1ks] s ∈ {1 . . . N}, , (4.33)

where Fs is the discrete representation of a filter operator at step s, gi are M + 1 control
vectors and γs,i are scalars giving the strength of control gi at step s. The rest of the
notation is equal to equation (4.28)-(4.29).

Expressing the cost functional as a sum over the contributions of the individual time steps
ℑ =

∑N
s=0ℑs(Φs) the Lagrangian is given by

L =
N∑

s=0

ℑs(Φs)−
N∑

s=1

ξTs

[
ks − αs−1ks−1 −∆t

[
R (Φs−1) +

M∑

i=0

γs−1,igi

]]

−
N∑

s=1

ωT
s [Φs − Fs [Φs−1 + βs−1ks]]− ξT0 k0 − ωT

0 [Φ0 −Φinit] ,

(4.34)

where ξ and ω are Lagrangian multipliers used to add the Runge-Kutta steps as a con-
straint. A variation with respect to the state variables Φs and ωs gives

∂L

∂Φ
Φ′

s =
N∑

s=0

∂ℑs

∂Φ

∣∣∣∣
Φs

Φ′
s −

N∑

s=1

ξTs

[
−∆t

∂R

∂Φ

∣∣∣∣
Φs−1

Φ′
s−1

]

−
N∑

s=1

ωT
s

[
Φ′

s − FsΦ
′
s−1

]
− ωT

0 Φ
′
0

(4.35)

∂L

∂k
k′
s =−

N∑

s=1

ξTs
[
k′
s − αs−1k

′
s−1

]
−

N∑

s=1

ωT
s [−Fsβs−1k

′
s]− ξT0 k

′
0. (4.36)

Note, that the notation ∂L
∂Φ

[Φ′
s], introduced in chapter 3.1, is substituted with ∂L

∂Φ
Φ′

s to
illuminate the fact that in the discrete case the directional derivative can be expressed as
a matrix vector multiplication. The equations above lead to the adjoint RK integration

ωN =

(
∂ℑN

∂Φ

∣∣∣∣
ΦN

)T

(4.37)

ξN =βN−1F
T
NωN (4.38)

ωs =F T
s+1ωs+1 +∆t

(
∂R

∂Φ

∣∣∣∣
Φs

)T

ξs+1 +

(
∂ℑs

∂Φ

∣∣∣∣
Φs

)T

s ∈ {0 . . . N − 1} (4.39)

ξs =αsξs+1 + βs−1F
T
s ωs s ∈ {1 . . . N − 1} (4.40)

ξ0 =α0ξ1. (4.41)

Note, that in analogy to the continuous example in section 3.1.2 a boundary condition is
given at the final iteration N . This implies that the system of equations (4.37)-(4.41) has
to be solved backwards starting at iteration N .
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k = 0
for m = 1, . . . , N

ki+ = Dimxm

end
(a)

k = 0
for m = 1, . . . , N

km+ = Dimxi

end
(b)

Algorithm 7: Algorithms for obtaining (a) k = Dx and (b) k = DTx, where D is a matrix
with non zero entries in the ith row, only.

The gradient of the cost functional is given by

(
dℑ
dgi

)T

=

(
∂L

∂gi

)T

= ∆t
N∑

s=1

γs−1,iξs i ∈ {0 . . .M} (4.42)

4.3.2. Discrete Adjoint of Right Hand Side

The adjoint RK integration in equations (4.37)-(4.41) reveals that the transpose of the

linearized and discretized Navier-Stokes operator
(

∂R
∂Φ

∣∣
Φs

)T
is needed. As the operator

∂R
∂Φ

∣∣
Φs

is time dependent computing the single components of this operator would not be
efficient and consequently only the computation of a matrix vector product is implemented.
However, without the knowledge of these single components special considerations have to
be made to be able to compute the transpose of this operator.

Let’s start with a discrete linear operator Di that has non-zero entries in the ith row, only.
The vector product k = Dix can be computed with algorithm 7(a). On the other hand

the product k = DiTx can be computed by algorithm 7(b). Note, that in both cases only
the matrix coefficients of the ith row have to be used. This is the reason for the usefulness
of the above algorithm as the coefficients of DT can be accessed similarly to the way it is
done for D. In other words a grid point doesn’t need to know the FD coefficients of its
surrounding grid points, which eases the implementation. The difference between the two
algorithms is also illustrated in figure 4.2. The implementation of the transposed linear
operator product is similar to the one described in [27].

In order to compute the product with a general matrix D we state that every matrix can
be written as

D =
N∑

i=1

Di, (4.43)

where N is the number of rows of matrix D. In our case only the coefficients for the
derivative and filter operators are known. As the Navier Stokes equations consist of several
sums and products of derivatives the identity

(AB + CD)T = BTAT +DTCT (4.44)
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· · · · · ·xi−1 xi xi+1

Di,i−1 Di,i Di,i+1

ki

· · ·

+
+

+

(a)

· · · · · ·ki−1 ki ki+1

Di,i−1 Di,i Di,i+1

xi

+ + +

· · ·

(b)

Figure 4.2: Illustration of the differences of (a) algorithm 7(a) and (b) algorithm 7(b). While in
the first case several adjacent points are ”joint“ at some single point this single point is ”spread“
over several adjacent points in the latter case.

for arbitrary matrixes A, B, C and D has to be used to compute the transpose of the

linearized Navier Stokes equations
(

∂R
∂Φ

∣∣
Φs

)T
.

4.4. Automatic Calculation of Adjoint

As the Navier Stokes equations contain many terms, linearizing them and splitting the
operators according to equations (4.43) and (4.44) can become a tedious task. Because of
this a code was written that, given the PDE, automatically generates code which computes
the desired matrix vector product according to the splitting of equations (4.43) and (4.44).
The implementation of this code is explained in this section.

For better illustration the general algorithm will be accompanied by the example

y(x)
∂F (y(x)−1)

∂x
+ u(x) = 0 x ∈ (0, 1), (4.45)

where F (. . .) is some arbitrary function, y(x) is a state variable and u(x) is the control.
Note, that this system of equations has the trivial solution y(x) = const if no control is
applied. Furthermore, it is not well posed due to the lack of a boundary condition. However,
this example is not meant to be physically relevant, but to illustrate the algorithm deriving
the adjoint system. Note, that (A + B)∗ = A∗ + B∗ for any operators A and B and thus
the adjoint can be derived for every summand in an equation separately. In the following
the derivation of the continuous and discrete adjoint will be explained simultaneously, so
in the discrete case equation (4.45) has to be fulfilled at a distinct set of grid point and ∂

∂x

represents a discrete operator.
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4.4.1. Representation of Equation in Memory

To describe equations a Variable is defined. A Variable is a C++ class containing infor-
mation about what kind of variable it represents, which spatial directions it depends on,
how it is named in the fortran code that shall be produced as an output etc. The kind
of a variable can be a scalar (e.g. y(x)), some real value (e.g. 2), the inverse of a scalar

or real value (e.g. y(x)−1), a differential operator (e.g. ∂
∂x
[), an integral (e.g.

∫ 1

0
dx[), a

function with one argument (e.g. F [) or a closing bracket (]), which marks the end of the
argument of a function or differential operator. Here, a new notation was introduced and
for the rest of this section, e.g. ∂

∂x
[y(x)] will be written instead of ∂y(x)

∂x
to better illustrate

the representation of the equations in memory.

Next, a class Summand is defined, which consists of an array of Variables. The Vari-
ables included in this array can be interpreted as being ”multiplied“ from the left to the
right. Recalling the notation introduced above the first part of the left hand side (LHS) in
equation (4.45) is represented in memory as an array consisting of 6 Variables

y(x)︸︷︷︸
1

∂

∂x
[

︸︷︷︸
2

F [︸︷︷︸
3

y(x)−1

︸ ︷︷ ︸
4

]︸︷︷︸
5

]︸︷︷︸
6

. (4.46)

To be able to represent terms consisting of more than one summand a class Term is defined
which consists of an array of Summands. This array is then interpreted as a sum of the
different Summands. Subtraction is achieved by ”multiplying“ a Summand with −1. It
should be noted that this representation of a term is not the most general possible. E.g.
the term a

b+c
can not adequately be represented. However, such terms are not relevant for

the derivation of the adjoint system of the Navier Stokes equations.

With the above considerations the Lagrangian can be evaluated according to equation
(3.11). Defining the cost functional for the example case as ℑ =

∫ 1

0
dx y(x)2 and introducing

the adjoint variable ỹ(x) the Lagrangian is obtained by ”multiplying“ equation (4.46)
with the adjoint variable and an integral from the left and subsequently adding the cost
functional

L =

∫ 1

0

dx[y(x)y(x)]

+ (−1)

∫ 1

0

dx

[
ỹ(x)y(x)

∂

∂x
[F [y(x)−1]]

]
+ (−1)

∫ 1

0

dx [u(x)] .

(4.47)

4.4.2. Sensitivities

The next step in the derivation of the adjoint equations is the variation of the Lagrangian
with respect to the state variables. This can be achieved by applying the following simple
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substitution rules
(∫ b

a

dx[. . .]

)′

→
∫ b

a

dx[(. . .)′] (4.48)

(
∂

∂x
[. . .]

)′

→ ∂

∂x
[(. . .)′] (4.49)

(const y(x))′ → const y′(x) (4.50)
(
y(x)−1

)′ → (−1)y(x)−1y(x)−1y′(x) (4.51)

((. . .) (. . .))′ → (. . .)′ (. . .) + (. . .) (. . .)′ (4.52)

F [. . .] → f [. . .] (. . .)′ (4.53)

to each appearance of a state variable. y′(x) is a Variable representing the variation of a

state variable y(x). A user defined function f [k] = ∂F [k]
∂k

must be specified, which represents
the partial derivative of function F [k]. These rules are just the chain and product rule for
differentiation and have to be applied recursively. Note, that these substitution rules work
correct no matter if the Term represents the continuous or discrete equations. For the
example one gets

〈
1,

∂L

∂y
[y′(x)]

〉

ℜ

=

∫ 1

0

dx[2y(x)y′(x)]

+ (−1)

∫ 1

0

dx

[
ỹ(x)y′(x)

∂

∂x
[F [y(x)−1]]

]

+

∫ 1

0

dx

[
ỹ(x)

∂

∂x
[f [y(x)−1]y(x)−1y′(x)]

]
.

(4.54)

It should be noted, that the above rules substitute y(x)y(x) with y′(x)y(x) + y(x)y′(x).
However, after the derivation of the sensitivities an algorithm is applied which identifies
and merges identic Summands so that finally 2y(x)y′(x) is obtained. Furthermore, the
code identifies y(x)y(x)−1 = 1 and (−1)(−1) = 1.

4.4.3. Adjoint Equation

To obtain the adjoint equations, equation (4.54) must be transposed/adjoint. Algorithmi-
cally this can be achieved by ”moving the variation of a state variable to the left“ till they
next to the integral. If the Variable left of the variation variable is a scalar or closing bracket
the substitution rule for this ”moving“ procedure is simple as e.g. F [. . .]y′(x) = y′(x)F [. . .].
Furthermore, it can be observed that variation variables will by construction always appear
outside of functions. Consequently, no ”moving rule“ is required for e.g. F [y′(x)]. In the
continuous case the order of a variable and a differentiation operator can be changed by
integration by parts, which is realized with the substitution rule

∫ b

a

dx[♦
∂

∂x
[y′(x)�]] → (−1)

∫ b

a

dx[
∂

∂x
[♦]y′(x)�] +

∣∣b
adx[♦y

′(x)�] , (4.55)
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where a new Variable
∣∣b
adx[y(x)] =̂y(b) − y(a) is introduced. In the discrete case the sub-

stitution rule

∫ b

a

dx[♦
∂

∂x
[y′(x)�]] →

∫ b

a

dx[

(
∂

∂x

)T

[♦]y′(x)�] (4.56)

must be applied. Here
(

∂
∂x

)T
[ is the transpose of the discrete operator ∂

∂x
[. In other words

∂
∂x
[ is a formal representation of algorithm 7(a) and

(
∂
∂x

)T
[ represents algorithm 7(b).

With these substitutions one obtains
〈
y′(x),

(
∂L

∂y

)∗

[1]

〉

ℜ

=

∫ 1

0

dx[y′(x)2y(x)]

+ (−1)

∫ 1

0

dx

[
y′(x)ỹ(x)

∂

∂x
[F [y(x)−1]]

]

+ (−1)

∫ 1

0

dx

[
y′(x)

∂

∂x
[ỹ(x)]f [y(x)−1]y(x)−1

]

+
∣∣1
0dx

[
y′(x)ỹ(x)f [y(x)−1]y(x)−1

]
= 0

(4.57)

for the continuous case. From this equation the adjoint equations can be identified as

(−2)y(x) + ỹ(x) ∂
∂x
[F [y(x)−1]]

+ ∂
∂x
[ỹ(x)]f [y(x)−1]y(x)−1 = 0

x ∈ (0, 1) (4.58)

ỹ(x)f [y(x)−1](−1)y(x)−1 = 0 x = 0 (4.59)

ỹ(x)f [y(x)−1]y(x)−1 = 0 x = 1 (4.60)

For the discrete case one obtains
〈
y′(x),

(
∂L

∂y

)∗

[1]

〉

ℜ

=

∫ 1

0

dx[y′(x)2y(x)]

+ (−1)

∫ 1

0

dx

[
y′(x)ỹ(x)

∂

∂x
[F [y(x)−1]]

]

+

∫ 1

0

dx

[
y′(x)

(
∂

∂x

)T

[ỹ(x)]f [y(x)−1]y(x)−1

]
(4.61)

leading to the discrete adjoint equation

2y(x) + (−1)ỹ(x) ∂
∂x
[F [y(x)−1]]

+
(

∂
∂x

)T
[ỹ(x)]f [y(x)−1]y(x)−1 = 0

x ∈ (0, 1). (4.62)

Note, that the term
〈
u′(x),

(
∂L
∂u

)∗
[1]
〉
ℜ
, which is equal to the gradient of the cost function

with respect to the control, can be calculated analogously to the procedure described above.
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4.5. Sensitivities through Operator Overloading

Recalling a Taylor series expansion in the form f(x + ih) =
∑n=∞

n=0
(ih)n

n!
f (n)(x), where i is

the imaginary unit, it is easy to see that

f(x) = Re(f(x+ ih)) +O(h2) (4.63)

f (1)(x) =
Im(f(x+ ih))

h
+O(h3) (4.64)

if all derivatives f (n)(x) are real. Thus, the sensitivity of a real function can be computed
by substituting all real values by complex values and setting the imaginary part of the
input vector equal to the perturbation. This complex differentiation [69] method has two
advantages. First, it is rather foolproof and easy to implement as all one has to do is
exchanging real by complex values. Second, the derivative is computed without using
differences. Because of this the amplitude of the perturbation h is not restricted by the
finite machine precision of real numbers. Thus, h can be chosen to be in the order of say
10−30, which means that higher order terms become smaller than machine precision and in
this sense the differentiation is exact.

