Citation link: https://nbn-resolving.org/urn:nbn:de:hbz:467-7704
Files in This Item:
File Description SizeFormat
schwaneberg.pdf16.38 MBAdobe PDFThumbnail
View/Open
Dokument Type: Doctoral Thesis
metadata.dc.title: Concept, system design, evaluation and safety requirements for a multispectral sensor
Konzept, Systemdesign, Evaluation und Sicherheitsanforderungen eines multispektralen Sensors
Authors: Schwaneberg, Oliver 
Institute: Institut für Bildinformatik 
Free keywords: Sensorik, Detektionstechnologie, DIN EN 61496, Nahinfrarot, Multispectral sensors, skin detection, near-infrared, contact-free detection, IEC 61496
Dewey Decimal Classification: 621.3 Elektrotechnik, Elektronik
GHBS-Clases: WFCD
Issue Date: 2013
Publish Date: 2013
Abstract: 
The use of manually fed machines (e.g. table saws) bares risks of injury that are clearly above the average level of other high risk workplaces.
The wide use of such machines causes severe problems for occupational safety and implies high costs for medical treatments and accident annuities.

This thesis presents a new concept of a multispectral sensor to monitor an area in front of a danger zone to detect the user’s limbs and trigger safeguarding measures to prevent an accident in time.
The sensor concept realizes a contact-free material classification, which comprises the development of a system design and specific safety requirements with respect to international safety standards.
Furthermore, a prototypical implementation using four wavebands, which were determined for skin detection through an analysis of reflectance spectra acquired specifically for this purpose, was built.

This sensor comprises an embedded system which is able to perform a material classification within a few milliseconds.
To achieve this, several algorithms were researched and developed to process the raw sensor readings.
An evaluation of the presented methods on both real and synthesized sensor data as well as on the prototypical implementation was performed.
The evaluation yields that the prototype implementing the presented methods can detect human skin reliably within a wide range of measurement conditions, including the presence of interference sources.

Die Arbeit mit handbeschickten Maschinen (wie z.B. Kreissägen) birgt deutlich höhere Verletzungsrisiken als vergleichbare Arbeitsplätze mit hohem Risikopotential.
Die weite Verbreitung solcher Maschinen führt zu schwerwiegenden Problemen für den Arbeitsschutz und hohen Kosten für medizinische Behandlungen sowie Unfallrenten.

In dieser Arbeit wird ein neues Konzept eines multispektralen Sensors vorgestellt, welcher den Bereich vor der Gefahrenzone einer Maschine überwachen soll, um Gliedmaßen des Benutzers zu erkennen.
Ziel ist, rechtzeitig Schutzmaßnahmen einzuleiten, um einen drohenden Unfall zu verhindern.

Das Sensorkonzept ermöglicht eine berührungslose Materialklassifikation.
Ein entsprechendes Systemdesign und spezielle Sicherheitsanforderungen unter Berücksichtigung internationaler Sicherheitsstandards wurden entwickelt.
Darüber hinaus wurde ein Prototyp implementiert, welcher vier Wellenlängenbänder verwendet.
Diese wurden durch eine Analyse von Reflexionsspektren ermittelt, die eigens für diesen Zweck erhoben wurden.

Der Sensor beinhaltet ein Embedded System, welches eine Materialklassifikation innerhalb weniger Millisekunden durchführt.
Um dies zu erreichen, wurden mehrere Methoden zur Verarbeitung der Sensordaten erforscht und entwickelt.
Die dargestellten Methoden wurden mit gemessenen und synthetisierten Sensordaten evaluiert. Ebenfalls erfolgte eine Evaluierung der Prototypen, welche die dargestellten Methoden implementieren.
Die Ergebnisse zeigen, dass menschliche Haut unter verschiedensten Messbedingungen, auch unter Störeinflüssen, verlässlich erkannt wird.
URN: urn:nbn:de:hbz:467-7704
URI: https://dspace.ub.uni-siegen.de/handle/ubsi/770
License: https://dspace.ub.uni-siegen.de/static/license.txt
Appears in Collections:Hochschulschriften

This item is protected by original copyright

Show full item record

Page view(s)

688
checked on Dec 27, 2024

Download(s)

192
checked on Dec 27, 2024

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.