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“mémoire scientifique” from 1997 due to incompatibilities in the leg-

islation regarding private vs. public schools. Thus, instead of writing

yet another internationally irrelevant scientific work, I opted for over-

riding this with a PhD-thesis. It was a personal challenge to complete

this academic achievement in parallel to my full-time teaching job as

well as the needs of my young family.

Although born from external pressure originally, this work gives me

enormous personal satisfaction as I was able to expand my private

research into an academic setting.

I would like to express my gratitude towards my supervisor Prof.

Dr. Thomas Mannel for all his help and especially for giving me the

opportunity to work on this self-chosen subject. I also wish to thank

Prof. Dr. Uta Freiberg for her advice, hospitality and invaluable

discussions. Furthermore, I thank Peter Arzt and his family for their

welcoming attitude and a lot of discussions and support.

Last but certainly not least, I am grateful to my family, Malou, Morag

and Rhys for their constant support throughout these times.



Abstract

In this thesis, we offer an investigation of the vibrational properties

of discrete one-dimensional systems with an underlying fractal struc-

ture. Thus, the primary objects of scrutiny in this work are two types

of fractal objects: the first class being quite simple structures with a

fractal boundary, the second class having an internal fractal structure

but very simple boundaries. By introducing a matrix representation

of the related Laplacians, we prove the efficiency of using techniques

originally taken from random matrix theory in the area of fractal ge-

ometry. Thereby, a unifying framework for the study of these systems

has been developed, capable of being extended to higher dimensions.

In dieser Arbeit wird eine Untersuchung der Schwingungseigenschaften

von diskreten eindimensionalen Systemen mit einer zugrunde liegen-

den fraktalen Struktur präsentiert. Hauptsächlich werden in dieser

Arbeit zwei Arten von fraktalen Objekten untersucht: die erste Kat-

egorie zeigt sich als recht einfache Struktur mit einer fraktalen Be-

grenzung, die Zweite mit einer inneren fraktalen Struktur aber ein-

facher Begrenzung. Durch die Einführung einer Matrixdarstellung der

zugehörigen Laplace-Operatoren zeigen wir die Effizienz der Verwen-

dung von aus der Zufallsmatrizentheorie übernommenen Techniken

im Bereich der fraktalen Geometrie. Auf diese Weise wird ein verein-

heitlichender Rahmen für die Untersuchung dieser Systeme geschaffen,

welcher auch auf höherdimensionale Anwendungen erweitert werden

kann.
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Overview

Fractal forms are often found in nature. Typical examples are the fractal struc-

tures found in green cauliflower, fern leaves, blood vessels, crystal growth pro-

cesses, chemical oscillators, river systems and coastlines. As a consequence, it

is for example impossible to exactly determine the length of the coastline: the

more accurately the subtleties of the coastal course are measured, the greater is

the length obtained. In the case of a mathematical fractal , such as the Koch

curve, it would be unlimited. Although many natural systems exhibit such fractal

structure over a finite range of scales, their fractal features disappear at the latest

when an atomic scale is reached. It is in this context that we will try to explore

the consequence of the discreteness of natural structures on their mathematical

description. However, we will limit ourselves here to the most accessible case:

fractals in a one-dimensional space.

Thus, the primary objects of scrutiny in this work are two types of fractal

chains: the first one being the discrete analogue of fractal strings - bounded

subsets of R with a fractal set as boundary; the second one related to measures

on bounded subsets of the real line. It will be shown how important information

about these fractal chains may be discovered by combining methods from various

areas of physics and mathematics.

This thesis is organised as follows. After an introduction to the history of

investigations in the asymptotics of spectra, we review the relevant aspects of

the theory of fractal strings in the second chapter. In chapter 3, we introduce

the concept of fractal chains as discretised counterpart of fractal strings, together

with their underlying physical model. For these it is possible to give a matrix

formulation for the Laplacian in the wave equation −∆f = λf , so that the power

of methods and techniques from random matrix theory in the study of fractal

viii



strings/chains can be demonstrated. Several examples are shown in more detail

and we are able to state a new criterion for the Minkowski-measurability of fractal

strings, giving a more precise meaning to a statement by M.L. Lapidus and C.

Pomerance concerning the multiplicities of lengths of a string:

“Intuitively (...) the fact that N(λ) does not admit an asymptotic second
term is due to the symmetry of the boundary Γ (here, the self-similarity of the
Cantor set). Indeed, this symmetry gives rise to high multiplicities in the eigen-
values (equivalently, in the interval lengths (lj)

∞
j=1) and thus causes the function

λ−D/2((N(λ)− φ(λ)) to oscillate.” (see [78], page 67)

Chapter 4 acts as a link to the second part of this work, connecting the two types

of fractal chains under scrutiny here by physical considerations. The following

chapter is devoted to fractal chains arising from a measure theoretic Laplacian.

Again we first provide the necessary background before using random matrix the-

oretic means for their investigation. In this framework we first present numerical

evidence showing the validity of our approach. Subsequently, we show how the

characteristic polynomials of the approximations to the matrix Laplacian may be

used complementary to other approaches (such as those in [5], for example) for

finding the eigenvalues respectively their asymptotics. Although the results pre-

sented in this chapter are still at an early stage of development, an in-depth study

unfortunately being too complex to fit within the scope of this work, they make

clear that the tools exposed here open up new lines of thought, worth further

attention. In the final chapter, we provide an exposition of our results together

with an outlook on further research to be accomplished through the techniques

shown and developed in this thesis. Finally, two short appendices are attached,

which give some supplementary material that might be useful for future explo-

ration.
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Chapter 1

Introduction

The knowledge of the asymptotic distribution of eigenvalues of the Laplacian is

often a prerequisite for model calculations of physical properties in a variety of

classical as well as quantum systems. The origins of this problem can be traced

back to the Pythagoreans [20, 93] recognising the relation between harmonious

vibrations of elastic strings and their relative length - the first natural law ever

to be formulated in mathematical terms.

Figure 1.1: Excerpt from a renaissance manuscript of Porphyry’s ”Eis ta har-
monika Ptolemaiou hypomnēma” [93]

The subject came back into focus during the renaissance with the works

of Vincentio Galilei (father of Galileo) [47] and especially Marin Mersenne’s
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”L’harmonie universelle” [87]. In this work he was probably the first to pub-

lish what later became known as Mersenne’s laws for vibrating strings; their

frequency is:

• inversely proportional to their length (also known as Pythagoras’ law, see

above),

• proportional to the square root of their tension,

• inversely proportional to the square root of their linear mass density.

In 1673, Christian Huygens [56] contributed the concept of forced vibra-

tions from his studies of pendulum oscillations driven by external forces in his

”Horologium Oscillatorium”.

Several years later, Joseph Sauveur [100] was the first to use beats to determine

frequency differences and was thereby able to calculate the absolute frequencies.

Since he correctly interpreted beats, it appears that he may have been the first

to have an understanding of superposition. Furthermore, he explained the phe-

nomenon of harmonics by arguing that a string can vibrate at additional higher

frequencies as it divides itself up into the appropriate number of equal shorter

lengths separated by stationary points, which he called noeuds (nodes). Appar-

ently he did not know of the earlier experimental works on the subject by Wallis

[115] and Roberts [99]. Later, in work presented in 1713 [101], he derived the

fundamental frequency of a string from a theoretical perspective. He treated the

string, stretched horizontally and taking the form of a catenary due to the gravi-

tational field, as a compound pendulum and found the frequency of the swinging

motion, supposed to have small amplitude.

In the same year, the first description of vibrations of elastic strings in terms

of differential equations was given by Brook Taylor [112]. Ten years later, J.

Bernoulli [12] reconsidered the question using the - by then familiar - Leibnizian

notation and derived Mersenne’s laws through mathematical analysis. Bernoulli’s

treatment of the elements of the string as simple pendulums undergoing small vi-

brations of identical period is fundamental to his solution, an idea similar to

Sauveur’s approach and underlying probably all investigations of oscillatory phe-

nomena during this period. Use of this condition tended to be combined with
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certain restrictions on the motion. Thus both Taylor and Bernoulli assumed in

their works that the elements of the string arrive simultaneously from one side

at the equilibrium configuration. As a result, they only determined the first fun-

damental mode. However, this inherently geometric approach appears to have

discouraged the investigation of higher modes, thereby concealing Sauveur’s in-

sight and acting as an obstacle to the discovery of the principle of superposition

[18].

In the 1740’s and 1750’s, Euler [24–27, 29], d’Alembert [2–4] and D. Bernoulli

[8, 9] followed the example of J. Bernoulli regarding the equations as the limit of

those for a massless ideally flexible thread (chain) with a finite number of beads

as the number of beads approaches infinity while their total mass remains fixed.

The motion of this system of beads being described by a finite system of or-

dinary differential equations, d’Alembert proposed his method of integrating sys-

tems of linear differential equations with constant coefficients. Also starting with

this problem, Daniel Bernoulli stated his remarkable hypothesis that the solution

of the free oscillations of a string can be represented in the form of a trigonomet-

ric series, which lead to a debate raging throughout the following decades on the

nature of an “arbitrary” function and its expansion in trigonometric functions,

initiating a fundamental discussion of the foundations of mathematical analysis.

Even though this controversy was partially solved by Lagrange [66, 67] (reprinted

in [68]), it was brought to a conclusion only in the 19th century by Fourier,

Cauchy, Dirichlet and Riemann (for a more complete discussion on this subject,

see for example [64] or [98]).

In this context the meaning and relevance of the boundary conditions is es-

pecially noteworthy. Over the years it became clear that the description of the

relationship between the geometry of a manifold and its spectrum are of utmost

importance. In 1910, Hendrik Lorentz’ 4th Wolfskehl lecture “Alte und neue

Fragen der Physik” - Old and new problems of physics - included the following

passage [84]:

“Zum Schluß soll ein mathematisches Problem Erwähnung finden, das vielle-
icht bei den anwesenden Mathematikern Interesse erwecken wird. Es stammt
aus der Strahlungstheorie von Jeans. In einer vollkommen spiegelnden Hülle
können sich stehende elektromagnetische Schwingungen ausbilden, ähnlich den
Tönen einer Orgelpfeife; wir wollen nur auf die sehr hohen Obertöne das Augen-
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merk richten. Jeans fragt nach der auf ein Frequenzintervall dn fallenden Energie.
Dazu berechnet er zuerst die Anzahl der zwischen den Frequenzen n und n+ dn
liegenden Obertöne und multipliziert die Zahl dann mit der zu jeder Frequenz
gehörigen Energie, die nach einem Satze der statistischen Mechanik für alle Fre-
quenzen gleich ist. (...)

Hierbei entsteht das mathematische Problem, zu beweisen, daß die Anzahl
der genügend hohen Obertöne zwischen n und n+dn unabhängig von der Gestalt
der Hülle und nur ihrem Volumen proportional ist. Für mehrere einfache Formen
der Hülle, wo sich die Rechnung durchführen läßt, wird der Satz in einer Leidener
Dissertation bestätigt werden. Es ist nicht zu zweifeln, daß er allgemein, auch für
mehrfach zusammenhängende Räume, gültig ist. Analoge Sätze werden auch bei
andern schwingenden Gebilden, wie elastischen Membranen und Luftmassen etc.,
bestehen”

“In conclusion there is a mathematical problem which perhaps will arouse
the interest of mathematicians who are present. It originates in the radiation
theory of Jeans. In an enclosure with a perfectly reflecting surface there can form
standing electromagnetic waves analogous to tones of an organ pipe; we shall
confine our attention to very high overtones. Jeans asks for the energy in the
frequency interval dn. To this end he calculates the number of overtones which lie
between the frequencies n and n + dn and multiplies this number by the energy
which belogs to the frequency n, and which according to a theorem statistical
mechanics is the same for all frequencies. (...)

It is here that there arises the mathematical problem to prove that the number
of sufficiently high overtones which lies between n and n + dn is independent of
the shape of the enclosure and is simply proportional to its volume. For many
simple shapes for which calculations can be carried out, this theorem has been
verified in a Leiden dissertation. There is no doubt that it holds in general even
for multiply connected regions. Similar theorems for other vibrating structures
like membranes, air masses, etc. should also hold.” (translation by M. Kac in [61])

The study of the asmptotics of eigenvalues goes back even further than stated

by Lorentz; probably to Friedrich Pockels’ 1891 work “Über die partielle Differen-

tialgleichung ∆u+ k2u = 0 und deren Auftreten in der mathematischen Physik”

[92]. It was more than a decade later that Rayleigh calculated the asymptotic

number of modes in the case of a rectangular parallelepiped [96] and Jeans tack-

led the radiation problem [59]. However it was clearly Lorentz (and in a footnote

Sommerfeld [106]) who drew attention to the problem of the boundary conditions.

In her aforementioned Leiden dissertation [97], Johanna Reudler verified Lorentz’

conjecture for several shapes, but it was Hermann Weyl who published several

papers [116–118] on the subject where he obtained the asymptotically leading

term for the frequency counting function (i.e. the number of eigenvalues not ex-

ceeding a certain value) and proved it to be independent of the shape considered

and proportional to the n-dimensional volume of the domain. Since then a lot
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of progress has been made and in the case of the Dirichlet Laplacian, it is now

known to hold for an arbitrary bounded open set in Rn [88].

The question of whether it is possible to determine even more information

about the shape of the manifold from its spectrum was elegantly rephrased by M.

Kac in his 1966 paper “Can one hear the shape of a drum?” [61] and still remains

an area of active research. Indeed, if the boundary is sufficiently smooth, it has

been shown that the (n− 1)-dimensional volume of the boundary determines the

second term in the expansion of the eigenvalue counting function [58] (translated

in [57] )and [69].

However, if the manifold has a fractal boundary, the second term must be

modified since the (n−1)-dimensional volume of the boundary is then infinite. As

an eigenfunction of the negative Laplacian cannot resolve details of the boundary

significantly smaller than its wavelength, M.V. Berry [13, 14] conjectured from

scaling arguments that this term might depend on the Hausdorff dimension h of

the boundary and be proportional to its h-dimensional Hausdorff-measure.

In the 1980’s and 1990’s, the interest in this topic surged and the effects of

fractal boundaries of a region on the solutions of partial differential equations

became an active topic of discussion again. By means of counter-examples, J.

Brossard and R. Carmona [17] showed that the Minkowski dimension appeared

more suitable than the Hausdorff dimension in the formulation of Berry’s conjec-

ture. Moreover, it became clear that the second term is not necessarily monotonic

but eventually a rather complicated function [35]. Precise remainder estimates for

the asymptotics of the eigenvalue counting function then lead to the reformulation

and a partial resolution of the conjecture in [71, 73].

In two joint papers in 1990 and 1993, M. Lapidus and C. Pomerance [77, 78]

proved this “modified Weyl-Berry conjecture” in the (n = 1)-dimensional case

(note however that the conjecture is false for the case n > 1 [79]). Furthermore

it was shown that it is possible not only to recover the Minkowski dimension

of the boundary from the spectrum, but also - under certain conditions - its

Minkowski measure [32, 72]. Indeed, if the boundary is Minkowski-measurable,

the asymptotic second term of the eigenvalue counting function is monotonic (and

depends in a simple way from the boundary’s Minkowski measure), whereas in

the opposite case its behaviour will be oscillatory.
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In this context an unexpected connection with the Riemann zeta-function

was discovered as well: the converse of the modified Weyl-Berry conjecture is

not true in the case where the boundary’s Minkowski dimension is dM = 1
2

but

it is true everywhere else if and only if the Riemann hypothesis is true [75, 76].

This characterisation of the Riemann hypothesis as an inverse spectral problem

shows interesting relations between fractal and spectral geometry on one hand,

and number theory on the other.

Another important line of research arises through the consideration of intrinsic

structures of the vibrating string. After being challenged by Daniel Bernoulli [10],

it was probably again Leonhard Euler [28] and Daniel Bernoulli himself [11] who

were the first to consider the influence of a varying linear mass density on the

vibrational properties of a string. A little later, Euler even tried to obtain the

solution for a continuously varying mass density by approximating it through a

finite number of composite strings [30]. In the 1830’s, Charles Sturm and Joseph

Liouville laid the foundations of what was to be known as Sturm-Liouville theory.

Their articles [81–83, 110, 111] were the first example of an in-depth study of the

solutions of a second order differential equation and included Sturm’s famous

theorem of oscillation. Later on, in his seminal book “The Theory of Sound” [94]

John William Strutt Lord Rayleigh treated a few, by now classical, examples for

the mass distribution on a string in 1877, but in 1887, he also studied the case of a

string with a periodic mass density variation [95]; an example followed by Horace

Lamb in 1898 [70], who simplified the problem by considering a quantised version.

This line of thought is also present in another groundbreaking book on the subject,

“Oscillation Matrices and Kernels and Small Vibrations of Mechanical Systems”

[48] by Feliks R. Gantmacher and Mark G. Krein, and especially in their elegant

use made of Stieltjes’ memoir on continued fractions [107, 108] in supplement II to

the revised edition in 1950 [49]. In a joint work, Krein and I. Kac [60] then used a

measure geometric approach to investigations of the spectrum of inhomogeneous

vibrating strings in 1974. With the surge of interest in fractals in the 1980’s,

T. Fujita [46] generalised earlier results by T. Uno and I. Hong in 1959 [114]

respectively H. P. McKean, Jr. and D. B. Ray in 1962 [86] on the asymptotics of

measure geometric Laplacians to self-similar measures. These investigations were

continued by a number of researchers in the following years, such as U. Freiberg,
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M. Zähle, J. Löbus, P. Arzt [5, 36, 38, 39, 43, 45], A. Teplyaev, E.J. Bird, S. Ngai

[16] to name but a few, thereby building a sound basis for the whole subject.

However, there has not been an in-depth consideration of discrete respectively

finite systems in both these contexts yet. In this work, we will try to show how

the study of these discrete systems leads to interesting links with random matrix

theory and its tools.
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Chapter 2

Fractal Strings

The necessary background as well as some useful tools for our subsequent studies

will be provided in this chapter. Section 2.1 is devoted to the basic facts and def-

initions, while Section 2.2 will present already known results for fractal strings in

some detail. The material presented in this chapter is compiled and reformulated

with some added details from references [31, 74] and [33], except for where noted

otherwise. Moreover, some of the proofs have been reformulated for our purpose.

2.1 Preliminaries

Definition 2.1 (Fractal strings). A fractal string L is a nonempty bounded open

subset of R. Such a set consists of countably many pairwise disjoint open inter-

vals, whose lengths will be denoted by `1, `2, `3, . . . > 0, and called lengths of the

string.

Following the usual notation in the literature, a fractal string will be denoted

by L = {`j}∞j=1, where (`j)j∈N is a nonincreasing sequence of positive numbers

with limj→∞ `j = 0. For the purpose of this work, the listing order of the lengths

is irrelevant and it is always possible to define the strictly decreasing sequence l1 >

l2 > · · · > 0, where the lj’s are all distinct and counted with multiplicity ωj = ωlj ,

such that L can be written as L = {`j}∞j=1 = {ln : ln has multiplicity ωn}∞n=1. It

should also be noted that
∑∞

j=1 `j =
∑∞

n=1 ωnln is finite and equal to the Lebesque

measure vol1(L) of L.

8



Definition 2.2 (Iterated function systems IFS). An iterated function system

(IFS) is a finite collection of contractions S = {D;S1, S2, . . . , Sm}, with m ≥ 2,

on a closed subset D of Rn. For every IFS S, there exists a unique nonempty

compact subset F of D, called the attractor of the IFS, such that (see [7, 55]):

F =
m⋃
i=1

Si(F ).

Example 2.3 (The Triadic Cantor set). The triadic Cantor set CT is the attractor

of the IFS {D;S1, S2} on R, where:

D = [0, 1], S1 : D → D, S2 : D → D,

with

S1 =
x

3
, and S2 =

x+ 2

3
.

Definition 2.4 (The Triadic Cantor string). Consider the standard triadic (or

ternary) Cantor set CT (Figure 2.1), then the triadic Cantor string CST is the

complement of CT with respect to the unit interval [0, 1] as shown in Figure 2.2.

Thus:

CST = {3b− log2 jc}∞j=2 = {1
3
, 1

9
, 1

9
, 1

27
, 1

27
, 1

27
, 1

27
, . . . },

respectively {lj}∞j=0 = {3−(j+1)}∞j=0, where each lj appears with multiplicity ωlj =

2j.

For the purpose of this work, we will define generalised Cantor strings as

follows:

Definition 2.5 (Generalised Cantor strings). A generalised Cantor string CS

with parameters 1 < a ∈ N and b ∈ R, b > a is the sequence of lengths given by:

CS := {bb− loga jc}∞j=2 = {1
b
, 1
b2
, 1
b2
, . . . },

or alternatively as {lj}∞j=0 = {b−(j+1)}∞j=0, where each of the lj’s appears with

multiplicity ωj = ωb−(j+1) = aj.

Note that the standard triadic Cantor string is obtained by setting a = 2 and

b = 3 in the definition above.

9



Figure 2.1: The triadic Cantor set CT

Figure 2.2: The triadic Cantor string CST

Figure 2.3: A generalised Cantor set C with parameters a = 3 and b = 5

Figure 2.4: A generalised Cantor string CS with parameters a = 3 and b = 5

10



Definition 2.6 (a-string). Given an arbitrary real number a > 0, then the fractal

string defined by

La := {lj}∞j=1, with lj = j−a − (j + 1)−a,

is called a-string.

It can be geometrically realised as the open set Ω ⊂ R obtained by removing

the points {j−a, j ∈ N} from the unit interval, that is:

Ω =
∞⋃
j=1

(
(j + 1)−a, j−a

)
.

Hence, its boundary is the (countable) subset of R given by:

∂Ω = {j−a, j ∈ N} ∪ {0}.