The basic idea of obtaining sensitivities through complex differentiation can be extended
to be applicable for higher order sensitivities. First, for some scalar u a vector u =
(u, u′, uo, u′o) is defined, where ·′ and ·o indicate variations with respect to two different
controls. Next, every operation on the scalar values is substituted by operations on the
variation vector such that the components of the resulting vector contain the variations ·′,
·o and ·′o, respectively. In the general case of some function f(u, v) chain rule gives

f(u,v) =




f(u, v)
∂f
∂u
u′ + ∂f

∂v
v′

∂f
∂u
uo + ∂f

∂v
vo

∂2f
∂u2u

′uo + ∂2f
∂v2

v′vo + ∂2f
∂u∂v

(u′vo + uov′) + ∂f
∂u
u′o + ∂f

∂v
v′o


 . (4.65)

For example, the multiplication becomes

u · v =




uv
u′v + uv′

uov + uvo

u′ov + uv′o + uov′ + u′vo


 . (4.66)

Note, that in this case the · doesn’t denote a scalar product but some self defined operator
the multiplication has to be substituted with. Using operator overloading, which is a feature
of most modern programming languages (as e.g. Fortran90 and C++), the substitution
rules explained above can be implemented analogously to complex differentiation [101].
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However, the methodology just introduced has several advantages. First, the variations
don’t have to be small, as the higher order terms in equations (4.63)-(4.64) are neglected
(the variation is computed directly). This saves some multiplications and book keeping.
Secondly, this methodology can, in principle, be extended to variations of arbitrary order
in a straight forward manner. Third, it is more efficient than complex differentiation. To
see this for example compare the complex multiplication

(u+ iv′)(v + iv′) = uv − u′v′ + i(uv′ + u′v), (4.67)

where i is the imaginary unit, with the expression in equation (4.66). It becomes obvi-
ous that the multiplication and subtraction of the term u′v′ is not performed in the just
introduced method.

As already mentioned in section 4.3.2, for the purposes of this thesis a code was written that
automatically generates sensitivity equations, making complex differentiation or operator
overloading unnecessary. Nevertheless, these two methods were implemented to validate
the implementation of the sensitivity equations.

4.6. Governing Equations

4.6.1. Navier Stokes Equations

The governing equations chosen in this work are the compressible Navier-Stokes equations
using density, pressure and momentum as flow variables.

∂ρ

∂t
= −∂mi

∂xi

(4.68)

∂mi

∂t
= − ∂p

∂xi

− ∂ρujui

∂xj

+
∂τji
∂xj

(4.69)

∂p

∂t
= −∂pui

∂xi

+
∂

∂xi

(
λ(γ − 1)

∂T

∂xi

)
− (γ − 1)p

∂ui

∂xi

+ (γ − 1)τij
∂ui

∂xj

, (4.70)

where ρ is the density, ui are the velocities in direction i, γ = Cp

Cv
the ratio of specific heats,

T temperature and λ = µCp

Pr
the heat conductivity with a Prandtl number of Pr = 0.71.

Furthermore, we have the ideal gas equation

p = ρRT (4.71)

and

mi = ρui (4.72)
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τij = µsij = µ

(
∂ui

∂xj

+
∂uj

∂xi

− δij
2

3

∂uk

∂xk

)
, (4.73)

where µ is the dynamic viscosity and R the ideal gas constant. For later reference the
speed of sound is given by

c =
√
γRT =

√
γ
p

ρ
. (4.74)

In this work the viscosity is chosen to follow Sutherland law

µ ≡ µ(T ) = µ(Tref )

(
T

Tref

) 3

2 Tref + Tsuth

T + Tsuth

, (4.75)

where Tsuth = 110.4K is the Sutherland temperature and Tref is a reference temperature.
The heat capacities Cp and Cv (and hence the gas constant R and ratio of specific heats
γ) are kept constant for this work.

For non-dimensionalization we choose a temperature Tref , a density ρref , a velocity uref ,
and a length lref as reference parameters. Using these reference values in the appropriate
way the equations (4.68)-(4.74) have the same appearance in non-dimensionalized form.
Equation (4.75) becomes

µ ≡ µ(T ) =
1

Re
T

3

2

1 + T̂suth

T + T̂suth

(4.76)

in dimensionless form with the dimensionless Sutherland temperature T̂suth = Tsuth

Tref
. Here,

the dimensionless Reynolds number was introduced as

Re =
ρrefuref lref

µ
. (4.77)

4.6.2. Sensitivity Equations

In order to validate the sensitivities, obtained using the adjoint method, the sensitivity
equations have been implemented, too. Variation of the Navier Stokes equations (4.68)-
(4.70) gives the sensitivity equations. Calculating the variation of the Navier Stokes equa-
tions (4.68)-(4.70) according to equation (3.4) the sensitivity equations read

∂ρ′

∂t
= −∂m′

i

∂xi

(4.78)

∂m′
i

∂t
= − ∂p′

∂xi

−
∂m′

jui

∂xj

− ∂mju
′
i

∂xj

+
∂τ ′ji
∂xj

(4.79)

∂p′

∂t
= −∂p′ui

∂xi

− ∂pu′
i

∂xi
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+
∂

∂xi

(
λ(γ − 1)

∂T ′

∂xi

)
+

∂

∂xi

(
Cp

Pr

∂µ

∂T
T ′(γ − 1)

∂T

∂xi

)

−(γ − 1)p′
∂ui

∂xi

− (γ − 1)p
∂u′

i

∂xi

+(γ − 1)τ ′ij
∂ui

∂xj

+ (γ − 1)τij
∂u′

i

∂xj

(4.80)

with

m′
i = ρ′ui + ρ′ui (4.81)

p′ = ρ′RT + ρRT ′ (4.82)

τ ′ij =
∂µ

∂T
T ′sij + µs′ij =

∂µ

∂T
T ′sij + µ

(
∂u′

i

∂xj

+
∂u′

j

∂xi

− δij
2

3

∂u′
k

∂xk

)
, (4.83)

where an ′ indicates variational quantities. Note, that because of the non-linearity of the
Navier Stokes equations, equations (4.78)-(4.80) still contain non-variational quantities.
Thus, those quantities have either to be saved during a precomputation of the primal flow
solution or they must be computed parallel to the solution of the sensitivity equations.

4.6.3. Adjoint Equations

Following the procedure introduced in section (3.1) and neglecting boundary terms the
adjoint equations corresponding to the Navier Stokes equations (4.68)-(4.70) are given by

∂ρ∗

∂t
= uiu

∗
i + TCV T

∗ (4.84)

∂m∗
i

∂t
= −∂ρ∗

∂xi

− uj

∂m∗
j

∂xi

− u∗
i (4.85)

∂p∗

∂t
= −∂m∗

i

∂xi

+
∂u∗

i

∂xi

(γ − 1)p∗ − (γ − 1)ui
∂p∗

∂xi

(4.86)

with

ρu∗
i = mj

∂m∗
i

∂xj

+
∂τ ∗ji
∂xj

− (γ − 1)
∂τjip

∗

∂xj

+(γ − 1)p
∂p∗

∂xi

+
∂

∂xi

(
∂ui

∂xi

)∗

(4.87)

τ ∗ij = µ

(
∂m∗

i

∂xj

+
∂m∗

j

∂xi

− 2(γ − 1)p∗
(
∂ui

∂xj

+
∂uj

∂xi

))
(4.88)

(
∂ui

∂xi

)∗

= −2

3
τ ∗ii + (γ − 1)pp∗ (4.89)
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ρCV T
∗ = −sij

∂µ

∂T

∂m∗
i

∂xj

+
CP

Pr
(γ − 1)µ

∂2p∗

∂xi
2 + sij(γ − 1)p∗

∂µ

∂T

∂ui

∂xj

, (4.90)

where ·∗ denotes the corresponding adjoint quantity of the primal variable.

4.6.4. LES Modelling

Scales of the turbulent motion not resolved by the numeric scheme must be modeled.
Different methodologies exist in modeling such flows. One possibility is to use a statistical
approach based on the Reynolds averaged Navier Stokes (RANS) equations. This, however,
requires heuristic modeling of the unclosed Reynolds-stresses [105]. Common RANS models
are, however, usually not adequate for aeroacoustic computations. Alternatively, only the
large energy-containing scales are simulated, the small scales (subgrid scales) on the other
hand are modeled. This approach is called LES. A scale separation is achieved by using a
low-pass filtering procedure, such that equations for the filtered variables are solved with
model terms expressed in terms of the closed variables. Well validated models based on
physical reasoning exist for such LESs, such as eddy viscosity or scale similarity models
[100, 62, 33]. In this work a LES model based on explicit filtering alone is chosen. The basic
principle is to achieve the additional dissipation, usually resulting from LES models, with
an explicit filter. In this work the 10th order filter also used for numerical stabilization and
described in section 4.1.2 is used. Explicit filtering has been successfully validated as a LES
model for a broad range of flows such as isotropic turbulence [90], incompressible channel
flow [89], supersonic channel flow [65] or subsonic jet [10, 30]. Using explicit filtering as
a LES model has the advantage that the implementation of the adjoint LES model can
be achieved with minimal additional effort. For the discrete adjoint the filtering of the
forward equations leads to a filtering with the transposed filter operator in the adjoint
equations (see equation (4.38)). For the continuous adjoint it can be rectified to filter the
adjoint solution with the same filter used during the forward solution, as shown in [59].
This approach has the advantage that an elaborate analytical derivation of the adjoint
LES model, as done in e.g. [21], can be avoided. A similar approach for the solution
of a continuous adjoint LES was used in [50]. While a dynamic Smagorinsky model was
used for the solution of the primal flow equations, the adjoint solution was stabilized using
explicit filtering alone. However, using this approach further inconsistencies are introduced
between the equations of motion and its adjoint.

4.7. Boundary Conditions

4.7.1. Characteristic Boundary Conditions

In order to be able to simulate flows in the absence of boundaries so called non-reflecting
boundary conditions (NBC) are necessary to simulate the behavior of a quiescent medium
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at the computational boundaries. In this work the so called CBC [72, 57] are used for this
purpose and their derivation is given for the equations (4.68)-(4.70). The approach follows
the ideas explained in [98].

In areas far away from turbulent regions viscous effects are expected to play only a minor
role. Thus, setting viscosity to zero can be justified outside turbulent regions and equations
(4.68)-(4.70) can be written as

∂U

∂t
+

3∑

k=1

Ak
∂U

∂xk

+C = 0, (4.91)

where U = (ρ,m1,m2,m3, p)
T and

A1 =




0 1 0 0 0
−u1u1 2u1 0 0 1
−u1u2 u2 u1 0 0
−u1u3 u3 0 u1 0
−c2u1 c2 0 0 u1




(4.92)

A2 =




0 0 1 0 0
−u2u1 u2 u1 0 0
−u2u2 0 2u2 0 1
−u2u3 0 u3 u2 0
−c2u2 0 c2 0 u2




(4.93)

A3 =




0 0 0 1 0
−u3u1 u3 0 u1 0
−u3u2 0 u3 u2 0
−u3u3 0 0 2u3 1
−c2u3 0 0 c2 u3




(4.94)

C = 0. (4.95)

Next, a decomposition of the matrixes Ak is introduced

Ak = S−1
k ΛkSk, (4.96)

where Λk is a diagonal matrix with the eigenvalues of Ak on its diagonal and S−1
k is a

matrix with the right eigenvectors of Ak as its columns (hence Sk is a matrix with the
left eigenvectors of Ak as its rows). With this definition equation (4.91) can be written in
characteristic form for a boundary normal to direction k

Sk
∂U

∂t
= ΛkSk

∂U

∂xk︸ ︷︷ ︸
a

+
3∑

i=1
i6=k

SiAi
∂U

∂xi

︸ ︷︷ ︸
b

+SC = 0. (4.97)



48 Chapter 4. Numerics

It can be shown that term a in equation (4.97) can be interpreted as a traveling wave
with wave speeds corresponding to the eigenvalues of Ak. Thus, we can conclude that non-
reflecting boundary conditions can be achieved by solving equation (4.97) with incoming
waves set to zero. This can be achieved by setting those eigenvalues of Λk to zero which
have a different sign than the boundary normal.

It should be noted, that the above procedure is exact for a hyperbolic system in one
dimension, only. The treatment of term b in equation (4.97) is not exact in terms of
characteristics. Although it is not clear how to handle this term, recent research suggests
that it is better to leave it unchanged [57].

Instead of setting the ingoing characteristics to zero to obtain non-reflecting boundary
conditions the characteristics can also be set explicitly to force some prescribed solution
at this boundary. This is done in this work at the inflow boundary of the jet.

4.7.1.1. Characteristics of Navier Stokes Flow
In explicit form the characteristic equations (4.97) can be written as

∂mj

∂t
− uj

c2
+ Lij + . . . = 0 ∀j ∈ {1, 2, 3}\i (4.98)

ui
∂ρ

∂t
− ui

c2
+ Lii + . . . = 0 (4.99)

1

2

∂p

∂t
− ρc

2

∂ui

∂t
+ Li4 + . . . = 0 (4.100)

1

2

∂p

∂t
+

ρc

2

∂ui

∂t
+ Li5 + . . . = 0, (4.101)

where . . . denote part b in equation (4.97) and will not be given explicitly. The characteristic
wave amplitudes Li ≡ ΛkSk

∂U
∂xk

are given by

Lij =λj

(
∂mj

∂xi

− uj

c2
∂p

∂xi

)
+ Fj ∀j ∈ {1, 2, 3}\i (4.102)

Lii =λiui

(
∂ρ

∂xi

− 1

c2
∂p

∂xi

)
+ Fi (4.103)

Li4 =
λ4

2

(
∂p

∂xi

− cρ
∂ui

∂xi

)
+ F4 (4.104)

Li5 =
λ5

2

(
∂p

∂xi

+ cρ
∂ui

∂xi

)
+ F5, (4.105)

where λ = (ui, ui, ui, ui − c, ui + c) are the eigenvalues of Si. The forcings Fk are chosen to
mimic the temporal derivatives of the characteristic equations (4.98)-(4.101)

Fj =fj

(
mj −mj,f −

uj

γ

(
ρ− ρf

Tf

T

))
∀j ∈ {1, 2, 3}\i (4.106)
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Fi =fiui

(
ρ− ρf −

1

γ

(
ρ− ρf

Tf

T

))
(4.107)

F4 =
f4
2
(p− pf − ρc (ui − ui,f )) (4.108)

F5 =
f5
2
(p− pf + ρc (ui − ui,f )) , (4.109)

where fk are parameters determining the strength of the inflow forcing. The forcing should
be applied for the case of ingoing waves only (fk = 0 for outgoing waves). The choices of
Fk are to some degree arbitrary and other choices are possible.

The PDE used for discretization in this work is obtained by multiplying equation (4.98)-
(4.101) by S−1

i and read

∂ρ

∂t
=− Lii

ui

− 1

c2
(Li4 + Li5)−

3∑

k=1
i6=k

(
∂mk

∂xk

)
(4.110)

∂mj

∂t
=− Lij −

uj

c2
(Li4 + Li5)−

δij
c
(−Li4 + Li5)

− (1− δij)
∂p

∂xj

−
3∑

k=1
i6=k

∂ujmk

∂xk

(4.111)

∂p

∂t
=− Li4 − Li5 −

3∑

k=1
i6=k

(
uk

∂p

xk

+ γp
∂uk

xk

)
. (4.112)

4.7.1.2. Characteristics of Adjoint Equations
The discrete adjoint is uniquely defined by the choice of the discretization of the Navier-
Stokes equations. However, the same is not true for the continuous adjoint. Thus, the
boundary conditions for the continuous adjoint used in this work are explained next. In
principle one could calculate the exact adjoint equations of the inner scheme (4.68)-(4.70)
together with the boundary conditions (4.110)-(4.112). However, as the obtained equations
become very cumbersome and unhandy another approach was chosen. For this work first
the adjoint system of equations (4.91) is derived and then the characteristics of this system
are obtained. This approach is similar to the adjoint boundary conditions used in [103, 50].

