Zitierlink: http://dx.doi.org/10.25819/ubsi/9967
Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat
Approaches_for_the_prediction_of_lead_times.pdf1.52 MBAdobe PDFMiniaturbild
Öffnen/Anzeigen
Dokumentart: Article
Titel: Approaches for the prediction of lead times in an engineer to order environment - a systematic review
AutorInn(en): Burggräf, Peter 
Wagner, Johannes 
Koke, Benjamin 
Steinberg, Fabian 
Institut: Fakultät IV - Naturwissenschaftlich-Technische Fakultät 
Schlagwörter: Durchlaufzeitverkürzung, Maschinelles Lernen, Operations Research, Vorhersagemethoden, Lead time reduction, Machine learning, Operations research, Prediction methods
DDC-Sachgruppe: 620
GHBS-Notation: ZHX
Erscheinungsjahr: 2020
Publikationsjahr: 2021
Auch erschienen: IEEE Access ; vol. 8, S. 142434-142445. - DOI: https://doi.org/10.1109/ACCESS.2020.3010050
Zusammenfassung: 
The interest of manufacturing companies in a sufficient prediction of lead times is continuouslyincreasing - especially in engineer to order environments with typically a large number of individual parts andcomplex production processes. A multitude of approaches have been proposed in the literature for predictinglead times considering different data and methods or algorithms from operations research (OR) and machinelearning (ML). In order to provide guidance at setting up prediction models and developing new approaches,a systematic review of the available approaches for predicting lead times is presented in this paper. Forty-twopublications were analyzed and synthetized: Based on a developed framework considering the used dataclass (e.g. product data or system status), the data origin (master data or real data) and the used methodand algorithm from OR and ML, the publications are classified. Based on the classification, a descriptiveanalysis is performed to identify common approaches in the existing literature as well as implications forfurther research. One result is, that mostly order data and the status of the production system are used forpredicting lead times whereas material data are used seldom. Additionally, ML approaches primarily useartificial neural networks and regression models for predicting lead times, while OR approaches use mainlycombinatorial optimization or heuristics. Furthermore, with increasing model complexity the use of realdata decreased. Thus, we identified as an implication for further research to set up a complex data modelconsidering material data, which uses real data as data origin.
Beschreibung: 
Finanziert aus dem Open-Access-Publikationsfonds der Universität Siegen für Zeitschriftenartikel
DOI: http://dx.doi.org/10.25819/ubsi/9967
URN: urn:nbn:de:hbz:467-19536
URI: https://dspace.ub.uni-siegen.de/handle/ubsi/1953
Enthalten in den Sammlungen:Geförderte Open-Access-Publikationen

Diese Ressource ist urheberrechtlich geschützt.

Zur Langanzeige

Seitenansichten

454
checked on 26.12.2024

Download(s)

796
checked on 26.12.2024

Google ScholarTM

Prüfe

Prüfe


Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt, soweit nicht anderweitig angezeigt.