Figure 2.5: The a-set with parameter a = log(3)
log(2)

− 1

Figure 2.6: The a-string with parameter a = log(3)
log(2)

− 1
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Definition 2.7 (Distance and ε-neighbourhood). Let ε > 0 and B ⊂ R. The

distance d(x,B) between a point x ∈ R and the set B is given by:

d(x,B) := inf{| x− a |: a ∈ B},

where | · | denotes the one-dimensional Euclidean norm. The (open) ε-neighbourhood

of B, denoted as Bε, is then the set of points that are within a distance ε of B:

Bε := {x ∈ R : d(x,B) < ε},

In our case of fractal strings L, we are specifically interested in its boundary

respectively the one-dimensional volume, i.e. length, of the set of all points in L

that lie within a distance ε of its boundary ∂L:

V (ε) := vol1{x ∈ L | d(x, ∂L) < ε},

where vol1 designates again the 1-dimensional Lebesgue measure.

Definition 2.8 (Upper and lower Minkowski content). Let r ∈ R+ be given. The

upper and lower r-dimensional Minkowski contents of the boundary of a fractal

string ∂L are respectively given by:

M ∗(r, ∂L) := lim sup
ε→0+

V (ε)

ε1−r ,

and

M∗(r, ∂L) := lim inf
ε→0+

V (ε)

ε1−r ,

It is straightforward to see that if M ∗(r, ∂L) <∞ for some r, then M ∗(s, ∂L) =

0 for each s > r, as:

lim sup
ε→0+

V (ε)

ε1−s = lim sup
ε→0+

V (ε)

ε1−r
ε1−r

ε1−s = lim sup
ε→0+

V (ε)

ε1−r ε
s−r

and lim supε→0+ ε
s−r = 0, if s − r > 0. Furthermore, since ∂L is bounded in R,

then clearly M ∗(r, ∂L) = 0 for r > 1. On the other hand, akin to the above,

if M ∗(r, ∂L) > 0 for some r, then M ∗(s, ∂L) = ∞ for each s < r. Therefore,

12



there exists a unique point in [0, 1] at which the function r →M ∗(r, ∂L) jumps

from the value of ∞ to zero. This unique point is called the upper Minkowski

dimension of ∂L. The lower Minkowski dimension of ∂L is defined analogously

by using the lower r-dimensional Minkowski content.

Definition 2.9 (Minkowski dimension). The upper Minkowski dimension is de-

fined by:

dimM∂L := inf{r ≥ 0 |M ∗(r, ∂L) = 0} = sup{r ≥ 0 |M ∗(r, ∂L) =∞},

and analogously the lower Minkowski dimension by:

dimM∂L := inf{r ≥ 0 |M∗(r, ∂L) = 0} = sup{r ≥ 0 |M∗(r, ∂L) =∞}.

When dimM∂L = dimM∂L, the common value is called the Minkowski dimension

of ∂L, denoted in the following as dM = dimM ∂L, where we omit ∂L for sake of

notational simplicity.

Definition 2.10 (Minkowski content). If the upper and lower dM -dimensional

Minkowski contents of ∂L are equal

M ∗(dM , ∂L) = M∗(dM , ∂L),

then this common value is called Minkowski content M (dM , ∂L) = lim
ε→0+

V (ε)εdM−1,

and ∂L is called Minkowski-measurable.

However it should be noted that M is not a measure, as it fails countable

additivity [65].

Remark 2.11. In the literature on the subject, the Minkowski content and dimen-

sion of the string’s boundary are in general simply referred to as the Minkowski

content and dimension of the string by linguistic imprecision. We will adopt this

common agreement at this stage as well. As an example, we will call a fractal

string Minkowski-measurable iff upper and lower Minkoski content of its boundary

exist and are equal.

Without proof, we will give here an important result on Minkowski-measurability,

first stated by M. L. Lapidus and C. Pomerance as Theorem 2. in [77]:

13



Remark 2.12 (Criterion for Minkowski-measurability). A fractal string L is

Minkowski-measurable iff `j ∼ Lj
− 1
dM

Here the symbol ∼ means asymptotic equality in the sense that aj ∼ bj iff

limj→∞
aj
bj

= 1.

Example 2.13. It is well known that the Minkowski dimension of the triadic

Cantor string CST is dM = log(2)
log(3)

, and as CST = {3b− log2 jc}∞j=2, we are interested

in the limit:

lim
j→∞

3b− log2(j)cj
log(3)
log(2) .

Now, for each j in the interval (2n, 2(n+1)), where n ∈ N∗, we have 3b− log2(j)c =

3−n. Thus 3b− log2(j)cj
log(3)
log(2) is monotonically increasing in the interval and its range

is (1/3, 1), regardless of the value given to n. Furthermore, for every j that is an

integer power of 2, 3b− log2(j)cj
log(3)
log(2) = 1. Therefore, we have:

lim sup
j→∞

3b− log2(j)cj
log(3)
log(2) = 1,

and

lim inf
j→∞

3b− log2(j)cj
log(3)
log(2) =

1

3
,

so that the above limit does not exist and thereby the Cantor string is not Minkowski-

measurable.

Example 2.14. For the a-string, we have:

`j = j−a − (j + 1)−a =

(
1 + 1

j

)a
− 1

(j + 1)a
.

Using the binomial expansion, this may be written as

`j =

(
1 + a1

j
+ a(a−1)

2!

(
1
j

)2

+ a(a−1)(a−2)
3!

(
1
j

)3

+ . . .

)
− 1

(j + 1)a

=
a1
j

(j + 1)a
+

a(a−1)
2!

(
1
j

)2

(j + 1)a
+

a(a−1)(a−2)
3!

(
1
j

)3

(j + 1)a
+ . . . .

14



Therefore:

lim
j→∞

`jj
a+1 =

lim
j→∞

(
a

(
j

j + 1

)a
+
a(a− 1)

2!

(
j

j + 1

)a
1

j
+
a(a− 1)(a− 2)

3!

(
j

j + 1

)a
1

j2
+ . . .

)
= a,

as limj→∞

(
j
j+1

)a
= 1 and limj→∞

1
jn

= 0, for each n ≥ 1. Thus the a-string is

Minkowski-measurable with L = a and dM = 1
a+1

.

Definition 2.15 (Geometric zeta function). For a fractal string L, the geometric

zeta function is defined as:

ζL(s) :=
∞∑
j=1

lsj =
∑
l

ωl · ls,

for s ∈ C and Re(s) > dM , where dM is the Minkowski dimension of the string.

It should be noted that some values of the geometric zeta function have a

special meaning, i.e. the total length of the string for example is given by ζL(1) =∑∞
j=1 lj.

Definition 2.16 (Geometric counting function). The geometric counting func-

tion (or alternatively: the counting function of the reciprocal lengths) of a fractal

string L, is defined by

NL(x) := #
{
j ∈ N | l−1

j ≤ x
}

=
∑

n∈N, l−1
n ≤x

ωn,

for x > 0 and where the ωn’s are the multiplicities of the lengths ln.

Let us consider the following eigenvalue problem on an open bounded set Ω

in R with boundary ∂Ω:

−∆u = λu

in Ω, where ∆ denores the Laplacian, with Dirichlet boundary conditions:

u|∂Ω= 0.
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Then the eigenvalues form a countable sequence, such that 0 < λ1 ≤ λ2 ≤ λ3 ≤
. . . ≤ λk ≤ . . ., with each eigenvalue being repeated according to (algebraic)

multiplicity.

Definition 2.17 (Eigenvalue counting function). For a given positive λ, we define

the eigenvalue counting function N(λ) as the number of eigenvalues not exceeding

λ:

N(λ) := #{k ∈ N | λk ≤ λ}, λ > 0.

2.2 Spectral asymptotics of fractal strings

In this section, we present the current state of knowledge for the spectral asymp-

totics of fractal strings, partially with detailed proofs.

The Dirichlet problem on L may be reformulated as finding the resonant

frequencies of a string stretched across the unit interval and held fixed at the

boundary points (∂L), so that it can vibrate independently on each interval of

which L consists.

Figure 2.7: An example for eigenfunctions of the Cantor string

Non-trivial solutions occur at the values

λ =

(
πk

`j

)2

, with k = 1, 2, . . . ,
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for a sinusoidal eigenfunction vanishing outside the interval considered. In

other words, if we fix λ > 0, then the number of eigenvalues k less than λ that are

possible for this interval is given by k = bπ−1λ
1
2 `jc. Counting these eigenvalues

for all lengths `j of the fractal string L then leads to:

N(λ) =
∞∑
j=1

bπ−1λ
1
2 `jc

=
∞∑
j=1

π−1λ
1
2 `j −

∞∑
j=1

{
π−1λ

1
2 `j

}
= π−1vol1(L)λ

1
2 − ϕ(λ), (2.1)

where

ϕ(λ) :=
∞∑
j=1

{
π−1λ

1
2 `j

}
. (2.2)

Note that in the above the symbol bxc stands for ”the greatest integer less than

x” and {x} = x− bxc means ”the fractional part of x”.

The first term in Equation (2.1) is just Weyl’s expression in the one-dimensional

case.

Remark 2.18. We will use in the following the conventions of writing f(x) �
g(x), respectively aj � bj iff there exist two constants c1 and c2, such that

0 < c1g(x) ≤ f(x) ≤ c2g(x) <∞, for all x ∈ R, x > 0,

respectively

0 < c1bj ≤ aj ≤ c2bj <∞, for all j ∈ N.

In the following theorem (see [33]), it will be shown that ϕ(λ) � λ
dM
2 holds

under certain conditions.

Theorem 2.19. If `j � j
− 1
dM for some 0 < dM < 1 then ϕ(λ) � λ

dM
2 .

We give here a detailed proof, following the sketch given in [33].
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Proof. Given a fixed λ > π2`−2
1 , let k be the greatest integer, such that π−1λ

1
2 `k >

1 ⇔ `k ≥ πλ−
1
2 . As `k � k

− 1
dM ⇔ c1k

− 1
dM ≤ `k ≤ c2k

− 1
dM for some constants c1

and c2, one has:

`k ≤ c2k
− 1
dM ,

with

πλ−
1
2 ≤ `k,

so that

πλ−
1
2 ≤ c2k

− 1
dM

⇔k
1
dM ≤ c2π

−1λ
1
2

⇔k ≤
(
c2π
−1λ

1
2

)dM
⇔k ≤ cdM2 π−dMλ

dM
2 ,

where c2 does not depend on λ. Furthermore, as for all j:

0 ≤
{
π−1λ

1
2 `j

}
≤ 1,

we have:

0 ≤
k∑
j=1

{
π−1λ

1
2 `j

}
≤ k.

Thus by Equation (2.2):

∞∑
j=k+1

{
π−1λ

1
2 `j

}
≤ ϕ(λ) ≤ k +

∞∑
j=k+1

{
π−1λ

1
2 `j

}
,

and as for every j > k, one has by the definition of k: π−1λ
1
2 `j < 1, and therefore{

π−1λ
1
2 `j

}
= π−1λ

1
2 `j

so that:
∞∑

j=k+1

π−1λ
1
2 `j ≤ ϕ(λ) ≤ k +

∞∑
j=k+1

π−1λ
1
2 `j.
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As c1j
− 1
dM ≤ `j ≤ c2j

− 1
dM , it is possible to use the integral test estimate to find

bounds for
∑∞

j=k+1 `j. Indeed,

c1

∞∑
j=k+1

j
− 1
dM ≤

∞∑
j=k+1

`j ≤ c2

∞∑
j=k+1

j
− 1
dM (2.3)

and ∫ ∞
k+2

j
− 1
dM dj ≤

∞∑
j=k+1

j
− 1
dM ≤

∫ ∞
k+1

j
− 1
dM dj

⇔ 1

1− 1
dM

j
1− 1

dM

]∞
k+2

≤
∞∑

j=k+1

j
− 1
dM ≤ 1

1− 1
dM

j
1− 1

dM

]∞
k+1

⇔ 1
1
dM
− 1

(k + 2)
1− 1

dM ≤
∞∑

j=k+1

j
− 1
dM ≤ 1

1
dM
− 1

(k + 1)
1− 1

dM .

Now, as

k + 1 > k ⇒ (k + 1)
1− 1

dM ≤ k
1− 1

dM =
(
cdM2 π−dMλ

dM
2

)1− 1
dM ,

and as `k+2 ≤ πλ−
1
2 by the definition of k and `k+2 ≥ c1 (k + 2)

− 1
dM by the

assumption of the theorem, one has:

πλ−
1
2 ≥ c1 (k + 2)

− 1
dM

⇔ (k + 2)
− 1
dM ≤ πλ−

1
2

c1

⇔ (k + 2)−1 ≤

(
πλ−

1
2

c1

)dM

⇔k + 2 ≥
(

c1

πλ−
1
2

)dM
=
(
c1π
−1λ

1
2

)dM
⇔ (k + 2)

1− 1
dM ≥

(
cdM1 π−dMλ

dM
2

)1− 1
dM .
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Thus:

1
1
dM
− 1

(
cdM1 π−dMλ

dM
2

)1− 1
dM ≤

∞∑
j=k+1

j
− 1
dM ≤ 1

1
dM
− 1

(
cdM2 π−dMλ

dM
2

)1− 1
dM

⇔ dM
1− dM

(
cdM1 π−dMλ

dM
2

) dM−1

dM ≤
∞∑

j=k+1

j
− 1
dM ≤ dM

1− dM

(
cdM2 π−dMλ

dM
2

) dM−1

dM

⇔ dM
1− dM

cdM−1
1 π−(dM−1)λ

dM−1

2 ≤
∞∑

j=k+1

j
− 1
dM ≤ dM

1− dM
cdM−1

2 π−(dM−1)λ
dM−1

2 ,

allowing us to write Equation (2.3) as:

c1
dM

1− dM
cdM−1

1 π−(dM−1)λ
dM−1

2 ≤
∞∑

j=k+1

`j ≤ c2
dM

1− dM
cdM−1

2 π−(dM−1)λ
dM−1

2

and thereby:

π−1λ
1
2 c1

dM
1− dM

cdM−1
1 π−(dM−1)λ

dM−1

2 ≤ ϕ(λ) ≤ k+π−1λ
1
2 c2

dM
1− dM

cdM−1
2 π−(dM−1)λ

dM−1

2 .

Using again that k ≤ π−dM cdM2 λ
dM
2 and simplifying:

dM
1− dM

cdM1 π−dMλ
dM
2 ≤ ϕ(λ) ≤ π−dM cdM2 λ

dM
2 +

dM
1− dM

cdM2 π−dMλ
dM
2

⇔ dM
1− dM

cdM1 π−dMλ
dM
2 ≤ ϕ(λ) ≤

(
1 +

dM
1− dM

)
cdM2 π−dMλ

dM
2

⇔ cλ
dM
2 ≤ ϕ(λ) ≤ c′λ

dM
2

⇔ϕ(λ) � λ
dM
2 ,

which completes the proof.

Strengthening the condition on the asymptotic behaviour of the lengths `j of

the fractal string to `j ∼ Lj
− 1
dM ⇔ limj→∞ `jj

1
dM = L > 0, leads to an interesting

connection between the concept of Minkowski-measurability (see Remark 2.12)

and Riemann’s Zeta-function defined below.

Definition 2.20 (Riemann’s Zeta-function). Riemann’s Zeta-function is defined
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as:

ζ(s) :=
∞∑
n=1

n−s,

for all s ∈ C with Re(s) > 1. A meromorphic continuation to Re(s) > 0 we will

need later is given by:

ζ(s) :=
1

s− 1
+

∫ ∞
1

(t−s − btc−s)dt.

We can now state the theorem announced above:

Theorem 2.21. If `j ∼ Lj
− 1
dM for some 0 < dM < 1 then the following holds:

N(λ) = π−1vol1(L)λ
1
2 + π−dM ζ(dM)LdMλ

dM
2 + o(λ

dM
2 ),

as λ→∞.

Here we will only sketch the proof as in [77], full details may be found in [78]

and in [74], where a different approach is chosen.

Sketch of proof. Recall from Equations (2.1) and (2.2) that:

ϕ(λ) =
∞∑
j=1

{
π−1λ

1
2 `j

}
=
∞∑
j=1

π−1λ
1
2 `j −

∞∑
j=1

bπ−1λ
1
2 `jc

Let J(ε) := max{j ≥ 1 : `j ≥ ε}, then by the assumption of the theorem:

Lj
− 1
dM ∼ `j ≥ ε

and thus:

j ≤ LdMε−dM ,

so that

J(ε) ∼ LdMε−dM , as ε→ 0+.
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Let furthermore k ≥ 2 be an arbitrary fixed integer, then:

ϕ(x) = x
∑

j>J( 1
x)

`j +
∑

j≤J( kx)

{`jx}+
k∑
p=2

J( p−1
x )∑

j=J( px)+1

{`jx} .

Through Abel-summation, this can be rewritten as:

ϕ(x) = α(x) + β(x) + γ(x),

where:

α(x) := x
∑

j>J( kx)

`j,

β(x) := kJ

(
k

x

)
−

k−1∑
p=1

J
(p
x

)
and

γ(x) :=
∑

j≤J( kx)

({`jx} − 1) .

By using then that J(ε) ∼ LdMε−dM and `j ∼ Lj
− 1
dM , one obtains for x→∞:

(Lx)−dM α(x)→ k1−dM dM
1− dM

,

(Lx)−dM β(x)→ k1−dM −
k−1∑
p=1

p−dM and

(Lx)−dM γ(x) ≤ (Lx)−dM J

(
k

x

)
→ k−dM .

Thus

(Lx)−dM (α(x) + β(x))→ 1

1− dM
k1−dM −

k−1∑
p=1

p−dM = fk(dM) +
1

1− dM
,

where

fk(s) :=

∫ k

1

(
t−s − btc−s

)
dt.
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For Re(s) > 0, the sequence {fk(s)}∞k=1 converges uniformly to the (analytic)

function

f(s) :=

∫ ∞
1

(
t−s − btc−s

)
dt,

as k → ∞. Furthermore, as stated above, Riemann’s Zeta-function admits the

meromorphic continuation to Re > 0 given by:

ζ(s) =
1

s− 1
+

∫ ∞
1

(
btc−s − t−s

)
dt.

Thus:

fk(dM) +
1

1− dM
→ −ζ(dM), for k →∞

and therefore:

(Lx)−dM ϕ(x)→ −ζ(dM), as k →∞.

Finally, setting x = π−1λ
1
2 and reassembling all the terms, we obtain

N(λ) = π−1vol1(L)λ
1
2 + π−dM ζ(dM)LdMλ

dM
2 + o(λ

dM
2 )

for the eigenvalue counting function, as stated. �

The implications of Theorems 2.19 and 2.21 may clearly be seen through

the examples of the triadic Cantor string and the a-string with parameter a =
log(3)
log(2)

− 1, both having the same Minkowski dimension dM = log(2)
log(3)

, displayed in

Figure 2.8. Indeed, the graph of the eigenvalue counting function for the Cantor

string shows oscillations in the spectrum that are typical for strings that are

not Minkowski-measurable, while they are absent in the case of the Minkowski-

measurable a-string.

These results on the connection between the Riemann Zeta-function and the

spectral asymptotics of fractal strings were even taken further by M.L. Lapidus

and H. Maier in [75] and [76], where they formulated the Riemann hypothesis in

terms of an inverse spectral problem. Being beyond the scope of this work, we

will only state the theorem and its corollary without proof here:

Theorem 2.22 (The inverse spectral problem for Riemann’s hypothesis). Let a

fractal string L with Minkowski dimension dM ∈ (0, 1) be given. If the eigenvalue
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Figure 2.8: Graphs of N(λ) for the triadic Cantor string (red) and the a-string

with parameter a = log(3)
log(2)

− 1 (black).

counting function is given by N(λ) = π−1vol1(L)λ
1
2 + Cλ

dM
2 + o(λ

dM
2 ), with C

being a constant, then L is Minkowski-measurable if and only if ζ(s) does not

have any zero on the vertical line {s ∈ C | Re(s) = dM}.

From the theorem, it is then easy to deduce the following corollary:

Corollary 2.23. Since ζ(s) has zeros on the critical line {s ∈ C | Re(s) = 1
2
},

the inverse spectral problem is not true when dM = 1
2
. On the other hand, it is

true for every dM ∈ (0, 1) \ {1
2
}, if and only if the Riemann hypothesis holds.
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Chapter 3

Fractal chains

In the preceeding chapter, we have rendered the current state of knowledge on

the asymptotics of the eigenvalues of fractal strings, one-dimensional drums with

a fractal set as boundary. We will now present our results concerning the dis-

tribution of these eigenvalues, thereby showing the usefulness of techniques and

methods from random matrix theory to the study of vibrating fractals. Partic-

ularly, we will establish two new theorems (Theorems 3.8 and 3.9) related to

the Minkowski-measurability of one-dimensional fractals. On that account, these

fractal drums will be modelled by linear chains of a finite number of discrete

masses coupled by springs (“fractal chains”, see [21]), thus allowing a description

in terms of matrices.

3.1 Monoatomic chains

The monoatomic linear chain of masses coupled by harmonic springs (i.e. obeying

Hooke’s law) is a textbook example [53, 63] as an introduction into vibrational

normal modes (phonons) in solid state physics. Its mathematics are simple and

it has many features common to lattice vibrations in general.

The stiffness of each spring shall be K and each atom shall have a mass m.

Let un be the displacement of the nth atom. The force on the atom n due to the

atom at position n−1 is then K (un−1 − un) and those from the atom at position
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Figure 3.1: Monoatomic chain

n+ 1 is K (un−1 − un), so that its equation of motion can be written as:

m
d2un
dt2

= K (un−1 − 2un + un+1) ,

respectively

m
d2un
dt2

+ 2Kun = K (un−1 + un+1) .

Let κ be the wavevector and a the distance between the atoms, then with the

harmonic ansatz:

un = u0e
i(ωt−nκa),

un−1 = u0e
i(ωt−(n−1)κa) = une

iκa and

un+1 = u0e
i(ωt−(n+1)κa) = une

−iκa,

one has

m
d2un
dt2

= −mω2un,

and therefore: (
−mω2 + 2K

)
un = Kun

(
eiκa + e−iκa

)
.
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Dividing by Kun 6= 0 and using that eiκa + e−iκa = 2 cos (κa):

(
−mω2 + 2K

)
un = Kun

(
eiκa + e−iκa

)
⇔ −m

K
ω2 + 2 = 2 cos (κa)

⇔ ω2 = 2
K

m
(1− cos (κa))

⇔ ω2 = 4
K

m

(
sin
(κa

2

))2

.