This approach can be justified by physical means in the sense that reflections of the adjoint
solution should be reduced at the boundaries. However, it should be noted that this ap-
proach does not represent the exact adjoint of equations (4.68)-(4.70) and (4.110)-(4.112)
and inconsistencies between the Navier Stokes equations and their adjoint parts are intro-
duced. For example the boundary terms arising from the integration by parts of the inner
terms, done during the derivation of the continuous adjoint system, are not taken into
account. Furthermore, the transposed finite difference operators present in the discrete
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adjoint are effectively substituted with their non transposed operators (or their negative,
depending on the physical meaning of the linear operator) in the continuous adjoint ap-
proach. This substitution is rectified in the inner region, where the FD operators are almost
symmetric due to the central differencing and a low grid stretching. In this work strong
grid stretching and non central FD are used at the boundary, thus the errors connected
with the continuous adjoint approach are expected to be larger near the boundaries than
in the inner region of the computational domain. This is discussed further in section 6.4.

Neglecting boundary terms the adjoint of equations (4.91) is given by

∂ξ

∂t
+

3∑

k=1


A

T
k

∂ξ

∂xk

+
∂AT

k

∂xk

ξ
︸ ︷︷ ︸

a

−
(
∇Uξ

TAk

) ∂U
∂xk︸ ︷︷ ︸

b


−

(
∇UC

T
)
ξ︸ ︷︷ ︸

c

(4.113)

where ∇U =
(

∂
∂ρ
, ∂
∂m1

, ∂
∂m2

, ∂
∂m3

, ∂
∂p

)T
. From equation (4.113) it becomes obvious that the

characteristics of the adjoint equation are given by L̃ ≡ ΛkS̃k
∂ξ
∂xk

, where S̃k is a matrix with

the right eigenvectors of AT
k as its rows. Note, that the eigenvalues of AT and A are equal

for any matrix. However, as the adjoint equations have to be solved backward in time the
sign changes for the effective eigenvalues during the time integration (inflow boundaries
become outflow boundaries and vice versa).

In a more explicit form the adjoint characteristic wave amplitudes read

L∗
ij =λj

∂m∗
j

∂xi

(4.114)

L∗
ii =− λi

c2

(
∂ρ∗

∂xi

+
3∑

j=1

uj

∂m∗
j

∂xi

)
(4.115)

L∗
i4 =

λ4

2



∂p∗

∂xi

+
1

c2
∂ρ∗

∂xi

+
ui − c

c2
∂m∗

i

∂xi

+
∑

t=1
t 6=i

ut

c2
∂m∗

t

∂xi


 (4.116)

L∗
i5 =

λ5

2



∂p∗

∂xi

+
1

c2
∂ρ∗

∂xi

+
ui + c

c2
∂m∗

i

∂xi

+
∑

t=1
t 6=i

ut

c2
∂m∗

t

∂xi


 . (4.117)

One could calculate equation (4.113) at the boundaries with ingoing waves set to zero, in
order to obtain non reflecting boundary conditions. However, for the sake of implementa-
tional simplicity in this work equations (4.84)-(4.86) are calculated at the boundaries and
subsequently the ingoing characteristics of (4.114)-(4.117) are subtracted. This way the
terms a-c in equation (4.113) don’t have to be calculated explicitly.

Again, it should be noted that this boundary treatment is based on the physical idea of
reducing reflections at the boundary and is not consistent with the boundary treatment of
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the Navier Stokes equations. For lack of alternatives and due to successful applications of
similar approaches in [103, 84] a similar approach was adopted in this work.

4.7.2. Sponge Regions

Although the boundary conditions introduced in the former sections have proven to be
effective, some approximations were necessary for their derivation. Thus, reflections are
still present at the boundaries and additional sponge regions have to be applied to reduce
the reflections further.

The idea of a sponge region is to force a solution u to some prescribed solution uf with

∂u

∂t
= . . .− f (x) (u− uf ) , (4.118)

where . . . denotes the RHS of the PDE and f (x) is a function which is zero where no
sponging is necessary and positive in the sponge regions. The value of uf may have a
spatial or temporal dependency and its choice must be based on physical intuition.

Analytical solutions in one dimension suggest that reflections are damped stronger with
increasing forcing value in the sponge regions [8]. However, this is not true in three dimen-
sions. Furthermore, the sponge forcing becomes stiff for high forcing amplitudes, making
the computation inefficient. [58] suggests a strategy to estimate the necessary sponge pa-
rameters depending on the wavelength and orientation of perturbations entering the sponge
zones. However, as these perturbations can have a broad spectrum and are usually not
known the determination of the sponge parameters has to be based on experience and trial
and error. The precise shape of the sponge function f (x) will be presented in section 5.3.

4.7.3. Further Boundary Treatment

Despite the methods introduced in the previous sections some other techniques have been
used at the boundaries to further reduce reflections and retain numerical stability. These
techniques are explained now.

Filtering In the sponge regions a sixth order filter is applied additionally to the high order
filter used for numerical stability. This low order filter is intended to dissipate small
scale structures and thus reduces the degree of turbulence at the boundaries.

Grid Stretching At some boundaries the grid is stretched. Here, the grid becomes coarse
so that small scales can not be resolved anymore and are dissipated, hopefully. A
strong grid stretching near the boundaries also implies that less grid points are needed
in the sponge regions, where the flow solution is unphysical anyway. The specific grid
stretchings used in this work are given in section 5.2.

temporally moving average An average value m̄ is updated according to m̄ = αm̄ +
(1−α)ū with some α smaller but near to one, where ū are the flow variables averaged



52 Chapter 4. Numerics

in periodic directions. This moving average is used as a target value for the sponge
forcing at the outflow, for flow variables where the choice of target values is not clear,
namely the velocities in stream- and shearwise directions. Similar to the sponge
parameters appropriate values of α have to be determined by trial and error.



5. Physical and Numerical Setup

Throughout this work the system of choice is a plane jet at a Mach number of Ma = 0.9
and a Reynolds number of Re = 2000, based on jet inflow velocity and width. Typical
reference values together with its non dimensional values are shown in table 5.1 for a jet
with air at room temperature. Experiments at high Mach-numbers are usually performed
at much higher Reynolds numbers of Re = 105 or higher [79, 95]. The reason for this is
given in table 5.1. With the given reference values a jet in air would require a slot width
of D ≈ 0.1mm. Such a miniature jet would be experimentally unhandy. Nevertheless,
a rather low Reynolds number was chosen for this work as it allows simulations where
the physical dissipation exceeds the numerical dissipation. Such well resolved cases are
of interest as it was shown in [22] that for the control of the turbulent kinetic energy in
a channel flow the optimization is more effective using a DNS resolution, compared to
LES. Furthermore, results on optimal flow control in [24] suggest that the controllability
decreases with increasing Reynolds number.

5.1. Optimization Setup

5.1.1. Cost Functional

For the purpose of sound reduction a measure for the noise emission of a jet is required.
In this work the cost functional we aim to minimize is defined as a weighted integral over
the pressure fluctuations

ℑ =

∫

T

∫

Ω̂

r(x, t) (p(x, t)− p̄(x))2 dV dt, (5.1)
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ref-value meaning value
non-

dimensio-
nalization

dimension-
less
value

ρref mass density 1.16 kg
m3

1
ρref

1

Tref temperature 295 K
1

Tref
1

Cp,ref

heat-capacity
at constant
pressure

1000 J
kgK

Tref

u2
ref

≈ 3.0864

µref
dynamic
viscosity

18.48 · 10−6Pa s
1

ρrefuref lref
5 · 10−4

γ
ratio of specific

heats
7
5

1 7
5

Pr
Prandtl-
number

0.71 1 0.71

Ma Mach-number 0.9 1 0.9

Re
Reynolds-
number

2000 1 2000

Tsuth
Sutherland
temperature

110.4 K
1

Tref

110.4
295

Rref = Cp,ref
γ−1
γ gas constant ≈ 285.7 J

kgK

Tref

u2
ref

≈ 0.8818

Cv,ref =
Cp,ref

γ

heat-capacity
at constant
volume

714.3 J
kgK

Tref

u2
ref

≈ 2.205

cref =
√
γRrefTref speed of sound ≈ 343.5m

s

1
uref

1
Ma

uref = Ma cref velocity ≈ 309.2m
s

1
uref

1

pref = ρrefRrefTref pressure ≈ 98.11kPa
1

ρrefu
2
ref

≈ 0.8818

lref =
Re µref

ρrefuref
length ≈ 1.027 · 10−4m

1
lref

1

tref =
lref
uref

time ≈ 3.321 · 10−7s
uref

lref
1

Table 5.1: List of all reference values used throughout this work, together with non-
dimensionalization and non-dimensional reference values. The reference values above the hor-
izontal line can be chosen independently, while the values below this line are determined by
previous reference values.

where T is the optimization interval, Ω̂ is the complete computational domain and

p̄(x) =
1

∫
T

∫ Ly

0
r(x, t)dtdy

∫

T

∫ Ly

0

r(x, t)p(x, t)dtdy, (5.2)

is an average over time and the periodic spanwise direction. r(x) is a weighting function
that is one in an area Ω in the farfield and zero everywhere else. To avoid aliasing a
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Figure 5.1: Illustration of the control setup. The jet is forced in a small volume within the shearlayers

of the jet. The noise reduction is expected to take place in the observer region in the near farfield of

the jet, indicated by a thick black horizontal line. Shown is the streamwise velocity component in the

turbulent region and the density in the farfield. The areas outside the dashed lines are unphysical

sponge regions.

hyperbolic tangent profile is applied at the boundaries of Ω. The jet geometry together
with the position of the noise reduction zone Ω is illustrated in figure 5.1.

5.1.2. Control

The jets are controlled using a volume forcing, which is achieved by adding forcing terms
to the equations of motion

∂ρ

∂t
= . . .+ sρ(x, t)gρ(x, t) (5.3)
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∂mi

∂t
= . . .+ smi

(x, t)gmi
(x, t) (5.4)

∂p

∂t
= . . .+ ρRsT (x, t)gT (x, t), (5.5)

where . . . denote the RHS of equations (4.68)-(4.70), g· are the space and time dependent
controls and s· are window functions to ensure a smooth transition from uncontrolled to
controlled areas. The window functions are given by

s(x, t) = swindow(x, 2∆x)swindow(z, 2∆z)swindow(t, 5∆t) (5.6)

swindow(k,∆) =
1

2
(erf ((k − kstart − 2∆) /∆)− erf ((k − kend + 2∆) /∆)) , (5.7)

where erf(x) is the error function, ∆· is the grid spacing for spatial and the timestep
for temporal directions and kstart and kend are the start and end positions/times of the
controlled area. With this definitions the controls can be interpreted as density, momentum
and temperature forcing, respectively. The control is positioned in an area from four to
five jet diameters away from the inflow boundary. In the shearwise direction the control
area has a length of 2.5D and is centered around the jet centerline. The control spans over
the whole spanwise direction. The position of the control is illustrated in figure 5.1. The
control is given every nth RK iteration. The control values in-between are obtained using
linear interpolation. This interpolation determines the weights γs,i in equation (4.32).

It should be noted that this kind of control can in this form not be applied to experiments.
The same holds for the adjoint optimization procedure, as the adjoint computation is
too expensive to be performed in real time. Furthermore, in experiments one can not
assume knowledge of the phase space over the whole optimization interval. This work
concentrates on the applicability and effectivity of the adjoint optimization for a non linear
time dependent and three dimensional flow setup. Furthermore, results from optimal
control computations might serve as a benchmark for easier applicable but suboptimal
control strategies.

5.1.3. Gradient Computation

Having defined the control the gradient is uniquely defined by equation (4.42) for the dis-
crete adjoint. With a control given at discrete times and interpolation in-between the
summation in equation (4.42) has to be substituted with a temporal integral for the con-
tinuous adjoint

(
dℑ
dgi

)T

=

∫
dt γi(t)ξ(t), (5.8)

where ξ(t) is the continuous adjoint and the weights γi(t) are now continuous functions
of time. As there isn’t a unique way of discretizing this integral ambiguities arise for the
gradient computation. In this work the gradient is computed by assuming that the adjoint
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Case Lx Ly Lz nx ny nz ∆x,min ∆y,min ∆z,min ∆t

DNS2D 30 - 34 512 1 640 0.04 - 0.036 0.017

ELES3D 37 9 28 416 64 320 0.071 0.14 0.065 0.03

LES3D 37 9 28 512 160 400 0.051 0.056 0.051 0.021

DNS3D 37 9 28 800 288 600 0.029 0.031 0.028 0.012

Table 5.2: Parameters of the plane jet simulations considered in this work. The domain lengths Li

were normalized by the jet diameter D. The Reynolds number is Re = UjρjD/µj = 2000 and the

Mach number is Ma = Uj/cj = 0.9 for all simulations. The number of grid points in the respective

coordinate directions are represented by ni. ∆i,min gives the minimum grid-spacing in direction i.

∆t gives the time step used during the optimization computations nondimensionalized by D/Uj . The

subscript j denotes mean values at the jet inflow.

variables are nearly constant over short time intervals, leading to

(
dℑ
dgi

)T

=

∫
dt γi(t)ξ(t) ≈ ξ(ti)

∫
dt γi(t), (5.9)

where ti is defined by γi(ti) = 1. In this work a control is given every second or third RK
iteration for the continuous adjoint cases. It will be shown that correlations of the flow
fields and thus the adjoint solutions are high over such time intervals. Furthermore, while
the errors introduced by the discretization of the continuous adjoint accumulate during the
RK iteration the error introduced with equation (5.9) keeps constant with time. Because
of this we expect the error introduced with equation (5.9) to be negligible compared to the
errors introduced by the discretization of the continuous adjoint.

5.2. Computational Grids

To be able to study the dependence of the grid resolution on the optimization procedure
the jet simulation is carried out on different grids. The simulations consist of a two di-
mensional DNS, two three dimensional LESs with a finer and a coarser resolution and a
three dimensional plane jet with a DNS-like resolution. These cases will be referred to
as DNS2D, LES3D, ELES3D and DNS3D, respectively. The cases are listed in table 5.2,
together with some of its numerical parameters. It is well known that the two dimen-
sional Navier Stokes equations reveal different physics compared to its three dimensional
counterpart [88]. One important physical mechanism missing is, for example, the vortex
stretching. Nevertheless, case DNS2D is useful for several tests and numerical validation
due to its low computational requirements as opposed to three dimensional computations
and the various simulations performed in the literature, which make comparisons possible.

An orthogonal cartesian grid with grid stretching in the non-periodic directions is used.
The grid is exemplarily illustrated in figure 5.3. Note that the grid is not shown in spanwise
direction as no grid stretching was applied in this periodic direction.

Figure 5.3 shows the grid spacing ∆xi = xi+1 − xi and relative grid stretching ∆2xi =
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Figure 5.2: Illustration of the grid used for the plane jet simulations. Shown is every 13th grid point

in stream- and shearwise direction for case DNS3D.

