Citation link:
http://dx.doi.org/10.25819/ubsi/10329
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Novel_methodologies_for_multiaxial_strain_measurements.pdf | 4.34 MB | Adobe PDF | View/Open |
Dokument Type: | Article | metadata.dc.title: | Novel methodologies for multiaxial strain measurements with piezoresistive films based on graphene nanoplatelets | Authors: | Yokaribas, Volkan Kraemer, Peter Mende, Alexander B. Fritzen, Claus-Peter |
Institute: | Department Maschinenbau | Free keywords: | Graphene nanoplatelets, Piezoresistive effect, Spray deposition, Strain-differential electrical impedance tomography, Nanoplättchen aus Graphen, Piezoresistiver Effekt, Sprühabscheidung, Dehnungsdifferentiale elektrische Impedanztomographie | Dewey Decimal Classification: | 620 Ingenieurwissenschaften und zugeordnete Tätigkeiten | GHBS-Clases: | WBF | Issue Date: | 2021 | Publish Date: | 2023 | Source: | Small science ; 1(12), article number 2100088. - https://doi.org/10.1002/smsc.202100088 | Abstract: | Many recent investigations in the context of graphene nanoplatelets (GNPs) coatings report surface strain measurements by using piezoresistive sensing capabilities. An often underestimated problem is that the strain field is unknown and the principal strain components as well as their orientations must be determined. Herein, GNP films subjected to multiaxial strain are examined. Experimental results show that although the sensitivity to longitudinal strain is the highest, the ratio between transverse and longitudinal sensitivity exceeds 0.5. The sensitivity to shear strain is much lower. A model assisted study of a random network provides additional guidelines for the different electromechanical sensitivities. In practice, the GNP film is usually subjected to different strains simultaneously so that the multiaxial strain measurement becomes difficult. Therefore, two novel approaches for sensing plane strain components with circular GNP films are developed and successfully verified in experiments. The numerical approach is called strain-differential electrical impedance tomography (SD-EIT), where the proposed piezoresistive model elementwise in a finite element model is implemented and the strain components of a strain rosette are reconstructed. Moreover, an analytical approach is derived from SD-EIT and exhibits further the opportunity to detect anomalies within the piezoresistive sensing behavior of GNP films. |
Description: | Finanziert im Rahmen der DEAL-Verträge durch die Universitätsbibliothek Siegen |
DOI: | http://dx.doi.org/10.25819/ubsi/10329 | URN: | urn:nbn:de:hbz:467-25221 | URI: | https://dspace.ub.uni-siegen.de/handle/ubsi/2522 | License: | http://creativecommons.org/licenses/by/4.0/ |
Appears in Collections: | Geförderte Open-Access-Publikationen |
This item is protected by original copyright |
Page view(s)
298
checked on Dec 24, 2024
Download(s)
72
checked on Dec 24, 2024
Google ScholarTM
Check
Altmetric
This item is licensed under a Creative Commons License