Using Dirichlet boundary conditions u0(t) = uN+1(t) = 0, the allowed values for

κ are then given by κ = 2π
(N+1)a

n, with 1 ≤ n ≤ N + 1 and N being the number

of atoms in the chain. The squared frequencies of the chain are therefore given

by the so-called dispersion relation:

ω2
n = 4

K

m

(
sin

(
πn

2 (N + 1)

))2

. (3.1)

Alternatively, the equations of motion may be reformulated in matrix form, which

makes it possible to use tools from random matrix theory (RMT). Indeed, writing

Newton’s law as: ∑
{F} = K{u}+ Γ{u̇}+ M{ü},

where {F} denotes the column vector of (external) forces acting on the chain,

K the square matrix of stiffness properties at the atoms (stiffness matrix), Γ the

square matrix of damping properties at the atoms, M the square matrix of inertial

properties at the atoms (mass matrix) and {u}, {u̇}, {ü} the column vectors of

displacements, velocities and accelerations respectively.

In our idealised model, the effects of damping and velocity will be neglected

and there will be no external forces acting on the structure, such that the equa-

tions of motion reduce to:

0 = K{u}+ M{ü}.

For simple harmonic motion, the acceleration is then given as above by:

{ü} = −ω2{u},
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where ω2 is the square of the circular frequency. Thus:

K{u} − ω2K{u} = 0.

Multiplying this equation by M−1, M being non-singular, from the left yields:

M−1K{u} − ω2I{u} = 0, or(
D− ω2I

)
{u} = 0,

where D := M−1K is called the dynamic matrix and I is the identity matrix.

Now, for a single spring element, the stiffness matrix is given by:

Ks =

(
K −K
−K K

)
,

where K is the stiffness constant of the spring. For an assembly of springs, the

total stiffness matrix is given by the following two simple rules [15]:

• A term on the main diagonal Kn,n is the sum of the stiffnesses of all spring

elements connected to the atom n.

• A term off the main diagonal Kn,m is the negative sum of the stiffnesses of

all spring elements connecting the atoms n and m.

The mass matrix M is simply a matrix with the masses of the different atoms

on its main diagonal and zero everywhere else. Furthermore, for the monoatomic

chain, all the spring stiffnesses and masses are equal, such that the dynamic

matrix is given by:

D =


2K
m
−K
m

0 0 . . .

−K
m

2K
m
−K
m

0 . . .

0 −K
m

2K
m
−K
m

. . .

. . . . . . . . . . . . . . .

 =
K

m


2 −1 0 0 . . .

−1 2 −1 0 . . .

0 −1 2 −1 . . .

. . . . . . . . . . . . . . .

.

The eigenvalues λn of the dynamic matrix are then precisely the squared frequen-
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cies ω2 given in Equation (3.1):

λn = ω2
n = 4

K

m

(
sin

(
πn

2 (N + 1)

))2

.

For long wavelengths, i.e. for small n, it is possible to expand the sine-function

Figure 3.2: Corresponding vibrational modes of a string and a monoatomic chain

and by neglecting the higher order terms, the dispersion relation for the string

λn ∼ n2 may be recovered. However, this approximation is no longer valid for the

higher normal modes, where the wavelength of the excitation becomes comparable

to the length scale of the distances between the masses. Indeed, contrary to

the normal homogeneous string, a monoatomic chain posesses a highest possible

frequency, a fact that can be easily deduced from Equation 3.1 or Figures 3.2

and 3.3. When the neighbouring masses vibrate in antiphase, there is no higher

possible mode, and λmax is given by setting n = N + 1 as:

λmax = 4
K

m

(
sin

(
π (N + 1)

2 (N + 1)

))2

= 4
K

m
.

3.2 Fractal chains

The lowest (fundamental) frequency of a monoatomic chain is given by Equation

(3.1) with n = 1:

λ1 = ω2
1 = 4

K

m

(
sin

(
π

2 (N + 1)

))2

.
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Figure 3.3: Eigenvalue counting functions for a string (crosses, N(λ) ∼
√
λ) and

a monoatomic chain (boxes, N(λ) ∼ arcsin(
√
λ))

It is then possible to choose K and m, such that the fundamental frequency of

the monoatomic chain is the same as that of the length l1 of the fractal string

that is to be modelled. By the same method, monoatomic chains corresponding

to any length lj of the fractal string can then be determined, such that the fractal

chain is obtained by combining chains with increasing fundamental frequencies

in accordance with the corresponding fractal set construction. The part of the

spectrum up to the maximal frequency of the basic chain then allows a comparison

with the one of the fractal string as illustrated in Figures 3.4 and 3.5.

However, it is important to note that the number of masses N in the different

chains of the obtained pre-fractal has to be chosen such that chains of higher

order than the iteration level m do not contribute to the spectrum. In other

words, the lowest frequency of the chain corresponding to the length lm+1 of the

string has to be larger than the maximal frequency of the basic chain. We will

subsequently always choose:

N =

⌈
π

2
· 1

arcsin (lm)

⌉
, (3.2)
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Figure 3.4: Eigenvalue counting functions for the triadic Cantor chain (black,
blue, green) and string (red)

Figure 3.5: Detail of figure (3.4)
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where d·e denotes the ceiling function. This choice ensures that at least the

fundamental frequency of the mth-level chain will be part of the spectrum and

that all the frequencies of the (m + 1)th-level chain will be above the highest

frequency of the basic chain.

3.2.1 The dynamic matrix of a fractal chain and its traces

Recall that a system of masses coupled by springs obeying Hooke’s law can be

described in the harmonic approximation by the matrix equation:

(
D− ω2I

)
x = 0

where D is the dynamic matrix; I the identity matrix and x the column vector

of displacements. The spectrum of the system is thus given by the eigenvalues

λn of the dynamic matrix. For a fractal chain the dynamic matrix is a block-

diagonal matrix, where the block matrices are taken with multiplicity ωj (not to

be confused with the frequencies of the chain) from the set of matrices of type:

DMj = l−2
j ·

K

m


2 −1 0 0 . . .

−1 2 −1 0 . . .

0 −1 2 −1 . . .

. . . . . . . . . . . . . . .

.
For each sub-chain the squared frequencies of its allowed vibrations are the

eigenvalues of the sub-matrices given by:

λn,j = l−2
j · 4

K

m
sin

(
πn

2 (N + 1)

)2

,

where n = 1 . . . N + 1, j ∈ {1 . . .m} and N =
⌈
π
2
· 1

arcsin(lm)

⌉
, so that the traces of

the different powers of the complete dynamic matrix are easily accessible. Indeed,

tr (DM1) =
N+1∑
n=1

λn,1 = 4
K

m

N+1∑
n=1

sin

(
πn

2 (N + 1)

)2

,
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and

tr
(
DMk

1

)
=

N+1∑
n=1

λkn,1 =

(
4
K

m

)k N+1∑
n=1

sin

(
πn

2 (N + 1)

)2k

.

Furthermore:

tr
(
DMk

j

)
=

N+1∑
n=1

λkn,j =
N+1∑
n=1

(
l−2
j λn,1

)k
=
(
l−2
j

)k (
4
K

m

)k N+1∑
n=1

sin

(
πn

2 (N + 1)

)2k

,

so that the traces of powers of the complete dynamic matrix D are given by:

tr
(
Dk
)

=
m∑
j=0

ωj
(
l−2
j

)k (
4
K

m

)k N+1∑
n=1

sin

(
πn

2 (N + 1)

)2k

. (3.3)

In order to continue, we need the following proposition, the results of which may

be found in the literature for small k, but we will prove here the general case:

Proposition 3.1.

N+1∑
n=1

sin

(
πn

2 (N + 1)

)2k

=

(
2k

k

)
N + 1

22k
+

1

2
(3.4)

Proof. Following the method of A. F. Timofeev [113], write

sin

(
πn

2 (N + 1)

)2k

=

(
ei

π
2(N+1)

n − e−i
π

2(N+1)
n

2i

)2k

=

(
1

2i

)2k (
ei

π
2(N+1)

n − e−i
π

2(N+1)
n
)2k

=
(−1)k

22k

(
ei

π
2(N+1)

n − e−i
π

2(N+1)
n
)2k

,

where i is the imaginary unit. Thus, by the binomial theorem and using the
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symmetry rule
(

2k
l

)
=
(

2k
2k−l

)
:

sin

(
πn

2 (N + 1)

)2k

=
(−1)k

22k

2k∑
l=0

(−1)l
(

2k

l

)(
ei

π
2(N+1)

n
)l (

e−i
π

2(N+1)
n
)2k−l

=
1

22k

(
2k

k

)
+

1

22k−1

k∑
l=1

(−1)l
(

2k

k − l

)
cos

(
2

πnl

2 (N + 1)

)
,

so that:

N+1∑
n=1

sin

(
πn

2 (N + 1)

)2k

=
N+1∑
n=1

1

22k

(
2k

k

)
+

N+1∑
n=1

1

22k−1

k∑
l=1

(−1)l
(

2k

k − l

)
cos

(
πnl

N + 1

)

=
N + 1

22k

(
2k

k

)
+

1

22k−1

N+1∑
n=1

k∑
l=1

(−1)l
(

2k

k − l

)
cos

(
πnl

N + 1

)
.

Interchanging the order of summation and rearranging then leads to:

N+1∑
n=1

sin

(
πn

2 (N + 1)

)2k

=
N + 1

22k

(
2k

k

)
+

1

22k−1

k∑
l=1

(−1)l
(

2k

k − l

)N+1∑
n=1

cos

(
πnl

N + 1

)
.

Using Lagrange’s trigonometric inequality

N+1∑
n=1

cos (n · x) = − cos (0) +
N+1∑
n=0

cos (n · x)

= −1 +
1

2

(
1 +

sin
((
N + 3

2

)
x
)

sin
(

1
2
x
) )

=
1

2

(
−1 +

sin
((
N + 3

2

)
x
)

sin
(

1
2
x
) )
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on the last sum, one obtains:

N+1∑
n=1

cos

(
πnl

N + 1

)
=

1

2

−1 +

sin

(
(N+ 3

2)πl
N+1

)
sin
(

πl
2(N+1)

)


=
1

2

−1 +
sin
(
πl

N+1+ 1
2

N+1

)
sin
(

πl
2(N+1)

)


=
1

2

−1 +
sin
(
πl + πl

2(N+1)

)
sin
(

πl
2(N+1)

)
 .

As sin (x+ y) = sin (x) cos (y) + sin (y) cos (x):

N+1∑
n=1

cos

(
πnl

N + 1

)
=

1

2

−1 +
sin (πl) cos

(
πl

2(N+1)

)
sin
(

πl
2(N+1)

)
︸ ︷︷ ︸

=0

+
cos (πl) sin

(
πl

2(N+1)

)
sin
(

πl
2(N+1)

)


=
1

2

−1 + cos (πl)︸ ︷︷ ︸
=(−1)l


=

1

2

(
−1 + (−1)l

)
.

Thus:

N+1∑
n=1

sin

(
πn

2 (N + 1)

)2k

=
N + 1

22k

(
2k

k

)
+

1

22k

k∑
l=1

(−1)l
(

2k

k − l

)(
−1 + (−1)l

)
=
N + 1

22k

(
2k

k

)
− 1

22k

k∑
l=1

(−1)l
(

2k

k − l

)
+

1

22k

k∑
l=1

(
2k

k − l

)
.

It remains to evaluate the two sums of binomials. Writing

k∑
l=1

(
2k

k − l

)
=

1

2

(
k∑
l=1

(
2k

k − l

)
+

k∑
l=1

(
2k

k − l

))
,
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and using the symmetry rule
(

2k
k−l

)
=
(

2k
k+l

)
again, we have:

k∑
l=1

(
2k

k − l

)
=

1

2

(
k∑
l=1

(
2k

k − l

)
+

k∑
l=1

(
2k

k + l

))

=
1

2

(
k−1∑
l=0

(
2k

l

)
+

k∑
l=k+1

(
2k

l

))

=
1

2

(
2k∑
l=0

(
2k

l

)
−
(

2k

k

))

=
1

2

(
22k −

(
2k

k

))
,

where we used Pascal’s fifth identity in the last equality. A similar approach is

used for the other sum:

k∑
l=1

(−1)l
(

2k

k − l

)
=

1

2

(
k∑
l=1

(−1)l
(

2k

k − l

)
+

k∑
l=1

(−1)l
(

2k

k − l

))

and by the symmetry rule, we have:

k∑
l=1

(−1)l
(

2k

k − l

)
=

1

2

(
k∑
l=1

(−1)l
(

2k

k − l

)
+

k∑
l=1

(−1)l
(

2k

k + l

))
.

It is then necessary to consider the cases of k being even or odd:

For k even:

k∑
l=1

(−1)l
(

2k

k − l

)
=

1

2

(
k−1∑
l=0

(−1)l
(

2k

l

)
+

2k∑
l=k+1

(−1)l
(

2k

l

))

=
1

2

(
2k∑
l=0

(−1)l
(

2k

l

)
−
(

2k

k

))
.
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For k odd:

k∑
l=1

(−1)l
(

2k

k − l

)
=

1

2

(
−

k−1∑
l=0

(−1)l
(

2k

l

)
−

2k∑
l=k+1

(−1)l
(

2k

l

))

=
1

2

(
−

k∑
l=0

(−1)l
(

2k

l

)
−

2k∑
l=k+1

(−1)l
(

2k

l

)
+ (−1)k

(
2k

k

))

=
1

2

(
−

2k∑
l=0

(−1)l
(

2k

l

)
−
(

2k

k

))
.

It is well known, that
∑2k

l=0 (−1)l
(

2k
l

)
= 0, which leaves us with

k∑
l=1

(−1)l
(

2k

k − l

)
= −1

2

(
2k

k

)
.

Thus,

N+1∑
n=1

sin

(
πn

2 (N + 1)

)2k

=
N + 1

22k

(
2k

k

)
− 1

22k

(
−1

2

)(
2k

k

)
+

1

22k

1

2

(
22k −

(
2k

k

))
=
N + 1

22k

(
2k

k

)
+

1

22k

1

2

(
2k

k

)
+

1

22k

1

2
22k − 1

22k

1

2

(
2k

k

)
=

(
2k

k

)
N + 1

22k
+

1

2
,

which completes the proof.

Hence, this proposition allows us to write the traces of the powers of the

dynamic matrix in Equation (3.3) as:

tr
(
Dk
)

=
m∑
j=0

ωj
(
l−2
j

)k (
4
K

m

)k ((
2k

k

)
N + 1

22k
+

1

2

)

=
m∑
j=0

ωjl
−2k
j

(
4
K

m

)k ((
2k

k

)
N + 1

22k
+

1

2

)

:= ζL(m,−2k)

(
4
K

m

)k ((
2k

k

)
N + 1

22k
+

1

2

)
,
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where we defined the “incomplete moment zeta function” ζL(m,−2k) in analogy

with the geometric zeta function (see Definition 2.15). The knowledge of the

incomplete moment zeta function makes it possible to express the traces of the

dynamic matrix of the fractal chain under consideration.

Definition 3.2 (Incomplete moment zeta function). We define the incomplete

moment zeta function ζL(m,−2k) of a fractal string L by

ζL(m,−2k) =
m∑
j=0

ωjl
−2k
j

for k ∈ N and where the ωj’s are the multiplicities of the lengths lj.

Note that this definition of the incomplete moment zeta function can obviously

be extended to the whole complex plane and might then be called “incomplete

geometric zeta function”, but here we would like to emphasise its relation to the

moments of the eigenvalue distribution and thus restrict the definition to integer

arguments.

3.2.2 The moments of the eigenvalue distribution of a

fractal chain

Important information on the behaviour of the eigenvalues of a matrix may be

obtained through the study of the moments of their distribution. It is possible

to attach a probability measure, or in other words an eigenvalue probability

distribution, µD,N ′ to the dynamic matrix of the fractal chain under scrutiny

through the use of the Dirac delta functional in the following way:

µD,N ′(x)dx =
1

N ′

N ′∑
i=1

δ

(
x− λi(D)

2

)
dx,

where the normalisation factor in the denominator may be justified by heuris-

tic arguments for the scaling of the eigenvalues [89]. We can then recover the
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moments MN,k of the distribution. Indeed:

MN,k(D) =

∫
xkµD,N ′(x)dx

=
1

N ′

N ′∑
i=1

∫
R
xkδ

(
x− λi(D)

2

)
dx

=
1

N ′

N ′∑
i=1

λi(D)k

(2)k
=

1

2kN ′

N ′∑
i=1

λi(D)k

=
tr(Dk)

2kN ′
.

Therefore, the moments of the eigenvalue distribution of a fractal chain are nor-

malised traces of the corresponding dynamic matrices. First of all, all the entries

of the dynamic matrix have to be less than or equal to one, which is achieved

by multiplying it by a factor 1
2
l2m, respectively

(
1
2
l2m
)k

. In addition we need the

number of independent matrix entries, given by:

N ′ = dim (D) =
m∑
j=0

ωj (dim (DM0) + 1)− 1

= NL

(
l−1
m

)
(N + 1)− 1,

where NL (x) is the geometric counting function defined in Definition (2.16), so

that:

MN,k =

(
1
2
l2m
)k

tr
(
Dk
)

N ′ · 2k

=

(
1
2
l2m
)k
ζL(m,−2k)

(
4K
m

)k ((2k
k

)
N+1
22k

+ 1
2

)(
NL

(
l−1
m

)
(N + 1)− 1

)
· 2k

=
l2km ζL(m,−2k)

(
4K
m

)k ((2k
k

)
N+1
22k

+ 1
2

)(
NL

(
l−1
m

)
(N + 1)− 1

)
· 22k

. (3.5)

Thus, we have obtained here a general expression for the moments of the eigen-

value distribution of a fractal chain; all the necessary information being encoded

in its incomplete moment zeta function and its geometric counting function. For

illustration, we will apply these results to the examples of generalised Cantor
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chains and the a-chain below.

3.2.2.1 Example 1: Generalised Cantor chains

Recall from Definition (2.5), that a generalised Cantor string with parameters a

and b consists of the set of lengths {lj}∞j=0 = {b−(j+1)}∞j=0, each appearing with

multiplicity ωj = ωb−(j+1) = aj. Thus, its incomplete moment zeta function and

its geometric counting function are given by:

ζCS(m,−2k) =
m∑
j=0

ωjl
−2k
j =

m∑
j=0

ajb2(j+1)k =
b2k
((
ab2k

)m+1 − 1
)

ab2k − 1

and

NCS(b
m+1) =

m∑
j=0

ωj =
m∑
j=0

aj =
am+1 − 1

a− 1

respectively. With this, the expression for MN,k becomes pretty unwieldy:

MN,k =

(
b−2(m+1)

)k b2k
(
(ab2k)

m+1
−1

)
ab2k−1

(
4K
m

)k ((2k
k

)
N+1
22k

+ 1
2

)(
am+1−1
a−1

(N + 1)− 1
)
· 22k

.

However, it is possible to get a good impression of the behaviour of the moments

of generalised Cantor chains by making a few approximations. We will here not

rigorously justify these approximations, as they are only used in the examples

and are not of crucial importance for further developments. The approximations

used are:

(
ab2k

)m+1 − 1 7−→
(
ab2k

)m+1
,

ab2k − 1 7−→ ab2k,(
2k

k

)
N + 1

22k
+

1

2
7−→

(
2k

k

)
N + 1

22k
, and

am+1 − 1

a− 1
(N + 1)− 1 7−→ am+1

a− 1
(N + 1) .

40



Thus, we obtain after simplification for our approximated moments MN,k,appx the

expression:

MN,k,appx =

(
4
K

m

)k (
2k

k

)
a− 1

a24k
,

where it should be noted that due to the normalisations, the parameter b disap-

pears. Furthermore by [109], theorem 2.6:

e−
1
8k

22k

√
π
√
k
<

(
2k

k

)
<

22k

√
π
√
k
,

so that for large k, we can expect the moments to behave like:

MN,k,asymp =

(
4
K

m

)k
a− 1

a
√
π

1√
k22k

.

The precision of these approximations may be seen in Tables 3.1 and 3.2.

k MN,k MN,k,appx relative error MN,k,asymp relative error
MN,k,appx

MN,k
− 1

MN,k,asymp

MN,k
− 1

1 1 .9425082041 −.0574917959 1.063506622 .063506622
2 .7127559673 .7068811531 −.0082423922 .7520127441 .055077444
3 .5907172921 .5890676275 −.0027926465 .6140158348 .039441105
4 .5165739391 .5154341741 −.0022063927 .5317533112 .029384704
5 .4648942135 .4638907567 −.0021584627 .4756146204 .023059885

Table 3.1: The first five normalised moments and their approximations for the
triadic Cantor chain, at approximation level m = 8.

3.2.2.2 Example 2: The a-chain

For an arbitrary number a > 0, the a-string is given by the set of lengths {lj}∞j=1,

where lj = j−a − (j + 1)−a and all multiplicities ωj = 1, see Definition (2.6).

Therefore, we can write its incomplete moment zeta function and its geometric

counting function as:

ζLa(m,−2k) =
m∑
j=1

ωjl
−2k
j =

m∑
j=1

(
j−a − (j + 1)−a

)−2k
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k MN,k MN,k,appx relative error MN,k,asymp relative error
MN,k,appx

MN,k
− 1

MN,k,asymp

MN,k
− 1

1 1 .9866149307 −.0133850693 1.113275734 .113275734
2 .7403952795 .7399611981 −.0005862833 .7872048202 .063222365
3 .6166804256 .6166343316 −.0000747453 .6427500447 .042274115
4 .5395845225 .5395550404 −.0000546386 .5566378669 .031604584
5 .4856258333 .4855995362 −.0000541508 .4978720437 .025217378

Table 3.2: The first five normalised moments and their approximations for a
generalised Cantor chain with parameters a = 3 and b = 5, at approximation
level m = 8.

and

NLa(l
−1
m ) =

m∑
j=1

ωj =
m∑
j=1

1 = m

respectively, so that:

MN,k =
l2km ζL(m,−2k)

(
4K
m

)k ((2k
k

)
N+1
22k

+ 1
2

)(
NL

(
l−1
m

)
(N + 1)− 1

)
· 22k

=
(m−a − (m + 1)−a)

2k∑m
j=1 (j−a − (j + 1)−a)

−2k (
4K
m

)k ((2k
k

)
N+1
22k

+ 1
2

)
(m (N + 1)− 1) · 22k

.