2(xi+1−2xi+xi−1)
xi+1−xi−1

in streamwise direction, where xi is the i-th grid point in streamwise direc-

tion. The grid stretching is chosen such that the resolution is highest for x < 15, which
includes the area of transition to turbulence and the core breakdown, which is the dom-
inant region responsible for sound production. Further downstream the grid spacing is
increased with a grid stretching less than 0.5%. About seven jet diameters before the end
of the computational domain a strong grid stretching is applied to reduce the number of
grid points in the unphysical outflow sponge region.

The grid has a constant grid spacing in the periodic spanwise direction with an extent of
Ly = 9. Figure 5.4 shows the correlation of density, velocities and temperature in spanwise
direction. It can be observed that the correlations decay to zero for the chosen spanwise
extent and thus the jet can be expected to develop fully three dimensional turbulence.

The grid spacing and stretching in shearwise direction is shown in figure 5.5. The resolution
is highest around the jet centerline with a moderate grid stretching in the near farfield of
the jet. Again, a strong stretching is applied in the sponge regions near the boundaries.

Figure 5.6(a) shows an estimate of the Kolmogorov length scales η obtained from cases
ELES3D, LES3D and DNS3D along the jet center line. The estimate was calculated via
[73]

η =

(
ν3

ǫ

)1/4

(5.10)

ǫ = ν
∂ûi

∂xj

∂ûi

∂xj

+
∂ûi

∂xj

∂ûj

∂xi

(5.11)
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Figure 5.3: (a) Grid spacing and (b) relative grid stretching in streamwise direction for the cases

listed in tabular 5.2.

ν =
µ(Tref )

ρref
, (5.12)

where · · · denote the Reynolds average and û = u − u. It should be noted that equation
(5.10) is derived from the incompressible Navier-Stokes equations. However, as unheated
jets are considered in this work, only, the density fluctuations are expected to be small
enough for equation (5.10) to give a usefull approximation, anyway.

To no surprise the coarsest grid (case ELES3D) gives the largest estimate for the Kol-
mogorov length. The estimates of cases LES3D and DNS3D, however, agree quite well,
indicating that these lengths scale might be grid converged. The minimal length observed
in figure 5.6(a) is about η = 0.013D. [11] reported a Kolmogorov length of η = 0.0116 for
Re = 1700 and η = 0.0091 for Re = 2500 for a round jet. Having in mind the different
geometries and the uncertainties involved in determining the Kolmogorov length scale the
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Figure 5.4: Spanwise correlation of density, velocities and temperature from case LES3D at x =

12 and z = 12. The spanwise extent Ly of the computational domain is sufficiently long for the

correlations to become zero.

agreement is reasonable. The ratio between grid spacing and the Kolmogorov lengths is
shown in figure 5.6(b) for the three different resolutions. Due to the larger estimation of
case ELES3D the cases ELES3D and LES3D reveal similar ratios (about 4.5 for ELES3D
and about 4.0 for LES3D). However, the ratio reduces to ≈ 2.5 for case DNS3D. This ratio
is small enough to rectify to call case DNS3D a DNS. It can be observed that the grid
spacing Kolmogorov length ratio reveals similar values in the region just before the outflow
sponge region at x ≈ 30. This is in accordance with the observation that all three cases
have a similar grid spacing in this area (see figure 5.3). Figure 5.6(b) indicates that case
DNS3D isn’t a DNS for x & 25. However, as the dominant regions of noise generation
in a jet (shearlayer development, core break down) appear before this point, case DNS3D
might still be regarded as a DNS.

The timestep was determined using the convective criteria

∆t = min
i,d∈{x,y,z}

(
CFL

∆di
(ci + |ud,i|)

)
, (5.13)

where ∆di is the local grid spacing, ud,i is the velocity at the ith grid point in direction
d and ci is the local speed of sound at grid point i. To achieve time accuracy and to
reduce the dispersion and dissipation errors associated with the temporal discretization
the Courant-Friedrichs-Lewy (CFL) number was set to a moderate value of CFL = 1. The
timesteps used during the optimization computations are listed in table 5.2.
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Figure 5.5: (a) Grid spacing and (b) relative grid stretching in shearwise direction for the cases

listed in tabular 5.2.

5.3. Boundary Treatment

In section 4.7 the general methodology for the treatment of the boundaries was introduced.
A detailed description of the specific choices made for the boundary treatment in this work
will be presented in this section. For all boundaries the transition from unsponged to
sponged regions was achieved by a hyperbolic tangent profile

f(x) =
samp

2

(
1± tanh

(
x− spos
swidth

))
, (5.14)

where f(x) is the local sponge strength according to section 4.7.2. samp, spos and swidth

are user defined parameters and the sign in front of the tanh determines whether regions
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Figure 5.6: (a) Kolmogorov length scale estimated using equation (5.10) and data from cases

ELES3D, LES3D and DNS3D. (b) Ratio of grid spacing and Kolmogorov length obtained from the

differently resolved cases.

boundary parameter DNS2D ELES3D LES3D DNS3D

inflow near unsponged
samp 0.06 - 0.05 0.02
spos 1.00 - 1.25 1.00
swidth 1.00 - 1.25 1.00

inflow near sponged
samp - 0.60 0.60 0.55
spos - 2.00 2.00 2.00
swidth - 2.00 1.00 1.00

inflow far
samp 0.10 0.40 0.10 0.30
spos 2.00 0.50 1.00 3.00
swidth 1.00 0.50 1.00 2.00

outflow
samp 0.40 0.50 0.50 0.50
spos 3.50 4.00 4.00 4.00
swidth 3.50 3.50 3.50 3.00

lateral
samp 0.40 0.50 0.50 0.40
spos 2.00 2.00 2.00 2.00
swidth 2.00 2.00 2.00 2.00

Table 5.3: Sponge parameters for the different cases and different boundaries. See equation (5.14)

for the definition of the sponge parameters.
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with x < spos or x > spos include sponges. The specific sponge parameters for the different
cases and boundaries are listed in table 5.3.

5.3.1. Inflow Boundary

The laminar profile enforced at the inflow is given by

U =
1

2
(Uj − Uco)

(
tanh

(
−z − (zcenter +D/2)

h

)

+tanh

(
z − (zcenter −D/2)

h

))
+ Uco,

(5.15)

where Uj is the jet velocity and D the jet diameter at the inflow. This inflow profile has
become a common choice for jet simulations [30, 31]. The shear thickness was chosen to
be h = 0.10D for cases DNS2D, LES3D and DNS3D. Due to the coarse resolution of case
ELES3D, h was set to 0.12 for this case. It is well known that the initial shear thickness
has a considerable influence on the development of the jet. Thus, one should keep in
mind this difference when comparing case ELES3D with cases LES3D and DNS3D. The
co-flow velocity is Uco = 0.01Uj for the three dimensional cases and Uco = 0.05 for case
DNS2D. The different co-flow velocity complicates the comparison between the three- and
two dimensional cases. However, as mentioned earlier, three- and two dimensional cases
reveal different physics anyway and the two dimensional case primarily serves as a test and
validation case. Pressure and density were forced towards their values at infinity and span-
and shearwise velocities towards zero.

A precursor simulation with periodic streamwise direction was performed. The initial
condition was the laminar inflow profile according to equation 5.15 but with a lower shear
thickness together with a random perturbation with a prescribed powerspectrum as in
[87]. This initial flow field was advanced forward in time to achieve a developement of
the shearlayers towards turbulence. Figure 5.7 shows two slices of such a precursor field
exemplarily for case DNS3D. For each grid a seperate precursor simulation was performed.
Within a distance of two diameters away from the jet centerline the fluctuating parts of
this solution were added to the laminar inflow profile in the jet simulations to speed up
the transition to turbulence.

The reference velocity for the sponge at the inflow is set to the laminar inflow profile.
Different sponge strengths were applied for areas near the jet centerline and areas with
some distance from the jet. The flow solution was forced only weakly away from the jet
centerline. In the vicinity of the jet inflow either a weak or a strong sponging is applied.
In the case of a strong inflow sponging perturbations were added in this sponge zone so
that further downstream the jet statistics stay about the same for both cases.
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(a)

(b)

Figure 5.7: Spanwise velocity at slices in (a) streamwise and shearwise and (b) streamwise and

spanwise directions of the precursor field for case DNS3D used to trigger turbulence in the jet simula-

tions. The white horizontal lines mark the position of the shearlayers. The plane in (b) is positioned

in the upper shearlayer.

5.3.2. Lateral Boundary

As non-reflective boundaries are desired at the lateral boundaries the forcing through the
CBC is set to zero. Because of the entrainment the lateral boundaries are treated as inflow
boundaries. Pressure, density, streamwise velocity and spanwise velocity are forced towards
p∞, ρ∞, Uco and zero in the sponge, respectively. The shearwise velocity, perpendicular to
the lateral boundary, is not forced by the sponge to allow entrainment.

5.3.3. Outflow Boundary

Near the outflow pressure and density are forced to their values at infinity and the spanwise
velocity to zero. The remaining two velocities are sponged towards values obtained from a
moving average as described in section 4.7.3.
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Figure 5.8: (a) u and (b) jet halfwidth for cases ELES3D, LES3D and DNS3D along the centerline

of the jets. For reference also a line with a gradient of 0.11 is shown. For comparison results from

other works are shown, too. The values from [17] and [30] have been shifted in streamwise direction.

5.4. Jet Statistics

To validate the jet simulations typical statistical values are compared with the literature
in this section. The streamwise velocity along the centerline is shown in figure 5.8(a). It
can be observed in 5.8(a) that the velocity decay starts later for case ELES3D. During
the simulation difficulties have been encountered to trigger the transition to turbulence,
which coincides with the beginning of the jet centerline velocity decay, as soon as in cases
LES3D and DNS3D. This might be a consequence of the broader initial shearlayer width
or the increased numerical dissipation due to the coarser resolution of case ELES3D. For
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comparison the streamwise velocity obtained from different experimental [17] and numerical
[30] investigations are shown in figure 5.8(a), too, and a good agreement can be observed.

The jet halfwidth, defined as the distance from the centerline where the mean downstream
velocity reaches half its maximum value

z1/2(x) = |zhalfwidth − zcenterline| with u(x, zhalfwidth)
!
=

1

2
u(x, zcenterline) (5.16)

can be observed in figure 5.8(b). To estimate the growth rate of the halfwidth a line with
a slope of 0.11 is shown, too. [105] gives a growth rate range of 0.1 to 0.11 and in [87]
values between 0.092 and 0.18 are reported. Thus, the growth rate found in this work lies
within the range found in the literature. As for the jet centerline velocity decay a good
agreement with other works can be found.

Exploiting symmetry and assuming conservation of momentum a self similar profile for the
mean streamwise velocity can be derived for a plane jet [73, section 5.4.2], which is given
by

u(x, z)

∆Uc(x)
= sech

(
1

2
log

((
1 +

√
2
)2) z

z1/2(x)

)2

. (5.17)

The spanwise profiles of the streamwise velocity are shown at different locations in down-
stream direction for the different grids in figure 5.9 and are compared to the theoretical
solution. At x = 4D the flow isn’t fully developed. Thus, the hyperbolic tangent pro-
file enforced at the inflow is still recognizable. However, further downstream at x = 8D,
x = 12D and x = 20 the profiles agree well amongst each other and in comparison to
the solution in equation (5.17). It can be observed that the velocity decay in spanwise
direction is more rapid for the computed solutions in the tail of the profiles compared to
the theoretical solution. This observation is in accordance with experiments [73, figure
5.19].

Figure 5.10 shows the root of the averaged Reynolds stresses Ruiui
= ûiûi = uiui − ρui ρui

normalized with the jet centerline velocity for the stream- and shearwise velocities along
the jet centerline. For validation these values are compared with results form other experi-
mental and numerical works. The same works served as a validation in [87, figure 11]. The
values found for the Reynolds stresses in this work exceed the reference stresses. However,
the reference values were obtained at slightly higher Reynolds numbers ([87]: Re = 3000;
[96]: Re = 8300; [97]: Re = 8000; [17]: Re = 7620) and at lower Mach number rendering
the reference cases practically incompressible. Furthermore, the turbulence level shows a
strong dependence on the inflow forcing [12, 15]. Thus, the agreement observed in figure
5.10 seems reasonable.

The pressure fluctuations in the farfield for the different grids are compared in figure 5.11.
Case ELES3D and LES3D agree quite well. Interestingly, case DNS3D doesn’t exhibit
the distinct noise peak around x ≈ 27D observed in cases ELES3D and LES3D. However,
variations in the noise level of several decibel due to small changes in the inflow boundary
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Figure 5.9: Streamwise velocity in spanwise direction at different coordinates for cases (a) ELES3D,

(b) LES3D and (c) DNS3D. The profiles are normalized with the jet halfwidth and centerline velocity

to illustrate the self similarity.

conditions are reported in the literature [9, 12]. As the cases in this work involve different
ranges of scales due to the different resolutions a high agreement is not to be expected. A
decrease of sound pressure level (SPL) with increasing resolution was also observed in [14].



68 Chapter 5. Physical and Numerical Setup

0
0.05
0.1
0.15
0.2
0.25
0.3
0.35
0.4

0 5 10 15 20 25 30 35

√
R

u
u
/∆

U
c

x/D

ELES3D
LES3D
DNS3D

[87]
[97]

rs
rs

rs

rs

rs

rs rs rs rs
rs

[17]

+

+

+

+
+ + +

+

[96]

rs rs rs rs
rs

rs
rs

rs rs
rs

rs rs rs rs rs

rs

(a)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 5 10 15 20 25 30 35

√
R

w
w
/∆

U
c

x/D

ELES3D
LES3D
DNS3D

[87]
[97]

rs rs

rs

rs
rs

rs

rs rs rs

rs

[17]
+

+
+ + +

+

[30]

+

+
+
+
+

+

+

+

+

+
+

+
+

+
+ + ++ +

+

(b)

Figure 5.10: Averaged Reynolds stresses (a)
√
Ruu /∆Uc and (b)

√
Rww /∆Uc for cases ELES3D,

LES3D and DNS3D along the centerline of the jets together with some experimental and numerical

results for validation. The comparison values have been shifted in streamwise direction.
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fluctuating part.
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6. Gradient Accuracy

6.1. Validation of Discrete Adjoint

To ensure the correct implementation of the discrete adjoint several tests have been per-
formed to check the validity and correctness of the implementational approach of this
work. Complex differentiation and operator overloading were used to check the correct
implementation of the first and second order sensitivity equations as described in section
4.5. Computing the linearized RHS operator with randomly chosen flow variables and
sensitivities the relative difference between the results of these methods is in the order of
10−16, which is to be expected due to the floating point representation in memory. No
additional tests were performed to ensure the correct linearization of the RK iteration as
it is already linear.

With the sensitivity equations validated they can be used to validate the RHS operator

of the adjoint equations using the identity aT
(

∂R
∂Φ

∣∣
Φs

)T
b = bT

(
∂R
∂Φ

∣∣
Φs

)
a with arbitrary

vectors a and b, where R is the discretized Navier-Stokes operator. In several tests done
with randomly chosen vectors an agreement between LHS and RHS could be observed
down to a precision in the order of 10−16.

The complete implementation of the adjoint system (4.37)-(4.41) can be validated with the
linear response of the cost functional dℑ

dg
g′ with respect to some arbitrary perturbation g′.

