Citation link:
http://dx.doi.org/10.25819/ubsi/10001
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Garanza, Andrej | - |
dc.date.accessioned | 2021-10-08T08:55:51Z | - |
dc.date.available | 2021-10-08T08:55:51Z | - |
dc.date.issued | 2020 | de |
dc.description.abstract | In this work we deepen our studies on the numerical FE-treatment of systems of partial differential equations, where the solution is subjected to inequality constraints. Especially we focus on Lagrange-settings, which can be employed to handle the given constraints. In this way additional auxiliary variables are introduced which are determined simultaneously to the original primal solution within a so-called mixed system. On this basis efficient solution processes for the mixed systems are constructed by eliminating inequality constraints yielding nonlinear equation systems. These can easily be solved by (non-smooth) Newton-type schemes. Furthermore concepts for a posteriori error control are reviewed and refined. | en |
dc.description.abstract | In dieser Arbeit werden Systeme partieller Differentialgleichungen mit Ungleichungsnebenbedingungen behandelt. Genauer geht es um die numerische Analyse mit Finite-Element-Methoden (FEM). Besonderes Augenmerk liegt hierbei auf dem Einsatz von Lagrange-Techniken. Die dadurch eingeführten Hilfsvariablen werden simultan zur primalen Lösung im Rahmen eines sogenannten gemischten Systems bestimmt. Auf der Basis von Projektionstechniken können die Ungleichungsnebenbedingungen eliminiert werden. Die dann entstehenden nicht-linearen Probleme werden dann mit nicht-glatten Verfahren vom Newton-Typ effizient gelöst. Darüber hinaus werden Techniken zur a posteriori Fehlerkontrolle verfeinert und auf die vorliegende neue Situation erweitert. | de |
dc.identifier.doi | http://dx.doi.org/10.25819/ubsi/10001 | - |
dc.identifier.uri | https://dspace.ub.uni-siegen.de/handle/ubsi/1990 | - |
dc.identifier.urn | urn:nbn:de:hbz:467-19907 | - |
dc.language.iso | en | de |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 International | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.subject.ddc | 510 Mathematik | de |
dc.subject.other | Numerical FE-treatment | en |
dc.subject.other | Partial differential equations | en |
dc.subject.other | Inequality constraints | en |
dc.subject.swb | Finite-Elemente-Methode | de |
dc.subject.swb | Partielle Differentialgleichung | de |
dc.subject.swb | Ungleichungsrestriktion | de |
dc.title | Mixed FE-models for variational inequalities | en |
dc.title.alternative | Gemischte FE-Modelle für variationele Ungleichungen | de |
dc.type | Doctoral Thesis | de |
item.fulltext | With Fulltext | - |
ubsi.contributor.referee | Suttmeier, Franz-Theo | - |
ubsi.date.accepted | 2020-10-20 | - |
ubsi.organisation.granting | Universität Siegen | - |
ubsi.origin.dspace5 | 1 | - |
ubsi.publication.affiliation | Department Mathematik | de |
ubsi.subject.ghbs | TIK | de |
ubsi.subject.ghbs | TLBF | de |
ubsi.subject.ghbs | TBU | de |
Appears in Collections: | Hochschulschriften |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Dissertation_Andrej_Garanza.pdf | 1.01 MB | Adobe PDF | View/Open |
This item is protected by original copyright |
Page view(s)
241
checked on Dec 26, 2024
Download(s)
69
checked on Dec 26, 2024
Google ScholarTM
Check
Altmetric
This item is licensed under a Creative Commons License