It is quite difficult to approximate this expression, so that we will limit ourselves

to compare the moments obtained with those of generalised Cantor chains having

the same Minkowski dimension, which leads to the following important remark:

Remark 3.3. Table 3.3 suggests that the moments of Minkowski-measurable

chains decrease at a much faster pace than those of generalised Cantor chains,

thereby reflecting the different oscillatory behaviour in the corresponding spectra.

3.2.3 The moments of the eigenvalue distribution of a

fractal chain with cut-off

As already shown in figures (3.2) respectively (3.3), a cut-off frequency has to be

introduced in order to allow a comparison to the spectrum of a fractal string, so
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k CST , dM = log(2)
log(3)

a-chain, dM = log(2)
log(3)

CS, dM = log(3)
log(5)

a-chain, dM = log(3)
log(5)

1 1 1 1 1
2 .7127559673 .5046300428 .7403952795 .5031995168
3 .5907172921 .3437648204 .6166804256 .3405870669
4 .5165739391 .2676078436 .5395845225 .2633965399
5 .4648942135 .2241385614 .4856258333 .2193090535

Table 3.3: Comparison of the first five normalised moments for Cantor chains and
the corresponding a-chains of the same Minkowki dimension, at approximation
level m = 8.

that only the part of the spectrum up to the maximal frequency of the funda-

mental chain is retained. Without loss of generality, it is possible to set the first

length of the fractal string to l1 = 1.

The eigenvalues thus to be taken into consideration are:

• Basic chain

λn,1 = 4
K

m
sin

(
πn

2 (N + 1)

)2

,

with multiplicity ω1.

• 1st level chain

λn,2 = l−2
2 · 4

K

m
sin

(
πn

2 (N + 1)

)2

,

while

l−2
2 · sin

(
πn

2 (N + 1)

)2

≤ 1⇔ n ≤ 2 (N + 1)

π
arcsin (l2)

with multiplicity ω2.

• jth level chain

λn,j = l−2
j · 4

K

m
sin

(
πn

2 (N + 1)

)2

,

while

l−2
j · sin

(
πn

2 (N + 1)

)2

≤ 1⇔ n ≤ 2 (N + 1)

π
arcsin (lj)

with multiplicity ωj.
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This now allows us to define ”pseudo-traces” as follows:

ptr
(
DMk

j

)
:=

N(j)∑
n=1

λkn,j =

N(j)∑
n=1

(
l−2
j λn,1

)k
=
(
l−2
j

)k (
4
K

m

)k N(j)∑
n=1

sin

(
πn

2 (N + 1)

)2k

,

with

N(j) =

⌊
2 (N + 1)

π
arcsin (lj)

⌋
,

so that

ptr
(
Dk
)

=
m∑
j=0

ωj
(
l−2
j

)k (
4
K

m

)k N(j)∑
n=1

sin

(
πn

2 (N + 1)

)2k

. (3.6)

The second sum in the above is then calculated by Euler-Maclaurin summation:

N(j)∑
n=1

sin

(
πn

2 (N + 1)

)2k

=

∫ N(j)

n=0

sin

(
πn

2 (N + 1)

)2k

dn+Rk := Ik +Rk.

To evaluate the integral Ik, we will need the following proposition:

Proposition 3.4.

Ik =

∫ N(j)

n=0

sin

(
πn

2 (N + 1)

)2k

dn =
2(N + 1)

π

l2k+1
j

√
1− l2j

2k + 1
· 2F1

(
1, k + 1

k + 3
2

∣∣∣∣∣ l2j
)
,

where

2F1

(
a, b

c

∣∣∣∣∣ z
)

=
∞∑
n=0

(a)n(b)n
(c)n

zn

n!

denotes the Gaussian (or ordinary) hypergeometric function and (q)n the rising

factorial.

Proof. In order to simplify notations, we set c = π
2(N+1)

. It is a well known fact

that:

∫ N(j)

n=0

sin (cn)2kdn = −1

c
cos (cn) 2F1

(
1
2
, 1

2
− k

3
2

∣∣∣∣∣ cos(cn)2

)]N(j)

n=0

.
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For n = 0, and since 2F1

(
1
2
, 1

2
− k

3
2

∣∣∣∣∣ z
)

converges for every z ∈ [0, 1], we have by

Gauss’s theorem [51]:

−1

c
cos (cn) 2F1

(
1
2
, 1

2
− k

3
2

∣∣∣∣∣ cos(cn)2

)
= −1

c
2F1

(
1
2
, 1

2
− k

3
2

∣∣∣∣∣ 1
)

= −2(N + 1)

π

Γ(k + 1
2
)

2Γ(k + 1)
.

Furthermore, we will rewrite the hypergeometric function using one of Barnes’

relations [6]:

2F1

(
a, b

c

∣∣∣∣∣ z
)

=
Γ(a+ b− c)Γ(c)

Γ(a)Γ(b)
(1− z)c−a−b2F1

(
c− a, c− b
c− a− b+ 1

∣∣∣∣∣ 1− z
)

+
Γ(c− a− b)Γ(c)

Γ(c− a)Γ(c− b)2F1

(
a, b

−c+ a+ b+ 1

∣∣∣∣∣ 1− z
)
.

Here, a = 1
2
, b = 1

2
− k and c = 3

2
and thus:

2F1

(
1
2
, 1

2
− k

3
2

∣∣∣∣∣ z
)

=
Γ(−k − 1

2
)Γ(3

2
)

Γ(1
2
)Γ(1

2
− k)

(1− z)k+ 1
2 2F1

(
1, k + 1

k + 3
2

∣∣∣∣∣ 1− z
)

+
Γ(k + 1

2
)Γ(3

2
)

Γ(1)Γ(k + 1)
2F1

(
1
2
, 1

2
− k

1
2
− k

∣∣∣∣∣ 1− z
)

=− 1

2k + 1
(1− z)k+ 1

2 2F1

(
1, k + 1

k + 3
2

∣∣∣∣∣ 1− z
)

+

√
πΓ(k + 1

2
)

2Γ(k + 1)
2F1

(
1
2
, 1

2
− k

1
2
− k

∣∣∣∣∣ 1− z
)
.

As we can express the last hypergeometric function in the above by the simple

form

2F1

(
1
2
, 1

2
− k

1
2
− k

∣∣∣∣∣ 1− z
)

=
1√
z
,
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we obtain:

2F1

(
1
2
, 1

2
− k

3
2

∣∣∣∣∣ z
)

=− 1

2k + 1
(1− z)k+ 1

2 2F1

(
1, k + 1

k + 3
2

∣∣∣∣∣ 1− z
)

+

√
πΓ(k + 1

2
)

2Γ(k + 1)

1√
z
,

such that

−1

c
cos (cn)2F1

(
1
2
, 1

2
− k

3
2

∣∣∣∣∣ cos(cn)2

)
=

− 1

c
cos (cn)

(
− 1

2k + 1
(1− cos(cn)2)k+ 1

2 2F1

(
1, k + 1

k + 3
2

∣∣∣∣∣ 1− cos(cn)2

)

+

√
πΓ(k + 1

2
)

2Γ(k + 1)

1√
cos(cn)2

)

= −1

c

√
1− sin (cn)2

(
− 1

2k + 1
(sin(cn))2k+1

2F1

(
1, k + 1

k + 3
2

∣∣∣∣∣ sin(cn)2

)

+

√
πΓ(k + 1

2
)

2Γ(k + 1)

1√
1− sin(cn)2

)

=
1

c

1

2k + 1

√
1− sin (cn)2(sin(cn))2k+1

2F1

(
1, k + 1

k + 3
2

∣∣∣∣∣ sin(cn)2

)
−
√
πΓ(k + 1

2
)

2Γ(k + 1)
,

as cos(cn) ≥ 0 and sin(cn) ≥ 0 under the conditions imposed on n. Now, using

the approximation N(j) =
⌊

2(N+1)
π

arcsin (lj)
⌋
' 2(N+1)

π
arcsin (lj),

sin(cN(j)) = sin

(
π

2(N + 1)

2 (N + 1)

π
arcsin (lj)

)
= sin (arcsin (lj)) = lj,

and

−1

c
cos (cN(j))2F1

(
1
2
, 1

2
− k

3
2

∣∣∣∣∣ cos(cN(j))2

)
=

2(N + 1)

π

(
1

2k + 1

√
1− l2j l2k+1

j 2F1

(
1, k + 1

k + 3
2

∣∣∣∣∣ l2j
)
−
√
πΓ(k + 1

2
)

2Γ(k + 1)

)
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. Thus

Ik =

∫ N(j)

n=0

sin (cn)2kdn = −1

c
cos (cn) 2F1

(
1
2
, 1

2
− k

3
2

∣∣∣∣∣ cos(cn)2

)]N(j)

n=0

=
2(N + 1)

π

(
1

2k + 1

√
1− l2j l2k+1

j 2F1

(
1, k + 1

k + 3
2

∣∣∣∣∣ l2j
)
−
√
πΓ(k + 1

2
)

2Γ(k + 1)

)

−
(
−2(N + 1)

π

Γ(k + 1
2
)

2Γ(k + 1)

)
,

and therefore finally

Ik =
2(N + 1)

π

1

2k + 1

√
1− l2j l2k+1

j 2F1

(
1, k + 1

k + 3
2

∣∣∣∣∣ l2j
)
,

which completes the proof.

Remark 3.5. The expression for Ik can also be formulated in terms of the in-

complete beta function Bz (a, b). Indeed:

Ik =
2(N + 1)

π

1

2k + 1

√
1− l2j l2k+1

j 2F1

(
1, k + 1

k + 3
2

∣∣∣∣∣ l2j
)

=
1

2

2(N + 1)

π
Bl2j

(
k +

1

2
,
1

2

)
=
N + 1

π
Bl2j

(
k +

1

2
,
1

2

)
.

From Proposition (3.4) and Remark (3.5) above, we can easily deduce the

following corollary:

Corollary 3.6. Ik can be bounded in the following way:

0 ≤ Ik ≤
N + 1

π

√
πΓ(k + 1

2
)

Γ(k + 1)
,

and furthermore:

0 ≤
√

1− l2j 2F1

(
1, k + 1

k + 3
2

∣∣∣∣∣ l2j
)
≤
√
πΓ(k + 1

2
)

2Γ(k + 1)
(2k + 1) .
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Proof. The incomplete beta function is differentiable on the interval [0, 1] and its

derivative

∂

∂z

(
Bz2

(
k +

1

2
,
1

2

))
=

2z (z2)
k− 1

2

√
1− z2

=
2z2k

√
1− z2

≥ 0

positive on the whole interval. Thus it is a monotonic increasing function on [0, 1]

and assumes its extremal values on the endpoints. As

B0

(
k +

1

2
,
1

2

)
= 0, and B1

(
k +

1

2
,
1

2

)
=

√
πΓ(k + 1

2
)

Γ(k + 1)
,

we have

0 ≤ Ik ≤
N + 1

π

√
πΓ(k + 1

2
)

Γ(k + 1)

and likewise, as:

√
1− l2j 2F1

(
1, k + 1

k + 3
2

∣∣∣∣∣ l2j
)

=
1

2
Bl2j

(
k +

1

2
,
1

2

)
l−2k−1
j (2k + 1) ,

we obtain by the product rule for the limits:

0 ≤
√

1− l2j 2F1

(
1, k + 1

k + 3
2

∣∣∣∣∣ l2j
)
≤
√
πΓ(k + 1

2
)

2Γ(k + 1)
(2k + 1)

as stated.

The remainder term Rk is less accessible and needs numerous manipulations

in order to formulate and prove the following proposition.

Proposition 3.7. In first order approximation, the remainder term Rk is given

by:

Rk =
1

2
l2kj +

1

2

√
1− l2j (lj)

2k−1 k
π

6 (N + 1)
.
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Proof. Setting f(n) = sin
(

πn
2(N+1)

)2k

, the remainder term reads:

Rk =−B1 (f(N(j)) + f(0)) +
∞∑
l=1

Bl+1

(l + 1)!

(
f (l)(N(j))− f (l)(0)

)
:=Rk,1 +Rk,∞,

where the Bi’s are the Bernoulli numbers and f (l) denotes the lth derivative of

f . Using the same approximation as above for N(j), the first term can easily be

evaluated:

Rk,1 =−B1 (f(N(j)) + f(0)) =
1

2
sin

(
π

2(N + 1)
N(j)

)2k

'1

2
sin

(
π

2(N + 1)

2(N + 1) arcsin(lj)

π

)2k

=
1

2
l2kj .

The second term however needs numerous manipulations; first of all as Bl+1 = 0

for l even, we need only consider the case of l being odd. Setting c = π
2(N+1)

, we

find by induction over l that:

f (l)(n) =
k∑

m=1

(2m)lcl
(

2k
k−m

)
(−1)

l+1
2

+m sin(2mcx)

22k−1

=
2lcl

22k−1
(−1)

l+1
2

k∑
m=1

ml

(
2k

k −m

)
(−1)m sin(2mcx),

so that:

Rk,∞ =
∞∑
l=1

Bl+1

(l + 1)!
(f (l)(N(j))− f (l)(0)︸ ︷︷ ︸

=0

)

=
∞∑
l=1

Bl+1

(l + 1)!
f (l)(N(j))

=
∞∑
l=1

Bl+1

(l + 1)!

2lcl

22k−1
(−1)

l+1
2

k∑
m=1

ml

(
2k

k −m

)
(−1)m sin(2mcN(j)).
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Here we can interchange the sums and rearrange to obtain:

Rk,∞ =
k∑

m=1

∞∑
l=1

Bl+1

(l + 1)!

2lcl

22k−1
(−1)

l+1
2 ml

(
2k

k −m

)
(−1)m sin(2mcN(j))

=
1

22k−1

k∑
m=1

(
2k

k −m

)
(−1)m sin(2mcN(j))

∞∑
l=1

Bl+1

(l + 1)!
(2c)l(−1)

l+1
2 ml.

As:
∞∑
l=1

Bl+1

(l + 1)!
(2c)l(−1)

l+1
2 ml =

1

2

(
cot(cm)− 1

cm

)
,

we have

Rk,∞ =
1

22k

k∑
m=1

(
2k

k −m

)
(−1)m+1 sin(2mcN(j))

(
1

cm
− cot(cm)

)
. (3.7)

This expression is quite cumbersome and tedious to evaluate, but it is possible

to give a useful approximation. Setting ν = 2m and x = cN(j), the sine can be

expanded [1], formula 3.173 as:

sin (νx) = (−1)
ν
2
−1 cos(x)

{
2ν−1 sin(x)ν−1 − (ν−2)

1!
2ν−3 sin(x)ν−3 + (ν−3)(ν−4)

2!
2ν−5 sin(x)ν−5 · · ·

}
= (−1)

ν
2
−1 cos(x)

ν
2∑

µ=1

2ν−2µ+1 sin(x)ν−2µ+1

(
ν − µ

ν − 2µ+ 1

)
(−1)µ−1,

and by the consecutive changes of variables ν → 2m and m − µ + 1 → `, we

obtain:

sin (2mx) = cos(x)
m∑
`=1

22`−1 sin(x)2`−1

(
m+ `− 1

2`− 1

)
(−1)`+1.
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Approximating N(j) again as above, one has:

sin(x) = sin (cN(j))

' sin

(
π

2(N + 1)

2 (N + 1)

π
arcsin (lj)

)
= sin

(
arcsin b−j

)
= lj,

and

cos (cN(j)) ' cos (arcsin (lj)) =
√

1− l2j ,

so that:

sin (2mcN(j)) '
√

1− l2j
m∑
`=1

(2lj)
2`−1

(
m+ `− 1

2`− 1

)
(−1)`+1.

Furthermore, let us express 1
cm
− cot(cm) by its Taylor-series:

1

cm
− cot(cm) =

cm

3
+ O

(
(cm)3

)
In first order approximation, we can then write Equation 3.7 in the form:

Rk,∞ =
1

22k

k∑
m=1

(
2k

k −m

)
(−1)m+1

√
1− l2j

m∑
`=1

(2lj)
2`−1

(
m+ `− 1

2`− 1

)
(−1)`+1 cm

3

=
1

22k

k∑
m=1

k∑
`=1

(
2k

k −m

)
(−1)m+1

√
1− l2j (2lj)

2`−1

(
m+ `− 1

2`− 1

)
(−1)`+1 cm

3
.

(3.8)

Using the method of Iverson-bracketing, it is then possible to rearrange the sum-
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mation limits as to obtain:

Rk,∞ =
1

22k

∑
[1 ≤ m ≤ k][1 ≤ ` ≤ m]

(
2k

k −m

)√
1− l2j (2lj)

2`−1

(
m+ `− 1

2`− 1

)
(−1)m+`+2 cm

3

=
1

22k

∑
[1 ≤ ` ≤ m ≤ k]

(
2k

k −m

)√
1− l2j (2lj)

2`−1

(
m+ `− 1

2`− 1

)
(−1)m+` cm

3

=
1

22k

k∑
`=1

k∑
m=`

(−1)`
√

1− l2j (2lj)
2`−1 c

3

(
2k

k −m

)(
m+ `− 1

2`− 1

)
(−1)mm

=
1

22k

k∑
`=1

(−1)`
√

1− l2j (2lj)
2`−1 c

3

k∑
m=`

(−1)m
(

2k

k −m

)(
m+ `− 1

2`− 1

)
m

=
1

22k

k∑
`=1

(−1)`
√

1− l2j (2lj)
2`−1 c

3
S,

with

S :=
k∑

m=`

(−1)m
(

2k

k −m

)(
m+ `− 1

2`− 1

)
m.

Expanding (
m+ `− 1

2`− 1

)
m =

∏̀
µ=1

m2 − (µ− 1)2

(2`− 1)!
,

S can be written as:

S =
k∑

m=`

(−1)m
(

2k

k −m

)(
m+ `− 1

2`− 1

)
m

=
k∑

m=`

(−1)m
(

2k

k −m

)∏̀
µ=1

m2 − (µ− 1)2

(2`− 1)!
,
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or, as ∀m < ` :
(
m+`−1

2`−1

)
= 0:

S =
k∑

m=1

(−1)m
(

2k

k −m

)∏̀
µ=1

m2 − (µ− 1)2

(2`− 1)!

=
k∑

m=1

(−1)m
∏̀
µ=1

m2 − (µ− 1)2

(2`− 1)!

(
2k

k −m

)

=
1

2

k∑
m=1

(−1)m
∏̀
µ=1

m2 − (µ− 1)2

(2`− 1)!

((
2k

k −m

)
+

(
2k

k +m

))
,

since
(

2k
k−i

)
=
(

2k
k+i

)
. By rearranging terms and reindexing:

S =
1

2

∑
−k≤m≤k, m6=0

(−1)m
∏̀
µ=1

m2 − (µ− 1)2

(2`− 1)!

(
2k

k +m

)

=
1

2

∑
−k≤m≤k

(−1)m
∏̀
µ=1

m2 − (µ− 1)2

(2`− 1)!

(
2k

k +m

)
,

as ∏̀
µ=1

m2 − (µ− 1)2

(2`− 1)!
= 0 for m = 0.

Reindexing again using ν = k +m then leads to:

S =
1

2
(−1)k

2k∑
ν=0

(−1)ν
∏̀
µ=1

(ν − k)2 − (µ− 1)2

(2`− 1)!

(
2k

ν

)
.

Now, for any polynomial P2k(ν) of degree d in ν,
∑

0≤ν≤2k(−1)νP2k(ν)
(

2k
ν

)
will

vanish if 2k exceeds d. Indeed, P2k can be expressed as a linear combination

of the first d + 1 of the basis polynomials 1, ν,
(
ν
2

)
, . . . ,

(
ν
p

)
, . . . , with coefficients
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which are polynomials in 2k, and then, for each p = 0, . . . , d:

2k∑
ν=0

(−1)ν
(
ν

p

)(
2k

ν

)
=

(
2k

p

) 2k∑
ν=p

(−1)ν
(

2k − p
ν − p

)
=

(
2k

p

)
(−1)p(1− 1)2k−p

= 0,

by the trinomial revision identity and furthermore by the binomial theorem. In

the case under consideration here, we have d = 2`, so the sum will vanish whenever

2k > 2`, i.e., k > `.

Thus, in S only the term with m = ` = k remains, so that:

S =
k∑

m=`

(−1)m
(

2k

k −m

)(
m+ `− 1

2`− 1

)
m = (−1)k

(
2k

0

)(
2k − 1

2k − 1

)
k = (−1)kk

and hence as S = 0 for l < k,

Rk,∞ =
1

22k

k∑
`=1

(−1)`
√

1− l2j (2lj)
2`−1 c

3
S

=
1

22k

k−1∑
`=1

(−1)`
√

1− l2j (2lj)
2`−1 c

3
S︸ ︷︷ ︸

=0

+
1

22k
(−1)k

√
1− l2j (2lj)

2k−1 S

=
1

22k
(−1)2k

√
1− l2j (2lj)

2k−1 k
c

3

=
1

22k

√
1− l2j (2lj)

2k−1 k
c

3

=
1

22k

√
1− l2j (2lj)

2k−1 k
π

6 (N + 1)

=
1

2

√
1− l2j (lj)

2k−1 k
π

6 (N + 1)
,

as c = π
2(N+1)

.