This linear response can either be obtained from the solution of the sensitivity equations,
or by the first order term of a Taylor series expansion:

∂L

∂g︸︷︷︸
gradient

g′ =
dℑ
dg

g′ =
∂ℑ
∂Φ

dΦ

dg
g′ +

∂ℑ
∂g

g′ =
∂ℑ
∂Φ

Φ′
︸︷︷︸

sensitivity

+
∂ℑ
∂g

g′ (6.1)
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case pos. #RK ∂L
∂g
g′ ∂ℑ

∂Φ
Φ′ + ∂ℑ

∂g
g′

DNS2D
100 10000 −2.19978130134220 · 10−4 −2.19978130134229 · 10−4

900 10000 −1.44380102098536 · 10−5 −1.44380102098535 · 10−5

1700 10000 −1.17132271501490 · 10−5 −1.17132271501492 · 10−5

ELES3D
100 2400 −5.37171660047461 · 10−6 −5.37171660047416 · 10−6

200 2400 −6.73097452538381 · 10−6 −6.73097452538368 · 10−6

LES3D
100 6400 −2.25323809359032 · 10−4 −2.25323809359047 · 10−4

200 6400 −1.70187568261517 · 10−4 −1.70187568261540 · 10−4

DNS3D
100 7000 −3.11011806150672 · 10−4 −3.11011806150674 · 10−4

400 7000 −2.85005052892766 · 10−5 −2.85005052892798 · 10−5

Table 6.1: Comparisons of LHS and RHS of equation (6.1) for different perturbations and the

different jets simulated in this work. The ”pos.“ gives the position of the perturbation in RK iterations

from the beginning of the control interval. #RK gives the number RK iterations of the control interval.

The maximal amplitude of the perturbations was 10−4 for all cases.

where L is the Lagrangian given in equation 4.34 and ·′ denotes variation with respect to
the control. Several tests with small gaussian shaped perturbations with a finite temporal
support were performed for the cases listed in table 5.2. Some of these tests are listed in
table 6.1 and it becomes apparent that the LHS and RHS in equation (6.1) agree for at
least 12 decimal digits. Note, that a high number of these validation tests isn’t necessary
as an agreement of 12 decimal digits by chance is exorbitantly unlikely. The full discrete
adjoint over the complete time horizon is not accurate down to machine precision. As it
was validated that the RHS is transposed accurately this is most likely due to round up
errors during the RK iterations and the integration of the long time horizon. Nevertheless,
due to the still excellent precision of the discrete adjoint it will be called exact in the
following. Furthermore, the discrete adjoint will be used as a reference solution to validate
the accuracy of other adjoint formulations. Note that exact is just meant in the sense that
the implemented adjoint system is the exact adjoint system of the discretized system.

Given two arbitrary perturbations g′ and g◦ the implementation of the Hessian computation

can be tested by comparing the value of d2ℑ
dg2

∣∣∣
g
[g′, g◦] obtained using either the sensitivity or

adjoint equations. Furthermore, the symmetry of the Hessian d2ℑ
dg2

∣∣∣
g
[g′, g◦] = d2ℑ

dg2

∣∣∣
g
[g◦, g′]

was exploited to validate the accuracy of the adjoint solution. As for the linear terms an
agreement of 12 decimal digits or more could be observed.

6.2. Appearance of Adjoint Solution

In order to describe the typical behavior of the adjoint solution, instantaneous solutions of
the ”adjoint pressure“ (p∗ in equation (4.86)) at different times are shown in figure 6.1 for
case LES3D. The figures show the complete computational domain including the sponge
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(a) t=121 (b) t=113

(c) t=75 (d) t=12

(e) t=12 (sponged inflow)

Figure 6.1: Cross section of instantaneous discrete ”adjoint pressure“ at different times for case

LES3D. The color scheme is identical in all cases, but (c) was scaled by a factor of 5× 10−3, (d) by

2 · 10−5 and (e) by 1 · 10−4. The inflow was sponged in (e).
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zones. At an early stage of the adjoint solution (near the end of the optimization interval)
the adjoint pressure is zero except near the area Ω, where the adjoint solution is perturbed
due to the optimality condition. This is illustrated in figure 6.1(a). These perturbations
radiate from region Ω with the speed of sound and begin to interact with the turbulent
structures of the jet, as can be seen in figure 6.1(b). At even earlier times a part of the
adjoint solution that can be associated with the turbulent region and especially the initial
shear layers of the jet begins to grow fast in amplitude and becomes the dominant part of
the adjoint.

At times tUj/cj ≈ 75 sound wave like structures begin to emerge from the jet inflow. These
”adjoint sound waves“ indicate that it is possible to control the jet by sending sound waves
towards the inflow of the jet and thereby altering the inflow conditions. For this work
NBC were implemented. Thus, waves leaving the computational domain should cross the
boundaries unperturbed and not influence the flow solution. However, only the normal part
of the waves is transmitted, the tangential part is still active, leading to waves travelling
parallel to the boundaries which need to be damped. Apparently, the imperfection of the
CBC still allows for some control of the inflow from the inner region of the computation.
The interpretation that waves leaving the computational domain at oblique angles do not
leave the domain unperturbed and allow for a control of the flow solution is also supported
by the observation that the ”adjoint sound waves“ emerging near the inflow have higher
amplitudes at oblique angles. This indicates that waves at oblique angles are more efficient
for the control of the inflow boundary.

Although reasonable from a numerical point of view, the possibility to control the inflow
from within the computational domain is rather a numerical artefact due to the imper-
fection of the CBC. Thus, this kind of control mechanism might be unpleasant from a
physical point of view. As already mentioned in section 5.3.1 different types of sponge
zones have been used near the inflow. The solutions in figures 6.1(a)-6.1(d) are obtained
from a computation using a weak inflow sponge. The reflections at the inflow can be re-
duced by using a strong sponge at the inflow. An adjoint solution for this case is shown
in figure 6.1(e). This way, the influence of the reflections on the gradient accuracy can be
investigated and the physical meaning of the adjoint is increased.

A close look at figure 6.1(d) reveals grid to grid oscillations at the boundaries. Similar
observations have been made in [20]. This aliasing is a consequence of the transposition of
the finite difference derivative and filter operators, which are asymmetric at the boundaries.
It does, however, not lead to numerical instability. The same phenomenon cannot be
observed in the continuous adjoint solution. The instantaneous adjoint solutions shown
in figure 6.1 are obtained solving the discrete adjoint equations. However, except for
the grid oscillations at the boundaries the discrete and continuous adjoint exhibit the
same qualitative behavior and the description given in this section remains valid for the
continuous adjoint, too.
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Case RK RHS fsave save-type boundary
ContNoBC continuous continuous 2 double non
ContSpng continuous continuous 2 double sponge
ContSgl continuous continuous 4 single non-reflecting
ContF2 continuous continuous 2 double non-reflecting
ContF4 continuous continuous 4 double non-reflecting
ContF8 continuous continuous 8 double non-reflecting
ContF16 continuous continuous 16 double non-reflecting
Mixed discrete continuous recompute double non-reflecting
DiscRef discrete discrete recompute double discrete
DiscSgl discrete discrete 4/recompute single discrete
DiscF2 discrete discrete 2 double discrete
DiscF4 discrete discrete 4 double discrete
DiscF8 discrete discrete 8 double discrete
DiscF16 discrete discrete 16 double discrete

Table 6.2: List of the different cases considered for testing of the gradient accuracy for case LES3D.

RK: formulation used for the RK iteration. RHS: formulation used for the RHS. fsave: number of

RK iterations after which the flow field was saved. Save-type: single or double precision. Boundary:

details about boundary treatment.

6.3. Continuous Adjoint

The knowledge of the exact discrete adjoint solution is used to test the accuracy of several
different adjoint approaches in this and the following sections. The different approaches
investigated are listed in table 6.2 and will be explained in detail below. The control
simulations were carried out for case LES3D with a time horizon of 6400 RK iterations,
giving a simulation length of 134D/Uj . For the rest of this chapter a volume temperature
forcing according to equation (5.5) is applied as control. However, as the different adjoint
quantities are related to each other it is very unlikely that the inaccuracies grow differently
for the different adjoint quantities. Thus, we expect the results of this chapter to be
independent of the specific control type.

To quantify the accuracy of the different approaches two measures are defined. The cor-
relation coefficient between the exact gradient (obtained from the discrete adjoint) x and
the inexact gradient a at time t is defined as

corr(x, a) =
xiai√

xjxjakak
. (6.2)

Note, that this correlation coefficient also corresponds to the cosine of the angle between
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Figure 6.2: The correlation/deviation of the continuous adjoint gradient for different saving frequen-

cies with/from the exact gradient for case LES3D. The gradient isn’t accurate for saving frequencies

of 8 and higher.

x and a. The relative deviation of the two gradients is calculated with

dev(x, a) =
||x− a||2
||x||2

. (6.3)

To avoid spurious correlations caused by the window function sT only gradient values with
a function value of sT near to one were considered. Additionally, the signals were averaged
over 400 time steps, corresponding to a time interval of 8.4D/Uj , to give a measure of the
average deviation.

The flow fields, used for reconstruction in the adjoint equations, have been saved every
2nd, 4th, 8th and 16th RK iteration for the continuous adjoint approach. These cases are
denoted as ContF2, ContF4, ContF8 and ContF16, respectively. The correlation coeffi-
cients and deviations for these cases are shown in figure 6.2 and indicate that case ContF4
is almost as accurate as case ContF2. On the other hand, case ContF8 shows considerably
higher deviations from the exact solution and case ContF16 is even more inaccurate. This
behavior can be explained by looking at figure 6.3, which shows the autocorrelations and
powerspectra of the primitive flow variables ρ, u, v, w and T . The statistics were taken
from the flow fields saved for the adjoint computation at a point on the centerline in the
turbulent region of the jet. In this region the shortest correlation length and highest fre-
quencies appear in the flow solution. The five primitive flow variables have been chosen
as these quantities were saved/loaded during the flow/adjoint solution. A significant de-
crease of the autocorrelation can be observed when storing only every eighth RK iteration
and higher examining figure 6.3(a). The reason for the drop in accuracy can be observed
even clearer by looking at the powerspectra in figure 6.3(b). For cases ContF2 and ContF4
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Figure 6.3: (a) Correlation and (b) power spectrum of density, velocities and temperature at the jet

centerline in the fully turbulent part of the jet (x=13, z=12). The horizontal lines in (b) correspond

to the Nyquist frequency for the different saving frequencies. An information loss of the time signal

becomes evident for saving frequencies of 8 and higher.

the truncated modes seem to contain mainly white noise. The same can not be stated for
cases ContF8 and ContF16. However, the neglected modes contain only about 0.1% of the
energy of the total powerspectrum in case ContF8. This indicates the necessity of a very
accurate flow reconstruction to obtain accurate gradients.

An accuracy drop becomes apparent at tUj/cj ≈ 75 in figure 6.2. This moment corresponds
to the situation in figure 6.1(c), where ”sound waves“ emerge from the inflow boundary
in the discrete adjoint solution. As already discussed in section 4.7.1.2, the boundary
conditions were constructed to be non-reflective and do not represent the exact continuous
adjoint of the CBC used in the flow simulation (see also [59]). Accordingly, it is reasonable
to assume that the errors introduced with the continuous adjoint approach are higher at the
boundaries than in the inner region of the computational domain. Thus, it is reasonable to
connect the accuracy drop to the appearance of the ”adjoint sound waves“ emerging from
the boundary.

6.4. Boundary Conditions

The BC of the continuous adjoint formulation were altered to examine their influence on the
accuracy of the adjoint. The correlation coefficients and deviations for these cases are shown
in figure 6.4. To demonstrate that proper boundary conditions for the continuous adjoint
are necessary, no boundary conditions were used in case ContNoBC, meaning that the same
expression was used at the inflow boundary than in the inner regions of the computational
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Figure 6.4: The correlation/deviation of the continuous adjoint gradient for different formulations

of boundary conditions with/from the exact gradient for case LES3D. As discussed in the text, it is

seen that proper adjoint boundary conditions are important.

domain. As is to be expected, the numerical scheme turns out to be unstable without
boundary conditions. The computation breaks down at tUj/cj ≈ 115, which corresponds
to the instant when the adjoint solution reaches the inflow boundary (see figure 6.1(b)).

In order to stabilize case ContNoBC a strong sponge region is added at the jet inflow for
the adjoint solution in case ContSpng. This sponge is not added to the primal flow solution
and further inconsistencies between primal and ajdoint solution are introduced. However,
as the adjoint solution convects towards the inflow the hope is that the inflow sponge
in the adjoint solution has only a minor effect for the adjoint solution further upstream.
Furthermore, using a sponge can serve as a valid boundary condition for compressible
flows as was shown by [8, 58], for example. The discussion in the literature and the above
arguments indicate that using a sponge zone is a valid boundary condition. To no surprise
the inflow sponge is able to stabilize the computation of the adjoint. However, the accuracy
is acceptable for times tUj/D & 75, only. Thereafter, the correlation quickly reaches values
around zero (not shown) and the amplitude of the adjoint is largely underestimated. One
explanation for this behavior is that from this point on reflections begin to emerge from
the inflow in the adjoint solution (see figure 6.1(c)). These reflections are suppressed by
the inflow sponging of the adjoint and case ContSpng deteriorates from the solution of the
discrete adjoint.

Next, case ContF2 is repeated with a strong inflow sponge consistently applied for the
primal and adjoint flow solution. This way the reflections at the inflow are suppressed
(see figure 6.1(e)) without introducing further inconsistencies in the adjoint solution as in
the previous case. The reasoning is that the sponge forcing decreases the sensitivity near
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Figure 6.5: The correlation/deviation of the continuous and discrete adjoint gradient for case LES3D

with a strong inflow sponge. Although an inflow sponge region is added to the adjoint equations, the

gradient becomes inaccurate without non-reflective boundary conditions.

the inflow and the boundary can not be controlled from inside the computational domain
any more. As a consequence the inconsistencies observed at the boundary should become
less relevant. Consequently, figure 6.5, showing the correlation coefficient and deviation
of the continuous adjoint subject to a strong sponge region in comparison to the discrete
adjoint solution, depicts that the gradient accuracy is increased (compare with case ContF2
in figure 6.4). Especially, the accuracy drop mentioned before at tUj/cj ≈ 75 cannot be
observed anymore. Figure 6.5 also depicts the accuracy of case DiscF2, a discrete adjoint
formulation without recomputation explained in more detail in section 6.5. Although the
errors connected to the boundary treatment are minimized by the sponge zone case DiscF2
is more accurate than ContF2. Using the same RHS formulation for the inner and boundary
grid points as in case ContNoBC the correlation of this adjoint quickly deteriorates from
the exact solution. This observation may not necessarily be true for longer or stronger
sponge regions. Nevertheless, it demonstrates the importance of proper adjoint boundary
conditions for an efficient computation of the adjoint solution.

To summarize, the importance of proper boundary conditions were demonstrated and
sponge zones do not serve as a valid adjoint boundary condition. The boundary conditions
used in this work for the continuous adjoint proved to be able to give accurate gradient
information. Nevertheless, additional inaccuracies are introduced in the continuous adjoint
at the boundaries. These inaccuracies can be reduced by adding sponge zones, although
this sponging has to be done consistently in the primal and adjoint solution.
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Figure 6.6: The correlation/deviation of the discrete adjoint gradient without recomputation of

flow fields for different saving frequencies with/from the exact gradient for case LES3D. As in the

continuous case (see figure 6.2) the gradient isn’t accurate for saving frequencies of 8 and higher.