Note that in the following order of approximation for 1
cm
−cot cm,

∏`
µ=1

m2−(µ−1)2

(2`−1)!

has to be replaced by
∏`

µ=1m
2m

2−(µ−1)2

(2`−1)!
, so that the polynomial P2k(ν) above is
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of degree d′ = d + 2, and thus the sum will only vanish for k > ` + 1. However,

this correction term tends very rapidly to zero and can thus safely be neglected.

The pseudo-traces in Equation (3.6) are hence given by:

ptr
(
Dk
)

=
m∑
j=0

ωj
(
l−2
j

)k (
4
K

m

)k N(j)∑
n=1

sin

(
πn

2 (N + 1)

)2k

=
m∑
j=0

ωj
(
l−2
j

)k (
4
K

m

)k2(N + 1)

π

l2k+1
j

√
1− l2j

2k + 1
· 2F1

(
1, k + 1

k + 3
2

∣∣∣∣∣ l2j
)

+
1

2
l2kj +

1

2

√
1− l2j (lj)

2k−1 k
π

6 (N + 1)

)

=

(
4
K

m

)k m∑
j=0

ωj

2(N + 1)

π

lj
√

1− l2j
2k + 1

· 2F1

(
1, k + 1

k + 3
2

∣∣∣∣∣ l2j
)

+
1

2
+

1

2

√
1− l2j (lj)

−1 k
π

6 (N + 1)

)

=

(
4
K

m

)k m∑
j=0

ωj

2(N + 1)

π

lj
√

1− l2j
2k + 1

· 2F1

(
1, k + 1

k + 3
2

∣∣∣∣∣ l2j
)

+

(
4
K

m

)k m∑
j=0

ωj

(
1

2
+

1

2

√
1− l2j (lj)

−1 k
π

6 (N + 1)

)
. (3.9)

Before treating the important case of Minkowski-measurable chains, it seems

appropriate to reconsider the two standard examples already used in the previous

section for illustration.
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3.2.3.1 Example 1: Generalised Cantor chains

For generalised Cantor chains with parameters a and b, the pseudo-traces are

obtained as:

ptr
(
Dk
)

=

(
4
K

m

)k m∑
j=0

ωj

2(N + 1)

π

lj
√

1− l2j
2k + 1

· 2F1

(
1, k + 1

k + 3
2

∣∣∣∣∣ l2j
)

+

(
4
K

m

)k m∑
j=0

ωj

(
1

2
+

1

2

√
1− l2j (lj)

−1 k
π

6 (N + 1)

)

=

(
4
K

m

)k m∑
j=0

aj

(
2(N + 1)

π

b−(j+1)
√

1− b−2(j+1)

2k + 1
· 2F1

(
1, k + 1

k + 3
2

∣∣∣∣∣ b−2(j+1)

))

+

(
4
K

m

)k m∑
j=0

aj
(

1

2
+

1

2

√
1− b−2(j+1)

(
b−(j+1)

)−1
k

π

6 (N + 1)

)
:= W +R

We can give upper bounds for the ”Weyl”-term W by using Corollary (3.6). As:

√
1− l2j 2F1

(
1, k + 1

k + 3
2

∣∣∣∣∣ l2j
)
≤
√
πΓ(k + 1

2
)

2Γ(k + 1)
(2k + 1) ,

it is bounded by:

W =

(
4
K

m

)k m∑
j=0

aj

(
2(N + 1)

π

b−(j+1)
√

1− b−2(j+1)

2k + 1
· 2F1

(
1, k + 1

k + 3
2

∣∣∣∣∣ b−2(j+1)

))

≤
(

4
K

m

)k m∑
j=0

aj
(

2(N + 1)

π

b−(j+1)

2k + 1

√
πΓ(k + 1

2
)

2Γ(k + 1)
(2k + 1)

)

=

(
4
K

m

)k
(N + 1)

π

√
πΓ(k + 1

2
)

Γ(k + 1)

m∑
j=0

ajb−(j+1)

=

(
4
K

m

)k
(N + 1)

π

√
πΓ(k + 1

2
)

Γ(k + 1)

(
a
b

)m+1 − 1

a− b
.
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Furthermore, as
√

1− b2(j+1) ≤ 1, the second term R may be bounded by:

R =

(
4
K

m

)k m∑
j=0

aj
(

1

2
+

1

2

√
1− b−2(j+1)

(
b−(j+1)

)−1
k

π

6 (N + 1)

)

≤
(

4
K

m

)k m∑
j=0

aj
(

1

2
+

1

2

(
b−(j+1)

)−1
k

π

6 (N + 1)

)

=

(
4
K

m

)k(
am+1 − 1

2 (a− 1)
+

kπ

12(N + 1)

b
(
(ab)m+1 − 1

)
ab− 1

)
.

Thus, an upper bound for the pseudo-traces is given by:

ptr
(
Dk
)
≤
(

4
K

m

)k(
N + 1

π

√
πΓ(k + 1

2
)

Γ(k + 1)

(
a
b

)m+1 − 1

a− b

+
am+1 − 1

2 (a− 1)
+

kπ

12(N + 1)

b
(
(ab)m+1 − 1

)
ab− 1

)
.

This expression is still quite inaccessible. However, substituting its first order

approximation for N + 1 = dπ
2

1

arcsin(b−(m+1))
e+ 1 7−→ πbm+1

2
, there is a substantial

gain in transparency:

ptr
(
Dk
)
≤
(

4
K

m

)k( πbm+1

2

π

√
πΓ(k + 1

2
)

Γ(k + 1)

(
a
b

)m+1 − 1

a− b

+
am+1 − 1

2 (a− 1)
+

kπ

12(πb
m+1

2
)

b
(
(ab)m+1 − 1

)
ab− 1

)

≈
(

4
K

m

)k√πΓ(k + 1
2
)

2Γ(k + 1)

bm+1
((

a
b

)m+1 − 1
)

a− b

+
am+1 − 1

2 (a− 1)
+
k

6

(ab)m+1 − 1

bm (ab− 1)

)

=

(
4
K

m

)k (√πΓ(k + 1
2
)

2Γ(k + 1)

am+1 − bm+1

a− b
+
am+1 − 1

2 (a− 1)
+
k

6

bam+1 − b−m

ab− 1

)
.

Recalling that an+1−bn+1 = (a−b)
∑n

i=0 a
(n−i)bi, it is now easy to see that the first

term is O (bm) and the remaining terms O (am). Alternatively, we can state that
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the ”Weyl”-term is O (N) and the remainder terms are O
(
NdM

)
, as for a gener-

alised Cantor chain we have dM = ln(a)
ln(b)
⇔ a = bdM and N = dπ

2
1

arcsin(b−(m+1))
e =

O(bm+1).

3.2.3.2 Example 2: The a-chain

Recall that for the a-chain, the lengths are given by lj = j−a − (j + 1)−a, with

j = 1 . . .∞, and the multiplicities are always ωj = 1. Thus the pseudo-traces are

given by:

ptr
(
Dk
)

=

(
4
K

m

)k m∑
j=1

ωj

2(N + 1)

π

lj
√

1− l2j
2k + 1

· 2F1

(
1, k + 1

k + 3
2

∣∣∣∣∣ l2j
)

+

(
4
K

m

)k m∑
j=1

ωj

(
1

2
+

1

2

√
1− l2j (lj)

−1 k
π

6 (N + 1)

)

=

(
4
K

m

)k m∑
j=1

2(N + 1)

π

lj
√

1− l2j
2k + 1

· 2F1

(
1, k + 1

k + 3
2

∣∣∣∣∣ l2j
)

+

(
4
K

m

)k m∑
j=1

(
1

2
+

1

2

√
1− l2j (lj)

−1 k
π

6 (N + 1)

)
:= W +R.

Using again Corollary (3.6), the ”Weyl”-term W can easily be bounded. Indeed:

W =

(
4
K

m

)k m∑
j=1

2(N + 1)

π

lj
√

1− l2j
2k + 1

· 2F1

(
1, k + 1

k + 3
2

∣∣∣∣∣ l2j
)

≤
(

4
K

m

)k m∑
j=1

(
2(N + 1)

π

lj
2k + 1

√
πΓ(k + 1

2
)

2Γ(k + 1)
(2k + 1)

)

=

(
4
K

m

)k
2(N + 1)

π

√
πΓ(k + 1

2
)

2Γ(k + 1)

m∑
j=1

lj

≤
(

4
K

m

)k
2(N + 1)

π

√
πΓ(k + 1

2
)

2Γ(k + 1)
,
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as
∑m

j=1 lj ≤ 1 by the definition of the a-chain. In order to give an upper bound

for the remaining terms, we will again use the fact that
√

1− l2j ≤ 1, such that:

R =

(
4
K

m

)k m∑
j=1

(
1

2
+

1

2

√
1− l2j (lj)

−1 k
π

6 (N + 1)

)

≤
(

4
K

m

)k m∑
j=1

(
1

2
+

1

2
(lj)

−1 k
π

6 (N + 1)

)

≤
(

4
K

m

)k(
1

2
m +

1

6
k

m∑
j=1

(
(lj)

−1 π

2 (N + 1)

))
.

For clarity, it is possible to substitute again its first order approximation for

N + 1 = dπ
2

1
arcsin(lm)

e+ 1 7−→ πl−1
m

2
, such that:

W ≤
(

4
K

m

)k
2(N + 1)

π

√
πΓ(k + 1

2
)

2Γ(k + 1)

≈
(

4
K

m

)k 2(πl
−1
m

2
)

π

√
πΓ(k + 1

2
)

2Γ(k + 1)

=

(
4
K

m

)k
l−1
m

√
πΓ(k + 1

2
)

2Γ(k + 1)
,

and

R ≤
(

4
K

m

)k(
1

2
m +

1

6
k

m∑
j=1

(
(lj)

−1 π

2 (N + 1)

))

≈
(

4
K

m

)k1

2
m +

1

6
k

m∑
j=1

(lj)
−1 π

2
(
πl−1

m

2

)


=

(
4
K

m

)k(
1

2
m +

1

6
k

m∑
j=1

lm
lj

)
.
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Now, as the sequence of lengths is decreasing, i.e., lm ≤ lj ⇔ lm
lj
≤ 1, we have:

R ≈
(

4
K

m

)k(
1

2
m +

1

6
k

m∑
j=1

lm
lj

)

≤
(

4
K

m

)k(
1

2
m +

1

6
k

m∑
j=1

1

)

=

(
4
K

m

)k (
1

2
m +

1

6
km

)
=

(
4
K

m

)k
k + 3

6
m.

It should be noted that although not being the best possible upper bound, it is

sufficiently accurate to illustrate the example. Hence, we have for the pseudo-

traces:

ptr
(
Dk
)

= W +R

≤
(

4
K

m

)k (
l−1
m

√
πΓ(k + 1

2
)

2Γ(k + 1)
+
k + 3

6
m

)
.

As the a-chain is Minkowski-measurable and as ωj = 1 ⇒ `j = lj, we have by

Remark (2.12):

lj ∼ Lj
− 1
dM

⇒ lm ∼ Lm
− 1
dM

⇔ m ∼ LdM
(
l−1
m

)dM .
Finally, taking into account that N = O (l−1

m ), it becomes obvious that again the

first term in the expression for the bound of the pseudo-traces is O (N), while the

remainder term is O
(
NdM

)
, as was to be expected.

3.2.3.3 Minkowski-measurable chains

In the previous example, we used the Minkowski-measurability of the a-chain in

order to get a neat expression allowing us to study the asymptotic behaviour of its
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pseudo-traces. However, the a-chain is just one example of Minkowski-measurable

chains. Because of the importance of this class of fractal chains, we will try a

more in-depth exploration in the following. As before, the starting point for our

subsequent study of Minkowski-measurable chains are their pseudo-traces given

by Equation (3.9):

ptr
(
Dk
)

=

(
4
K

m

)k m∑
j=0

ωj

2(N + 1)

π

lj
√

1− l2j
2k + 1

· 2F1

(
1, k + 1

k + 3
2

∣∣∣∣∣ l2j
)

+

(
4
K

m

)k m∑
j=0

ωj

(
1

2
+

1

2

√
1− l2j (lj)

−1 k
π

6 (N + 1)

)
:= W +R.

The ”Weyl”-term W can again be bounded using Corollary (3.6):

W =

(
4
K

m

)k m∑
j=1

ωj

2(N + 1)

π

lj
√

1− l2j
2k + 1

· 2F1

(
1, k + 1

k + 3
2

∣∣∣∣∣ l2j
)

≤
(

4
K

m

)k m∑
j=1

ωj

(
2(N + 1)

π

lj
2k + 1

√
πΓ(k + 1

2
)

2Γ(k + 1)
(2k + 1)

)

=

(
4
K

m

)k
2(N + 1)

π

√
πΓ(k + 1

2
)

2Γ(k + 1)

m∑
j=1

ωjlj

=

(
4
K

m

)k
2(N + 1)

π

√
πΓ(k + 1

2
)

2Γ(k + 1)
vol1(L),

where vol1(L) is simply the total length of the fractal chain. Using the same

approach as in the previous section, i.e. approximating
√

1− l2j ≤ 1 and N +1 =
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dπ
2

1
arcsin(lm)

e+ 1 7−→ πl−1
m

2
, the second term may be bounded by:

R =

(
4
K

m

)k m∑
j=0

ωj

(
1

2
+

1

2

√
1− l2j (lj)

−1 k
π

6 (N + 1)

)

≤
(

4
K

m

)k m∑
j=0

ωj

(
1

2
+

1

2
(lj)

−1 k
π

6πl
−1
m

2

)

=

(
4
K

m

)k m∑
j=0

ωj

(
1

2
+

1

2

k

3

lm
lj

)
.

Finally, the sequence of lengths is decreasing, lj ≥ lm ⇔ lm
lj
≤ 1, such that:

R ≤
(

4
K

m

)k m∑
j=0

ωj

(
1

2
+

1

2

k

3

)

=

(
4
K

m

)k
3 + k

6

m∑
j=0

ωj

=

(
4
K

m

)k
3 + k

6
NL

(
l−1
m

)
,

by the definition of the geometric counting function NL (x). Hence the pseudo-

traces admit an upper bound:

ptr
(
Dk
)

= W +R

≤
(

4
K

m

)k (
2(N + 1)

π

√
πΓ(k + 1

2
)

2Γ(k + 1)
vol1(L) +

3 + k

6
NL

(
l−1
m

))
,

where the ”Weyl”-term is O (N) = O (l−1
m ) and from our results for the a-chain, we

expect the remaining terms to be O
(
NdM

)
. Indeed, by Remark (2.12), NL (l−1

m ) =

O
(
l−dMm

)
= O

(
NdM

)
, as L is Minkowski-measurable. From this, it is possible to

deduce the following two theorems:

Theorem 3.8. A fractal string L is Minkowski-measurable if and only if:

NL

(
l−1
m

)
= Cm + o (m)
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and

R =

(
4
K

m

)k m∑
j=0

ωj

(
1

2
+

1

2

√
1− l2j (lj)

−1 k
π

6 (N + 1)

)
= O

(
NdM

)
,

for m→∞.

Proof. Let us first recall that the following are equivalent:

1. L is Minkowski-measurable.

2. limj→∞ ljj
1
dM = L, respectively lj = Lj

− 1
dM + o

(
j
− 1
dM

)
, as j →∞.

3. limx→∞
NL(x)

xdM
= c, respectively NL = cxdM + o

(
xdM

)
, as x→∞.

”⇒”

If L is minkowski-measurable, then by point 3. above:

lim
x→∞

NL (x)

xdM
= c

⇒ lim
m→∞

NL (l−1
m )(

l−1
m

)dM = c

⇔ lim
m→∞

NL (l−1
m )m−1(

l−1
m

)dM m−1
= c.

By point 2. above and the power rule, the limit:

lim
m→∞

ldMm m = LdM

⇔ lim
m→∞

(
l−1
m

)dM m−1 = L−dM ,

exists and is different from zero, such that by the quotient rule:

lim
m→∞

NL (l−1
m )m−1(

l−1
m

)dM m−1
= c

⇔ lim
m→∞

NL

(
l−1
m

)
m−1 = c lim

m→∞

(
l−1
m

)dM m−1

⇔ lim
m→∞

NL

(
l−1
m

)
m−1 = cL−dM = C.
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Thus:

NL

(
l−1
m

)
= Cm + o (m) ,

for m→∞.

”⇐”

Assume that the remainder term:

R =

(
4
K

m

)k m∑
j=0

ωj

(
1

2
+

1

2

√
1− l2j (lj)

−1 k
π

6 (N + 1)

)
= O

(
NdM

)
,

then

NL

(
l−1
m

)
= O

(
NdM

)
,

and as

NdM ≈
(
πl−1

m

2

)dM
,

we have:

NL

(
l−1
m

)
= O

(
ldMm
)

⇔ lim
m→∞

NL (l−1
m )

ldMm
= c̃ 6= 0

⇔ lim
m→∞

ldMm
NL

(
l−1
m

) =
1

c̃
.

Thus:

lim
m→∞

m−1l−dMm = lim
m→∞

(
NL (l−1

m )

m

ldMm
NL

(
l−1
m

)) .
As limm→∞

NL(l−1
m )

m
= C exists, we have by the product rule:

lim
m→∞

m−1l−dMm = lim
m→∞

NL (l−1
m )

m
lim
m→∞

ldMm
NL

(
l−1
m

) = C
1

c̃
= L−dM ,

or equivalently:

lim
m→∞

ldMm m = LdM ,

which completes the proof.
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If we have no information on the behaviour of the remainder term R, it is still

possible to formulate a slightly weaker version of the theorem above:

Theorem 3.9. The geometric counting function of a fractal string L is given by:

NL

(
l−1
m

)
h(m) = Cmf(m) + o (m) ,

with

lim
m→∞

log(f(m))

log(m)
= 0

and

lim
m→∞

log(h(m))

log(m)
= 0

if and only if

lmg(lm) = L (mf(m))
− 1
dM + o

(
m
− 1
dM

)
,

with

lim
lm→0

log(g(lm))

log( lm
2

)
= 0

for m→∞.

Proof. ”⇒”

Recall that the Minkowski-dimension dM of the fractal string L is given by

dM = 1− lim
ε→0

log V (ε)

log ε

⇔1− dM = lim
ε→0

log V (ε)

log ε
,

where V (ε) denotes the ε-neighbourhood of the boundary of L, which may be

expressed as:

V (ε) =
∑
j:lj≥2ε

2ε+
∑
j:lj<2ε

lj = 2ε ·NL

(
1

2ε

)
+
∑
j:lj<2ε

lj.
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. Setting 2ε = lm, we have:

V

(
lm
2

)
=
lm
2
· 2NL

(
l−1
m

)
+
∑
j:lj<lm

lj,

and thus

1− dM = lim
lm→0

log
(
lm
2
· 2NL (l−1

m ) +
∑

j:lj<lm
lj

)
log
(
lm
2

)
⇔1− dM = lim

lm→0

log
(
lm
2
·
(

2NL (l−1
m ) + 2

∑
j:lj<lm

lj
lm

))
log
(
lm
2

)
⇔1− dM = lim

lm→0

log
(
lm
2

)
+ log

(
2NL (l−1

m ) + 2
∑

j:lj<lm

lj
lm

)
log
(
lm
2

)
⇔1− dM = lim

lm→0

1 +
log
(

2NL (l−1
m ) + 2

∑
j:lj<lm

lj
lm

)
log
(
lm
2

)


⇔1− dM = 1 + lim
lm→0

log
(

2NL (l−1
m ) + 2

∑
j:lj<lm

lj
lm

)
log
(
lm
2

)
⇔− dM = lim

lm→0

log
(

2NL (l−1
m ) + 2

∑
j:lj<lm

lj
lm

)
log
(
lm
2

)
⇔1 = lim

lm→0

log
(

2NL (l−1
m ) + 2

∑
j:lj<lm

lj
lm

)
(−dM) log

(
lm
2

)
⇔1 = lim

lm→0

log
(

2NL (l−1
m ) + 2

∑
j:lj<lm

lj
lm

)
log
((

lm
2

)−dM) .

Now as the sequence of lengths is decreasing, we have lj > lm for every j < m

and thus the second term in the numerator above:

2
∑
j:lj<lm

lj
lm

= 0,

66



so that:

lim
lm→0

log
(

2NL (l−1
m ) + 2

∑
j:lj<lm

lj
lm

)
log
((

lm
2

)−dM) = 1

⇔ lim
lm→0

log (2NL (l−1
m ))

log
((

lm
2

)−dM) = 1. (3.10)

From this we can deduce that:

lim
lm→0

2NL (l−1
m ) h (lm)(

lm
2

)−dM = 1

⇔ lim
lm→0

(
lm
2

)dM
2NL

(
l−1
m

)
h (lm) = 1

⇔ lim
lm→0

21−dM ldMm NL

(
l−1
m

)
h (lm) = 1

with:

lim
lm→0

log (h (lm))

log
((

lm
2

)−dM) = 0.

Then, by the assumption of the theorem:

lim
m→∞

m−1NL

(
l−1
m

)
= Cf(m),

and noting that as lm → 0, m→∞, we have

lim
m→∞

21−dM ldMm NL

(
l−1
m

)
h (lm) = 1

⇔ lim
m→∞

21−dM ldMm mm−1NL

(
l−1
m

)
h (lm) = 1

⇔ lim
m→∞

21−dM ldMm mCf(m)h (lm) = 1.

Putting:

g(m) = (h(m))−dM

⇔h(m) = (g(m))dM ,
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we obtain that:

lim
m→∞

21−dM ldMm mCf(m)h (lm) = 1

⇔ lim
m→∞

21−dM ldMm mCf(m) (g (lm))dM = 1

⇔ lim
m→∞

21−dM (lmg (lm))dM mCf(m) = 1

and finally:

lim
m→∞

(lmg (lm))dM mf(m) =
2dM−1

C

⇔ lim
m→∞

lmg (lm) (mf(m))
1
dM =

(
2dM−1

C

) 1
dM

⇔ lim
m→∞

lmg (lm) (mf(m))
1
dM = L

⇔lmg (lm) = L (mf(m))
1
−dM + o

(
m
− 1
dM

)
.

”⇐”

Assume that:

lim
m→∞

lmg (lm) (mf(m))
1
dM = L

⇔ lim
m→∞

1

L
lmg (lm) (mf(m))

1
dM = 1,

then, as m→∞, lm → 0:

log

(
lim
lm→0

1

L
lmg (lm) (mf(m))

1
dM

)
= 0

⇒ lim
lm→0

log

(
1

L
lmg (lm) (mf(m))

1
dM

)
= 0

⇔ lim
lm→0

(
log

(
1

L

)
+ log (lm) + log (g(lm)) +

1

dM
log (m) +

1

dM
log (f (m))

)
= 0

⇔ lim
lm→0

(
log

(
lm
2

)(
log
(

1
L

)
log
(
lm
2

) +
log (lm)

log
(
lm
2

) +
log (g(lm))

log
(
lm
2

) +
1

dM

log (m)

log
(
lm
2

) +
1

dM

log (f (m))

log
(
lm
2

) )) = 0,

68



and as log
(
lm
2

)
is unbounded:

lim
lm→0

(
log

(
lm
2

)(
log
(

1
L

)
log
(
lm
2

) +
log (lm)

log
(
lm
2

) +
log (g(lm))

log
(
lm
2

) +
1

dM

log (m)

log
(
lm
2

) +
1

dM

log (f (m))

log
(
lm
2

) )) = 0

⇒ lim
lm→0

(
log
(

1
L

)
log
(
lm
2

) +
log (lm)

log
(
lm
2

) +
log (g(lm))

log
(
lm
2

) +
1

dM

log (m)

log
(
lm
2

) +
1

dM

log (f (m))

log
(
lm
2

) ) = 0.

Furthermore, as:

lim
lm→0

(
log
(

1
L

)
log
(
lm
2

)) = 0,

lim
lm→0

(
log (lm)

log
(
lm
2

)) = 1

and as by the assumption of the theorem:

lim
lm→0

(
1

dM

log (g (lm))

log
(
lm
2

) ) = 0,

we have

lim
lm→0

(
1 +

1

dM

log (m)

log
(
lm
2

) +
1

dM

log (f (m))

log
(
lm
2

) ) = 0

⇔ lim
lm→0

(
− 1

dM

log (mf (m))

log
(
lm
2

) )
= 1

⇔ lim
lm→0

 log (mf (m))

log
((

lm
2

)−dM)
 = 1.

We already know by Equation (3.10) that:

lim
lm→0

log (2NL (l−1
m ))

log
((

lm
2

)−dM) = 1
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and hence, using again that m→∞, lm → 0:

lim
lm→0

(
log(2NL(l−1

m ))
log

(
( lm2 )

−dM
)
)

(
log(mf(m))

log
(
( lm2 )

−dM
)
) = 1

⇔ lim
m→∞

log (2NL (l−1
m ))

log (mf (m))
= 1,

from which we can deduce that:

lim
m→∞

2NL (l−1
m )h(m)

mf (m)
= 1,

respectively

NL

(
l−1
m

)
h(m) = Cmf(m) + o (m) ,

with:

lim
m→∞

log (h(m))

log (mf (m))
= 0

⇔ lim
m→∞

log (h(m))

log (m) + log (f (m))
= 0

⇔ lim
m→∞

log (h(m))

log (m)
(

1 + log(f(m))
log(m)

) = 0.

⇒ lim
m→∞

log (h(m))

log (m)
= 0,

as:

lim
m→∞

log(f(m))

log(m)
= 0,

which completes the proof.

The two theorems above provide a new characterisation of Minkowski-measurability

through the methods developed in this thesis. Furthermore, as already stated in

the overview, we thereby obtain a more precise statement concerning the mul-

tiplicities of lengths of a Minkowski-measurable string than the one previously

obtained by M.L. Lapidus and C. Pomerance in [78].
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Chapter 4

Interlude

As pointed out before, the case of the fractal strings respectively fractal chains

investigated in the preceeding chapters may appear a bit artificial. Indeed, such

a fractal string may as well be represented as a “fractal harp” [74], as shown in

Figure 4.1, thereby emphasizing the disconnectedness of the underlying set.

Figure 4.1: An approximation to the triadic Cantor string and the corresponding
harp
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From a physical viewpoint, the transition from fractal strings to fractal chains

is then simply a discretisation of the constituting strings with a constant linear

density % = m
`

to a system with lumped masses coupled by massless springs

(Figure 4.2).

Figure 4.2: The transition from a fractal string (left) to a fractal chain (right)

One may now wonder what happens if one releases the conditions on the nodes

(i.e. the boundary of the set) by allowing the masses placed at these nodes to be

finite.

Figure 4.3: From a fractal chain (left) to a fractal-layered chain (right)

The case shown at the right of Figure 4.3 has been treated to some extent, at

least numerically in [22] and in [23]. As visualised in Figure 4.4, it appears that
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a further modified version of this configuration is related to measure geometric

operators, a relationship to be explored in detail in the next chapter.

Figure 4.4: The mass distribution of an approximation of a fractal-layered chain
(red) compared to that of a measure geometric chain (black)
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Chapter 5

Measure geometric fractal chains

Measure geometric fractal chains arise from a different context than those treated

in the preceeding chapters. However, it is also possible in this case to develop a

physical model that may be described in terms of dynamic matrices. In this frame-

work, the techniques presented earlier appear useful and a few results thereby

obtained are included here.

5.1 Preliminaries

Although the involved fractals are very similar or even the same as those already

considered, the underlying approach is quite different (see for example [16, 19, 34,

37, 39–43, 45, 46, 54, 60, 86, 90, 91, 102–105, 114] and the references contained

therein), so that it is necessary to state several already known results on the

subject beforehand. The material presented in this section is compiled from

[37, 38, 44]. Consider generalised second order differential operators of the form

Aµ = d
dµ

d
dx

, where µ is a finite atomless Borel measure on [0, 1] which is compactly

supported on L := supp µ ⊂ [0, 1] with {0, 1} ∈ L. This operator may be

interpreted as a measure geometric Laplacian with properties analogous to those

of a standard Euclidean Laplacian. Denote by L2([0, 1], dx) the Hilbert space of

all real-valued and square-integrable functions on the interval [0, 1]. The Sobolev
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space W 1,2[0, 1] is then given by:

W 1,2[0, 1] :={
f : [0, 1]→ R | ∃f ′ ∈ L2([0, 1], dx) | f (x) = f (0) +

∫ x

0

f ′ (y) dy, x ∈ [0, 1]

}
Note that for any f ∈ W 1,2[0, 1], f ′ is called the weak derivative of f . The

second derivative is then defined by repeating this construction with respect to

the measure µ instead of the Lebesgue measure. Let L2(L, dµ) denote the Hilbert

space of all square µ-integrable functions on L. By setting

D (Aµ) :={
f ∈ W 1,2[0, 1] | ∃f ′′ ∈ L2(L, dµ) | f ′ (x) = f ′ (0) +

∫ x

0

f ′′ (y) dµ (y) , x ∈ [0, 1]

}
,

(5.1)

we can define the operator Aµ = d
dµ

d
dx

on D (Aµ) by:

Aµf =
d

dµ

(
df

dx

)
:=

f ′′ on L

0 everywhere else,

where f ′′ is given by Equation (5.1) above.

In the following, we will only consider Dirichlet boundary conditions, i.e. the

restriction Aµ
D of Aµ on D (Aµ

D) := {f ∈ D (Aµ) | f(0) = f(1) = 0}. The

operator Aµ
D is then a negative symmetric operator on L2(L, dµ) and we can

consider the eigenvalue problem:

−Aµ
Df = λf , with f ∈ D (Aµ

D) .

In the self-similar case, i.e. if L ⊂ [0, 1] is the attractor of an IFS with contractions

S = {[0, 1];S1, . . . , Sm}, m ≥ 2 as defined in Definition 2.2, and if for any Borel

set A in [0, 1], the Borel probability measure µ satisfies

µ (A) =
m∑
i=1

%iµ
(
S−1
i (A)

)
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for a given m-dimensional vector of weights % = (%1, . . . , %m), where %i ∈ R+ and∑m
i=1 %i = 1, then it holds that:

Nµ
D (x) � xγ, as x→∞ (5.2)

for the eigenvalue counting function Nµ
D (x) := #{k ∈ N | λk ≤ x}, x > 0, defined

in a way analogous to Definition (2.17), with the spectral exponent γ being the

unique solution of

m∑
i=1

(%iri)
γ = 1, (5.3)

where the ri are the scaling ratios of the contractions Si, i = 1 . . .m.

Remark 5.1. If the weights %i are chosen such that %i = rdi , for i = 1, . . . ,m,

where d denotes the Hausdorff dimension (which, in the self-similar case, is iden-

tical to the Minkowski dimension) of L = supp µ, then µ is simply the normalised

Hausdorff measure on L and the spectral exponent is given by γ = d
d+1

.

Furthermore, by applying the renewal theorem, it is possible to establish the

following theorem:

Theorem 5.2. Under the assumptions made above, two cases are to be distin-

guished for the asymptotic behaviour of the eigenvalue counting function Nµ
D (x)

as x tends to infinity:

• The non-arithmetic case:

If the additive group
∑m

i=1 Zlog (%iri) is a dense subset of R, then Nµ
D (x)x−γ

converges as x→∞.

• The arithmetic case:

If
∑m

i=1 Zlog (%iri) belongs to a discrete subgroup of R, i.e. if
∑m

i=1 Zlog (%iri) =

hZ for some h ∈ R, then

Nµ
D (x) = (G (lnx) + o (1))xγ, as x→∞

holds, where G is a positive, T -periodic function and T the positive generator

of the subgroup.
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Remark 5.3. It must be noted that convergence of Nµ
D (x)x−γ as x→∞ does not

necessarily imply the non-arithmetic case. Indeed, even in the arithmetic case,

the function G may be a constant function and thus the limit limx→∞N
µ
D (x) can

also exist in this case.

5.2 A physical interpretation

It is possible to give a physical interpretation of the generalised second order

differential equations described in the preceeding section (see for example [60]

or [5]). In order to do this, we start with the well known one-dimensional wave

equation for a string fixed at its endpoints a and b, given as:

∂2u(x, t)

∂x2
=
ρ(x)

FT

∂2u(x, t)

∂t2
, with u(a, t) = u(b, t) = 0,

where u(x, t) is the displacement of the string at the point x ∈ [a, b] at time

t ∈ [0,∞), ρ : [a, b] → [0,∞) the linear mass density (mass distribution) along

the string and FT the constant tension of the string. This differential equation

can be solved by the method of separation of variables if we make the ansatz

u(x, t) = v(x)w(t), so that:

v̈(x)w(t) =
ρ(x)

FT
v(x)ẅ(t)

or alternatively:
v̈(x)

ρ(x)v(x)
=

1

FT

ẅ(t)

w(t)
.

As this must hold for each x and t, both sides of the equation have to equal a

constant, denoted here by −λ, and thus we have for the left hand side:

v̈(x)

ρ(x)v(x)
= −λ,

respectively

v̈(x) = −λρ(x)v(x).
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We can now integrate this equation to obtain:

v̇(x)− v̇(a) = −λ
∫ x

a

v(y)ρ(y)dy

= −λ
∫ x

a

v(y)dµ(y),

with µ being the measure induced by the linear mass density ρ, so that dµ(y) =

ρ(y)dy. Using the concepts developed in the preceeding section, we can then state

the eigenvalue problem for the string in the form:

d

dµ
v̇ =

d

dµ

d

dx
v = Aµ

Dv = −λv,

respectively

−Aµ
Dv = λv.

5.3 A physical model

The question now arises on how the kind of string described by a fractal measure

could be approximated. We will solve the model following the pioneering works

of F.P. Gantmacher and M.G. Krein [48], translated in [50]. For this we consider

massless strings of length l loaded with N beads, obtained according to the con-

struction rules of the corresponding fractal set, as shown in Figure 5.1. At each

level of approximation j, the configuration of the beads induces a measure µj

that is not atomless, but as the total mass is kept constant, these measures will

tend to the desired atomless measure µ.

It must be noted, that this is not the best possible approximation in terms of

the resulting quantisation error (see for example [52, 62]). Indeed the best ap-

proximation assigns to each midpoint of the basic intervals of order j a mass 2−j

instead of the masses 2−j−1 assigned to the two endpoints of these same intervals

by the model used here. However, the chosen procedure has the advantage of

showing the relationship to the type of fractal chains treated in the preceeding

chapters most clearly.
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Figure 5.1: The first three iterations of a beaded string loaded according to the
classical Cantor set construction

Now, let ui(t) denote the transverse displacement of the mass mi at the instant

t. Then the formulas for the kinetic and potential energy of this string under

constant tension σ take the form

T =
N∑
i=0

mi

2
u̇2
i

and

V =
σ

2

N∑
i=0

1

li
(ui+1 − ui) ,

where li denotes the distance between the masses mi and mi+1. Moreover, we

have y0 = yN = 0 under Dirichlet boundary conditions. We can expand V to

obtain

V =
N∑
i=1

σ

2

(
1

li−1

+
1

li

)
u2
i − 2

N−1∑
i=1

σ

2

(
1

li

)
uiui+1.

Notice that T and V fit the template of a Sturm system:

T =
N∑
i=0

ciu̇
2
i
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and

V =
N∑
i=1

aiu
2
i − 2

N−1∑
i=1

biuiui+1

with coefficients:

ai =
σ

2

(
1

li−1

+
1

li

)
, (5.4)

bi =
σ

2

(
1

li

)
(5.5)

and

ci =
mi

2
,

from which we can build the mass matrix M:

M =


c1

. . .

cn


and the stiffness matrix K:

K =


a1 −b1

−b1 a2
. . .

. . . . . . −bn−1

−bn−1 an

 .

The Euler-Lagrange equations describe the evolution of this system according to

the differential equation:

Mü+ Ku = 0.

Substituting the ansatz

u (t) = sin (ωt+ θ)

into this differential equation, we find, after simplification, that solutions of this
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form exist, provided that

Ku = ω2Mu.

We can convert this into a standard eigenvalue problem by premultiplying with

M− 1
2 and postmultiplying with Id = M− 1

2 M
1
2 :

M− 1
2 KM− 1

2 M
1
2u = ω2M

1
2u.

By relabelling the variables: D = M− 1
2 KM− 1

2 , v = M
1
2u and λ = ω2, we arrive

at the standard eigenvalue problem:

Dv = λv.

Notice that M− 1
2 =

(
M− 1

2

)T
, so D is a symmetric matrix. It inherits the

structure of K,

D =


α1 −β1

−β1 α2
. . .

. . . . . . −βn−1

−βn−1 αn


with coefficients; αi = ciai and βi = −√cici+1bi. The eigenvalues can then be

obtained by one of the standard numerical algorithms.

5.4 Numerical spectral asymptotics for measure

geometric chains

A few empirical results on the spectra of two typical examples of measure geo-

metric chains will be presented in this section, as these examples will again be

used in the next section in order to illustrate the use of the techniques developed

therein.
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5.4.1 Example 1: The measure geometric Cantor chain

The eigenvalues for different approximation levels to the measure geometric Can-

tor chain are calculated directly from the corresponding dynamic matrices by

the usual numerical techniques. In Figure 5.2, a normalised eigenvalue counting

function N
µj
D,norm(x) := 1

N(j)
N
µj
D ( x

λN(j)(j)
) for the eigenvalues 0 ≤ λ1(j) ≤ λ2(j) ≤

. . . ≤ λN(j)(j) of the jth approximation of the measure geometric Cantor chain

is depicted and the approximate self-similarity in the resulting spectra is clearly

visible (Note that the curves have been shifted for visualisation purposes). At

j=3; shift: 0.3

j=4; shift: 0.2

j=5; shift: 0.1

j=6; unshifted

N
µj
D,norm(x)

x

Figure 5.2: Normalised eigenvalue counting functions for different approximation
levels j of the measure geometric Cantor chain.
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this point, one may thus wonder about the behaviour of the spectral exponent

of the consecutive approximations to the eigenvalue counting function. As an

example, the empirical eigenvalue counting function thus obtained for the j = 7th

approximation to our model of the triadic measure geometric Cantor chain is

displayed together with the prediction from Equation 5.3 and a power law fit in

Figure 5.3. From the graph, it is obvious that the empirical spectral exponent is

Figure 5.3: N(λ) as a function of λ for a seventh order measure geometric Cantor
beaded string, blue: power-law fit, green: expectation from Equation 5.3.

larger than expected. Nevertheless it decreases for higher iteration levels towards

the theoretical value γth = ln(2)
ln(6)
≈ .3868528073. The eigenvalue counting func-

tion was calculated for the first eight approximations, together with power-law

fits to the results in order to determine the spectral exponent. However, due to

the largeness of the involved dynamic matrices, computation time explodes. We

therefore attempt to estimate the spectral exponent for the iteration level j going

to infinity by a fit to the data contained in Table 5.1. Using an exponential fitting

function

γexp,j ≈ .3842123042e−.4176167871j + .4144647159,
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we obtain a spectral exponent of γexp,∞ = .4144647159, in excellent agreement

with the numerical data (r2 = .9999991155), but notably bigger than predicted on

theorical grounds. Another approach would be to assume that for the iteration

level going to infinity, the theoretical value will be recovered and then fit an

exponential to the differences between empirical and theoretical values, in which

case we obtain

γexp,j − γth ≈ .3389689479e−.2916814134j,

or equivalently:

γexp,j ≈ .3868528073 + .3389689479e−.2916814134j,

for a correlation coefficient of r2 = .9906972163.

Figure 5.4: Fits to the empirical value for γ: direct exponential fit (green), by an
exponential fit for γexp,j − γth (red).

Taking into consideration the higher correlation coefficient for the direct fit, it

appears likely that the difference between the empirical spectral exponent γexp,∞

and the theoretical value γth is not an artefact but relates to higher terms for the

spectral asymptotics for the eigenvalue counting function not contained in the

theory yet, but it appears premature at this point to make any conjectures.
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Iteration level j Spectral exp. γexp,j Rel. error
γexp,j
γth

Corr. coeff. r2

2 .5811456978 1.502239836 .9874801293
3 .5241536656 1.354917570 .9911948532
4 .4868316531 1.258441567 .9927419688
5 .4621031627 1.194519347 .9924434198
6 .4457886491 1.152346941 .9918004560
7 .4350772540 1.124658386 .9912320096
8 .4281003266 1.106623291 .9908043079

Table 5.1: Spectral exponents and correlations for the second to eight iterations

5.4.2 Example 2: A measure geometric chain with two

different scaling ratios

A straightforward extension of the results for the triadic Cantor set is the applica-

tion of the methods presented to more general sets obtained through an iterated

function system (IFS), as the next example will show.

Figure 5.5: The first four stages in the construction of the Cantor set (above)
and its analogue with two different scaling ratios (below).

We will now consider a set analogous to the triadic Cantor set, but with two

different scaling ratios r1 = 1
4

and r2 = 1
3

instead of r1 = r2 = 1
3

(see Figure 5.5).

Furthermore, the mass matrix is not a simple scalar matrix as in the case of the

Cantor set. Indeed the weights %i are not identical, but we have %1 =
(

1
4

)d
and

%2 =
(

1
3

)d
, with d being the (unique) solution to

(
1
4

)d
+
(

1
3

)d
= 1, leading to a

more complicated structure of the matrix.
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Figure 5.6: N(λ) as a function of λ for the fifth order measure geometric beaded
string with scaling ratios r1 = 1

4
and r2 = 1

3
, blue: power-law fit, green: expecta-

tion from Equation 5.3.

Although this set is still self-similar, we are in the non-arithmetic case as de-

tailed above. Thus, we expect a different behaviour of the eigenvalue counting

function, which should converge as xγ = x
d
d+1 for x→∞. The numerical results

are displayed in Figure 5.6 for the eigenvalue counting function of an approxi-

mation to this measure geometric chain, again together with the prediction from

Equation 5.3 and a power law fit. Note that here as well the empirical spectral

exponent is larger than expected, but decreasing for higher iteration levels to-

wards the theoretical value γth ≈ .3591792841, as shown in Table 5.2. A direct

exponential fit to the numerical data leads to:

γexp,j = .3944339298 + 1.397516812e−.6973230553j

and thus a spectral exponent of γexp,∞ = .3944339298, for a correlation coefficient

of r2 = .9971452711, while we obtain through an exponential fit to the differences:

γexp,j − γth ≈ 1.035154523e−.5122042344j,
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Iteration level j Spectral exp. γexp,j Rel. error
γexp,j
γth

Corr. coeff. r2

1 .7439261802 2.071183426 1.000000000
2 .5564274578 1.549163558 .9904905534
3 .4853204184 1.351192677 .9938516799
4 .4445257935 1.237615345 .9942803053
5 .4195608533 1.168109832 .9953937077
6 .4034406621 1.123229206 .9964191165
7 .3926714797 1.093246457 .9970909198

Table 5.2: Spectral exponents and correlations for the first seven iterations

or equivalently:

γexp,j ≈ .3591792841 + 1.035154523e−.5122042344j,

with a correlation coefficient of r2 = .9845580382.

Figure 5.7: Fits to the empirical value for γ: direct exponential fit (green), by an
exponential fit for γexp,j − γth (red).

The same considerations as for the measure geometric Cantor chain apply in

this case as well; the difference between the empirical spectral exponent and the
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theoretical value probably being not an artefact but possibly related to higher

terms for the spectral asymptotics for the eigenvalue counting function.