6.5. Discrete Adjoint

Computing the discrete adjoint requires the knowledge of the complete flow field at every
RK substep. Due to memory restrictions and the backward in time integration of the ad-
joint equations this usually necessitates frequent recomputations of the primal flow solution
for time dependent problems. This recomputation increases the computational effort and
might be cumbersome from an implementational point of view.

The discrete adjoint formulation was used in cases DiscF2, DiscF4, DiscF8 and DiscF16.
However, instead of recomputing the necessary flow fields they are saved and loaded every
second, forth, eighth and 16th RK integration and the flow fields at time steps within
each storage interval are reconstructed using a third order accurate interpolation scheme,
where the interpolation coefficients are calculated according to equation (4.5). Note, that
by skipping the recomputation of the (numerically) exact flow fields the computational
expense of the discrete adjoint is decreased. Figure 6.6 depicts the accuracy of these
approaches. A high accuracy can be observed for cases DiscF2 and DiscF4. Especially, a
comparison with figure 6.2 reveals that the cases DiscF2 and DiscF4 are more accurate than
case ContF2 and ContF4. Furthermore, the accuracy drop observed for case ContF2 and
ContF4 at tUj/D ≈ 75 can not be found for the cases using the discrete adjoint formulation.
The finding that case DiscF2 is more accurate than case ContF2 also holds for the jet with
a strong inflow sponging, as can be seen in figure 6.5. The accuracy drops significantly
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Figure 6.7: Deviation for cases (a) ContSgl and (b) DiscSgl.

for case DiscF8 and even more for case DiscF16. This is analogous to the behavior of
the corresponding continuous adjoint cases and can again be explained with the decreased
flow field reconstruction precision for decreased saving frequencies. Nevertheless, the case
DiscF8 is still more accurate than ContF8.

A very simple strategy that reduces the hard disk I/O by a factor of two is to save the
flow fields in single precision, albeit being calculated in double precision. The validity
of this approach is tested for the discrete and continuous adjoint with the cases DiscSgl
and ContSgl and the deviations for these cases are shown in figure 6.7. As expected, the
inaccuracies introduced by the continuous adjoint approach outweigh the error introduced
by saving in single precision. In fact, the deviations for cases ContSgl and ContF4 are
indistinguishable as can be seen in figure 6.7(a). A drop in accuracy could be observed for
case DiscSgl (figure 6.7(b). Nevertheless, cases DiscSgl and DiscRef still agreed up to six
decimal digits (estimated by the square root of the deviation) and thus saving in single
precision is a reasonable approximation for some applications.

Case Mixed constitutes a mixture of the continuous and discrete adjoint approach. The
idea is to use the exactly transposed RK integration in equations (4.37)-(4.41). The com-

putation of the term
(

∂R
∂Φ

∣∣
Φs

)T
in equation (4.39), however, is avoided by substituting it

with its continuous formulation in equation (4.84)-(4.86) and the boundary conditions of
section 4.7.1.2. This approach might be interesting from a practical point of view, as the
implementation of the computation of the linearized and transposed Navier-Stokes opera-
tor can be implementationally challenging. Examining figure 6.4, a high correlation with
the exact gradient can be observed for case Mixed. The amplitude, however, is largely
overestimated leading to a high deviation. It can be seen in figure 6.4 that an essential
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advantage of case Mixed compared to case ContF2 can not be observed, leading to the con-
clusion that no accuracy gain can be obtained by using the discrete adjoint RK integration
in conjunction with the continuous RHS.



7. Noise Optimization

This chapter will demonstrate the successful application of the adjoint approach for noise
optimization. Throughout this chapter the heat forcing according to equation (5.5) will
be used as control mechanism. The choice of the control type can have an influence
on the performance of the optimization [103, 47]. To illustrate this, figure 7.1 shows
optimizations of case DNS2D using different control types as given in equations (5.3)-
(5.5). More details about these optimizations can also be found in [47]. All control types
successfully reduce the noise emission, although slight differences in the efficiency can be
observed with the streamwise momentum forcing being the most efficient choice. However,
in this work temperature forcing was chosen as control mechanism as this forcing was
successfully applied in previous works [103, 50, 59]. Furthermore, of the controls given in
equations (5.3)-(5.5) temperature control might be the one closest to experiments, as a
local heat source could e.g. be applied using plasma actuators [79].

7.1. Comparison of Optimization Schemes

In this section the ability of the different optimization schemes introduced in chapter 2
to reduce noise in presence of a high dimensional control space are investigated. The
minimizations in this section are carried out for the case ELES3D on a control horizon of
∆tUj/D = 70 (2400 RK iterations). This case was chosen as it contains the turbulent three
dimensional dynamics of the Navier Stokes equations, but its rather low resolution enables
one to perform a lot of optimization iterations. When comparing different optimization
schemes a common measure for efficiency is the required number of cost function evaluations
till a local minimum is reached, e.g. identified by observation of the norm of the gradient.
Figure 7.2 shows exemplarily the L2 norm of the gradient over the number of optimization
iterations for a LBFGS optimization. It can be observed that except for a short initial
period aside from statistical fluctuations no gradient norm reduction can be observed.
This leads to the conclusion that, e.g. due to the high dimensionality of the control space
or the complex structure of the cost functional, no local minimum has been reached.
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Figure 7.2: Norm of gradient versus iteration number for a LBFGS Wolfe09 optimization with case

ELES3D. A persistent reduction of the gradient norm can not be observed.

Thus, the optimizations are aborted after an arbitrary number of iterations and the cost
functional reduction serves as a performance index.

7.1.1. Gradient Based Optimization Schemes

In this section the efficiency of the gradient based CG and LBFGS optimization schemes
introduced in section 2.2.2 and 2.2.3.1 is investigated. As line search algorithm the Brent
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Figure 7.3: Comparison of performance of LBFGS and CG optimization schemes for case ELES3D

using Brent and Wolfe line searches.
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line minimization of section 2.1.2 and the Wolfe line search of section 2.1.3 were used.
The Brent line minimization was performed until the condition αu−αl

2α
< 0.1 holds, where

αu and αl are the upper and lower estimates of the exact line minimization step lengths
and α is the step length with the highest cost functional reduction found so far. The
constant c2 used in equation 2.6 for the curvature condition was chosen as c2 = 0.9 or
c2 = 0.1. This line searches will be referred to as Brent01, Wolfe09 and Wolfe01, respec-
tively. The specific cost functional reduction depends on the initial conditions and the
choices of the optimization parameters (e.g. the constant c2, or the control interval length).
Thus, it would be necessary to test the optimization schemes with several different initial
conditions to obtain a detailed picture of the optimization efficiency. However, due to the
computational expense, one optimization with the same initial condition for all cases, was
performed, only. Nevertheless, because of the rather high number of optimization itera-
tions (about 100) the results of this section should still be sufficient to give an impression
of the optimization efficiencies of the different schemes.

For the cases mentioned above the cost functional over optimization iterations is shown
in figure 7.3(a). As is to be expected for both optimization schemes, the cost functional
decreases faster for the more accurate line minimizations Brent01 and Wolfe01 compared
to the less accurate Wolfe09 line search. For the CG optimization the Wolfe09 line search
performs very poor, while on the other hand the CG optimization works best with the
Wolfe01 line search. This can be explained by recalling that the CG scheme requires that
the gradient is perpendicular to the prior search direction. This assumption is fulfilled
only at local minima of the cost functional in the search direction, explaining the need
for an accurate line search in conjunction with CG method. The Wolfe line search is
constructed to identify a step length where the cost functional is flat in the search direction.
This coincides with finding step lengths where the gradient is almost perpendicular to the
search direction. This possibly explains why the Wolfe01 line search performs better than
the Brent01 line search for the CG method.

Figure 7.3(a) might indicate that the CG-Wolfe01 or LBFGS-Brent01 optimization schemes
are the most efficient ones. However, the more restrictive the criteria for the acceptance of a
step length the more trial flow evaluations are necessary to find an appropriate step length.
Thus, the cost functional reduction per optimization iteration is not a good measure if one
is interested in optimization efficiency in terms of computational time. Therefore, the cost
functional is plotted over the number of flow solutions in figure 7.3(b). Figure 7.3(c) is
the same, but here an adjoint solution was weighted with a factor of 2.5. This factor
corresponds roughly to the ratio

computational time discrete adjoint solution

computational time primal flow solution
.

In accordance with previous reasoning the case Wolfe01 performs best for the CG scheme
in terms of computational time. For the LBFGS scheme the Wolfe09 line search is more
efficient than the Wolfe01 or Brent01 line searches, indicating that an accurate line search
doesn’t pay off for this optimization scheme. Moreover, case LBFGS-Wolfe09 seems to
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outperform all other schemes due to its inexpensive line search routine.

7.1.2. Second Derivative Based Optimization Schemes

The efficiency of optimization algorithms using second derivative information is investigated
now. Algorithms NCGline, NCGtrust and NLan, introduced in section 2.3, are used for
the noise reduction of case ELES3D. For algorithm NLan a simple preconditioning strategy
is tested, too. For the preconditioning the spatially averaged amplitudes of the Hessian
vector product, computed during the optimization, were saved at every time. These values
give an approximation of the ”overall second order sensitivity at some time“ and were used
to set the entries of a diagonal preconditioning matrix.

Figure 7.4(a) shows the cost function over the number of optimization iterations for one
optimization run. As is to be expected, the NLan, which gives a better approximation to
the trust region subproblem (2.14), gives a higher cost functional reduction per iteration
compared to the NCGtrust optimization, though the difference is only minimal. The
reduction is increased further with the preconditioned NLan scheme. For comparison case
LBFGS-Wolfe09 is shown in figure 7.4(a), too. The value for the initial trust region was
chosen very small, leading to a small reduction at the beginning of the optimization. Hence,
an initial phase with very low reduction can be observed for the trust region methods. After
this initial phase, when the trust region is adjusted, the performance per optimization
iteration is comparable for the trust region and LBFGS methods. However, a substantial
performance advantage of the trust region based optimization schemes can not be observed.
This might not be surprising, as e.g. the quadratic convergence properties of Newton
like optimization schemes can be proven for situations near a local minimum, only. An
assumption surely not fulfilled for the cases in this work.

Scheme NCGline-Wolfe09 performs similar to the LBFGS-Wolfe09 scheme at the begin-
ning of the iterations. This is reasonable as both schemes try to approximate the Newton
direction. However, after about 10 iterations the LBFGS based optimization seems to out-
perform the NCGline scheme. As already mentioned in section 2.3.1, the CGLin iteration
performed during the NCGline optimization has to be aborted in case of a search direction
with negative curvature. Due to this constraint only about two to three CGLin iterations
are performed for one NCGline iteration in most cases. Furthermore, convergence of the
CGLin algorithm could not be reached during the performed optimization. Thus, it is ques-
tionable if the CGLin scheme gives an accurate approximation to the Newton direction.
This might be an explanation why the LBFGS scheme performs better than NCGline.

The cost functional is shown over the number of flow solutions in figure 7.4(b) and over a
weighted flow count in figure 7.4(c) for the cases described above. In figure 7.4(c) a solution
of the sensitivity equations was weighted with a factor of 2.5 and Hessian vector product
computation was weighted with 4, to take into account the increased computational cost
for the solution of these equations compared to the primal flow equations. As already
mentioned in section 2.3.2, the CGLin iteration used during the NCGtrust optimization is
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Figure 7.4: Comparison of performance of the Hessian based optimization schemes NCGline,

NCGtrust and NLan for case ELES3D.
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stopped if a direction of negative curvature is encountered or the search direction leaves the
trust region. As a consequence the CGLin iteration was aborted after one or two iterations
for the NCGtrust optimization in almost all optimization iterations. On the other hand,
the CGLin algorithm used in the NLan optimization was performed till the residual was
smaller than 5% of the initial residual, which required between 4 and 12 CGLin iterations.
Although it is to be expected that the CGLin algorithm gives only a small improvement
to the steepest descent direction after two iterations the lower computational cost of a
NCGtrust iteration compared to a NLan iteration is sufficient for the NCGtrust scheme to
become more efficient than the NLan scheme, as can be seen in figure 7.4(b) and 7.4(c).

Examining the cost functional reduction in terms of flow solutions the scheme NCGline
is clearly outperformed by scheme LBFGS. The reason for this is the expensive CGLin
iteration of the NCGline scheme. Furthermore, while for the Wolfe09 line search the first
trial step length was excepted in many cases for scheme LBFGS, the step length was
initially overpredicted mostly using the NCGline scheme, leading to a higher flow solution
count for the determination of a proper step length.

The specific behavior and performance of the optimization runs depends on a number
of parameter choices, for example initial flow condition, initial trust region radius, accu-
racy of line search etc. Furthermore, the behavior of the optimization algorithms could
change at later iterations. This might especially hold true if the control reaches the vicinity
of a local minimum. This complicates a direct comparison of the different optimization
schemes. Nevertheless, the results in figure 7.4 seem clear enough to state that the addi-
tional computational effort to determine a search direction, introduced with the Hessian
based optimization schemes, is too high to increase the performance of the optimization
for the high dimensional non-linear case of this section.

7.2. Optimization Using Exact and Inexact Adjoint

In this section the discrete and continuous adjoint approaches are used for noise optimiza-
tion to investigate the importance of an accurate gradient direction in an optimization
framework.

7.2.1. Two Dimensional DNS

An optimization was performed for case DNS2D for a control horizon of T = 78. Compari-
son with the exact gradient shows a correlation coefficient larger than 0.975 and a deviation
according to equation (6.3), which is smaller than 0.1 over the whole interval. Figure 7.5
depicts the cost functional over LBFGS iterations for the continuous and discrete adjoint.
It is seen that the reduction is comparable for both cases over the majority of iterations.
However, it can be observed that the continuous optimization performs worse around the
10th iteration. This event can be associated with a reset of the LBFGS iteration. The
Wolfe line search used in the optimization requires that the proposed search direction is
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interval. The gradient becomes misaligned for times t . 40.

a descent direction, thus the optimization algorithm has to be reset if an ascent search
direction occurs. In this work, this case was dealt with by using the simple strategy of
discarding information collected during the optimization. Then the procedure is restarted
using the control obtained before the occurrence of the ascent direction. Note, that the
LBFGS iteration is constructed such that the new search direction is always descent, if
the exact gradient is used. Thus, the occurrence of an ascent direction can be linked to
inaccuracies in the gradient. Because of this, the reset (and hence the efficiency drop in
the optimization) is a consequence of the gradient inaccuracies of the continuous adjoint.

Next, the control horizon is extended up to ∆t = 170. Figure 7.6 shows the correlation
according to equation (6.2) between the continuous and discrete adjoint for this long con-
trol interval. It can be observed that the continuous adjoint deviates substantially from
the exact solution for times t . 40. Therefore, this increased control horizon gives the
possibility to investigate the performance of the adjoint optimization in the presence of
misaligned gradients.

Using the continuous adjoint, the line search failed to find a step length satisfying the strong
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Wolfe conditions after the third LBFGS iteration. Since a step length satisfying the strong
Wolfe conditions is always obtained as long as the search direction is a descent direction,
this is a consequence of the gradient inaccuracies. To be able to perform an optimization
using the continuous adjoint a backtracking line search with quadratic interpolation as
introduced in section 2.1.1 was used in the following. The backtracking algorithm only
requests a sufficient decrease of the cost functional, a condition that could be matched
even with an inaccurate gradient.