Analogously to the measure geometric Cantor chain, the spectrum of the

chain under consideration also displays an approximate self-similarity as shown

in Figure 5.8, but moreover, the influence of the symmetries of the underlying

fractal becomes obvious when comparing the graphs (Figures 5.3 and 5.6) of

the corresponding eigenvalue counting functions in each case. Indeed, as pre-

dicted by the theory, in the case of the measure geometric Cantor chain (i.e. the

arithmetic case) strong oscillations are visible, whereas in the second example

(non-arithmetic case) the graph shows much weaker oscillations.

j=3; shift: 0.3

j=4; shift: 0.2

j=5; shift: 0.1

j=6; unshifted

N
µj
D,norm(x)

x

Figure 5.8: Normalised eigenvalue counting functions for different approximation
levels j of the measure geometric chain with two scaling ratios.
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5.5 The traces of powers of the dynamic matrix

of measure geometric chains

Let {li(j)}N(j)
i=1 denote the sequence of lengths separating the masses in our physi-

cal model of measure geometric chains and Kj the corresponding stiffness matrix,

constructed as detailed in Section 5.3, where j is the approximation level under

consideration and N(j) the number of masses. Since the stiffness matrix Kj of a

measure theoretic chain at any approximation level j is a tridiagonal matrix, it

is easily possible to establish the following quite simple relations for the traces of

powers of the stiffness matrix by careful bookkeeping:

Lemma 5.4. The traces of the stiffness matrix Kj of a measure geometric chain

and of its square K2
j are given by:

• tr(Kj) = σ
2

(
− 1
l0(j)
− 1

lN(j)(j)
+ 2

∑N(j)
i=0

1
li(j)

)
, and

• tr(K2
j) =

(
σ
2

)2
(

4
∑N(j)

i=0

(
1

li(j)

)2

+ 2
∑N(j)−1

i=0
1

li(j)li+1(j)
− 3l20(j)− 3l2N(j)(j)

)
,

where N(j) = 2j+1 − 2 is the size of the matrix.

Proof. By the construction rule for the stiffness matrix, the elements ai,i(j) on

its diagonal are given by Equation 5.4 and thus:

tr (Kj) =

N(j)∑
i=1

ai,i(j) =
σ

2

N(j)∑
i=1

(
1

li−1(j)
+

1

li(j)

)
=
σ

2

− 1

l0(j)
− 1

lN(j)(j)
+ 2

N(j)∑
i=0

1

li(j)

 .

Furthermore, we have:

tr
(
K2
j

)
=

N(j)∑
i=1

N(j)∑
k=1

ai,k(j)ak,i(j).

As the matrix is symmetric, ai,k(j) = ak,i(j) and moreover ai,k(j) = 0, ∀|i−k| > 1,

such that:

tr
(
K2
j

)
=

N(j)∑
i=1

N(j)∑
k=1

ai,k(j)ak,i(j) =

N(j)∑
i=1

a2
i,i(j) +

N(j)∑
i=2

a2
i−1,i(j) +

N(j)−1∑
i=1

a2
i+1,i(j).
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With;

a2
i,i(j) =

(σ
2

)2
(

1

li−1(j)
+

1

li(j)

)2

=
(σ

2

)2
((

1

li−1(j)

)2

+

(
1

li(j)

)2

+

(
2

li−1(j)li(j)

))
,

and

a2
i−1,i(j) = a2

i+1,i(j) =
(σ

2

)2
(

1

li(j)

)2

,

we finally obtain:

tr(K2
j) =

(σ
2

)2

4

N(j)∑
i=0

(
1

li(j)

)2

+ 2

N(j)−1∑
i=0

1

li(j)li+1(j)
− 3l20(j)− 3l2N(j)

 ,

thereby completing the proof of the lemma.

Although it is possible to continue in this manner, the expressions for higher

powers become very cumbersome. However, the use of only the first two already

allows us to give upper and lower bounds for the trace of all powers of the stiffness

matrix Kj:

Proposition 5.5. The traces of powers of the stiffness matrix Kj are bounded

from above and from below in the following way:

(
tr(K2

j)

(tr(Kj))2

)k−1

≤
tr(Kk

j )

(tr(Kj))k
≤
(

max(λ(Kj))

tr(Kj)

)k−1

,

with λ(Kj) denoting the set of the eigenvalues of Kj.

Proof. We have:

tr(Kk
j )

(tr(Kj))k

tr(Kk−1
j )

(tr(Kj))k−1

=
1

tr(Kj)

tr(Kk
j )

tr(Kk−1
j )

=
1

tr(Kj)
L(k, λ(Kj)),

where L(·, ·) denotes the Lehmer mean [80], defined by:

L(p, {xi}ni=1) :=

∑n
i=1 x

p
i∑n

i=1 x
p−1
i

.
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Thus:
tr(Kk

j )

(tr(Kj))k
=

1

tr(Kj)
L(k, λ(Kj))

tr(Kk−1
j )

(tr(Kj))k−1

and by induction:

tr(Kk
j )

(tr(Kj))k
=

(
1

tr(Kj)

)k−1

L(k, λ(Kj)) · L(k − 1, λ(Kj)) · · ·L(2, λ(Kj)).

Now, as by the properties of the Lehmer mean:

tr(K2
j)

tr(Kj)
= L(2, λ(Kj)) ≤ L(k, λ(Kj)) ≤ L(∞, λ(Kj)) = max(λ(Kj)), ∀k ≥ 2,

we have: (
L(2, λ(Kj))

tr(Kj)

)k−1

≤
tr(Kk

j )

(tr(Kj))k
≤
(

max(λ(Kj))

tr(Kj)

)k−1

,

or equivalently

(
tr(K2

j)

(tr(Kj))2

)k−1

≤
tr(Kk

j )

(tr(Kj))k
≤
(

max(λ(Kj))

tr(Kj)

)k−1

.

The knowledge of the behaviour of the powers of the traces of the stiffness

matrices allows us to give bounds for those of the dynamic matrice Dj as well.

Proposition 5.6. The traces of powers of the dynamic matrix Dj are bounded

by:(
min

(
c−1
i (j)

)
max

(
c−1
i (j)

))k (
tr(K2

j)

(tr(Kj))2

)k−1

≤
tr(Dk

j )

(tr(Dj))k
≤

(
max(λ(Dj))

min
(
c−1
i (j)

)
tr(Kj)

)k−1

,

where min
(
c−1
i (j)

)
and max

(
c−1
i (j)

)
are the minimal resp. maximal entry of the

corresponding inverse mass matrix M−1
j .

91



Proof. As the trace of a product is invariant under cyclic permutations, we have:

tr (Dj) = tr
(
M
− 1

2
j KjM

− 1
2

j

)
= tr

(
M
− 1

2
j M

− 1
2

j Kj

)
= tr

(
M−1

j Kj

)
.

Now as Mj is a diagonal matrix, the trace of
(
M−1

j Kj

)k
= M−k

j Kk
j is the sum of

the products of the diagonal entries and thus:

min
(
c−1
i (j)

)
tr(Kj) ≤ tr(Dj) ≤ max

(
c−1
i (j)

)
tr(Kj),

respectively

1(
max

(
c−1
i (j)

))k
(tr(Kj))

k
≤ 1

(tr(Dj))
k
≤ 1(

min
(
c−1
i (j)

))k
(tr(Kj))

k
,

and (
min

(
c−1
i (j)

))k
tr(Kk

j ) ≤ tr(Dk
j ) ≤

(
max

(
c−1
i (j)

))k
tr(Kk

j ),

such that: (
min

(
c−1
i (j)

))k
tr(Kk

j )(
max

(
c−1
i (j)

))k
(tr(Kj))

k
≤

tr(Dk
j )

(tr(Dj))k
,

and thus by Proposition (5.5):(
min

(
c−1
i (j)

)
max

(
c−1
i (j)

))k (
tr(K2

j)

(tr(Kj))2

)k−1

≤
tr(Dk

j )

(tr(Dj))k
.

Although the relations above would also allow to obtain an upper bound, it is

more convenient to use the same approach as in Proposition (5.5) again and use

the properties of the Lehmer mean to establish that:

tr(Dk
j )

(tr(Dj))k
≤
(

max(λ(Dj))

tr(Dj)

)k−1

.

Then, as
1

tr(Dj)
≤ 1

min
(
c−1
i (j)

)
tr(Kj)

,
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we have:

tr(Dk
j )

(tr(Dj))k
≤

(
max(λ(Dj))

min
(
c−1
i (j)

)
tr(Kj)

)k−1

,

which concludes the proof of the proposition.

From this proposition it is easily possible to derive the following corollary for

the upper bound of the traces of powers of the dynamic matrix:

Corollary 5.7. The following inequality holds:

tr(Dk
j )

(tr(Dj))k
≤

(
CN(j)

1
γ

min
(
c−1
i (j)

)
tr(Kj)

)k−1

, for j →∞,

where N(j) = 2j+1 − 2 is the number of eigenvalues, respectively the size of the

dynamic matrix.

Proof. By Equation (5.2), the eigenvalue counting functionNµ
D(x) is monotonously

increasing and fulfils

Nµ
D (x) � xγ, for x→∞,

respectively

x � (Nµ
D (x))

1
γ , for x→∞.

Let us now consider the monotonously increasing sequence of the sorted eigen-

values λn, then by the definition of Nµ
D(x), Nµ

D(λn) = #{k ∈ N | λk ≤ λn} = n,

and thus:

λn � n
1
γ , for n→∞.

Hence, as the eigenvalues are ordered according to their magnitude, max (λ(Dj)) =

λN(j) and as N(j)→∞ for j →∞, we obtain hereby:

max (λ(Dj)) = λN(j) � N(j)
1
γ , for j →∞,

so that

max (λ(Dj)) ≤ C ·N(j)
1
γ , for j →∞,
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for some constant C and finally, by Proposition (5.6):

tr(Dk
j )

(tr(Dj))k
≤

(
CN(j)

1
γ

min
(
c−1
i (j)

)
tr(Kj)

)k−1

, for j →∞.

5.5.1 Application: Dirichlet eigenvalues of measure geo-

metric strings as zeroes of a generalised trigonomet-

ric function

In a recent thesis, P. Arzt [5] defined analogues of the sine and cosine functions

such that their squared zeroes are the eigenvalues of the measure geometric Lapla-

cian on self-similar sets. In our context of the Dirichlet Laplacian, the function

of interest is the sinq-function, defined as:

sinq(z) :=
∞∑
n=0

(−1)nq2n+1z
2n+1, for z ∈ R,

where the coefficients qn+1 may be obtained through a recursive procedure (de-

tails in [5]). Such an infinite series represents a traditional instrument in the

representation of functions, where their approximation, as well as their termwise

differentiation and integration are classical applications. Although infinite prod-

ucts have also been known and developed for centuries, their usefulness in the

same applications has often been overseen. The two forms share a lot of common

features, but an important difference is the fact that the partial products of an

infinite product representation share the same zeroes with the original function,

whereas the Maclaurin expansion does not; a property that might be crucial in

further applications. Therefore, we will now show that an infinite product repre-

sentation, analoguous to the standard Euler product formula for the sine function,

does also exist for the sinq function.
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Lemma 5.8. The sinq function has a representation of the form:

sinq(z) = exp(h(z))z
∞∏
n=1

(1− z2

λn
),

with h(z) being some entire function and 0 ≤ λ1 ≤ λ2 ≤ . . . the (real) eigenvalues

of the measure geometric Laplacian.

Proof. Indeed, by Weierstraß’s factorisation theorem, such a product representa-

tion converges if the sum

∞∑
n=1

(
r

λ
1
2
n

)kn+1

= rkn+1

∞∑
n=1

(
1

λ
1
2
n

)kn+1

= rkn+1

∞∑
n=1

(
1

λn

) kn
2

converges for each r > 0 and some kn ∈ N∗. We will show in the following that

the sum converges for kn = 1 (and therefore for all kn ≥ 1). By Equation 5.2, we

know that

Nµ
D (x) � xγ, for x→∞,

or equivalently

c1λ
γ
n ≤ Nµ

D(λn) ≤ c2λ
γ
n

⇔c
1
γ

1 λn ≤ (Nµ
D(λn))

1
γ ≤ c

1
γ

2 λn

⇔c
1
γ

1 ≤ (Nµ
D(λn))

1
γ λ−1

n ≤ c
1
γ

2

⇔
(

c1

Nµ
D(λn)

) 1
γ

≤ λ−1
n ≤

(
c2

Nµ
D(λn)

) 1
γ

⇒ 1

λn
≤
(

c2

Nµ
D(λn)

) 1
γ

.

Thus:

r2

∞∑
n=1

1

λn
≤ r2

∞∑
n=1

(
c2

Nµ
D(λn)

) 1
γ

= r2c
1
γ

2

∞∑
n=1

(
1

Nµ
D(λn)

) 1
γ

,
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and as by the definition of Nµ
D(x), Nµ

D(λn) = n, we obtain

r2

∞∑
n=1

1

λn
≤ r2c

1
γ

2

∞∑
n=1

1

n
1
γ

.

Now, as the Haussdorff dimension d of the fractal sets under consideration is

always d ∈ (0, 1) and as we choose the weights in the ”natural way” (see Remark

5.1 above), the spectral exponent γ = d
d+1

< 1
2

always satisfies 1
γ
> 2 and thus a

fortiori 1
γ
> 1. Therefore the above sum

r2

∞∑
n=1

1

λn
≤ r2c

1
γ

2

∞∑
n=1

1

n
1
γ

≤ r2c
1
γ

2

∞∑
n=1

1

n2

always converges, which proves the assertion.

Although valid approximations to the sinq function may be obtained by both

approaches, - either by the partial products of the infinite product representation

or by the partial sums of the Maclaurin expansion given by P. Arzt -, we will push

our strategy here a little further by the use of the characteristic polynomials of

the dynamic matrices Dj as approximations to the partial products in question.

The characteristic polynomial of Dj may be written as:

pDj
(λ) = λN−1 − tr(Dj)λ

N−2 +
tr(Dj)

2 − tr(D2
j)

2!
λN−3 − . . . ,

and thus, conjecturing that exp(h(z)) = 1, the approximation to the MacLaurin

series by:

sinqj(λ) := λ · pDj
(λ) = λN − tr(Dj)λ

N−1 +
tr(Dj)

2 − tr(D2
j)

2!
λN−2 − . . .

:= rj,Nλ
N − rj,N−1λ

N−1 + rj,N−2λ
N−2 − . . .
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where rj,N := 1, and the coefficients:

rj,N−1 := tr(Dj)

rj,N−2 :=
tr(Dj)

2 − tr(D2
j)

2!
=

tr(Dj)
2

2!

(
1−

tr(D2
j)

tr(Dj)2

)
rj,N−3 :=

tr(Dj)
3 − 3 tr(Dj) tr(D2

j) + 2 tr(D3
j)

3!
=

tr(Dj)
3

3!

(
1−

3 tr(D2
j)

tr(Dj)2
+

2 tr(D3
j)

tr(Dj)3

)
,

...

may be obtained through the Newton-Girard identities, given here in the form of

a determinant as:

qk =
1

k!

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

T1 1 0 · · · · · · · · · 0

T2 T1 2 0 · · · · · · 0

T3 T2 T1 3 0 · · · 0

T4 T3 T2 T1
. . . · · · 0

...
...

...
...

. . . . . .
...

Tk−1 Tk−2 Tk−3 Tk−4 · · · . . . k − 1

Tk Tk−1 Tk−2 Tk−3 Tk−4 · · · T1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
with k! := 1·2·. . .·k denoting the factorial of k and the abbreviation Tk := tr(Dk

j ),

for a fixed j ∈ N.

The zeroes λ(Dj) of sinqj(λ) = λpDj
(λ) thereby approximate the zeroes of

the sinq function, rapidly gaining accuracy as the iteration level increases. Unfor-

tunately, the coefficients in the Newton-Girard identities rise too quickly, so that

our bounds for the traces of the powers of the dynamic matrix cannot be used

to obtain reasonable bounds on the coefficients of the characteristic polynomial

and the MacLaurin expansion of the sinq function. However, the characteristic

polynomials of the dynamic matrices still provide an efficient way to approxi-

mate the coefficients in the MacLaurin expansion of the sinq function as well as

the eigenvalues of the Dirichlet Laplacian, as will be illustrated in the examples

below.
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5.5.1.1 Example 1: The measure geometric triadic Cantor string

For the measure geometric triadic Cantor string, the coefficients q2n+1 are given

in Table 5.3.

n q2n+1 Decimal value of q2n+1

0 1 1

1 1
8

.125

2 21
4240

.4952830189 . . . · 10−2

3 33253
383465600

.8671703537 . . . · 10−4

4 76118969
91537621184000

.8315593962 . . . · 10−6

5 20165083798890939
4103397246999022891520000

.4914241197 . . . · 10−8

6 129726498389261896497
6714982210971717632658867200000

.1931896382 . . . · 10−10

7 2413673468793966201825434809368471
45210174990342427454327995801851920608256000000

.5338783735 . . . · 10−13

Table 5.3: The first coefficients of the MacLaurin expansion of sinq(z) for the
measure geometric triadic Cantor string [5].

The sinq function is thus given in this case by:

sinq(z) : =
∞∑
n=0

(−1)nq2n+1z
2n+1

= z − 1

8
z3 +

21

4240
z5 − 33253

383465600
z7 + · · · .

This function may now be approximated by the characteristic polynomials of

the dynamic matrices Dj as exposed above. In Table 5.4, the results of this

approximation procedure are compiled for different iteration levels j, showing an

excellent agreement with the exact values.

Furthermore, the convergence behaviour of the Euler partial products and

Maclaurin partial sums are depicted in Figure 5.9, illustrating the difference be-

tween the two approaches. As expected, the Euler partial products are much

better behaving than the Maclaurin expansion in the sense that much less terms

98



n q2n+1 (from [5]) r2,n r5,n

0 1 1 1
1 .125 .12345 . . . .12499 . . .
2 .49528 . . . · 10−2 .46724 . . . · 10−2 .49529 . . . · 10−2

3 .86717 . . . · 10−4 .72635 . . . · 10−4 .86740 . . . · 10−4

4 .83155 . . . · 10−6 .53335 . . . · 10−6 .83222 . . . · 10−6

5 .49142 . . . · 10−8 .18375 . . . · 10−8 .49227 . . . · 10−8

6 .19318 . . . · 10−10 .23926 . . . · 10−11 .19380 . . . · 10−10

Table 5.4: Approximations for the first coefficients in the expansion of sinq(z) for
the measure geometric triadic Cantor string

are needed for an acceptable precision in the determination of the location of the

zeroes. However, it seems that the Maclaurin partial products are superior in

reproducing the precise location of the zeroes, so that both approaches should be

used in a complementary way, see Table 5.5, where the values obtained by the

different procedures are compiled for the first 14 eigenvalues.

Figure 5.9: Comparison of Euler (green) and Maclaurin (red) expansions with 15
terms of the sinq function for the measure geometric triadic Cantor string with
the exact function (black).
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i
Euler expansion Maclaurin expansion

15 terms (j=3) 31 terms (j=4) 15 terms 31 terms λi from [5]

1 14.43255178 14.43762586 14.43524052 14.43524052 14.43524051
2 35.35117654 35.28609386 35.26023798 35.26023798 35.26023802
3 139.5766208 140.9112455 140.7409942 140.7810639 140.7810534
4 150.8057878 151.5317597 151.4033955 151.2906053 151.2906161
5 329.1786428 327.7153593 264.7423721 326.0567532 326.0573284
6 361.3572084 355.6811463 - 353.4177464 353.4169208
7 722.6493481 871.1442351 - - 876.2744596
8 725.8900454 871.4268943 - - 876.5053185
9 921.5659867 1571.090688 - - 1581.177024
10 942.8877239 1613.225029 - - 1619.400729
11 1419.506205 2060.242648 - - 2029.613563
12 1420.106796 2065.507130 - - 2033.852813
13 1493.090646 2349.243103 - - 2268.791634
14 1499.601264 2376.048024 - - 2289.604069

Table 5.5: Goodness of appoximation for the zeroes of the sinq function.

For sake of completeness, we will also give our bounds on the traces of the

dynamic matrices here. In the case of the measure geometric Cantor string with

unit length, tension and mass, the traces of the stiffness matrix Kj, respectively

its square K2
j are given by:

tr(Kj) =
1

5

(
8 · 6j − 5 · 3j − 3

)
,

respectively

tr(K2
j) =

1

170

(
362 · 18j − 255 · 9j − 102 · 3j − 90

)
.

Thus
tr(K2

j)

(tr(Kj))
2 ≥

905

1088
2−j,

so that the higher powers of the dynamic matrix are bounded (see Proposition
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5.6) from below by:

(
905

1088
2−j
)k−1

≤

(
tr(K2

j)

(tr(Kj))
2

)k−1

≤
tr(Dk

j )

(tr(Dj))
k
, and by:

tr(Dk
j )

(tr(Dj))k
≤

(
CN(j)

1
γ

min
(
c−1
i (j)

)
tr(Kj)

)k−1

from above (Corollary 5.7), with N(j) = 2j+1 − 2 and 1
γ

= ln(6)
ln(2)

. This can be

simplified even further as in this case the mass matrix is a scalar matrix with

min
(
c−1
i (j)

)
= max

(
c−1
i (j)

)
= 2j+2:

tr(Dk
j )

(tr(Dj))k
≤

 C (2j+1 − 2)
ln(6)
ln(2)

2j+2 1
5

(8 · 6j − 5 · 3j − 3)

k−1

≤
(

15C

16
2−j
)k−1

.

5.5.1.2 Example 2: A measure geometric string with two different

scaling ratios

For the measure geometric string with two different scaling ratios introduced

above, the coefficients q2n+1 are summarised in Table 5.6.

n Decimal value of q2n+1[5] r2,n r5,n

0 1 1 1

1 .1127708838 . . . .11202 . . . .11277 . . .

2 .3996475470 . . . · 10−2 .38490 . . . · 10−2 .39969 . . . · 10−2

3 .5979114624 . . . · 10−4 .52741 . . . · 10−4 .59812 . . . · 10−4

4 .4716361707 . . . · 10−6 .33249 . . . · 10−6 .47202 . . . · 10−6

5 .2228258258 . . . · 10−8 .83372 . . . · 10−9 .22318 . . . · 10−8

6 .6830278639 . . . · 10−11 .79994 . . . · 10−11 .68494 . . . · 10−11

Table 5.6: The first coefficients of the MacLaurin expansion of sinq(z) for the
measure geometric string with two different scaling ratios
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In this case, the sinq function is thus given by:

sinq(z) : =
∞∑
n=0

(−1)nq2n+1z
2n+1

= z − .1127708838z3 + .399647547 · 10−2z5 − .5979114624 · 10−4z7 + · · · .

Again it is possible to approximate this function by the characteristic polynomials

of the dynamic matrices Dj, with the results (see again Table 5.6, columns 3 and

4) in excellent agreement with the exact values. The convergence behaviour of the

Euler partial products and Maclaurin partial sums is very similar to that already

observed in the case of the triadic Cantor string as can be seen in Figure 5.10.

Furthermore, the complementary nature of both approaches is also reflected here

in Table 5.7.

Figure 5.10: Comparison of Euler (green) and Maclaurin (red) expansions with
15 terms of the sinq function for the measure geometric fractal string with two
scaling ratios with the exact function (black).

Once more, we state our bounds on the traces of the dynamic matrices here

for sake of completeness. For unit length, tension and mass, the traces of the
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i
Euler expansion Maclaurin expansion

15 terms (j=3) 31 terms (j=4) 15 terms 31 terms λi from [5]

1 16.10040819 16.10800303 16.10784937 16.10784937 16.10784941
2 36.00493193 35.92811605 35.90760124 35.90760124 35.90760106
3 126.3184029 128.2017000 128.3304467 128.3304456 128.3304475
4 238.7840729 237.2626229 236.4499727 236.4636999 236.4636763
5 378.5291318 375.4260909 - 373.7010994 373.7019294
6 431.1612225 425.8377868 - 423.6396377 423.6381570
7 627.4593717 702.7281198 - 713.7835520 713.7869861
8 1273.909249 2025.528203 - 1916.839156 2013.164883

Table 5.7: Goodness of appoximation for the zeroes of the sinq function.

stiffness matrix Kj, respectively its square K2
j are given by:

tr(Kj) =
1

10

(
14 · 7j − 5 · 4j − 5 · 3j − 4

)
,

respectively

tr(K2
j) =

1

7700

(
12548 · 25j − 1320 · 4j − 1680 · 3j − 5775 · 9j − 5775 · 16j − 1848

)
.

Thus
tr(K2

j)

(tr(Kj))
2 ≥

3773

3137

(
49

25

)−j
.

Furthermore, as:

min
(
c−1
i (j)

)
= (3γ)j ,

and

max
(
c−1
i (j)

)
= (4γ)j ,

with γ = d
d+1
≈ .3591792841, and d ≈ .5604988652 being the solution of the

Moran equation
(

1
4

)d
+
(

1
3

)d
= 1. Hence, we obtain the following upper and lower

bounds for the powers of the traces by Proposition (5.6) and Corollary (5.7):

((
3

4

)γj)k(
3773

3137

(
49

25

)−j)k−1

≤
tr(Dk

j )

(tr(Dj))k
≤

(
10C (22j+1 − 2)

1
γ

3γj (14 · 7j − 5 · 4j − 5 · 3j − 4)

)k−1

.
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Through our investigations, we have thus shown the complementarity of our

method to the one used in [5], both approaches being inherently different but lead-

ing to the same results and having their advantages and disadvantages depending

on goal and situation.
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Chapter 6

Conclusion and Outlook

In this thesis, we offer an investigation of discrete respectively finite systems

through the study of the moments of the eigenvalue distribution for fractal chains:

• We introduce a matrix representation of the related Laplacians, thereby

suggesting links to random matrix and graph theory.

• Exact results as well as lower and upper bounds for the moments of the

eigenvalue distribution are obtained for the chains under consideration, as

well as a new criterion for Minkowski-measurability.

• Further extensions are then made to fractal measure geometric Laplacians

in the one-dimensional case, where we show the usefulness of the methods

and techniques developed.

• Euler-expansions of generalised trigonometric function whose squared ze-

roes are the eigenvalues of the corresponding measure geometric Laplacian

are approximated.

• The most unexpected result of this work is the exposition of an important

and fascinating relation between the two, at first glance very different, types

of fractal objects studied; the first class being quite simple structures with

a fractal boundary, the second class having an internal fractal structure

but very simple boundaries (see Figure 6.1). This discovery clearly proves

the efficiency of using the techniques originally taken from random matrix

theory in the area of fractal geometry as a unifying framework.
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Figure 6.1: The unifying framework
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Originally unforeseen, our approach revealed itself to be extremely fertile.

Thus, in the course of its writing, this thesis has become not a mere statement

or presentation of results obtained but has evolved into a draft programme for

future research, opening up new ways certainly worth exploring.

We will close this chapter with a non-exhaustive list of thoughts and questions

of interest arising from within this work.

• What sense can be given to the moments of fractal chains without cut-

off in Section 3.2.2? Table 3.3 suggests that the moments of Minkowski-

measurable chains decrease at a much faster pace than those of generalised

Cantor chains. Other types of chains, of Minkowski-measurable and not

Minkowski-measurable type should be investigated, maybe generalising this

observation.

• The connection between the moments of the eigenvalue distribution and

oscillations in the spectrum is not absolutely clear yet. In this context

it appears interesting to find lower bounds for the “Berry-term” in the

moments of Minkowski-measurable chains.

• Are the differences between the spectral exponents γexp and γth in the

asymptotics of the eigenvalue counting function (Section 5.4) of measure

geometric chains an artefact due to the discretisation or are they indicative

of contributions of higher order terms?

• What lessons could be learned from an investigation of adjacent neighbour

or nth-nearest neigbour spacings of the eigenvalues of measure geometric

chains?

• Is it possible to extend the approach used in the appendix to more complex

chains such as chains with multiple scaling ratios, as we only covered the

case of µ being the homogeneous middle third Cantor measure, and can the

bounds on the traces somehow be improved?

• What is the meaning of the growth factor c for the powers of traces suggested

by the results compiled in the appendix? Would it be possible to estimate

its value through numerical experience, thereby potentially allowing us to
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find approximations to the sinq-function, or conversely, could it be possible

to recover a power law for the traces from just the knowledge of the first

coefficients in the sinq-function? In this context, an investigation of the

asymptotic behaviour of the Newton-Girard coefficients might simplify the

task.

• In view of the approximation of the sinq-function by the characteristic poly-

nomials of the matrix Laplacians, it would certainly be worth studying the

spectral asymptotics of measure geometric strings corresponding to distri-

butions with known moments. Furthermore, is it possible to deduce the

spectrum of random strings from the knowledge of their statistical param-

eters only?

• An in-depth study of fractal-layered chains (see References [22, 23]) should

also be addressed in pursuit of a better understanding of the links (see

Figure 6.1) between the different types of fractal strings.

• Is it possible within this framework to establish a direct link between the

two main types of fractal strings, thereby also elucidating the connection

between the arithmetic/non-arithmetic and Minkowski measurable/non-

Minkowski measurable dichotomies?

• It would be interesting to apply respectively transfer the techniques and

methods developed here for the one-dimensional case to higher dimensional

settings.
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Discretisation / Quantisation of the model
(Fractal chains)

Physical modelisation of ordinary and
measure geometric fractal strings

Matrix representation of the corresponding Laplacians

Use of methods from
Random matrix theory

Upper and lower bounds for the
traces of the dynamic matrices

Moments of the eigenvalue distribution
(with and without cut-off)

New Minkowski-
measurability
criterion for

ordinary fractal
chains and strings

Euler representation
of generalised
trigonometric

functions related to
measure geometric

strings

Link between
ordinary fractal

chains and measure
geometric chains

Figure 6.2: Explanatory chart of methods and results of this thesis; ellipses:
strategies, rectangles: methods, diamonds: results.
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Appendix A: A different

approach for the traces of the

measure geometric Cantor chain

This alternative approach for bounding the traces of the measure geometric Can-

tor chain is inspired by [16].

The matrix Laplacian

In the case of the Cantor measure, the dynamic matrix (the Laplacian in matrix

form) at approximation level j is given by

Dj = M
− 1

2
j KjM

− 1
2

j ,

where Mj is a multiple of the identity matrix and Kj is given by:

Kj = 3j



2 −1 0 0 0 0 0 0 0 0 0 0 0 0

−1 2 −1 0 0 0 0 0 0 0 0 0 0 0

0 −1 4
3

− 1
3

0 0 0 0 0 0 0 0 0 0

0 0 − 1
3

4
3

−1 0 0 0 0 0 0 0 0 0

0 0 0 −1 2 −1 0 0 0 0 0 0 0 0

0 0 0 0 −1 2 −1 0 0 0 0 0 0 0

0 0 0 0 0 −1 10
9

− 1
9

0 0 0 0 0 0

0 0 0 0 0 0 − 1
9

10
9

−1 0 0 0 0 0

0 0 0 0 0 0 0 −1 2 −1 0 0 0 0

0 0 0 0 0 0 0 0 −1 2 −1 0 0 0

0 0 0 0 0 0 0 0 0 −1 4
3

− 1
3

0 0

0 0 0 0 0 0 0 0 0 0 − 1
3

4
3

−1 0

0 0 0 0 0 0 0 0 0 0 0 −1 2 −1

0 0 0 0 0 0 0 0 0 0 0 0 −1 2


.
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The stiffness matrix Kj can then be decomposed in two more accessible matrices:

Kj := 3j (Kmain,j + Ej)

:= 3j





2 −1 0 0 0 0 0 0 0 0 0 0 0 0

−1 2 −1 0 0 0 0 0 0 0 0 0 0 0

0 −1 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 −1 0 0 0 0 0 0 0 0 0

0 0 0 −1 2 −1 0 0 0 0 0 0 0 0

0 0 0 0 −1 2 −1 0 0 0 0 0 0 0

0 0 0 0 0 −1 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 −1 0 0 0 0 0

0 0 0 0 0 0 0 −1 2 −1 0 0 0 0

0 0 0 0 0 0 0 0 −1 2 −1 0 0 0

0 0 0 0 0 0 0 0 0 −1 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 −1 0

0 0 0 0 0 0 0 0 0 0 0 −1 2 −1

0 0 0 0 0 0 0 0 0 0 0 0 −1 2


+



0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1
3

− 1
3

0 0 0 0 0 0 0 0 0 0

0 0 − 1
3

1
3

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1
9

− 1
9

0 0 0 0 0 0

0 0 0 0 0 0 − 1
9

1
9

0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1
3

− 1
3

0 0

0 0 0 0 0 0 0 0 0 0 − 1
3

1
3

0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0





:= 3j




K′base 0 0 0 0

0 Kbase 0 0 0

0 0
. . . 0 0

0 0 0 Kbase 0

0 0 0 0 K′′base

+ Ej

 ,

with

K′base :=

 2 −1 0

−1 2 −1

0 −1 1

 , Kbase :=


1 −1 0 0

−1 2 −1 0

0 −1 2 −1

0 0 −1 1

 , and K′′base :=

 1 −1 0

−1 2 −1

0 −1 2

 .

The traces of powers of the stiffness matrix

Both matrices Kmain,j and Ej are positive definite, so that by Raleigh’s principle

[95], we have:

tr(Kk
j ) ≥ tr(3jKk

main,j) = 3j tr(Kk
main,j). (1)

Furthermore, by a result of J. Magnus and H. Neudecker [85]:

tr(Kk
j ) = 3j tr

(
(Kmain,j + Ej)

k
)
≤ 3j

(
tr(Kk

main,j)
1
k + tr(Ek

j )
1
k

)k
. (2)
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Now, by simple induction, the trace of Ej is given by:

tr(Ek
j ) =

2k

3k
(2 · 3k)j − 1

(2 · 3k − 1)3k(j−1)
≤ 2k

3k
2j.

The apparent self-similarity of the matrices Kmain,j can then be exploited to ob-

tain the traces of their powers, as they can be expressed through the constituting

submatrices K′base, K′′base and Kbase defined above. Indeed:

• tr(K′kbase) = tr(K′′kbase).

• The eigenvalues of K′base, respectively K′′base are given by S = 4 cos2(π
7
),

2S−3
S−1

and S−3
S−2

.

• The eigenvalues of Kbase are given by 4 cos2(π
8
) = 2 +

√
2, 2, 4 sin2(π

8
) =

2−
√

2 and 0.

• Each of the matrices Kmain,j consists of one submatrix K′base, one submatrix

K′′base and 2j−1 − 2 submatrices Kbase.

Proposition 1. The trace of Kk
main,j is bounded by:

2j−1Sk
(

1 +
328k + 41k

687k

)
≤ tr

(
Kk
main,j

)
,

from below, and by:

tr
(
Kk
main,j

)
≤ 2j−1

(
2 +

√
(2)
)k (

1 +
577k + 169k

985k

)

from above, where S = 4 cos
(
π
7

)2
is the silver constant.
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Proof. The traces of K′kbase and K′′kbase are given by the sums of their eigenvalues:

tr(K′
k
base) = tr(K′′

k
base) = Sk +

(
2S − 3

S − 1

)k
+

(
S − 3

S − 2

)k
= Sk

(
1 +

(
2S − 3

S(S − 1)

)k
+

(
S − 3

S(S − 2)

)k)
.

In order to obtain upper and lower bounds for this expression, we use the contin-

ued fraction expansion of 2S−3
S(S−1)

and use for example:

328

687
≤ 2S − 3

S(S − 1)
≤ 329

687
.

Using the same denominator, we have furthermore:

41

687
≤ S − 3

S(S − 2)
≤ 42

687
,

so that

Sk
(

1 +
328k + 41k

687k

)
≤ tr(K′

k
base) = tr(K′′

k
base) ≤ Sk

(
1 +

329k + 42k

687k

)
.

Using the same approach for Kk
base leads to:

(
2 +
√

2
)k (

1 +
576k + 168k

985k

)
≤ tr(Kk

base) ≤
(

2 +
√

2
)k (

1 +
577k + 169k

985k

)
.

Finally, by its block-diagonal structure, the trace of Kk
main,j is the sum of the

traces of its submatrices tr(Kk
main,j) = 2 tr(K′kbase) + (2j−1 − 2) tr(Kk

base), with
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tr(K′kbase) ≤ tr(Kk
base) and thus, using the bounds given above:

2j−1Sk
(

1 +
328k + 41k

687k

)
≤ tr

(
Kk
main,j

)
≤ 2j−1

(
2 +

√
(2)
)k (

1 +
577k + 169k

985k

)
,

which concludes the proof.

Note that these bounds are not the best possible, but sufficient here.

Proposition 2.

3j tr
(
Kk
main,j

)
≤ tr

(
Kk
j

)
≤ 3j tr

(
Kk
main,j

)1 +

(
tr
(
Ek
j

)
tr
(
Kk
main,j

)) 1
k

k

,

Proof. Using Equations 1 and 2 above, the assertion follows immediately.

Thus, the following corollary holds:

Corollary 3.

3j2j−1Sk
(

1 +
328k + 41k

687k

)
≤ tr

(
Kk
j

)
and

tr
(
Kk
j

)
≤ 3j2j−1

(
2 +

√
(2)
)k (

1 +
2

3S
2

1
k

)k (
1 +

577k + 169k

985k

)
.

Proof. Using the facts that tr(Ek
j ) ≤ 2k

3k
2j and tr

(
Kk
main,j

)
≥ 2j−1Sk

(
1 + 328k+41k

687k

)
,

we have

(
tr
(
Ek
j

)
tr
(
Kk
main,j

)) 1
k

≤

 2k

3k
2j

2j−1Sk
(

1 + 328k+41k

687k

)
 1

k

≤ 2

3S
2

1
k

and the statement follows immediately from the proposition above.
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Finally, this allows us to formulate the following theorem:

Theorem 4. As the trace of Kk
j is bounded by:

2j−1ck1

(
1 +

328k + 41k

687k

)
≤ tr

(
Kk
j

)
≤ 2j−1ck2

(
1 +

577k + 169k

985k

)
,

there exists c ∈ [c1, c2], such that for all ε > 0, we have:

lim
k→∞

tr
(
Kk
j

)
(c− ε)k =∞, and

lim
k→∞

tr
(
Kk
j

)
(c+ ε)k = 0.

Proof. As tr
(
Kk
j

)
is bounded by 2j−1ck1

(
1 + 328k+41k

687k

)
from below, we have either

lim
k→∞

tr
(
Kk
j

)
2j−1ck1

(
1 + 328k+41k

687k

) = a,

for some finite a ≥ 0, in which case we set c = c1, or

lim
k→∞

tr
(
Kk
j

)
2j−1ck1

(
1 + 328k+41k

687k

) =∞.

In this case, consider the fact that tr
(
Kk
j

)
is bounded by 2j−1ck1

(
1 + 577k+169k

985k

)
from above. Then we either have:

lim
k→∞

tr
(
Kk
j

)
2j−1ck2

(
1 + 577k+169k

985k

) = b,
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for some finite b > 0, in which case we set c = c2, or

lim
k→∞

tr
(
Kk
j

)
2j−1ck2

(
1 + 577k+169k

985k

) = 0.

As we have in this case simultaneously

lim
k→∞

tr
(
Kk
j

)
2j−1ck1

(
1 + 328k+41k

687k

) =∞

and

lim
k→∞

tr
(
Kk
j

)
2j−1ck2

(
1 + 577k+169k

985k

) = 0,

there exists a unique point c1 < c < c2, where the value of limk→∞
tr(Kk

j )
ck

jumps

from ∞ to zero, which concludes the proof.
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Appendix B: The moments of the

triadic Cantor chain with and

without cut-off: a comparison

We present here a comparison between the moments of the triadic Cantor chain

before and after introducing a cut-off. Recall that a cut-off eigenvalue had to

be introduced in order to allow a direct connection between Cantor chains and

strings. In Section 3.2.2.1, we obtained the general expression for the moments

of generalised Cantor chains as:

MN,k =

(
b−2(m+1)

)k b2k
(
(ab2k)

m+1
−1

)
ab2k−1

(
4K
m

)k ((2k
k

)
N+1
22k

+ 1
2

)(
am+1−1
a−1

(N + 1)− 1
)
· 22k

.

Furthermore, in Section 3.2.3.1, we deduced the upper bound:

ptr
(
Dk
)
≤
(

4
K

m

)k(
N + 1

π

√
πΓ(k + 1

2
)

Γ(k + 1)

(
a
b

)m+1 − 1

a− b

+
am+1 − 1

2 (a− 1)
+

kπ

12(N + 1)

b
(
(ab)m+1 − 1

)
ab− 1

)

117



for the pseudo-traces related to generalised Cantor chains. In the case of the

triadic Cantor chain, a = 2 and b = 3, so that these expressions simplify to:

MN,k =

(
4
K

m

)k (
2m+132k − (3−2m)

k
) ((

2k
k

)
N+1
22k

+ 1
2

)
(2 · 32k − 1) ((2m+1 − 1) (N + 1)− 1) · 22k

,

and

ptr
(
Dk
)
≤
(

4
K

m

)kN + 1

π

√
πΓ(k + 1

2
)
(

1−
(

2
3

)m+1
)

Γ(k + 1)

+ 2m − 1 +
kπ (6m+1 − 1)

20(N + 1)

)

respectively. Now, normalising the pseudo-traces in the same manner as in Section

3.2.2, we obtain an upper bound for the moments of the Cantor chain with cut-off:

M′N,k ≤
ptr
(
Dk
)

22k+1(N + 1)

=
1

22k+1(N + 1)

(
4
K

m

)kN + 1

π

√
πΓ(k + 1

2
)
(

1−
(

2
3

)m+1
)

Γ(k + 1)

+ 2m − 1 +
kπ (6m+1 − 1)

20(N + 1)

)

=
1

22k+1

(
4
K

m

)kΓ(k + 1
2
)
(

1−
(

2
3

)m+1
)

√
πΓ(k + 1)

+
2m − 1

N + 1
+
kπ (6m+1 − 1)

20(N + 1)2

 .

Using the fact that (Equation 3.2):

N =

⌈
π

2
· 1

arcsin (3−(m+1))

⌉
,
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k=1

k=2

k=3

k=4

22k ·M

m

Figure A.1: Behaviour of MN,k (crosses) and M′N,k (boxes) as a function of the
iteration level m for different values of k.

and noting that m→∞⇒ N →∞, it is then easy to calculate the limits:

lim
m→∞

MN,k =

(
4
K

m

)k
32k

2 · 32k − 1

(
2k

k

)
1

24k
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and

lim
m→∞

M′N,k =

(
4
K

m

)k
1

2

Γ(k + 1
2
)

√
πΓ(k + 1)

1

22k

=

(
4
K

m

)k
1

2

(
2k
k

)
22k

1

22k

=

(
4
K

m

)k
1

2

(
2k

k

)
1

24k
,

where we used the well known fact that
Γ(k+ 1

2
)√

πΓ(k+1)
=

(2k
k )

22k
. Comparing the limits

above for MN,k and M′N,k, it becomes clear that they are highly similar (see also

Figure A.1). Thus, we conjecture that the moments of the Cantor string are given

by the above limits, up to some factor depending on k:

MCST = C(k)

(
4
K

m

)k (
2k

k

)
1

24k
,

with 1
2
≤ C(k) ≤ 1. However, we must note that the information on the second

term in the asymptotic expansion of the eigenvalue counting function, contained

in the unnormalised pseudo traces, is lost in the process of passing to the limit.
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découvertes faites sur les vibrations des cordes tendues. Le Journal des
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search Institute for Mathematical Sciences, Kyoto, 2008.

[42] Uta R. Freiberg. Refinement of the spectral asymptotics of generalized

Krein Feller operators. Forum Math., 23:427–445, 2011.

126



REFERENCES
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[78] Michel L. Lapidus and Carl Pomerance. The Riemann Zeta-function and

the one-dimensional Weyl-Berry conjecture for fractal drums. Proceedings

of the London Mathematical Society, 66(3):41–69, 1993. ix, 5, 21, 70

[79] Michel L. Lapidus and Carl Pomerance. Counterexamples to the modi-

fied Weyl-Berry conjecture. Mathematical Proceedings of the Cambridge

Philosophical Society, 119:167–178, 1996. 5

131



REFERENCES

[80] Derrick H. Lehmer. On the compounding of certain means. Journal of

Mathematical Analysis and Applications, 36:183–200, 1971. 90
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