Figure 7.7 shows the cost function values over time after an optimization run with 60
flow solutions using either the discrete or continuous adjoint. The optimization with the
discrete as well as the continuous adjoint shows a significant reduction of the cost functional.
However, the discrete adjoint clearly performs better and leads to a higher reduction. One
reason for this is that the line search needed to try significantly more step lengths until
a sufficient decrease could be obtained using the continuous adjoint. Nevertheless, the
reduction achieved by the continuous optimization is remarkable considering the fact that
the gradient contains no reliable information over approximately a quarter of the simulation
interval. Interestingly, both cases fail to significantly reduce the cost functional for times
t < 80. This is discussed further in section 7.3.

7.2.2. Three Dimensional LES

Next, an optimization is performed for case ELES3D using the discrete or continuous
adjoint approach. For the chosen control horizon of ∆t = 70 (2400 RK-iterations) the
correlation coefficient between the discrete and continuous gradient does never drop below
0.995, thus, indicating a very high accuracy of the continuous adjoint. The cost functional
is plotted over LBFGS iterations for cases ContF2 and DiscRef in figure 7.8. Surprisingly,
the continuous optimization performs better in terms of cost functional reduction, though
the difference is only marginal. For further investigation of this observation the discrete
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Figure 7.8: Cost-functional over LBFGS-iterations for case ELES3D involving a short control inter-

val. Only every second iteration is shown. The optimization was performed with the continuous and

the discrete adjoint approach. Additionally, a discrete optimization was performed starting with a

control obtained by the continuous optimization. Both cases successfully reduce the cost functional.

optimization was also based on the solution obtained during the continuous optimization
after 30 iterations. This optimization run is shown in figure 7.8 and it becomes apparent
that there is only a negligible difference between the continued discrete and the continu-
ous optimization. This behavior supports the conjecture that the differences observed in
figure 7.8 are due to the high dimensionality of the control space and thus, the complex
appearance of the cost functional surface. This might lead to a different optimization path
by chance which doesn’t, however, demonstrate a significant advantage of the continuous
adjoint approach. Overall it can be summarized that the performance of the optimization
is comparable for the continuous and discrete approach in terms of noise reduction and
required number of flow solutions. This was to be expected, as the continuous gradient is
quite accurate for case ELES3D and short control horizons.

To further illustrate the noise reduction the cost functional is plotted over time for the un-
controlled and controlled cases in figure 7.9(a). Again it becomes clear that the continuous
and discrete optimizations perform comparably well. Finally, figure 7.9(b) shows the SPL
in decibels plotted over the line Ω defined to be the measure for noise reduction. In this
work the SPL is defined as

SPL = 10 log10

((
p pref
pmin

)2
)
, (7.1)

where p is the temporally averaged non-dimensional pressure, pmin = 20µPa and pref is
given in table 5.1. The reduction ranges from 1 dB to 3 dB depending on the time and
position. Not surprisingly, the reduction is highest in the main radiation direction of the
jet, where it is loudest.
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direction for continuous and discrete optimization and uncontrolled case for case ELES3D. A noise

reduction about 1 dB to 3 dB can be observed.

7.3. Long Control Horizons

It was shown in the literature [22, 5] that the choice of the control interval length is of
importance for an efficient optimization. This observation is also supported investigating
figure 7.7, as an initial interval with t < 80 couldn’t be successfully controlled even with the
knowledge of the exact discrete adjoint using a long control interval of T = 170. Note, that
this interval could be controlled successfully when optimizing over this shorter interval,
only (this was actually done for the case in figure 7.5).

To investigate the problems emerging from long control horizons in more detail figures
7.10(a) and 7.10(b) show the ”energy“ (in a L2 − norm sense) of the gradient obtained
with control set to zero. It can be observed that the norm of the gradient decreases strongly
with time. This strong decrease is a hint that the problem is very ill conditioned and is
thus a source for optimization inefficiency. Furthermore, as the control is basically a linear
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Figure 7.10: (a) The quantity
(∫

g2Ω̃
)1/2

as a measure for the gradient ”strength“ over time, where

g is the gradient and Ω̃ is the whole computational domain. (b) Same as (a) but on a logarithmic

scale. (c) The quantity
∫
p′2dΩ as a measure for the linear response of the cost functional to a control

perturbation. (d) Same as (c) but on a logarithmic scale. It can be seen that only times t & 100 are

influenced noticeably by the control.

superposition of gradients obtained during the optimization iterations the control has high
amplitudes at the beginning of the control interval only and is negligible for the rest of the
simulation. Consequently, a significant part of the control interval is practically unused.
Another problem with long control horizons becomes apparent by investigating figures
7.10(c) and 7.10(d), which show the quantity

∫
p′2dΩ as a measure of the strength of the
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linear response of the cost functional due to a control perturbation. The gradient computed

in figure 7.10(a) was chosen as control perturbation (g′ =
(

dℑ
dg

)T
) and p′ constitutes

the linear response of the pressure to this perturbation. It can be observed that the
cost functionals linear response increases strongly with time. As the gradient used for
optimization contains no reliable information for the non-linear regime, the optimization
scheme will in most cases select a step size where the linear terms cannot be neglected
compared to higher order terms. Thus, the linear response of the cost functional gives an
estimate of the change of the cost functional over one optimization iteration. This implies
that due to the strong increase of the amplitude of the sensitivities only a short interval
at the end of the simulation is actually controlled. It should be noted that the strong
amplitude growth is not related to instabilities of the numerics but to instabilities inherent
to the linearized Navier-Stokes equations.

The finding that long control intervals are difficult to control even with knowledge of the
exact gradient suggests that decomposing the optimization into shorter subintervals might
be more efficient. Such an ansatz is realized with the receding horizon algorithm [59, 22]
illustrated in figure 7.11. The idea is to minimize the cost functional on a shorter subin-
terval Tp < T . With the control obtained using this minimization the flow is advanced
forward some time Ta ≤ Tp. This procedure is repeated n times until the desired interval
length n Ta ≥ T is reached. A disadvantage of the receding horizon ist that the overall
optimization scheme becomes suboptimal, since the optimization is not carried out over
the whole control interval. Furthermore, the computational efficiency of the optimization
decreases compared to an optimization over the whole control horizon due to the overlap-
ping sub control intervals. On the other hand, this disadvantage might be compensated if
the iterative optimization is significantly more efficient on shorter intervals.
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Such a receding horizon optimization was performed over 8 subintervals with lengths Tp =
79 and Ta = 30.5, resulting in an overall control length of T = 244. Details of this
simulation can also be found in [59]. The cost functional for this case is plotted over time
in figure 7.12. Although the less accurate continuous adjoint was used for this optimization
the cost function is reduced successfully. It can be seen that, except for a noise peak at
t ≈ 625, the noise peaks are reduced over the whole control interval.

7.4. Influence of Control Space Dimension

Cases DNS2D, ELES3D, LES3D and DNS3D were optimized using the LBFGS-Wolfe09
scheme with control interval length of T = 70. The cost function reduction relative to
the value without control is compared for these cases in figure 7.13. It becomes obvious
that the efficiency of the optimization decreases with increasing resolution for the three
dimensional simulations. This is reasonable as the range of scales involved in the flow
solution increase with resolution. These smaller scales might reduce the controllability of
the numerical simulation. Another explanation for the drop in efficiency with increasing
resolution is based on the increased control space dimension.

The volume of the controlled area was kept fixed, such that the different cases are phys-
ically comparable. This implies an increasing control space dimension with increasing
resolution. Due to the CFL criterion the timestep decreases with increasing resolution and
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consequently the number of RK iterations increases. An interpolation point for the control
was set every second RK iteration for cases DNS2D, ELES3D and LES3D and every third
RK iteration for case DNS3D. Thus, the number of interpolation points in time increases
with resolution leading to an increased control space dimension, too. A decrease of the
optimization efficiency with decreasing control space dimension also becomes apparent in
figure 7.1. For example it can be observed that a simultaneous optimization of stream-
and shearwise momentum does perform worse than optimizing only one component of the
momentum alone. Apparently, in this case the decreased efficiency due to the control space
decrease outweigh the advantage of the increased control possibilites when controlling both
momentum components.

A fast cost function reduction of the two dimensional optimization can be observed in figure
7.13 compared to the three dimensional cases. This can be explained with a reasoning
similar to the one above comparing the three dimensional cases. First, two dimensional
turbulence does not reveal the same complexity as three dimensional turbulence. Secondly,
the control space dimension is reduced in the two dimensional simulation, due to the
absence of a third spatial direction.

The number of control variables can be reduced by choosing an independent control pa-
rameter at only every nth grid point. The missing control function values in between are
obtained using interpolation. This kind of control will be referred to as gapαβγFδ, where
α, β and γ gives the number of grid points between the sampling points for the control
in the three spatial directions and δ means that control values are given every δth RK
iteration. For example gap111F1 means that sampling control points are given at every
grid point in the controlled region and at every RK iteration. The interpolation in the
spatial directions is achieved using a Catmull-Rom spline [60]. Controlling only every nth

grid point directly means roughly that only wave lengths below an nth of the Nyquist wave



98 Chapter 7. Noise Optimization

0

0.5

1

1.5

2

0 0.2 0.4 0.6 0.8 1

gap555 gap333 gap222

R
e(
L̃
a
(k
))

,
I
m
(L̃

a
(k
))

∆x k/π

filter
derivation

Figure 7.14: Real part of the filter transfer function and imaginary part of the derivative transfer

function according to equation (4.11) for the coefficients used in this work. Note, that the other parts

of the transfer functions are zero. The horizontal bars give an estimate of the wave numbers which

can be influenced directly by a control with a corresponding gap.

lengths can be controlled directly. Consequently, by choosing the gap size between control
supporting points there is a trade off between controllability and the reduction in control
space dimension. It should be noted, that very high wave numbers are not captured by
the FD derivative operators or cut off using filtering. Thus, wave lengths near the Nyquist
frequency can not be efficiently controlled anyway, which reduces the frequency band ef-
fectively controllable by scheme gap111 below the Nyquist frequency. This situation is
illustrated in figure 7.14 by plotting the transfer functions of the first derivative and the
10th order filter according to equation (4.11).

Figure 7.15 shows the cost functional over LBFGS iterations for different gaps for cases
ELES3D and DNS3D using a control interval length of T = 70 D/Uj. One should have
in mind that for case DNS3D due to the computational cost only a moderate number of
optimization iterations with only one initial condition were performed. Thus, the specific
behavior observed in figure 7.15(b) should be interpreted with care. However, it can be
clearly observed that the efficiency of the optimization could be increased successfully by
decreasing the control space dimension for both cases. It can be observed in figure 7.15(b)
that cases gap333F3 and gap555F8 perform comparably well, whereas the reduction is
lower for case gap555F4. This indicates that there isn’t a monotonic relation between
optimization efficiency increase and control space reduction.
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Figure 7.15: Optimizations using the LBFGS-Wolfe09 scheme for cases (a) ELES3D and (b) DNS3D.

Different gaps between interpolation points in spatial and temporal directions have been used. Case

gap111F2 in (a) and gap111F3 are also shown in figure 7.13. The efficiency of the optimization is

increased by a reduction of the number of control variables.
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8. Conclusion

A high order finite difference code was developed to solve the compressible unsteady Navier-
Stokes equations. The code was used to compute the flow field and the farfield pressure
fluctuations of two and three dimensional plane jets with a Reynolds number of 2000 based
on inflow velocity and slot width and a Mach number of 0.9. For the three dimensional
case three different grids were used in order to investigate the sensitivity of several results
with the resolution. Near and farfield statistics were compared to the literature to validate
the numerical setup and good agreement could be found, at least for the better resolved
cases. In a next step the code was extended to be able to solve the adjoint equations of the
Navier-Stokes equations, and its correct implementation could be varified by comparing the
response of the adjoint equations due to some control perturbations with results from the
sensitivity equations. The discrete and a continuous formulation of the adjoint equations
were implemented to be able to directly compare both approaches.

As the discrete adjoint constitutes the exact adjoint system of the discretized system it
was used as a reference case to test the validity of several adjoint formulations. The
saving frequency of the flow fields, used for the reconstruction of the primal flow variables
during the adjoint simulation, was varied to investigate the accuracy of the continuous
adjoint in dependence of this parameter. A strong dependence of the gradient accuracy
on the saving frequency could be observed. Further investigations have been denoted to
the boundary treatment of the continuous adjoint. Accurate results could not be obtained
based on sponging as a BC for the adjoint equations alone. The use of appropriate non-
reflective adjoint boundary conditions proofed to be necessary, even for cases using a strong
sponge at the boundaries. Nevertheless, an increase in accuracy of the continuous adjoint
solution could be observed for cases using a strong sponge at the boundaries. However, it
appeared to be important to apply the sponge regions consistently in the adjoint and flow
solution. To avoid the computation of the transposed linearized Navier-Stokes equations,
present in the discrete adjoint formulation, this term was substituted with its continuous
counterpart. However, no substantial advantage of this mixed approach could be observed
in comparison to the fully continuous adjoint approach. In general the continuous adjoint
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approach proved to be able to give accurate gradient information. In another test the
discrete adjoint formulation was used. However, the recomputation of the flow fields,
usually necessitating for adjoint systems of unsteady non-linear systems, was skipped and
instead the flow fields were reconstructed using frequent saving and interpolation. Accurate
adjoint solutions could be obtained using this approach, provided that the flow field was
saved often enough. Especially, using this inexact flow field reconstruction the discrete
adjoint formulation was still more accurate than the continuous adjoint. A comparison for
the different resolutions revealed that the case with a DNS-like resolution was significantly
more accurate than the LES cases.

The two and three dimensional plane jets were used in an optimization framework, aiming
for a reduction of the noise emitted by the jet. A three dimensional LES was used to
validate the efficiency of different gradient and Hessian based optimization schemes. No
convergence to a local minimum could be observed for the optimizations performed in this
work. Thus, the cost function reduction served as performance index for the optimization
schemes. For conjugate gradient based optimizations an accurate line search proofed to
be necessary. For a low storage variant of the BFGS algorithm, on the other hand, it
was more efficient to perform a more inaccurate line search, thus increasing the number
of optimization iterations per computational time. In both cases a line search based on
quadratic/cubic interpolation trying to fulfill the strong Wolfe conditions was more efficient
than a bisection-like Brent line search. Although both optimization schemes succeeded in
reducing the farfield noise, the LBFGS showed to be slightly more efficient compared to
the conjugate gradient scheme. Different optimization schemes which try to approximate
the Newton direction with information about a Hessian vector product were used in a
line search and trust region based framework. It turned out that Hessian vector product
computation performed to improve the search direction is computationally too expensive
and the efficiency of the Hessian based optimization were inferior to the gradient based
CG and BFGS schemes.

The continuous and discrete adjoint were used for noise optimization in two and three
dimensional setups to test the importance of an accurate gradient direction for optimiza-
tion. The cost functional could be decreased successfully for a two dimensional jet and a
short control interval. Nevertheless, the discrete optimization outperformed the continu-
ous optimization due to reasons that could clearly be linked to the gradient inaccuracies.
Next, the control interval length was chosen long enough such that the continuous adjoint
solution deteriorates substantially from the exact solution near the beginning of the flow
simulation. Although a part of the continuous adjoint contained misleading information,
the cost functional could successfully be reduced using the continuous adjoint. However,
the discrete optimization was clearly superior in terms of reliability and efficiency com-
pared to the continuous approach. For the three dimensional LES of a jet the continuous
adjoint showed only minor deviations from the discrete adjoint. Accordingly, both cases
could control the jet with comparable efficiency and, although no local minimum could be
reached, a noise reduction of up to 3 dB could be achieved.
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Increasing the control interval length it could be observed that the optimization failed to
reduce the noise at the beginning of the control interval. This problem could be linked to the
linear instabilities of the Navier-Stokes equations. A long time interval could be controlled
nonetheless using a receding horizon algorithm, which splits the long control intervals into
shorter subintervals. It could be observed that the efficiency of the optimization framework
decreased with increasing resolution for the chosen volume forcing. The efficiency of the
optimization could be increased by introducing distinct supporting points for the control
and interpolating in-between, thus reducing the number of control variables.

8.1. Outlook

Although the adjoint equations of the compressible Navier-Stokes equaions could be solved
and used for noise optimization for large numerical systems, the research in this field is far
from being completed. In this section possible research directions are mentioned, which
might result from the findings in this work.

Although the computational cost of determining a gradient is independent of the number
of control variables using the adjoint method, the performance of the optimization strongly
depends on the control space dimension. The observation that the optimization efficiency
could be increased by not controlling every grid point directly indicates that multigrid
methods in the control space might be able to increase the efficiency of the optimization in
cases where the control space dimension increases with resolution. It was demonstrated that
the optimization efficiency decreased with increasing resolution. One important reason for
this behavior was the increasing control space dimension of the volume forcing. However,
an additional explanation might be that with increasing resolution a broader spectrum of
scales participate in the flow solution and have to be controlled, too. More investigations
seem necessary to clarify which role smaller scales, not resolved by coarser grids, play in
the control and optimization processes. This question might become even more important
with increasing Reynolds numbers in combination with LES modeling.

In this work second order adjoint optimization showed to be less efficient than pure gradient
based optimization schemes. This might, however, not be true for other flow configurations
or other control types. Because of this, it might be worth investigating the efficiency of
different optimization schemes for a broader range of flows.

Severe problems were observed for the optimization of long temporal control intervals.
These problems also occurred when using the discrete adjoint, which still delivered accurate
gradients for long control intervals. Long control horizons could be successfully controlled
nonetheless using a receding horizon algorithm. However, this algorithm is strictly speaking
a suboptimal approach and involves additional computational cost due to the overlapping
subintervals. Because of this alternative approaches to deal with long control horizons
should be investigated. One such approach could be a proper preconditioning technique.
A preconditioning variant was tested in section 7.1.2 with moderate success, though it
should be mentioned that this preconditioning was not tested for long control intervals.
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Another possibility might be to manipulate the cost functional, e.g. introducing a time
dependent weighting function in the integral of the cost functional. However, further
investigation seems necessary to identify suitable preconditioning methods. It could be
shown that the problems with long control horizons are connected to the instabilities of the
linearized Navier-Stokes equations and the consequential fast grow of the amplitudes of the
sensitivity in time. The implications of this finding for time independent control (e.g. shape
optimization) with instationary turbulent flows might be worth further investigations. The
fast amplitude growth of the adjoint might give the optimizer a hard time to identify a
solution optimal for the complete control interval. This might be of special importance as
an extension of the receding horizon algorithm to time independent control isn’t straight
forward.

Another research aim should be to make the optimization results applicable to experiments.
One possibility to do so would be to restrict the control parameters to experimentally ac-
cessible quantities. For example one might just try to identify an optimal forcing frequency
instead of fully time dependent control. Another strategy might be to identify the physical
principles of a determined optimal control before trying to mimic the control mechanism
instead of applying the numerically optimized control directly. Furthermore, the realism of
the computations could be increased by including the nozzle geometry in the simulation.
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[55] OP Le Mâıtre and L Mathelin. Equation-free model reduction for complex dynamical
systems. International Journal for Numerical Methods in Fluids, 63(2):163–184, 2010.

[56] S. K. Lele. Compact Finite Differences Schemes with Spectral-like Resolution. J.
Comput. Phys., 103:16–42, 1992.

[57] Guido Lodato, Pascale Domingo, and Luc Vervisch. Three-dimensional boundary
conditions for direct and large-eddy simulation of compressible viscous flows. Journal
of Computational Physics, 227(10):5105 – 5143, 2008.

[58] Ali Mani. Analysis and optimization of numerical sponge layers as a nonreflective
boundary treatment. Journal of Computational Physics, 231(2):704 – 716, 2012.

[59] Daniel Marinc and Holger Foysi. Investigation of a continuous adjoint-based opti-
mization procedure for aeroacoustic control of plane jets. International Journal of
Heat and Fluid Flow, 38(0):200 – 212, 2012.

[60] Stephen R Marschner and Richard J Lobb. An evaluation of reconstruction filters
for volume rendering. In Proceedings of the conference on Visualization’94, pages
100–107. IEEE Computer Society Press, 1994.

[61] A. L. Marsden, M. Wang, J. E. Jr. Dennis, and P. Moin. Trailing-edge noise reduction
using derivative-free optimization and large-eddy simulation. J. Fluid Mech., 572:13–
36, 2007.

[62] M.P. Martin, U. Piomelli, and G.V. Candler. Subgrid-scale models for compressible
large-eddy simulations. Theoret. Comp. Fluid Dyn., 13:361–376, 2000.

[63] L Mathelin and OP Le Maıtre. Robust control of uncertain cylinder wake flows based
on robust reduced order models. Computers & Fluids, 38(6):1168–1182, 2009.

[64] Lionel Mathelin, Luc Pastur, and Olivier Le Mâıtre. A compressed-sensing approach
for closed-loop optimal control of nonlinear systems. Theoretical and Computational
Fluid Dynamics, 26(1-4):319–337, 2012.



110 Bibliography

[65] J. Mathew, R. Lechner, H. Foysi, J. Sesterhenn, and R. Friedrich. An explicit filtering
method for large eddy simulation of compressible flows. Phys. of Fluids, 15(8):2279–
2289, 2003.

[66] J.J. More and D.J. Thuente. Line Search Algorithms with Guaranteed Sufficient
Decrease. ACM Transactions on Mathematical Software, 20(3):286–307, 1994.

[67] Habib N Najm. Uncertainty quantification and polynomial chaos techniques in com-
putational fluid dynamics. Annual Review of Fluid Mechanics, 41:35–52, 2009.

[68] Eric J. Nielsen, Boris Diskin, and Nail K. Yamaleev. Discrete adjoint-based design
optimization of unsteady turbulent flows on dynamic unstructured grids. AIAA
Journal, 48(6):1195–1206, 2010.

[69] Eric J. Nielsen and William L. Kleb. Efficient construction of discrete adjoint oper-
ators on unstructured grids using complex variables. AIAA Journal, 44(4):827–836,
2006.

[70] J. Nocedal and S. Wright. Numerical Optimization. Springer, 2006.

[71] Jacques E.V. Peter and Richard P. Dwight. Numerical sensitivity analysis for aero-
dynamic optimization: A survey of approaches. Computers & Fluids, 39(3):373 –
391, 2010.

[72] T.J. Poinsot and S.K. Lele. Characteristic boundary conditions. J. Comput. Phys.,
101:104, 1992.

[73] S. B. Pope. Turbulent Flows. Cambridge University Press, 2000.

[74] Press, W.H. and Flannery, B.P. and Teukolsky, S.A. and Vetterling, W.T. Numerical
Recipes. Cambridge University Press, 1986.

[75] Jan Riehme, Andrea Walther, Jörg Stiller, and Uwe Naumann. Adjoints for time-
dependent optimal control. Springer, 2008.

[76] Clarence W Rowley, Tim Colonius, and Richard M Murray. Model reduction for com-
pressible flows using pod and galerkin projection. Physica D: Nonlinear Phenomena,
189(1):115–129, 2004.

[77] Markus P Rumpfkeil and Dimitri J Mavriplis. Efficient hessian calculations using
automatic differentiation and the adjoint method with applications. AIAA journal,
48(10):2406–2417, 2010.

[78] Markus P Rumpfkeil and David W Zingg. A hybrid algorithm for far-field noise
minimization. Computers & Fluids, 39(9):1516–1528, 2010.



Bibliography 111

[79] M. Samimy, J.-H. Kim, J. Kastner, I. Adamovich, and Y. Utkin. Active control of
high-speed and high-reynolds-number jets using plasma actuators. Journal of Fluid
Mechanics, 578:305–330, 4 2007.

[80] Neil D Sandham, CL Morfey, and ZW Hu. Nonlinear mechanisms of sound generation
in a perturbed parallel jet flow. Journal of Fluid Mechanics, 565(1), 2006.

[81] Peter J Schmid. Dynamic mode decomposition of numerical and experimental data.
Journal of Fluid Mechanics, 656(1):5–28, 2010.

[82] Jan Schulze. Adjoint based jet-noise minimization. Dissertation, Technische Univer-
sität Berlin, 2012.

[83] Samuel Sinayoko, Anurag Agarwal, and Z Hu. Flow decomposition and aerodynamic
sound generation. Journal of Fluid Mechanics, 668:335–350, 2011.

[84] B Spagnoli and Christophe Airiau. Adjoint analysis for noise control in a two-
dimensional compressible mixing layer. Computers & Fluids, 37(4):475–486, 2008.

[85] DN Srinath and Sanjay Mittal. An adjoint method for shape optimization in unsteady
viscous flows. Journal of Computational Physics, 229(6):1994–2008, 2010.

[86] D Stanescu and WG Habashi. 2 n-storage low dissipation and dispersion runge-kutta
schemes for computational acoustics. Journal of Computational Physics, 143(2):674–
681, 1998.

[87] S.A. Stanley, S. Sarkar, and J.P. Mellado. A study of the flowfield evolution and
mixing in a planar turbulent jet using direct numerical simulation. J. Fluid Mech.,
450:377–407, 2002.

[88] Scott Stanley and Sutanu Sarkar. Simulations of Spatially Developing Two-
Dimensional Shear Layers and Jets. Theoretical and Comp. Fluid Dynamics, 9:121–
147, 1997.

[89] S. Stolz, N. A. Adams, and L. Kleiser. An approximate deconvolution model ap-
plied for large-eddy simulation with application to incompressible wall-bounded flows.
Phys. Fluids, 13:997–1015, 2001.

[90] S. Stolz and N.A. Adams. An approximate deconvolution procedure for large-eddy
simulation. Phys. Fluids, 11:1699–1701, 1999.

[91] B. Strand. Summation by parts for finite difference approximations for d/dx. J.
Comput. Phys., 110:47–67, 1994.

[92] Victoria Suponitsky, Neil D Sandham, and Christopher L Morfey. Linear and non-
linear mechanisms of sound radiation by instability waves in subsonic jets. Journal
of Fluid Mechanics, 658:509–538, 2010.



112 Bibliography

[93] Eka Suwartadi, Stein Krogstad, and Bjarne Foss. Second-order adjoint-based control
for multiphase flow in subsurface oil reservoirs. In Decision and Control (CDC), 2010
49th IEEE Conference on, pages 1866–1871. IEEE, 2010.

[94] C. K. W. Tam and J. C. Webb. Dispersion-relation-preserving finite difference
schemes for computational acoustics. J. Comput. Phys., 107:262–281, 1993.

[95] Christopher KW Tam, K Viswanathan, KK Ahuja, and J Panda. The sources of jet
noise: experimental evidence. Journal of Fluid Mechanics, 615(1):253–292, 2008.

[96] FO Thomas and HC Chu. An experimental investigation of the transition of a
planar jet: Subharmonic suppression and upstream feedback. Physics of Fluids A:
Fluid Dynamics, 1:1566, 1989.

[97] FO Thomas and KMK Prakash. An experimental investigation of the natural tran-
sition of an untuned planar jet. Physics of Fluids A: Fluid Dynamics, 3:90, 1991.

[98] K.W. Thompson. Time Dependent Boundary Conditions for Hyperbolic Systems. J.
of Comp. Phys., 68:1–24, 1986.

[99] Miguel R Visbal and Datta V Gaitonde. On the use of higher-order finite-difference
schemes on curvilinear and deforming meshes. Journal of Computational Physics,
181(1):155–185, 2002.

[100] B. Vreman, B. Guerts, and H. Kuerten. Large-eddy simulation of the turbulent
mixing layer. J. Fluid Mech., 339:357–390, 1997.

[101] Andrea Walther, Andreas Griewank, and Olaf Vogel. Adol-c: Automatic differenti-
ation using operator overloading in c++. PAMM, 2(1):41–44, 2003.

[102] Zhi Wang, K Droegemeier, and LWhite. The adjoint newton algorithm for large-scale
unconstrained optimization in meteorology applications. Computational Optimiza-
tion and Applications, 10(3):283–320, 1998.

[103] M. Wei and J. B. Freund. A noise-controlled free shear flow. Journal of Fluid
Mechanics, 546:123–152, 2006.

[104] Mingjun Wei. Jet Noise Control by Adjoint-Based Optimization. Dissertation, Uni-
versity of Illinois, 2004.

[105] David C. Wilcox. Turbulence Modeling for CFD. DCW Industries, Inc., La Canada,
California, 1994.

[106] C.C.L. Yuan, M. Krstic, and Bewley T.R. Active control of jet mixing. IEE Pro-
ceedings, 151:763–772, 2004.



Bibliography 113

[107] A.S. Zymaris, D.I. Papadimitriou, K.C. Giannakoglou, and C. Othmer. Adjoint wall
functions: A new concept for use in aerodynamic shape optimization. Journal of
Computational Physics, 229(13):5228 – 5245, 2010.


	Title
	Abstract
	Zusammenfassung
	Contents
	Nomenclature
	Abbreviations
	1. Introduction
	1.1. Motivation
	1.2. Review of Previous Work
	1.2. Review of Previous Work

	2. Unconstrained Optimization
	2.1. Line Search
	2.2. Gradient Based Optimization
	2.3. Hessian Based Optimization

	3. Constraint Optimization with Ad-joint Method
	3.1. Gradient through Adjoint Method
	3.2. Hessian through Adjoint Method
	3.3. Continuous and Discrete Adjoint

	4. Numerics
	4.1. Spatial Discretization
	4.2. Temporal Discretization
	4.3. Implementation of Discrete Adjoint
	4.4. Automatic Calculation of Adjoint
	4.5. Sensitivities through Operator Overloading
	4.6. Governing Equations
	4.7. Boundary Conditions

	5. Physical and Numerical Setup
	5.1. Optimization Setup
	5.2. Computational Grids
	5.3. Boundary Treatment
	5.4. Jet Statistics


	6. Gradient Accuracy
	6.1. Validation of Discrete Adjoint
	6.2. Appearance of Adjoint Solution
	6.3. Continuous Adjoint
	6.4. Boundary Conditions

	6.5. Discrete Adjoint

	7. Noise Optimization
	7.1. Comparison of Optimization Schemes
	7.2. Optimization Using Exact and Inexact Adjoint
	7.3. Long Control Horizons
	7.4. Influence of Control Space Dimension

	8. Conclusion
	8.1. Outlook

	Bibliography

